Science.gov

Sample records for artificial-gravity nep vehicle

  1. A Boiling-Potassium Fluoride Reactor for an Artificial-Gravity NEP Vehicle

    NASA Technical Reports Server (NTRS)

    Sorensen, Kirk; Juhasz, Albert

    2007-01-01

    Several years ago a rotating manned spacecraft employing nuclear-electric propulsion was examined for Mars exploration. The reactor and its power conversion system essentially served as the counter-mass to an inflatable manned module. A solid-core boiling potassium reactor based on the MPRE concept of the 1960s was baselined in that study. This paper proposes the use of a liquid-fluoride reactor, employing direct boiling of potassium in the core, as a means to overcome some of the residual issues with the MPRE reactor concept. Several other improvements to the rotating Mars vehicle are proposed as well, such as Canfield joints to enable the electric engines to track the inertial thrust vector during rotation, and innovative "cold-ion" engine technologies to improve engine performance.

  2. A Boiling-Potassium Fluoride Reactor for an Artificial-Gravity NEP Vehicle

    NASA Technical Reports Server (NTRS)

    Sorensen, Kirk; Juhasz, Albert

    2007-01-01

    Several years ago a rotating manned spacecraft employing nuclear-electric propulsion was examined for Mars exploration. The reactor and its power conversion system essentially served as the counter-mass to an inflatable manned module. A solid-core boiling potassium reactor based on the MPRE concept of the 1960s was baselined in that study. This paper proposes the use of a liquid-fluoride reactor, employing direct boiling of potassium in the core, as a means to overcome some of the residual issues with the MPRE reactor concept. Several other improvements to the rotating Mars vehicle are proposed as well, such as Canfield joints to enable the electric engines to track the inertial thrust vector during rotation, and innovative "cold-ion" engine technologies to improve engine performance.

  3. Space vehicle with artificial gravity and earth-like environment

    NASA Technical Reports Server (NTRS)

    Gray, V. H. (Inventor)

    1973-01-01

    A space vehicle adapted to provide an artificial gravity and earthlike atmospheric environment for occupants is disclosed. The vehicle comprises a cylindrically shaped, hollow pressure-tight body, one end of which is tapered from the largest diameter of the body, the other end is flat and transparent to sunlight. The vehicle is provided with thrust means which rotates the body about its longitudinal axis, generating an artificial gravity effect upon the interior walls of the body due to centrifugal forces. The walls of the tapered end of the body are maintained at a temperature below the dew point of water vapor in the body and lower than the temperature near the transparent end of the body. The controlled environment and sunlight permits an earth like environment to be maintained wherein the CO2/O2 is balanced, and food for the travelers is supplied through a natural system of plant life grown on spacecraft walls where soil is located.

  4. High Power MPD Nuclear Electric Propulsion (NEP) for Artificial Gravity HOPE Missions to Callisto

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Borowski, Stanley K.; Mason, Lee M.; Gilland, James

    2003-01-01

    This documents the results of a one-year multi-center NASA study on the prospect of sending humans to Jupiter's moon, Callisto, using an all Nuclear Electric Propulsion (NEP) space transportation system architecture with magnetoplasmadynamic (MPD) thrusters. The fission reactor system utilizes high temperature uranium dioxide (UO2) in tungsten (W) metal matrix cermet fuel and electricity is generated using advanced dynamic Brayton power conversion technology. The mission timeframe assumes on-going human Moon and Mars missions and existing space infrastructure to support launch of cargo and crewed spacecraft to Jupiter in 2041 and 2045, respectively.

  5. Preliminary Assessment of Artificial Gravity Impacts to Deep-Space Vehicle Design

    NASA Technical Reports Server (NTRS)

    Joosten, B. Kent

    2007-01-01

    Even after more than thirty years of scientific investigation, serious concerns regarding human physiological effects of long-duration microgravity exposure remain. These include loss of bone mineral density, skeletal muscle atrophy, and orthostatic hypertension, among others. In particular, "Safe Passage: Astronaut Care for Exploration Missions," states "loss of bone density, which apparently occurs at a rate of 1% per month in microgravity, is relatively manageable on the short-duration missions of the space shuttle, but it becomes problematic on the ISS [International Space Station]. ...If this loss is not mitigated, interplanetary missions will be impossible." While extensive investigations into potential countermeasures are planned on the ISS, the delay in attaining full crew complement and onboard facilities, and the potential for extending crews tours of duty threaten the timely (< 20 years!) accumulation of sufficient data for countermeasures formulation. Indeed, there is no guarantee that even with the data, a practical or sufficiently robust set of countermeasures will be forthcoming. Providing an artificial gravity (AG) environment by crew centrifugation aboard deep-space human exploration vehicles, long a staple technique of science fiction, has received surprisingly limited engineering assessment. This is most likely due to a number of factors: the lack of definitive design requirements, especially acceptable artificial gravity levels and rotation rates, the perception of high vehicle mass and performance penalties, the incompatibility of resulting vehicle configurations with space propulsion options (i.e., aerocapture), the perception of complications associated with de-spun components such as antennae and photovoltaic arrays, and the expectation of effective crew micro-gravity countermeasures. These perception and concerns may have been overstated, or may be acceptable alternatives to countermeasures of limited efficacy. This study was undertaken as

  6. Physics of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Bukley, Angie; Paloski, William; Clement, Gilles

    2006-01-01

    This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.

  7. Artificial Gravity Research Plan

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita

    2014-01-01

    This document describes the forward working plan to identify what countermeasure resources are needed for a vehicle with an artificial gravity module (intermittent centrifugation) and what Countermeasure Resources are needed for a rotating transit vehicle (continuous centrifugation) to minimize the effects of microgravity to Mars Exploration crewmembers.

  8. Conventional and Bimodal Nuclear Thermal Rocket (NTR) Artificial Gravity Mars Transfer Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2016-01-01

    A variety of countermeasures have been developed to address the debilitating physiological effects of zero-gravity (0-g) experienced by cosmonauts and astronauts during their approximately 0.5 to 1.2 year long stays in low Earth orbit (LEO). Longer interplanetary flights, combined with possible prolonged stays in Mars orbit, could subject crewmembers to up to approximately 2.5 years of weightlessness. In view of known and recently diagnosed problems associated with 0-g, an artificial gravity (AG) spacecraft offers many advantages and may indeed be an enabling technology for human flights to Mars. A number of important human factors must be taken into account in selecting the rotation radius, rotation rate, and orientation of the habitation module or modules. These factors include the gravity gradient effect, radial and tangential Coriolis forces, along with cross-coupled acceleration effects. Artificial gravity Mars transfer vehicle (MTV) concepts are presented that utilize both conventional NTR, as well as, enhanced bimodal nuclear thermal rocket (BNTR) propulsion. The NTR is a proven technology that generates high thrust and has a specific impulse (Isp) capability of approximately 900 s-twice that of today's best chemical rockets. The AG/MTV concepts using conventional Nuclear Thermal Propulsion (NTP) carry twin cylindrical International Space Station (ISS)- type habitation modules with their long axes oriented either perpendicular or parallel to the longitudinal spin axis of the MTV and utilize photovoltaic arrays (PVAs) for spacecraft power. The twin habitat modules are connected to a central operations hub located at the front of the MTV via two pressurized tunnels that provide the rotation radius for the habitat modules. For the BNTR AG/MTV option, each engine has its own closed secondary helium(He)-xenon (Xe) gas loop and Brayton Rotating Unit (BRU) that can generate 10s of kilowatts (kWe) of spacecraft electrical power during the mission coast phase

  9. Conventional and Bimodal Nuclear Thermal Rocket (NTR) Artificial Gravity Mars Transfer Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2014-01-01

    A variety of countermeasures have been developed to address the debilitating physiological effects of "zero-gravity" (0-g) experienced by cosmonauts and astronauts during their approximately 0.5-1.2 year long stays in LEO (Low Earth Orbit). Longer interplanetary flights, combined with possible prolonged stays in Mars orbit, could subject crewmembers to up to approximately 2.5 years of weightlessness. In view of known and recently diagnosed problems associated with 0-g, an artificial gravity spacecraft offers many advantages and may indeed be an enabling technology for human flights to Mars. A number of important human factors must be taken into account in selecting the rotation radius, rotation rate, and orientation of the habitation module or modules. These factors include the gravity gradient effect, radial and tangential Coriolis forces, along with cross-coupled acceleration effects. Artificial gravity (AG) Mars transfer vehicle (MTV) concepts are presented that utilize both conventional NTR, as well as, enhanced "bimodal" nuclear thermal rocket (BNTR) propulsion. The NTR is a proven technology that generates high thrust and has a specific impulse (I (sub sp)) capability of approximately 900 s - twice that of today's best chemical rockets. The AG/MTV concepts using conventional NTP carry twin cylindrical "ISS-type" habitation modules with their long axes oriented either perpendicular or parallel to the longitudinal spin axis of the MTV and utilize photovoltaic arrays (PVAs) for spacecraft power. The twin habitat modules are connected to a central operations hub located at the front of the MTV via two pressurized tunnels that provide the rotation radius for the habitat modules. For the BNTR AG/MTV option, each engine has its own "closed" secondary helium-xenon gas loop and Brayton rotating unit that can generate tens of kilowatts (kW (sub e)) of spacecraft electrical power during the mission coast phase eliminating the need for large PVAs. A single inflatable

  10. Artificial gravity Mars spaceship

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.

    1989-01-01

    Experience gained in the study of artificial gravity for a manned trip to Mars is reviewed, and a snowflake-configured interplanetary vehicle cluster of habitat modules, descent vehicles, and propulsion systems is presented. An evolutionary design is described which permits sequential upgrading from five to nine crew members, an increase of landers from one to as many a three per mission, and an orderly, phased incorporation of advanced technologies as they become available.

  11. An artificial gravity demonstration experiment

    NASA Technical Reports Server (NTRS)

    Rupp, C.; Lemke, L.; Penzo, P.

    1989-01-01

    An artificial gravity experiment which is tethered to a Delta second stage and which uses the Small Expendable Deployer System is proposed. Following tether deployment, the Delta vehicle performs the required spin-up maneuver and can then be passivated. A surplus reentry vehicle houses the artificial gravity life science experiments. When the experiments are completed, the reentry phase of the experiment is initiated by synchronizing the spin of the configuration with the required deorbit impulse.

  12. An artificial gravity demonstration experiment

    NASA Technical Reports Server (NTRS)

    Rupp, C.; Lemke, L.; Penzo, P.

    1989-01-01

    An artificial gravity experiment which is tethered to a Delta second stage and which uses the Small Expendable Deployer System is proposed. Following tether deployment, the Delta vehicle performs the required spin-up maneuver and can then be passivated. A surplus reentry vehicle houses the artificial gravity life science experiments. When the experiments are completed, the reentry phase of the experiment is initiated by synchronizing the spin of the configuration with the required deorbit impulse.

  13. Artificial gravity.

    PubMed

    Scott, William B

    2005-04-25

    NASA's Artificial Gravity program consists of a team of researchers from Wyle Laboratories, NASA Johnson Space Center, and the University of Texas Medical Branch (UTMB). The short-radius centrifuge (SRC), built by Wyle Laboratories, will be integrated with UTMB's conducted bedrest studies, which mimic the detrimental effects of weightlessness (or microgravity). Bedrest subjects will be spun on the SRC at various accelerations and for various time periods, while being monitored medically. Parameters such as bone loss, muscle atrophy, balance control, and oxygen consumption will then be compared in order to research ways of mitigating the impact on astronauts' physiology. Other potential benefits from these studies extend to population groups on Earth, such as bedridden patients.

  14. Findings on American astronauts bearing on the issue of artificial gravity for future manned space vehicles. [adaptation to weightlessness during manned space flight

    NASA Technical Reports Server (NTRS)

    Berry, C. A.

    1973-01-01

    Findings for American astronauts are reviewed that may indicate some alteration in vestibular response related to exposure to zero gravity. Of 25 individuals participating in Apollo missions 7 through 15, nine have experienced symptomatology that could be related to motion sickness. The apparent divergence between these results and those from the Soviet space program, which initially appears great, may reflect the greater emphasis given by Soviet investigators to vestibular aberrations. Presently the incidence of motion sickness, long known as an indicator of vestibular disturbance, seems too low to warrant any positive statement regarding inclusion of an artificial gravity system in future long term space missions. Where motion sickness has occurred, adaptation to weightlessness has always resulted in abatement of symptoms. In the absence of biomedical justification for incorporating artificial gravity systems in long term space flight vehicles, engineering considerations may dictate the manner in which the final ballot is cast.

  15. Artificial Gravity Research Project

    NASA Technical Reports Server (NTRS)

    Kamman, Michelle R.; Paloski, William H.

    2005-01-01

    Protecting the health, safety, and performance of exploration-class mission crews against the physiological deconditioning resulting from long-term weightlessness during transit and long-term hypogravity during surface operations will require effective, multi-system countermeasures. Artificial gravity (AG), which would replace terrestrial gravity with inertial forces generated by rotating the transit vehicle or by a human centrifuge device within the transit vehicle or surface habitat, has long been considered a potential solution. However, despite its attractiveness as an efficient, multi-system countermeasure and its potential for improving the environment and simplifying operational activities (e.g., WCS, galley, etc.), much still needs to be learned regarding the human response to rotating environments before AG can be successfully implemented. This paper will describe our approach for developing and implementing a rigorous AG Research Project to address the key biomedical research questions that must be answered before developing effective AG countermeasure implementation strategies for exploration-class missions. The AG Research Project will be performed at JSC, ARC, extramural academic and government research venues, and international partner facilities maintained by DLR and IMBP. The Project includes three major ground-based human research subprojects that will lead to flight testing of intermittent short-radius AG in ISS crewmembers after 201 0, continuous long-radius AG in CEV crews transiting to and from the Moon, and intermittent short-radius AG plus exercise in lunar habitats. These human ground-based subprojects include: 1) a directed, managed international short-radius project to investigate the multi-system effectiveness of intermittent AG in human subjects deconditioned by bed rest, 2) a directed, managed long-radius project to investigate the capacity of humans to live and work for extended periods in rotating environments, and 3) a focused

  16. Artificial Gravity Research Project

    NASA Technical Reports Server (NTRS)

    Kamman, Michelle R.; Paloski, William H.

    2005-01-01

    Protecting the health, safety, and performance of exploration-class mission crews against the physiological deconditioning resulting from long-term weightlessness during transit and long-term hypogravity during surface operations will require effective, multi-system countermeasures. Artificial gravity (AG), which would replace terrestrial gravity with inertial forces generated by rotating the transit vehicle or by a human centrifuge device within the transit vehicle or surface habitat, has long been considered a potential solution. However, despite its attractiveness as an efficient, multi-system countermeasure and its potential for improving the environment and simplifying operational activities (e.g., WCS, galley, etc.), much still needs to be learned regarding the human response to rotating environments before AG can be successfully implemented. This paper will describe our approach for developing and implementing a rigorous AG Research Project to address the key biomedical research questions that must be answered before developing effective AG countermeasure implementation strategies for exploration-class missions. The AG Research Project will be performed at JSC, ARC, extramural academic and government research venues, and international partner facilities maintained by DLR and IMBP. The Project includes three major ground-based human research subprojects that will lead to flight testing of intermittent short-radius AG in ISS crewmembers after 201 0, continuous long-radius AG in CEV crews transiting to and from the Moon, and intermittent short-radius AG plus exercise in lunar habitats. These human ground-based subprojects include: 1) a directed, managed international short-radius project to investigate the multi-system effectiveness of intermittent AG in human subjects deconditioned by bed rest, 2) a directed, managed long-radius project to investigate the capacity of humans to live and work for extended periods in rotating environments, and 3) a focused

  17. ``Bimodal'' Nuclear Thermal Rocket (BNTR) Propulsion for an Artificial Gravity HOPE Mission to Callisto

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; McGuire, Melissa L.; Mason, Lee M.; Gilland, James H.; Packard, Thomas W.

    2003-01-01

    This paper summarizes the results of a year long, multi-center NASA study which examined the viability of nuclear fission propulsion systems for Human Outer Planet Exploration (HOPE). The HOPE mission assumes a crew of six is sent to Callisto. Jupiter's outermost large moon, to establish a surface base and propellant production facility. The Asgard asteroid formation, a region potentially rich in water-ice, is selected as the landing site. High thrust BNTR propulsion is used to transport the crew from the Earth-Moon L1 staging node to Callisto then back to Earth in less than 5 years. Cargo and LH2 ``return'' propellant for the piloted Callisto transfer vehicle (PCTV) is pre-deployed at the moon (before the crew's departure) using low thrust, high power, nuclear electric propulsion (NEP) cargo and tanker vehicles powered by hydrogen magnetoplasmadynamic (MPD) thrusters. The PCTV is powered by three 25 klbf BNTR engines which also produce 50 kWe of power for crew life support and spacecraft operational needs. To counter the debilitating effects of long duration space flight (~855 days out and ~836 days back) under ``0-gE'' conditions, the PCTV generates an artificial gravity environment of ``1-gE'' via rotation of the vehicle about its center-of-mass at a rate of ~4 rpm. After ~123 days at Callisto, the ``refueled'' PCTV leaves orbit for the trip home. Direct capsule re-entry of the crew at mission end is assumed. Dynamic Brayton power conversion and high temperature uranium dioxide (UO2) in tungsten metal ``cermet'' fuel is used in both the BNTR and NEP vehicles to maximize hardware commonality. Technology performance levels and vehicle characteristics are presented, and requirements for PCTV reusability are also discussed.

  18. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 5: Nuclear electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The nuclear electric propulsion (NEP) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study is presented. The evolution of the NEP concept is described along with the requirements, guidelines, and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  19. Recommended Research on Artificial Gravity. Chapter 13

    NASA Technical Reports Server (NTRS)

    Vernikos, Joan; Paloski, William; Fuller, Charles; Clement, Gilles

    2006-01-01

    Based on the summaries presented in the above sections of what is still to be learned on the effects of artificial gravity on human functions, this chapter will discuss the short- and long-term steps of research required to understand fundamentals and to validate operational aspects of using artificial gravity as an effective countermeasure for long-duration space travel.

  20. Biomedical aspects of artificial gravity.

    PubMed

    Vil-Viliams, I F; Kotovskaya, A R; Shipov, A A

    1997-07-01

    Artificial gravity (AG) is the basic challenge for space biology and medicine. The importance of this problem is associated with the fact that duration of the space missions will become progressively longer, but the presently available countermeasures do not provide reason enough to predict the human health safety during space missions of any duration. The creation of AG could be an efficient method for removing the negative effects of microgravity. Two principle methods of generating AG, rotation of space system (SS) and building of short arm centrifuge (SAC), have been proposed. The purpose of the present work is to review the biomedical aspects of AG in the context of its use in long-term space missions.

  1. An overview of artificial gravity. [effects on human performance and physiology

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1973-01-01

    The unique characteristics of artificial gravity that affect human performance and physiology in an artificial gravity environment are reviewed. The rate at which these unique characteristics change decreases very rapidly with increasing radius of a rotating vehicle used to produce artificial gravity. Reducing their influence on human performance or physiology by increasing radius becomes a situation of very rapidly diminishing returns. A review of several elements of human performance has developed criteria relative to the sundry characteristics of artificial gravity. A compilation of these criteria indicates that the maximum acceptable rate of rotation, leg heaviness while walking, and material handling are the factors that define the minimum acceptable radius. The ratio of Coriolis force to artificial weight may also be significant. Based on current knowledge and assumptions for the various criteria, a minimum radius between 15.2 and 16.8 m seems desirable.

  2. An overview of artificial gravity. [effects on human performance and physiology

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1973-01-01

    The unique characteristics of artificial gravity that affect human performance and physiology in an artificial gravity environment are reviewed. The rate at which these unique characteristics change decreases very rapidly with increasing radius of a rotating vehicle used to produce artificial gravity. Reducing their influence on human performance or physiology by increasing radius becomes a situation of very rapidly diminishing returns. A review of several elements of human performance has developed criteria relative to the sundry characteristics of artificial gravity. A compilation of these criteria indicates that the maximum acceptable rate of rotation, leg heaviness while walking, and material handling are the factors that define the minimum acceptable radius. The ratio of Coriolis force to artificial weight may also be significant. Based on current knowledge and assumptions for the various criteria, a minimum radius between 15.2 and 16.8 m seems desirable.

  3. Adaptation in a rotating artificial gravity environment.

    PubMed

    Lackner, J R; DiZio, P

    1998-11-01

    The centripetal force generated by a rotating space vehicle is a potential source of artificial gravity. Minimizing the cost of such a vehicle dictates using the smallest radius and highest rotation rate possible, but head movements made at high rotation rates generate disorienting, nauseogenic cross-coupled semicircular canal stimulation. Early studies suggested 3 or 4 rpm as the highest rate at which humans could adapt to this vestibular stimulus. These studies neglected the concomitant Coriolis force actions on the head/neck system. We assessed non-vestibular Coriolis effects by measuring arm and leg movements made in the center of a rotating room turning at 10 rpm and found that movement endpoints and trajectories are initially deviated; however, subjects readily adapt with 10-20 additional movements, even without seeing their errors. Equilibrium point theories of motor control errantly predict that Coriolis forces will not cause movement endpoint errors so that subjects will not have to adapt their reaching movements during rotation. Adaptation of movement trajectory acquired during Coriolis force perturbations of one arm transfers to the unexposed arm but there is no intermanual transfer of endpoint adaptation indicating that neuromotor representations of movement endpoint and trajectory are separable and can adapt independently, also contradictory to equilibrium point theories. Touching a surface at the end of reaching movements is required for complete endpoint adaptation in darkness but trajectory adapts completely with or without terminal contact. We have also made the first kinematic measurements of unconstrained head movements during rotation, these movements show rapid adaptation to Coriolis force perturbations. Our results point to methods for achieving full compensation for rotation up to 10 rpm. Copyright 1998 Published by Elsevier Science B.V.

  4. Adaptation in a rotating artificial gravity environment

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    1998-01-01

    The centripetal force generated by a rotating space vehicle is a potential source of artificial gravity. Minimizing the cost of such a vehicle dictates using the smallest radius and highest rotation rate possible, but head movements made at high rotation rates generate disorienting, nauseogenic cross-coupled semicircular canal stimulation. Early studies suggested 3 or 4 rpm as the highest rate at which humans could adapt to this vestibular stimulus. These studies neglected the concomitant Coriolis force actions on the head/neck system. We assessed non-vestibular Coriolis effects by measuring arm and leg movements made in the center of a rotating room turning at 10 rpm and found that movement endpoints and trajectories are initially deviated; however, subjects readily adapt with 10-20 additional movements, even without seeing their errors. Equilibrium point theories of motor control errantly predict that Coriolis forces will not cause movement endpoint errors so that subjects will not have to adapt their reaching movements during rotation. Adaptation of movement trajectory acquired during Coriolis force perturbations of one arm transfers to the unexposed arm but there is no intermanual transfer of endpoint adaptation indicating that neuromotor representations of movement endpoint and trajectory are separable and can adapt independently, also contradictory to equilibrium point theories. Touching a surface at the end of reaching movements is required for complete endpoint adaptation in darkness but trajectory adapts completely with or without terminal contact. We have also made the first kinematic measurements of unconstrained head movements during rotation, these movements show rapid adaptation to Coriolis force perturbations. Our results point to methods for achieving full compensation for rotation up to 10 rpm. Copyright 1998 Published by Elsevier Science B.V.

  5. Adaptation in a rotating artificial gravity environment

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    1998-01-01

    The centripetal force generated by a rotating space vehicle is a potential source of artificial gravity. Minimizing the cost of such a vehicle dictates using the smallest radius and highest rotation rate possible, but head movements made at high rotation rates generate disorienting, nauseogenic cross-coupled semicircular canal stimulation. Early studies suggested 3 or 4 rpm as the highest rate at which humans could adapt to this vestibular stimulus. These studies neglected the concomitant Coriolis force actions on the head/neck system. We assessed non-vestibular Coriolis effects by measuring arm and leg movements made in the center of a rotating room turning at 10 rpm and found that movement endpoints and trajectories are initially deviated; however, subjects readily adapt with 10-20 additional movements, even without seeing their errors. Equilibrium point theories of motor control errantly predict that Coriolis forces will not cause movement endpoint errors so that subjects will not have to adapt their reaching movements during rotation. Adaptation of movement trajectory acquired during Coriolis force perturbations of one arm transfers to the unexposed arm but there is no intermanual transfer of endpoint adaptation indicating that neuromotor representations of movement endpoint and trajectory are separable and can adapt independently, also contradictory to equilibrium point theories. Touching a surface at the end of reaching movements is required for complete endpoint adaptation in darkness but trajectory adapts completely with or without terminal contact. We have also made the first kinematic measurements of unconstrained head movements during rotation, these movements show rapid adaptation to Coriolis force perturbations. Our results point to methods for achieving full compensation for rotation up to 10 rpm. Copyright 1998 Published by Elsevier Science B.V.

  6. History of Artificial Gravity. Chapter 3

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Bukley, Angie; Paloski, William

    2006-01-01

    This chapter reviews the past and current projects on artificial gravity during space missions. The idea of a rotating wheel-like space station providing artificial gravity goes back in the writings of Tsiolkovsky, Noordung, and Wernher von Braun. Its most famous fictional representation is in the film 2001: A Space Odyssey, which also depicts spin-generated artificial gravity aboard a space station and a spaceship bound for Jupiter. The O Neill-type space colony provides another classic illustration of this technique. A more realistic approach to rotating the space station is to provide astronauts with a smaller centrifuge contained within a spacecraft. The astronauts would go into it for a workout, and get their gravity therapeutic dose for a certain period of time, daily or a few times a week. This simpler concept is current being tested during ground-based studies in several laboratories around the world.

  7. International Multidisciplinary Artificial Gravity (IMAG) Project

    NASA Technical Reports Server (NTRS)

    Laurini, Kathy

    2007-01-01

    This viewgraph presentation reviews the efforts of the International Multidisciplinary Artificial Gravity Project. Specifically it reviews the NASA Exploration Planning Status, NASA Exploration Roadmap, Status of Planning for the Moon, Mars Planning, Reference health maintenance scenario, and The Human Research Program.

  8. Artificial Gravity: Effects on Bone Turnover

    NASA Technical Reports Server (NTRS)

    Heer, M.; Zwart, S /R.; Baecker, N.; Smith, S. M.

    2007-01-01

    The impact of microgravity on the human body is a significant concern for space travelers. Since mechanical loading is a main reason for bone loss, artificial gravity might be an effective countermeasure to the effects of microgravity. In a 21-day 6 head-down tilt bed rest (HDBR) pilot study carried out by NASA, USA, the utility of artificial gravity (AG) as a countermeasure to immobilization-induced bone loss was tested. Blood and urine were collected before, during, and after bed rest for bone marker determinations. Bone mineral density was determined by DXA and pQCT before and after bed rest. Urinary excretion of bone resorption markers (n-telopeptide and helical peptide) were increased from pre-bed rest, but there was no difference between the control and the AG group. The same was true for serum c-telopeptide measurements. Bone formation markers were affected by bed rest and artificial gravity. While bone-specific alkaline phosphatase tended to be lower in the AG group during bed rest (p = 0.08), PINP, another bone formation marker, was significantly lower in AG subjects than CN before and during bed rest. PINP was lower during bed rest in both groups. For comparison, artificial gravity combined with ergometric exercise was tested in a 14-day HDBR study carried out in Japan (Iwase et al. J Grav Physiol 2004). In that study, an exercise regime combined with AG was able to significantly mitigate the bed rest-induced increase in the bone resorption marker deoxypyridinoline. While further study is required to more clearly differentiate bone and muscle effects, these initial data demonstrate the potential effectiveness of short-radius, intermittent AG as a countermeasure to the bone deconditioning that occurs during bed rest and spaceflight. Future studies will need to optimize not only the AG prescription (intensity and duration), but will likely need to include the use of exercise or other combined treatments.

  9. Artificial Gravity: Effects on Bone Turnover

    NASA Technical Reports Server (NTRS)

    Heer, M.; Zwart, S /R.; Baecker, N.; Smith, S. M.

    2007-01-01

    The impact of microgravity on the human body is a significant concern for space travelers. Since mechanical loading is a main reason for bone loss, artificial gravity might be an effective countermeasure to the effects of microgravity. In a 21-day 6 head-down tilt bed rest (HDBR) pilot study carried out by NASA, USA, the utility of artificial gravity (AG) as a countermeasure to immobilization-induced bone loss was tested. Blood and urine were collected before, during, and after bed rest for bone marker determinations. Bone mineral density was determined by DXA and pQCT before and after bed rest. Urinary excretion of bone resorption markers (n-telopeptide and helical peptide) were increased from pre-bed rest, but there was no difference between the control and the AG group. The same was true for serum c-telopeptide measurements. Bone formation markers were affected by bed rest and artificial gravity. While bone-specific alkaline phosphatase tended to be lower in the AG group during bed rest (p = 0.08), PINP, another bone formation marker, was significantly lower in AG subjects than CN before and during bed rest. PINP was lower during bed rest in both groups. For comparison, artificial gravity combined with ergometric exercise was tested in a 14-day HDBR study carried out in Japan (Iwase et al. J Grav Physiol 2004). In that study, an exercise regime combined with AG was able to significantly mitigate the bed rest-induced increase in the bone resorption marker deoxypyridinoline. While further study is required to more clearly differentiate bone and muscle effects, these initial data demonstrate the potential effectiveness of short-radius, intermittent AG as a countermeasure to the bone deconditioning that occurs during bed rest and spaceflight. Future studies will need to optimize not only the AG prescription (intensity and duration), but will likely need to include the use of exercise or other combined treatments.

  10. Development of an Artificial Gravity Sleeper (AGS)

    NASA Technical Reports Server (NTRS)

    Cardus, David; Mctaggart, Wesley G.; Diamandis, Peter; Campbell, Scott

    1990-01-01

    The design and construction of a 2-meter radius 'human compatible' centrifuge termed the Artificial Gravity Sleeper (AGS) is considered. The centrifuge will accommodate up to four subjects at a time, operate at a broad range of speeds, and have safety features. Experiments that will be conducted on the AGS will help to investigate the quality of sleep during 100 percent gradient centrifugation. A microgravity simulation also will be studied using bed rest to assess the ability of 100 percent gradient centrifugation to function as a countermeasure to cardiovascular deconditioning.

  11. Adaptation to rotating artificial gravity environments.

    PubMed

    Lackner, James R; DiZio, Paul A

    2003-01-01

    A series of pioneering experiments on adaptation to rotating artificial gravity environments was conducted in the 1960s. The results of these experiments led to the general belief that humans with normal vestibular function would not be able to adapt to rotating environments with angular velocities above 3 or 4 rpm. By contrast, our recent work has shown that sensory-motor adaptation to 10 rpm can be achieved relatively easily and quickly if subjects make the same movement repeatedly. This repetition allows the nervous system to gauge how the Coriolis forces generated by movements in a rotating reference frame are deflecting movement paths and endpoints and to institute corrective adaptations. Independent mechanisms appear to underlie restoration of straight movement paths and of accurate movement endpoints. Control of head movements involves adaptation of vestibulo-collic and vestibulo-spinal mechanisms as well as adaptation to motor control of the head as an inertial mass. The vestibular adaptation has a long time constant and the motor adaptation a short one. Surprisingly, Coriolis forces generated by natural turning and reaching movements in our normal environment are typically larger than those elicited in rotating artificial gravity environments. They are not recognized as such because self-generated Coriolis forces during voluntary trunk rotation are perceptually transparent. After adaptation to a rotating environment is complete, the Coriolis forces generated by movements within it also become transparent and are not felt although they are still present.

  12. Artificial gravity in space and in medical research.

    PubMed

    Cardús, D

    1994-05-01

    The history of manned space flight has repeatedly documented the fact that prolonged sojourn in space causes physiological deconditioning. Physiological deterioration has raised a legitimate concern about man's ability to adequately perform in the course of long missions and even the possibility of leading to circumstances threatening survival. One of the possible countermeasures of physiological deconditioning, theoretically more complete than others presently used since it affects all bodily systems, is artificial gravity. Space stations and spacecrafts can be equipped with artificial gravity, but is artificial gravity necessary? The term "necessary" must be qualified because a meaningful answer to the question depends entirely on further defining the purpose of space travel. If man intends to stay only temporarily in space, then he must keep himself in good physical condition so as to be able to return to earth or to land on any other planetary surface without undue exposure to major physiological problems resulting from transition through variable gravitational fields. Such a situation makes artificial gravity highly desirable, although perhaps not absolutely necessary in the case of relative short exposure to microgravity, but certainly necessary in interplanetary flight and planetary landings. If the intent is to remain indefinitely in space, to colonize space, then artificial gravity may not be necessary, but in this case the consequences of long term effects of adaptation to weightlessness will have to be weighed against the biological evolutionary outcomes that are to be expected. At the moment, plans for establishing permanent colonies in space seem still remote. More likely, the initial phase of exploration of the uncharted solar system will take place through successive, scope limited, research ventures ending with return to earth. This will require man to be ready to operate in gravitational fields of variable intensity. Equipping spacecrafts or space

  13. Artificial gravity in space and in medical research

    NASA Technical Reports Server (NTRS)

    Cardus, D.

    1994-01-01

    The history of manned space flight has repeatedly documented the fact that prolonged sojourn in space causes physiological deconditioning. Physiological deterioration has raised a legitimate concern about man's ability to adequately perform in the course of long missions and even the possibility of leading to circumstances threatening survival. One of the possible countermeasures of physiological deconditioning, theoretically more complete than others presently used since it affects all bodily systems, is artificial gravity. Space stations and spacecrafts can be equipped with artificial gravity, but is artificial gravity necessary? The term "necessary" must be qualified because a meaningful answer to the question depends entirely on further defining the purpose of space travel. If man intends to stay only temporarily in space, then he must keep himself in good physical condition so as to be able to return to earth or to land on any other planetary surface without undue exposure to major physiological problems resulting from transition through variable gravitational fields. Such a situation makes artificial gravity highly desirable, although perhaps not absolutely necessary in the case of relative short exposure to microgravity, but certainly necessary in interplanetary flight and planetary landings. If the intent is to remain indefinitely in space, to colonize space, then artificial gravity may not be necessary, but in this case the consequences of long term effects of adaptation to weightlessness will have to be weighed against the biological evolutionary outcomes that are to be expected. At the moment, plans for establishing permanent colonies in space seem still remote. More likely, the initial phase of exploration of the uncharted solar system will take place through successive, scope limited, research ventures ending with return to earth. This will require man to be ready to operate in gravitational fields of variable intensity. Equipping spacecrafts or space

  14. Artificial gravity in space and in medical research

    NASA Technical Reports Server (NTRS)

    Cardus, D.

    1994-01-01

    The history of manned space flight has repeatedly documented the fact that prolonged sojourn in space causes physiological deconditioning. Physiological deterioration has raised a legitimate concern about man's ability to adequately perform in the course of long missions and even the possibility of leading to circumstances threatening survival. One of the possible countermeasures of physiological deconditioning, theoretically more complete than others presently used since it affects all bodily systems, is artificial gravity. Space stations and spacecrafts can be equipped with artificial gravity, but is artificial gravity necessary? The term "necessary" must be qualified because a meaningful answer to the question depends entirely on further defining the purpose of space travel. If man intends to stay only temporarily in space, then he must keep himself in good physical condition so as to be able to return to earth or to land on any other planetary surface without undue exposure to major physiological problems resulting from transition through variable gravitational fields. Such a situation makes artificial gravity highly desirable, although perhaps not absolutely necessary in the case of relative short exposure to microgravity, but certainly necessary in interplanetary flight and planetary landings. If the intent is to remain indefinitely in space, to colonize space, then artificial gravity may not be necessary, but in this case the consequences of long term effects of adaptation to weightlessness will have to be weighed against the biological evolutionary outcomes that are to be expected. At the moment, plans for establishing permanent colonies in space seem still remote. More likely, the initial phase of exploration of the uncharted solar system will take place through successive, scope limited, research ventures ending with return to earth. This will require man to be ready to operate in gravitational fields of variable intensity. Equipping spacecrafts or space

  15. Interactions between Artificial Gravity, the Affected Physiological Systems, and Nutrition

    NASA Technical Reports Server (NTRS)

    Heer, Martina; Baecker, Nathalie; Zwart, Sara; Smith, Scott

    2006-01-01

    Malnutrition, either by insufficient supply of some nutrients or by overfeeding, has a profound effect on the health of an organism. Therefore, optimal nutrition is a necessity in normal gravity on Earth, in microgravity, and when applying artificial gravity to the human system. Reduced physical activity, such as observed in microgravity or bed rest, has an effect on many physiological systems, such as the cardiovascular, musculoskeletal, immune, and body fluids regulation systems. There is currently no countermeasure that is effective to counteract both the cardiovascular and musculoskeletal deconditioning when applied for a short duration (see Chapter 1). Artificial gravity therefore seems the simplest physiological approach to keep these systems intact. The application of intermittent daily dose of artificial gravity by means of centrifugation has often been proposed as a potential countermeasure against the physiological deconditioning induced by spaceflight. However, neither the optimal gravity level, nor its optimal duration of exposure have been enough studied to recommend a validated, effective, and efficient artificial gravity application. As discussed in previous chapters, artificial gravity has a very high potential to counteract any changes caused by reduced physical activity. The nutrient supply, which ideally should match the actual needs, will interact with these changes and therefore has also to be taken into account. This chapter reviews the potential interactions between these nutrients (energy intake, vitamins, minerals) and the other physiological systems affected by artificial gravity generated by an on-board short-radius centrifuge.

  16. Research recommendations of the ESA Topical Team on Artificial Gravity

    NASA Astrophysics Data System (ADS)

    Clément, Gilles; Bukley, Angie

    Many experts believe that artificial gravity will be required for an interplanetary mission. However, despite its attractiveness as an efficient, multi-system countermeasure and its potential for simplifying operational activities, much still needs to be learned regarding the human response to rotating environments before artificial gravity can be successfully implemented. The European Space Agency (ESA) Topical Team on Artificial Gravity recommended a comprehensive program to determine the gravity threshold required to reverse or prevent the detrimental effects of microgravity and to evaluate the effects of centrifugation on various physiological functions. Part of the required research can be accomplished using animal models on a dedicated centrifuge in low Earth orbit. Studies of human responses to centrifugation could be performed during ambulatory, short- and long-duration bed rest, and in-flight studies. Artificial-gravity scenarios should not be a priori discarded in Moon and Mars mission designs. One major step is to determine the relationship between the artificial gravity dose level, duration, and frequency and the physiological responses of the major body functions affected by spaceflight. Once its regime characteristics are defined and a dose-response curve is established, artificial gravity should serve as the standard against which all other countermeasure candidates are evaluated, first on Earth and then in space.

  17. A concept for a Manned Artificial Gravity Research Ship

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Sato, T.; Suzuki, M.; Toyobe, M.; Hamami, H.; Tauchi, M.; Nitta, K.; Kibe, S.

    1992-07-01

    In the first half of the next century, mankind will expand its sphere of existence to the moon and space, and they will stand on Mars and study the other planets. Then, humans will inevitably be required to live for long periods, two years or more, in microgravity and/or low-gravity environments. However, it is well known that such microgravity or low-gravity environments adversely affect human physiology and psychology. The longer the period the greater such effects are, and these can result in serious health problems. To improve living conditions in space by generating artificial gravity will be important to solving these problems. In this paper on the Manned Artificial Gravity Research Ship (MAGRS), which can generate artificial gravity from 0 to 1 G, the authors have reviewed the history of research into artificial gravity and concepts for an artificial gravity station, and have studied the following items for MAGRS: (1) mission and purpose; (2) system breakdown and key elements; (3) spin generation mechanism; (4) truss structure; and (5) physiological and psychological research.

  18. Multimegawatt dynamic NEP PMAD study

    NASA Technical Reports Server (NTRS)

    Metcalf, Kenneth J.

    1992-01-01

    The National Aeronautics and Space Administration Lewis Research Center (NASA LeRC) is developing a FORTRAN-based model of a complete nuclear electric propulsion (NEP) vehicle to be used for piloted or cargo missions to the Moon or Mars. The proposed vehicle will use either a Brayton or K-Rankine power conversion cycle, and either ion or magnetoplasmadynamic (MPD) thrusters. In support of this effort, Rocketdyne evaluated various power management and distribution (PMAD) approaches and selected a low-frequency design that is based on the direct use of the alternator voltage and frequency for power transmission. This approach was compared with dc and high-frequency ac designs, and selected on the basis of mass, efficiency, and qualitative assessment of power quality, reliability and development costs. This low-frequency architecture will be used as the reference in future NEP PMAD studies and for the subsequent FORTRAN model development.

  19. Multimegawatt dynamic NEP PMAD study

    NASA Astrophysics Data System (ADS)

    Metcalf, Kenneth J.

    1992-11-01

    The National Aeronautics and Space Administration Lewis Research Center (NASA LeRC) is developing a FORTRAN-based model of a complete nuclear electric propulsion (NEP) vehicle to be used for piloted or cargo missions to the Moon or Mars. The proposed vehicle will use either a Brayton or K-Rankine power conversion cycle, and either ion or magnetoplasmadynamic (MPD) thrusters. In support of this effort, Rocketdyne evaluated various power management and distribution (PMAD) approaches and selected a low-frequency design that is based on the direct use of the alternator voltage and frequency for power transmission. This approach was compared with dc and high-frequency ac designs, and selected on the basis of mass, efficiency, and qualitative assessment of power quality, reliability and development costs. This low-frequency architecture will be used as the reference in future NEP PMAD studies and for the subsequent FORTRAN model development.

  20. Multimegawatt dynamic NEP PMAD study

    NASA Astrophysics Data System (ADS)

    Metcalf, Kenneth J.

    1993-01-01

    The National Aeronautics and Space Administration Lewis Research Center (NASA LeRC) is developing a Fortran-based model of a complete nuclear electric propulsion (NEP) vehicle to be used for piloted or cargo missions to the Moon or Mars. The proposed vehicle will use either a Brayton or K-Rankine power conversion cycle, and either ion or magnetoplasmadynamic (MPD) thrusters. In support of this effort, Rocketdyne evaluated various power management and distribution (PMAD) approaches and selected a low-frequency design that is based on the direct use of the alternator voltage and frequency for power transmission. This approach was compared with dc and high-frequency ac designs, and selected on the basis of mass, efficiency, and qualitative assessments of power quality, reliability and development costs. This low-frequency architecture will be used as the reference in future NEP PMAD studies and for the subsequent Fortran model development.

  1. The use of tethers for an artificial gravity facility

    NASA Technical Reports Server (NTRS)

    Lemke, L. G.; Mascy, A. F.; Swenson, B. L.

    1988-01-01

    The principles of operation and the design of the Artificial Gravity Research Facility (AGRF), which is a centrifuge to be constructed and operated for research and development purposes in a low-earth orbit, are examined, with particular attention given to the use of tethers for this facility. The differences and similarities between the AGRF and the previous artificial-gravity concepts are discussed in the framework of modern understanding of the effects of partial gravity and rotating environments on the human organism. The impact of tension-stiffened tethers on the system mass of the AGRF is examined, together with their effect on space operations and safety.

  2. Artificial gravity - The evolution of variable gravity research

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard

    1987-01-01

    The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.

  3. The spinning artificial gravity environment: A design project

    NASA Technical Reports Server (NTRS)

    Pignataro, Robert; Crymes, Jeff; Marzec, Tom; Seibert, Joe; Walker, Gary

    1987-01-01

    The SAGE, or Spinning Artificial Gravity Environment, design was carried out to develop an artificial gravity space station which could be used as a platform for the performance of medical research to determine the benefits of various, fractional gravity levels for astronauts normally subject to zero gravity. Desirable both for its medical research mission and a mission for the study of closed loop life-support and other factors in prolonged space flight, SAGE was designed as a low Earth orbiting, solar powered, manned space station.

  4. Artificial gravity - The evolution of variable gravity research

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard

    1987-01-01

    The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.

  5. Effects of artificial gravity on the cardiovascular system: Computational approach

    NASA Astrophysics Data System (ADS)

    Diaz Artiles, Ana; Heldt, Thomas; Young, Laurence R.

    2016-09-01

    Artificial gravity has been suggested as a multisystem countermeasure against the negative effects of weightlessness. However, many questions regarding the appropriate configuration are still unanswered, including optimal g-level, angular velocity, gravity gradient, and exercise protocol. Mathematical models can provide unique insight into these questions, particularly when experimental data is very expensive or difficult to obtain. In this research effort, a cardiovascular lumped-parameter model is developed to simulate the short-term transient hemodynamic response to artificial gravity exposure combined with ergometer exercise, using a bicycle mounted on a short-radius centrifuge. The model is thoroughly described and preliminary simulations are conducted to show the model capabilities and potential applications. The model consists of 21 compartments (including systemic circulation, pulmonary circulation, and a cardiac model), and it also includes the rapid cardiovascular control systems (arterial baroreflex and cardiopulmonary reflex). In addition, the pressure gradient resulting from short-radius centrifugation is captured in the model using hydrostatic pressure sources located at each compartment. The model also includes the cardiovascular effects resulting from exercise such as the muscle pump effect. An initial set of artificial gravity simulations were implemented using the Massachusetts Institute of Technology (MIT) Compact-Radius Centrifuge (CRC) configuration. Three centripetal acceleration (artificial gravity) levels were chosen: 1 g, 1.2 g, and 1.4 g, referenced to the subject's feet. Each simulation lasted 15.5 minutes and included a baseline period, the spin-up process, the ergometer exercise period (5 minutes of ergometer exercise at 30 W with a simulated pedal cadence of 60 RPM), and the spin-down process. Results showed that the cardiovascular model is able to predict the cardiovascular dynamics during gravity changes, as well as the expected

  6. Computational Analysis of Artificial Gravity as a Possible Countermeasure to Spaceflight Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Mulugeta, L.; Werner, C. R.; Pennline, J. A.

    2015-01-01

    During exploration class missions, such as to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Data has shown that astronauts lose bone mass at a rate of 1% to 2% a month in microgravity, particularly in lower extremities such as the proximal femur. Exercise countermeasures have not completely eliminated bone loss from long duration spaceflight missions, which leaves astronauts susceptible to early onset osteoporosis and greater risk of fracture. Introduction of the Advanced Resistive Exercise Device and other large exercise devices on the International Space Station (ISS), coupled with improved nutrition, has further minimized bone loss. However, unlike the ISS, exploration vehicles will have very limited volume and power available to accommodate such capabilities. Therefore, novel concepts like artificial gravity systems are being explored as a means to provide sufficient load stimulus to the musculoskeletal system to mitigate bone changes that may lead to early onset osteoporosis and increased risk of fracture. Currently, there is minimal data available to drive further research and development efforts to appropriately explore such options. Computational modeling can be leveraged to gain insight on the level of osteoprotection that may be achieved using artificial gravity produced by a spinning spacecraft or centrifuge. With this in mind, NASA's Digital Astronaut Project (DAP) has developed a bone remodeling model that has been validated for predicting volumetric bone mineral density (vBMD) changes of trabecular and cortical bone both for gravitational unloading condition and the equivalent of 1g daily load stimulus. Using this model, it is possible to simulate vBMD changes in trabecular and cortical bone under different gravity conditions. In this presentation, we will discuss our preliminary findings regarding if and how artificial gravity may be used to mitigate spaceflight induced bone loss.

  7. Needs of physiological and psychological research using artificial gravity

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Toyobe, M.; Hamami, H.; Tayama, M.; Fujii, T.; Sato, T.; Nitta, K.; Kibe, S.

    In the next century, mankind will expand its activity to the moon and Mars. At that time, humans will be exposed to a low and micro-gravity environment in long term which causes physiological and psychological problems. The authors propose an artificial gravity space station for a research laboratory on human physiology and psychology at various gravity levels. The baseline specifications and the configuration of the space station are shown. Reviewing the history of manned space flight, the necessity of the research on an artificial gravity space station is discussed, including themes of research to be conducted on the station and the application of its results. Technical issues for realization of the space station such as environmental factors, system function and assembly scenario are also discussed.

  8. Needs of physiological and psychological research using artificial gravity.

    PubMed

    Suzuki, M; Toyobe, M; Hamami, H; Tayama, M; Fujii, T; Sato, T; Nitta, K; Kibe, S

    1994-07-01

    In the next century, mankind will expand its activity to the moon and Mars. At that time, humans will be exposed to a low and micro-gravity environment in long term which causes physiological and psychological problems. The authors propose an artificial gravity space station for a research laboratory on human physiology and psychology at various gravity levels. The baseline specifications and the configuration of the space station are shown. Reviewing the history of manned space flight, the necessity of the research on an artificial gravity space station is discussed, including themes of research to be conducted on the station and the application of its results. Technical issues for realization of the space station such as environmental factors, system function and assembly scenario are also discussed.

  9. Implementation of the NASA Artificial Gravity Bed Rest Pilot Study.

    PubMed

    Warren, L Elisabeth; Reinertson, Randal; Camacho, Maria E; Paloski, William H

    2007-07-01

    The NASA Artificial Gravity Bed Rest Pilot Study was the first cross-institutional study to investigate the effectiveness of intermittent artificial gravity (AG) as a multi-system countermeasure to bed rest deconditioning in human subjects. Daily treatments by 60 min exposures to short radius centrifugation (SRC) were used to load the longitudinal body axis of eight male human subjects during 21 days of head down tilt bed rest as a means of protecting the bone, muscle, and cardiovascular systems from deconditioning. Data from these treatment subjects were compared with those from seven male human control subjects who were not exposed to SRC loading. This paper reports on implementation issues and lessons learned during the conduct of this complex study.

  10. Homopolar artificial gravity generator based on frame-dragging

    NASA Astrophysics Data System (ADS)

    Tajmar, M.

    2010-05-01

    Space exploration is linked in many ways to the generation and challenges of artificial gravity. Space stations and drag-free satellite platforms are used to provide microgravity environments for scientific experiments. On the other hand, microgravity or reduced gravity environments such as on Moon and Mars are known to put limits for long-term human presence. Large centrifuges in space may provide Earth-like gravity environments during long-term travels, however, such technology certainly has its limits to provide similar environments for human outposts on other moons and planets. One can imagine a different technology using a prediction out of Einstein's general relativity theory which is called frame-dragging. In principle, frame-dragging might be used to generate artificial gravitational fields similar to electric fields generated by time-varying or moving magnetic fields. We will show that it is also possible to generate constant artificial gravitational fields that could provide microgravity or artificial gravity environments. Although such technology is possible in principle, the field strengths calculated from Einstein's theory are too small to be useful so far. However, recently detected anomalies around low-temperature spinning matter as well as fly-by anomalies point to possible enhancement mechanisms that might make an artificial gravity generator based on frame-dragging a reality in the future.

  11. NEP power subsystem modeling

    NASA Technical Reports Server (NTRS)

    Harty, Richard B.

    1993-01-01

    The Nuclear Electric Propulsion (NEP) system optimization code consists of a master module and various submodules. Each of the submodules represents a subsystem within the total NEP power system. The master module sends commands and input data to each of the submodules and receives output data back. Rocketdyne was responsible for preparing submodules for the power conversion (both K-Rankine and Brayton), heat rejection, and power management and distribution.

  12. NEP power subsystem modeling

    NASA Astrophysics Data System (ADS)

    Harty, Richard B.

    The Nuclear Electric Propulsion (NEP) system optimization code consists of a master module and various submodules. Each of the submodules represents a subsystem within the total NEP power system. The master module sends commands and input data to each of the submodules and receives output data back. Rocketdyne was responsible for preparing submodules for the power conversion (both K-Rankine and Brayton), heat rejection, and power management and distribution.

  13. An Artificial Gravity Spacecraft Approach which Minimizes Mass, Fuel and Orbital Assembly Reg

    NASA Astrophysics Data System (ADS)

    Bell, L.

    2002-01-01

    The Sasakawa International Center for Space Architecture (SICSA) is undertaking a multi-year research and design study that is exploring near and long-term commercial space development opportunities. Space tourism in low-Earth orbit (LEO), and possibly beyond LEO, comprises one business element of this plan. Supported by a financial gift from the owner of a national U.S. hotel chain, SICSA has examined opportunities, requirements and facility concepts to accommodate up to 100 private citizens and crewmembers in LEO, as well as on lunar/planetary rendezvous voyages. SICSA's artificial gravity Science Excursion Vehicle ("AGSEV") design which is featured in this presentation was conceived as an option for consideration to enable round-trip travel to Moon and Mars orbits and back from LEO. During the course of its development, the AGSEV would also serve other important purposes. An early assembly stage would provide an orbital science and technology testbed for artificial gravity demonstration experiments. An ultimate mature stage application would carry crews of up to 12 people on Mars rendezvous missions, consuming approximately the same propellant mass required for lunar excursions. Since artificial gravity spacecraft that rotate to create centripetal accelerations must have long spin radii to limit adverse effects of Coriolis forces upon inhabitants, SICSA's AGSEV design embodies a unique tethered body concept which is highly efficient in terms of structural mass and on-orbit assembly requirements. The design also incorporates "inflatable" as well as "hard" habitat modules to optimize internal volume/mass relationships. Other important considerations and features include: maximizing safety through element and system redundancy; means to avoid destabilizing mass imbalances throughout all construction and operational stages; optimizing ease of on-orbit servicing between missions; and maximizing comfort and performance through careful attention to human needs. A

  14. OFO experimental techniques and preliminary conclusions: is artificial gravity needed during prolonged weightlessness?

    PubMed

    Gualtierotti, T; Bracchi, F

    1972-01-01

    The technique of single unit recording from body systems generating electrical pulses coherent with their basic function (CNS, muscles, sense organs) has been proved feasible during the OFO A orbital flight, an automatic physiological experiment. All microelectrode implants survived the lift off of a Scout vehicle. The far-reaching impact of such a technique in biological space research and in the laboratory is discussed. The results of recording 155 hours of orbital flight of pulses from the nerve fibres of four vestibular gravity sensors in two bull frogs indicate that the vestibular organ adjusts to zero g. As all the other biological changes observed during orbit are due to lack of exercise, it is concluded that artificial gravity might not be necessary during prolonged space missions or on low gravity celestial bodies.

  15. Artificial gravity considerations for a mars exploration mission

    NASA Technical Reports Server (NTRS)

    Young, L. R.

    1999-01-01

    Artificial gravity (AG), as a means of preventing physiological deconditioning of astronauts during long-duration space flights, presents certain special challenges to the otolith organs and the adaptive capabilities of the CNS. The key issues regarding the choice of AG acceleration, radius, and rotation rate are reviewed from the viewpoints of physiological requirements and human factors disturbances. Head movements and resultant Coriolis forces on the rotating platform may limit the usefulness of economical short centrifuges for other than brief periods of intermittent stimulation.

  16. Need for artificial gravity on a manned Mars mission?

    NASA Technical Reports Server (NTRS)

    Sharp, Joseph C.

    1986-01-01

    Drawing upon the extensive Soviet and Skylab medical observations, the need for artificial gravity (g) on a manned Mars mission is discussed. Little hard data derived from well done experiments exist. This dearth of information is primarily due to two factors. Inability to collect tissues from astronauts for ethical or operational reasons. Second, there was not opportunities to fly animals in space to systematically evaluate the extent of the problem, and to develop and then to prove the effectiveness of countermeasures. The Skylab and space station will provide the opportunity to study these questions and validate suggested solutions.

  17. Artificial gravity considerations for a mars exploration mission.

    PubMed

    Young, L R

    1999-05-28

    Artificial gravity (AG), as a means of preventing physiological deconditioning of astronauts during long-duration space flights, presents certain special challenges to the otolith organs and the adaptive capabilities of the CNS. The key issues regarding the choice of AG acceleration, radius, and rotation rate are reviewed from the viewpoints of physiological requirements and human factors disturbances. Head movements and resultant Coriolis forces on the rotating platform may limit the usefulness of economical short centrifuges for other than brief periods of intermittent stimulation.

  18. Artificial gravity as a countermeasure in long-duration space flight.

    PubMed

    Lackner, J R; DiZio, P

    2000-10-15

    Long-duration exposure to weightlessness results in bone demineralization, muscle atrophy, cardiovascular deconditioning, altered sensory-motor control, and central nervous system reorganizations. Exercise countermeasures and body loading methods so far employed have failed to prevent these changes. A human mission to Mars might last 2 or 3 years and without effective countermeasures could result in dangerous levels of bone and muscle loss. Artificial gravity generated by rotation of an entire space vehicle or of an inner chamber could be used to prevent structural changes. Some of the physical characteristics of rotating environments are outlined along with their implications for human performance. Artificial gravity is the centripetal force generated in a rotating vehicle and is proportional to the product of the square of angular velocity and the radius of rotation. Thus, for a particular g-level, there is a tradeoff between velocity of rotation and radius. Increased radius is vastly more expensive to achieve than velocity, so it is important to know the highest rotation rates to which humans can adapt. Early studies suggested that 3 rpm might be the upper limit because movement control and orientation were disrupted at higher velocities and motion sickness and chronic fatigue were persistent problems. Recent studies, however, are showing that, if the terminal velocity is achieved over a series of gradual steps and many body movements are made at each dwell velocity, then full adaptation of head, arm, and leg movements is possible. Rotation rates as high as 7.5-10 rpm are likely feasible. An important feature of the new studies is that they provide compelling evidence that equilibrium point theories of movement control are inadequate. The central principles of equilibrium point theories lead to the equifinality prediction, which is violated by movements made in rotating reference frames. Copyright 2000 Wiley-Liss, Inc.

  19. Artificial gravity as a countermeasure in long-duration space flight

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    2000-01-01

    Long-duration exposure to weightlessness results in bone demineralization, muscle atrophy, cardiovascular deconditioning, altered sensory-motor control, and central nervous system reorganizations. Exercise countermeasures and body loading methods so far employed have failed to prevent these changes. A human mission to Mars might last 2 or 3 years and without effective countermeasures could result in dangerous levels of bone and muscle loss. Artificial gravity generated by rotation of an entire space vehicle or of an inner chamber could be used to prevent structural changes. Some of the physical characteristics of rotating environments are outlined along with their implications for human performance. Artificial gravity is the centripetal force generated in a rotating vehicle and is proportional to the product of the square of angular velocity and the radius of rotation. Thus, for a particular g-level, there is a tradeoff between velocity of rotation and radius. Increased radius is vastly more expensive to achieve than velocity, so it is important to know the highest rotation rates to which humans can adapt. Early studies suggested that 3 rpm might be the upper limit because movement control and orientation were disrupted at higher velocities and motion sickness and chronic fatigue were persistent problems. Recent studies, however, are showing that, if the terminal velocity is achieved over a series of gradual steps and many body movements are made at each dwell velocity, then full adaptation of head, arm, and leg movements is possible. Rotation rates as high as 7.5-10 rpm are likely feasible. An important feature of the new studies is that they provide compelling evidence that equilibrium point theories of movement control are inadequate. The central principles of equilibrium point theories lead to the equifinality prediction, which is violated by movements made in rotating reference frames. Copyright 2000 Wiley-Liss, Inc.

  20. Artificial gravity as a countermeasure in long-duration space flight

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    2000-01-01

    Long-duration exposure to weightlessness results in bone demineralization, muscle atrophy, cardiovascular deconditioning, altered sensory-motor control, and central nervous system reorganizations. Exercise countermeasures and body loading methods so far employed have failed to prevent these changes. A human mission to Mars might last 2 or 3 years and without effective countermeasures could result in dangerous levels of bone and muscle loss. Artificial gravity generated by rotation of an entire space vehicle or of an inner chamber could be used to prevent structural changes. Some of the physical characteristics of rotating environments are outlined along with their implications for human performance. Artificial gravity is the centripetal force generated in a rotating vehicle and is proportional to the product of the square of angular velocity and the radius of rotation. Thus, for a particular g-level, there is a tradeoff between velocity of rotation and radius. Increased radius is vastly more expensive to achieve than velocity, so it is important to know the highest rotation rates to which humans can adapt. Early studies suggested that 3 rpm might be the upper limit because movement control and orientation were disrupted at higher velocities and motion sickness and chronic fatigue were persistent problems. Recent studies, however, are showing that, if the terminal velocity is achieved over a series of gradual steps and many body movements are made at each dwell velocity, then full adaptation of head, arm, and leg movements is possible. Rotation rates as high as 7.5-10 rpm are likely feasible. An important feature of the new studies is that they provide compelling evidence that equilibrium point theories of movement control are inadequate. The central principles of equilibrium point theories lead to the equifinality prediction, which is violated by movements made in rotating reference frames. Copyright 2000 Wiley-Liss, Inc.

  1. Psychophysiological responses of artificial gravity exposure to humans.

    PubMed

    Dern, Sebastian; Vogt, Tobias; Abeln, Vera; Strüder, Heiko K; Schneider, Stefan

    2014-10-01

    The aim of this study was to determine psychophysiological responses and cognitive performance after a single bout of artificial gravity, in order to investigate its use as a potential holistic countermeasure for long-duration human space flight, considering mental health. Sixteen male participants were exposed to two different hypergravity protocols in a randomized order, one providing a constant +2 Gz environment for 30 min, the other providing participants for five times with repeated 3-min intervals of +2 Gz and rest, respectively. EEG was recorded prior, during and after AG. In addition, self-reported mood and cognitive performance was assessed before and after AG exposure. EEG data were analyzed using standardized brain electromagnetic tomography (sLORETA). Beta-1 EEG activity (12-18 Hz) was decreased in the left middle frontal gyrus after the continuous profile. Participants' motivation decreased after continuous artificial gravity, while perceived physical state was increased. The intermittent profile did not induce any changes in the observed parameters. Cognitive performance was not affected by either of both profiles. The continuous profile induced neurophysiological changes, which are considered with negative affect and withdrawal related motivation, according to the model of frontal asymmetry. This notion was further confirmed by decreases in self-reported mood after continuous AG. Therefore, the continuous profile would not be appropriate for the human space flight program. Intermittent AG did not induce any psychophysiological changes and might therefore provide a more appropriate approach as a countermeasure for further investigations.

  2. NEP Space Test Program Objective

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objective of the Nuclear Electric Propulsion (NEP) space test program is to launch an NEP satellite powered by the Russion Topaz 2 reactor by Dec. 1995. The primary goals of the NEP space test program are as follows: (1) demonstrate the feasibility of launching a space nuclear power system; (2) demonstrate and orbit adjust capability using NEP; (3) evaluate the in-orbit performance of the Topaz 2 reactor and selected electric thrusters; and (4) measure, analyze, and model the NEP self-induced environment. The discussion is presented in vugraph form.

  3. Interactions between Artificial Gravity, Affected Physiological Systems, and Nutrition

    NASA Technical Reports Server (NTRS)

    Heer, Martina; Baecker, Natalie; Zwart, Sara; Smith, Scott M.

    2007-01-01

    Malnutrition, either by insufficient supply of some nutrients or by overfeeding has a profound effect on the health of an organism. Therefore, optimal nutrition is mandatory on Earth (1 g), in microgravity and also when applying artificial gravity to the human system. Immobilization like in microgravity or bed rest also has a profound effect on different physiological systems, like body fluid regulation, the cardiovascular, the musculoskeletal, the immunological system and others. Up to now there is no countermeasure available which is effective to counteract cardiovascular deconditioning (rf. Chapter 5) together with maintenance of the musculoskeletal system in a rather short period of time. Gravity seems therefore to be one of the main stimuli to keep these systems and application of certain duration of artificial gravity per day by centrifugation has often been proposed as a very potential countermeasure against the weakening of the physiological systems. Up to now, neither optimal intensity nor optimal length of application of artificial gravity has been studied sufficiently to recommend a certain, effective and efficient protocol. However, as shown in chapter 5 on cardiovascular system, in chapter 6 on the neuromuscular system and chapter 7 (bone and connective system) artificial gravity has a very high potential to counteract any degradation caused by immobilization. But, nutrient supply -which ideally should match the actual needs- will interact with these changes and therefore has also to be taken into account. It is well known that astronauts beside the Skylab missions- were and are still not optimally nourished during their stay in space (Bourland et al. 2000;Heer et al. 1995;Heer et al. 2000b;Smith et al. 1997;Smith & Lane 1999;Smith et al. 2001;Smith et al. 2005). It has also been described anecdotally that astronauts have lower appetites. One possible explanation could be altered taste and smell sensations during space flight, although in some early

  4. The Gravbed - artificial gravity for long-term missions

    NASA Astrophysics Data System (ADS)

    Duenckelmeyer, M.; Ullmann, F.; Gierer, T.; Keller, R.

    With this experiment we have applied for the Student Parabolic Flight Campaign of the Esa The effects of long-term missions under micro-gravity conditions on the human body are quite enormous Some of these effects can lead to severe medical problems such as osteoporosis Spider Legs and Puffy Face functional circulatory disorders Space Adaptation Syndrome and a decreasing of the baro-reflex Thus a number of different countermeasures are required to combat these negative effects This proposed experiment will counter some of these effects by applying artificial gravity to the body of an individual crewmember during the sleeping period Using the wasted time of sleep for this important countermeasure is the innovation of this project The proposed method aims at countering negative effects of micro-gravity on the cardio-vasculaer system heart blood circuit and intestinal organs Other effects such as bone or muscle degeneration cannot be counter to a use extent The artificial gravity used in this experiment will be created by rotation around one stable axis As the rotation radius will be quite small the rotational speed will have to be quite high in order to achieve a gravitational load of one G Under these conditions the effects of the coriolis force on the human body seem to be a defining factor possibly even a show stopper Looking at the coriolis force more closely it can be seen that it only applies for test persons moving in a rotating environment Thus we propose to fix the test person in such a way that on the one hand

  5. NEP systems model

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    1993-01-01

    A new nuclear electric propulsion (NEP) systems analysis code is discussed. The new code is modular and consists of a driver code and various subsystem models. The code models five different subsystems: (1) reactor/shield; (2) power conversion; (3) heat rejection; (4) power management and distribution (PMAD); and (5) thrusters. The code optimizes for the following design criteria: minimum mass; minimum radiator area; and low mass/low area. The code also optimizes the following parameters: separation distance; temperature ratio; pressure ratio; and transmission frequency. The discussion is presented in vugraph form.

  6. Gender differences in blood pressure regulation following artificial gravity exposure

    NASA Astrophysics Data System (ADS)

    Evans, Joyce; Goswami, Nandu; Kostas, Vladimir; Zhang, Qingguang; Ferguson, Connor; Moore, Fritz; Stenger, Michael, , Dr; Serrador, Jorge; W, Siqi

    Introduction. Before countermeasures to space flight cardiovascular deconditioning are established, gender differences in cardiovascular responses to orthostatic stress, in general, and to orthostatic stress following exposure to artificial gravity (AG), in particular, need to be determined. Our recent determination that a short exposure to AG improved the orthostatic tolerance limit (OTL) of cardiovascularly deconditioned subjects drives the current effort to determine mechanisms of that improvement in men and in women. Methods. We determined the OTL of 9 men and 8 women following a 90 min exposure to AG compared to that following 90 min of head down bed rest (HDBR). On both days (21 days apart), subjects were made hypovolemic (low salt diet plus 20 mg intravenous furosemide) and orthostatic tolerance was determined from a combination of head up tilt and increasing lower body negative pressure until presyncope. Mean values and correlations with OTL were determined for heart rate, blood pressure, stroke volume, cardiac output, total peripheral resistance (Finometer), middle cerebral artery flow velocity (DWL), partial pressure of carbon dioxide (Novametrics) and body segmental impedance (UFI THRIM) at supine baseline, during orthostatic stress to presyncope and at supine recovery. Results. Orthostatic tolerance of these hypovolemic subjects was significantly greater following AG than following HDBR. Exposure to AG increased cardiac output in both men and women and increased stroke volume in women. In addition, AG decreased systolic blood pressure in men, but not women, and increased cerebral flow in women, but not men. In both men and women, AG exposure decreased peripheral resistance and decreased cerebrovascular resistance in women. Men’s heart rate rose more at the end of OTL on their AG, compared to their HDBR, day but women’s fell. Presyncopal stroke volume reached the same level on each day of study for both men and women. Conclusions. In the present

  7. The Twin Bikes System for artificial gravity in space.

    PubMed

    di Prampero, P E

    1994-05-01

    Exposure to microgravity (microgravity < or = 10(-4) g), beside affecting the neurovestibular and respiratory systems, greatly alters the dynamics of the circulation and leads to bone demineralization and muscle atrophy (Grigoriev and Egorov, 1991; Nicogossian, 1989a). When taken together, circulatory deconditioning and muscle atrophy lead to a reduced exercise capacity and tolerance. It is generally believed that the above modifications are completely reversible upon reentry to normal 1 g conditions, even if it is still a matter of debate whether this is really the case after very long space flights. In any case, appropriate countermeasures appear necessary for long term space flights (Nicogossian, 1989b). These countermeasures are generally based on: i) exercise training programmes, ii) appropriate suits maintaining the lower part of the body at a pressure below cabin level, thus partially reversing the headward fluid shift and iii) elastic cords pulling the subject's body towards the floor of the cabin to simulate Earth gravity. In addition, iv) artificial gravity obtained by rotation of the spacecraft, or parts thereof, was proposed since the beginning of the space era to prevent cardiovascular deconditioning and bone and muscle loss. This paper describes the Twin Bikes System and studies testing its usefulness as a tool for maintaining astronauts' physical fitness during microgravity.

  8. Artificial gravity: head movements during short-radius centrifugation

    NASA Technical Reports Server (NTRS)

    Young, L. R.; Hecht, H.; Lyne, L. E.; Sienko, K. H.; Cheung, C. C.; Kavelaars, J.

    2001-01-01

    Short-radius centrifugation is a potential countermeasure to long-term weightlessness. Unfortunately, head movements in a rotating environment induce serious discomfort, non-compensatory vestibulo-ocular reflexes, and subjective illusions of body tilt. In two experiments we investigated the effects of pitch and yaw head movements in participants placed supine on a rotating bed with their head at the center of rotation, feet at the rim. The vast majority of participants experienced motion sickness, inappropriate vertical nystagmus and illusory tilt and roll as predicted by a semicircular canal model. However, a small but significant number of the 28 participants experienced tilt in the predicted plane but in the opposite direction. Heart rate was elevated following one-second duration head turns. Significant adaptation occurred following a series of head turns in the light. Vertical nystagmus, motion sickness and illusory tilt all decreased with adaptation. Consequences for artificial gravity produced by short-radius centrifuges as a countermeasure are discussed. Grant numbers: NCC 9-58. c 2001. Elsevier Science Ltd. All rights reserved.

  9. Selection of artificial gravity by animals during suborbital rocket flights

    NASA Technical Reports Server (NTRS)

    Lange, K. O.; Belleville, R. E.; Clark, F. C.

    1975-01-01

    White rats selected preferred artificial gravity levels by locomotion in centrifuges consisting of two runways mounted in the nose of sounding rockets. Roll rate of the Aerobee 150A rocket was designed to produce an angular velocity of 45 rpm during 5 min of free-fall, providing a gravity range from 0.3 to 1.5 G depending on a subject's runway position. One animal was released at the high and one at the low gravity position in each flight. Animal positions were continuously recorded. Locomotion patterns during these flights were similar. All four animals explored the entire available G-range. One rat settled at 0.4 G after 2 min; the others crossed the 1-G location in progressively narrower excursions and were near earth gravity at the end of the test period. Tentatively, the data suggest that normal earth-reared rats select earth gravity when available magnitudes include values above and below 1 G. Modification of gravity preference by prolonged exposure to higher or lower levels remains a possibility.

  10. Artificial gravity: head movements during short-radius centrifugation

    NASA Technical Reports Server (NTRS)

    Young, L. R.; Hecht, H.; Lyne, L. E.; Sienko, K. H.; Cheung, C. C.; Kavelaars, J.

    2001-01-01

    Short-radius centrifugation is a potential countermeasure to long-term weightlessness. Unfortunately, head movements in a rotating environment induce serious discomfort, non-compensatory vestibulo-ocular reflexes, and subjective illusions of body tilt. In two experiments we investigated the effects of pitch and yaw head movements in participants placed supine on a rotating bed with their head at the center of rotation, feet at the rim. The vast majority of participants experienced motion sickness, inappropriate vertical nystagmus and illusory tilt and roll as predicted by a semicircular canal model. However, a small but significant number of the 28 participants experienced tilt in the predicted plane but in the opposite direction. Heart rate was elevated following one-second duration head turns. Significant adaptation occurred following a series of head turns in the light. Vertical nystagmus, motion sickness and illusory tilt all decreased with adaptation. Consequences for artificial gravity produced by short-radius centrifuges as a countermeasure are discussed. Grant numbers: NCC 9-58. c 2001. Elsevier Science Ltd. All rights reserved.

  11. Selection of artificial gravity by animals during suborbital rocket flights.

    PubMed

    Lange, K O; Belleville, R E; Clark, F C

    1975-06-01

    White rats selected preferred artificial gravity levels by locomotion in centrifuges consisting of two runways mounted in the nose of sounding rockets. Roll rate of the Aerobee 150A rocket was designed to produce an angular velocity of 45 r.p.m. during 5 min of free-fall, providing a gravity range range from 0.3 to 1.5 G depending on a subject's runway position. One animal was released at the high and one at the low gravity position in each flight. Animal positions were continuously recorded. Flight subjects were selected from about 100 trained animals adapted to the simulated launch environment for several months. In two flights excessive rollrates produced gravity ranges above the designed limits. In two other flights the desired range was produced. Locomotion patterns during these flights were similar. All four animals explored the entire available G-range. One rat settled at 0.4 G after 2 min; the others crossed the 1-G location in progressively narrower excursions and were near earth gravity at the end of the test period. Data were more varible than in laboratory tests above 1 G and the observation periods were necessarily few and short. Tentatively, however, the data suggest that normal earth-reared rats select earth gravity when available magnitudes include values above and below 1 B. Modification of gravity preference by prolonged exposure to higher or lower levels remains a possibility.

  12. Selection of artificial gravity by animals during suborbital rocket flights

    NASA Technical Reports Server (NTRS)

    Lange, K. O.; Belleville, R. E.; Clark, F. C.

    1975-01-01

    White rats selected preferred artificial gravity levels by locomotion in centrifuges consisting of two runways mounted in the nose of sounding rockets. Roll rate of the Aerobee 150A rocket was designed to produce an angular velocity of 45 rpm during 5 min of free-fall, providing a gravity range from 0.3 to 1.5 G depending on a subject's runway position. One animal was released at the high and one at the low gravity position in each flight. Animal positions were continuously recorded. Locomotion patterns during these flights were similar. All four animals explored the entire available G-range. One rat settled at 0.4 G after 2 min; the others crossed the 1-G location in progressively narrower excursions and were near earth gravity at the end of the test period. Tentatively, the data suggest that normal earth-reared rats select earth gravity when available magnitudes include values above and below 1 G. Modification of gravity preference by prolonged exposure to higher or lower levels remains a possibility.

  13. Erythrocyte deformability and aggregation responses to intermittent and continuous artificial gravity exposure

    NASA Astrophysics Data System (ADS)

    Marijke, Grau; Vera, Abeln; Tobias, Vogt; Wilhelm, Bloch; Stefan, Schneider

    2017-02-01

    Artificial gravity protocols are used to improve g-tolerance of aviators and discussed as countermeasure during prolonged space flight. Little is known about the impact of artificial gravity on the red blood cells (RBC). The purpose of the study was to test how artificial gravity affects RBC deformability and aggregation, which are important determinants of microcirculation. Nine male subjects were exposed to two hypergravity protocols using a short arm human centrifuge: a continuous (CONT) protocol with constant +2 Gz for 30 min and an intermittent (INTER) protocol with repeated intervals of +2 Gz and rest. Blood was sampled pre and post interventions to measure basal blood parameters, RBC nitrite, RBC deformability, aggregation, and to determine the shear rate balancing aggregation and disaggregation (γ at dIsc min). To test for orthostasis effects, five male subjects were asked to stay for 46 min, corresponding to the length of the centrifuge protocols, with blood sampling pre and post intervention. Artificial gravity programs did not affect basal blood parameters or RBC nitrite levels; a marker for RBC deformability influencing nitric oxide. The INTER program did not affect any of the tested parameters. The CONT program did not remarkably affect RBC deformability or γ at dIsc min but significantly aggravated aggregation. Orthostasis effects were thus excluded. The results indicate that continuous artificial gravity, especially with higher g-forces applied, may negatively affect the RBC system and that for a prolonged space flight intermittent but not continuous artificial gravity might represent an appropriate countermeasure.

  14. An Artificial-Gravity Space-Settlement Ground-Analogue Design Concept

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.

    2016-01-01

    The design concept of a modular and extensible hypergravity facility is presented. Several benefits of this facility are described including that the facility is suitable as a full-scale artificial-gravity space-settlement ground analogue for humans, animals, and plants for indefinite durations. The design is applicable as an analogue for on-orbit settlements as well as those on moons, asteroids, and Mars. The design creates an extremely long-arm centrifuge using a multi-car hypergravity vehicle travelling on one or more concentric circular tracks. This design supports the simultaneous generation of multiple-gravity levels to explore the feasibility and value of and requirements for such space-settlement designs. The design synergizes a variety of existing technologies including centrifuges, tilting trains, roller coasters, and optionally magnetic levitation. The design can be incrementally implemented such that the facility can be operational for a small fraction of the cost and time required for a full implementation. Brief concept of operation examples are also presented.

  15. Excercise Within LBNP as an Artificial Gravity Countermeasure

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Watenpaugh, D. E.; Lee, S. M. C.; Meyer, R. S.; Macias, B.; Tanaka, K.; Kimura, S.; Steinbach, G.; Groppo, E.; Khalili, N.; hide

    2003-01-01

    Previous exercise in space has lacked sufficient loads to maintain preflight cardiovascular and musculoskeletal mass and function. Lower body negative pressure (LBNP) produces a static force equivalent to one Earth body weight by each 52 mm Hg of LBNP during supine posture. LBNP also provides transmural blood pressures simulating upright exercise. Thus, this artificial-gravity concept may help maintain cardiovascular and musculoskeletal systems of crewmembers during prolonged exposure to microgravity. Currently available, bungee cord assisted, treadmill exercise is limited by harness discomfort, lower than normal loads, abnormal post-flight gait, and the absence of gravitational blood pressures within the vascular system. PURPOSE: This project evaluates a method to create artificial gravity using supine LBNP treadmill exercise to prevent loss of physiologic function in microgravity simulated by 30 days of bed rest. Identical twins were used as volunteers so that statistical power could be maximized. This countermeasure is being transitioned to space flight. CURRENT STATUS OF RESEARCH Methods: Six sets of identical twins (6 females and 14 males, 21-36 years) remained in 6 head-down tilt (HDT) bed rest for 30 days to simulate prolonged microgravity. Six subjects were randomly selected to exercise supine in an LBNP chamber for 40 minutes six days per week (EX group), while their twin brothers served as non-exercise controls (CON). Pressure within the exercise LBNP chamber was adjusted to increase load, hence increasing exercise intensity. During supine treadmill exercise, LBNP (52-63 mmHg) was applied to produce foot ward forces equivalent to those for upright running on Earth at 1.0-1.2 times body weight (BW) and subjects performed an interval exercise protocol (40-80% peak exercise capacity [VO2pk]). Five minutes of resting LBNP immediately followed each exercise session. Results: Orthostatic tolerance time decreased significantly after 30 days bed rest in the CON

  16. Artificial Gravity as a Bone Loss Countermeasure in Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Zwart, S. R.; Crawford, G. E.; Gillman, P. L.; LeBlanc, A.; Shackelford, L. C.; Heer, M. A.

    2007-01-01

    The impact of microgravity on the human body is a significant concern for space travelers. We report here initial results from a pilot study designed to explore the utility of artificial gravity (AG) as a countermeasure to the effects of microgravity, specifically to bone loss. After an initial phase of adaptation and testing, 15 male subjects underwent 21 days of 6 head-down bed rest to simulate the deconditioning associated with space flight. Eight of the subjects underwent 1 h of centrifugation (AG, 1 gz at the heart, 2.5 gz at the feet) each day for 21 days, while 7 of the subjects served as untreated controls (CN). Blood and urine were collected before, during, and after bed rest for bone marker determinations. At this point, preliminary data are available on the first 8 subjects (6 AG, and 2 CN). Comparing the last week of bed rest to before bed rest, urinary excretion of the bone resorption marker n-telopeptide increased 95 plus or minus 59% (mean plus or minus SD) in CN but only 32 plus or minus 26% in the AG group. Similar results were found for another resorption marker, helical peptide (increased 57 plus or minus 0% and 35 plus or minus 13% in CN and AG respectively). Bone-specific alkaline phosphatase, a bone formation marker, did not change during bed rest. At this point, sample analyses are continuing, including calcium tracer kinetic studies. These initial data demonstrate the potential effectiveness of short-radius, intermittent AG as a countermeasure to the bone deconditioning that occurs during bed rest.

  17. Artificial gravity exposure impairs exercise-related neurophysiological benefits.

    PubMed

    Vogt, Tobias; Abeln, Vera; Strüder, Heiko K; Schneider, Stefan

    2014-01-17

    Artificial gravity (AG) exposure is suggested to counteract health deconditioning, theoretically complementing exercise during space habitations. Exercise-benefits on mental health are well documented (i.e. well-being, enhanced executive functions). Although AG is coherent for the integrity of fundamental physiological systems, the effects of its exposure on neurophysiological processes related to cognitive performance are poorly understood and therefore characterize the primary aim of this study. 16 healthy males participated in two randomly assigned sessions, AG and exercise (30minute each). Participants were exposed to AG at continuous +2Gz in a short-arm human centrifuge and performed moderate exercise (cycling ergometer). Using 64 active electrodes, resting EEG was recorded before (pre), immediately after (post), and 15min after (post15) each session. Alpha (7.5-12.5Hz) and beta frequencies (12.5-35.0Hz) were exported for analysis. Cognitive performance and mood states were assessed before and after each session. Cognitive performance improved after exercise (p<0.05), but not after AG. This was reflected by typical EEG patterns after exercise, however not after AG. Frontal alpha (post p<0.01, post15 p<0.001) and beta activity (post15 p<0.001) increased after AG compared to a decrease in frontal alpha (post15 p<0.05) and beta activity (post p<0.01) after exercise. Relaxed cortical states were indicated after exercise, but were less apparent after AG. Changes in mood states failed significance after both sessions. Summarized, the benefits to mental health, recorded after exercise, were absent after AG, indicating that AG might cause neurocognitive deconditioning.

  18. Exercise Increases the Cardiovascular Stimulus Provided by Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Howarth, M. S.; Moore, F. B.; Hinghofer-Szalkay, H.; Jezova, D.; Diedrich, A.; Ferris, M. B.; Schlegel, T. T.; Pathwardhan, A. R.; Knapp, C. F.; Evans, J. M.

    2008-01-01

    We investigated fluid shifts and regulatory responses to variations of posture, exercise, Gz level and radius of rotation in subjects riding NASA Ames 20G centrifuge. Results are from 4 protocols that address radius and exercise effects only. Protocol A: After 10 min supine control, 12 healthy men (35 plus or minus 9 yr, 82.8 plus or minus 7.9 kg) were exposed to rotational 1 Gz (2.5 m radius) for 2 min followed by 20 min alternating between 1 and 1.25 Gz. Blood samples were taken pre and post spin. Protocol B: Same as A, but lower limb exercise (70% V02max) preceded ramps to 1.25 Gz. Protocol C: Same as A but radius of rotation 8.3 m. Protocol D: Same as B but at 8.3 m. The 8 subjects who completed all protocols, increased heart rate (HR) from control, on average, by: A: 5, B: 39, C: 11, D: 44 bpm. For thoracic fluid volume, (bioimpedance), the 8 subjects changed from control, on average: A: -394, B: -548, C: -537, D: -708 mL. For thigh fluid volume, changes from control, on average, were: A: -137, B: 129, C: -75, D: 159 mL. Hematocrit changes from control were: A: 2.3, B: 3.5, C: 2.3, D: 4.3 %. Radius effects were mild and included greater loss of fluid from the thorax, less fluid loss from the thigh and increased heart rate at the longer radius. Pre-acceleration exercise effects were more dramatic and included additional loss of fluid from the chest, increased fluid volume of the thigh, increased hematocrit and greater heart rate increases. We propose that short bouts of intense exercise can be used to magnify the cardiovascular stress delivered by artificial gravity (AG) training and the combination of AG with exercise training can be fine-tuned to preserve orthostatic tolerance of astronauts during spaceflight.

  19. Recommendations for Refinement and Validation of Intermittent Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Young, Lauren R.; Paloski, William H.

    2007-01-01

    The IMAG Pilot Study, recently completed at the University of Texas Medical Branch, filled in the second major gap in knowledge standing in the way of development of a practical Short Radius Centrifuge (SRC) and the use of Artificial Gravity (AG) as a multi-system countermeasure to combat the deconditioning associated with extended weightlessness. (The first challenge, to adapt rapidly rotating subjects to permit unlimited head movements without excessive motion sickness, was achieved in a series of studies at MIT involving incremental increases in head and centrifuge velocity.) It remained to be demonstrated that intermittent exposure to AG, at only one hour per day for 21 days, would have any positive effect on slowing or eliminating of deconditioning. Bed-rested normal subjects were used as a ground analog for astronauts in weightlessness. The results are clearly positive for the key physiological systems of interest: cardiovascular, muscle, and bone. No functionally relevant changes were observed in immune, cognitive, or sensory-motor function. Furthermore, we found that our initial concerns about the inability of deconditioned subjects to withstand daily centrifugation without syncope were misplaced. These encouraging initial results clearly support the further development of AG protocols. We recommend, as the next steps, the integration of a controlled exercise device on the SRC to determine the synergy between AG and exercise. Coupled with appropriate exercise device(s) the AG protocol will be tuned to-ward an optimal prescription for minimum exposure duration and frequency, maximum AG level and SRC speed.. Performance of these next steps will require extensive use of bed-rest/centrifuge facilities and eventually validation using an SRC in space. A space SRC could be placed in the ISS or on a planetary surface.

  20. Recommendations for Refinement and Validation of Intermittent Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Young, Lauren R.; Paloski, William H.

    2007-01-01

    The IMAG Pilot Study, recently completed at the University of Texas Medical Branch, filled in the second major gap in knowledge standing in the way of development of a practical Short Radius Centrifuge (SRC) and the use of Artificial Gravity (AG) as a multi-system countermeasure to combat the deconditioning associated with extended weightlessness. (The first challenge, to adapt rapidly rotating subjects to permit unlimited head movements without excessive motion sickness, was achieved in a series of studies at MIT involving incremental increases in head and centrifuge velocity.) It remained to be demonstrated that intermittent exposure to AG, at only one hour per day for 21 days, would have any positive effect on slowing or eliminating of deconditioning. Bed-rested normal subjects were used as a ground analog for astronauts in weightlessness. The results are clearly positive for the key physiological systems of interest: cardiovascular, muscle, and bone. No functionally relevant changes were observed in immune, cognitive, or sensory-motor function. Furthermore, we found that our initial concerns about the inability of deconditioned subjects to withstand daily centrifugation without syncope were misplaced. These encouraging initial results clearly support the further development of AG protocols. We recommend, as the next steps, the integration of a controlled exercise device on the SRC to determine the synergy between AG and exercise. Coupled with appropriate exercise device(s) the AG protocol will be tuned to-ward an optimal prescription for minimum exposure duration and frequency, maximum AG level and SRC speed.. Performance of these next steps will require extensive use of bed-rest/centrifuge facilities and eventually validation using an SRC in space. A space SRC could be placed in the ISS or on a planetary surface.

  1. Exercise Increases the Cardiovascular Stimulus Provided by Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Howarth, M. S.; Moore, F. B.; Hinghofer-Szalkay, H.; Jezova, D.; Diedrich, A.; Ferris, M. B.; Schlegel, T. T.; Pathwardhan, A. R.; Knapp, C. F.; Evans, J. M.

    2008-01-01

    We investigated fluid shifts and regulatory responses to variations of posture, exercise, Gz level and radius of rotation in subjects riding NASA Ames 20G centrifuge. Results are from 4 protocols that address radius and exercise effects only. Protocol A: After 10 min supine control, 12 healthy men (35 plus or minus 9 yr, 82.8 plus or minus 7.9 kg) were exposed to rotational 1 Gz (2.5 m radius) for 2 min followed by 20 min alternating between 1 and 1.25 Gz. Blood samples were taken pre and post spin. Protocol B: Same as A, but lower limb exercise (70% V02max) preceded ramps to 1.25 Gz. Protocol C: Same as A but radius of rotation 8.3 m. Protocol D: Same as B but at 8.3 m. The 8 subjects who completed all protocols, increased heart rate (HR) from control, on average, by: A: 5, B: 39, C: 11, D: 44 bpm. For thoracic fluid volume, (bioimpedance), the 8 subjects changed from control, on average: A: -394, B: -548, C: -537, D: -708 mL. For thigh fluid volume, changes from control, on average, were: A: -137, B: 129, C: -75, D: 159 mL. Hematocrit changes from control were: A: 2.3, B: 3.5, C: 2.3, D: 4.3 %. Radius effects were mild and included greater loss of fluid from the thorax, less fluid loss from the thigh and increased heart rate at the longer radius. Pre-acceleration exercise effects were more dramatic and included additional loss of fluid from the chest, increased fluid volume of the thigh, increased hematocrit and greater heart rate increases. We propose that short bouts of intense exercise can be used to magnify the cardiovascular stress delivered by artificial gravity (AG) training and the combination of AG with exercise training can be fine-tuned to preserve orthostatic tolerance of astronauts during spaceflight.

  2. Artificial Gravity as a Bone Loss Countermeasure in Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Zwart, S. R.; Crawford, G. E.; Gillman, P. L.; LeBlanc, A.; Shackelford, L. C.; Heer, M. A.

    2007-01-01

    The impact of microgravity on the human body is a significant concern for space travelers. We report here initial results from a pilot study designed to explore the utility of artificial gravity (AG) as a countermeasure to the effects of microgravity, specifically to bone loss. After an initial phase of adaptation and testing, 15 male subjects underwent 21 days of 6 head-down bed rest to simulate the deconditioning associated with space flight. Eight of the subjects underwent 1 h of centrifugation (AG, 1 gz at the heart, 2.5 gz at the feet) each day for 21 days, while 7 of the subjects served as untreated controls (CN). Blood and urine were collected before, during, and after bed rest for bone marker determinations. At this point, preliminary data are available on the first 8 subjects (6 AG, and 2 CN). Comparing the last week of bed rest to before bed rest, urinary excretion of the bone resorption marker n-telopeptide increased 95 plus or minus 59% (mean plus or minus SD) in CN but only 32 plus or minus 26% in the AG group. Similar results were found for another resorption marker, helical peptide (increased 57 plus or minus 0% and 35 plus or minus 13% in CN and AG respectively). Bone-specific alkaline phosphatase, a bone formation marker, did not change during bed rest. At this point, sample analyses are continuing, including calcium tracer kinetic studies. These initial data demonstrate the potential effectiveness of short-radius, intermittent AG as a countermeasure to the bone deconditioning that occurs during bed rest.

  3. Design of an artificial gravity generating tethered satellite system

    NASA Astrophysics Data System (ADS)

    Hoffman, John H.; Mazzoleni, Andre; Santangelo, Andrew

    2001-02-01

    Prolonged exposure in humans to a microgravity environment can lead to significant loss of bone and muscle mass; this presents a formidable obstacle to human exploration of space, particularly for missions requiring travel times of several months or more, such as on a trip to Mars. One possible remedy for this situation is to use a spent booster as a ``counter-weight'' and tether it to the crew cabin for the purpose of spinning up the counter-weight/cabin system about its common center of mass like a dumbbell, hence generating artificial gravity for the crew during long duration missions. However, much needs to be learned about the dynamics and stability of such tethered systems before they can become flight possibilities. The investigation of spin-up dynamics, along with other aspects of tethered systems, is the focus of the ASTOR (Advanced Safety Tether Operation and Reliability) Satellite project, which will be discussed in this paper. After the 65-kg ASTOR satellite is delivered into orbit, the payload will automatically separate into two equal halves and the Emergency Tether Deployment (ETD) system will commence the deployment of the tether. After the deployment process is complete, a spin-up experiment will commence. This will be accomplished by reeling onto a take-up reel in the deployer a portion of the tether. As the tether is reeled back in, a rapid increase in the rotational motion in the system will occur; due to the presence of gravity-gradient torques, however, angular momentum will not be conserved, so equations of motion must be generated and integrated numerically to determine the behavior of the system. Preliminary results of this investigation are presented in this paper. .

  4. NEP Early Flight program: System performance and development considerations

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; George, Jeffrey A.

    1993-01-01

    A mission/system study of Nuclear Electric Propulsion (NEP) for early robotic planetary science mission applications has been conducted. Subject missions considered included a Mars orbiter with a Phobos and Deimos Rendezvous; a Comet Kopff Rendezvous; a Multiple Mainbelt Asteroid Rendezvous (MMBAR); an Asteroid (Vesta) Sample Return; a Trojan Asteroid (Odysseus) Rendezvous; and a Jupiter mini Grand Tour. The purpose of the study was to determine if 'near-term' NEP technology could be used on an early NEP flight to demonstrate the technologies while conducting a useful science mission. The analysis shows that, depending upon technology readiness date, the missions could be performed with low power NEP. The technology and system development costs associated with vehicle/stage development for a candidate mission are presented. The study assumed relatively mature space electric power and space electric propulsion technologies (more advanced technologies have been already shown by others to be enabling for many outer planetary missions). Thus, a very important first step in using NEP would be taken, which would contribute valuable solar system science, as well as reduce the risks associated with using NEP for more demanding outer planetary science mission applications.

  5. Erythrocyte deformability and aggregation responses to intermittent and continuous artificial gravity exposure.

    PubMed

    Marijke, Grau; Vera, Abeln; Tobias, Vogt; Wilhelm, Bloch; Stefan, Schneider

    2017-02-01

    Artificial gravity protocols are used to improve g-tolerance of aviators and discussed as countermeasure during prolonged space flight. Little is known about the impact of artificial gravity on the red blood cells (RBC). The purpose of the study was to test how artificial gravity affects RBC deformability and aggregation, which are important determinants of microcirculation. Nine male subjects were exposed to two hypergravity protocols using a short arm human centrifuge: a continuous (CONT) protocol with constant +2Gz for 30min and an intermittent (INTER) protocol with repeated intervals of +2Gz and rest. Blood was sampled pre and post interventions to measure basal blood parameters, RBC nitrite, RBC deformability, aggregation, and to determine the shear rate balancing aggregation and disaggregation (γ at dIsc min). To test for orthostasis effects, five male subjects were asked to stay for 46min, corresponding to the length of the centrifuge protocols, with blood sampling pre and post intervention. Artificial gravity programs did not affect basal blood parameters or RBC nitrite levels; a marker for RBC deformability influencing nitric oxide. The INTER program did not affect any of the tested parameters. The CONT program did not remarkably affect RBC deformability or γ at dIsc min but significantly aggravated aggregation. Orthostasis effects were thus excluded. The results indicate that continuous artificial gravity, especially with higher g-forces applied, may negatively affect the RBC system and that for a prolonged space flight intermittent but not continuous artificial gravity might represent an appropriate countermeasure. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  6. Problem of artificial gravity from the point of view of experimental physiology

    NASA Technical Reports Server (NTRS)

    Yuganov, Y. M.; Yemelyanov, M. D.

    1975-01-01

    Artificial gravity in spacecraft and orbital stations is considered as prophylactic method for preventing disorders under weightlessness conditions and for readaptation of astronauts to the gravity of earth. The creation of 0.28 to 0.31 g artificial gravity during weightlessness is adequate to orient the human body in space, to preserve movement coordination, as well as to maintain the necessary level of certain physiological indices. This range of artificial weightiness can be reached by various angular accelerations of the satellite rotation as a function of the radius or orientation.

  7. NEP processing, operations, and disposal

    NASA Technical Reports Server (NTRS)

    Stancati, Mike

    1993-01-01

    Several recent studies by ASAO/NPO staff members at LeRC and by other organizations have highlighted the potential benefits of using Nuclear Electric Propulsion (NEP) as the primary transportation means for some of the proposed missions of the Space Exploration Initiative. These include the potential to reduce initial mass in orbit and Mars transit time. Modular NEP configurations also introduce fully redundant main propulsion to Mars flight systems adding several abort or fall back options not otherwise available. Recent studies have also identified mission operations, such as on orbital assembly, refurbishment, and reactor disposal, as important discriminators for propulsion system evaluation. This study is intended to identify and assess 'end-to-end' operational issues associated with using NEP for transporting crews and cargo between Earth and Mars. We also include some consideration of lunar cargo transfer as well.

  8. Calcium kinetics during bed rest with artificial gravity and exercise countermeasures

    USDA-ARS?s Scientific Manuscript database

    We assessed the potential for countermeasures to lessen the loss of bone calcium during bed rest. Subjects ingested less calcium during bed rest, and with artificial gravity, they also absorbed less calcium. With exercise, they excreted less calcium. To retain bone during bed rest, calcium intake ne...

  9. Incorporation of omics analyses into artificial gravity research for space exploration countermeasure development.

    PubMed

    Schmidt, Michael A; Goodwin, Thomas J; Pelligra, Ralph

    The next major steps in human spaceflight include flyby, orbital, and landing missions to the Moon, Mars, and near earth asteroids. The first crewed deep space mission is expected to launch in 2022, which affords less than 7 years to address the complex question of whether and how to apply artificial gravity to counter the effects of prolonged weightlessness. Various phenotypic changes are demonstrated during artificial gravity experiments. However, the molecular dynamics (genotype and molecular phenotypes) that underlie these morphological, physiological, and behavioral phenotypes are far more complex than previously understood. Thus, targeted molecular assessment of subjects under various G conditions can be expected to miss important patterns of molecular variance that inform the more general phenotypes typically being measured. Use of omics methods can help detect changes across broad molecular networks, as various G-loading paradigms are applied. This will be useful in detecting off-target, or unanticipated effects of the different gravity paradigms applied to humans or animals. Insights gained from these approaches may eventually be used to inform countermeasure development or refine the deployment of existing countermeasures. This convergence of the omics and artificial gravity research communities may be critical if we are to develop the proper artificial gravity solutions under the severely compressed timelines currently established. Thus, the omics community may offer a unique ability to accelerate discovery, provide new insights, and benefit deep space missions in ways that have not been previously considered.

  10. A manned Mars mission concept with artificial gravity

    NASA Technical Reports Server (NTRS)

    Davis, Hubert P.

    1986-01-01

    A series of simulated manned Mars missions was analyzed by a computer model. Numerous mission opportunities and mission modes were investigated. Sensitivity trade studies were performed of the vehicle all-up mass and propulsion stage sizes as a function of various levels of conservatism in mission velocity increment margins, payload mass and propulsive stage characteristics. The longer duration but less energetic type of conjunction class mission is emphasized. The specific mission opportunity reviewed was for a 1997 departure. From the trade study results, a three and one-half stage vehicle concept evolved, utilizing a Trans-Mars Injection (TMI) first stage derived from the Space Shuttle External Tank (ET).

  11. High Power Nuclear Electric Propulsion (NEP) for Cargo and Propellant Transfer Missions in Cislunar Space

    NASA Technical Reports Server (NTRS)

    Falck, Robert D.; Borowski, Stanley K.

    2003-01-01

    The performance of Nuclear Electric Propulsion (NEP) in transporting cargo and propellant from Low Earth Orbit (LEO) to the first Earth-Moon Lagrange point (EML1) is examined. The baseline NEP vehicle utilizes a fission reactor system with Brayton power conversion for electric power generation to power multiple liquid hydrogen magnetoplasmadynamic (MPD) thrusters. Vehicle characteristics and performance levels are based on technology availability in a fifteen to twenty year timeframe. Results of numerical trajectory analyses are also provided.

  12. Modular Extended-Stay HyperGravity Facility Design Concept: An Artificial-Gravity Space-Settlement Ground Analogue

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.

    2015-01-01

    This document defines the design concept for a ground-based, extended-stay hypergravity facility as a precursor for space-based artificial-gravity facilities that extend the permanent presence of both human and non-human life beyond Earth in artificial-gravity settlements. Since the Earth's current human population is stressing the environment and the resources off-Earth are relatively unlimited, by as soon as 2040 more than one thousand people could be living in Earthorbiting artificial-gravity habitats. Eventually, the majority of humanity may live in artificialgravity habitats throughout this solar system as well as others, but little is known about the longterm (multi-generational) effects of artificial-gravity habitats on people, animals, and plants. In order to extend life permanently beyond Earth, it would be useful to create an orbiting space facility that generates 1g as well as other gravity levels to rigorously address the numerous challenges of such an endeavor. Before doing so, developing a ground-based artificial-gravity facility is a reasonable next step. Just as the International Space Station is a microgravity research facility, at a small fraction of the cost and risk a ground-based artificial-gravity facility can begin to address a wide-variety of the artificial-gravity life-science questions and engineering challenges requiring long-term research to enable people, animals, and plants to live off-Earth indefinitely.

  13. Artificial Gravity as a Multi-System Countermeasure to Bed Rest Deconditioning: Pilot Study Overview

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Young, L. R.

    2007-01-01

    Efficient, effective, multi-system countermeasures will likely be required to protect the health, safety, and performance of crews aboard planned exploration-class space flight missions to Mars and beyond. To that end, NASA, DLR, and IMBP initiated a multi-center international project to begin systematically exploring the utility of artificial gravity (AG) as a multi-system countermeasure in ground based venues using test subjects deconditioned by bed rest. The goal of this project is to explore the efficacy of short-radius, intermittent AG as a countermeasure to bone, muscle, cardiovascular, and sensory-motor adaptations to hypogravity. This session reports the results from a pilot study commissioned to validate a standardized protocol to be used by all centers involved in the project. Subject selection criteria, medical monitoring requirements, medical care procedures, experiment control procedures, and standardized dependent measures were established jointly. Testing was performed on 15 rigorously screened male volunteers subjected to 21 days of 6deg HDT bed rest. (All provided written consent to volunteer after the nature of the study and its hazards were clearly explained to them.) Eight were treated with daily 1hr AG exposures (2.5g at the feet decreasing to 1.0g at the heart) aboard a short radius (3m) centrifuge, while the other seven served as controls. Multiple tests of multiple dependent measures were made in each of the primary physiological systems of interest during a 10 day acclimatization period prior to HDT bed rest and again during an 8 day recovery period after the bed rest period was complete. Analyses of these data (presented in other papers in this session) suggest the AG prescription had salutary effects on aspects of the bone, muscle, and cardiovascular systems, with no untoward effects on the vestibular system, the immune system, or cognitive function. Furthermore, treatment subjects were able to tolerate 153/160 centrifuge sessions over

  14. Physiological Targets of Artificial Gravity: The Sensory-Motor System. Chapter 4

    NASA Technical Reports Server (NTRS)

    Paloski, William; Groen, Eric; Clarke, Andrew; Bles, Willem; Wuyts, Floris; Paloski, William; Clement, Gilles

    2006-01-01

    This chapter describes the pros and cons of artificial gravity applications in relation to human sensory-motor functioning in space. Spaceflight creates a challenge for sensory-motor functions that depend on gravity, which include postural balance, locomotion, eye-hand coordination, and spatial orientation. The sensory systems, and in particular the vestibular system, must adapt to weightlessness on entering orbit, and again to normal gravity upon return to Earth. During this period of adaptation, which persists beyond the actual gravity-level transition itself the sensory-motor systems are disturbed. Although artificial gravity may prove to be beneficial for the musculoskeletal and cardiovascular systems, it may well have negative side effects for the neurovestibular system, such as spatial disorientation, malcoordination, and nausea.

  15. The effect of artificial gravity on plasma and tissue lipids in rats: The Cosmos 936 experiment

    NASA Astrophysics Data System (ADS)

    Ahlers, I.; Praslička, M.; Tigranyan, R. A.

    Plasma and tissue lipids in male SPF Wistar rats flown for 18.5 days aboard the Cosmos 936 biosatellite were analyzed. One group of rats was subjected to artificial gravity by use of a centrifuge during the flight. An experiment simulating known space flight factors other than weightlessness was done on Earth. An increase of total cholesterol in plasma, of nonesterified fatty acids in plasma and brown adipose tissue, of triacylglycerols in plasma, liver, thymus and bone marrow was noted several hours after biosatellite landing. Smaller changes were observed in the terrestrial control experiment. With the exception of triacylglycerol accumulation in bone marrow, these increases disappeared 25 days after biosatellite landing. Exposing the rats aboard the biosatellite to artificial gravity was beneficial in the sense that such exposure inhibited the phospholipid and triacylglycerol increase in plasma and inhibited the increase of triacylglycerol in liver and especially in bone marrow.

  16. Effects of graded load of artificial gravity on cardiovascular functions in humans.

    PubMed

    Iwase, Satoshi; Fu, Qi; Narita, Kenichi; Morimoto, Eiichi; Takada, Hiroki; Mano, Tadaaki

    2002-12-01

    An artificial gravity and ergometric exercise loading device for human use was manufactured. It has the capacity of a max 2 G-load at the heart level, and a max 150 W of work-load. Eight subjects (six completed) were subjected to four repeated trials with or without 20 W ergometric exercise. Anti-G score, defined as the G-load x running time to the endpoint, was significantly higher in the exercise trials than standing trials. Heart rate (HR), mean arterial pressure (MAP), thoracic fluid index (TFI) were significantly superior during the exercise trials. Artificial gravity by centrifuge at 1.2 or 1.4 G with 40 or 60 W of ergometric workload may be an excellent countermeasure against cardiovascular deconditioning after long exposure to microgravity.

  17. Artificial Gravity: Will it Preserve Bone Health on Long-Duration Missions?

    NASA Technical Reports Server (NTRS)

    Davis-Street, Janis; Paloski, William H.

    2005-01-01

    Prolonged microgravity exposure disrupts bone, muscle, and cardiovascular homeostasis, sensory-motor coordination, immune function, and behavioral performance. Bone loss, in particular, remains a serious impediment to the success of exploration-class missions by increasing the risks of bone fracture and renal stone formation for crew members. Current countermeasures, consisting primarily of resistive and aerobic exercise, have not yet proven fully successful for preventing bone loss during long-duration spaceflight. While other bone-specific countermeasures, such as pharmacological therapy and dietary modifications, are under consideration, countermeasure approaches that simultaneously address multiple physiologic systems may be more desirable for exploration-class missions, particularly if they can provide effective protection at reduced mission resource requirements (up-mass, power, crew time, etc). The most robust of the multi-system approaches under consideration, artificial gravity (AG), could prevent all of the microgravity-related physiological changes from occurring. The potential methods for realizing an artificial gravity countermeasure are reviewed, as well as selected animal and human studies evaluating the effects of artificial gravity on bone function. Future plans for the study of the multi-system effects of artificial gravity include a joint, cooperative international effort that will systematically seek an optimal prescription for intermittent AG to preserve bone, muscle, and cardiovascular function in human subjects deconditioned by 6 degree head-down-tilt-bed rest. It is concluded that AG has great promise as a multi-system countermeasure, but that further research is required to determine the appropriate parameters for implementation of such a countermeasure for exploration-class missions.

  18. A critical benefit analysis of artificial gravity as a microgravity countermeasure

    NASA Astrophysics Data System (ADS)

    Kaderka, Justin; Young, Laurence R.; Paloski, William H.

    2010-11-01

    Deconditioning of astronauts during long duration spaceflight, especially with regard to the cardiovascular, musculo-skeletal, and neurological systems, is a well-recognized problem that has stimulated significant investments in countermeasure research over the past five decades. Because of its potential salutary effects on all of these systems, artificial gravity via centrifugation has been one of the most persistently discussed countermeasures; however, to date, few studies have tested its efficacy, particularly in comparison to other, system-specific countermeasures. This paper reports results of a meta-analysis we performed to compare previously published results from artificial gravity studies with those from studies utilizing traditional countermeasures, such as resistive exercise, aerobic exercise, lower body negative pressure (LBNP), or some variation of these countermeasures. Published and non-published literature involving human bed rest and immersion studies, human non-bed rest studies, and flight data were examined. Our analyses were confounded by differences in research design from study to study, including subject selection criteria, deconditioning paradigm, physiological systems assessed, and dependent measures employed. Nevertheless we were able to draw comparisons between studies that had some consistency across these variables. Results indicate that for prolonged spaceflight an artificial gravity-based countermeasure may provide benefits equivalent to traditional countermeasures for the cardiovascular system. Too few comparable studies have been performed to draw any conclusions for the musculo-skeletal system. Gaps in the current knowledge of artificial gravity are identified and provide the basis for a discussion of future topics for ground-based research using this countermeasure.

  19. Artificial Gravity with Ergometric Exercise Training Improves Cardiovascular Function in Ambulatory Men

    NASA Astrophysics Data System (ADS)

    Sun, Xi-Qing; Zhu, Chao; Shang, Shu; Yao, Yong-Jie

    2008-06-01

    The necessity of preventing physiological deconditioning in astronauts exposed to long-term space flights is well known. Artificial gravity training via short-arm centrifugation as a countermeasure to microgravity has been considered for many years. However, an optimal duration, level and rate of exposure to artificial gravity have not yet been determined. The purpose of the present study was to investigate the cardiovascular effects of three weeks of intermittent artificial gravity with ergometric exercise training on normal ambulatory men. During 3 weeks experiment, eight healthy male subjects received alternate +1 to +2 Gz (at the foot) short-arm centrifuge training with 30 W ergometric exercise for 30 min per day. Cardiac function, heart rate variability, heart rate and blood pressure were measured before and after training. Stroke volume and total peripheral resistance increased significantly after 3 weeks training, compared with the pre-training baseline. Left ventricular ejection time (LVET) and ejection fraction increased significantly after 3 weeks training, while heart rate, the ratio of pre-ejection period to LVET, and the ratio of low frequency to high frequency power decreased significantly after 3 weeks training. These results suggest that three weeks short-arm centrifuge training with ergometric exercise could improve human cardiac systolic and pumping functions, and increase cardiac vagal modulation.

  20. Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight.

    PubMed

    Hargens, Alan R; Bhattacharya, Roshmi; Schneider, Suzanne M

    2013-09-01

    When applied individually, exercise countermeasures employed to date do not fully protect the cardiovascular and musculoskeletal systems during prolonged spaceflight. Recent ground-based research suggests that it is necessary to perform exercise countermeasures within some form of artificial gravity to prevent microgravity deconditioning. In this regard, it is important to provide normal foot-ward loading and intravascular hydrostatic-pressure gradients to maintain musculoskeletal and cardiovascular function. Aerobic exercise within a centrifuge restores cardiovascular function, while aerobic exercise within lower body negative pressure restores cardiovascular function and helps protect the musculoskeletal system. Resistive exercise with vibration stimulation may increase the effectiveness of resistive exercise by preserving muscle function, allowing lower intensity exercises, and possibly reducing risk of loss of vision during prolonged spaceflight. Inexpensive methods to induce artificial gravity alone (to counteract head-ward fluid shifts) and exercise during artificial gravity (for example, by short-arm centrifuge or exercise within lower body negative pressure) should be developed further and evaluated as multi-system countermeasures.

  1. Artificial gravity as a countermeasure for mitigating physiological deconditioning during long-duration space missions

    PubMed Central

    Clément, Gilles R.; Bukley, Angelia P.; Paloski, William H.

    2015-01-01

    In spite of the experience gained in human space flight since Yuri Gagarin’s historical flight in 1961, there has yet to be identified a completely effective countermeasure for mitigating the effects of weightlessness on humans. Were astronauts to embark upon a journey to Mars today, the 6-month exposure to weightlessness en route would leave them considerably debilitated, even with the implementation of the suite of piece-meal countermeasures currently employed. Continuous or intermittent exposure to simulated gravitational states on board the spacecraft while traveling to and from Mars, also known as artificial gravity, has the potential for enhancing adaptation to Mars gravity and re-adaptation to Earth gravity. Many physiological functions are adversely affected by the weightless environment of spaceflight because they are calibrated for normal, Earth’s gravity. Hence, the concept of artificial gravity is to provide a broad-spectrum replacement for the gravitational forces that naturally occur on the Earth’s surface, thereby avoiding the physiological deconditioning that takes place in weightlessness. Because researchers have long been concerned by the adverse sensorimotor effects that occur in weightlessness as well as in rotating environments, additional study of the complex interactions among sensorimotor and other physiological systems in rotating environments must be undertaken both on Earth and in space before artificial gravity can be implemented. PMID:26136665

  2. Artificial gravity as a countermeasure for mitigating physiological deconditioning during long-duration space missions.

    PubMed

    Clément, Gilles R; Bukley, Angelia P; Paloski, William H

    2015-01-01

    In spite of the experience gained in human space flight since Yuri Gagarin's historical flight in 1961, there has yet to be identified a completely effective countermeasure for mitigating the effects of weightlessness on humans. Were astronauts to embark upon a journey to Mars today, the 6-month exposure to weightlessness en route would leave them considerably debilitated, even with the implementation of the suite of piece-meal countermeasures currently employed. Continuous or intermittent exposure to simulated gravitational states on board the spacecraft while traveling to and from Mars, also known as artificial gravity, has the potential for enhancing adaptation to Mars gravity and re-adaptation to Earth gravity. Many physiological functions are adversely affected by the weightless environment of spaceflight because they are calibrated for normal, Earth's gravity. Hence, the concept of artificial gravity is to provide a broad-spectrum replacement for the gravitational forces that naturally occur on the Earth's surface, thereby avoiding the physiological deconditioning that takes place in weightlessness. Because researchers have long been concerned by the adverse sensorimotor effects that occur in weightlessness as well as in rotating environments, additional study of the complex interactions among sensorimotor and other physiological systems in rotating environments must be undertaken both on Earth and in space before artificial gravity can be implemented.

  3. Hypovolemic men and women regulate blood pressure differently following exposure to artificial gravity.

    PubMed

    Evans, Joyce M; Ribeiro, L Christine; Moore, Fritz B; Wang, Siqi; Zhang, Qingguang; Kostas, Vladimir; Ferguson, Connor R; Serrador, Jorge; Falvo, Michael; Stenger, Michael B; Goswami, Nandu; Rask, Jon C; Smith, Jeffrey D; Knapp, Charles F

    2015-12-01

    In addition to serious bone, vestibular, and muscle deterioration, space flight leads to cardiovascular dysfunction upon return to gravity. In seeking a countermeasure to space flight-induced orthostatic intolerance, we previously determined that exposure to artificial gravity (AG) training in a centrifuge improved orthostatic tolerance of ambulatory subjects. This protocol was more effective in men than women and more effective when subjects exercised. We now determine the orthostatic tolerance limit (OTL) of cardiovascularly deconditioned (furosemide) men and women on one day following 90 min of AG compared to a control day (90 min of head-down bed rest, HDBR). There were three major findings: a short bout of artificial gravity improved orthostatic tolerance of hypovolemic men (30 %) and women (22 %). Men and women demonstrated different mechanisms of cardiovascular regulation on AG and HDBR days; women maintained systolic blood pressure the same after HDBR and AG exposure while men's systolic pressure dropped (11 ± 2.9 mmHg) after AG. Third, as presyncopal symptoms developed, men's and women's cardiac output and stroke volume dropped to the same level on both days, even though the OTL test lasted significantly longer on the AG day, indicating cardiac filling as a likely variable to trigger presyncope. (1) Even with gender differences, AG should be considered as a space flight countermeasure to be applied to astronauts before reentry into gravity, (2) men and women regulate blood pressure during an orthostatic stress differently following exposure to artificial gravity and (3) the trigger for presyncope may be cardiac filling.

  4. Combining ergometer exercise and artificial gravity in a compact-radius centrifuge

    NASA Astrophysics Data System (ADS)

    Diaz, Ana; Trigg, Chris; Young, Laurence R.

    2015-08-01

    Humans experience physiological deconditioning during space missions, primarily attributable to weightlessness. Some of these adverse consequences include bone loss, muscle atrophy, sensory-motor deconditioning, and cardiovascular alteration, which may lead to orthostatic intolerance when astronauts return to Earth. Artificial gravity could provide a comprehensive countermeasure capable of challenging all the physiological systems at once, particularly if combined with exercise, thereby maintaining overall health during extended exposure to weightlessness. A new Compact Radius Centrifuge (CRC) platform was designed and built on the existing Short Radius Centrifuge (SRC) at the Massachusetts Institute of Technology (MIT). The centrifuge has been constrained to a radius of 1.4 m, the upper radial limit for a centrifuge to fit within an International Space Station (ISS) module without extensive structural alterations. In addition, a cycle ergometer has been added for exercise during centrifugation. The CRC now includes sensors of foot forces, cardiovascular parameters, and leg muscle electromyography. An initial human experiment was conducted on 12 subjects to analyze the effects of different artificial gravity levels (0 g, 1 g, and 1.4 g, measured at the feet) and ergometer exercise intensities (25 W warm-up, 50 W moderate and 100 W vigorous) on the musculoskeletal function as well as motion sickness and comfort. Foot forces were measured during the centrifuge runs, and subjective comfort and motion sickness data were gathered after each session. Preliminary results indicate that ergometer exercise on a centrifuge may be effective in improving musculoskeletal function. The combination is well tolerated and motion sickness is minimal. The MIT CRC is a novel platform for future studies of exercise combined with artificial gravity. This combination may be effective as a countermeasure to space physiological deconditioning.

  5. Artificial Gravity as a Multi-System Countermeasure to Bed Rest Deconditioning: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Warren, L. E.; Paloski, William H.; Young, L. R.

    2006-01-01

    Artificial gravity paradigms may offer effective, efficient, multi-system protection from the untoward effects of adaptation to the microgravity of space or the hypogravity of planetary surfaces. Intermittent artificial gravity (AG) produced by a horizontal short-radius centrifuge (SRC) has recently been utilized on human test subjects deconditioned by bed rest. This presentation will review preliminary results of a 41 day study conducted at the University of Texas Medical Branch, Galveston, TX bed rest facility. During the first eleven days of the protocol, subjects were ambulatory, but confined to the facility. They began a carefully controlled diet, and participated in multiple baseline tests of bone, muscle, cardiovascular, sensory-motor, immunological, and psychological function. On the twelfth day, subjects entered the bed rest phase of the study, during which they were confined to strict 6deg head down tilt bed rest for 21 days. Beginning 24 hrs into this period, treatment subjects received one hour daily exposures to artificial gravity which was produced by spinning the subjects on a 3.0 m radius SRC. They were oriented radially in the supine position so that the centrifugal force was aligned with their long body axis, and while spinning, they "stood" on a force plate, supporting the centrifugal loading (2.5 g at the feet, 1.0 g at the heart). The subject station allowed free translation over approximately 10 cm to ensure full loading of the lower extremities and to allow for anti-orthostatic muscle contractions. Control subjects were positioned on the centrifuge but did not spin. Following the bed rest phase, subjects were allowed to ambulate again, but remained within the facility for an additional 9 days and participated in multiple follow-up tests of physiological function.

  6. OFO experimental techniques and preliminary conclusions - Is artificial gravity needed during prolonged weightlessness.

    NASA Technical Reports Server (NTRS)

    Gualtierotti, T.; Bracchi, F.

    1972-01-01

    The technique of single unit recording from body systems generating electrical pulses coherent with their basic function (CNS, muscles, sense organs) has been proved feasible during the OFO A orbital flight, an automatic physiological experiment. The results of recording 155 hours of orbital flight of pulses from the nerve fibres of four vestibular gravity sensors in two bull frogs indicate that the vestibular organ adjusts to zero g. As all the other biological changes observed during orbit are due to lack of exercise, it is concluded that artificial gravity might not be necessary during prolonged space missions or on low gravity celestial bodies.

  7. Medical monitoring during the NASA Artificial Gravity-Bed Rest Pilot Study.

    PubMed

    Reinertson, Randal C; Nelson, Victor A; Aunon, Serena M; Schlegel, Todd T; Lindgren, Kjell N; Kerstman, Eric L; Arya, Maneesh; Paloski, William H

    2007-07-01

    The NASA artificial gravity-bed rest pilot study (AGPS) was designed to investigate the efficacy of daily exposure to a +Gz acceleration gradient for counteracting the physiologic decrements induced by prolonged bed rest. Test subjects were continuously monitored by a physician for signs and symptoms of pre-syncope, motion sickness, and arrhythmias while on the centrifuge. In this article, we have summarized the medical monitoring observations that were made during the AGPS and included an assessment of the relative usefulness of the information provided by the various monitoring tools in making a decision to terminate a centrifuge spin.

  8. Effects of 21 days of bed rest, with or without artificial gravity, on nutritional status of humans

    PubMed Central

    Zwart, S. R.; Crawford, G. E.; Gillman, P. L.; Kala, G.; Rodgers, A. S.; Rogers, A.; Inniss, A. M.; Rice, B. L.; Ericson, K.; Coburn, S.; Bourbeau, Y.; Hudson, E.; Mathew, G.; DeKerlegand, D. E.; Sams, C. F.; Heer, M. A.; Paloski, W. H.; Smith, S. M.

    2009-01-01

    Spaceflight and bed rest models of microgravity have profound effects on physiological systems, including the cardiovascular, musculoskeletal, and immune systems. These effects can be exacerbated by suboptimal nutrient status, and therefore it is critical to monitor nutritional status when evaluating countermeasures to mitigate negative effects of spaceflight. As part of a larger study to investigate the usefulness of artificial gravity as a countermeasure for musculoskeletal and cardiovascular deficits during bed rest, we tested the hypothesis that artificial gravity would have an effect on some aspects of nutritional status. Dietary intake was recorded daily before, during, and after 21 days of bed rest with artificial gravity (n = 8) or bed rest alone (n = 7). We examined body composition, hematology, general blood chemistry, markers of oxidative damage, and blood levels of selected vitamins and minerals before, during, and after the bed rest period. Several indicators of vitamin status changed in response to diet changes: serum α- and γ-tocopherol and urinary 4-pyridoxic acid decreased (P < 0.001) and plasma β-carotene increased (P < 0.001) in both groups during bed rest compared with before bed rest. A decrease in hematocrit (P < 0.001) after bed rest was accompanied by a decrease in transferrin (P < 0.001), but transferrin receptors were not changed. These data provide evidence that artificial gravity itself does not negatively affect nutritional status during bed rest. Likewise, artificial gravity has no protective effect on nutritional status during bed rest. PMID:19074571

  9. Wind-tunnel simulation of store jettison with the aid of magnetic artificial gravity

    NASA Technical Reports Server (NTRS)

    Stephens, T.; Adams, R.

    1972-01-01

    A method employed in the simulation of jettison of stores from aircraft involving small scale wind-tunnel drop tests from a model of the parent aircraft is described. Proper scaling of such experiments generally dictates that the gravitational acceleration should ideally be a test variable. A method of introducing a controllable artificial component of gravity by magnetic means has been proposed. The use of a magnetic artificial gravity facility based upon this idea, in conjunction with small scale wind-tunnel drop tests, would improve the accuracy of simulation. A review of the scaling laws as they apply to the design of such a facility is presented. The design constraints involved in the integration of such a facility with a wind tunnel are defined. A detailed performance analysis procedure applicable to such a facility is developed. A practical magnet configuration is defined which is capable of controlling the strength and orientation of the magnetic artificial gravity field in the vertical plane, thereby allowing simulation of store jettison from a diving or climbing aircraft. The factors involved in the choice between continuous or intermittent operation of the facility, and the use of normal or superconducting magnets, are defined.

  10. Artificial Gravity as a Countermeasure of Cardiovascular Deconditioning in Spinal Cord Injury

    NASA Technical Reports Server (NTRS)

    Cardus, David

    1999-01-01

    An essential item in the development of this project was the availability of the artificial gravity simulator (AGS). At the termination of that grant in 1994, the AGS was dismantled and transferred to NASA Johnson Space Center. It took over two years for the AGS to be re-assembled and re-certified for use. As a consequence of the non-availability of the AGS for two years, there was a considerable delay in implementing the various phases of the project. The subjects involved in the study were eight healthy able bodied subjects and twelve with spinal cord injury. After analysis of the data collected on these subjects, six of the healthy able bodied subjects and three of the sub ects with spinal cord injury were found to qualify for the study. This report gives the results of four subjects only, two healthy able bodied and two spinal cord injured subjects because the period of the grant (1 year) and its extension (1 year) expired before additional subjects could be studied. The principal objective of the study was to conduct a series of experiments to demonstrate the feasibility of utilizing artificial gravity to assist in the physical rehabilitation of persons with spinal cord injuries.

  11. Some physiological aspects of artificial gravity. [gravitational effects on human orthostatic tolerance and physical fitness

    NASA Technical Reports Server (NTRS)

    Cramer, D. B.; Graybiel, A.

    1973-01-01

    The effects of increasing artificial gravity exposure on four aspects of physiological fitness are examined in four young men who, prior to exposure, were deconditioned with bed rest and water immersion. The four aspects of physiological fitness are orthostatic tolerance, exercise tolerance, forearm endurance, and maximum strength. Orthostatic tolerance was sharply reduced by deconditioning and was substantially improved by walking in simulated lunar gravity (1/6 g) for 2.5 hours daily for 7 days or by walking in 1/2 g and 1 g for 1 hour daily for 3 days. Exercise tolerance was also sharply reduced by deconditioning but did not significantly improve with increasing g-exposure. Walking in 1 g for 1 hour daily for 3 days raised exercise tolerance only a little above the low produced by deconditioning. Forearm endurance and maximum strength were relatively unaffected by deconditioning and subsequent g-exposure.

  12. Human orientation and movement control in weightless and artificial gravity environments

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    2000-01-01

    Our goal is to summarize what has been learned from studies of human movement and orientation control in weightless conditions. An understanding of the physics of weightlessness is essential to appreciate the dramatic consequences of the absence of continuous contact forces on orientation and posture. Eye, head, arm, leg, and whole body movements are discussed, but only experiments whose results seem relatively incontrovertible are included. Emphasis is placed on distinguishing between virtually immediate adaptive compensations to weightlessness and those with longer time courses. The limitations and difficulties of performing experiments in weightless conditions are highlighted. We stress that when astronauts and cosmonauts return from extended space flight they do so with both physical "plant" and neural "controller" structurally and functionally altered. Recent developments in adapting humans to artificial gravity conditions are discussed as a way of maintaining sensory-motor and structural integrity in extended missions involving transitions between different force environments.

  13. Centrifugation protocol for the NASA Artificial Gravity-Bed Rest Pilot Study.

    PubMed

    Arya, Maneesh; Paloski, William H; Young, Laurence R

    2007-07-01

    We have implemented a 41-day ground-based study to investigate the effects of daily artificial gravity loading on bed rest deconditioned human subjects. Each subject underwent 21 days of 6 degree head-down bed rest. Treatment subjects received 60 min daily doses of inertial mechanical loading (2.5 G at the feet decreasing to 1 G at the heart) produced by a short radius centrifuge. During rotation, the subject's cardiovascular responses were monitored via ECG, blood pressure and pulse oximetry, and subjective assessment of motion sickness and overall health were periodically requested. The subject's weight distribution at the feet was measured using a force plate, and lower leg muscle activity was monitored via surface electromyography. Control subjects were instrumented but did not receive any centrifugation. This paper provides details on the centrifuge protocol development and efficacy.

  14. Method to maintain artificial gravity during transfer maneuvers for tethered spacecraft

    NASA Astrophysics Data System (ADS)

    Martin, Kaela M.; Landau, Damon F.; Longuski, James M.

    2016-03-01

    Artificial gravity has long been proposed to limit the harmful effects of the micro-gravity environment on human crews during mission to Mars. A tethered spacecraft spinning at 4 rpm (to avoid motion sickness) provides an attractive configuration. However, if the spacecraft is required to spin down for impulsive maneuvers and then spin up for interplanetary travel, the propellant cost may be unacceptably high. This paper proposes a maneuver that is performed while the spacecraft is spinning thus avoiding additional spin-down and spin-up maneuvers. A control law is provided to achieve the required ΔV while maintaining spin rate. A hypothetical human mission from Earth to Mars is analyzed using the new maneuver which, in this example, may save over 700 kg of propellant.

  15. [Effects of centrifugation-related artificial gravity on the human organism. Positive and negative effects].

    PubMed

    Vil'-Vil'iams, I F; Kotovskaia, A R

    2003-01-01

    Data of investigations of the artificial gravity issues in centrifuge experiments in Russian, USA and Japan over the past 40 years were analyzed. Periodic +Gz centrifugation was used to prevent or eliminate body deconditioning after 3- to 56-d simulated microgravity, and to increase the body functional reserve (orthostatic stability) in ordinary life. Positive effects included prevention of a decline of gravitational stability and reduction or averting the negative effects of simulated microgravity on various physiological systems. Better results can be achieved by combining artificial g-loads with the well-proven methods of combating deconditioning, i.e. physical training on bicycle ergometer and induced hydration. Human tolerance of g-loads on a short-arm centrifuge with a high (100%) gravitational gradient was found no worse than on a mid-arm centrifuge with a lower (20%) gravitational gradient. Negative effects of +Gz on a short-arm centrifuge were revealed and counteracting measures were determined.

  16. Some physiological aspects of artificial gravity. [gravitational effects on human orthostatic tolerance and physical fitness

    NASA Technical Reports Server (NTRS)

    Cramer, D. B.; Graybiel, A.

    1973-01-01

    The effects of increasing artificial gravity exposure on four aspects of physiological fitness are examined in four young men who, prior to exposure, were deconditioned with bed rest and water immersion. The four aspects of physiological fitness are orthostatic tolerance, exercise tolerance, forearm endurance, and maximum strength. Orthostatic tolerance was sharply reduced by deconditioning and was substantially improved by walking in simulated lunar gravity (1/6 g) for 2.5 hours daily for 7 days or by walking in 1/2 g and 1 g for 1 hour daily for 3 days. Exercise tolerance was also sharply reduced by deconditioning but did not significantly improve with increasing g-exposure. Walking in 1 g for 1 hour daily for 3 days raised exercise tolerance only a little above the low produced by deconditioning. Forearm endurance and maximum strength were relatively unaffected by deconditioning and subsequent g-exposure.

  17. Human orientation and movement control in weightless and artificial gravity environments

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    2000-01-01

    Our goal is to summarize what has been learned from studies of human movement and orientation control in weightless conditions. An understanding of the physics of weightlessness is essential to appreciate the dramatic consequences of the absence of continuous contact forces on orientation and posture. Eye, head, arm, leg, and whole body movements are discussed, but only experiments whose results seem relatively incontrovertible are included. Emphasis is placed on distinguishing between virtually immediate adaptive compensations to weightlessness and those with longer time courses. The limitations and difficulties of performing experiments in weightless conditions are highlighted. We stress that when astronauts and cosmonauts return from extended space flight they do so with both physical "plant" and neural "controller" structurally and functionally altered. Recent developments in adapting humans to artificial gravity conditions are discussed as a way of maintaining sensory-motor and structural integrity in extended missions involving transitions between different force environments.

  18. Response of Ambulatory Human Subjects to Artificial Gravity (Short Radius Centrifugation)

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Arya, Maneesh; Newby, Nathaniel; Tucker, Jon-Michael; Jarchow, Thomas; Young, Laurence

    2006-01-01

    Prolonged exposure to microgravity results in significant adaptive changes, including cardiovascular deconditioning, muscle atrophy, bone loss, and sensorimotor reorganization, that place individuals at risk for performing physical activities after return to a gravitational environment. Planned missions to Mars include unprecedented hypogravity exposures that would likely result in unacceptable risks to crews. Artificial gravity (AG) paradigms may offer multisystem protection from the untoward effects of adaptation to the microgravity of space or the hypogravity of planetary surfaces. While the most effective AG designs would employ a rotating spacecraft, perceived issues may preclude their use. The questions of whether and how intermittent AG produced by a short radius centrifuge (SRC) could be employed have therefore sprung to the forefront of operational research. In preparing for a series of intermittent AG trials in subjects deconditioned by bed rest, we have examined the responses of several healthy, ambulatory subjects to SRC exposures.

  19. Effectiveness of Artificial Gravity and Ergometric Exercise as a Countermeasure-Comparison between Everyday and Every Other Day Protocols

    NASA Astrophysics Data System (ADS)

    Iwase, Satoshi; Sugenoya, Junichi; Sato, Maki; Shimizu, Yuuki; Kanikowska, Dominika; Nishimura, Nooki; Takada, Hiroki; Takada, Masumi; Mano, Tadaki; Ishida, Koji; Akima, Hiroshi; Katayama, Keisho; Hirayanagi, Kaname; Shiozawa, Tomoki; Yajima, Katzuyoshi; Watanabe, Yoriko; Suzuki, Satomi; Fukunnaga, Tetsuo; Masuo, Yoshihisa

    2008-06-01

    Effectiveness of centrifuge-induced artificial gravity and ergometric exercise as a countermeasure to space deconditioning, including cardiovascular deconditioning, myatrophy, and osteoporosis, induced by 20 days of head-down bedrest., was examined in 12 healthy men in 2006, and 8 healthy men in 2007. Bedrest was performed with 2300 kcal of diet. Water intake was recommended more than the urine volume in a previous day. A new protocol for artificial gravity with ergometric exercise was adopted, with 1.6 G of artificial gravity at heart level and 60 W of exercise every day in 2006, and every other day in 2007. The load was suspended when subjects complained all-out, and was continued until 30 min cumulative total load time. Gravity was stepped up by 0.2 G or exercise load was stepped up by 15 W alternately when the subject endured the load for 5 min. Gravity tolerance was examined by using centrifuge, and anti-G score was determined before and after the bedrest. Not all result has been analyzed, however, effectiveness of artificial gravity with ergometric exercise was evidenced in orthostatic tolerance, physical fitness, cardiac function, myatrophy, and bone metabolism in everyday protocol, but not in every other day protocol. We concluded this everyday protocol was effective in cardiovascular deconditioning myatrophy, and bone metabolism.

  20. Calcium kinetics during bed rest with artificial gravity and exercise countermeasures

    PubMed Central

    Smith, S. M.; Castaneda-Sceppa, C.; O’Brien, K. O.; Abrams, S. A.; Gillman, P.; Brooks, N. E.; Cloutier, G. J.; Heer, M.; Zwart, S. R.; Wastney, M. E.

    2015-01-01

    Summary We assessed the potential for countermeasures to lessen the loss of bone calcium during bed rest. Subjects ingested less calcium during bed rest, and with artificial gravity, they also absorbed less calcium. With exercise, they excreted less calcium. To retain bone during bed rest, calcium intake needs to be maintained. Introduction This study aims to assess the potential for artificial gravity (AG) and exercise (EX) to mitigate loss of bone calcium during space flight. Methods We performed two studies: (1) a 21-day bed rest (BR) study with subjects receiving 1 h/day AG (n=8) or no AG (n=7) and (2) a 28-day BR study with 1 h/day resistance EX (n=10) or no EX (n=3). In both studies, stable isotopes of Ca were administered orally and intravenously, at baseline and after 10 days of BR, and blood, urine, and feces were sampled for up to 14 days post dosing. Tracers were measured using thermal ionization mass spectrometry. Data were analyzed by compartmental modeling. Results Less Ca was absorbed during BR, resulting in lower Ca balance in BR+AG (−6.04±3.38 mmol/day, P=0.023). However, Ca balance did not change with BR+EX, even though absorbed Ca decreased and urinary Ca excretion increased, because endogenous excretion decreased, and there was a trend for increased bone deposition (P=0.06). Urinary N-telopeptide excretion increased in controls during BR, but not in the EX group. Markers of bone formation were not different between treatment groups for either study. Ca intake decreased during BR (by 5.4 mmol/day in the AG study and 2.8 mmol/day in the EX study), resulting in lower absorbed Ca. Conclusions During BR (or space flight), Ca intake needs to be maintained or even increased with countermeasures such as exercise, to enable maintenance of bone Ca. PMID:24861908

  1. Monitoring Immune System Function and Reactivation of Latent Viruses in the Artificial Gravity Pilot Study

    NASA Technical Reports Server (NTRS)

    Mehta, Satish; Crusian, Brian; Pierson, Duane; Sams, Clarence; Stowe, Raymond

    2007-01-01

    Numerous studies have indicated that dysregulation of the immune system occurs during or after spaceflight. Using 21 day -6 deg. head-down tilt bed rest as a spaceflight analog, this study describes the effects of artificial gravity as a daily countermeasure on immunity, stress and reactivation of clinically important latent herpes viruses. The specific aims were to evaluate psychological and physiological stress, to determine the status of the immune system and to quantify reactivation of latent herpes viruses. Blood, saliva, and urine samples were collected from each participating subject at different times throughout the study. An immune assessment was performed on all treatment and control subjects that consisted of a comprehensive peripheral immunophenotype analysis, intracellular cytokine profiles and a measurement of T cell function. The treatment group displayed no differences throughout the course of the study with regards to peripheral leukocyte distribution, cytokine production or T cell function. Shedding of EBV and CMV was quantified by real time PCR in saliva and urine samples, respectively. There was no significant difference in CMV DNA in the treatment group as compared to the control group. EBV and VZV on the other hand showed a mild reactivation during the study. There were no significant differences in plasma cortisol between the control and treatment groups. In addition, no significant differences between antiviral antibody titers (EBV-VCA, -EA, -EBNA, CMV) or tetramer-positive (EBV, CMV) were found between the two groups. EBV DNA copies in blood were typically undetectable but never exceeded 1,500 copies per 10(exp 6) PBMCs. These data indicate that the artificial gravity countermeasure and the 21 day head-down tilt bed rest regimen had no observable adverse effect on immune function.

  2. Monitoring Immune System Function and Reactivation of Latent Viruses in the Artificial Gravity Pilot Study

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Crucian, Brian; Pierson, Duane L.; Sams, Clarence; Stowe, Raymond P.

    2007-01-01

    Numerous studies have indicated that dysregulation of the immune system occurs during or after spaceflight. Using 21 day -6 degrees head-down tilt bed rest as a spaceflight analog, this study describes the effects of artificial gravity (AG) as a daily countermeasure on immunity, stress and reactivation of clinically important latent herpes viruses. The specific aims were to evaluate psychological and physiological stress, to determine the status of the immune system, and to quantify reactivation of latent herpes viruses. Blood, saliva, and urine samples were collected from each participating subject at different times throughout the study. An immune assessment was performed on all treatment and control subjects that consisted of a comprehensive peripheral immunophenotype analysis, intracellular cytokine profiles and a measurement of T cell function. The treatment group displayed no differences throughout the course of the study with regards to peripheral leukocyte distribution, cytokine production or T cell function. Shedding of Epstein barr virus (EBV), Cytomegalovirus (CMV), and Varicella zoster virus (VZV) was quantified by real time PCR in saliva and urine samples, respectively. There was no significant difference in CMV DNA in the treatment group as compared to the control group. EBV and VZV on the other hand showed a mild reactivation during the study. There were no significant differences in cortisol between the control and treatment groups. In addition, no significant differences between antiviral antibody titers (EBV-VCA, -EA, -EBNA, CMV) or tetramer-positive (EBV, CMV) were found between the two groups. EBV DNA copies in blood were typically undetectable but never exceeded 1,500 copies per 106 PBMCs. Overall, these data indicate that the artificial gravity countermeasure and the 21 day head-down tilt bed rest regimen had no observable adverse effect on immune function.

  3. NEP heat pipe radiators. [Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ernst, D. M.

    1979-01-01

    This paper covers improvements of heat pipe radiators for the thermionic NEP design. Liquid metal heat pipes are suitable as spacecraft radiator elements because of high thermal conductance, low mass and reliability, but the NEP thermionic system design was too large and difficult to fabricate. The current integral collector-radiator design consisting of several layers of thermionic converters, the annular-tangential collector heat pipe, the radiator heat pipe, and the transition zone designed to minimize the temperature difference between the collector heat pipe and radiator heat pipe are described. Finally, the design of micrometeoroid armor protection and the fabrication of the stainless steel annular heat pipe with a tangential arm are discussed, and it is concluded that the heat rejection system for the thermionic NEP system is well advanced, but the collector-radiator heat pipe transition and the 8 to 10 m radiator heat pipe with two bends require evaluation.

  4. NEP heat pipe radiators. [Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ernst, D. M.

    1979-01-01

    This paper covers improvements of heat pipe radiators for the thermionic NEP design. Liquid metal heat pipes are suitable as spacecraft radiator elements because of high thermal conductance, low mass and reliability, but the NEP thermionic system design was too large and difficult to fabricate. The current integral collector-radiator design consisting of several layers of thermionic converters, the annular-tangential collector heat pipe, the radiator heat pipe, and the transition zone designed to minimize the temperature difference between the collector heat pipe and radiator heat pipe are described. Finally, the design of micrometeoroid armor protection and the fabrication of the stainless steel annular heat pipe with a tangential arm are discussed, and it is concluded that the heat rejection system for the thermionic NEP system is well advanced, but the collector-radiator heat pipe transition and the 8 to 10 m radiator heat pipe with two bends require evaluation.

  5. NEP mission sensitivities to system performance

    NASA Technical Reports Server (NTRS)

    Gilland, James H.

    1991-01-01

    Nuclear Electric Propulsion (NEP) mission performance is strongly affected by system performance. Power and propulsion system specific mass, specific impulse, and efficiency all combine to determine the performance limits for a given mission. Thruster technology determines the specific impulse and efficiency of the system. The effects of these parameters on the mission performance of NEP systems relative to other concepts was analyzed to give guidance to thruster development goals for a range of missions: Lunar Cargo, Mars Cargo, and Mars Piloted. Mission sensitivities to system parameters are discussed, and technology requirements are identified for each mission.

  6. Artificial gravity in space: Vestibular tolerance assessed by human centrifuge spinning on Earth

    NASA Astrophysics Data System (ADS)

    Antonutto, G.; Linnarsson, D.; Sundberg, C. J.; di Prampero, P. E.

    Artificial gravity created by the astronauts themselves, without any external power supply, by pedalling on a coupled of couterrotating bicycles along the inner wall of the space module (Twin Bikes System, TBS), was previously suggested (Antonutto et al., 1991) to prevent musculo-skeletal decay and cardiovascular deconditioning during long term space flights. To investigate whether this unusual rotating environment would determine abnormal stimulations of the vestibular system due to Coriolis cross coupled accelerations, thus leading to acute motion sickness (AMS), the conditions of a rotating environment were reproduced in a human centrifuge. A cycloergometer was fixed to the arm of the centrifuge, the rotation speed of which was equal to that yielding 1 g at the feet level in the TBS (i.e. ranging from 19 to 21 RPM). The ergometer position was such that the combination of the horizontal and gravitational acceleration vectors was 1.414 at the inner ear level and was aligned along the head to feet axis. Three subjects, pedalling at 50 W on a cycloergometer during centrifuge's spinning, were asked to move the head following an AMS' provocation protocol. None of them developed any AMS symptoms. This supports the look of the TBS as tool for avoiding musculo-skeletal and cardiovascular deconditioning during long term space flights.

  7. Gender specific changes in cortical activation patterns during exposure to artificial gravity

    NASA Astrophysics Data System (ADS)

    Schneider, Stefan; Robinson, Ryan; Smith, Craig; von der Wiesche, Melanie; Goswami, Nandu

    2014-11-01

    Keeping astronauts healthy during long duration spaceflight remains a challenge. Artificial gravity (AG) generated by a short arm human centrifuges (SAHC) is proposed as the next generation of integrated countermeasure devices that will allow human beings to safely spend extended durations in space, although comparatively little is known about any psychological side effects of AG on brain function. 16 participants (8 male and 8 female, GENDER) were exposed to 10 min at a baseline gravitational load (G-Load) of +.03 Gz, then 10 min at +.6 Gz for females and +.8 Gz for males, before being exposed to increasing levels of AG in a stepped manner by increasing the acceleration by +.1 Gz every 3 min until showing signs of pre-syncope. EEG recordings were taken of brain activity during 2 min time periods at each AG level. Analysing the results of the mixed total population of participants by two way ANOVA, a significant effect of centrifugation on alpha and beta activity was found (p<.01). Furthermore results revealed a significant interaction between G-LOAD and GENDER alpha-activity (p<.01), but not for beta-activity. Although the increase in alpha and beta activity with G-LOAD does not reflect a general model of cortical arousal and therefore cannot support previous findings reporting that AG may be a cognitively arousing environment, the gender specific responses identified in this study may have wider implications for EEG and AG research.

  8. Human Research Program Human Health Countermeasures Element: Evidence Report - Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Clement, Gilles

    2015-01-01

    The most serious risks of long-duration flight involve radiation, behavioral stresses, and physiological deconditioning. Artificial gravity (AG), by substituting for the missing gravitational cues and loading in space, has the potential to mitigate the last of these risks by preventing the adaptive responses from occurring. The rotation of a Mars-bound spacecraft or an embarked human centrifuge offers significant promise as an effective, efficient multi-system countermeasure against the physiological deconditioning associated with prolonged weightlessness. Virtually all of the identified risks associated with bone loss, muscle weakening, cardiovascular deconditioning, and sensorimotor disturbances might be alleviated by the appropriate application of AG. However, experience with AG in space has been limited and a human-rated centrifuge is currently not available on board the ISS. A complete R&D program aimed at determining the requirements for gravity level, gravity gradient, rotation rate, frequency, and duration of AG exposure is warranted before making a decision for implementing AG in a human spacecraft.

  9. Sensory Conflict Compared in Microgravity, Artificial Gravity, Motion Sickness, and Vestibular Disorders

    PubMed Central

    Holly, Jan E.; Harmon, Sarah M.

    2013-01-01

    Perceptual disturbances and motion sickness are often attributed to sensory conflict. We investigated several conditions: head movements in microgravity, periodic motions in 1-g, and locomotion with vestibular disorders. In every case, linear vectors such as linear and gravitational acceleration are crucial factors, as previously found for head movements in artificial gravity, and thus the importance of measuring linear vectors emerges as a common theme. By modeling the sensory conflict between the vestibular and somatosensory systems, we computed a measure of linear conflict known as the “Stretch Factor.” We hypothesized that the motions with the greatest Stretch Factor would be the most provocative motions. RESULTS For head movements in microgravity, the Stretch Factor can explain why fast movements are more provocative than slow movements, and why pitch movements are more provocative than yaw movements. For off-vertical-axis rotation (OVAR) in 1-g, the Stretch Factor predicts that the most provocative frequency is higher than that for vertical linear oscillation (VLO). For example, the same sensor dynamics can predict a most provocative frequency around 0.2 Hz for VLO but 0.3 Hz for OVAR, solving a mystery of this experimentally observed discrepancy. Finally, we determined that certain sensory conflict perceptions reported by vestibular patients could be explained via mathematical simulation. PMID:23000608

  10. Artificial Gravity as a Multi-System Countermeasure for Exploration Class Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Dawson, David L. (Technical Monitor)

    2000-01-01

    NASA's vision for space exploration includes missions of unprecedented distance and duration. However, during 30 years of human space flight experience, including numerous long-duration missions, research has not produced any single countermeasure or combination of countermeasures that is completely effective. Current countermeasures do not fully protect crews in low-Earth orbit, and certainly will not be appropriate for crews journeying to Mars and back over a three-year period. The urgency for exploration-class countermeasures is compounded by continued technical and scientific successes that make exploration class missions increasingly attractive. The critical and possibly fatal problems of bone loss, cardiovascular deconditioning, muscle weakening, neurovestibular disturbance, space anemia, and immune compromise may be alleviated by the appropriate application of artificial gravity (AG). However, despite a manifest need for new countermeasure approaches, concepts for applying AG as a countermeasure have not developed apace. To explore the utility of AG as a multi-system countermeasure during long-duration, exploration-class space flight, eighty-three members of the international space life science and space flight community met earlier this year. They concluded unanimously that the potential of AG as a multi-system countermeasure is indeed worth pursuing, and that the requisite AG research needs to be supported more systematically by NASA. This presentation will review the issues discussed and recommendations made.

  11. Artificial Gravity as a Multi-System Countermeasure for Exploration Class Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Dawson, David L. (Technical Monitor)

    2000-01-01

    NASA's vision for space exploration includes missions of unprecedented distance and duration. However, during 30 years of human space flight experience, including numerous long-duration missions, research has not produced any single countermeasure or combination of countermeasures that is completely effective. Current countermeasures do not fully protect crews in low-Earth orbit, and certainly will not be appropriate for crews journeying to Mars and back over a three-year period. The urgency for exploration-class countermeasures is compounded by continued technical and scientific successes that make exploration class missions increasingly attractive. The critical and possibly fatal problems of bone loss, cardiovascular deconditioning, muscle weakening, neurovestibular disturbance, space anemia, and immune compromise may be alleviated by the appropriate application of artificial gravity (AG). However, despite a manifest need for new countermeasure approaches, concepts for applying AG as a countermeasure have not developed apace. To explore the utility of AG as a multi-system countermeasure during long-duration, exploration-class space flight, eighty-three members of the international space life science and space flight community met earlier this year. They concluded unanimously that the potential of AG as a multi-system countermeasure is indeed worth pursuing, and that the requisite AG research needs to be supported more systematically by NASA. This presentation will review the issues discussed and recommendations made.

  12. Physiological benefits of exercise in artificial gravity: A broadband countermeasure to space flight related deconditioning

    NASA Astrophysics Data System (ADS)

    Edmonds, Jessica L.; Jarchow, Thomas; Young, Laurence R.

    2008-07-01

    Current countermeasures to space flight related physiological deconditioning have not been sufficiently effective. We believe that a comprehensive countermeasure is the combination of intermittent centrifugation (artificial gravity) and exercise. We aim to test the long-term effectiveness of this combination in terms of fitness benefits. As a first-order determination of effectiveness, subjects participated in an eight-week exercise program. Three times per week, they exercised using a stair-stepper on a short-radius (2 m) centrifuge spinning at 30 RPM, maintaining a target heart rate that was systematically increased over the exercise period. During the sessions, foot forces and stepping cadence, heart rate, and perceived exertion were measured. Before and after the eight-week exercise program, measurements included: body fat percentage, bone mineral content, quadriceps extension strength, push-ups endurance, stepping cadence for a given heart rate, and maximum stepping endurance. We find that stair-stepping on a centrifuge is safe and comfortable. Preliminary fitness results indicate that stair-stepping on a centrifuge may be effective in improving aerobic fitness, body composition, and strength. These results indicate that such a combination may also be effective as a countermeasure to space flight deconditioning.

  13. Triple ACE-ECE-NEP inhibition in heart failure: a comparison with ACE and dual ECE-NEP inhibition.

    PubMed

    Mellin, Virginie; Jeng, Arco Y; Monteil, Christelle; Renet, Sylvanie; Henry, Jean Paul; Thuillez, Christian; Mulder, Paul

    2005-09-01

    Mortality remains high in chronic heart failure (CHF) because under ACE inhibitor treatment other neurohumoral systems remain/become (de)activated, such as the endothelin and atrial natriuretic peptide pathways. Dual endothelin-converting enzyme-neutral endopeptidase (ECE-NEP) inhibition exerts beneficial effects in experimental CHF, but whether "triple" ACE-ECE-NEP inhibition is superior to ACE or ECE-NEP inhibition is unknown. We compared, in rats with CHF, ACE-ECE-NEP to ACE or ECE-NEP inhibition in terms of left ventricular (LV) hemodynamics and remodeling. Benazepril (2 mg/kg/d) or the ECE-NEP inhibitor CGS26303 (10 mg/kg/d) were administered alone or in combination (subcutaneously for 28 days starting 7 days after coronary ligation). ACE-ECE-NEP inhibition reduced blood pressure more markedly than ACE or ECE-NEP inhibition. All treatments increased cardiac output to the same extent, but ACE-ECE-NEP inhibition reduced LV diameter and LV end-diastolic pressure more markedly than ACE or ECE-NEP inhibition. The reduction of LV weight and collagen accumulation in the "viable" myocardium was most pronounced after ACE-ECE-NEP inhibition. These results, obtained in experimental CHF, illustrate a further improvement of LV hemodynamics and structure after ACE-ECE-NEP inhibition compared with either ACE or ECE-NEP inhibition, but whether this is associated with a further improvement of exercise tolerance and/or survival remains to be determined.

  14. Stress-energy distribution for a cylindrical artificial gravity field via the Darmois-Israel junction conditions of general relativity

    NASA Astrophysics Data System (ADS)

    Istrate, Nicolae; Lindner, John

    2014-03-01

    We design an Earth-like artificial gravity field using the Darmois-Israel junction conditions of general relativity to connect the flat spacetime outside an infinitesimally thin cylinder to the curved spacetime inside. In the calculation of extrinsic curvature, our construction exploits Earth's weak gravity, which implies similar inside and outside curvatures, to approximate the unit normal inside by the negative unit normal outside. The stress-energy distribution on the cylinder's sides includes negative energy density.

  15. Effectiveness of centrifuge-induced artificial gravity with ergometric exercise as a countermeasure during simulated microgravity exposure in humans

    NASA Astrophysics Data System (ADS)

    Iwase, Satoshi

    2005-07-01

    To test the effectiveness of centrifuge-induced artificial gravity with ergometric exercise, 12 healthy young men (20.7±1.9yr) were exposed to simulated microgravity for 14 days of -6∘ head-down bedrest. Half the subjects were randomly selected and loaded 1.2 G artificial gravity with 60 W (four out of six subjects) or 40 W (two out of six subjects) of ergometric workload on days 1,2,3,5,7,9,11,12,13,14 (CM group). The rest of the subjects served as the control. Anti-G score, defined as the G-load×running time to the endpoint, was significantly elongated by the load of the centrifuge-ergometer. Plasma volume loss was suppressed ( -5.0±2.4 vs. -16.4±1.9%), and fluid volume shift was prevented by the countermeasure load. Elevated heart rate and muscle sympathetic nerve activity after bedrest were counteracted, and exaggerated response to head-up tilt was also suppressed. Centrifuge-induced artificial gravity with exercise is effective in preventing cardiovascular deconditioning due to microgravity exposure, however, an effective and appropriate regimen (magnitude of G-load and exercise workload) should be determined in future studies.

  16. Effectiveness of centrifuge-induced artificial gravity with ergometric exercise as a countermeasure during simulated microgravity exposure in humans.

    PubMed

    Iwase, Satoshi

    2005-01-01

    To test the effectiveness of centrifuge-induced artificial gravity with ergometric exercise, 12 healthy young men (20.7 +/- 1.9 yr) were exposed to simulated microgravity for 14 days of -6 degrees head-down bedrest. Half the subjects were randomly selected and loaded 1.2 G artificial gravity with 60 W (four out of six subjects) or 40 W (two out of six subjects) of ergometric workload on days 1, 2, 3, 5, 7, 9, 11, 12, 13, 14 (CM group). The rest of the subjects served as the control. Anti-G score, defined as the G-load x running time to the endpoint, was significantly elongated by the load of the centrifuge-ergometer. Plasma volume loss was suppressed (-5.0 +/- 2.4 vs. -16.4 +/- 1.9%), and fluid volume shift was prevented by the countermeasure load. Elevated heart rate and muscle sympathetic nerve activity after bedrest were counteracted, and exaggerated response to head-up tilt was also suppressed. Centrifuge-induced artificial gravity with exercise is effective in preventing cardiovascular deconditioning due to microgravity exposure, however, an effective and appropriate regimen (magnitude of G-load and exercise workload) should be determined in future studies. c2005 Elsevier Ltd. All rights reserved.

  17. [The problem of creation of artificial gravity with the use of a short-radius centrifuge for medical support of interplanetary piloted missions].

    PubMed

    Kotovskaia, A R; Vil'-Vil'iams, I F; Luk'ianuk, V Iu

    2003-01-01

    On the evidence of orbital flights, the system of countermeasures against the effects of microgravity does not fully make for deconditioning of a number of human organs and systems and recovery of preflight physical status and working ability of members of long-term missions takes 1.5 to 2 mos. of the post-flight rehabilitation. In order to maintain the physical form, health and performance of crews in future interplanetary missions, we should be ready to offer them a novel countermeasure, i.e. regular sessions of artificial gravity generated by a short-radius centrifuge (SRC) on board vehicles. The articles presents the substantiation and concept of ground-based simulation studies of health benefits from SRC in interplanetary missions. Of primary concern is development of SRC regimens that will put up a strong opposition to microgravity, assure crew safety, and reduce to the minimum time to fulfill the in-flight countermeasure program. Answers to arising questions can be found by consolidation of the expertise and resources of the countries willing to meet this challenge.

  18. Mechanisms of Orthostatic Tolerance Improvement Following Artificial Gravity Exposure Differ Between Men and Women

    NASA Technical Reports Server (NTRS)

    Evans, J. M.; Stenger, M. B.; Ferguson, C. R.; Ribiero, L. C.; Zhang, Q.; Moore, F. B.; Serrador, J.; Smith, J. D.; Knapp, C. F.

    2014-01-01

    We recently determined that a short exposure to artificial gravity (AG) improved the orthostatic tolerance limit (OTL) of cardiovascularly deconditioned subjects. We now seek to determine the mechanisms of that improvement in these hypovolemic men and women. Methods. We determined the orthostatic tolerance limit (OTL) of 9 men and 8 women following a 90 min exposure to AG compared to 90 min of head down bed rest (HDBR). In both cases (21 days apart), subjects were made hypovolemic (low salt diet plus 20 mg intravenous furosemide). Orthostatic tolerance was determined from a combination of head up tilt and increasing lower body negative pressure until presyncope. Mean values and correlations with OTL were determined for heart rate, blood pressure, stroke volume, cardiac output and peripheral resistance (Finometer), cerebral artery blood velocity (DWL), partial pressure of carbon dioxide (Novametrics) and body segmental impedance (UFI THRIM) were measured during supine baseline, during OTL to presyncope and during supine recovery Results. Orthostatic tolerance of these hypovolemic subjects was significantly greater on the day of AG exposure than on the HDBR day. Regression of OTL on these variables identified significant relationships on the HDBR day that were not evident on the AG day: resting TPR correlated positively while resting cerebral flow correlated negatively with OTL. On both days, women's resting stroke volume correlated positively with orthostatic tolerance. Higher group mean values of stroke volume and cerebral artery flow and lower values of blood pressure, peripheral vascular and cerebrovascular resistance both at control and during OTL testing were observed on the AG day. Even though regression of OTL on resting stroke volume was significant only in women, presyncopal stroke volume reached the same level on each day of study for both men and women while the OTL test lasted 30% longer in men and 22% longer in women. Cerebral artery flow appeared to

  19. Multi-System Effects of Daily Artificial Gravity Exposures in Humans Deconditioned by Bed Rest

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2007-01-01

    We have begun to explore the utility of intermittent artificial gravity (AG) as a multi-system countermeasure to the untoward health and performance effects of adaptation to decreased gravity during prolonged space flight. The first study in this exploration was jointly designed by an international, multi-disciplinary team of scientists interested in standardizing an approach so that comparable data could be obtained from follow-on studies performed in multiple international locations. Fifteen rigorously screened male volunteers participated in the study after providing written informed consent. All were subjected to 21 days of 6deg head-down-tilt (HDT) bed rest. Eight were treated with daily 1hr AG exposures (2.5g at the feet decreasing to 1.0g at the heart) aboard a short radius (3m) centrifuge, while the other seven served as controls. Multiple observations were made of dependent measures in the bone, muscle, cardiovascular, sensory-motor, immune, and behavioral systems during a 10 day acclimatization period prior to HDT bed rest and again during an 8 day recovery period after the bed rest period. Comparisons between the treatment and control subjects demonstrated salutary effects of the AG exposure on aspects of the muscle and cardiovascular systems, with no untoward effects on the vestibular system, the immune system, or cognitive function. Bone deconditioning was similar between the treatment and control groups, suggesting that the loading provided by this specific AG paradigm was insufficient to protect that system from deconditioning. Future work will be devoted to varying the loading duty cycle and/or coupling the AG loading with exercise to provide maximum physiological protection across all systems. Testing will also be extended to female subjects. The results of this study suggest that intermittent AG could be an effective multi-system countermeasure.

  20. Artificial Gravity as a Multi-System Countermeasure: Effects on Cognitive Function

    NASA Technical Reports Server (NTRS)

    Sipes, Walter E.; Seaton, Kim; Slack, Kellely; Bowie, Kendra

    2007-01-01

    The Space Flight Cognitive Assessment Tool for Windows (WinSCAT) is a medical requirement on the International Space Station, and its purpose is to evaluate cognitive functioning after physical insult (e.g., head trauma, decompression sickness, exposure to toxic gases, medication side effects). The current objective is to assess cognitive functioning in a long duration space mission analog environment where Artificial Gravity is being applied as a countermeasure in a Bed Rest study. Methods: Fifteen male subjects (8 treatment and 7 control) who participated in 21 days of -6 degree head-down bed rest were assessed. Three practice and three baseline WinSCAT test sessions were administered during the pre-bed rest phase of study participation. During the bed rest phase, the WinSCAT test was scheduled every other day, following the centrifuge, for a total of 10 test sessions. (The treatment group received 60 minutes of centrifugation each day during the 21 days of bed rest. The control subjects were strapped to the centrifuge for the same length of time as the treatment group but were not spun.) During the post-bed rest (reconditioning) phase, the test was administered 4 times. Results: Individual differences were found both within and between the treatment and control groups. After controlling for the number of subjects in each group, the treatment group accounted for more off-nominal WinSCAT scores than the control group. Conclusions:There is some preliminary evidence that centrifuge spinning might negatively impact cognitive functioning. However, due to sample size limitations, it cannot be ascertained whether there were significant differences in cognitive performance between the treatment and control groups. If centrifugation had a negative effect on cognitive functioning, consistent decrements would be expected to be found with all treatment subjects across time. Individual differences in underlying cognitive ability and motivation level are other possible

  1. Effects of artificial gravity during bed rest on bone metabolism in humans

    PubMed Central

    Smith, S. M.; Zwart, S. R.; Heer, M. A.; Baecker, N.; Evans, H. J.; Feiveson, A. H.; Shackelford, L. C.; LeBlanc, A. D.

    2009-01-01

    We report results from a study designed to explore the utility of artificial gravity (AG) as a countermeasure to bone loss induced by microgravity simulation. After baseline testing, 15 male subjects underwent 21 days of 6° head-down bed rest to simulate the deconditioning associated with spaceflight. Eight of the subjects underwent 1 h of centrifugation (AG; 1 Gz at the heart, 2.5 Gz at the feet) each day for 21 days, whereas seven of the subjects served as untreated controls (Con). Blood and urine were collected before, during, and after bed rest for bone marker determinations. Bone mineral density (BMD) and bone mineral content (BMC) were determined by dual-energy X-ray absorptiometry and peripheral quantitative computerized tomography before and after bed rest. Urinary excretion of bone resorption markers increased during bed rest, but the AG and Con groups did not differ significantly. The same was true for serum C-telopeptide. During bed rest, bone alkaline phosphatase (ALP) and total ALP tended to be lower in the AG group (P = 0.08, P = 0.09). Neither BMC nor BMD changed significantly from the pre-bed rest period in AG or Con groups, and the two groups were not significantly different. However, when AG and Con data were combined, there was a significant (P < 0.05) effect of time for whole body total BMC and total hip and trochanter BMD. These data failed to demonstrate efficacy of this AG prescription to prevent the changes in bone metabolism observed during 3 wk of bed rest. PMID:19074572

  2. Cardiac and Vascular Function in Bedrested Volunteers: Effects of Artificial Gravity Training

    NASA Technical Reports Server (NTRS)

    Meng, M.; Platts, S.; Stenger, M.; Diedrich, A.; Schlegel, T.; Natapoff, A.; Knapp, C.; Evans, J.

    2007-01-01

    Cardiovascular effects of an artificial gravity (AG) countermeasure on deconditioned male volunteers were studied. In two groups of men we measured cardiovascular parameters at rest and in response to 30 minutes of 80 deg. head up tilt (HUT) before, at the end of, and four days following 21 days of 6 deg. head down bed rest (HDBR). One group (N=7) underwent no countermeasure while the other (N=8) received a daily, one hour, dose (2.5 gz at the foot, decreasing to 1.0 gz at the heart) of AG training on the Johnson Space Center short radius centrifuge. Cardiovascular parameters measured included heart rate, blood pressure, stroke volume, cardiac output, peripheral vascular resistance, plasma volume shifts, and vasoactive hormones. Untrained subjects exhibited shorter tilt survival (on average 8 minutes shorter) compared to trained subjects. By the end of bed rest, mean heart rate (MHR) was elevated in both groups (both supine and during tilt). In addition, treated subjects demonstrated lower, tilt-induced, increases in MHR four days following HDBR, indicating a more rapid return to pre bed rest conditions. Results from an index of autonomic balance (percentage of MHR spectral power in the respiratory frequency range) in control of heart rate are consistent with the interpretation that parasympathetic nervous system withdrawal was responsible for both tilt- and bed rest-induced increases in MHR. Our data support our pre-study hypothesis that AG treatment would lessen cardiovascular effects of deconditioning in bed rested men and suggest that AG should be further pursued as a space flight countermeasure.

  3. Sensorimotor aspects of high-speed artificial gravity: III. Sensorimotor adaptation

    NASA Technical Reports Server (NTRS)

    DiZio, Paul; Lackner, James R.; Young, L. R. (Principal Investigator)

    2002-01-01

    As a countermeasure to the debilitating physiological effects of weightlessness, astronauts could live continuously in an artificial gravity environment created by slow rotation of an entire spacecraft or be exposed to brief daily "doses" in a short radius centrifuge housed within a non-rotating spacecraft. A potential drawback to both approaches is that head movements made during rotation may be disorienting and nauseogenic. These side effects are more severe at higher rotation rates, especially upon first exposure. Head movements during rotation generate aberrant vestibular stimulation and Coriolis force perturbations of the head-neck motor system. This article reviews our progress toward distinguishing vestibular and motor factors in side effects of rotation, and presents new data concerning the rates of rotation up to which adaptation is possible. We have studied subjects pointing to targets during constant velocity rotation, because these movements generate Coriolis motor perturbations of the arm but do not involve unusual vestibular stimulation. Initially, reaching paths and endpoints are deviated in the direction of the transient lateral Coriolis forces generated. With practice, subjects soon move in straighter paths and land on target once more. If sight of the arm is permitted, adaptation is more rapid than in darkness. Initial arm movement trajectory and endpoint deviations are proportional to Coriolis force magnitude over a range of rotation speeds from 5 to 20 rpm, and there is rapid, complete motor adaptation at all speeds. These new results indicate that motor adaptation to high rotation rates is possible. Coriolis force perturbations of head movements also occur in a rotating environment but adaptation gradually develops over the course of many head movements.

  4. Effects of artificial gravity during bed rest on bone metabolism in humans.

    PubMed

    Smith, S M; Zwart, S R; Heer, M A; Baecker, N; Evans, H J; Feiveson, A H; Shackelford, L C; Leblanc, A D

    2009-07-01

    We report results from a study designed to explore the utility of artificial gravity (AG) as a countermeasure to bone loss induced by microgravity simulation. After baseline testing, 15 male subjects underwent 21 days of 6 degrees head-down bed rest to simulate the deconditioning associated with spaceflight. Eight of the subjects underwent 1 h of centrifugation (AG; 1 G(z) at the heart, 2.5 G(z) at the feet) each day for 21 days, whereas seven of the subjects served as untreated controls (Con). Blood and urine were collected before, during, and after bed rest for bone marker determinations. Bone mineral density (BMD) and bone mineral content (BMC) were determined by dual-energy X-ray absorptiometry and peripheral quantitative computerized tomography before and after bed rest. Urinary excretion of bone resorption markers increased during bed rest, but the AG and Con groups did not differ significantly. The same was true for serum C-telopeptide. During bed rest, bone alkaline phosphatase (ALP) and total ALP tended to be lower in the AG group (P = 0.08, P = 0.09). Neither BMC nor BMD changed significantly from the pre-bed rest period in AG or Con groups, and the two groups were not significantly different. However, when AG and Con data were combined, there was a significant (P < 0.05) effect of time for whole body total BMC and total hip and trochanter BMD. These data failed to demonstrate efficacy of this AG prescription to prevent the changes in bone metabolism observed during 3 wk of bed rest.

  5. Modeling the benefits of an artificial gravity countermeasure coupled with exercise and vibration

    NASA Astrophysics Data System (ADS)

    Goel, Rahul; Kaderka, Justin; Newman, Dava

    2012-01-01

    The current, system-specific countermeasures to space deconditioning have limited success with the musculoskeletal system in long duration missions. Artificial gravity (AG) that is produced by short radius centrifugation has been hypothesized as an effective countermeasure because it reintroduces an acceleration field in space; however, AG alone might not be enough stimuli to preserve the musculoskeletal system. A novel combination of AG coupled with one-legged squats on a vibrating platform may preserve muscle and bone in the lower limbs to a greater extent than the current exercise paradigm. The benefits of the proposed countermeasure have been analyzed through the development of a simulation platform. Ground reaction force data and motion data were collected using a motion capture system while performing one-legged and two-legged squats in 1-G. The motion was modeled in OpenSim, an open-source software, and inverse dynamics were applied in order to determine the muscle and reaction forces of lower limb joints. Vibration stimulus was modeled by adding a 20 Hz sinusoidal force of 0.5 body weight to the force plate data. From the numerical model in a 1-G acceleration field, muscle forces for quadriceps femoris, plantar flexors and glutei increased substantially for one-legged squats with vibration compared to one- or two-legged squats without vibration. Additionally, joint reaction forces for one-legged squats with vibration also increased significantly compared to two-legged squats with or without vibration. Higher muscle forces and joint reaction forces might help to stimulate muscle activation and bone modeling and thus might reduce musculoskeletal deconditioning. These results indicate that the proposed countermeasure might surpass the performance of the current space countermeasures and should be further studied as a method of mitigating musculoskeletal deconditioning.

  6. Cardiac and Vascular Function in Bedrested Volunteers: Effects of Artificial Gravity Training

    NASA Technical Reports Server (NTRS)

    Meng, M.; Platts, S.; Stenger, M.; Diedrich, A.; Schlegel, T.; Natapoff, A.; Knapp, C.; Evans, J.

    2007-01-01

    Cardiovascular effects of an artificial gravity (AG) countermeasure on deconditioned male volunteers were studied. In two groups of men we measured cardiovascular parameters at rest and in response to 30 minutes of 80 deg. head up tilt (HUT) before, at the end of, and four days following 21 days of 6 deg. head down bed rest (HDBR). One group (N=7) underwent no countermeasure while the other (N=8) received a daily, one hour, dose (2.5 gz at the foot, decreasing to 1.0 gz at the heart) of AG training on the Johnson Space Center short radius centrifuge. Cardiovascular parameters measured included heart rate, blood pressure, stroke volume, cardiac output, peripheral vascular resistance, plasma volume shifts, and vasoactive hormones. Untrained subjects exhibited shorter tilt survival (on average 8 minutes shorter) compared to trained subjects. By the end of bed rest, mean heart rate (MHR) was elevated in both groups (both supine and during tilt). In addition, treated subjects demonstrated lower, tilt-induced, increases in MHR four days following HDBR, indicating a more rapid return to pre bed rest conditions. Results from an index of autonomic balance (percentage of MHR spectral power in the respiratory frequency range) in control of heart rate are consistent with the interpretation that parasympathetic nervous system withdrawal was responsible for both tilt- and bed rest-induced increases in MHR. Our data support our pre-study hypothesis that AG treatment would lessen cardiovascular effects of deconditioning in bed rested men and suggest that AG should be further pursued as a space flight countermeasure.

  7. Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment.

    PubMed

    Zhang, Li-Fan

    2013-12-01

    Evidence from recent ground and spaceflight studies with animals and humans supports the notion that microgravity-induced vascular remodeling contributes to postflight orthostatic intolerance. In the vascular beds of lower body, such as in splanchnic and lower limb circulation, resistance vessels would undergo hypotrophy and decrement in myogenic tone and vasoreactivity. Thus, despite the concurrent sympathetic activation, the increase in peripheral vascular resistance would still be compromised while astronauts were re-exposed to Earth's 1-G gravity, since ~75 % of the total vascular conductance lies below the heart. On the contrary, cerebral arteries would undergo hypertrophy and vasoreactivity enhancement due to adaptation to cerebral hypertension, which protects the down-stream microcirculation in the brain during spaceflight. However, the enhanced vasoreactivity of cerebral vessels might also aggravate postflight orthostatic intolerance, particularly after long-duration spaceflight. Animal studies have indicated that the underlying mechanisms may involve ion-channel remodeling in vascular smooth muscle cells and vascular NO-NOS and local renin-angiotensin system (L-RAS). Furthermore, vascular remodeling and associated ion-channel and L-RAS changes can be prevented by a countermeasure of daily short-duration restoring to normal standing posture. These findings substantiate in general the hypothesis that redistribution of transmural pressure along the arterial vasculature due to the removal of gravity might be the primary factor that initiates vascular remodeling in microgravity, and daily short-duration restoring its normal distribution by intermittent artificial gravity (IAG) can effectively prevent the vascular adaptation and hence postflight cardiovascular deconditioning. IAG might also be beneficial in maintaining vascular health during future long-duration space flight.

  8. Scoping calculations of power sources for NEP

    NASA Technical Reports Server (NTRS)

    Difilippo, Felix C.

    1993-01-01

    Three Nuclear Electric Propulsion (NEP) systems are evaluated in the context of the two following criteria: (1) power levels (P)--10-50 Mw; and (2) core life (D)--2-10 yrs. The three types of reactors are as follows: (1) high temperature gas-cooled reactors of the NERVA derivative type; (2) lithium-cooled advanced fuel pin--one-phase flow; and (3) lithium-cooled Cermet--one-phase flow. The discussion is presented in vugraph form.

  9. The Artificial Gravity Bed Rest Pilot Project: Effects on Knee Extensor and Plantar Flexor Muscle Groups

    NASA Technical Reports Server (NTRS)

    Caiozzo, V. J.; Haddad, F.; Lee, S.; Baker, M.; Baldwin, K. M.

    2007-01-01

    The goal of this project was to examine the effects of artificial gravity (2.5 g) on skeletal muscle strength and key anabolic/catabolic markers known to regulate muscle mass. Two groups of subjects were selected for study: 1) a 21 day-bed rest (BR) control (C) group (N=7); and 2) an AG group (N=8), which was exposed to 21 days of bed-rest plus daily 1 hr exposures to AG (2.5 g). This particular experiment was part of an integrated AG Pilot Project sponsored by NASA/Johnson Space Center. The in vivo torque-velocity relationships of the knee extensors and plantar flexors of the ankle were determined pre and post treatment. Also, pre- and post treatment biopsy samples were obtained from both the vastus lateralis and soleus muscles and were used, in part, for a series of analyses on gene expression (mRNA abundance) of key factors implicated in the anabolic versus catabolic state of the muscle. Post/Pre toque-velocity determinations revealed greater decrements in knee extensor performance in the C versus AG group (P less than 0.04). The plantar flexor muscle group of the AG subjects actually demonstrated a net gain in torque-velocity relationship; whereas, in the C group the overall post/pre responses declined (AG vs C; P less than 0.001). Measurements of muscle fiber cross-sectional area (for both muscles) demonstrated a loss of approx. 20% in the C group while no losses were evident in the AG group. RT-PCR analyses of muscle biopsy specimens demonstrated that markers of growth and cytoskeletal integrity (IGF-1, IGF-1 BP4, mechano growth factor, total RNA, and pro-collagen 3a) were higher in the AG group, whereas catabolic markers (myostatin and atrogen) were elevated in the C group. Importantly, these patterns were seen in both muscles. Based on these observations we conclude that paradigms of AG have the potential to maintain the functional, biochemical, and structural homeostasis of skeletal muscle in the face of chronic unloading states. These findings also

  10. The Artificial Gravity Bed Rest Pilot Project: Effects on Knee Extensor and Plantar Flexor Muscle Groups

    NASA Technical Reports Server (NTRS)

    Caiozzo, V. J.; Haddad, F.; Lee, S.; Baker, M.; Baldwin, K. M.

    2007-01-01

    The goal of this project was to examine the effects of artificial gravity (2.5 g) on skeletal muscle strength and key anabolic/catabolic markers known to regulate muscle mass. Two groups of subjects were selected for study: 1) a 21 day-bed rest (BR) control (C) group (N=7); and 2) an AG group (N=8), which was exposed to 21 days of bed-rest plus daily 1 hr exposures to AG (2.5 g). This particular experiment was part of an integrated AG Pilot Project sponsored by NASA/Johnson Space Center. The in vivo torque-velocity relationships of the knee extensors and plantar flexors of the ankle were determined pre and post treatment. Also, pre- and post treatment biopsy samples were obtained from both the vastus lateralis and soleus muscles and were used, in part, for a series of analyses on gene expression (mRNA abundance) of key factors implicated in the anabolic versus catabolic state of the muscle. Post/Pre toque-velocity determinations revealed greater decrements in knee extensor performance in the C versus AG group (P less than 0.04). The plantar flexor muscle group of the AG subjects actually demonstrated a net gain in torque-velocity relationship; whereas, in the C group the overall post/pre responses declined (AG vs C; P less than 0.001). Measurements of muscle fiber cross-sectional area (for both muscles) demonstrated a loss of approx. 20% in the C group while no losses were evident in the AG group. RT-PCR analyses of muscle biopsy specimens demonstrated that markers of growth and cytoskeletal integrity (IGF-1, IGF-1 BP4, mechano growth factor, total RNA, and pro-collagen 3a) were higher in the AG group, whereas catabolic markers (myostatin and atrogen) were elevated in the C group. Importantly, these patterns were seen in both muscles. Based on these observations we conclude that paradigms of AG have the potential to maintain the functional, biochemical, and structural homeostasis of skeletal muscle in the face of chronic unloading states. These findings also

  11. Feasibility Assessment of an ISS Artificial Gravity Conditioning Facility by Means of Multi-Body Approach

    NASA Astrophysics Data System (ADS)

    Toso, Mario; Baldesi, Gianluigi; Moratto, Claudio; De Wilde, Don; Bureo Dacal, Rafael; Castellsaguer, Joaquim

    2012-07-01

    Even though human exploration of Mars is a distant objective, it is well understood that, for human space voyages of several years duration, crews would be at risk of catastrophic consequences should any of the systems that provide adequate air, water, food, or thermal protection fail. Moreover, crews will face serious health and/or safety risks resulting from severe physiologic deconditioning associated with prolonged weightlessness. The principal ones are related to physical and functional deterioration of the regulation of the blood circulation, decreased aerobic capacity, impaired musculo-skeletal systems, and altered sensory- motor system performance. As the reliance of future space programmes on virtual modelling, simulation and justification has substantially grown together with the proto-flight hardware development approach, a range of simulation capabilities have become increasingly important in the requirements specification, design, verification, testing, launch and operation of new space systems. In this frame, multibody software is a key tool in providing a more coordinated and consistent approach from the preliminary development phases of the most complex systems. From a scientific prospective, an artificial gravity facility, such as the one evaluated in this paper, would be the first in-flight testing of the effectiveness and acceptability of short radius centrifuge as a countermeasure to human deconditioning on orbit. The ISS represents a unique opportunity to perform this research. From an engineering point of view, the preliminary assessment described in this paper, highlights the difficult engineering challenges of such a facility. The outcome proves that a human can be accommodated in the available volume, while respecting the human ergonomic basic requirements and preserving the global structural integrity of the hosting ISS module. In particular, analysis shows that, although the load capacity of the structural interfaces imposes a very low

  12. Multimegawatt NEP with vapor core reactor MHD

    NASA Astrophysics Data System (ADS)

    Smith, Blair; Knight, Travis; Anghaie, Samim

    2002-01-01

    Efforts at the Innovative Nuclear Space Power and Propulsion Institute have assessed the feasibility of combining gaseous or vapor core reactors with magnetohydrodynamic power generators to provide extremely high quality, high density, and low specific mass electrical power for space applications. Innovative shielding strategies are employed to maintain an effective but relatively low mass shield, which is the most dominating part of multi-megawatt space power systems. The fission driven magnetohydrodynamic generator produces tens of kilowatt DC power at specific mass of less than 0.5 kg/kW for the total power system. The MHD output with minor conditioning is coupled to magnetoplasmadynamic thruster to achieve an overall NEP system specific mass of less than 1.0 kg/kW for power levels above 20 MWe. Few other concepts would allow comparable ensuing payload savings and flexible mission abort options for manned flights to Mars for example. .

  13. NEP systems engineering efforts in FY-92: Plans and status

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Gilland, James H.

    1992-01-01

    A system engineering effort has been initiated by NASA in FY-92 to define, address, and resolve issues associated with the use of Nuclear Electric Propulsion (NEP) for megawatt (MW) space propulsion applications associated with the Space Exploration Initiative (SEI). It is intended that key technical issues will be addressed by activities conducted in the early years of a project in NEP, with the objective of resolving such issues. Also, in response to more recent programmatic direction, a concept definition activity for 100 kilowatt NEP is being initiated. This paper will present key issues associated with megawatt NEP, and the plans and status for their resolution, and present the scope and rationale for the 100 kilowatt concept definition activity.

  14. NEP systems engineering efforts in FY-92: Plans and status

    SciTech Connect

    Doherty, M.P.; Gilland, J.H.

    1992-08-01

    A system engineering effort has been initiated by NASA in FY-92 to define, address, and resolve issues associated with the use of Nuclear Electric Propulsion (NEP) for megawatt (MW) space propulsion applications associated with the Space Exploration Initiative (SEI). It is intended that key technical issues will be addressed by activities conducted in the early years of a project in NEP, with the objective of resolving such issues. Also, in response to more recent programmatic direction, a concept definition activity for 100 kilowatt NEP is being initiated. This paper will present key issues associated with megawatt NEP, and the plans and status for their resolution, and present the scope and rationale for the 100 kilowatt concept definition activity.

  15. Use of High-Power Brayton Nuclear Electric Propulsion (NEP) for a 2033 Mars Round-Trip Mission

    SciTech Connect

    McGuire, Melissa L.; Martini, Michael C.; Packard, Thomas W.; Weglian, John E.; Gilland, James H.

    2006-01-20

    The Revolutionary Aerospace Systems Concepts (RASC) team, led by the NASA Langley Research Center, is tasked with exploring revolutionary new approaches to enabling NASA to achieve its strategic goals and objectives in future missions. This paper provides the details from the 2004-2005 RASC study of a point-design that uses a high-power nuclear electric propulsion (NEP) based space transportation architecture to support a manned mission to Mars. The study assumes a high-temperature liquid-metal cooled fission reactor with a Brayton power conversion system to generate the electrical power required by magnetoplasmadynamic (MPD) thrusters. The architecture includes a cargo vehicle with an NEP system providing 5 MW of electrical power and a crewed vehicle with an NEP system with two reactors providing a combined total of 10 MW of electrical power. Both vehicles use a low-thrust, high-efficiency (5000 sec specific impulse) MPD system to conduct a spiral-out of the Earth gravity well, a low-thrust heliocentric trajectory, and a spiral-in at Mars with arrival late in 2033. The cargo vehicle carries two moon landers to Mars and arrives shortly before the crewed vehicle. The crewed vehicle and cargo vehicle rendezvous in Mars orbit and, over the course of the 60-day stay, the crew conducts nine-day excursions to Phobos and Deimos with the landers. The crewed vehicle then spirals out of Martian orbit and returns via a low-thrust trajectory to conduct an Earth flyby. The crew separates from the vehicle prior to Earth flyby and aerobrakes for a direct-entry landing.

  16. Use of High-Power Brayton Nuclear Electric Propulsion (NEP) for a 2033 Mars Round-Trip Mission

    NASA Astrophysics Data System (ADS)

    McGuire, Melissa L.; Martini, Michael C.; Packard, Thomas W.; Weglian, John E.; Gilland, James H.

    2006-01-01

    The Revolutionary Aerospace Systems Concepts (RASC) team, led by the NASA Langley Research Center, is tasked with exploring revolutionary new approaches to enabling NASA to achieve its strategic goals and objectives in future missions. This paper provides the details from the 2004-2005 RASC study of a point-design that uses a high-power nuclear electric propulsion (NEP) based space transportation architecture to support a manned mission to Mars. The study assumes a high-temperature liquid-metal cooled fission reactor with a Brayton power conversion system to generate the electrical power required by magnetoplasmadynamic (MPD) thrusters. The architecture includes a cargo vehicle with an NEP system providing 5 MW of electrical power and a crewed vehicle with an NEP system with two reactors providing a combined total of 10 MW of electrical power. Both vehicles use a low-thrust, high-efficiency (5000 sec specific impulse) MPD system to conduct a spiral-out of the Earth gravity well, a low-thrust heliocentric trajectory, and a spiral-in at Mars with arrival late in 2033. The cargo vehicle carries two moon landers to Mars and arrives shortly before the crewed vehicle. The crewed vehicle and cargo vehicle rendezvous in Mars orbit and, over the course of the 60-day stay, the crew conducts nine-day excursions to Phobos and Deimos with the landers. The crewed vehicle then spirals out of Martian orbit and returns via a low-thrust trajectory to conduct an Earth flyby. The crew separates from the vehicle prior to Earth flyby and aerobrakes for a direct-entry landing.

  17. Excretion of Zinc and Copper Increases in Men during 3 Weeks of Bed Rest, with or without Artificial Gravity.

    PubMed

    Heacox, Hayley N; Gillman, Patricia L; Zwart, Sara R; Smith, Scott M

    2017-06-01

    Background: Zinc and copper have many physiologic functions and little or no functional storage capability, so persistent losses of either element present health concerns, especially during extended-duration space missions.Objectives: We evaluated the effects of short-term bed rest (BR), a spaceflight analog, on copper and zinc metabolism to better understand the role of these nutrients in human adaptation to (simulated) spaceflight. We also investigated the effect of artificial gravity on copper and zinc homeostasis.Methods: Zinc and copper balances were studied in 15 men [mean ± SD age: 29 ± 3 y; body mass index (in kg/m(2)): 26.4 ± 2.2] before, during, and after 21 d of head-down tilt BR, during which 8 of the participants were subjected to artificial gravity (AG) by centrifugation for 1 h/d. Control subjects were transferred onto the centrifuge but were not exposed to centrifugation. The study was conducted in a metabolic ward; all urine and feces were collected. Data were analyzed by 2-factor repeated-measures ANOVA.Results: Urinary zinc excretion values for control and AG groups were 33% and 14%, respectively, higher during BR than before BR, and fecal zinc excretion values for control and AG groups were 36% and 19%, respectively, higher during BR, resulting in 67% and 82% lower net zinc balances for controls and AG, respectively (both P < 0.01), despite lower nutrient intake during BR. Fecal copper values for control and AG groups were 40% and 33%, respectively, higher during BR than before BR (P < 0.01 for both). Urinary copper did not change during BR, but a 19% increase was observed after BR compared with before BR in the AG group (P < 0.05).Conclusions: The increased fecal excretion of copper and zinc by men during BR suggests that their absorption of these minerals from the diet was reduced, secondary to the release of minerals from bone and muscle. These findings highlight the importance of determining dietary requirements for astronauts on space

  18. Modeling Pine Plantation NEP Using Landsat

    NASA Astrophysics Data System (ADS)

    Wynne, R. H.; Potter, C. S.; Blinn, C. E.

    2008-12-01

    The CASA (Carnegie Ames Stanford Approach) ecosystem process model predicts terrestrial ecosystem fluxes using satellite-based inputs at a maximum geographic resolution of 30 meters to infer variability in forest carbon fluxes. We are using CASA to model pine plantation net ecosystem production (NEP) under a range of standard silvicultural prescriptions, primarily thinning by fertilization interactions. Landsat scenes from WRS path/row 14/35, 21/37, and 16/34 are being used. Within each frame, all available cloud-free scenes within a two- to three-year period have been obtained from the USGS EROS Data Center processed to L1T, and subsequently converted to top-of-atmosphere reflectance using standard methods and the latest calibration parameter files. Atmospheric amelioration started with dark object subtraction (band minimum) and only proceeded to more complex techniques as necessary. Subsequent to preprocessing, the reduced simple ratio (RSR; using global min/max) was calculated for all images for each WRS path/row. Pure pine pixels in each frame were identified using unsupervised classification of the most recent leaf-off scene. We developed four age classes using two decades of Landsat data over each WRS path/row. CASA runs, which require soil parameters, and gridded climate/solar radiation in addition to satellite-derived vegetation indices, are now complete. Soil respiration and productivity estimates are being evaluated using a regionwide network of validation sites spanning the range of loblolly pine (Texas to Virginia). Preliminary results indicate that Landsat-based process modeling (1) is necessary for the scale at which land is actually managed and (2) produces estimates with an accuracy and precision affording improved understanding and management of forest ecosystems.

  19. Effect of artificial gravity with exercise load by using a short-arm centrifuge with bicycle ergometer as a countermeasure against disused osteoporosis

    NASA Astrophysics Data System (ADS)

    Shiozawa, Youke; Iwase, Satoshi; Kamiya, Atsunori; Takada, Hiroki; Michikami, Daisaku; Hiriayanagi, Kaname; Watanabe, Yoriko; Sugenoya, Jun-ichi; Mano, Tada-aki; Yajima, Kazuyoshi

    2005-08-01

    To evaluate the effectiveness of centrifuge-induced artificial gravity with ergometric exercise to disused osteoporosis, 9 young healthy men were exposed to -6° head-down bed-rest for 14 days. Four out of nine subjects were loaded by intermittent artificial gravity with ergometric workload. The rest of subjects were the control group. The concentrations of urine deoxy-pyridinoline were examined in each subject before and after the bed-rests. The rate of increase of urine deoxy-pyridinoline of the countermeasure group was significantly more suppressed than the control group. This countermeasure can definitely suppress the bone absorption which is caused by 14 days head-down bed-rest; however the effectiveness is still insufficient. More gravitational load or exercise load is still required.

  20. No effect of artificial gravity on lung function with exercise training during head-down bed rest

    NASA Astrophysics Data System (ADS)

    Su, Longxiang; Guo, Yinghua; Wang, Yajuan; Wang, Delong; Liu, Changting

    2016-04-01

    The aim of this study is to explore the effectiveness of microgravity simulated by head-down bed rest (HDBR) and artificial gravity (AG) with exercise on lung function. Twenty-four volunteers were randomly divided into control and exercise countermeasure (CM) groups for 96 h of 6° HDBR. Comparisons of pulse rate, pulse oxygen saturation (SpO2) and lung function were made between these two groups at 0, 24, 48, 72, 96 h. Compared with the sitting position, inspiratory capacity and respiratory reserve volume were significantly higher than before HDBR (0° position) (P < 0.05). Vital capacity, expiratory reserve volume, forced vital capacity, forced expiratory volume in 1 s, forced inspiratory vital capacity, forced inspiratory volume in 1 s, forced expiratory flow at 25, 50, and 75%, maximal mid-expiratory flow and peak expiratory flow were all significantly lower than those before HDBR (P < 0.05). Neither control nor CM groups showed significant differences in pulse rate, SpO2, pulmonary volume and pulmonary ventilation function over the HDBR observation time. Postural changes can lead to variation in lung volume and ventilation function, but a HDBR model induced no changes in pulmonary function and therefore should not be used to study AG countermeasures.

  1. Effect of artificial gravity with exercise training on lung function during head-down bed rest in humans.

    PubMed

    Guo, Yinghua; Guo, Na; Liu, Changting; Wang, Delong; Wang, Junfeng; Sun, Xiqing; Fan, Shangchun; Wang, Changyong; Yang, Changbin; Zhang, Yu; Lu, Dongyuan; Yao, Yongjie

    2013-01-01

    There is evidence to suggest that microgravity/weightlessness can induce changes in lung physiology/function. We hypothesized that microgravity, induced by head-down bed rest (HDBR), would induce changes in lung function and that exercise training with artificial gravity (AG) would prevent these changes from occurring. Twelve participants were randomly assigned to a control or AG exercise countermeasure (CM) group (n = 6 per group) and 96 h of 6° HDBR. Participants in the CM group were exposed to AG (alternating 2 min intervals of +1·0 and +2·0 G) for 30 min, twice daily, during which time ergometric exercise (40 W intensity) was performed. Pulse rate, oxygen saturation (SO(2) ) and lung function were measured and compared between groups. The CM and control groups were similar in mean age, height and weight. There were no significant within or between group differences over time in pulse rate, SO(2) , vital capacity, inspiratory capacity, tidal volume, expiratory reserve volume, inspiratory reserve volume, minute ventilation, forced vital capacity, forced expiratory volume in 1 s, peak expiratory flow, maximal expiratory flow in 25%, 50% and 75% vital capacity, forced inspiratory vital capacity, forced inspiratory volume in 1 s and maximal voluntary ventilation. Microgravity induced by 96 h of HDBR does not appear to affect lung function in humans. Further, AG with exercise training does not change lung function during 96 h of HDBR in humans.

  2. An Innovative Short Arm Centrifuge for Future Studies on the Effects of Artificial Gravity on the Human Body

    NASA Astrophysics Data System (ADS)

    Frett, Timo; Mayrhofer, Michael; Schwandtner, Johann; Anken, Ralf; Petrat, Guido

    2014-11-01

    In July 2013, the German Aerospace Center (DLR) in Cologne, Germany, commissioned its new medical research facility :envihab. One central element of the facility is a new type of short radius centrifuge called DLR-SAHC 1 (formerly known as :enviFuge), which has been developed in collaboration with AMST Systemtechnik GmbH, Ranshofen, Austria. The shift of subjects above heart-level on a short arm centrifuge allows unique studies on, e.g., the cardiovascular regulation in surroundings with a high gradient of artificial gravity. Equipped with the capacity to move the four nacelles along the acceleration axis simultaneously and independently from each other, the centrifuge allows the possibility to perform up to four complex trials in parallel. The maximal acceleration is 6 g at the foot level and each nacelle can accomodate an up to 150kg payload. Additional equipment can be mounted on two payload bays with a capacity of 100kg each. Standard features of the centrifuge include a motion capturing system with six cameras and two triaxial force plates to study the kinematics of physical exercise (e.g., squatting, jumping or vibration training) under increased gravity. Future projects involving SAHC 1 will allow the development and testing of potential countermeasures and training methods against the negative effects of weightlessness in space on human physiology. Due to the centrifuge's capability to hold heavy equipment, carrying out a variety of non-human life science experiments requiring complex and heavy hardware is also fully feasible.

  3. Sensorimotor aspects of high-speed artificial gravity: II. The effect of head position on illusory self motion

    NASA Technical Reports Server (NTRS)

    Mast, F. W.; Newby, N. J.; Young, L. R.

    2002-01-01

    The effects of cross-coupled stimuli on the semicircular canals are shown to be influenced by the position of the subject's head with respect to gravity and the axis of rotation, but not by the subject's head position relative to the trunk. Seventeen healthy subjects made head yaw movements out of the horizontal plane while lying on a horizontal platform (MIT short radius centrifuge) rotating at 23 rpm about an earth-vertical axis. The subjects reported the magnitude and duration of the illusory pitch or roll sensations elicited by the cross-coupled rotational stimuli acting on the semicircular canals. The results suggest an influence of head position relative to gravity. The magnitude estimation is higher and the sensation decays more slowly when the head's final position is toward nose-up (gravity in the subject's head x-z-plane) compared to when the head is turned toward the side (gravity in the subject's head y-z-plane). The results are discussed with respect to artificial gravity in space and the possible role of pre-adaptation to cross-coupled angular accelerations on earth.

  4. Sensorimotor aspects of high-speed artificial gravity: II. The effect of head position on illusory self motion

    NASA Technical Reports Server (NTRS)

    Mast, F. W.; Newby, N. J.; Young, L. R.

    2002-01-01

    The effects of cross-coupled stimuli on the semicircular canals are shown to be influenced by the position of the subject's head with respect to gravity and the axis of rotation, but not by the subject's head position relative to the trunk. Seventeen healthy subjects made head yaw movements out of the horizontal plane while lying on a horizontal platform (MIT short radius centrifuge) rotating at 23 rpm about an earth-vertical axis. The subjects reported the magnitude and duration of the illusory pitch or roll sensations elicited by the cross-coupled rotational stimuli acting on the semicircular canals. The results suggest an influence of head position relative to gravity. The magnitude estimation is higher and the sensation decays more slowly when the head's final position is toward nose-up (gravity in the subject's head x-z-plane) compared to when the head is turned toward the side (gravity in the subject's head y-z-plane). The results are discussed with respect to artificial gravity in space and the possible role of pre-adaptation to cross-coupled angular accelerations on earth.

  5. Classroom Analysis of Rotating Space Vehicles in 2001: A Space Odyssey.

    ERIC Educational Resources Information Center

    Borgwald, James M.; Schreiner, Serge

    1993-01-01

    This article describes the use of modern science fiction movies as a vehicle to teach scientific principles. The resulting artificial gravity from a spinning space station in movie "2001" is calculated from measurements taken off of the screen. A mathematical explanation is provided. (MVL)

  6. Classroom Analysis of Rotating Space Vehicles in 2001: A Space Odyssey.

    ERIC Educational Resources Information Center

    Borgwald, James M.; Schreiner, Serge

    1993-01-01

    This article describes the use of modern science fiction movies as a vehicle to teach scientific principles. The resulting artificial gravity from a spinning space station in movie "2001" is calculated from measurements taken off of the screen. A mathematical explanation is provided. (MVL)

  7. Effect of Head-Down Bed Rest and Artificial Gravity Countermeasure on Cardiac Autonomic and Advanced Electrocardiographic Function

    NASA Technical Reports Server (NTRS)

    Schlegel, T. T.; Platts, S.; Stenger, M.; Ribeiro, C.; Natapoff, A.; Howarth, M.; Evans, J.

    2007-01-01

    To study the effects of 21 days of head-down bed rest (HDBR), with versus without an artificial gravity (AG) countermeasure, on cardiac autonomic and advanced electrocardiographic function. Fourteen healthy men participated in the study: seven experienced 21 days of HDBR alone ("HDBR controls") and seven the same degree and duration of HDBR but with approximately 1hr daily short-arm centrifugation as an AG countermeasure ("AG-treated"). Five minute supine high-fidelity 12-lead ECGs were obtained in all subjects: 1) 4 days before HDBR; 2) on the last day of HDBR; and 3) 7 days after HDBR. Besides conventional 12-lead ECG intervals and voltages, all of the following advanced ECG parameters were studied: 1) both stochastic (time and frequency domain) and deterministic heart rate variability (HRV); 2) beat-to-beat QT interval variability (QTV); 3) T-wave morphology, including signal-averaged T-wave residua (TWR) and principal component analysis ratios; 4) other SAECG-related parameters including high frequency QRS ECG and late potentials; and 5) several advanced ECG estimates of left ventricular (LV) mass. The most important results by repeated measures ANOVA were that: 1) Heart rates, Bazett-corrected QTc intervals, TWR, LF/HF power and the alpha 1 of HRV were significantly increased in both groups (i.e., by HDBR), but with no relevant HDBR*group differences; 2) All purely "vagally-mediated" parameters of HRV (e.g., RMSSD, HF power, Poincare SD1, etc.), PR intervals, and also several parameters of LV mass (Cornell and Sokolow-Lyon voltages, spatial ventricular activation times, ventricular gradients) were all significantly decreased in both groups (i.e., by HDBR), but again with no relevant HDBR*group differences); 3) All "generalized" or "vagal plus sympathetic" parameters of stochastic HRV (i.e., SDNN, total power, LF power) were significantly more decreased in the AG-treated group than in the HDBR-only group (i.e., here there was a relevant HDBR*group difference

  8. Effect of Head-Down Bed Rest and Artificial Gravity Countermeasure on Cardiac Autonomic and Advanced Electrocardiographic Function

    NASA Technical Reports Server (NTRS)

    Schlegel, T. T.; Platts, S.; Stenger, M.; Ribeiro, C.; Natapoff, A.; Howarth, M.; Evans, J.

    2007-01-01

    To study the effects of 21 days of head-down bed rest (HDBR), with versus without an artificial gravity (AG) countermeasure, on cardiac autonomic and advanced electrocardiographic function. Fourteen healthy men participated in the study: seven experienced 21 days of HDBR alone ("HDBR controls") and seven the same degree and duration of HDBR but with approximately 1hr daily short-arm centrifugation as an AG countermeasure ("AG-treated"). Five minute supine high-fidelity 12-lead ECGs were obtained in all subjects: 1) 4 days before HDBR; 2) on the last day of HDBR; and 3) 7 days after HDBR. Besides conventional 12-lead ECG intervals and voltages, all of the following advanced ECG parameters were studied: 1) both stochastic (time and frequency domain) and deterministic heart rate variability (HRV); 2) beat-to-beat QT interval variability (QTV); 3) T-wave morphology, including signal-averaged T-wave residua (TWR) and principal component analysis ratios; 4) other SAECG-related parameters including high frequency QRS ECG and late potentials; and 5) several advanced ECG estimates of left ventricular (LV) mass. The most important results by repeated measures ANOVA were that: 1) Heart rates, Bazett-corrected QTc intervals, TWR, LF/HF power and the alpha 1 of HRV were significantly increased in both groups (i.e., by HDBR), but with no relevant HDBR*group differences; 2) All purely "vagally-mediated" parameters of HRV (e.g., RMSSD, HF power, Poincare SD1, etc.), PR intervals, and also several parameters of LV mass (Cornell and Sokolow-Lyon voltages, spatial ventricular activation times, ventricular gradients) were all significantly decreased in both groups (i.e., by HDBR), but again with no relevant HDBR*group differences); 3) All "generalized" or "vagal plus sympathetic" parameters of stochastic HRV (i.e., SDNN, total power, LF power) were significantly more decreased in the AG-treated group than in the HDBR-only group (i.e., here there was a relevant HDBR*group difference

  9. Differing effects of transport inhibitor on glutamate uptake by nerve terminals before and after exposure of rats to artificial gravity.

    NASA Astrophysics Data System (ADS)

    Borisova, T.; Krisanova, N.; Himmelreich, N.

    Glutamate is the major excitatory neurotransmitter in the brain. Subsequent to its release from glutamatergic neurons and activation of receptors, it is removed from extracellular space by high affinity Na^+-dependent glutamate transporters, which utilize the Na^+/K^+ electrochemical gradient as a driving force and located in nerve terminals and astrocytes. The glutamate transporters may modify the time course of synaptic events. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity (e.g. cerebral ischemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia). The present study assessed transporter inhibitor for the ability to inhibit glutamate uptake by synaptosomes at the normal and hypergravity conditions (rats were rotated in a long-arm centrifuge at ten-G during one-hour period). DL-threo-beta-benzyloxyaspartate (DL-TBOA) is a newly developed competitive inhibitor of the high-affinity, Na^+-dependent glutamate transporters. As a potent, non- transported inhibitor of glutamate transporters, DL-TBOA promises to be a valuable new compound for the study of glutamatergic mechanisms. We demonstrated that DL-TBOA inhibited glutamate uptake ( 100 μM glutamate, 30 sec incubation period) in dose-dependent manner as in control as in hypergravity. The effect of this transport inhibitor on glutamate uptake by control synaptosomes and synaptosomes prepared of animals exposed to hypergravity was different. IC50 values calculated on the basis of curves of non-linear regression kinetic analysis was 18±2 μM and 11±2 μM ((P≤0,05) before and after exposure to artificial gravity, respectively. Inhibition caused by 10 μM DL-TBOA was significantly increased from 38,0±3,8 % in control group to 51,0±4,1 % in animals, exposed to hypergravity (P≤0,05). Thus, DL-TBOA had complex effect on glutamate uptake process and perhaps, became more potent under

  10. The effects of DL-threo-β-benzyloxyaspartate (DL-TBOA) on the synaptosomal glutamate release in media low in [Na+] under artificial gravity

    NASA Astrophysics Data System (ADS)

    Borisova, T. A.; Krisanova, N. B.; Himmelreich, N. G.

    L-glutamate release from cytosolic pool of brain synaptosomes after exposure of rats to artificial gravity loading was investigated using the inhibitor of glutamate transport as a tool. The nontransportable competitive inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA) was demonstrated to become more potent in Na+ and NMDG-supplemented media under centrifuge-induced hypergravity. We showed that DL-TBOA inhibited L-[14C] glutamate release effectively in NMDG-supplemented media in comparison with Na+-supplemented one.

  11. Electrical NEP in Hot-Electron Titanium Superconducting Bolometers

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Pereverzev, Sergey V.; Olaya, David; Wei, Jian; Gershenson, Michael E.; Sergeev, Andrei V.

    2008-01-01

    We are presenting the current progress on the titanium (Ti) hot-electron transition-edge devices. The ultimate goal of this work is to develop a submillimeter Hot-Electron Direct Detector (HEDD) with the noise equivalent power NEP = 10(sup -1) - 10(sup -20) W/Hz(sup 1/2) for the moderate resolution spectroscopy and Cosmic Microwave Background (CMB) studies on future space telescope (e.g., SPICA, SAFIR, SPECS, CMBPol) with cryogenically cooled (approximately 4-5 K) mirrors. Recently, we have achieved the extremely low thermal conductance (approximately 20 fW/K at 300 mK and approximately 0.1 fW/K at 40 mK) due to the electron-phonon decoupling in Ti nanodevices with niobium (Nb) Andreev contacts. This thermal conductance translates into the "phonon-noise" NEP approximately equal to 3 x 10(sup -21) W/Hz(sup 1/2) at 40 mK and NEP approximately equal to 3 x 10(sup -19) W/Hz(sup 1/2) at 300 mK. These record data indicate the great potential of the hot-electron detector for meeting many application needs. Beside the extremely low phonon-noise NEP, the nanobolometers have a very low electron heat capacitance that makes them promising as detectors of single THz photons. As the next step towards the practical demonstration of the HEDD, we fabricated and tested somewhat larger than in Ref.1 devices (approximately 6 micrometers x 0.35 micrometers x 40 nm) whose critical temperature is well reproduced in the range 300-350 mK. The output electrical noise measured in these devices with a low-noise dc SQUID is dominated by the thermal energy fluctuations (ETF) aka "phonon noise". This indicates the high electrothermal loop gain that effectively suppresses the contributions of the Johnson noise and the amplifier (SQUID) noise. The electrical NEP = 6.7 x 10(sup -18) W/Hz(sup 1/2) derived from these measurements is in good agreement with the predictions based on the thermal conductance data. The very low NEP and the high speed (approximately microns) are a unique combination not

  12. New space vehicle archetypes for human planetary missions

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1991-01-01

    Contemporary, archetypal, crew-carrying spacecraft concepts developed for NASA are presented for: a lunar transportation system, two kinds of Mars landers, and five kinds of Mars transfer vehicles. These cover the range of propulsion technologies and mission modes of interest for the Space Exploration Initiative, and include both aerobraking and artificial gravity as appropriate. They comprise both upgrades of extant archetypes and completely new ones. Computer solid models, configurations and mass statements are presented for each.

  13. Ion engine propelled Earth-Mars cycler with nuclear thermal propelled transfer vehicle, volume 2

    NASA Technical Reports Server (NTRS)

    Meyer, Rudolf X.; Baker, Myles; Melko, Joseph

    1994-01-01

    The goal of this project was to perform a preliminary design of a long term, reusable transportation system between earth and Mars which would be capable of providing both artificial gravity and shelter from solar flare radiation. The heart of this system was assumed to be a Cycler spacecraft propelled by an ion propulsion system. The crew transfer vehicle was designed to be propelled by a nuclear-thermal propulsion system. Several Mars transportation system architectures and their associated space vehicles were designed.

  14. Effect of centrifuge-induced artificial gravity and ergometric exercise on cardiovascular deconditioning, myatrophy, and osteoporosis induced by a -6 degrees head-down bedrest.

    PubMed

    Iwase, Satoshi; Takada, Hiroki; Watanabe, Yoriko; Ishida, Koji; Akima, Hiroshi; Katayama, Keisho; Iwase, Mitsunori; Hirayanagi, Kaname; Shiozawa, Tomoki; Hamaoka, Takafumi; Masuo, Yoshihisa; Custaud, Marc-Antoine

    2004-07-01

    We have reported that centrifuge-induced artificial gravity with ergometric exercise could reduce developing cardiovascular deconditioning in humans. In the present study, we examined this load could prevent the myatrophy and osteoporosis induced by head-down bedrest for 20 days. Subjects were ten healthy male volunteers with informed consent. They were requested to lie down at -6 degrees for 20 days, and evaluation for cardiovascular deconditioning, myatrophy, and osteoporosis. As the result, high G-load with low intensity exercise suppressed the orthostatic intolerance and increase in serum osteoporotic marker, whereas low G-load with high intensity ergometric exercise maintained the maximal oxygen intake, heart dimension, and prevented myatrophy. The combination of high/low G-load with low/high intensity exercise will determine the optimal protocol for prevention of cardiovascular deconditioning, myatrophy, and osteoporosis.

  15. Record Low NEP in the Hot-Electron Titanium Nanobolometers

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Olaya, David; Wei, Jian; Pereverzev, Sergey; Gershenson, Michael E.; Kawamura, Jonathan H.; McGrath, William R.; Sergeev, Andrei V.

    2006-01-01

    We are developing hot-electron superconducting transition-edge sensors (TES) capable of counting THz photons and operating at T = 0.3K. We fabricated superconducting Ti nanosensors with Nb contacts with a volume of approx. 3x10(exp -3) cu microns on planar Si substrate and have measured the thermal conductance due to the weak electron-phonon coupling in the material G = 4x10(exp -14) W/K at 0.3 K. The corresponding phonon-noise NEP = 3x10(exp -19) W/Hz(sup 1/2). Detection of single optical photons (1550nm and 670nm wavelength) has been demonstrated for larger devices and yielded the thermal time constants of 30 microsec at 145 mK and of 25 microsec at 190 mK. This Hot-Electron Direct Detector (HEDD) is expected to have a sufficient energy resolution for detecting individual photons with (nu) > 1 THz where NEP approx. 3x10(exp -20) W/Hz(sup 1/2) is needed for spectroscopy in space.

  16. Preliminary Assessment of Thrust Augmentation of NEP Based Missions

    NASA Technical Reports Server (NTRS)

    Chew, Gilbert; Pelaccio, Dennis G.; Chiroux, Robert; Pervan, Sherry; Rauwolf, Gerald A.; White, Charles

    2005-01-01

    Science Applications International Corporation (SAIC), with support from NASA Marshall Space Flight Center, has conducted a preliminary study to compare options for augmenting the thrust of a conventional nuclear electric propulsion (NEP) system. These options include a novel nuclear propulsion system concept known as Hybrid Indirect Nuclear Propulsion (HINP) and conventional chemical propulsion. The utility and technical feasibility of the HINP concept are assessed, and features and potential of this new in-space propulsion system concept are identified. As part of the study, SAIC developed top-level design tools to model the size and performance of an HINP system, as well as for several chemical propulsion options, including liquid and gelled propellants. A mission trade study was performed to compare a representative HINP system with chemical propulsion options for thrust augmentation of NEP systems for a mission to Saturn's moon Titan. Details pertaining to the approach, features, initial demonstration results for HINP model development, and the mission trade study are presented. Key technology and design issues associated with the HINP concept and future work recommendations are also identified.

  17. Zinc inhibits apoptosis and maintains NEP downregulation, induced by ropivacaine, in HaCaT cells.

    PubMed

    Kontargiris, Evangelos; Vadalouka, Athina; Ragos, Vasilios; Kalfakakou, Vasiliki

    2012-12-01

    Zinc (Zn), a cell-protective metal against various toxic compounds, is the key agent for neutral endopeptidase (NEP) functional structure. NEP is a zinc metalloenzyme which degrades endogenous opioids and is expressed in human keratinocytes (HaCaT). Ropivacaine, a widely used opiate local anaesthetic, exerts cell toxic and apoptotic effects against HaCaT cells. The aim of the present study is to investigate whether zinc modulates the effects of ropivacaine on proliferation, viability, apoptosis and NEP expression in HaCaT cells. To investigate the role of ropivacaine in NEP function, HaCaT cells overexpressing NEP were generated via cell transfection with plasmids carrying NEP cDNA. Ropivacaine's anti-proliferative effect was tested by Neubauer's chamber cell counting, and induction of cell death was demonstrated by trypan blue exclusion assay. Apoptosis due to ropivacaine was tested via DNA fragmentation and poly-ADP-ribose-polymerase (PARP) cleavage. NEP and PARP expression was performed by western blot analysis. Results showed that zinc (15 μΜ) inhibited proliferation and cell death induction by ropivacaine (0.5, 1 and 2 mM) (p < 0.05) as well as apoptosis induced by the drug (0.5 and 1 mM) in HaCaT cells. Ropivacaine (1.0, 2.0 and 5.0 mM) downregulated NEP expression in the presence of zinc (15 μΜ) while NEP overexpression enhanced ropivacaine's apoptotic effect. In conclusion, the abilities of zinc to inhibit the toxic and apoptotic effects of ropivacaine, to maintain NEP downregulation induced by the drug and, consequently, to enhance its anaesthetic result suggest that zinc may have a significant role in pain management and tissue protection.

  18. Artificial gravity with ergometric exercise preserves the cardiac, but not cerebrovascular, functions during 4 days of head-down bed rest.

    PubMed

    Yang, Chang-Bin; Wang, Yong-Chun; Gao, Yuan; Geng, Jie; Wu, Yan-Hong; Zhang, Yu; Shi, Fei; Sun, Xi-Qing

    2011-12-01

    Cardiovascular and musculoskeletal deconditioning occurring in long-term spaceflight requires new strategies to counteract these adverse effects. We previously reported that a short-arm centrifuge produced artificial gravity (AG), together with ergometer, has an approving effect on promoting cardiovascular function. The current study sought to investigate whether the cardiac and cerebrovascular functions were maintained and improved using a strategy of AG combined with exercise training on cardiovascular function during 4-day head-down bed rest (HDBR). Twelve healthy male subjects were assigned to a control group (CONT, n=6) and an AG combined with ergometric exercise training group (CM, n=6). Simultaneously, cardiac pumping and systolic functions, cerebral blood flow were measured before, during, and after HDBR. The results showed that AG combined with ergometric exercise caused an increase trend of number of tolerance, however, there was no significant difference between the two groups. After 4-day HDBR in the CONT group, heart rate increased significantly (59±6 vs 66±7 beats/min), while stroke volume (98±12 vs 68±13 mL) and cardiac output (6±1 vs 4±1 L/min) decreased significantly (p<0.05). All subjects had similar drops on cerebral vascular function. Volume regulating hormone aldosterone increased in both groups (by 119.9% in CONT group and 112.8% in the CM group), but only in the CONT group there were a significant changes (p<0.05). Angiotensin II was significantly increased by 140.5% after 4-day HDBR in the CONT group (p<0.05), while no significant changes were observed in the CM group. These results indicated that artificial gravity with ergometric exercise successfully eliminated changes induced by simulated weightlessness in heart rate, volume regulating hormones, and cardiac pumping function and partially maintained cardiac systolic function. Hence, a daily 1h alternating +1.0 and +2.0 Gz with 40 W exercise training appear to be an effective

  19. Dual NEP/ECE inhibition improves endothelial function in mesenteric resistance arteries of 32-week-old SHR.

    PubMed

    Lemkens, Pieter; Spijkers, Leon Ja; Meens, Merlijn J; Nelissen, Jelly; Janssen, Ben; Peters, Stephan Lm; Schiffers, Paul Mh; De Mey, Jo Gr

    2017-03-16

    Endothelin 1 (ET-1), a potent vasoconstrictor, pro-mitogenic and pro-inflammatory peptide, may promote development of endothelial dysfunction and arterial remodeling. ET-1 can be formed through cleavage of big-ET-1 by endothelin-converting enzyme (ECE) or neutral endopeptidase (NEP). We investigated whether chronic treatment with the novel dual NEP/ECE inhibitor SOL1 improves functional and structural properties of resistance-sized arteries of 32-week-old male spontaneously hypertensive rats (SHR). SHR received a chronic 4-week treatment with SOL1, losartan or hydralazine. We then compared effects of inhibition of NO synthase (NOS) (100 μM l-NAME), blockade of ETA- and ETB-receptors (10 μM bosentan) and stimulation of the endothelium with 0.001-10 μM acetylcholine (ACh) in isolated third-order mesenteric resistance arteries. Losartan and hydralazine significantly lowered blood pressure. Losartan decreased the media-to-lumen ratio of resistance arteries. l-NAME (1) increased arterial contractile responses to K(+) (5.9-40 mM) in the losartan, SOL1 and vehicle group and (2) increased the sensitivity to phenylephrine (PHE; 0.16-20 μM) in the SOL1 group but not in the losartan, hydralazine and vehicle group. Relaxing responses to ACh in the absence or presence of l-NAME during contractions induced by either 10 μM PHE or 40 mM K(+) were not altered by any in vivo treatment. Acute treatment with bosentan did, however, significantly improve maximal relaxing responses involving endothelium-derived nitric oxide and -hyperpolarizing factors in the SOL1 group but not in the losartan, hydralazine or vehicle group. Thus, chronic inhibition of NEP/ECE improved basal endothelial function but did not alter blood pressure, resistance artery structure and stimulated endothelium-dependent relaxing responses in 32-week-old SHR.Hypertension Research advance online publication, 16 March 2017; doi:10.1038/hr.2017.38.

  20. Net Ecosystem Production (NEP) of the Great Plains, United States

    USGS Publications Warehouse

    Howard, Daniel; Gilmanov, Tagir; Gu, Yingxin; Wylie, Bruce; Zhang, Li

    2012-01-01

    Flux tower networks, such as AmeriFlux and FLUXNET, consist of a growing number of eddy covariance flux tower sites that provide a synoptic record of the exchange of carbon, water, and energy between the ecosystem and atmosphere at various temporal frequencies. These towers also detect and measure certain site characteristics, such as wind, temperature, precipitation, humidity, atmospheric pressure, soil features, and phenological progressions. Efforts are continuous to combine flux tower network data with remote sensing data to upscale the conditions observed at specific sites to a regional and, ultimately, worldwide scale. Data-driven regression tree models have the ability to incorporate flux tower records and remote sensing data to quantify exchanges of carbon with the atmosphere (Wylie and others, 2007; Xiao and others, 2010; Zhang and others, 2010; Zhang and others, 2011). Previous study results demonstrated the dramatic effect weather has on NEP and revealed specific ecoregions and times acting as carbon sinks or sources. As of 2012, more than 100 site-years of flux tower measurements, represented by more than 50 individual cropland or grassland sites throughout the Great Plains and surrounding area, have been acquired, quality controlled, and partitioned into gross photosynthesis (Pg) and ecosystem Re using detailed light-response, soil temperature, and vapor pressure deficit (VPD) based analysis.

  1. Artificial gravity as a countermeasure to microgravity: a pilot study examining the effects on knee extensor and plantar flexor muscle groups.

    PubMed

    Caiozzo, V J; Haddad, F; Lee, S; Baker, M; Paloski, William; Baldwin, K M

    2009-07-01

    The goal of this project was to examine the effects of artificial gravity (AG) on skeletal muscle strength and key anabolic/catabolic markers known to regulate muscle mass. Two groups of subjects were selected for study: 1) a 21 day-bed rest (BR) group (n = 7) and 2) an AG group (n = 8), which was subjected to 21 days of 6 degrees head-down tilt bed rest plus daily 1-h exposures to AG (2.5 G at the feet). Centrifugation was produced using a short-arm centrifuge with the foot plate approximately 220 cm from the center of rotation. The torque-velocity relationships of the knee extensors and plantar flexors of the ankle were determined pre- and posttreatment. Muscle biopsy samples obtained from the vastus lateralis and soleus muscles were used for a series of gene expression analyses (mRNA abundance) of key factors implicated in the anabolic vs. catabolic state of the muscle. Post/pre torque-velocity determinations revealed greater decrements in knee extensor performance in the BR vs. AG group (P < 0.04). The plantar flexors of the AG subjects actually demonstrated a net gain in the torque-velocity relationship, whereas in the BR group, the responses declined (AG vs. BR, P < 0.001). Muscle fiber cross-sectional area decreased by approximately 20% in the BR group, whereas no losses were evident in the AG group. RT-PCR analyses of muscle biopsy specimens demonstrated that markers of growth and cytoskeletal integrity were higher in the AG group, whereas catabolic markers were elevated in the BR group. Importantly, these patterns were seen in both muscles. We conclude that paradigms of AG have the potential to maintain the functional, biochemical, and structural homeostasis of skeletal muscle in the face of chronic unloading.

  2. Effects of an artificial gravity countermeasure on orthostatic tolerance, blood volumes and aerobic power after short-term bed rest (BR-AG1).

    PubMed

    Linnarsson, Dag; Hughson, Richard L; Fraser, Katelyn S; Clément, Gilles; Karlsson, Lars L; Mulder, Edwin; Paloski, William H; Rittweger, Jörn; Wuyts, Floris L; Zange, Jochen

    2015-01-01

    Exposure to artificial gravity (AG) in a short-arm centrifuge has potential benefits for maintaining human performance during long-term space missions. Eleven subjects were investigated during three campaigns of 5 days head-down bed rest: 1) bed rest without countermeasures (control), 2) bed rest and 30 min of AG (AG1) daily, and 3) bed rest and six periods of 5 min AG (AG2) daily. During centrifugation, the supine subjects were exposed to AG in the head-to-feet direction with 1 G at the center of mass. Subjects participated in the three campaigns in random order. The cardiovascular effects of bed rest and countermeasures were determined from changes in tolerance to a head-up tilt test with superimposed lower body negative pressure (HUT), from changes in plasma volume (PV) and from changes in maximum aerobic power (V̇o2 peak) during upright work on a cycle ergometer. Complete data sets were obtained in eight subjects. After bed rest, HUT tolerance times were 36, 64, and 78% of pre-bed rest baseline during control, AG1 and AG2, respectively, with a significant difference between AG2 and control. PV and V̇o2 peak decreased to 85 and 95% of pre-bed rest baseline, respectively, with no differences between the treatments. It was concluded that the AG2 countermeasure should be further investigated during future long-term bed rest studies, especially as it was better tolerated than AG1. The superior effect of AG2 on orthostatic tolerance could not be related to concomitant changes in PV or aerobic power.

  3. Artificial gravity with ergometric exercise as a countermeasure against cardiovascular deconditioning during 4 days of head-down bed rest in humans.

    PubMed

    Wang, Yong-Chun; Yang, Chang-Bin; Wu, Yan-Hong; Gao, Yuan; Lu, Dong-Yuan; Shi, Fei; Wei, Xiao-Ming; Sun, Xi-Qing

    2011-09-01

    We have shown previously that combined short-arm centrifuge and aerobic exercise training preserved several physiologically important cardiovascular functions in humans. We hypothesized that artificial gravity (AG) and exercise is effective to prevent changes of physical problems during head-down bed rest (HDBR). To test this hypothesis, 12 healthy male subjects had undergone 4 days of 6° HDBR. Six of them were exposed to AG of an alternating 2-min intervals of +1.0 and +2.0 Gz at foot level for 30 min twice per day with ergometric exercise of 40 W as a countermeasure during bed rest (CM group), while the remaining six served as untreated controls (no-CM group). Before and after 4 days of bed rest, leg venous hemodynamics was assessed by venous occlusion plethysmography and autonomic cardiovascular control estimated by power spectral analysis of blood pressure and heart rate. Further, orthostatic tolerance was evaluated by a 75° head-up tilt test and physical working capacity was surveyed by near maximal physical working capacity test before and after bed rest. The data showed that combined centrifuge and exercise applied twice daily for a total of 60 min during 4 days of HDBR prevented (a) a decrease in working capacity, (b) autonomic dysfunction (a decrease in the activity of parasympathetic cardiac innervation) and (c) an increase in leg venous flow resistance. The combination of a 30 min alternating of +1.0 and +2.0 Gz for twice per day of AG with 40 W ergometric exercise may offer a promising countermeasure to short duration simulated microgravity.

  4. Nuclear Electric Vehicle Optimization Toolset (NEVOT)

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.; Steincamp, James W.; Stewart, Eric T.; Patton, Bruce W.; Pannell, William P.; Newby, Ronald L.; Coffman, Mark E.; Kos, Larry D.; Qualls, A. Lou; Greene, Sherrell

    2004-01-01

    The Nuclear Electric Vehicle Optimization Toolset (NEVOT) optimizes the design of all major nuclear electric propulsion (NEP) vehicle subsystems for a defined mission within constraints and optimization parameters chosen by a user. The tool uses a genetic algorithm (GA) search technique to combine subsystem designs and evaluate the fitness of the integrated design to fulfill a mission. The fitness of an individual is used within the GA to determine its probability of survival through successive generations in which the designs with low fitness are eliminated and replaced with combinations or mutations of designs with higher fitness. The program can find optimal solutions for different sets of fitness metrics without modification and can create and evaluate vehicle designs that might never be considered through traditional design techniques. It is anticipated that the flexible optimization methodology will expand present knowledge of the design trade-offs inherent in designing nuclear powered space vehicles and lead to improved NEP designs.

  5. Differential cerebral deposition of IDE and NEP in sporadic and familial Alzheimer’s disease

    PubMed Central

    Dorfman, Verónica Berta; Pasquini, Laura; Riudavets, Miguel; López-Costa, Juan José; Villegas, Andrés; Troncoso, Juan Carlos; Lopera, Francisco; Castaño, Eduardo Miguel; Morelli, Laura

    2011-01-01

    Alzheimer’s disease (AD) is characterized by amyloid β (Aβ) accumulation in the brain and is classified as familial early-onset (FAD) or sporadic late-onset (SAD). Evidences suggest that deficits in the brain expression of insulin degrading enzyme (IDE) and neprilysin (NEP), both proteases involved in amyloid degradation, may promote Aβ deposition in SAD. We studied by immunohistochemistry IDE and NEP cortical expression in SAD and FAD samples carrying the E280A presenilin-1 missense mutation. We showed that IDE, a soluble peptidase, is linked with aggregated Aβ40 isoform while NEP, a membrane-bound protease, negatively correlates with amyloid angiopathy and its expression in the senile plaques is independent of aggregated amyloid and restricted to SAD cases. NEP, but not IDE, is over-expressed in dystrophic neurites, both proteases are immunoreactive in activated astrocytes but not in microglia and IDE was the only one detected in astrocytes of white matter from FAD cases. Collectively, our results support the notion that gross conformational changes involved in the modification from “natively folded-active” to “aggregated-inactive” IDE and NEP may be a relevant pathogenic mechanism in SAD. PMID:19019493

  6. DNA bending by the silencer protein NeP1 is modulated by TR and RXR.

    PubMed Central

    Arnold, R; Burcin, M; Kaiser, B; Muller, M; Renkawitz, R

    1996-01-01

    NeP1 binds to the F1 silencer element of the chicken lysozyme gene and, in the presence of TR, v-ERBA or RAR, synergistically represses transcriptional activity. This repression involves a silencing mechanism acting independently of the relative promoter position. Here we show that NeP1 alone can induce a significant directed bend on DNA. The chicken homologue of human NeP1, CTCF, shows identical binding and bending properties. In contrast, the isolated DNA binding domain of CTCF efficiently binds DNA, but fails to confer bending. Similarly, the TR-RXR hetero- or homodimer, binding adjacent to NeP1 at the F2 sequence, do not show significant DNA bending. The binding of the T3 ligand to TR changes neither the magnitude nor the direction of the NeP1 induced bend. However, when all factors are bound simultaneously as a quaternary complex, the TR-RXR heterodimer changes the location of the bend center, the flexure angle and the bending direction. PMID:8758989

  7. Mapping of the NEP receptor tyrosine kinase gene to human chromosome 6p21.3 and mouse chromosome 17C

    SciTech Connect

    Edelhoff, S.; Disteche, C.M.; Sweetser, D.A.

    1995-01-01

    The mouse receptor tyrosine kinase (RTK) NEP, also called Ptk-3, is widely expressed, with high levels in proliferating neuroepithelia of mouse embryos. The recently described human discoidin domain receptor (DDR) has a predicted amino acid sequence 93% identical to that of murine NEP and may be its human homologue. We have mapped the gene encoding NEP in human and mouse by fluorescence in situ hybridization using a mouse cDNA probe. The NEP/Nep gene maps to human chromosome 6p21.3 and mouse chromosome 17C, respectively. This places the NEP/Nep gene at, or near, the major histocompatibility (MHC) locus-HLA in human and H2 in mouse, respectively. Based on its pattern of expression during development, NEP and Nep represent candidate genes for several MHC-linked developmental abnormalities in human and mouse. 19 refs., 1 fig.

  8. Proposed Bioactive Conformations of Opiorphin, an Endogenous Dual APN/NEP Inhibitor

    PubMed Central

    2011-01-01

    The conformational profiles for the endogenous peptide Opiorphin and a set of seven analogues exhibiting different inhibitory activities toward human aminopeptidase N (hAPN) and human neprilysin (hNEP) were independently computed to deduce a bioactive conformation that Opiorphin may adopt when binding these two enzymes. The conformational space was thoroughly sampled using an iterative simulated annealing protocol, and a library of low-energy conformers was generated for each peptide. Bioactive Opiorphin conformations fitting our experimental structure–activity relationship data were identified for hAPN and hNEP using computational pairwise comparisons between each of the unique low-energy conformations of Opiorphin and its analogues. The obtained results provide a structural explanation for the dual hAPN and hNEP inhibitory activity of Opiorphin and show that the inborn flexibility of Opiorphin is essential for its analgesic activity. PMID:24900367

  9. Proposed Bioactive Conformations of Opiorphin, an Endogenous Dual APN/NEP Inhibitor.

    PubMed

    Pinto, Marta; Rougeot, Catherine; Gracia, Luis; Rosa, Mònica; García, Andrés; Arsequell, Gemma; Valencia, Gregorio; Centeno, Nuria B

    2012-01-12

    The conformational profiles for the endogenous peptide Opiorphin and a set of seven analogues exhibiting different inhibitory activities toward human aminopeptidase N (hAPN) and human neprilysin (hNEP) were independently computed to deduce a bioactive conformation that Opiorphin may adopt when binding these two enzymes. The conformational space was thoroughly sampled using an iterative simulated annealing protocol, and a library of low-energy conformers was generated for each peptide. Bioactive Opiorphin conformations fitting our experimental structure-activity relationship data were identified for hAPN and hNEP using computational pairwise comparisons between each of the unique low-energy conformations of Opiorphin and its analogues. The obtained results provide a structural explanation for the dual hAPN and hNEP inhibitory activity of Opiorphin and show that the inborn flexibility of Opiorphin is essential for its analgesic activity.

  10. Neprilysin and Aβ Clearance: Impact of the APP Intracellular Domain in NEP Regulation and Implications in Alzheimer’s Disease

    PubMed Central

    Grimm, Marcus O. W.; Mett, Janine; Stahlmann, Christoph P.; Haupenthal, Viola J.; Zimmer, Valerie C.; Hartmann, Tobias

    2013-01-01

    One of the characteristic hallmarks of Alzheimer’s disease (AD) is an accumulation of amyloid β (Aβ) leading to plaque formation and toxic oligomeric Aβ complexes. Besides the de novo synthesis of Aβ caused by amyloidogenic processing of the amyloid precursor protein (APP), Aβ levels are also highly dependent on Aβ degradation. Several enzymes are described to cleave Aβ. In this review we focus on one of the most prominent Aβ degrading enzymes, the zinc-metalloprotease Neprilysin (NEP). In the first part of the review we discuss beside the general role of NEP in Aβ degradation the alterations of the enzyme observed during normal aging and the progression of AD. In vivo and cell culture experiments reveal that a decreased NEP level results in an increased Aβ level and vice versa. In a pathological situation like AD, it has been reported that NEP levels and activity are decreased and it has been suggested that certain polymorphisms in the NEP gene result in an increased risk for AD. Conversely, increasing NEP activity in AD mouse models revealed an improvement in some behavioral tests. Therefore it has been suggested that increasing NEP might be an interesting potential target to treat or to be protective for AD making it indispensable to understand the regulation of NEP. Interestingly, it is discussed that the APP intracellular domain (AICD), one of the cleavage products of APP processing, which has high similarities to Notch receptor processing, might be involved in the transcriptional regulation of NEP. However, the mechanisms of NEP regulation by AICD, which might be helpful to develop new therapeutic strategies, are up to now controversially discussed and summarized in the second part of this review. In addition, we review the impact of AICD not only in the transcriptional regulation of NEP but also of further genes. PMID:24391587

  11. [des-Arg(1)]-Proctolin: A novel NEP-like enzyme inhibitor identified in Tityus serrulatus venom.

    PubMed

    Duzzi, Bruno; Cajado-Carvalho, Daniela; Kuniyoshi, Alexandre Kazuo; Kodama, Roberto Tadashi; Gozzo, Fabio Cesar; Fioramonte, Mariana; Tambourgi, Denise Vilarinho; Portaro, Fernanda Vieira; Rioli, Vanessa

    2016-06-01

    The scorpion Tityus serrulatus venom comprises a complex mixture of molecules that paralyzes and kills preys, especially insects. However, venom components also interact with molecules in humans, causing clinic envenomation. This cross-interaction may result from homologous molecular targets in mammalians and insects, such as (NEP)-like enzymes. In face of these similarities, we searched for peptides in Tityus serrulatus venom using human NEP as a screening tool. We found a NEP-inhibiting peptide with the primary sequence YLPT, which is very similar to that of the insect neuropeptide proctolin (RYLPT). Thus, we named the new peptide [des-Arg(1)]-proctolin. Comparative NEP activity assays using natural substrates demonstrated that [des-Arg(1)]-proctolin has high specificity for NEP and better inhibitory activity than proctolin. To test the initial hypothesis that molecular homologies allow Tityus serrulatus venom to act on both mammal and insect targets, we investigated the presence of a NEP-like in cockroaches, the main scorpion prey, that could be likewise inhibited by [des-Arg(1)]-proctolin. Indeed, we detected a possible NEP-like in a homogenate of cockroach heads whose activity was blocked by thiorphan and also by [des-Arg(1)]-proctolin. Western blot analysis using a human NEP monoclonal antibody suggested a NEP-like enzyme in the homogenate of cockroach heads. Our study describes for the first time a proctolin-like peptide, named [des-Arg(1)]-proctolin, isolated from Tityus serrulatus venom. The tetrapeptide inhibits human NEP activity and a NEP-like activity in a cockroach head homogenate, thus it may play a role in human envenomation as well as in the paralysis and death of scorpion preys.

  12. 20 Ne(p, γ)22Na and 22Ne(p, γ)23Na Reaction Study with 5U-4 St. Ana Accelerator

    NASA Astrophysics Data System (ADS)

    Lyons, Stephanie; Goerres, Joachim; Jung, Hyo Soon; Robertson, Dan; Setoodehnia, Kiana; Stech, Ed; Wiescher, Michael; Kontos, Antonios

    2014-09-01

    Hydrogen burning can proceed via the NeNa cycle in stars whose stellar temperature is greater than 0.05GK. The NeNa cycle is important for the nucleosynthesis of Ne, Na, and Mg isotopes. Direct capture and the high energy tail of a subthreshold resonance dominate the stellar reaction rate for 20Ne(p, γ)21Na. The strength of the non-resonant contributions were measured relative to the resonance at 1.17 MeV. Due to conflicting results, we have remeasured the strength of this resonance relative to the 1.28 MeV resonance in 22Ne(p, γ)23Na using implanted neon targets. Study of this reaction has continued using the newly commissioned 5U-4 St. Ana Accelerator and re-furbished Rhinoceros Gas Target.

  13. Application of Molten Salt Reactor Technology to MMW In-Space NEP and Surface Power Missions

    NASA Technical Reports Server (NTRS)

    Patton, Bruce; Sorensen, Kirk; Rodgers, Stephen (Technical Monitor)

    2002-01-01

    Anticipated manned nuclear electric propulsion (NEP) and planetary surface power missions will require multimegawatt nuclear reactors that are lightweight, operationally robust, and scalable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional multimegawatt gas-cooled and liquid metal concepts.

  14. Combining ability for neps seed coat fragments and motes in Upland cotton

    USDA-ARS?s Scientific Manuscript database

    Minimizing neppiness, i.e., neps, seed coat fragments, and motes, in ginned cotton (Gossypium hirsutum L.) fibers is one of the keys to keep U.S. fibers competitive in global market. Forty-eight F2 hybrids derived from crosses between 12 exotic germplasm lines (male parents), i.e., 6 Species Polycr...

  15. Application of Molten Salt Reactor Technology to MMW In-Space NEP and Surface Power Missions

    SciTech Connect

    Patton, Bruce; Sorensen, Kirk

    2002-07-01

    Anticipated manned nuclear electric propulsion (NEP) and planetary surface power missions will require multi-megawatt nuclear reactors that are lightweight, operationally robust, and sealable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional multi-megawatt gas-cooled and liquid metal concepts. (authors)

  16. Advanced fiber information systems seed coat neps baseline response from diverse mediums

    USDA-ARS?s Scientific Manuscript database

    An extensive literature search has revealed that no papers have been published regarding selectivity calculation of the AFIS seed coat neps (SCN) determination over interfering material in cotton. A prerequisite to selectivity measurements is to identify suitable fiber medium(s) that give baseline ...

  17. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession

    USGS Publications Warehouse

    Goulden, M.L.; Mcmillan, A.M.S.; Winston, G.C.; Rocha, A.V.; Manies, K.L.; Harden, J.W.; Bond-Lamberty, B. P.

    2011-01-01

    We combined year-round eddy covariance with biometry and biomass harvests along a chronosequence of boreal forest stands that were 1, 6, 15, 23, 40, 74, and 154 years old to understand how ecosystem production and carbon stocks change during recovery from stand-replacing crown fire. Live biomass (Clive) was low in the 1 and 6 year old stands, and increased following a logistic pattern to high levels in the 74 and 154year old stands. Carbon stocks in the forest floor (Cforest floor) and coarse woody debris (CCWD) were comparatively high in the 1year old stand, reduced in the 6 through 40year old stands, and highest in the 74 and 154year old stands. Total net primary production (TNPP) was reduced in the 1 and 6year old stands, highest in the 23 through 74year old stands and somewhat reduced in the 154year old stand. The NPP decline at the 154year old stand was related to increased autotrophic respiration rather than decreased gross primary production (GPP). Net ecosystem production (NEP), calculated by integrated eddy covariance, indicated the 1 and 6 year old stands were losing carbon, the 15year old stand was gaining a small amount of carbon, the 23 and 74year old stands were gaining considerable carbon, and the 40 and 154year old stands were gaining modest amounts of carbon. The recovery from fire was rapid; a linear fit through the NEP observations at the 6 and 15year old stands indicated the transition from carbon source to sink occurred within 11-12 years. The NEP decline at the 154year old stand appears related to increased losses from Clive by tree mortality and possibly from Cforest floor by decomposition. Our findings support the idea that NPP, carbon production efficiency (NPP/GPP), NEP, and carbon storage efficiency (NEP/TNPP) all decrease in old boreal stands. ?? 2010 Blackwell Publishing Ltd.

  18. 20-Hydroxyecdysone stimulates nuclear accumulation of BmNep1, a nuclear ribosome biogenesis-related protein in the silkworm, Bombyx mori.

    PubMed

    Ji, M-M; Liu, A-Q; Sima, Y-H; Xu, S-Q

    2016-10-01

    The pathway of communication between endocrine hormones and ribosome biogenesis critical for physiological adaptation is largely unknown. Nucleolar essential protein 1 (Nep1) is an essential gene for ribosome biogenesis and is functionally conserved in many in vertebrate and invertebrate species. In this study, we cloned Bombyx mori Nep1 (BmNep1) due to its high expression in silk glands of silkworms on day 3 of the fifth instar. We found that BmNep1 mRNA and protein levels were upregulated in silk glands during fourth-instar ecdysis and larval-pupal metamorphosis. By immunoprecipitation with the anti-BmNep1 antibody and liquid chromatography-tandem mass spectrometry analyses, it was shown that BmNep1 probably interacts with proteins related to ribosome structure formation. Immunohistochemistry, biochemical fractionation and immunocytochemistry revealed that BmNep1 is localized to the nuclei in Bombyx cells. Using BmN cells originally derived from ovaries, we demonstrated that 20-hydroxyecdysone (20E) induced BmNep1 expression and stimulated nuclear accumulation of BmNep1. Under physiological conditions, BmNep1 was also upregulated in ovaries during larval-pupal metamorphosis. Overall, our results indicate that the endocrine hormone 20E facilitates nuclear accumulation of BmNep1, which is involved in nuclear ribosome biogenesis in Bombyx. © 2016 The Royal Entomological Society.

  19. Trade Studies for a Manned High-Power Nuclear Electric Propulsion Vehicle

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael; Hull, Patrick V.; Irwin, Ryan W.; TInker, Michael L.; Patton, Bruce W.

    2005-01-01

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate vehicles must be identified through trade studies for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combines analysis codes for NEP subsystems with genetic algorithm-based optimization. Trade studies for a NEP reference mission to the asteroids were conducted to identify important trends, and to determine the effects of various technologies and subsystems on vehicle performance. It was found that the electric thruster type and thruster performance have a major impact on the achievable system performance, and that significant effort in thruster research and development is merited.

  20. Optical/NIR Imaging of AKARI NEP-Wide Survey Field

    NASA Astrophysics Data System (ADS)

    Jeon, Y.; Im, M.; Kang, E.; Lee, I.; Ibrahimov, M.

    2009-12-01

    We describe the characteristics of optical and NIR imaging data of the NEP-Wide field in B, R, I, J and H band filters. The NEP-Wide is an AKARI survey of the North Ecliptic Pole covering 5.8 deg2 area. Our optical/NIR imaging observation supports the AKARI’s IR imaging data by providing a crucial coverage in optical/NIR. The optical data were obtained at Maidanak Observatory in Uzbekistan using the 1.5m telescope and the Seoul National University’s 4k×4k CCD. The NIR data were obtained using FLAMINGOS on KPNO 2.1m telescope. We present the astrometric accuracy, galaxy number counts and completeness. The photometric data will be used for identifying optical counterparts of the IR data provided by AKARI, studying their SEDs and the selection of interesting objects for spectroscopic follow-up studies.

  1. VizieR Online Data Catalog: Optical catalog of AKARI NEP-wide survey (Jeon+, 2010)

    NASA Astrophysics Data System (ADS)

    Jeon, Y.; Im, M.; Ibrahimov, M.; Lee, H. M.; Lee, I.; Lee, M. G.

    2010-09-01

    The AKARI NEP-Wide field is centered at 18:00:00+66:36:00 covering a circular area of 5.8deg2. The images were obtained in Bessell B, R, and I filters from 2007 June 12 to August 5 at the Maidanak Observatory in Uzbekistan, using the Seoul National University 4kx4k Camera (SNUCAM) on the 1.5m Richey-Chretien, AZT-22 telescope. (1 data file).

  2. 20Ne(p , γ)21Na Cross Sections and the Astrophysical Impact

    NASA Astrophysics Data System (ADS)

    Lyons, Stephanie; Best, Andreas; Chen, Ying Ying; Deboer, Richard; Gilardy, Gwen; Goerres, Joachim; Liu, Qian; Long, Alex; Meisel, Zach; Moran, Mike; Robertson, Dan; Seymour, Chris; Stech, Ed; van de Kolk, Bryant; Wiescher, Michael

    2016-09-01

    In stellar environments where T > 0.05 GK, hydrogen burning may proceed via the NeNa cycle. 20Ne(p, γ)21Na, the first reaction in the NeNa cycle, is thought to have the slowest reaction rate, thereby determine the timescale for the rest of the cycle. The stellar reaction rate for 20Ne(p, γ)21Na is dominated by direct capture and the high energy tail of a sub-threshold resonance, as shown previously. Measurements of the 20Ne(p, γ)21Na cross section from Ep= 0.5-2.0 MeV were performed at the University of Notre Dame Nuclear Science Laboratory using the St. ANA 5U accelerator and the Rhinoceros extended gas target. The cross sections were measured relative to the Ec . m .=1113 keV resonance, whose strength was independently measured. The measured cross sections were then analyzed using R-matrix. The extrapolated astrophysical S-factors, as well as reaction rates will be presented.

  3. Drosophila melanogaster NEP2 is a new soluble member of the neprilysin family of endopeptidases with implications for reproduction and renal function

    PubMed Central

    2004-01-01

    The mammalian neprilysin (NEP) family members are typically type II membrane endopeptidases responsible for the activation/inactivation of neuropeptides and peptide hormones. Differences in substrate specificity and subcellular localization of the seven mammalian NEPs contribute to their functional diversity. The sequencing of the Drosophila melanogaster genome has revealed a large expansion of this gene family, resulting in over 20 fly NEP-like genes, suggesting even greater diversity in structure and function than seen in mammals. We now report that one of these genes (Nep2) codes for a secreted endopeptidase with a highly restricted pattern of expression. D. melanogaster NEP2 is expressed in the specialized stellate cells of the renal tubules and in the cyst cells that surround the elongating spermatid bundles in adult testis, suggesting roles for the peptidase in renal function and in spermatogenesis. D. melanogaster NEP2 was found in vesicle-like structures in the syncytial cytoplasm of the spermatid bundles, suggesting that the protein was acquired by endocytosis of protein secreted from the cyst cells. Expression of NEP2 cDNA in D. melanogaster S2 cells confirmed that the peptidase is secreted and is only weakly inhibited by thiorphan, a potent inhibitor of human NEP. D. melanogaster NEP2 also differs from human NEP in the manner in which the peptidase cleaves the tachykinin, GPSGFYGVR-amide. Molecular modelling suggests that there are important structural differences between D. melanogaster NEP2 and human NEP in the S1′ and S2′ ligand-binding subsites, which might explain the observed differences in inhibitor and substrate specificities. A soluble isoform of a mouse NEP-like peptidase is strongly expressed in spermatids, suggesting an evolutionarily conserved role for a soluble endopeptidase in spermatogenesis. PMID:15554877

  4. Patterns of NPP, GPP, Respiration and NEP During Boreal Forest Succession

    SciTech Connect

    Goulden, Michael L.; McMillan, Andrew; Winston, Greg; Rocha, Adrian; Manies, Kristen; Harden, Jennifer W.; Bond-Lamberty, Benjamin

    2010-12-15

    We deployed a mesonet of year-round eddy covariance towers in boreal forest stands that last burned in ~1850, ~1930, 1964, 1981, 1989, 1998, and 2003 to understand how CO2 exchange changes during secondary succession.The strategy of using multiple methods, including biometry and micrometeorology, worked well. In particular, the three independent measures of NEP during succession gave similar results. A stratified and tiered approach to deploying eddy covariance systems that combines many lightweight and portable towers with a few permanent ones is likely to maximize the science return for a fixed investment. The existing conceptual models did a good job of capturing the dominant patterns of NPP, GPP, Respiration and NEP during succession. The initial loss of carbon following disturbance was neither as protracted nor large as predicted. This muted response reflects both the rapid regrowth of vegetation following fire and the prevalence of standing coarse woody debris following the fire, which is thought to decay slowly. In general, the patterns of forest recovery from disturbance should be expected to vary as a function of climate, ecosystem type and disturbance type. The NPP decline at the older stands appears related to increased Rauto rather than decreased GPP. The increase in Rauto in the older stands does not appear to be caused by accelerated maintenance respiration with increased biomass, and more likely involves increased allocation to fine root turnover, root metabolism, alternative forms of respiration, mycorrhizal relationships, or root exudates, possibly associated with progressive nutrient limitation. Several studies have now described a similar pattern of NEP following boreal fire, with 10-to-15 years of modest carbon loss followed by 50-to-100 years of modest carbon gain. This trend has been sufficiently replicated and evaluated using independent techniques that it can be used to quantify the likely effects of changes in boreal fire frequency and

  5. The Radio-Far Infrared Correlation in the NEP Deep Field

    NASA Astrophysics Data System (ADS)

    Barrufet, Laia; White, Glenn J.; Pearson, Chris; Serjeant, Stephen; Lim, Tanya; Matsuhara, Hideo; Oi, Nagisa; Karouzos, Marios; AKARI-NEP Team

    2017-03-01

    We report the results of a multi-wavelength study in the North Ecliptic Pole (NEP) deep field and examine the far infrared-radio correlation (FIRC) for high and low redshift objects. We have found a correlation between the GMRT data at 610 MHz and the Herschel data at 250 μm that has been used to define a spectral index. This spectral index shows no evolution against redshift. As a result of the study, we show a radio colour-infrared diagram that can be used as a redshift indicator.

  6. Conceptual definition of a 50-100 kWe NEP system for planetary science missions

    NASA Technical Reports Server (NTRS)

    Friedlander, Alan

    1993-01-01

    The Phase 1 objective of this project is to assess the applicability of a common Nuclear Electric Propulsion (NEP) flight system of the 50-100 kWe power class to meet the advanced transportation requirements of a suite of planetary science (robotic) missions, accounting for differences in mission-specific payloads and delivery requirements. The candidate missions are as follows: (1) Comet Nucleus Sample Return; (2) Multiple Mainbelt Asteroid Rendezvous; (3) Jupiter Grand Tour (Galilean satellites and magnetosphere); (4) Uranus Orbiter/Probe (atmospheric entry and landers); (5) Neptune Orbiter/Probe (atmospheric entry and landers); and (6) Pluto-Charon Orbiter/Lander. The discussion is presented in vugraph form.

  7. A novel selective androgen receptor modulator, NEP28, is efficacious in muscle and brain without serious side effects on prostate.

    PubMed

    Akita, Kazumasa; Harada, Koichiro; Ichihara, Junji; Takata, Naoko; Takahashi, Yasuhiko; Saito, Koichi

    2013-11-15

    Age-related androgen depletion is known to be a risk factor for various diseases, such as osteoporosis and sarcopenia. Furthermore, recent studies have demonstrated that age-related androgen depletion results in accumulation of β-amyloid protein and thereby acts as a risk factor for the development of Alzheimer's disease. Supplemental androgen therapy has been shown to be efficacious in treating osteoporosis and sarcopenia. In addition, studies in animals have demonstrated that androgens can play a protective role against Alzheimer's disease. However, androgen therapy is not used routinely for these indications, because of side effects. Selective androgen receptor modulators (SARMs) are a new class of compounds. SARMs maintain the beneficial effects of androgens on bone and muscle while reducing unwanted side effects. NEP28 is a new SARM exhibiting high selectivity for androgen receptor. To investigate the pharmacological effects of NEP28, we compared the effects on muscle, prostate, and brain with mice that were androgen depleted by orchidectomy and then treated with either placebo, NEP28, dihydrotestosterone, or methyltestosterone. We demonstrated that NEP28 showed tissue-selective effect equivalent to or higher than existing SARMs. In addition, the administration of NEP28 increased the activity of neprilysin, a known Aβ-degrading enzyme. These results indicate that SARM is efficacious for the treatment of not only osteoporosis and sarcopenia, but also Alzheimer's disease. © 2013 Published by Elsevier B.V.

  8. Three New Low-Energy Resonances in the 22Ne(p, γ )23Na Reaction

    NASA Astrophysics Data System (ADS)

    Cavanna, Francesca; Depalo, Rosanna

    The neon-sodium (NeNa) cycle drives the synthesis of the elements between 20Ne and 27Al, through a series of proton capture reactions that start from 20Ne, to end with sodium synthesis. This cycle is active in red giant stars (RGB), asymptotic giant branch stars (AGB), in novae as well as in type Ia supernovae. In order to reproduce the observed elemental abundances, the cross sections of the reactions involved in the nucleosynthesis process should be accurately known. The 22Ne(p, γ )23Na reaction rate was very uncertain because of a large number of unobserved resonances lying in the Gamow window. For proton energies below 400 keV, in the literature there were only upper limits for the resonance strengths. A new direct study of the 22Ne(p, γ )23Na reaction has been performed at the Laboratory for Underground Nuclear Astrophysics (LUNA) in Gran Sasso using a windowless gas target and two high-purity germanium detectors. Several resonances have been observed for the first time in a direct experiment.

  9. Study of a heat rejection system for the Nuclear Electric Propulsion (NEP) spacecraft

    NASA Technical Reports Server (NTRS)

    Ernest, D. M.

    1982-01-01

    Two different heat pipe radiator elements, one intended for use with the power conversion subsystem of the NASA funded nuclear electric propulsion (NEP) spacecraft, and one intended for use with the DOE funded space power advanced reactor (SPAR) system were tested and evaluated. The NEP stainless steel/sodium heat pipe was 4.42 meters long and had a 1 cm diameter. Thermal performance testing at 920 K showed a non-limited power level of 3560 watts, well in excess of the design power of 2600 watts. This test verified the applicability of screen arteries for use in long radiator heat pipes. The SPAR titanium/potassium heat pipe was 5.5 meters long and had a semicircular crossection with a 4 cm diameter. Thermal performance testing at 775 K showed a maximum power level of 1.86 kW, somewhat short of the desired 2.6 kW beginning of life design requirement. The reduced performance was shown to be the result of the inability of the evaporator wall wick (shot blasted evaporator wall) to handle the required liquid flow.

  10. MIR Luminosity Function of Galaxies in the Nep-Wide Field

    NASA Astrophysics Data System (ADS)

    Kim, Seong Jin; Lee, Hyung Mok; Jeong, Woong-Seob; NEP Team

    2017-03-01

    We present the mid-infrared (MIR) luminosity function (LF) of local (z < 0.3) star-forming (SF) galaxies in the North Ecliptic Pole (NEP) field. This work is based on the NEP-Wide point source catalogue and the spectroscopic redshift (z) data for ∼1700 galaxies obtained by the optical follow-up survey with MMT/Hectospec and WIYN/Hydra. The AKARI's continuous 2-24 μm coverage and the spectroscopic redshifts enable us to determine the spectral energy distribution (SED) in the mid-infrared and derive the luminosity functions of galaxies. Our 8 μm LF finds good agreements with the results from SWIRE field over the wide luminosity range, while showing significant difference from the NOAO deep data in the faint end. The comparison with higher-z sample shows significant luminosity evolution from z > 0.3 to local universe. 12 μm LF also shows a clear indication of luminosity evolution.

  11. The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins.

    PubMed Central

    O'Neill, R E; Talon, J; Palese, P

    1998-01-01

    Nuclear import and export of viral nucleic acids is crucial for the replication cycle of many viruses, and elucidation of the mechanism of these steps may provide a paradigm for understanding general biological processes. Influenza virus replicates its RNA genome in the nucleus of infected cells. The influenza virus NS2 protein, which had no previously assigned function, was shown to mediate the nuclear export of virion RNAs by acting as an adaptor between viral ribonucleoprotein complexes and the nuclear export machinery of the cell. A functional domain on the NS2 with characteristics of a nuclear export signal was mapped: it interacts with cellular nucleoporins, can functionally replace the effector domain of the human immunodeficiency virus type 1 (HIV-1) Rev protein and mediates rapid nuclear export when cross-linked to a reporter protein. Microinjection of anti-NS2 antibodies into infected cells inhibited nuclear export of viral ribonucleoproteins, suggesting that the Rev-like NS2 mediates this process. Therefore, we have renamed this Rev-like factor the influenza virus nuclear export protein or NEP. We propose a model by which NEP acts as a protein adaptor molecule bridging viral ribonucleoproteins and the nuclear pore complex. PMID:9427762

  12. Hyper Suprime-Camera Survey of the Akari NEP Wide Field

    NASA Astrophysics Data System (ADS)

    Goto, Tomotsugu; Toba, Yoshiki; Utsumi, Yousuke; Oi, Nagisa; Takagi, Toshinobu; Malkan, Matt; Ohayma, Youichi; Murata, Kazumi; Price, Paul; Karouzos, Marios; Matsuhara, Hideo; Nakagawa, Takao; Wada, Takehiko; Serjeant, Steve; Burgarella, Denis; Buat, Veronique; Takada, Masahiro; Miyazaki, Satoshi; Oguri, Masamune; Miyaji, Takamitsu; Oyabu, Shinki; White, Glenn; Takeuchi, Tsutomu; Inami, Hanae; Perason, Chris; Malek, Katarzyna; Marchetti, Lucia; Lee, Hyung Mok; Im, Myung; Kim, Seong Jin; Koptelova, Ekaterina; Chao, Dani; Wu, Yi-Han; AKARI NEP Survey Team; AKARI All Sky Survey Team

    2017-03-01

    The extragalactic background suggests half the energy generated by stars was reprocessed into the infrared (IR) by dust. At z ∼1.3, 90% of star formation is obscured by dust. To fully understand the cosmic star formation history, it is critical to investigate infrared emission. AKARI has made deep mid-IR observation using its continuous 9-band filters in the NEP field (5.4 deg^2), using ∼10% of the entire pointed observations available throughout its lifetime. However, there remain 11,000 AKARI infrared sources undetected with the previous CFHT/Megacam imaging (r ∼25.9ABmag). Redshift and IR luminosity of these sources are unknown. These sources may contribute significantly to the cosmic star-formation rate density (CSFRD). For example, if they all lie at 1 < z < 2, the CSFRD will be twice as high at the epoch. We are carrying out deep imaging of the NEP field in 5 broad bands (g,r,i,z, and y) using Hyper Suprime-Camera (HSC), which has 1.5 deg field of view in diameter on Subaru 8m telescope. This will provide photometric redshift information, and thereby IR luminosity for the previously-undetected 11,000 faint AKARI IR sources. Combined with AKARI's mid-IR AGN/SF diagnosis, and accurate mid-IR luminosity measurement, this will allow a complete census of cosmic star-formation/AGN accretion history obscured by dust.

  13. The Nicotiana benthamiana mitogen-activated protein kinase cascade and WRKY transcription factor participate in Nep1(Mo)-triggered plant responses.

    PubMed

    Zhang, Huajian; Li, Deqing; Wang, Meifang; Liu, Jiewen; Teng, Wenjun; Cheng, Baoping; Huang, Qian; Wang, Min; Song, Wenwen; Dong, Suomeng; Zheng, Xiaobo; Zhang, Zhengguang

    2012-12-01

    Many bacterial, fungal, and oomycete species secrete necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLP) that trigger programmed cell death (PCD) and innate immune responses in dicotyledonous plants. However, how NLP induce such immune responses is not understood. Here, we show that silencing of the MAPKKKα-MEK2-WIPK mitogen-activated protein kinase (MAPK) cascade through virus-induced gene silencing compromises hydrogen peroxide accumulation and PCD induced by Nep1(Mo) from Magnaporthe oryzae. WIPK interacts with NbWRKY2, a transcription factor in Nicotiana benthamiana, in vitro and in vivo, suggesting an effector pathway that mediates Nep1(Mo)-induced cell death. Unexpectedly, salicylic acid-induced protein kinase (SIPK)- and NbWRKY2-silenced plants showed impaired Nep1(Mo)-induced stomatal closure, decreased Nep1(Mo)-promoted nitric oxide (NO) production in guard cells, and a reduction in Nep1(Mo)-induced resistance against Phytophthora nicotianae. Expression studies by real-time polymerase chain reaction suggested that the MEK2-WIPK-NbWRKY2 pathway regulated Nep1(Mo)triggered NO accumulation could be partly dependent on nitrate reductase, which was implicated in NO synthesis. Taken together, these studies demonstrate that the MAPK cascade is involved in Nep1(Mo)-triggered plant responses and MAPK signaling associated with PCD exhibits shared and distinct components with that for stomatal closure.

  14. NEP1 orthologs encoding necrosis and ethylene inducing proteins exist as a multigene family in Phytophthora megakarya, causal agent of black pod disease on cacao.

    PubMed

    Bae, Hanhong; Bowers, John H; Tooley, Paul W; Bailey, Bryan A

    2005-12-01

    Phvytophthora megakarya is a devastating oomycete pathogen that causes black pod disease in cacao. Phytophthora species produce a protein that has a similar sequence to the necrosis and ethylene inducing protein (Nep1) of Fusarium oxysporum. Multiple copies of NEP1 orthologs (PmegNEP) have been identified in P. megakarya and four other Phytophthora species (P. citrophthora, P. capsici, P. palmivora, and P. sojae). Genome database searches confirmed the existence of multiple copies of NEP1 orthologs in P. sojae and P. ramorum. In this study, nine different PmegNEP orthologs from P. megakarya strain Mk-1 were identified and analyzed. Of these nine orthologs, six were expressed in mycelium and in P. megakarya zoospore-infected cacao leaf tissue. The remaining two clones are either regulated differently, or are nonfunctional genes. Sequence analysis revealed that six PmegNEP orthologs were organized in two clusters of three orthologs each in the P. megakarya genome. Evidence is presented for the instability in the P. megakarya genome resulting from duplications, inversions, and fused genes resulting in multiple NEP1 orthologs. Traits characteristic of the Phytophthora genome, such as the clustering of NEP1 orthologs, the lack of CATT and TATA boxes, the lack of introns, and the short distance between ORFs were also observed.

  15. Where The Active Galaxies Live: A Panchromatic View Of AGN In The Akari-NEP Field

    NASA Astrophysics Data System (ADS)

    Karouzos, Marios; Im, M.; Takagi, T.; Shim, H.; Ko, J.; Matsuhara, H.; Braun, R.; White, G.; Serjeant, S.

    2012-05-01

    We study the host galaxy properties of radio-detected sources in the AKARI-NEP field, using an ensemble of multi-wavelength datasets that range from the far-UV to the radio. Using both photometry and spectroscopy, we identify both radio-loud and radio-quiet AGN and study their host galaxy properties, including the age of their stellar populations, current star-formation rates, as well as their morphology. Using this information we investigate the role of AGN within the currently accepted framework of a merger-driven evolution of galaxies. This research was supported through the Creative Research Initiative program, No. 2010-0000712, of the National Research Foundation of Korea (NRFK) funded by the Korea government(MEST).

  16. A diagnostic carbon flux model to monitor the effects of disturbance and interannual variation in climate on regional NEP.

    Treesearch

    D.P. Turner; W.D. Ritts; J.M. Styles; Z. Yang; W.B. Cohen; B.E. Law; P.E. Thornton

    2006-01-01

    Net ecosystem production (NEP) was estimated over a 10.9 x 104 km2 forested region in western Oregon USA for 2 yr (2002-2003) using a combination of remote sensing, distributed meteorological data, and a carbon cycle model (CFLUX). High spatial resolution satellite data (Landsat, 30 m) provided information on land cover and...

  17. Fracture network evaluation program (FraNEP): A software for analyzing 2D fracture trace-line maps

    NASA Astrophysics Data System (ADS)

    Zeeb, Conny; Gomez-Rivas, Enrique; Bons, Paul D.; Virgo, Simon; Blum, Philipp

    2013-10-01

    Fractures, such as joints, faults and veins, strongly influence the transport of fluids through rocks by either enhancing or inhibiting flow. Techniques used for the automatic detection of lineaments from satellite images and aerial photographs, LIDAR technologies and borehole televiewers significantly enhanced data acquisition. The analysis of such data is often performed manually or with different analysis software. Here we present a novel program for the analysis of 2D fracture networks called FraNEP (Fracture Network Evaluation Program). The program was developed using Visual Basic for Applications in Microsoft Excel™ and combines features from different existing software and characterization techniques. The main novelty of FraNEP is the possibility to analyse trace-line maps of fracture networks applying the (1) scanline sampling, (2) window sampling or (3) circular scanline and window method, without the need of switching programs. Additionally, binning problems are avoided by using cumulative distributions, rather than probability density functions. FraNEP is a time-efficient tool for the characterisation of fracture network parameters, such as density, intensity and mean length. Furthermore, fracture strikes can be visualized using rose diagrams and a fitting routine evaluates the distribution of fracture lengths. As an example of its application, we use FraNEP to analyse a case study of lineament data from a satellite image of the Oman Mountains.

  18. Fundamental research on spiking, recovery and understanding seed coat nep counts in AFIS analysis of pre-opened cotton

    USDA-ARS?s Scientific Manuscript database

    Understanding seed coat fragment (SCF) spiking results in Advanced Fiber Information Systems (AFIS) analysis of seed coat neps (SCN) in ginned cottons was confounded by side processes in the system such as particle crushing that results in inflated recoveries. A high degree of machine (AFIS)-fiber ...

  19. New measurements of low-energy resonances in the 22Ne(p ,γ )23Na reaction

    NASA Astrophysics Data System (ADS)

    Kelly, K. J.; Champagne, A. E.; Downen, L. N.; Dermigny, J. R.; Hunt, S.; Iliadis, C.; Cooper, A. L.

    2017-01-01

    The 22Ne(p ,γ )23Na reaction is one of the most uncertain reactions in the NeNa cycle and plays a crucial role in the creation of 23Na, the only stable Na isotope. Uncertainties in the low-energy rates of this and other reactions in the NeNa cycle lead to ambiguities in the nucleosynthesis predicted from models of thermally pulsing asymptotic giant branch (AGB) stars. This in turn complicates the interpretation of anomalous Na-O trends in globular cluster evolutionary scenarios. Previous studies of the 22Ne(p ,γ )23Na , 22Ne(3He,d )23Na , and 12C(12C,p )23Na reactions disagree on the strengths, spins, and parities of low-energy resonances in 23Na and the direct-capture 22Ne(p ,γ )23Na reaction rate contains large uncertainties as well. In this work we present new measurements of resonances at Erc.m.=417 , 178, and 151 keV and of the direct-capture process in the 22Ne(p ,γ )23Na reaction. The resulting total 22Ne(p ,γ )23Na rate is approximately a factor of 20 higher than the rate listed in a recent compilation at temperatures relevant to hot-bottom burning in AGB stars. Although our rate is close to that derived from a recent 22Ne(p ,γ )23Na measurement by Cavanna et al. in 2015, we find that this large rate increase results in only a modest 18% increase in the 23Na abundance predicted from a 5 M⊙ thermally pulsing AGB star model from Ventura and D'Antona (2005). The estimated astrophysical impact of this rate increase is in marked contrast to the factor of ˜3 increase in 23Na abundance predicted by Cavanna et al. and is attributed to the interplay between the 23Na(p ,α )20Ne and 20Ne(p ,γ )21Na reactions, both of which remain fairly uncertain at the relevant temperature range.

  20. Relationships between NEP and water table position in a western Canadian poor fen during a wet and a dry year

    NASA Astrophysics Data System (ADS)

    Malhotra, A.; Wieder, R.; Vitt, D. H.; Vile, M. A.; Scott, K.

    2010-12-01

    Water table position (WT) is an important factor in peatland ecosystem structure and function. The relationship between WT and net ecosystem production (NEP) is recognized, but poorly described, especially on a microscale level where factors such as vegetation and microhabitat may influence this relationship. Over two growing seasons, fluxes of CO2 and CH4, coupled with measurements of WT, were examined in a poor fen using static chambers. The goal of this research was to quantify the relationship between NEP and WT, peat surface microtopography (hummocks vs. lawns) and vegetation composition. The fen was a net sink of CO2 in both 2008 and 2009 of 0.94 and 1.04 mol m-2 yr-1 respectively. Averaged across two years, NEPSAT and dark respiration (measured NEP when PAR>1000 and when PAR= 0 μmol m-2 s-1, respectively) values were 3.52 ± 0.04 and -2.77 ± 0.03 μmol CO2 m-2 s-1 respectively. Significant interactions were seen between vegetation and year for both NEPSAT (F2,3034= 34.3, p<0.0001) and dark respiration (F2,4030= 11.2, p<0.0001). Significant interactions were also seen between year and microtopography, both for NEPSAT (F1,3036= 40.5, p<0.0001) and dark respiration (F1,4032= 28.4, p<0.0001). The average ± S.E. CH4 emission rate was 1.1 ± 0.06 mmol m-2 da-1 and interactions were seen between vegetation and date (F16,454= 6.2, p<0.0001) and microtopography and date (F8,462= 2.7, p<0.0060). As expected, a large percentage (65-72%) of the variation in NEP was explained by temperature and PAR. A small but significant (p<0.0001) positive relationship was also seen between NEP and WT suggesting that as the water table level increased, NEP increased. This relationship varied depending on vegetation and microtopography (Table 1). The percentage of variation in NEP explained by WT also differed between the two growing seasons, which differed considerably in rainfall (314 mm in 2008 vs. 166 mm in 2009). Hummock NEP was influenced less by WT in the dry year than in the

  1. Nuclear Electric Vehicle Optimization Toolset (NEVOT): Integrated System Design Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.; Steincamp, James W.; Stewart, Eric T.; Patton, Bruce W.; Pannell, William P.; Newby, Ronald L.; Coffman, Mark E.; Qualls, A. L.; Bancroft, S.; Molvik, Greg

    2003-01-01

    The Nuclear Electric Vehicle Optimization Toolset (NEVOT) optimizes the design of all major Nuclear Electric Propulsion (NEP) vehicle subsystems for a defined mission within constraints and optimization parameters chosen by a user. The tool uses a Genetic Algorithm (GA) search technique to combine subsystem designs and evaluate the fitness of the integrated design to fulfill a mission. The fitness of an individual is used within the GA to determine its probability of survival through successive generations in which the designs with low fitness are eliminated and replaced with combinations or mutations of designs with higher fitness. The program can find optimal solutions for different sets of fitness metrics without modification and can create and evaluate vehicle designs that might never be conceived of through traditional design techniques. It is anticipated that the flexible optimization methodology will expand present knowledge of the design trade-offs inherent in designing nuclear powered space vehicles and lead to improved NEP designs.

  2. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 2: Cryo/aerobrake vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The cryogenic/aerobrake (CAB) and the cryogenic all-propulsive (CAP) concept designs developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study are presented. The evolution of the CAB and CAP concepts is described along with the requirements, guidelines and assumptions for the designs. Operating modes and options are defined and systems descriptions of the vehicles are presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  3. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 4: Solar electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents the solar electric propulsion (SEP) concept design developed as part of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the SEP concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  4. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 3: Nuclear thermal rocket vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents the nuclear thermal rocket (NTR) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the NTR concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  5. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 4: Solar electric propulsion vehicle

    NASA Astrophysics Data System (ADS)

    1991-03-01

    This document presents the solar electric propulsion (SEP) concept design developed as part of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the SEP concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  6. TcCYS4, a cystatin from cocoa, reduces necrosis triggered by MpNEP2 in tobacco plants.

    PubMed

    Santana, L S; Costa, M G C; Pirovani, N M; Almeida, A F; Alvim, F C; Pirovani, C P

    2014-09-26

    In Brazil, most cocoa bean production occurs in Southern Bahia. Witches' broom disease arrived in this area in 1989 and has since caused heavy losses in production. The disease is caused by the basidiomycete fungus Moniliophthora perniciosa, a hemibiotrophic fungus that produces the necrosis and ethylene-inducting protein (MpNEP2) during infection; this protein can activate cysteine proteases and induce programmed cell death. Cysteine proteases can be modulated by cystatin. In this study, we overexpressed TcCYS4, a cocoa cystatin, in tobacco plants and evaluated the effect on MpNEP2 in model plants. Tccys4 cDNA was cloned into the pCAMBIA 1390 vector and inserted into the tobacco plants via Agrobacterium tumefaciens. Transgene expression was analyzed by reverse transcription-quantitative PCR and Western blot analysis. Transcript and protein levels in Tcccys4:tobacco lines were 8.9- and 1.5-fold higher than in wild-type plants (wt). Tcccys4:tobacco lines showed no change in growth compared to wt plants. CO2 net assimilation (A) increased in Tcccys4:tobacco lines compared to wt plants. Only one line showed statistically significant stomatal conductance (gs) and transpiration rate (E) changes. MpNEP2 was infiltered into the foliar mesophyll of Tcccys4:tobacco lines and wt plants, and necrotic lesions were attenuated in lines highly expressing Tccys4. Our results suggest that cocoa cystatin TcCYS4 affects MpNEP2 activity related to the progression of programmed cell death in tobacco plants. This may occur through the action of cystatin to inhibit cysteine proteases activated by MpNEP2 in plant tissues. Further studies are necessary to examine cystatin in the Theobroma cacao-M. perniciosa pathosystem.

  7. Exercise Within LBNP to Produce Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.

    1996-01-01

    Integrated physiologic countermeasures are needed to maintain orthostatic tolerance after spaceflight or bed rest. We hypothesized that supine exercise during LBNP would prevent bed rest-induced loss of orthostatic tolerance by preventing hemoconcentration. In a study conducted jointly with NASA Johnson Space Center and the University of Texas Medical Branch, Galveston, TX, fifteen male subjects underwent 5 days of 6 deg head-down bed rest: 5 control subjects did not exercise, and 10 performed 30 min/day of supine interval treadmill exercise at intensities up to 90% VO(sub 2peak). We will undertake two 14 day bed-rest studies (6 deg head-down tilt bed rest, HDT) to investigate the mechanism of action and efficacy of our partial vacuum exerciser concept. These 14 day bed rest studies were chosen to simulate current microgravity exposures for Space Shuttle crew members.

  8. Balance in a rotating artificial gravity environment

    NASA Technical Reports Server (NTRS)

    Soeda, Kazuhiro; DiZio, Paul; Lackner, James R.

    2003-01-01

    When subjects stand at the center of a fully enclosed room that is rotating at constant velocity, their natural postural sway generates Coriolis forces that destabilize their center of mass and head. We quantitatively assessed how exposure to constant velocity rotation at 10 rpm affected postural control. Twelve subjects stood in a heel-to-toe stance in the rotating room. Each test session involved three phases: (1) pre-rotation, (2) per-rotation, and (3) post-rotation. In each phase, subjects were tested in both eyes open and eyes closed conditions. Four measures were used to characterize center of mass movement and head movement: mean sway amplitude, total power, mean power frequency, and frequency of maximum power. Each measure was computed for anterior-posterior and medial-lateral sway. Both anterior-posterior and medial-lateral head and center of mass sway during rotation had significantly greater mean sway amplitude and total power compared with pre- and post-rotation values. Mean power frequency and frequency of maximum power were little affected. Eyes open conditions were significantly more stable in all test phases than eyes-closed, but vision did not completely suppress the effects of rotation. The greatest effect of rotation was in the eyes-closed condition with mean sway amplitude and total power increasing more than twofold. Inverted pendulum sway was maintained in all phases of both test conditions. No aftereffects of rotation were present after the four 25-s exposures each subject received. We expect that with longer exposure periods and with active generation of body sway subjects would both adapt to rotation and exhibit post-rotary aftereffects.

  9. Direct measurement of low-energy 22Ne(p ,γ )23Na resonances

    NASA Astrophysics Data System (ADS)

    Depalo, R.; Cavanna, F.; Aliotta, M.; Anders, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Bruno, C. G.; Caciolli, A.; Ciani, G. F.; Corvisiero, P.; Davinson, T.; Di Leva, A.; Elekes, Z.; Ferraro, F.; Formicola, A.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Imbriani, G.; Junker, M.; Menegazzo, R.; Mossa, V.; Pantaleo, F. R.; Piatti, D.; Prati, P.; Straniero, O.; Szücs, T.; Takács, M. P.; Trezzi, D.; LUNA Collaboration

    2016-11-01

    Background: The 22Ne(p ,γ )23Na reaction is the most uncertain process in the neon-sodium cycle of hydrogen burning. At temperatures relevant for nucleosynthesis in asymptotic giant branch stars and classical novae, its uncertainty is mainly due to a large number of predicted but hitherto unobserved resonances at low energy. Purpose: A new direct study of low-energy 22Ne(p ,γ )23Na resonances has been performed at the Laboratory for Underground Nuclear Astrophysics (LUNA), in the Gran Sasso National Laboratory, Italy. Method: The proton capture on 22Ne was investigated in direct kinematics, delivering an intense proton beam to a 22Ne gas target. γ rays were detected with two high-purity germanium detectors enclosed in a copper and lead shield suppressing environmental radioactivity. Results: Three resonances at 156.2 keV [ω γ =(1.48 ±0.10 ) ×10-7 eV], 189.5 keV [ω γ =(1.87 ±0.06 ) ×10-6 eV] and 259.7 keV [ω γ =(6.89 ±0.16 ) ×10-6 eV] proton beam energy, respectively, have been observed for the first time. For the levels at Ex=8943.5 , 8975.3, and 9042.4 keV excitation energy corresponding to the new resonances, the γ -decay branching ratios have been precisely measured. Three additional, tentative resonances at 71, 105, and 215 keV proton beam energy, respectively, were not observed here. For the strengths of these resonances, experimental upper limits have been derived that are significantly more stringent than the upper limits reported in the literature. Conclusions: Based on the present experimental data and also previous literature data, an updated thermonuclear reaction rate is provided in tabular and parametric form. The new reaction rate is significantly higher than previous evaluations at temperatures of 0.08-0.3 GK.

  10. High Power Electric Propulsion System for NEP: Propulsion and Trajectory Options

    NASA Astrophysics Data System (ADS)

    Koppel, Christophe R.; Duchemin, Olivier; Valentian, Dominique

    2006-01-01

    Recent US initiatives in Nuclear Propulsion lend themselves naturally to raising the question of the assessment of various options and particularly to propose the High Power Electric Propulsion Subsystem (HPEPS) for the Nuclear Electric Propulsion (NEP). The purpose of this paper is to present the guidelines for the HPEPS with respect to the mission to Mars, for automatic probes as well as for manned missions. Among the various options, the technological options and the trajectory options are pointed out. The consequences of the increase of the electrical power of a thruster are first an increase of the thrust itself, but also, as a general rule, an increase of the thruster performance due to its higher efficiency, particularly its specific impulse increase. The drawback is as a first parameter, the increase of the thruster's size, hence the so-called ``thrust density'' shall be high enough or shall be drastically increased for ions thrusters. Due to the large mass of gas needed to perform the foreseen missions, the classical xenon rare gas is no more in competition, the total world production being limited to 20 -40 tons per year. Thus, the right selection of the propellant feeding the thruster is of prime importance. When choosing a propellant with lower molecular mass, the consequences at thruster level are an increase once more of the specific impulse, but at system level the dead mass may increase too, mainly because the increase of the mass of the propellant system tanks. Other alternatives, in rupture with respect to the current technologies, are presented in order to make the whole system more attractive. The paper presents a discussion on the thruster specific impulse increase that is sometime considered an increase of the main system performances parameter, but that induces for all electric propulsion systems drawbacks in the system power and mass design that are proportional to the thruster specific power increase (kW/N). The electric thruster specific

  11. High Power Electric Propulsion System for NEP: Propulsion and Trajectory Options

    SciTech Connect

    Koppel, Christophe R.; Duchemin, Olivier; Valentian, Dominique

    2006-01-20

    Recent US initiatives in Nuclear Propulsion lend themselves naturally to raising the question of the assessment of various options and particularly to propose the High Power Electric Propulsion Subsystem (HPEPS) for the Nuclear Electric Propulsion (NEP). The purpose of this paper is to present the guidelines for the HPEPS with respect to the mission to Mars, for automatic probes as well as for manned missions. Among the various options, the technological options and the trajectory options are pointed out. The consequences of the increase of the electrical power of a thruster are first an increase of the thrust itself, but also, as a general rule, an increase of the thruster performance due to its higher efficiency, particularly its specific impulse increase. The drawback is as a first parameter, the increase of the thruster's size, hence the so-called 'thrust density' shall be high enough or shall be drastically increased for ions thrusters. Due to the large mass of gas needed to perform the foreseen missions, the classical xenon rare gas is no more in competition, the total world production being limited to 20 -40 tons per year. Thus, the right selection of the propellant feeding the thruster is of prime importance. When choosing a propellant with lower molecular mass, the consequences at thruster level are an increase once more of the specific impulse, but at system level the dead mass may increase too, mainly because the increase of the mass of the propellant system tanks. Other alternatives, in rupture with respect to the current technologies, are presented in order to make the whole system more attractive. The paper presents a discussion on the thruster specific impulse increase that is sometime considered an increase of the main system performances parameter, but that induces for all electric propulsion systems drawbacks in the system power and mass design that are proportional to the thruster specific power increase (kW/N). The electric thruster specific

  12. Properties of Dust Obscured Galaxies in the Nep-Deep Field

    NASA Astrophysics Data System (ADS)

    Oi, Nagisa; Matsuhara, Hideo; Pearson, Chris; Buat, Veronique; Burgarella, Denis; Malkan, Matt; Miyaji, Takamitsu; AKARI-NEP Team

    2017-03-01

    We selected 47 DOGs at z∼1.5 using optical R (or r^{'}), AKARI 18 μm, and 24 μm color in the AKARI North Ecliptic Pole (NEP) Deep survey field. Using the colors among 3, 4, 7, and 9μm, we classified them into 3 groups; bump DOGs (23 sources), power-law DOGs (16 sources), and unknown DOGs (8 sources). We built spectral energy distributions (SEDs) with optical to far-infrared photometric data and investigated their properties using SED fitting method. We found that AGN activity such as a AGN contribution to the infrared luminosity and a Chandra detection rate for bump and power-law DOGs are significantly different, while stellar component properties like a stellar mass and a star-formation rate are similar to each other. A specific star-formation rate range of power-law DOGs is slightly higher than that of bump DOGs with wide overlap. Herschel/PACS detection rates are almost the same between bump and power-law DOGs. On the other hand SPIRE detection rates show large differences between bump and power-law DOGs. These results might be explained by differences in dust temperatures. Both groups of DOGs host hot and/or warm dust (∼ 50 Kelvin), and many bump DOGs contain cooler dust (≤ 30 Kelvin)

  13. [Anti-NEP and anti-PLA2R antibodies in membranous nephropathy: an update].

    PubMed

    Pozdzik, A A; Debiec, H; I Brochériou; Husson, C; Rorive, S; Broeders, N; Le Moine, A; Ronco, P; Nortier, J

    2015-01-01

    Membranous nephropathy (MN) is the most common cause for nephrotic syndrome in adults and occurs as an idiopathic (primary) or secondary disease. Since the early 2000's, substantial advances have been made in the understanding of the molecular bases of MN. The neutral endopeptidase (NEP) and the receptor for secretory phospholipase A2 (PLA2R) have been identified as target antigens for circulating and deposited antibodies in allo-immune neonatal and adult " idiopathic " MN, respectively. These antibodies recognize specific antigens of podocytes, precipitate as subepithelial immune complexes and activate complement leading to proteinuria. Anti-PLA2R antibodies are of particular clinical importance. Indeed, they are detected in approximately 70% of primary MN in adults, demonstrating that MN actually is an autoimmune condition specific to the kidney. In Europeans, genome-wide studies have shown an association between alleles of PLA2R1 and HLA DQA1 (class II genes of tissue histocompatibility complex) genes and idiopathic MN. Newly developed diagnostic tests detecting circulating anti-PLA2R antibody and PLA2R antigen in glomerular deposits have induced a change in paradigm in the diagnostic approach of idiopathic MN. Measurement of circulating anti-PLA2R antibody is also very useful for the monitoring of MN activity. However, the mechanisms responsible for the formation of anti-PLA2R antibodies as well as those involved in the progression of MN to end-stage renal disease remain to be defined.

  14. Clustering of the AKARI NEP Deep Field mid infrared selected galaxies

    NASA Astrophysics Data System (ADS)

    Solarz, Aleksandra; Pollo, Agnieszka; Takeuchi, Tsutomu T.; Małek, Katarzyna

    2016-06-01

    We present a method of selection of 24 μm galaxies from the AKARI North Ecliptic Pole (NEP) Deep Field and measurements of their two-point correlation function. We aim to associate different 24 μm selected galaxy populations with present day galaxies, and to investigate the impact of their environment on the direction of their subsequent evolution. We discuss the use of Support Vector Machines (SVM) algorithms applied to infrared photometric data to perform star-galaxy separation, in which we achieve an accuracy > 80%. We explore the redshift dependance of the correlation function parameters as well as the linear bias evolution (which relates galaxy distribution to the one of the underlying dark matter). We find that the bias parameter increases slowly with redshift, from b = 0.9 at z < 0.5 to b ˜ 1.9 at z ˜ 1.1. Total infrared luminosities (L_{TIR}) found for different samples, suggest that galaxies with higher L_{TIR} do not necessarily reside in higher mass dark matter halos. We find that luminous infrared galaxies (LIRGs) at z˜1 can be ancestors of present day L_{*} early type galaxies.

  15. Discovery of intermediate redshift galaxy clusters in the ROSAT NEP field. [North Ecliptic Pole

    NASA Technical Reports Server (NTRS)

    Burg, R.; Giacconi, R.; Huchra, J.; Mackenty, J.; Mclean, B.; Geller, M.; Hasinger, G.; Marzke, R.; Schmidt, M.; Truemper, J.

    1992-01-01

    We report preliminary results from a program to identify optical counterparts of ROSAT sources in the North Ecliptic Pole (NEP) region. The most striking X-ray feature reported by Hasinger et al. (1991) is an extended low surface brightness region of X-ray emission. Within the two X-ray contours of highest count rate we find a cluster of galaxies at a redshift of 0.09 and an early-type galaxy at a redshift of 0.03. X-ray emission from these objects may provide an explanation for the observed X-ray morphology. We also find evidence that other X-ray sources in this region are coincident with clusters or groups of galaxies at redshifts between 0.08 and 0.09. The presence of at least five X-ray detected clusters or groups in this narrow redshift band within a 1.5 deg radius field seems to indicate the existence of a moderate redshift supercluster. The existence of these clusters will have major implications for the study of large-scale structure through X-ray surveys such as ROSAT.

  16. Estimation of Specific Mass for Multimegawatt NEP Systems Based on Vapor Core Reactors with MHD Power Conversion

    NASA Astrophysics Data System (ADS)

    Knight, Travis; Anghaie, Samim

    2004-02-01

    Very low specific-mass power generation in space is possible using Vapor Core Reactors with Magnetohydrodynamic (VCR/MHD) generator. These advanced reactors at the conceptual design level have potential for the generation of tens to hundreds of megawatts of power in space with specific mass of about 1 kg/kWe. Power for nuclear electric propulsion (NEP) is possible with almost direct power conditioning and coupling of the VCR/MHD power output to the VASIMR engine, MPD, and a whole host of electric thrusters. The VCR/MHD based NEP system is designed to power space transportation systems that dramatically reduce the mission time for human exploration of the entire solar system or for aggressive long-term robotic missions. There are more than 40 years of experience in the evaluation of the scientific and technical feasibility of gas and vapor core reactor concepts. The proposed VCR is based on the concept of a cavity reactor made critical through the use of a reflector such as beryllium or beryllium oxide. Vapor fueled cavity reactors that are considered for NEP applications operate at maximum core center and wall temperatures of 4000 K and 1500K, respectively. A recent investigation has resulted in the conceptual design of a uranium tetrafluoride fueled vapor core reactor coupled to a MHD generator. Detailed neutronic design and cycle analyses have been performed to establish the operating design parameters for 10 to 200 MWe NEP systems. An integral system engineering-simulation code is developed to perform parametric analysis and design optimization studies for the VCR/MHD power system. Total system weight and size calculated based on existing technology has proven the feasibility of achieving exceptionally low specific mass (α ~1 kg/kWe) with a VCR/MHD powered system.

  17. Participation of neutral endopeptidase 24. 11 (NEP; enkephalinase A) in kinin metabolism in vitro and in vivo

    SciTech Connect

    Ura, N.; Carretero, O.A.; Erdoes, E.G.

    1986-03-05

    Studies were done in 2 phases in rats. (1) Bradykinin was added catheter-collected urine, and its hydrolysis was determined by RIA. Three different kiniases were found by application of specific inhibitors. Kininase I-type carboxypeptidase was inhibited by 2-mercaptomethyl-3-guanidinoethyl-thiopropanoic acid, kiniase II by captopril and NEP by phosphoramidon (PA). Surprisingly, NEP was responsible for 68% of total kininase, while kininase I and II contributed only 9 and 23%. (2) To study the effects of inhibition of NEP on renal function, rats were infused with PA (330 ..mu..g/hr/kg, n=6). Urinary kinin level, kininase, GFR, RBF, U/sub Na/V, U/sub K/V and UV were measured. PA decreased total urinary kininase activity from 284 to 58 ng/min/kg (77%, p < 0.01) and increased urinary kinin excretion from 74 to 128 pg/min/kg (73%, p < 0.02), UV from 72 to 82 ..mu..l/min/kg (15%, p < 0.01) and U/sub Na/V from 12 to 17 ..mu.. Eq/min/kg (37%, p < 0.02). PA did not change BP, RBF, GFR or U/sub K/V. /sup 125/I-Tyr-bradykinin infused into the aorta did not appear in urine intact during PA administration. In conclusion, this is the first demonstration of NEP catabolizing kinins in vivo; its inhibition increased the excretion of intrarenally generated kinins. Changes in water and electrolyte excretion may be caused by kinins generated in the distal nephron.

  18. Moniliophthora perniciosa Necrosis- and Ethylene-Inducing Protein 2 (MpNep2) as a Metastable Dimer in Solution: Structural and Functional Implications

    PubMed Central

    de Oliveira, Guilherme A. P.; Pereira, Elen G.; Dias, Cristiano V.; Souza, Theo L. F.; Ferretti, Giulia D. S.; Cordeiro, Yraima; Camillo, Luciana R.; Almeida, Fabio C.; Valente, Ana Paula; Silva, Jerson L.

    2012-01-01

    Understanding how Nep-like proteins (NLPs) behave during the cell cycle and disease progression of plant pathogenic oomycetes, fungi and bacteria is crucial in light of compelling evidence that these proteins play a role in Witches` Broom Disease (WBD) of Theobroma cacao, one of the most important phytopathological problems to afflict the Southern Hemisphere. The crystal structure of MpNep2, a member of the NLP family and the causal agent of WBD, revealed the key elements for its activity. This protein has the ability to refold after heating and was believed to act as a monomer in solution, in contrast to the related homologs MpNep1 and NPP from the oomyceteous fungus Phytophthora parasitica. Here, we identify and characterize a metastable MpNep2 dimer upon over-expression in Escherichia coli using different biochemical and structural approaches. We found using ultra-fast liquid chromatography that the MpNep2 dimer can be dissociated by heating but not by dilution, oxidation or high ionic strength. Small-angle X-ray scattering revealed a possible tail-to-tail interaction between monomers, and nuclear magnetic resonance measurements identified perturbed residues involved in the putative interface of interaction. We also explored the ability of the MpNep2 monomer to refold after heating or chemical denaturation. We observed that MpNep2 has a low stability and cooperative fold that could be an explanation for its structure and activity recovery after stress. These results can provide new insights into the mechanism for MpNep2′s action in dicot plants during the progression of WBD and may open new avenues for the involvement of NLP- oligomeric species in phytopathological disorders. PMID:23029140

  19. Characterization of necrosis and ethylene-inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches' broom in Theobroma cacao.

    PubMed

    Garcia, Odalys; Macedo, Joci A N; Tibúrcio, Ricardo; Zaparoli, Gustavo; Rincones, Johana; Bittencourt, Livia M C; Ceita, Geruza O; Micheli, Fabienne; Gesteira, Abelmon; Mariano, Andréa C; Schiavinato, Marlene A; Medrano, Francisco J; Meinhardt, Lyndel W; Pereira, Gonçalo A G; Cascardo, Júlio C M

    2007-04-01

    The hemibiotrophic basidiomycete Moniliophthora perniciosa causes witches' broom disease of Theobroma cacao. Analysis of the M. perniciosa draft genome led to the identification of three putative genes encoding necrosis and ethylene-inducing proteins (MpNEPs), which are apparently located on the same chromosome. MpNEP1 and 2 have highly similar sequences and are able to induce necrosis and ethylene emission in tobacco and cacao leaves. MpNEP1 is expressed in both biotrophic and saprotrophic mycelia, the protein behaves as an oligomer in solution and is very sensitive to temperature. MpNEP2 is expressed mainly in biotrophic mycelia, is present as a monomer in solution at low concentrations (<40 microM) and is able to recover necrosis activity after boiling. These differences indicate that similar NEPs can have distinct physical characteristics and suggest possible complementary roles during the disease development for both proteins. This is the first report of NEP1-like proteins in a basidiomycete.

  20. Curcumin inhibits the AKT/NF-κB signaling via CpG demethylation of the promoter and restoration of NEP in the N2a cell line.

    PubMed

    Deng, Yushuang; Lu, Xi; Wang, Li; Li, Tao; Ding, Yubin; Cao, Huimin; Zhang, Yuping; Guo, Xiuming; Yu, Gang

    2014-07-01

    Curcumin (CUR), a non-toxic polyphenol from Curcuma longa, has been investigated as a potential therapy with anti-inflammatory and anti-oxidative effects for Alzheimer's disease (AD), which depicts features of chronic inflammatory environment resulting in cellular death. However, it remains largely unknown whether the anti-inflammatory effect of CUR in AD is associated with its property of CpG demethylation, which is another function of CUR with the most research interest during recent years. Neprilysin (NEP, EP24.11), a zinc-dependent metallopeptidase expressed relatively low in the brain, is emerging as a potent inhibitor of AKT/Protein Kinase B. In addition, hypermethylated promoter of NEP has been reported to be associated with decreases in NEP expression. In the present study, using bisulfite-sequencing PCR (BSP) assay, we showed that the CpG sites in NEP gene were hypermethylated both in wild-type mouse neuroblastoma N2a cells (N2a/wt) and N2a cells stably expressing human Swedish mutant amyloid precursor protein (APP) (N2a/APPswe) associated with familial early onset AD. CUR treatment induced restoration of NEP gene via CpG demethylation. This CUR-mediated upregulation of NEP expression was also concomitant with the inhibition of AKT, subsequent suppression of nuclear transcription factor-κB (NF-κB) and its downstream pro-inflammatory targets including COX-2, iNOS in N2a/APPswe cells. This study represents the first evidence on a link between CpG demethylation effect on NEP and anti-inflammation ability of CUR that may provide a novel mechanistic insight into the anti-inflammatory actions of CUR as well as new basis for using CUR as a therapeutic intervention for AD.

  1. Purification, crystallization and preliminary X-ray diffraction analysis of an oomycete-derived Nep1-like protein.

    PubMed

    Luberacki, Borries; Weyand, Michael; Seitz, Ulrich; Koch, Wolfgang; Oecking, Claudia; Ottmann, Christian

    2008-12-01

    The elicitor protein Nep1-like protein from the plant pathogen Pythium aphanidermatum was purified and crystallized using the hanging-drop vapour-diffusion method. A native data set was collected to 1.35 A resolution at 100 K using synchrotron radiation. Since selenomethionine-labelled protein did not crystallize under the original conditions, a second crystal form was identified that yielded crystals that diffracted to 2.1 A resolution. A multiple-wavelength anomalous dispersion (MAD) experiment was performed at 100 K and all four selenium sites were identified, which allowed solution of the structure.

  2. Purification, crystallization and preliminary X-ray diffraction analysis of an oomycete-derived Nep1-­like protein

    PubMed Central

    Luberacki, Borries; Weyand, Michael; Seitz, Ulrich; Koch, Wolfgang; Oecking, Claudia; Ottmann, Christian

    2008-01-01

    The elicitor protein Nep1-like protein from the plant pathogen Pythium aphanidermatum was purified and crystallized using the hanging-drop vapour-diffusion method. A native data set was collected to 1.35 Å resolution at 100 K using synchrotron radiation. Since selenomethionine-labelled protein did not crystallize under the original conditions, a second crystal form was identified that yielded crystals that diffracted to 2.1 Å resolution. A multiple-wavelength anomalous dispersion (MAD) experiment was performed at 100 K and all four selenium sites were identified, which allowed solution of the structure. PMID:19052381

  3. Inhibitory effect of STAT3 gene combined with CDDP on growth of human Wilms tumour SK-NEP-1 cells

    PubMed Central

    Wang, Junrong; Zhang, Nina; Qu, Haijiang; You, Guangxian; Yuan, Junhui; Chen, Caie; Li, Wenyi; Pan, Feng

    2016-01-01

    To investigate the effects of signal transducer and activator of transcription 3 (STAT3) combined with cisplatin (CDDP) on the growth of human Wilms tumour (WT) SK-NEP-1 cell subcutaneous xenografts in nude mice and the possible mechanisms. Human WT SK-NEP-1 cells were subcutaneously transplanted to establish the BALB/c nude mice xenograft model. Mice were randomly divided into five groups: blank control group, adenovirus control group (NC group), STAT3 group, CDDP group and STAT3 plus CDDP group (combination group). Tumour volume and tumour weight were observed during the therapeutic process. The expression levels of STAT3, glucose regulatory protein 78 (GRP78) and BCL2-associated X protein (BAX) were evaluated by immunohistochemical analysis. Compared with the STAT3 group or CDDP group, the tumour weight and volume was significantly reduced in the combination group (P<0.05). No statistical significance was found in NC group compared with the blank control group (P > 0.05). Immunohistochemical analysis showed that STAT3, GRP78 and BAX protein levels in the combination group were significantly higher than those in STAT3 group and CDDP group (P<0.05). Exogenous STAT3 and CDDP may synergistically inhibit the xenograft tumour growth through up-regulation of BAX protein via GRP78. PMID:27129294

  4. Vehicle Rustproofing,

    DTIC Science & Technology

    1982-03-01

    Corrosion Areas - G.M.) 11. Vehicle Rustproofing Guide for Vehicle Maintenance Managers 12. Chart - Vehicle Buy Program FY 83-87 13. Vehicle ...on the Vehicle Buy Program. k. The impact of a total fleet rustproofing policy on industry. I. Potential problems in Quality Control and Warranty...FY83-87, the Air Force intends to buy $2.5 billion worth of vehicles (Atch 12); thus, a total fleet treatment program for that period could cost as

  5. The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Ψ1191 in yeast 18S rRNA.

    PubMed

    Meyer, Britta; Wurm, Jan Philip; Kötter, Peter; Leisegang, Matthias S; Schilling, Valeska; Buchhaupt, Markus; Held, Martin; Bahr, Ute; Karas, Michael; Heckel, Alexander; Bohnsack, Markus T; Wöhnert, Jens; Entian, Karl-Dieter

    2011-03-01

    The Nep1 (Emg1) SPOUT-class methyltransferase is an essential ribosome assembly factor and the human Bowen-Conradi syndrome (BCS) is caused by a specific Nep1(D86G) mutation. We recently showed in vitro that Methanocaldococcus jannaschii Nep1 is a sequence-specific pseudouridine-N1-methyltransferase. Here, we show that in yeast the in vivo target site for Nep1-catalyzed methylation is located within loop 35 of the 18S rRNA that contains the unique hypermodification of U1191 to 1-methyl-3-(3-amino-3-carboxypropyl)-pseudouri-dine (m1acp3Ψ). Specific (14)C-methionine labelling of 18S rRNA in yeast mutants showed that Nep1 is not required for acp-modification but suggested a function in Ψ1191 methylation. ESI MS analysis of acp-modified Ψ-nucleosides in a Δnep1-mutant showed that Nep1 catalyzes the Ψ1191 methylation in vivo. Remarkably, the restored growth of a nep1-1(ts) mutant upon addition of S-adenosylmethionine was even observed after preventing U1191 methylation in a Δsnr35 mutant. This strongly suggests a dual Nep1 function, as Ψ1191-methyltransferase and ribosome assembly factor. Interestingly, the Nep1 methyltransferase activity is not affected upon introduction of the BCS mutation. Instead, the mutated protein shows enhanced dimerization propensity and increased affinity for its RNA-target in vitro. Furthermore, the BCS mutation prevents nucleolar accumulation of Nep1, which could be the reason for reduced growth in yeast and the Bowen-Conradi syndrome.

  6. Developmental expression of stress response genes in Theobroma cacao leaves and their response to Nep1 treatment and a compatible infection by Phytophthora megakarya.

    PubMed

    Bailey, Bryan A; Bae, Hanhong; Strem, Mary D; Antúnez de Mayolo, Gabriela; Guiltinan, Mark J; Verica, Joseph A; Maximova, Siela N; Bowers, John H

    2005-06-01

    Developmental expression of stress response genes in Theobroma cacao leaves and their response to Nep1 and a compatible infection by Phytophthora megakarya were studied. Ten genes were selected to represent genes involved in defense (TcCaf-1, TcGlu1,3, TcChiB, TcCou-1, and TcPer-1), gene regulation (TcWRKY-1 and TcORFX-1), cell wall development (TcCou-1, TcPer-1, and TcGlu-1), or energy production (TcLhca-1 and TcrbcS). Leaf development was separated into unexpanded (UE), young red (YR), immature green (IG), and mature green (MG). Our data indicates that the constitutive defense mechanisms used by cacao leaves differ between different developmental stages. TcWRKY-1 and TcChiB were highly expressed in MG leaves, and TcPer-1, TcGlu-1, and TcCou-1 were highly expressed in YR leaves. TcGlu1,3 was highly expressed in UE and YR leaves, TcCaf-1 was highly expressed in UE leaves, and TcLhca-1 and TcrbcS were highly expressed in IG and MG leaves. NEP1 encodes the necrosis inducing protein Nep1 produced by Fusarium oxysporum and has orthologs in Phytophthora species. Nep1 caused cellular necrosis on MG leaves and young pods within 24 h of application. Necrosis was observed on YR leaves 10 days after treatment. Expression of TcWRKY-1, TcORFX-1, TcPer-1, and TcGlu-1 was enhanced and TcLhca-1 and TcrbcS were repressed in MG leaves after Nep1 treatment. Expression of TcWRKY-1 and TcORFX-1 was enhanced in YR leaves after Nep1 treatment. Infection of MG leaf disks by P. megakarya zoospores enhanced expression of TcGlu-1, TcWRKY-1, and TcPer-1 and repressed expression of TcChiB, TcLhca-1 and TcrbcS. Five of the six genes that were responsive to Nep1 were responsive to infection by P. megakarya. Susceptibility of T. cacao to P. megakarya includes altered plant gene expression and phytotoxic molecules like Nep1 may contribute to susceptibility.

  7. Closed Brayton Cycle power system with a high temperature pellet bed reactor heat source for NEP applications

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; El-Genk, Mohamed S.; Harper, William B., Jr.

    1992-01-01

    Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

  8. Genetic evidence for 18S rRNA binding and an Rps19p assembly function of yeast nucleolar protein Nep1p.

    PubMed

    Buchhaupt, Markus; Meyer, Britta; Kötter, Peter; Entian, Karl-Dieter

    2006-09-01

    The nucleolar protein Nep1 and its human homologue were previously shown to be involved in the maturation of 18S rRNA and to interfere directly or indirectly with a methylation reaction. Here, we report that the loss-of-function mutation Deltasnr57 and multicopy expression of the ribosomal 40S subunit protein 19 (Rps19p) can partially suppress the Saccharomyces cerevisiae Deltanep1 growth defect. SnR57 mediates 2'-O-ribose-methylation of G(1570) in the 18S rRNA. By performing a three-hybrid screen, we isolated several short RNA sequences with strong binding affinity to Nep1p. All isolated RNAs shared a six-nucleotide consensus motif C/UUCAAC. Furthermore, one of the isolated RNAs exactly corresponded to nucleotides 1553-1577 of the 18S rRNA, which includes G(1570), the site of snR57-dependent 18S rRNA methylation. From protein-protein crosslink data and the cryo-EM map of the S. cerevisiae small ribosomal subunit, we suggest that Rps19p is localized in close vicinity to the Nep1p 18S rRNA binding site. Our results suggest that Nep1p binds adjacent to helix 47 of the 18S rRNA and possibly supports the association of Rps19p to pre-ribosomal particles.

  9. Progress report on understanding AFIS seed coat nep levels in pre-opened slivers on the Advanced Fiber Information System (AFIS)

    USDA-ARS?s Scientific Manuscript database

    The Advanced Fiber Information System (AFIS) is utilized in this segment of the research project to study how seed coat neps are measured. A patent search was conducted, and studied to assist with the understanding of the AFIS measurement of this impurity in raw cotton. The older AFIS 2 is primari...

  10. The National Educational Panel Study (NEPS) in Germany: An Overview of Design, Research Options and Access, with a Focus on Lower-Secondary School

    ERIC Educational Resources Information Center

    Strietholt, Rolf; Naujokat, Kerstin; Mai, Tobias; Kretschmer, Sara; Jarsinski, Stephan; Goy, Martin; Frahm, Sarah; Kanders, Michael; Bos, Wilfried; Blatt, Inge

    2013-01-01

    This article introduces the National Educational Panel Study (NEPS). This German longitudinal study produces a vast amount of data for the scientific community, and researchers all around Europe are invited to use the data to address various research questions empirically. Therefore, the authors provide information about the purpose as well as the…

  11. Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms

    SciTech Connect

    Irwin, Ryan W.; Tinker, Michael L.

    2005-02-06

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.

  12. Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Irwin, Ryan W.; Tinker, Michael L.

    2005-01-01

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.

  13. Hybrid Vehicles

    DTIC Science & Technology

    2008-12-08

    hybrid electric vehicles typically contain potentially hazardous levels of electrical voltage or current. It is important to protect the operators...60740. ITOP 2-2-607(1)41 is used for tracked vehicles. 13 TOP 2-1-003 08 December 2008 Hybrid electric vehicles often employ much more

  14. Motor vehicle

    SciTech Connect

    Furukawa, Y.; Sano, S.

    1986-04-15

    An improvement in a motor vehicle is described including: a vehicle body; a front road wheel disposed in the front part of the vehicle body; a rear road wheel disposed in the rear part of the vehicle body; an engine for driving at least either of the front and rear road wheels; and a steering wheel for steering at least either of the front and rear road wheels; comprising: detection means connected to the vehicle for detecting the transverse sliding angle of the vehicle body; and display means connected to the detection means for visually displaying the moving direction of the vehicle body on the basis of an output of the detection means; and the detection means comprises a first sensor for detecting the advancing speed of the vehicle, a second sensor for detecting the transverse acceleration of the vehicle, a third sensor for detecting the yawing velocity of the vehicle, and a processor for calculating the transverse sliding angle on the basis of the advancing speed, the transverse acceleration and the yawing velocity.

  15. Electric vehicles

    SciTech Connect

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  16. Electric vehicles

    NASA Astrophysics Data System (ADS)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  17. Andrographolide promotes vincristine-induced SK-NEP-1 tumor cell death via PI3K-AKT-p53 signaling pathway

    PubMed Central

    Zhang, Mingsheng; Xue, Enda; Shao, Wei

    2016-01-01

    Background Nephroblastoma (Wilms’ tumor [WT]) is the most common malignant renal cancer in children. Although the outcome of WT has significantly improved as a result of the combination of surgery, chemotherapy, and radiotherapy; in some cases WT results in severe complications. Thus, novel strategies that would decrease treatment burden are required. The aim of the current study was to investigate the synergistic antitumor effect of andrographolide (AND) in combination with vincristine (VCR) on WT cells. Methods Cell Counting Kit-8 assay was used to investigate the synergistic antiproliferation effect of AND and/or VCR on SK-NEP-1 cells in vitro. Meanwhile, SK-NEP-1 xenografts were used to detect the antitumor effect in vivo. Apoptosis and autophagy were then detected by Annexin V, monodansylcadaverine staining. Finally, the underlying signaling transduction was determined with Western blotting. Results The combination of AND with VCR significantly suppressed SK-NEP-1 cell proliferation in vitro and inhibited xenograft tumor growth in vivo, compared with AND or VCR treatment alone. In addition, the synergistic antitumor effect of AND on the cells was due to an increased apoptosis, not autophagy. Moreover, PI3K-AKT-p53 signaling pathway was involved in the process of combination treatment, which was confirmed when a selective AKT activator was applied. Conclusion The combination of AND with VCR has a strong synergistic antitumor effect on WT via PI3K-AKT-p53 signaling pathway, thereby representing a potential treatment for WT in the near future. PMID:27729773

  18. Launch vehicle

    NASA Astrophysics Data System (ADS)

    Rutledge, William S.

    1994-06-01

    Concentrated efforts by NASA and the DOD to begin development of a new large launch vehicle have been under way for over a decade. Options include the National Launch System, Advanced Launch System, a heavy lift vehicle, a Shuttle-derived vehicle, a Titan-derived vehicle, Single stage To Orbit, NASP and Spacelifter, to name a few. All initially promised low operations costs achieved at development costs in the $5 billion - $10 billion range. However, none has obtained approval for development, primarily because it became apparent that these cost goals could not realistically be met.

  19. Descent vehicles

    NASA Technical Reports Server (NTRS)

    Popov, Y. I.

    1985-01-01

    The creation of descent vehicles marked a new stage in the development of cosmonautics, involving the beginning of manned space flight and substantial progress in space research on the distant bodies of the Solar System. This booklet describes these vehicles and their structures, systems, and purposes. It is intended for the general public interested in modern problems of space technology.

  20. Vehicle systems

    NASA Technical Reports Server (NTRS)

    Bales, Tom; Modlin, Tom; Suddreth, Jack; Wheeler, Tom; Tenney, Darrel R.; Bayless, Ernest O.; Lisagor, W. Barry; Bolstad, Donald A.; Croop, Harold; Dyer, J.

    1993-01-01

    Perspectives of the subpanel on expendable launch vehicle structures and cryotanks are: (1) new materials which provide the primary weight savings effect on vehicle mass/size; (2) today's investment; (3) typically 10-20 years to mature and fully characterize new materials.

  1. Interannual responses of net ecosystem CO2 exchange and NEP of intact tallgrass prairie ecosystems to an anomalously warm year under elevated atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Arnone, John; Jasoni, Richard; Coulombe, William; Verburg, Paul

    2014-05-01

    Increases in anthropogenic greenhouse gas (GHG) levels in the atmosphere continue to warm the troposphere and cause a higher frequency and intensity of extremely warm climatic events. Because the terrestrial biosphere strongly influences the fluxes of CO2, the most important GHG, to and from the atmosphere globally, quantification of the responses of these ecosystems to extremely warm years is essential to project how ecosystem process such as net ecosystem CO2 exchange (NEE) and net ecosystem productivity (NEP) will be affected, and to predict how these responses will impact atmospheric CO2 levels. Our earlier research with intact grassland ecosystems using the EcoCELL large-scale controlled environment facility under present day atmospheric CO2 concentrations demonstrated a 1-2 year lagged recovery time of NEE and NEP (with NEP= net primary productivity [NPP] minus heterotrophic respiration [Rh]) in response to exposure to an anomalously (+4° C) warm year (Arnone et al. 2008-Nature 455:383-386). This lagged effect was attributed to large reductions in NPP during the warm year and then a 1-year delayed increase in Rh followed in the next year by a recovery. Responses of NPP resulted primarily from decreases in leaf stomatal conductance and photosynthesis caused by warming-induced high vapor pressure deficits (VPDs) and drying soil in the rooting zone. Lagged responses in Rh resulted from dry surface soils occurring during the anomalously warm year followed by a recovery in soil moisture in the following year, with carbon fixed and deposited in the rhizosphere during warm year-in addition to carbon fixed and deposited in the rhizosphere during the year following-able to be decomposed in the year after the temperature extreme. Given the large modulating role that these hydrologic factors (VPD, soil moisture) played in defining responses of NEE and NEP to an extremely warm year, and the fact that elevated atmospheric CO2 concentrations can alleviate these hydrologic

  2. Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis.

    PubMed

    Oome, Stan; Raaymakers, Tom M; Cabral, Adriana; Samwel, Simon; Böhm, Hannah; Albert, Isabell; Nürnberger, Thorsten; Van den Ackerveken, Guido

    2014-11-25

    Necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are secreted by a wide range of plant-associated microorganisms. They are best known for their cytotoxicity in dicot plants that leads to the induction of rapid tissue necrosis and plant immune responses. The biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis encodes 10 different noncytotoxic NLPs (HaNLPs) that do not cause necrosis. We discovered that these noncytotoxic NLPs, however, act as potent activators of the plant immune system in Arabidopsis thaliana. Ectopic expression of HaNLP3 in Arabidopsis triggered resistance to H. arabidopsidis, activated the expression of a large set of defense-related genes, and caused a reduction of plant growth that is typically associated with strongly enhanced immunity. N- and C-terminal deletions of HaNLP3, as well as amino acid substitutions, pinpointed to a small central region of the protein that is required to trigger immunity, indicating the protein acts as a microbe-associated molecular pattern (MAMP). This was confirmed in experiments with a synthetic peptide of 24 aa, derived from the central part of HaNLP3 and corresponding to a conserved region in type 1 NLPs that induces ethylene production, a well-known MAMP response. Strikingly, corresponding 24-aa peptides of fungal and bacterial type 1 NLPs were also able to trigger immunity in Arabidopsis. The widespread phylogenetic distribution of type 1 NLPs makes this protein family (to our knowledge) the first proteinaceous MAMP identified in three different kingdoms of life.

  3. Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis

    PubMed Central

    Oome, Stan; Raaymakers, Tom M.; Cabral, Adriana; Samwel, Simon; Böhm, Hannah; Albert, Isabell; Nürnberger, Thorsten

    2014-01-01

    Necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are secreted by a wide range of plant-associated microorganisms. They are best known for their cytotoxicity in dicot plants that leads to the induction of rapid tissue necrosis and plant immune responses. The biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis encodes 10 different noncytotoxic NLPs (HaNLPs) that do not cause necrosis. We discovered that these noncytotoxic NLPs, however, act as potent activators of the plant immune system in Arabidopsis thaliana. Ectopic expression of HaNLP3 in Arabidopsis triggered resistance to H. arabidopsidis, activated the expression of a large set of defense-related genes, and caused a reduction of plant growth that is typically associated with strongly enhanced immunity. N- and C-terminal deletions of HaNLP3, as well as amino acid substitutions, pinpointed to a small central region of the protein that is required to trigger immunity, indicating the protein acts as a microbe-associated molecular pattern (MAMP). This was confirmed in experiments with a synthetic peptide of 24 aa, derived from the central part of HaNLP3 and corresponding to a conserved region in type 1 NLPs that induces ethylene production, a well-known MAMP response. Strikingly, corresponding 24-aa peptides of fungal and bacterial type 1 NLPs were also able to trigger immunity in Arabidopsis. The widespread phylogenetic distribution of type 1 NLPs makes this protein family (to our knowledge) the first proteinaceous MAMP identified in three different kingdoms of life. PMID:25368167

  4. Bradykinin and matrix metalloproteinases are involved the structural alterations of rat small resistance arteries with inhibition of ACE and NEP.

    PubMed

    Rizzoni, Damiano; Rossi, Gian Paolo; Porteri, Enzo; Sticchi, Daniele; Rodella, Luigi; Rezzani, Rita; Sleiman, Intissar; De Ciuceis, Carolina; Paiardi, Silvia; Bianchi, Rossella; Nussdorfer, G G; Agabiti-Rosei, Enrico

    2004-04-01

    Increased vascular resistance is a hallmark of hypertension and involves structural alterations, which may entail smooth muscle cell hypertrophy or hyperplasia, or qualitative or quantitative changes in extracellular matrix (ECM) proteins. Since the renin-angiotensin-aldosterone system modulates these changes, we investigated the effects of 8 weeks of treatment with an angiotensin-converting enzyme (ACE) inhibitor, ramipril (RAM), or a dual ACE and neutral endopeptidase (NEP) inhibitor, MDL-100240 (MDL), on mesenteric small artery structure and ECM proteins in mRen2-transgenic rats (TGRs), an animal model of hypertension with severe cardiovascular damage. Thirty-five 5-week-old rats were included in the study: six TGRs received RAM; five TGRs RAM + the bradykinin receptor inhibitor, icatibant; six TGRs, MDL; and five TGRs MDL + icatibant, while eight TGRs and five normotensive Sprague-Dawley controls were kept untreated. Mesenteric small arteries were dissected and mounted on a micromyograph. The media-to-lumen ratio (M/L) was then calculated. Vascular metalloproteinase (MMP) content was evaluated by zymography. In untreated TGRs severe hypertension was associated with inward eutrophic remodelling of small arteries. Both RAM and MDL prevented the increase in blood pressure and M/L and decreased MMPs. Icatibant blunted the effect of MDL on BP, M/L and MMPs. Changes in collagenase activity induced by ramipril and MDL are associated with prevention of small artery structural alterations in TGRs. Furthermore, MDL-induced enhancement of bradykinin could play a role in both the prevention of vascular structural alterations and in the stimulation of MMPs.

  5. Finite-thrust optimization of interplanetary transfers of space vehicle with bimodal nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Kharytonov, Oleksii M.; Kiforenko, Boris M.

    2011-08-01

    The nuclear thermal rocket (NTR) propulsion is one of the leading promising technologies for primary space propulsion for manned exploration of the solar system due to its high specific impulse capability and sufficiently high thrust-to-weight ratio. Another benefit of NTR is its possible bimodal design, when nuclear reactor is used for generation of a jet thrust in a high-thrust mode and (with an appropriate power conversion system) as a source of electric power to supply the payload and the electric engines in a low-thrust mode. The model of the NTR thrust control was developed considering high-thrust NTR as a propulsion system of limited power and exhaust velocity. For the proposed model the control of the thrust value is accomplished by the regulation of reactor thermal power and propellant mass flow rate. The problem of joint optimization of the combination of high- and low-thrust arcs and the parameters of bimodal NTR (BNTR) propulsion system is considered for the interplanetary transfers. The interplanetary trajectory of the space vehicle is formed by the high-thrust NTR burns, which define planet-centric maneuvers and by the low-thrust heliocentric arcs where the nuclear electric propulsion (NEP) is used. The high-thrust arcs are analyzed using finite-thrust approach. The motion of the corresponding dynamical system is realized in three phase spaces concerning the departure planet-centric maneuver by means of high-thrust NTR propulsion, the low-thrust NEP heliocentric maneuver and the approach high-thrust NTR planet-centric maneuver. The phase coordinates are related at the time instants of the change of the phase spaces due to the relations between the space vehicle masses. The optimal control analysis is performed using Pontryagin's maximum principle. The numerical results are analyzed for Earth-Mars "sprint" transfer. The optimal values of the parameters that define the masses of NTR and NEP subsystems have been evaluated. It is shown that the low

  6. Space vehicle

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1975-01-01

    A space vehicle having an improved ascent configuration for use in traveling in space is presented. Components of the vehicle are: (1) a winged orbiter having an elongater fuselage and rearwardly directed main engines fixed to the fuselage; (2) an elongated tank assembly of an improved configuration disposed forwardly of the fuselage and connected with the main engines of the vehicle for supplying liquid propellants; and (3) a booster stage comprising a pair of integrated solid rocket boosters connected with the orbiter immediately beneath the fuselage and extended in substantial parallelism.

  7. Robotic vehicle

    DOEpatents

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  8. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  9. Robotic vehicle

    SciTech Connect

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  10. Robotic vehicle

    DOEpatents

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  11. Launch Vehicles

    NASA Image and Video Library

    2004-04-15

    The Titan II liftoff. The Titan II launch vehicle was used for carrying astronauts on the Gemini mission. The Gemini Program was an intermediate step between the Project Mercury and the Apollo Program. The major objectives were to subject are two men and supporting equipment to long duration flights, to effect rendezvous and docking with other orbiting vehicle, and to perfect methods of reentry, and landing the spacecraft.

  12. Real-life efficacy of pregabalin for the treatment of peripheral neuropathic pain in daily clinical practice in Denmark: the NEP-TUNE study

    PubMed Central

    Crawford, Michael E; Poulsen, Peter Bo; Schiøttz-Christensen, Berit; Habicht, Andreas; Strand, Mette; Bach, Flemming W

    2016-01-01

    Objective The aim of this study was to provide evidence regarding the real-life efficacy of pregabalin in the treatment of peripheral neuropathic pain (NeP) in Denmark. Methods In this prospective, observational, noninterventional study, pregabalin (Lyrica®) was prescribed following usual clinical practice. Compared with baseline, the primary study end points after 3 months of observation were changes in 1) the average level of pain during the past week, 2) the worst level of pain during the past week, and 3) the least level of pain during the past week. The Wilcoxon signed-rank test was used to perform paired analyses, and a multivariate regression analysis investigated factors driving change in pain. Results A total of 86 of the 128 patients included were regarded as efficacy evaluable (those completing 3 months of pregabalin treatment). Patients (59 years) were long-time sufferers of peripheral NeP, and 38% of them had comorbidities. The majority had previously been treated with tricyclic antidepressants or gabapentin. The average dose of pregabalin was 81.5 mg/d at baseline and 240 mg/d after 3 months. A clinically and statistically significant improvement of 2.2 points in the average level of pain intensity was found after 3 months. The higher the pain intensity at baseline, the higher was the reduction of the pain score. Positive results were also found for pain-related sleep interference, patients’ global impression of change, quality of life, and work and productivity impairment. Twenty-one patients reported 28 adverse events. Conclusion This real-life study indicates that for some patients (two-thirds), addition of pregabalin for peripheral NeP helps to reduce their pain intensity significantly. PMID:27284265

  13. Use of Land Use Land Cover Change Mapping Products in Aiding Coastal Habitat Conservation and Restoration Efforts of the Mobile Bay NEP

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Swann, Roberta; Smooth, James

    2010-01-01

    The Mobile Bay region has undergone significant land use land cover change (LULC) over the last 35 years, much of which is associated with urbanization. These changes have impacted the region s water quality and wildlife habitat availability. In addition, much of the region is low-lying and close to the Gulf, which makes the region vulnerable to hurricanes, climate change (e.g., sea level rise), and sometimes man-made disasters such as the Deepwater Horizon (DWH) oil spill. Land use land cover change information is needed to help coastal zone managers and planners to understand and mitigate the impacts of environmental change on the region. This presentation discusses selective results of a current NASA-funded project in which Landsat data over a 34-year period (1974-2008) is used to produce, validate, refine, and apply land use land cover change products to aid coastal habitat conservation and restoration needs of the Mobile Bay National Estuary Program (MB NEP). The project employed a user defined classification scheme to compute LULC change mapping products for the entire region, which includes the majority of Mobile and Baldwin counties. Additional LULC change products have been computed for select coastal HUC-12 sub-watersheds adjacent to either Mobile Bay or the Gulf of Mexico, as part of the MB NEP watershed profile assessments. This presentation will include results of additional analyses of LULC change for sub-watersheds that are currently high priority areas, as defined by MB NEP. Such priority sub-watersheds include those that are vulnerable to impacts from the DWH oil spill, as well as sub-watersheds undergoing urbanization. Results demonstrating the nature and permanence of LULC change trends for these higher priority sub-watersheds and results characterizing change for the entire 34-year period and at approximate 10-year intervals across this period will also be presented. Future work will include development of value-added coastal habitat quality

  14. Autonomous vehicles

    SciTech Connect

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C. |

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  15. Hermes vehicle

    NASA Astrophysics Data System (ADS)

    Cretenet, J. C.

    1985-11-01

    The presence of Europe in the future developments of spatial programs, which are foreseen, for the 1990s and further, needs the availability of vehicles, modules and all related technologies adapted to operational use of low earth orbit station. The manned HERMES vehicle shall be part of the in-orbit infrastructure realized either in the European context or in cooperation between Europe and the United States. The main mission for this vehicle will be to run a shuttle with the station that means transport and change of the crews, its safe return in abort condition and cargo transport of consumable and experimental equipment. Secondary missions could be servicing on automatic platform, making autonomous scientific experiments. Lastly, the vehicle, by means of its on-board propulsion capability, could be used to accomplish in-orbit tow and assembly missions. Studies which are undertaken now about the vehicle are devoted to the aerodynamic shape (research of a compromise between aerothermic and overall fitting), the system (functional architecture, ground and flight configuration); further works dealing with technology are presently on hand in the field of thermal protection, aerodynamics, power generation with a high massic yield.

  16. Launch Vehicles

    NASA Image and Video Library

    1961-01-01

    This is a comparison illustration of the Redstone, Jupiter-C, and Mercury Redstone launch vehicles. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile. Originally developed as a nose cone re-entry test vehicle for the Jupiter intermediate range ballistic missile, the Jupiter-C was a modification of the Redstone missile and successfully launched the first American Satellite, Explorer-1, in orbit on January 31, 1958. The Mercury Redstone lifted off carrying the first American, astronaut Alan Shepard, in his Mercury spacecraft Freedom 7, on May 5, 1961.

  17. Vehicle bumper

    SciTech Connect

    Loren, N.S.; Gordon, W.E.

    1986-10-14

    This patent describes a vehicle bumper, comprising: a fascia having a front portion adapted to receive impact forces and upper and lower flanges extending rearwardly from the front portion; a backing member positioned rearwardly of the front portion of the fascia and extending vertically relative to the upper and lower flanges, the member including means for mounting the bumper on the vehicle; and a resiliently compressible plastic foam molded in situ in at least the volume bounded by the backing member and the fascia, the foam having an integral skin bonded to adjacent surfaces of the fascia and the backing member.

  18. Vehicle bumper

    SciTech Connect

    Loren, N.S.; Gordon, W.E.

    1987-03-24

    A bumper is described for use with a vehicle having a mounting member, the bumper comprising: a fascia having a front portion adapted to receive impact forces and upper and lower flanges extending rearwardly from the front portion; a resiliently compressible plastic foam molded in situ within at least a substantial portion of the volume bounded by the fascia, the foam having an integral skin bonded to adjacent surfaces of the fascia; and means bonded to the integral skin of the foam for mounting the bumper in operative position on the mounting member of the vehicle.

  19. Vehicle structure

    SciTech Connect

    Stroud, E.A.

    1984-05-01

    There is provided a vehicle which includes a frame, a steerable wheel mounted on the frame and at least one further wheel mounted for free rotation on the frame. A flywheel is mounted for rotation adjacent one of the wheels. The vehicle includes means for imparting rotation to the flywheel, and a clutch plate rotatably and coaxially mounted adjacent the same wheel to which the flywheel is adjacent. Speed-reduction means allows rotation of the flywheel to rotate the clutch plate at a faster rate than the flywheel, and a frictionless clutch is provided between the clutch plate and the adjacent wheel.

  20. The role of artificial gravity in the exploration of space.

    PubMed

    Burton, R R

    1994-07-01

    Terrestrial animals including the human require regular periodic gravitational (g) stimulation to maintain normal physiologic functions on earth or in space. Identical g stimulations can be produced in space with inertial forces (G) using a centrifuge. These stimulations may be made more efficient in preventing physiologic deconditioning by increasing G levels above 1 G. The effective operational use of the centrifuge in space to prevent physiologic deconditioning from microgravity exposures will require ground-based studies using weightless simulation such as bedrest or dry immersion with laboratories that have human-use centrifuges. The use of periodic, increased-G exposures in space may offer a practical inexpensive solution in preventing physiologic deconditioning.

  1. Artificial gravity studies and design considerations for Space Station centrifuges

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.; Brown, A. H.; Fuller, C. A.; Oyama, J.

    1984-01-01

    The requirements to and capabilities of a Space Station biological facility centrifuge are discussed on the basis of an assessment of the objectives and subjects of future microgravity biological experiments. It is argued that the facility should be capable of both acute and extended chronic exposure of test subjects and biological materials to altered-g loading. In addition, the experimental approaches and equipment for microgravity studies on a Space Station are outlined. Finally, the engineering requirements of such a centrifuge are examined, with consideration of radial gravity gradients, size, and physical access to animals.

  2. Effect of Artificial Gravity: Central Nervous System Neurochemical Studies

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; D'Amelio, Fernando; Eng, Lawrence F.

    1997-01-01

    The major objective of this project was to assess chemical and morphological modifications occurring in muscle receptors and the central nervous system of animals subjected to altered gravity (2 x Earth gravity produced by centrifugation and simulated micro gravity produced by hindlimb suspension). The underlying hypothesis for the studies was that afferent (sensory) information sent to the central nervous system by muscle receptors would be changed in conditions of altered gravity and that these changes, in turn, would instigate a process of adaptation involving altered chemical activity of neurons and glial cells of the projection areas of the cerebral cortex that are related to inputs from those muscle receptors (e.g., cells in the limb projection areas). The central objective of this research was to expand understanding of how chronic exposure to altered gravity, through effects on the vestibular system, influences neuromuscular systems that control posture and gait. The project used an approach in which molecular changes in the neuromuscular system were related to the development of effective motor control by characterizing neurochemical changes in sensory and motor systems and relating those changes to motor behavior as animals adapted to altered gravity. Thus, the objective was to identify changes in central and peripheral neuromuscular mechanisms that are associated with the re-establishment of motor control which is disrupted by chronic exposure to altered gravity.

  3. Elastic-Tether Suits for Artificial Gravity and Exercise

    NASA Technical Reports Server (NTRS)

    Torrance, Paul; Biesinger, Paul; Rybicki, Daniel D.

    2005-01-01

    Body suits harnessed to systems of elastic tethers have been proposed as means of approximating the effects of normal Earth gravitation on crewmembers of spacecraft in flight to help preserve the crewmembers physical fitness. The suits could also be used on Earth to increase effective gravitational loads for purposes of athletic training. The suit according to the proposal would include numerous small tether-attachment fixtures distributed over its outer surface so as to distribute the artificial gravitational force as nearly evenly as possible over the wearer s body. Elastic tethers would be connected between these fixtures and a single attachment fixture on a main elastic tether that would be anchored to a fixture on or under a floor. This fixture might include multiple pulleys to make the effective length of the main tether great enough that normal motions of the wearer cause no more than acceptably small variations in the total artificial gravitational force. Among the problems in designing the suit would be equalizing the load in the shoulder area and keeping tethers out of the way below the knees to prevent tripping. The solution would likely include running tethers through rings on the sides. Body suits with a weight or water ballast system are also proposed for very slight spinning space-station scenarios, in which cases the proposed body suits will easily be able to provide the equivalency of a 1-G or even greater load.

  4. Artificial gravity effect on spin-polarized exciton-polaritons.

    PubMed

    Sedov, E S; Kavokin, A V

    2017-08-29

    The pseudospin dynamics of long-living exciton-polaritons in a wedged 2D cavity has been studied theoretically accounting for the external magnetic field effect. The cavity width variation plays the role of the artificial gravitational force acting on a massive particle: exciton-polariton. A semi-classical model of the spin-polarization dynamics of ballistically propagating exciton-polaritons has been developed. It has been shown that for the specific choice of the magnetic field magnitude and the initial polariton wave vector the polariton polarization vector tends to an attractor on the Poincaré sphere. Based on this effect, the switching of the polariton polarization in the ballistic regime has been demonstrated. The self-interference of the polariton field emitted by a point-like source has been shown to induce the formation of interference patterns.

  5. Space Science 2001: Some Problems with Artificial Gravity.

    ERIC Educational Resources Information Center

    Fisher, Nick

    2001-01-01

    Many pupils will be familiar with the ideas in "2001: A Space Odyssey" but few will have considered the physics involved. Simple calculations show that some of the effects depicted in the Space Station and on the Discovery are plausible but others would be impractical. (Author/ASK)

  6. Threshold Gravity Determination and Artificial Gravity Studies Using Magnetic Levitation

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required (magnitude and duration)? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for a variable gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.

  7. Sensory motor coordination in an artificial gravity environment

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    1997-01-01

    The authors review and summarize research on the adaptation of limb movement control to Coriolis forces generated by body movements during rotation. They conclude that limb movement control can adapt to rotation rates as high as 10 rpm and that adaptation is rapid regardless of the presence or absence of visual and tactile feedback.

  8. Spin augmented deployment and retrieval of tethered artificial gravity spacecraft

    NASA Astrophysics Data System (ADS)

    Stoen, Jeffrey Donald

    The dynamics and control of a tethered centrifuge during constant spin deployment and retrieval of the tether is investigated. First, a simple two segment tether model is used to demonstrate that tangential thrusters on the end bodies can maintain a constant centrifuge spin rate and provide the control action necessary to damp lateral oscillations of the tether. An LQR controller is devised to create a balanced control scheme that provides such coordination between actuators as is required to produce a comfortable environment for occupants of the centrifuge. Next, the stability of motions of the tether end bodies is studied to assess effects of varying the body's mass properties and the position of the tether attachment joint. Finally, an improved, multi-segment model of the tether is employed to deal with limitations due to imperfect monitoring of the state of the system and difficulties in delivering accurate thrust levels. We construct a Kalman filter to furnish both estimates for the unknown states and smoothing of noisy measurements of sensed states.

  9. Space Science 2001: Some Problems with Artificial Gravity.

    ERIC Educational Resources Information Center

    Fisher, Nick

    2001-01-01

    Many pupils will be familiar with the ideas in "2001: A Space Odyssey" but few will have considered the physics involved. Simple calculations show that some of the effects depicted in the Space Station and on the Discovery are plausible but others would be impractical. (Author/ASK)

  10. Effects of simulated artificial gravity on human performance

    NASA Technical Reports Server (NTRS)

    Green, J. A.; Peacock, J. L.

    1972-01-01

    The ability of test subjects to perform operational type tasks was evaluated at rotational rates to 6 rpm and radii to 78 ft (24 m). The tasks included fine motor activity, mental operations, postural equilibrium, cargo handling, radial and tangential locomotion. Performance data indicate that 6 rpm presents a physiological limit at radii to 75 ft (23 m). Radial locomotion was not found to produce excessive adverse stimuli, and tangential locomotion was readily accomplished at walking rates of 2 of 4.8 ft/s (.6 to 1.4 m/s). The absence of vision dramatically reduced an individual's postural equilibrium during rotation. The use of selected anti-motion pharmaceuticals had, generally, a positive effect upon psychomotor performance at 6 rpm, but did not prove to be a panacea for the adverse effects of rotation at this rate.

  11. Artificial gravity intermittent centrifugation as a space flight countermeasure

    NASA Technical Reports Server (NTRS)

    Vernikos, J.

    1997-01-01

    Head-down bed rest was used to simulate weightlessness in an experiment that examined variations in dose, time, and frequency of +Gz stimuli countermeasures. Results indicate that 4 hr. standing was most effective for orthostatic intolerance, walking was most effective in achieving peak oxygen consumption, 4 hr. of standing or walking had the best effect on plasma volume, and 4 hr. of walking was most effective in maintaining urinary calcium excretion.

  12. Artificial gravity: How much, how often, how long?

    NASA Technical Reports Server (NTRS)

    Burton, R.; Vernikos, J.

    1992-01-01

    The argument is not overwhelming for the need to provide a continuous 1G environment using tethers or other means of spinning a spacecraft in order to maintain crew health in planetary exploration. Even on Earth, we spend a maximum of 16 hours in 1G (upright). Sporadic evidence over the years has suggested that somewhere between 30-minutes and 4-hours of 1G may suffice to prevent the deconditioning effects of bedrest (orthostatic intolerance and the rise in calcium excretion). However, it is not known what the minimum requirements are, whether they vary for different physiological systems and whether passive zero gravity or the enhancement of the effects of activity conducted in an increased G field are more effective. It is similarly not known what the optimal duration and frequency of the G stimulus is, and how time of day might alter its effectiveness. Since acceleration level and duration appear to be physiologically interactive, it seems feasible to hypothesize that periodic acceleration exposures to greater than 1G levels provided by some on-board centrifuge, would suffice and should be explored.

  13. Expression and activity profiles of DPP IV/CD26 and NEP/CD10 glycoproteins in the human renal cancer are tumor-type dependent

    PubMed Central

    2010-01-01

    Background Cell-surface glycoproteins play critical roles in cell-to-cell recognition, signal transduction and regulation, thus being crucial in cell proliferation and cancer etiogenesis and development. DPP IV and NEP are ubiquitous glycopeptidases closely linked to tumor pathogenesis and development, and they are used as markers in some cancers. In the present study, the activity and protein and mRNA expression of these glycoproteins were analysed in a subset of clear-cell (CCRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal oncocytomas (RO). Methods Peptidase activities were measured by conventional enzymatic assays with fluorogen-derived substrates. Gene expression was quantitatively determined by qRT-PCR and membrane-bound protein expression and distribution analysis was performed by specific immunostaining. Results The activity of both glycoproteins was sharply decreased in the three histological types of renal tumors. Protein and mRNA expression was strongly downregulated in tumors from distal nephron (ChRCC and RO). Moreover, soluble DPP IV activity positively correlated with the aggressiveness of CCRCCs (higher activities in high grade tumors). Conclusions These results support the pivotal role for DPP IV and NEP in the malignant transformation pathways and point to these peptidases as potential diagnostic markers. PMID:20459800

  14. Launch Vehicles

    NASA Image and Video Library

    1990-09-25

    The Atlas-Centaur, AC-68 vehicle, with the FLTSATCOM (F-8 Communication Satellite) aboard, on the Complex 36 at the Cape Canaveral Air Force Station. The FLTSATCOM will provide communications for ships and submarines at sea, planes in the air and military ground units throughout the world. It will also provide instant communications between the President and the Commanding Officers.

  15. Robotic vehicle

    DOEpatents

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  16. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  17. Robotic vehicle

    DOEpatents

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  18. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  19. Launch Vehicles

    NASA Image and Video Library

    1993-03-29

    The Air Force Delta II vehicle sits poised on Complex 17A at the Cape Canaveral Air Station, ready to carry the 19th NAVSTAR Global Positioning System Satellite into orbit. A secondary NASA experiment, the Small Expendable Deployer System (SEDS), will also be deployed.

  20. Vehicle bumper

    SciTech Connect

    Loren, N.S.; Gordon, W.E.

    1987-01-13

    A vehicle bumper is described, comprising: a fascia having a front portion adapted to receive impact forces and upper and lower flanges extending rearwardly from the portion; a backing member positioned rearwardly of the front portion of the fascia and extending vertically relative to the upper and lower flanges in spaced relation therebetween, the member including means for mounting the bumper on the vehicle; a resiliently compressible plastic foam molded in situ in at least the volume bounded by the backing member and the fascia and extending rearwardly through at least one of the spaces between the backing member and the upper and lower flanges. The foam has an integral skin bonded to adjacent surfaces of the backing member and the fascia.

  1. Vehicle Controller

    NASA Technical Reports Server (NTRS)

    1985-01-01

    UNISTICK is an airplane-like joystick being developed by Johnson Engineering under NASA and VA sponsorship. It allows a driver to control a vehicle with one hand, and is based upon technology developed for the Apollo Lunar Landings of the 1970's. It allows severely handicapped drivers to operate an automobile or van easily. The system is expected to be in production by March 1986.

  2. Hermes vehicle

    NASA Astrophysics Data System (ADS)

    Cretenet, J.-C.

    1984-10-01

    Projected mission profiles and computational models of the Hermes winged manned reentry vehicle are discussed. Launched into a low orbit with a crew of at most four by the Ariane 5 vehicle, Hermes will serve transportation, crew relief, safety, and freight carriage functions. It will have a nominal 300-500 km circular or 600-900 km heliosynchronous orbit, weigh from 13,500-16,700 kg, and return in hypersonic glide to a wheeled landing. The vehicle dimensions will be 15-18 m length, 6 m height at the tail fin, and a 10 m span. The L/D ratio will be 1.5-1.6, thereby furnishing a cross range of 2500 km. Hermes will have a Shuttle-type fuselage, carbon-carbon nose, and insulation on the extrados designed to keep the structure at 175 C or lower. The avionics will have 3-4 levels of redundance, each mission phase-dependent. Power will be supplied by three fuel cells and a bank of four Ag-Zn batteries. Hardware development is scheduled to begin in 1988.

  3. Low-Background, High-Efficiency Setup for the Study of 22Ne(p, γ)23Na Reaction at Low Energy

    NASA Astrophysics Data System (ADS)

    Ferraro, Federico

    Measuring cross sections of astrophysical interest requires a low-background, high-efficiency setup and a very pure target. The Laboratory for Underground Nuclear Astrophysics (LUNA) developed a dedicated setup for the cross section measurement of the 22Ne(p, γ)23Na reaction. A windowless gas target and a six-fold, optically segmented BGO detector surrounding the interaction volume were used. A calorimetric system was developed for the real-time measurement of the beam current. Three recently measured resonances at 156.2, 189.5, and 259.7 keV and the possible resonances at 71 and 105 keV have been investigated with high statistics. Direct capture measurements were carried out as well.

  4. Silencing of hypoxia inducible factor-1α by RNA interference inhibits growth of SK-NEP-1 Wilms tumour cells in vitro, and suppresses tumourigenesis and angiogenesis in vivo.

    PubMed

    Shi, Bo; Li, Ying; Wang, Xiuli; Yang, Yi; Li, Dan; Liu, Xin; Yang, Xianghong

    2016-06-01

    Wilms tumour is the most common tumour of the pediatric kidney. Elevation of hypoxia-inducible factor 1α (HIF-1α) has been detected in 93% to 100% of human Wilms tumour specimens, suggesting a potential value of HIF-1α as a therapeutic target for Wilms tumour. In the present study, a stable HIF-1α-silenced Wilms tumour cell strain was established by introducing HIF-1α short-hairpin RNA (shRNA) into SK-NEP-1 cells. Silencing of HIF-1α significantly reduced single-cell growth capacity, suppressed proliferation and arrested cell cycle of SK-NEP-1 cells. In addition, reduction of HIF-1α expression induced apoptosis in SK-NEP-1 cells, which was accompanied by increased levels of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP) and Bax as well as downregulation of Bcl-2 in the cells. Furthermore, when inoculated subcutaneously in nude mice, HIF-1α-silenced SK-NEP-1 cells displayed retarded tumour growth and impaired tumour angiogenesis. In summary, the findings of this study suggest that HIF-1α plays a critical role in the development of Wilms tumour, and it may serve as a candidate target of gene therapy for Wilms tumour.

  5. Vehicle barrier

    DOEpatents

    Hirsh, Robert A.

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  6. Role of Sphingomonas sp. Strain Fr1 PhyR-NepR-σEcfG Cascade in General Stress Response and Identification of a Negative Regulator of PhyR▿†

    PubMed Central

    Kaczmarczyk, Andreas; Campagne, Sébastien; Danza, Francesco; Metzger, Lisa C.; Vorholt, Julia A.; Francez-Charlot, Anne

    2011-01-01

    The general stress response in Alphaproteobacteria was recently described to depend on the alternative sigma factor σEcfG, whose activity is regulated by its anti-sigma factor NepR. The response regulator PhyR, in turn, regulates NepR activity in a partner-switching mechanism according to which phosphorylation of PhyR triggers sequestration of NepR by the sigma factor-like effector domain of PhyR. Although genes encoding predicted histidine kinases can often be found associated with phyR, little is known about their role in modulation of PhyR phosphorylation status. We demonstrate here that the PhyR-NepR-σEcfG cascade is important for multiple stress resistance and competitiveness in the phyllosphere in a naturally abundant plant epiphyte, Sphingomonas sp. strain Fr1, and provide evidence that the partner switching mechanism is conserved. We furthermore identify a gene, designated phyP, encoding a predicted histidine kinase at the phyR locus as essential. Genetic epistasis experiments suggest that PhyP acts upstream of PhyR, keeping PhyR in an unphosphorylated, inactive state in nonstress conditions, strictly depending on the predicted phosphorylatable site of PhyP, His-341. In vitro experiments show that Escherichia coli inner membrane fractions containing PhyP disrupt the PhyR-P/NepR complex. Together with the fact that PhyP lacks an obvious ATPase domain, these results are in agreement with PhyP functioning as a phosphatase of PhyR, rather than a kinase. PMID:21949070

  7. Role of Sphingomonas sp. strain Fr1 PhyR-NepR-σEcfG cascade in general stress response and identification of a negative regulator of PhyR.

    PubMed

    Kaczmarczyk, Andreas; Campagne, Sébastien; Danza, Francesco; Metzger, Lisa C; Vorholt, Julia A; Francez-Charlot, Anne

    2011-12-01

    The general stress response in Alphaproteobacteria was recently described to depend on the alternative sigma factor σ(EcfG), whose activity is regulated by its anti-sigma factor NepR. The response regulator PhyR, in turn, regulates NepR activity in a partner-switching mechanism according to which phosphorylation of PhyR triggers sequestration of NepR by the sigma factor-like effector domain of PhyR. Although genes encoding predicted histidine kinases can often be found associated with phyR, little is known about their role in modulation of PhyR phosphorylation status. We demonstrate here that the PhyR-NepR-σ(EcfG) cascade is important for multiple stress resistance and competitiveness in the phyllosphere in a naturally abundant plant epiphyte, Sphingomonas sp. strain Fr1, and provide evidence that the partner switching mechanism is conserved. We furthermore identify a gene, designated phyP, encoding a predicted histidine kinase at the phyR locus as essential. Genetic epistasis experiments suggest that PhyP acts upstream of PhyR, keeping PhyR in an unphosphorylated, inactive state in nonstress conditions, strictly depending on the predicted phosphorylatable site of PhyP, His-341. In vitro experiments show that Escherichia coli inner membrane fractions containing PhyP disrupt the PhyR-P/NepR complex. Together with the fact that PhyP lacks an obvious ATPase domain, these results are in agreement with PhyP functioning as a phosphatase of PhyR, rather than a kinase.

  8. Launch Vehicles

    NASA Image and Video Library

    2007-07-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, an Ares I x-test involves the upper stage separating from the first stage. This particular test was conducted at the NASA Langley Research Center in July 2007. (Highest resolution available)

  9. Forestry Vehicle

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Power Pack II provides an economical means of moving a power source into remote roadless forest areas. It was developed by Prof. Miles and his associates, working in cooperation with the University of California's Department of Forestry. The team combined its own design of an all-terrain vehicle with a suspension system based on the NASA load equalization technology. Result is an intermediate-sized unit which carries a power source and the powered tools to perform a variety of forest management tasks which cannot be done economically with current equipment. Power Pack II can traverse very rough terrain and climb a 60 degree slope; any one of the wheels can move easily over an obstacle larger than itself. Work is being done on a more advanced Power Pack III.

  10. Launch vehicles

    NASA Astrophysics Data System (ADS)

    Moss, J. B.

    The basic principles which determine launcher design and hence constrain the spacecraft payload are determined. Some key features of the principal launcher alternatives in Europe and the U.S., namely, the unmanned, expendable Ariane and the manned, substantially reusable, Space Shuttle, are outlined. The equations of motion of the rocket are specialized to the vertical plane, parallel and normal to the flight direction, and to the motion of the center of mass and the pitch rotation. A typical Ariane 2 flight profile for transfer into GTO is illustrated. Some representative mission requirements for spacecraft launches are reviewed. Launch vehicle burnout velocities for spacecraft emplacement are given. Geostationary orbit emplacement, orbital mission performance, and configuration interactions are discussed.

  11. Vehicle suspension

    SciTech Connect

    Mikina, S.J.

    1986-08-05

    This patent describes a vehicle consisting of sprung and unsprung masses, the combination of struts and support springs for the weight of the sprung mass, an axis defined by pivots between sprung and unsprung masses, with a front pivot approximately midway between the wheels and near the vertical and horizontal planes through the front axles, with a rear pivot lying in an axis through the front pivot and in a plane through the center-of-gravity of the sprung mass, with the plane parallel to the centrifugal force vector through the center-of-gravity of the sprung mass, and with the rear pivot positioned approximately midway between the rear wheels, means for transmitting the centrifugal force component on the front pivot to the front wheels and ground, and means for transmitting the centrifugal force component on the rear pivot to the rear wheels and ground.

  12. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts the preparation and placement of a confidence ring for friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are manufactured and subjected to confidence tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  13. Launch Vehicles

    NASA Image and Video Library

    2006-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry parachute drop test is conducted at the Yuma, Arizona proving ground. The parachute tests demonstrated a three-stage deployment sequence that included the use of an Orbiter drag chute to properly stage the unfurling of the main chute. The parachute recovery system for Orion will be similar to the system used for Apollo command module landings and include two drogue, three pilot, and three main parachutes. (Highest resolution available)

  14. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry parachute drop test is conducted at the Yuma, Arizona proving ground. The parachute tests demonstrated a three-stage deployment sequence that included the use of an Orbiter drag chute to properly stage the unfurling of the main chute. The parachute recovery system for Orion will be similar to the system used for Apollo command module landings and include two drogue, three pilot, and three main parachutes. (Highest resolution available)

  15. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, processes for upper stage barrel fabrication are talking place. Aluminum panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Largest resolution available)

  16. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts the manufacturing of aluminum panels that will be used to form the Ares I barrel. The panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  17. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The panels are subjected to confidence tests in which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  18. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image, depicts a manufactured aluminum panel, that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  19. Launch Vehicles

    NASA Image and Video Library

    2006-08-08

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  20. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts confidence testing of a manufactured aluminum panel that will fabricate the Ares I upper stage barrel. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  1. Launch Vehicles

    NASA Image and Video Library

    2006-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  2. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  3. Dynamics of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1991-01-01

    Papers on the following subjects are presented: (1) multivariable flight control synthesis and literal robustness analysis for an aeroelastic vehicles; (2) numerical and literal aeroelastic-vehicle-model reduction for feedback control synthesis; and (3) dynamics of aerospace vehicles.

  4. Aerodynamics of road vehicles

    SciTech Connect

    Hucho, W.H.

    1987-01-01

    This introduction to aerodynamic aspects of motor vehicle design will be of use both to vehicle designers and students of automobile engineering. Content covers vehicle systems, ventilation and aerodynamic design to reduce drag and increase stability of cars, commercial vehicles and PSVs. Topics considered include automobile aerodynamics; some fundamentals of fluid mechanics; performance of cars and light vans; aerodynamic drag of passenger cars; driving stability in sidewinds; operation, safety and comfort; high-performance vehicle aerodynamics; commercial vehicles; engine cooling systems; heating, ventilation and air conditioning of motor vehicles; wind tunnels for automobile aerodynamics; measuring and testing techniques; and numerical methods for computation of flow around road vehicles.

  5. Vehicle/engine integration. [orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.; Vinopal, T. J.; Florence, D. E.; Michel, R. W.; Brown, J. R.; Bergeron, R. P.; Weldon, V. A.

    1984-01-01

    VEHICLE/ENGINE Integration Issues are explored for orbit transfer vehicles (OTV's). The impact of space basing and aeroassist on VEHICLE/ENGINE integration is discussed. The AOTV structure and thermal protection subsystem weights were scaled as the vehicle length and surface was changed. It is concluded that for increased allowable payload lengths in a ground-based system, lower length-to-diameter (L/D) is as important as higher mixture ration (MR) in the range of mid L/D ATOV's. Scenario validity, geometry constraints, throttle levels, reliability, and servicing are discussed in the context of engine design and engine/vehicle integration.

  6. Torsion vehicle model test for automotive vehicle

    NASA Astrophysics Data System (ADS)

    Nor, M. K. Mohd; Ho, C. S.; Ma'at, N.

    2017-04-01

    Torsion vehicle model test of Simple Structural Surfaces (SSS) model for automotive vehicle sedan is proposed in this paper to demonstrate the importance of providing continuous load path within the vehicle structures. The proposed approach is relatively easy to understand as compared to Finite Element Method (FEM). The results prove that the proposed vehicle model test is capable to show that a satisfactory load paths can five a sufficient structural stiffness within the vehicle structure. It is clearly observed that the global torsion stiffness reduces significantly when only one panel is removed from the complete SSS model. The results also five a food agreement with respect to the theoretical hypothesis as the structure is less stiff in torsion in an open section condition. The SSS model and the corresponding torsion test is obviously useful to give an overview of vehicle structural integrity. It can be potentially integrated with FEM to speed up the design process of automotive vehicle.

  7. OT1_sserje01_1: THE HERSCHEL-AKARI NEP DEEP SURVEY: the cosmological history of stellar mass assembly and black hole accretion

    NASA Astrophysics Data System (ADS)

    Serjeant, S.

    2010-07-01

    We propose a far-IR and submm mapping survey of the premier AKARI deep field in the North Ecliptic Pole, in PACS/SPIRE parallel mode. This is the only major deep infrared field not yet covered by Herschel guaranteed or open time key projects. The outstanding and unparalleled continuous mid-IR photometric coverage from AKARI, far better than equivalent Spitzer surveys, enables a wide range of galaxy evolution diagnostics unachievable in any other survey field (including Herschel HerMES/PEP fields), by spanning the wavelengths of redshifted PAH and silicate features and the peak energy output of AGN dust tori. The investment by AKARI in the NEP represents ~10 percent of the entire pointed observations available throughout the lifetime of AKARI. Our proposal remedies the remarkable omission from Herschel's legacy surveys of the premier extragalactic deep field from another IR space telescope. We will simultaneously identify and find photometric redshifts for the Herschel point source population, make stacking analysis detections of the galaxies which dominate the submm extragalactic background light as a function of redshift, determine the bolometric power outputs of the galaxies that dominate the submm background, compare the UV/optical/mid-IR continuum/PAH/far-IR/submm/radio star formation rate estimator in the most comprehensive IR survey data set to date, and track the coupled stellar mass assembly and black hole accretion throughout most of the history of the Universe.

  8. Electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report characterizes state-of-the-art electric and hybrid (combined electric and heat engine) vehicles. Performance data for representative number of these vehicles were obtained from track and dynamometer tests. User experience information was obtained from fleet operators and individual owners of electric vehicles. Data on performance and physical characteristics of large number of vehicles were obtained from manufacturers and available literature.

  9. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. Launch Pad 39B of the Kennedy Space Flight Center (KSC), currently used for Space Shuttle launches, will be revised to host the Ares launch vehicles. The fixed and rotating service structures standing at the pad will be dismantled sometime after the Ares I-X test flight. A new launch tower for Ares I will be built onto a new mobile launch platform. The gantry for the shuttle doesn't reach much higher than the top of the four segments of the solid rocket booster. Pad access above the current shuttle launch pad structure will not be required for Ares I-X because the stages above the solid rocket booster are inert. For the test scheduled in 2012 or for the crewed flights, workers and astronauts will need access to the highest levels of the rocket and capsule. When the Ares I rocket rolls out to the launch pad on the back of the same crawler-transporters used now, its launch gantry will be with it. The mobile launchers will nestle under three lightning protection towers to be erected around the pad area. Ares time at the launch pad will be significantly less than the three weeks or more the shuttle requires. This “clean pad” approach minimizes equipment and servicing at the launch pad. It is the same plan NASA used with the Saturn V rockets and industry employs it with more modern launchers. The launch pad will also get a new emergency escape system for astronauts, one that looks very much like a roller coaster. Cars riding on a rail will replace the familiar baskets hanging from steel cables. This artist's concept illustrates the Ares I on launch pad 39B.

  10. Temporal Differences in the Appearance of NEP-B78 and an LBR-like Protein during Xenopus Nuclear Envelope Reassembly Reflect the Ordered Recruitment of Functionally Discrete Vesicle Types

    PubMed Central

    Drummond, Sheona; Ferrigno, Paul; Lyon, Carol; Murphy, Jackie; Goldberg, Martin; Allen, Terry; Smythe, Carl; Hutchison, Christopher J.

    1999-01-01

    In this work, we have used novel mAbs against two proteins of the endoplasmic reticulum and outer nuclear membrane, termed NEP-B78 and p65, in addition to a polyclonal antibody against the inner nuclear membrane protein LBR (lamin B receptor), to study the order and dynamics of NE reassembly in the Xenopus cell-free system. Using these reagents, we demonstrate differences in the timing of recruitment of their cognate membrane proteins to the surface of decondensing chromatin in both the cell-free system and XLK-2 cells. We show unequivocally that, in the cell-free system, two functionally and biochemically distinct vesicle types are necessary for NE assembly. We find that the process of distinct vesicle recruitment to chromatin is an ordered one and that NEP-B78 defines a vesicle population involved in the earliest events of reassembly in this system. Finally, we present evidence that NEP-B78 may be required for the targeting of these vesicles to the surface of decondensing chromatin in this system. The results have important implications for the understanding of the mechanisms of nuclear envelope disassembly and reassembly during mitosis and for the development of systems to identify novel molecules that control these processes. PMID:9922450

  11. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  12. VISTA -- A Vehicle for Interplanetary Space Transport Application Powered by Inertial Confinement Fusion

    SciTech Connect

    Orth, C D

    2005-03-31

    Inertial Confinement Fusion (ICF) is an ideal technology to power self-contained single-stage piloted (manned) spacecraft within the solar system because of its inherently high power/mass ratios and high specific impulses (i.e., high exhaust velocities). These technological advantages are retained when ICF is utilized with a magnetic thrust chamber, which avoids the plasma thermalization and resultant degradation of specific impulse that are unavoidable with the use of mechanical thrust chambers. We started with Rod Hyde's 1983 description of an ICF-powered engine concept using a magnetic thrust chamber, and conducted a more detailed systems study to develop a viable, realistic, and defensible spacecraft concept based on ICF technology projected to be available in the first half of the 21st century. The results include an entirely new conical spacecraft conceptual design utilizing near-existing radiator technology. We describe the various vehicle systems for this new concept, estimate the missions performance capabilities for general missions to the planets within the solar system, and describe in detail the performance for the baseline mission of a piloted roundtrip to Mars with a 100-ton payload. For this mission, we show that roundtrips totaling {ge}145 days are possible with advanced DT fusion technology and a total (wet) spacecraft mass of about 6000 metric tons. Such short-duration missions are advantageous to minimize the known cosmic-radiation hazards to astronauts, and are even more important to minimize the physiological deteriorations arising from zero gravity. These ICF-powered missions are considerably faster than those available using chemical or nuclear-electric-propulsion technologies with minimum-mass vehicle configurations. VISTA also offers onboard artificial gravity and propellant-based shielding from cosmic rays, thus reducing the known hazards and physiological deteriorations to insignificant levels. We emphasize, however, that the degree to

  13. 22Ne and 23Na ejecta from intermediate-mass stars: the impact of the new LUNA rate for 22Ne(p, γ)23Na

    NASA Astrophysics Data System (ADS)

    Slemer, A.; Marigo, P.; Piatti, D.; Aliotta, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Bressan, A.; Broggini, C.; Bruno, C. G.; Caciolli, A.; Cavanna, F.; Ciani, G. F.; Corvisiero, P.; Davinson, T.; Depalo, R.; Di Leva, A.; Elekes, Z.; Ferraro, F.; Formicola, A.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, G.; Imbriani, G.; Junker, M.; Menegazzo, R.; Mossa, V.; Pantaleo, F. R.; Prati, P.; Straniero, O.; Szücs, T.; Takács, M. P.; Trezzi, D.

    2017-03-01

    We investigate the impact of the new LUNA rate for the nuclear reaction 22Ne(p, γ)23Na on the chemical ejecta of intermediate-mass stars, with particular focus on the thermally pulsing asymptotic giant branch (TP-AGB) stars that experience hot-bottom burning. To this aim, we use the PARSEC and COLIBRI codes to compute the complete evolution, from the pre-main sequence up to the termination of the TP-AGB phase, of a set of stellar models with initial masses in the range 3.0-6.0 M⊙ and metallicities Zi = 0.0005, 0.006 and 0.014. We find that the new LUNA measures have much reduced the nuclear uncertainties of the 22Ne and 23Na AGB ejecta that drop from factors of ≃10 to only a factor of few for the lowest metallicity models. Relying on the most recent estimations for the destruction rate of 23Na, the uncertainties that still affect the 22Ne and 23Na AGB ejecta are mainly dominated by the evolutionary aspects (efficiency of mass-loss, third dredge-up, convection). Finally, we discuss how the LUNA results impact on the hypothesis that invokes massive AGB stars as the main agents of the observed O-Na anticorrelation in Galactic globular clusters. We derive quantitative indications on the efficiencies of key physical processes (mass-loss, third dredge-up, sodium destruction) in order to simultaneously reproduce both the Na-rich, O-poor extreme of the anticorrelation and the observational constraints on the CNO abundance. Results for the corresponding chemical ejecta are made publicly available.

  14. OT2_sserje01_2: THE HERSCHEL-AKARI NEP DEEP SURVEY: the cosmological history of stellar mass assembly and black hole accretion

    NASA Astrophysics Data System (ADS)

    Serjeant, S.

    2011-09-01

    We propose a far-IR and submm mapping survey of the premier AKARI deep field in the North Ecliptic Pole, in PACS/SPIRE parallel mode. This is the only major deep infrared field not yet covered by Herschel guaranteed or open time key projects. The outstanding and unparalleled continuous mid-IR photometric coverage from AKARI, far better than equivalent Spitzer surveys, enables a wide range of galaxy evolution diagnostics unachievable in any other survey field (including Herschel HerMES/PEP fields), by spanning the wavelengths of redshifted PAH and silicate features and the peak energy output of AGN dust tori. The investment by AKARI in the NEP represents ~10 percent of the entire pointed observations available throughout the lifetime of AKARI. Our proposal remedies the remarkable omission from Herschel's legacy surveys of the premier extragalactic deep field from another IR space telescope. We will simultaneously identify and find photometric redshifts for the Herschel point source population, make stacking analysis detections of the galaxies which dominate the submm extragalactic background light as a function of redshift, determine the bolometric power outputs of the galaxies that dominate the submm background, compare the UV/optical/mid-IR continuum/PAH/far-IR/submm/radio star formation rate estimator in the most comprehensive IR survey data set to date, and track the coupled stellar mass assembly and black hole accretion throughout most of the history of the Universe. In OT1 the HOTAC concluded "The science output from the proposed survey will be outstanding [...] The panel was convinced that these observations should be done" but it since became clear that priority 2 time is very unlikely to be executed, so we request reclassification to priority 1.

  15. Green Vehicle Guide

    MedlinePlus

    ... have already purchased new vehicles under the fuel economy & greenhouse gas standard! More about the standards » Check ... have already purchased new vehicles under the fuel economy & greenhouse gas standard! More about the standards » Behind ...

  16. Energy 101: Electric Vehicles

    SciTech Connect

    2012-01-01

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  17. Electric Vehicle Technician

    ERIC Educational Resources Information Center

    Moore, Pam

    2011-01-01

    With President Obama's goal to have one million electric vehicles (EV) on the road by 2015, the electric vehicle technician should have a promising and busy future. "The job force in the car industry is ramping up for a revitalized green car industry," according to Greencareersguide.com. An electric vehicle technician will safely troubleshoot and…

  18. Energy 101: Electric Vehicles

    ScienceCinema

    None

    2016-07-12

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  19. SPACE VEHICLE CONTROL,

    DTIC Science & Technology

    The book acquaints the reader with the basic principles of space vehicle control. It contains three sections which consider the basic properties of... space vehicle are considered, and an investigation of spatial orientation of a vehicle with the help of flywheel engines is conducted. There appears the

  20. Solar space vehicle

    SciTech Connect

    Lee, R.E.

    1982-10-19

    This invention relates to space vehicle where solar energy is used to generate steam, which in turn, propels the vehicle in space. A copper boiler is provided and a novel solar radiation condensing means is used to focus the sunlight on said boiler. Steam generated in said boiler is exhausted to the environment to provide a thrust for the vehicle.

  1. Transformable descent vehicles

    NASA Astrophysics Data System (ADS)

    Pichkhadze, K. M.; Finchenko, V. S.; Aleksashkin, S. N.; Ostreshko, B. A.

    2016-12-01

    This article presents some types of planetary descent vehicles, the shape of which varies in different flight phases. The advantages of such vehicles over those with unchangeable form (from launch to landing) are discussed. It is shown that the use of transformable descent vehicles widens the scope of possible tasks to solve.

  2. Automotive vehicle sensors

    SciTech Connect

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  3. MRV - Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  4. Electric Vehicle Technician

    ERIC Educational Resources Information Center

    Moore, Pam

    2011-01-01

    With President Obama's goal to have one million electric vehicles (EV) on the road by 2015, the electric vehicle technician should have a promising and busy future. "The job force in the car industry is ramping up for a revitalized green car industry," according to Greencareersguide.com. An electric vehicle technician will safely troubleshoot and…

  5. Electric vehicles: Driving range

    NASA Astrophysics Data System (ADS)

    Kempton, Willett

    2016-09-01

    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  6. Energy efficient passenger vehicle

    SciTech Connect

    Dessert, R.

    1983-02-22

    An energy efficient passenger carrying vehicle for road use. The vehicle basically comprises a long, narrow body carrying two passengers in a back-to-back relationship. The vehicle is basically a battery powered electric vehicle that can be charged by all free energy sources; namely, the sun, the wind, human muscles and momentum. The vehicle comprises four modules, namely body, solar, and two power modules. An electric power module is located within each end of the body module. This module includes electric motors driving the vehicle supporting wheels and rechargeable batteries to power the motors. Pedals, similar to those on a bicycle, located at each power module, drive generators to help recharge the batteries during operation of the vehicle, or directly help drive the vehicle wheels. A solar module comprising a large electricity generating solar cell panel covers most of the vehicle roof to aid in charging the batteries. Means are provided to tilt the solar cell panel toward the sun about a longitudinal axis. A unique flexible duct below the solar panel serves to cool the cells and, if desired, heat the passenger compartment. Further energy savings are obtained by canting the rear wheels while steering with the front wheels, so that the vehicle moves down the road at a crab angle which provides a sail effect when wind is from the vehicle beam or aft of the beam. Regenerative braking means can be used when slowing down, on a long down grade, when sailing speed is greater than required, or any other time when vehicle momentum is greater than necessary for vehicle operation, to use the excess forward momentum to drive generators to charge the batteries. Thus, a single battery charge will be conserved and vehicle operation will be assisted in a manner giving maximum vehicle range and speed.

  7. Cooperative robotic sentry vehicles

    NASA Astrophysics Data System (ADS)

    Feddema, John T.; Lewis, Christopher L.; Klarer, Paul; Eisler, G. R.; Caprihan, Rahul

    1999-08-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories' Intelligent Systems and Robotics Center is developing and testing the feasibility of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform a surround task. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight 'Roving All Terrain Lunar Explorer Rovers' (RATLER), a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. For the surround task, both potential field and A* search path planners have been added to the base-station and vehicles. At the base-station, the operator specifies goal and exclusion regions on a GIS map. The path planner generates vehicles paths that are previewed by the operator. Once the operator has validated the path, the appropriate information is downloaded t the vehicles. For the potential field path planner, the polygons and line segments that represent the obstacles and goals are downloaded to the vehicles, instead of the simulated paths. On board the vehicles, the same potential field path planner generates the path except that it uses the true location of itself and the nearest neighboring vehicle. For the A* path planner, the actual path is downloaded to the vehicles because of limited on-board computational power.

  8. Vehicle/engine integration

    NASA Astrophysics Data System (ADS)

    Cooper, L. P.; Vinopal, T. J.; Florence, D. E.; Michel, R. W.; Brown, J. R.; Bergeron, R. P.; Weldon, V. A.

    1984-04-01

    VEHICLE/ENGINE Integration Issues are explored for orbit transfer vehicles (OTV's). The impact of space basing and aeroassist on VEHICLE/ENGINE integration is discussed. The AOTV structure and thermal protection subsystem weights were scaled as the vehicle length and surface was changed. It is concluded that for increased allowable payload lengths in a ground-based system, lower length-to-diameter (L/D) is as important as higher mixture ration (MR) in the range of mid L/D ATOV's. Scenario validity, geometry constraints, throttle levels, reliability, and servicing are discussed in the context of engine design and engine/vehicle integration.

  9. VEHICLE FOR SLAVE ROBOT

    DOEpatents

    Goertz, R.C.; Lindberg, J.F.

    1962-01-30

    A reeling device is designed for an electrical cable supplying power to the slave slde of a remote control manipulator mounted on a movable vehicle. As the vehicle carries the slave side about in a closed room, the device reels the cable in and out to maintain a variable length of the cable between the vehicle and a cable inlet in the wall of the room. The device also handles a fixed length of cable between the slave side and the vehicle, in spite of angular movement of the slave side with respect to the vehicle. (AEC)

  10. Space vehicle chassis

    DOEpatents

    Judd, Stephen; Dallmann, Nicholas; Seitz, Daniel; Martinez, John; Storms, Steven; Kestell, Gayle

    2017-07-18

    A modular space vehicle chassis may facilitate convenient access to internal components of the space vehicle. Each module may be removable from the others such that each module may be worked on individually. Multiple panels of at least one of the modules may swing open or otherwise be removable, exposing large portions of the internal components of the space vehicle. Such chassis architectures may reduce the time required for and difficulty of performing maintenance or modifications, may allow multiple space vehicles to take advantage of a common chassis design, and may further allow for highly customizable space vehicles.

  11. Vehicle capture system

    NASA Astrophysics Data System (ADS)

    Tacke, Kenneth L.

    1998-12-01

    Primex Aerospace Company, under contract with the U.S. Army Armament Research Development & Engineering Center (ARDEC), has developed a portable vehicle capture system for use at vehicle checkpoints. Currently when a vehicle does not stop at a checkpoint, there are three possible reactions: let the vehicle go unchallenged, pursue the vehicle or stop the vehicle with lethal force. This system provides a non-lethal alternative that will stop and contain the vehicle. The system is completely portable with the heaviest component weighing less than 120 pounds. It can be installed with no external electrical power or permanent anchors required. In its standby mode, the system does not impede normal traffic, but on command erects a barrier in less than 1.5 seconds. System tests have been conducted using 5,100 and 8.400 pound vehicles, traveling at speeds up to 45 mph. The system is designed to minimize vehicle damage and occupant injury, typically resulting in deceleration forces of less than 2.5 gs on the vehicle. According to the drivers involved in tests at 45 mph, the stopping forces feel similar to a panic stop with the vehicle brakes locked. The system is completely reusable and be rapidly reset.

  12. Allergens in corticosteroid vehicles.

    PubMed

    Coloe, Jacquelyn; Zirwas, Matthew J

    2008-01-01

    Whereas allergy to vehicle ingredients (ie, excipients and preservatives) in topical steroid vehicles is well recognized, there are no data regarding which vehicle ingredients are in common use or on which vehicles and active molecules are associated with which ingredients. To produce descriptive data on the use of allergenic vehicle ingredients in prescription topical corticosteroids. The package insert for every steroid in widespread use in the United States was obtained from the manufacturer and used to generate an ingredient list for the product. There are seven vehicle ingredients that are commonly used in topical corticosteroid vehicles that are well-known allergens: propylene glycol, sorbitan sesquioleate, formaldehyde-releasing preservatives, parabens, methylchloroisothiazolinone/methylisothiazolinone, lanolin, and fragrance. Of 166 topical corticosteroids, 128 (including all creams) had at least one of these vehicle ingredients. More generic products were free of allergens than were branded products. Solutions and ointments were the least allergenic vehicles. The most commonly present potential allergens were propylene glycol and sorbitan sesquioleate. Most prescription topical corticosteroids have the potential to cause allergic contact dermatitis owing to vehicle ingredients. Dermatologists should be aware of this possibility and should consider prescribing agents that do not contain potentially allergenic vehicle ingredients.

  13. NEpDROC8ptsobspred

    EPA Pesticide Factsheets

    The shapefile contains points with associated observed and predicted August stream/river temperature maximum positive daily rate of change in New England based on a spatial statistical network model published in Detenbeck et al. (2016): Detenbeck, N. E., Morrison, A., Abele, R. W. and Kopp, D. (2016), Spatial statistical network models for stream and river temperature in New England, USA. Water Resour. Res. Accepted Author Manuscript. doi:10.1002/2015WR018349)This dataset is associated with the following publication:Detenbeck , N., A. Morrison, R. Abele , and D. Kopp. Spatial statistical network models for stream and river temperature in New England, USA. WATER RESOURCES RESEARCH. American Geophysical Union, Washington, DC, USA, 52: 6018–6040, (2016).

  14. NEpDROC7ptsobspred

    EPA Pesticide Factsheets

    The shapefile contains points with associated observed and predicted July stream/river temperature maximum positive daily rate of change in New England based on a spatial statistical network model published in Detenbeck et al. (2016): Detenbeck, N. E., Morrison, A., Abele, R. W. and Kopp, D. (2016), Spatial statistical network models for stream and river temperature in New England, USA. Water Resour. Res. Accepted Author Manuscript. doi:10.1002/2015WR018349)This dataset is associated with the following publication:Detenbeck , N., A. Morrison, R. Abele , and D. Kopp. Spatial statistical network models for stream and river temperature in New England, USA. WATER RESOURCES RESEARCH. American Geophysical Union, Washington, DC, USA, 52: 6018–6040, (2016).

  15. NEP facilities (LeRC)

    NASA Technical Reports Server (NTRS)

    Vetrone, Robert H.

    1993-01-01

    The topics are presented in viewgraph form and include the following: the Electric Propulsion Research Building (no. 16) the Electric Power Laboratory (BLDG. 301); the Tank 6 Vacuum Facility; and test facilities for electric propulsion and LeRC.

  16. Ares Launch Vehicles Overview

    NASA Technical Reports Server (NTRS)

    Vanhooser, Teresa

    2009-01-01

    Since 2005, the Ares Projects have been building the nation s next generation of crew and cargo launch vehicles. As part of the Constellation Program, the Ares vehicles will enable astronauts in the Orion crew exploration vehicle and Altair lunar lander to reach the Moon and beyond. These vehicles draw upon hardware and experienced developed over 50 years of exploration, while also incorporating technology and management practices from today. Ares is concentrating on building the Ares I crew launch vehicle to ensure America s continued ability to send crews to the International Space Station. Progress has been made on design, fabrication, and testing for the first stage, upper stage, upper stage engine, and integrated vehicle. This presentation will provide an overview of the Ares launch vehicles architecture, milestone progress, and top project risks.

  17. Vehicle Systems Panel deliberations

    NASA Technical Reports Server (NTRS)

    Bales, Tom; Modlin, Tom; Suddreth, Jack; Wheeler, Tom; Tenney, Darrel R.; Bayless, Ernest O.; Lisagor, W. Barry; Bolstad, Donald A.; Croop, Harold; Dyer, J.

    1993-01-01

    The Vehicle Systems Panel addressed materials and structures technology issues related to launch and space vehicle systems not directly associated with the propulsion or entry systems. The Vehicle Systems Panel was comprised of two subpanels - Expendable Launch Vehicles & Cryotanks (ELVC) and Reusable Vehicles (RV). Tom Bales, LaRC, and Tom Modlin, JSC, chaired the expendable and reusable vehicles subpanels, respectively, and co-chaired the Vehicle Systems Panel. The following four papers are discussed in this section: (1) Net Section components for Weldalite Cryogenic Tanks, by Don Bolstad; (2) Build-up Structures for Cryogenic Tanks and Dry Bay Structural Applications, by Barry Lisagor; (3) Composite Materials Program, by Robert Van Siclen; (4) Shuttle Technology (and M&S Lessons Learned), by Stan Greenberg.

  18. AKARI OBSERVATION OF THE NORTH ECLIPTIC POLE (NEP) SUPERCLUSTER AT z = 0.087: MID-INFRARED VIEW OF TRANSITION GALAXIES

    SciTech Connect

    Ko, Jongwan; Im, Myungshin; Lee, Hyung Mok; Lee, Myung Gyoon; Kim, Seong Jin; Jeon, Yiseul; Shim, Hyunjin; Hwang, Ho Seong; Willmer, Christopher N. A.; Weiner, Benjamin J.; Malkan, Matthew A.; Papovich, Casey; Matsuhara, Hideo; Takagi, Toshinobu; Oyabu, Shinki

    2012-02-01

    We present the mid-infrared (MIR) properties of galaxies within a supercluster in the north ecliptic pole region at z {approx} 0.087 observed with the AKARI satellite. We use data from the AKARI NEP-Wide (5.4 deg{sup 2}) IR survey and the CLusters of galaxies EVoLution studies (CLEVL) mission program. We show that near-IR (3 {mu}m)-mid-IR (11 {mu}m) color can be used as an indicator of the specific star formation rate and the presence of intermediate-age stellar populations. From the MIR observations, we find that red-sequence galaxies consist not only of passively evolving red early-type galaxies, but also of (1) 'weak-SFGs' (disk-dominated star-forming galaxies that have star formation rates lower by {approx}4 Multiplication-Sign than blue-cloud galaxies) and (2) 'intermediate-MXGs' (bulge-dominated galaxies showing stronger MIR dust emission than normal red early-type galaxies). These two populations can be a set of transition galaxies from blue, star-forming, late-type galaxies evolving into red, quiescent, early-type ones. We find that the weak-SFGs are predominant at intermediate masses (10{sup 10} M{sub Sun} < M{sub *} < 10{sup 10.5} M{sub Sun }) and are typically found in local densities similar to the outskirts of galaxy clusters. As much as 40% of the supercluster member galaxies in this mass range can be classified as weak-SFGs, but their proportion decreases to <10% at larger masses (M{sub *} > 10{sup 10.5} M{sub Sun }) at any galaxy density. The fraction of the intermediate-MXG among red-sequence galaxies at 10{sup 10} M{sub Sun} < M{sub *} < 10{sup 11} M{sub Sun} also decreases as the density and mass increase. In particular, {approx}42% of the red-sequence galaxies with early-type morphologies are classified as intermediate-MXGs at intermediate densities. These results suggest that the star formation activity is strongly dependent on the stellar mass, but that the morphological transformation is mainly controlled by the environment.

  19. Genetic organization of the hrp genes cluster in Erwinia pyrifoliae and characterization of HR active domains in HrpNEp protein by mutational analysis.

    PubMed

    Shrestha, Rosemary; Park, Duck Hwan; Cho, Jun Mo; Cho, Saeyoull; Wilson, Calum; Hwang, Ingyu; Hur, Jang Hyun; Lim, Chun Keun

    2008-02-29

    The disease-specific (dsp) region and the hypersensitive response and pathogenicity (hrp) genes, including the hrpW, hrpNEp, and hrpC operons have previously been sequenced in Erwinia pyrifoliae WT3 [Shrestha et al. (2005a)]. In this study, the remaining hrp genes, including the hrpC, hrpA, hrpS, hrpXY, hrpL and hrpJ operons, were determined. The hrp genes cluster (ca. 38 kb) was comprised of eight transcriptional units and contained nine hrc (hrp conserved) genes. The genetic organization of the hrp/hrc genes and their orientation for the transcriptions were also similar to and collinear with those of E. amylovora, showing > or = 80% homologies. However, ORFU1 and ORFU2 of unknown functions, present between the hrpA and hrpS operons of E. amylovora, were absent in E. pyrifoliae. To determine the HR active domains, several proteins were prepared from truncated fragments of the N-terminal and the C-terminal regions of HrpN(Ep) protein of E. pyrifoliae. The proteins prepared from the N-terminal region elicited HR, but not from those of the C-terminal region indicating that HR active domains are located in only N-terminal region of the HrpN(Ep) protein. Two synthetic oligopeptides produced HR on tobacco confirming presence of two HR active domains in the HrpN(Ep). The HR positive N-terminal fragment (HN delta C187) was further narrowed down by deleting C-terminal amino acids and internal amino acids to investigate whether amino acid insertion region have role in faster and stronger HR activity in HrpN(Ep) than HrpN(Ea). The HrpN(Ep) mutant proteins HN delta C187 (D1AIR), HN delta C187 (D2AIR) and HN delta C187 (DM41) retained similar HR activation to that of wild-type HrpN(Ep). However, the HrpN(Ep) mutant protein HN delta C187 (D3AIR) lacking third amino acid insertion region (102 to 113 aa) reduced HR when compared to that of wild-type HrpN(Ep). Reduction in HR elicitation could not be observed when single amino acids at different positions were substituted at third

  20. Energy efficient passenger vehicle

    SciTech Connect

    Dessert, R.

    1980-01-01

    An energy efficient passenger carrying vehicle for road use comprised of a long, narrow body carrying two passengers in a back-to-back relationship is described. The vehicle is basically a battery powered electric vehicle that can be charged by all free energy sources; namely, the sun, the wind, human muscles and momentum. The vehicle comprises four modules: body, solar, and two power modules. An electric power module is located within each end of the body module. This module includes electric motors driving the vehicle supporting wheels and rechargeable batteries to power the motors. Pedals, similar to those on a bicycle, located at each power module, drive generators to help recharge the batteries during operation of the vehicle, or directly help drive the vehicle wheels. A solar module comprising a large electricity generating solar cell panel covers most of the vehicle roof to aid in charging the batteries. Means are provided to tilt the solar cell panel toward the sun about a longitudinal axis. A unique flexible duct below the solar panel serves to cool the cells and, if desired, heat the passenger compartment. Further energy savings are obtained by canting the rear wheels while steering with the front wheels, so that the vehicle moves down the road at a crab angle which provides a sail effect when wind is from the vehicle beam or aft of the beam. Regenerative braking means can be used when slowing down, on a long down grade, when sailing speed is greater than required, or any other time when vehicle momentum is greater than necessary for vehicle operation, to use the excess forward momentum to drive generators to charge the batteries. Thus, a single battery charge will be conserved and vehicle operation will be assisted in a manner giving maximum vehicle range and speed.

  1. Automatic vehicle location system

    NASA Technical Reports Server (NTRS)

    Hansen, G. R., Jr. (Inventor)

    1973-01-01

    An automatic vehicle detection system is disclosed, in which each vehicle whose location is to be detected carries active means which interact with passive elements at each location to be identified. The passive elements comprise a plurality of passive loops arranged in a sequence along the travel direction. Each of the loops is tuned to a chosen frequency so that the sequence of the frequencies defines the location code. As the vehicle traverses the sequence of the loops as it passes over each loop, signals only at the frequency of the loop being passed over are coupled from a vehicle transmitter to a vehicle receiver. The frequencies of the received signals in the receiver produce outputs which together represent a code of the traversed location. The code location is defined by a painted pattern which reflects light to a vehicle carried detector whose output is used to derive the code defined by the pattern.

  2. Vehicle underbody fairing

    DOEpatents

    Ortega, Jason M.; Salari, Kambiz; McCallen, Rose

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  3. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  4. Ground Vehicle Robotics

    DTIC Science & Technology

    2013-08-20

    Ground Vehicle Robotics Jim Parker Associate Director, Ground Vehicle Robotics UNCLASSIFIED: Distribution Statement A. Approved for public...DATE 20 AUG 2013 2. REPORT TYPE Briefing Charts 3. DATES COVERED 09-05-2013 to 15-08-2013 4. TITLE AND SUBTITLE Ground Vehicle Robotics 5a...Willing to take Risk on technology -User Evaluated -Contested Environments -Operational Data Applied Robotics for Installation & Base Ops -Low Risk

  5. Electric vehicle propulsion alternatives

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  6. Routing Vehicles with Ants

    NASA Astrophysics Data System (ADS)

    Tan, Wen Fang; Lee, Lai Soon; Majid, Zanariah Abdul; Seow, Hsin Vonn

    Routing vehicles involve the design of an optimal set of routes for a fleet of vehicles to serve a number of customers with known demands. This research develops an Ant Colony Optimization for the vehicle routing with one central depot and identical vehicles. The procedure simulates the behavior of real ants that always find the shortest path between their nest and a food source through a form of communication, pheromone trail. Finally, preliminary results on the learning of the algorithm testing on benchmark data set will be presented in this paper.

  7. Railway vehicle body structures

    SciTech Connect

    Not Available

    1985-01-01

    The strength and durability of railway vehicle structures is a major topic of engineering research and design. To reflect this importance the Railway Division of the Institution of Mechanical Engineers organised a conference to discuss all matters relating to railway vehicle design. This book presents the papers discussed in that conference. The contents include: Vehicle body design and the UIC's international contribution; LUL prototype 1986 stock - body structure; vehicle structure for the intermediate capacity transmit system vehicles; car body technology of advanced light rapid transit vehicles; concepts, techniques and experience in the idealization of car body structures for finite element analysis; Calcutta metropolitan railway; design for a lightweight diesel multiple unit body; the design of lightweight inter-city coal structures; the BREL international coach body shell structure; new concepts and design techniques versus material standards; structures of BR diesel electric freight locomotives; structural design philosophy for electric locomotives; suspension design for a locomotive with low structural frequencies; freight wagon structures; a finite element study of coal bodyside panels including the effects of joint flexibility; a fresh approach to the problem of car body design strength; energy absorption in automatic couplings and draw gear; passenger vehicle design loads and structural crashworthiness; design of the front part of railway vehicles (in case of frontal impact); the development of a theoretical technique for rail vehicle structural crashworthiness.

  8. The opposing effects of calmodulin, adenosine 5 prime -triphosphate, and pertussis toxin on phorbol ester induced inhibition of atrial natriuretic factor stimulated guanylate cyclase in SK-NEP-1 cells

    SciTech Connect

    Sekiya, M.; Frohlich, E.D.; Cole, F.E. )

    1991-01-01

    In the present study, we investigated the effects of calmodulin, adenosine 5{prime}-triphosphate (ATP) and pertussis toxin (PT) on phorbol ester (PMA) induced inhibition of ANF-stimulated cyclic GMP formation in cells from the human renal cell line, SK-NEP-1. PMA inhibited ANF-stimulated guanylate cyclase activity in particulate membranes by about 65%. Calmodulin reversed this inhibition in a dose dependent manner. ATP potentiated Mg++ but not Mn++ supported guanylate cyclase activity. In PMA treated membranes, ATP potentiating effects were abolished. PMA also inhibited ANF-stimulated cGMP accumulation, but pretreatment with PT prevented this PMA inhibition. PT did not affect basal or ANF-stimulated cGMP accumulation. In conclusion, these results demonstrated that PMA inhibited ANF stimulation of particulate guanylate cyclase in opposition to the activating effects of calmodulin or ATP in SK-NEP-1 cells. The protein kinase C inhibitory effects appeared to be mediated via a PT-sensitive G protein.

  9. Electric Vehicle Battery Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  10. Vehicles for Outdoor Recreation.

    ERIC Educational Resources Information Center

    Exceptional Parent, 1983

    1983-01-01

    The Wheelchair Motorcycle Association tests various motorized vehicles that might help the physically disabled child get about outdoors. Vehicles found to be practical for older children and adolescents include three-wheeled motorcycles and customized go-carts. An address for obtaining more information on the association is provided. (SW)

  11. Vehicle barrier systems

    SciTech Connect

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper. 2 tabs.

  12. Vehicle barrier systems

    SciTech Connect

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment, and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper.

  13. Vehicle barrier systems

    SciTech Connect

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper.

  14. Vehicle barrier systems

    SciTech Connect

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper. 2 tabs.

  15. Vehicles for Outdoor Recreation.

    ERIC Educational Resources Information Center

    Exceptional Parent, 1983

    1983-01-01

    The Wheelchair Motorcycle Association tests various motorized vehicles that might help the physically disabled child get about outdoors. Vehicles found to be practical for older children and adolescents include three-wheeled motorcycles and customized go-carts. An address for obtaining more information on the association is provided. (SW)

  16. Light Vehicle Preventive Maintenance.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to instruct students in the performance of preventive maintenance on motor vehicles. Instructional materials are presented in three chapters as follows: (1) Major Maintenance Areas (maintenance system, tires, batteries, cooling systems, and vehicle lubrication; (2)…

  17. Nuclear air cushion vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    The state-of-the-art of the still-conceptual nuclear air cushion vehicle, particularly the nuclear powerplant is identified. Using mission studies and cost estimates, some of the advantages of nuclear power for large air cushion vehicles are described. The technology studies on mobile nuclear powerplants and conceptual ACV systems/missions studies are summarized.

  18. Electric Vehicle Battery Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  19. Saturn IB Vehicle Configurations

    NASA Technical Reports Server (NTRS)

    1968-01-01

    This 1968 chart depicts the various mission configurations for the Saturn IB launch vehicle. Developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in MSFC's 'building block' approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the marned lunar missions.

  20. Steering Performance, Tactical Vehicles

    DTIC Science & Technology

    2015-07-29

    the path of the vehicle is difficult to conu·ol which may lead to more aborted test u·ials than using driver-conu·olled steer inputs. Using a driver...reduces both the time required to prepare the vehicle and the probability of aborted u·ials. This allows more attempts to be made, but test results

  1. Intelligent Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Paris, Deidre E.; Trevino, Luis; Watson, Michael D.

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of INM. These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the INM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  2. Intelligent Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Paris, Deidre E.; Trevino, Luis; Watson, Michael D.

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of INM. These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the INM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  3. Dust Mitigation Vehicle

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.

    2011-01-01

    A document describes the development and demonstration of an apparatus, called a dust mitigation vehicle, for reducing the amount of free dust on the surface of the Moon. The dust mitigation vehicle would be used to pave surfaces on the Moon to prevent the dust from levitating or adhering to surfaces. The basic principle of operation of these apparatuses is to use a lens or a dish mirror to concentrate solar thermal radiation onto a small spot to heat lunar regolith. In the case of the prototype dust mitigation vehicle, a Fresnel lens was used to heat a surface layer of regolith sufficiently to sinter or melt dust grains into a solid mass. The prototype vehicle has demonstrated paving rates up to 1.8 square meters per day. The proposed flight design of the dust mitigation vehicle is also described.

  4. Automatic vehicle monitoring

    NASA Technical Reports Server (NTRS)

    Bravman, J. S.; Durrani, S. H.

    1976-01-01

    Automatic vehicle monitoring systems are discussed. In a baseline system for highway applications, each vehicle obtains position information through a Loran-C receiver in rural areas and through a 'signpost' or 'proximity' type sensor in urban areas; the vehicle transmits this information to a central station via a communication link. In an advance system, the vehicle carries a receiver for signals emitted by satellites in the Global Positioning System and uses a satellite-aided communication link to the central station. An advanced railroad car monitoring system uses car-mounted labels and sensors for car identification and cargo status; the information is collected by electronic interrogators mounted along the track and transmitted to a central station. It is concluded that automatic vehicle monitoring systems are technically feasible but not economically feasible unless a large market develops.

  5. Lunar material transport vehicle

    NASA Technical Reports Server (NTRS)

    Fisher, Charles D.; Lyons, Douglas; Wilkins, W. Allen, Jr.; Whitehead, Harry C., Jr.

    1988-01-01

    The proposed vehicle, the Lunar Material Transport Vehicle (LMTV), has a mission objective of efficient lunar soil material transport. The LMTV was designed to meet a required set of performance specifications while operating under a given set of constraints. The LMTV is essentially an articulated steering, double-ended dump truck. The vehicle moves on four wheels and has two identical chassis halves. Each half consists of a chassis frame, a material bucket, two wheels with integral curvilinear synchronous motors, a fuel cell and battery arrangement, an electromechanically actuated dumping mechanism, and a powerful microprocessor. The vehicle, as designed, is capable of transporting up to 200 cu ft of material over a one mile round trip per hour. The LMTV is capable of being operated from a variety of sources. The vehicle has been designed as simply as possible with attention also given to secondary usage of components.

  6. Hydrogen vehicle fueling station

    SciTech Connect

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  7. Vehicle body cover

    SciTech Connect

    Hirose, T.

    1987-01-13

    This patent describes a vehicle body covered with a vehicle body cover which comprises: a front cover part, a rear cover part, a pair of side cover parts, and a roof cover part: the front cover part having portions adapted to cover only a hood, an area around a windshield and tops of front fenders of a vehicle body. The portion covering the hood is separated from the portions covering the tops of the fenders by cuts in the front cover part, the front cover part having an un-cut portion corresponding to a position at which the hood is hinged to the car body. The front cover part has a cut-out at a position corresponding to the windshield of the vehicle body and the front cover part has at least one cut-out at a position corresponding to where a rear view mirror is attached to the vehicle body; and the rear cover part having portions adapted to cover an area around a rear window, a trunk lid and a rear end of the vehicle body, the portion covering the trunk lid separated from the rest of the rear cover part by cuts corresponding to three sides of the trunk lid and an un-cut portion corresponding to a position at which the trunk lid is hinged to the vehicle body. The rear cover part has a hole at position corresponding to a trunk lid lock, a cut-out portion at a position corresponding to the rear window of the vehicle body, a cut-out at a position corresponding to a license plate of the vehicle body and cut-outs at positions corresponding to rear taillights of the vehicle body.

  8. Mars manned transportation vehicle

    SciTech Connect

    Perez-Davis, M.E.; Faymon, K.A.

    1987-07-01

    A viable power system technology for a surface transportation vehicle to explore the planet Mars is presented. A number of power traction systems were investigated, and it was found that a regenerative hydrogen-oxygen fuel cell appears to be attractive for a manned Mars rover application. Mission requirements were obtained from the Manned Mars Mission Working Group. Power systems weights, power, and reactants requirements were determined as a function of vehicle weights for vehicles weighing from 6,000 to 16,000 lb (2,722 to 7,257 kg), (Earth weight). The vehicle performance requirements were: velocity, 10 km/hr; range, 100 km; slope climbing capability, 30 deg uphill for 50 km; mission duration, 5 days; and crew, 5. Power requirements for the operation of scientific equipment and support system capabilities were also specified and included in this study. The concept developed here would also be applicable to a Lunar based vehicle for Lunar exploration. The reduced gravity on the Lunar surface, (over that on the Martian surface), would result in an increased range or capability over that of the Mars vehicle since many of the power and energy requirements for the vehicle are gravity dependent.

  9. Mars manned transportation vehicle

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Faymon, Karl A.

    1987-01-01

    A viable power system technology for a surface transportation vehicle to explore the planet Mars is presented. A number of power traction systems were investigated, and it was found that a regenerative hydrogen-oxygen fuel cell appears to be attractive for a manned Mars rover application. Mission requirements were obtained from the Manned Mars Mission Working Group. Power systems weights, power, and reactants requirements were determined as a function of vehicle weights for vehicles weighing from 6,000 to 16,000 lb (2,722 to 7,257 kg), (Earth weight). The vehicle performance requirements were: velocity, 10 km/hr; range, 100 km; slope climbing capability, 30 deg uphill for 50 km; mission duration, 5 days; and crew, 5. Power requirements for the operation of scientific equipment and support system capabilities were also specified and included in this study. The concept developed here would also be applicable to a Lunar based vehicle for Lunar exploration. The reduced gravity on the Lunar surface, (over that on the Martian surface), would result in an increased range or capability over that of the Mars vehicle since many of the power and energy requirements for the vehicle are gravity dependent.

  10. Electric vehicle almanac

    SciTech Connect

    Brewer, D.E.

    1995-12-31

    Electric Vehicle Almanac presents an overview of the current activity in electric vehicle development. Brief highlights are given for different types of vehicles--ranging from mini town cars to high tonnage industrial trucks--produced by 48 different EV developers around the world. Most of these vehicles are concept cars, prototypes and demonstration vehicles. However, a few are cars actually in modest-volume production in Europe. Extensively covered in the almanac are research and development activities for EV batteries. As widely attested, current battery state-of-the-art is--in terms of both energy storage capacity and instant power response--at least one order of magnitude shy of putting EVs in any sort of contention with internal combustion vehicles. Two sections are worth special mention. One is excerpted from an EV thermal management study by Arthur D. Little, a renowned consulting company. This study suggests that current technology exists to make EVs practical for cold weather driving, typical of the Northeastern US. The other highlights an examination by the US Environmental Protection Agency into the energy efficiencies and costs of EVs viz-a-viz internal combustion vehicles.

  11. Rapid road repair vehicle

    SciTech Connect

    Mara, L.M.

    1999-09-07

    Disclosed are improvements to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  12. Blast resistant vehicle seat

    DOEpatents

    Ripley, Edward B

    2013-02-12

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  13. Vehicle gas producers

    NASA Astrophysics Data System (ADS)

    Donath, E. E.

    1980-05-01

    The present petroleum supply situation with the possibility of unscheduled interruptions and the definite expectation of continued price increases calls for an investigation of the use of solid fuels for the propulsion of vehicles. The paper reviews the use of solid fuel gas producers with high thermal efficiency on motor vehicles, especially trucks and buses. Some economic comparisons are presented for pre-World War II conditions. Suggestions are made for possible future development of vehicle gas producers. The types of producers are described, along with their performance, special problems, and the importance of fuel properties.

  14. Assured crew return vehicle

    NASA Technical Reports Server (NTRS)

    Cerimele, Christopher J. (Inventor); Ried, Robert C. (Inventor); Peterson, Wayne L. (Inventor); Zupp, George A., Jr. (Inventor); Stagnaro, Michael J. (Inventor); Ross, Brian P. (Inventor)

    1991-01-01

    A return vehicle is disclosed for use in returning a crew to Earth from low earth orbit in a safe and relatively cost effective manner. The return vehicle comprises a cylindrically-shaped crew compartment attached to the large diameter of a conical heat shield having a spherically rounded nose. On-board inertial navigation and cold gas control systems are used together with a de-orbit propulsion system to effect a landing near a preferred site on the surface of the Earth. State vectors and attitude data are loaded from the attached orbiting craft just prior to separation of the return vehicle.

  15. Rapid road repair vehicle

    DOEpatents

    Mara, Leo M.

    1999-01-01

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  16. Vehicle Technologies Program Implementation

    SciTech Connect

    none,

    2009-06-19

    The Vehicle Technologies Program takes a systematic approach to Program implementation. Elements of this approach include the evaluation of new technologies, competitive selection of projects and partners, review of Program and project improvement, project tracking, and portfolio management and adjustment.

  17. Motor Vehicle Safety

    MedlinePlus

    ... these crashes is one part of motor vehicle safety. Here are some things you can do to ... speed or drive aggressively Don't drive impaired Safety also involves being aware of others. Share the ...

  18. Light Duty Vehicle Program

    EPA Pesticide Factsheets

    View a fact sheet on how the Final Endangerment Finding will allow EPA to finalize the first greenhouse gas standards for new light-duty vehicles as part of the joint rulemaking with the Department of Transportation.

  19. Vehicle Technologies Program Planning

    SciTech Connect

    2009-06-19

    The Vehicle Technologies Program’s strategic goal is to develop sustainable, cost-competitive technologies to reduce U.S. dependence on petroleum, increase fuel efficiency, reduce greenhouse gas emissions and improve the Nation's energy security.

  20. Vehicle Technologies Program Overview

    SciTech Connect

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  1. Space Vehicle Valve System

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  2. New Mars vehicle concepts

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    1993-02-01

    The paper briefly reviews the evolution of the Mars vehicle design concepts from 1952 to 1990, and the currently understood requirements, constraints, and options for manned Mars missions in the early decades of the 21st century. The most up-to-date integrated Mars vehicle concepts for crew-carrying transfer and excursion vehicles are presented together with the Mars descent-ascent mission phases. Particular attention is given to a reusable transfer ship, which is a modular vehicle launched to earth orbit on six 185 t-class boosters and assembled there robotically; it uses dual nuclear-thermal rocket engines and liquid hydrogen propellant. The lander concept is capable of supporting many kinds of surface missions anywhere on Mars.

  3. Hydraulic Hybrid Vehicles

    EPA Pesticide Factsheets

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  4. Hybrid vehicle control

    DOEpatents

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  5. Experimental Semiautonomous Vehicle

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Mishkin, Andrew H.; Litwin, Todd E.; Matthies, Larry H.; Cooper, Brian K.; Nguyen, Tam T.; Gat, Erann; Gennery, Donald B.; Firby, Robert J.; Miller, David P.; Loch, John L.; Slack, Marc G.

    1993-01-01

    Semiautonomous rover vehicle serves as testbed for evaluation of navigation and obstacle-avoidance techniques. Designed to traverse variety of terrains. Concepts developed applicable to robots for service in dangerous environments as well as to robots for exploration of remote planets. Called Robby, vehicle 4 m long and 2 m wide, with six 1-m-diameter wheels. Mass of 1,200 kg and surmounts obstacles as large as 1 1/2 m. Optimized for development of machine-vision-based strategies and equipped with complement of vision and direction sensors and image-processing computers. Front and rear cabs steer and roll with respect to centerline of vehicle. Vehicle also pivots about central axle, so wheels comply with almost any terrain.

  6. Vehicle speed control device

    SciTech Connect

    Thornton-Trump, W.E.

    1987-03-10

    An apparatus is described for automatically limiting the speed of a vehicle powered by an internal combustion engine having a spark ignition system with an ignition coil, comprising: sensor means for generating a speed signal directly representative of the speed of the vehicle comprising a series of speed signal pulses having a pulse repetition frequency proportional to the speed of the vehicle; control means for converting speed signal pulses into a DC voltage proportional to the vehicle speed; means for comparing the DC voltage to a predetermined DC voltage having substantially zero AC components representative of a predetermined maximum speed and for generating a difference signal in response thereto; and means for generating a pulse-width modulated control signal responsive to the difference signal; power means responsive to the control signal for intermittently interrupting the ignition system.

  7. Aerodynamics of Small Vehicles

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas J.

    In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number of experimental boundary-layer studies, including the influence of laminar separation bubbles, are discussed. Several examples of small unmanned aerial vehicles (UAVs) in this regime are described. Also, a brief survey of analytical models for oscillating and flapping-wing propulsion is presented. These range from the earliest examples where quasi-steady, attached flow is assumed, to those that account for the unsteady shed vortex wake as well as flow separation and aeroelastic behavior of a flapping wing. Experiments that complemented the analysis and led to the design of a successful ornithopter are also described.

  8. Experimental Semiautonomous Vehicle

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Mishkin, Andrew H.; Litwin, Todd E.; Matthies, Larry H.; Cooper, Brian K.; Nguyen, Tam T.; Gat, Erann; Gennery, Donald B.; Firby, Robert J.; Miller, David P.; hide

    1993-01-01

    Semiautonomous rover vehicle serves as testbed for evaluation of navigation and obstacle-avoidance techniques. Designed to traverse variety of terrains. Concepts developed applicable to robots for service in dangerous environments as well as to robots for exploration of remote planets. Called Robby, vehicle 4 m long and 2 m wide, with six 1-m-diameter wheels. Mass of 1,200 kg and surmounts obstacles as large as 1 1/2 m. Optimized for development of machine-vision-based strategies and equipped with complement of vision and direction sensors and image-processing computers. Front and rear cabs steer and roll with respect to centerline of vehicle. Vehicle also pivots about central axle, so wheels comply with almost any terrain.

  9. TRACKED VEHICLE Rev 75

    SciTech Connect

    Raby, Eric Y.

    2007-05-08

    Revision 75 of the Tracked Vehicle software is a soft real-time simulation of a differentially steered, tracked mobile robot, which, because of the track flippers, resembles the iRobot PackBot (http://www.irobot.com/). Open source libraries are used for the physics engine (http://www.ode.org/), the display and user interface (http://www.mathies.com/cpw/), and the program command line and configuration file parameters (http://www.boost.org/). The simulation can be controlled by a USB joystick or the keyboard. The configuration file contains demonstration model parameters of no particular vehicle. This simulation can be used as a starting point for those doing tracked vehicle simulations. This simulation software is essentially a research tool which can be modified and adapted for certain types of tracked vehicle research. An open source license allows an individual researchers to tailor the code to their specific research needs.

  10. Compact Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Ohm, Timothy R.

    1993-01-01

    Radio-controlled microrover features light weight and agility. Miniature robotic vehicle, called Go-For, implements new fork-wheeled mobility concept to traverse extremely rough terrain. Weighs 4 kg and is 0.4 m long, climbs over obstacles as large as 60 percent of its length. Mobility concept applied to much larger vehicles. Demonstrates such applications as exploration of planetary surfaces, military surveillance, and assessing hazardous situations. Video camera on vehicle sends images to control station, where human supervisor chooses sequence of paths to traverse to reach locations of interest. For planetary exploration, spectrometer and seisometer on vehicle sends scientific data to control station, and onboard tools collect soil and rock samples. Terrestrial version equipped similarly to take samples in chemically and/or biologically contaminated areas.

  11. Army Ground Vehicle Propulsion

    DTIC Science & Technology

    2012-09-25

    IV (> 75 bhp ) compliant COTS engines and directly integrate into current and new heavy-duty vehicles. • Combat vehicle: permanent armor...propulsion system volume [ bhp /ft3] — Air filtration requirements, thermal management system, transmission, engine, ducting requirements, final drives...transmission 40 ft3;  engine 31 ft3;  air filtration 31 ft3 o Bradley FIV: Cummins VTA903 has SHRR of 0.6 BHP / BHP vs. today’s COTS > 0.85

  12. Launch Vehicle Operations Simulator

    NASA Technical Reports Server (NTRS)

    Blackledge, J. W.

    1974-01-01

    The Saturn Launch Vehicle Operations Simulator (LVOS) was developed for NASA at Kennedy Space Center. LVOS simulates the Saturn launch vehicle and its ground support equipment. The simulator was intended primarily to be used as a launch crew trainer but it is also being used for test procedure and software validation. A NASA/contractor team of engineers and programmers implemented the simulator after the Apollo XI lunar landing during the low activity periods between launches.

  13. Ground Vehicle Robotics Presentation

    DTIC Science & Technology

    2012-08-14

    Mr. Jim Parker Associate Director Ground Vehicle Robotics Distribution Statement A. Approved for public release Report Documentation Page...Briefing 3. DATES COVERED 01-07-2012 to 01-08-2012 4. TITLE AND SUBTITLE Ground Vehicle Robotics Presentation 5a. CONTRACT NUMBER 5b. GRANT...ABSTRACT Provide Transition-Ready, Cost-Effective, and Innovative Robotics and Control System Solutions for Manned, Optionally-Manned, and Unmanned

  14. Vehicle Assembly Building (VAB)

    NASA Image and Video Library

    2017-09-27

    NASA's Vehicle Assembly Building at Kennedy Space Center in Florida was used to assemble and house American-crewed launch vehicles from 1968 to 2011. AT 3,684,883 cubic meters, it is one of the largest buildings in the world by volume. Inside the facility, High Bay 3 is being upgraded and modified to support processing of the agency's Space Launch System rocket and Orion spacecraft.

  15. Analyzing Vehicle Operator Deviations

    DTIC Science & Technology

    2008-07-01

    related to vehicle operator deviations ( VODs ). VODs occur when a vehicle enters the airport movement area without ATC approval. We developed a VOD ...prediction model to help understand the human factors causes associated with different types of VODs . We then examined the validity of the model, using...the data that we needed was missing due to incomplete reporting of the human factors associated with a given VOD . To aid in the development of a

  16. Autonomous Underwater Vehicle Navigation

    DTIC Science & Technology

    2008-02-01

    roll , pitch , and yaw information. We assume the vehicle dynamics are slow, and as such, the coupling between the inclinometers and platform...the vehicle has a nonzero roll or pitch angle, Σu has dimension 3. For this condition, the unobservable subspace is similar to a single beam failure...position is defined in local tangent plane coordinates, where x aligns with north, y aligns with east, and z is down. Euler attitude angles are roll (φ

  17. Launch Vehicle Communications

    NASA Technical Reports Server (NTRS)

    Welch, Bryan; Greenfeld, Israel

    2005-01-01

    As the National Aeronautics and Space Administration's (NASA) planning for updated launch vehicle operations progresses, there is a need to consider improved methods. This study considers the use of phased array antennas mounted on launch vehicles and transmitting data to either NASA's Tracking and Data Relay Satellite System (TDRSS) satellites or to the commercial Iridium, Intelsat, or Inmarsat communications satellites. Different data rate requirements are analyzed to determine size and weight of resulting antennas.

  18. Nuclear air cushion vehicles.

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    This paper serves several functions. It identifies the 'state-of-the-art' of the still-conceptual nuclear air cushion vehicle, particularly the nuclear powerplant. Using mission studies and cost estimates, the report describes some of the advantages of nuclear power for large air cushion vehicles. The paper also summarizes the technology studies on mobile nuclear powerplants and conceptual ACV systems/missions studies that have been performed at NASA Lewis Research Center.

  19. Space robot simulator vehicle

    NASA Technical Reports Server (NTRS)

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  20. Emergency Brake for Tracked Vehicles

    NASA Technical Reports Server (NTRS)

    Green, G. L.; Hooper, S. L.

    1986-01-01

    Caliper brake automatically stops tracked vehicle as vehicle nears end of travel. Bar on vehicle, traveling to right, dislodges block between brake pads. Pads then press against bar, slowing vehicle by friction. Emergencybraking system suitable for elevators, amusement rides and machine tools.

  1. Emergency Brake for Tracked Vehicles

    NASA Technical Reports Server (NTRS)

    Green, G. L.; Hooper, S. L.

    1986-01-01

    Caliper brake automatically stops tracked vehicle as vehicle nears end of travel. Bar on vehicle, traveling to right, dislodges block between brake pads. Pads then press against bar, slowing vehicle by friction. Emergencybraking system suitable for elevators, amusement rides and machine tools.

  2. Electric/Hybrid Vehicle Simulation

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.; Chapman, C. P.; Brennand, J. P.

    1985-01-01

    ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.

  3. 75 FR 76692 - Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ..., and 571 Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety AGENCY... passenger vehicles, trucks, buses, trailers, incomplete vehicles, motorcycles, and motor vehicle equipment... impacts. 523 Vehicle classification. 525 Exemptions from average fuel economy standards. 526 Petitions...

  4. Upgraded demonstration vehicle task report

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Hardy, K.; Livingston, R.; Sandberg, J.

    1981-01-01

    Vehicle/battery performance capabilities and interface problems that occurred when upgraded developmental batteries were integrated with upgraded versions of comercially available electric vehicles were investigated. Developmental batteries used included nickel zinc batteries, a nickel iron battery, and an improved lead acid battery. Testing of the electric vehicles and upgraded batteries was performed in the complete vehicle system environment to characterize performance and identify problems unique to the vehicle/battery system. Constant speed tests and driving schedule range tests were performed on a chassis dynamometer. The results from these tests of the upgraded batteries and vehicles were compared to performance capabilities for the same vehicles equipped with standard batteries.

  5. Advanced Vehicle Testing and Evaluation

    SciTech Connect

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  6. Methylotroph cloning vehicle

    DOEpatents

    Hanson, Richard S.; Allen, Larry N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  7. Space vehicle concepts

    NASA Technical Reports Server (NTRS)

    Tucker, Michael; Meredith, Oliver; Brothers, Bobby

    1986-01-01

    Several concepts of chemical-propulsion Space Vehicles (SVs) for manned Mars landing missions are presented. For vehicle sizing purposes, several specific missions were chosen from opportunities in the late 1990's and early 2000's, and a vehicle system concept is then described which is applicable to the full range of missions and opportunities available. In general, missions utilizing planetary opposition alignments can be done with smaller vehicles than those utilizing planetary opposition alignments. The conjunction missions have a total mission time of about 3 years, including a required stay-time of about 60 days. Both types of missions might be desirable during a Mars program, the opposition type for early low-risk missions and/or for later unmanned cargo missions, and the conjunction type for more extensive science/exploration missions and/or for Mars base activities. Since the opposition missions appeared to drive the SV size more severely, there were probably more cases examined for them. Some of the concepts presented utilize all-propulsive braking, some utilize and all aerobraking approach, and some are hybrids. Weight statements are provided for various cases. Most of the work was done on 0-g vehicle concepts, but partial-g and 1-g concepts are also provided and discussed. Several options for habitable elements are shown, such as large-diameter modules and space station (SS) types of modules.

  8. Distributed Propulsion Vehicles

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  9. 77 FR 12355 - Enabling a Secure Environment for Vehicle-to-Vehicle and Vehicle-to-Infrastructure Transactions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Enabling a Secure Environment for Vehicle-to-Vehicle and Vehicle- to-Infrastructure Transactions Workshop... Environment for Vehicle- to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) Transactions on April 19-20... presented in August 2012 during the annual Connected Vehicle Safety public meeting and via other...

  10. Electric vehicle station equipment for grid-integrated vehicles

    DOEpatents

    Kempton, Willett; Kiamilev, Fouad; McGee, Rodney; Waite, Nick

    2017-09-05

    Methods, systems, and apparatus transferring power between the grid and an electric vehicle are disclosed. The apparatus may include at least one vehicle communication port for interfacing with electric vehicle equipment (EVE) and a processor coupled to the at least one vehicle communication port to establish communication with the EVE, receive EVE attributes from the EVE, and transmit electric vehicle station equipment (EVSE) attributes to the EVE. Power may be transferred between the grid and the electric vehicle by maintaining EVSE attributes, establishing communication with the EVE, and transmitting the EVSE maintained attributes to the EVE.

  11. Assured Crew Return Vehicle

    NASA Technical Reports Server (NTRS)

    Stone, D. A.; Craig, J. W.; Drone, B.; Gerlach, R. H.; Williams, R. J.

    1991-01-01

    The developmental status is discussed regarding the 'lifeboat' vehicle to enhance the safety of the crew on the Space Station Freedom (SSF). NASA's Assured Crew Return Vehicle (ACRV) is intended to provide a means for returning the SSF crew to earth at all times. The 'lifeboat' philosophy is the key to managing the development of the ACRV which further depends on matrixed support and total quality management for implementation. The risk of SSF mission scenarios are related to selected ACRV mission requirements, and the system and vehicle designs are related to these precepts. Four possible ACRV configurations are mentioned including the lifting-body, Apollo shape, Discoverer shape, and a new lift-to-drag concept. The SCRAM design concept is discussed in detail with attention to the 'lifeboat' philosophy and requirements for implementation.

  12. Personnel emergency carrier vehicle

    NASA Technical Reports Server (NTRS)

    Owens, Lester J. (Inventor); Fedor, Otto H. (Inventor)

    1987-01-01

    A personnel emergency carrier vehicle is disclosed which includes a vehicle frame supported on steerable front wheels and driven rear wheels. A supply of breathing air is connected to quick connect face mask coupling and umbilical cord couplings for supplying breathing air to an injured worker or attendant either with or without a self-contained atmospheric protection suit for protection against hazardous gases at an accident site. A non-sparking hydraulic motion is utilized to drive the vehicle and suitable direction and throttling controls are provided for controlling the delivery of a hydraulic driving fluid from a pressurized hydraulic fluid accumulator. A steering axis is steerable through a handle to steer the front wheels through a linkage assembly.

  13. Dynamics of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1991-01-01

    The focus of this research was to address the modeling, including model reduction, of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis and/or guidance and control system design. In the modeling, it is critical that the key aspects of the system being modeled be captured in the model. In this work, therefore, aspects of the vehicle dynamics critical to control design were important. In this regard, fundamental contributions were made in the areas of stability robustness analysis techniques, model reduction techniques, and literal approximations for key dynamic characteristics of flexible vehicles. All these areas are related. In the development of a model, approximations are always involved, so control systems designed using these models must be robust against uncertainties in these models.

  14. Smart Vehicle System

    NASA Astrophysics Data System (ADS)

    Pahadiya, Pallavi; Gupta, Rajni

    2010-11-01

    An approach to overcome the accidental problem happens in the night, while the driver is drunk or feels sleepy. This system controls the speed of the vehicle at steep turns. It is designed, to provide the information to the driver, whether the next turn is right/left, is there any traffic jam or land sliding in the coming way. It also assists during heavy rains and mist conditions. It may be implemented by using computer or by using a dedicated microcontroller. If we have a group of vehicles connected with the system then we can locate them by using the cameras, at different places. Information regarding any vehicle can be transmitted anywhere using Internet provided at the monitoring system, so as to prevent accidents or provide information during any calamity.

  15. Apparatus for stopping a vehicle

    SciTech Connect

    Wattenburg, Willard H.; McCallen, David B.

    2007-03-20

    An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

  16. Aeroacoustics of Space Vehicles

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta

    2014-01-01

    While for airplanes the subject of aeroacoustics is associated with community noise, for space vehicles it is associated with vibro-acoustics and structural dynamics. Surface pressure fluctuations encountered during launch and travel through lower part of the atmosphere create intense vibro-acoustics environment for the payload, electronics, navigational equipment, and a large number of subsystems. All of these components have to be designed and tested for flight-certification. This presentation will cover all three major sources encountered in manned and unmanned space vehicles: launch acoustics, ascent acoustics and abort acoustics. Launch pads employ elaborate acoustic suppression systems to mitigate the ignition pressure waves and rocket plume generated noise during the early part of the liftoff. Recently we have used large microphone arrays to identify the noise sources during liftoff and found that the standard model by Eldred and Jones (NASA SP-8072) to be grossly inadequate. As the vehicle speeds up and reaches transonic speed in relatively denser part of the atmosphere, various shock waves and flow separation events create unsteady pressure fluctuations that can lead to high vibration environment, and occasional coupling with the structural modes, which may lead to buffet. Examples of wind tunnel tests and computational simulations to optimize the outer mold line to quantify and reduce the surface pressure fluctuations will be presented. Finally, a manned space vehicle needs to be designed for crew safety during malfunctioning of the primary rocket vehicle. This brings the subject of acoustic environment during abort. For NASAs Multi-Purpose Crew Vehicle (MPCV), abort will be performed by lighting rocket motors atop the crew module. The severe aeroacoustics environments during various abort scenarios were measured for the first time by using hot helium to simulate rocket plumes in the Ames unitary plan wind tunnels. Various considerations used for the

  17. BEEST: Electric Vehicle Batteries

    SciTech Connect

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  18. Hybrid electric vehicles TOPTEC

    SciTech Connect

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  19. Affordable Vehicle Avionics Overview

    NASA Technical Reports Server (NTRS)

    Cockrell, James J.

    2015-01-01

    Public and private launch vehicle developers are reducing the cost of propulsion for small commercial launchers, but conventional high-performance, high-reliability avionics remain the disproportionately high cost driver for launch. AVA technology performs as well or better than conventional launch vehicle avionics, but with a fraction of the recurring costs. AVA enables small launch providers to offer affordable rides to LEO to nano-satellites as primary payloads meaning, small payloads can afford to specify their own launch and orbit parameters

  20. Affordable Vehicle Avionics Overview

    NASA Technical Reports Server (NTRS)

    Cockrell, James J.

    2015-01-01

    Public and private launch vehicle developers are reducing the cost of propulsion for small commercial launchers, but conventional high-performance, high-reliability avionics remain the disproportionately high cost driver for launch. AVA technology performs as well or better than conventional launch vehicle avionics, but with a fraction of the recurring costs. AVA enables small launch providers to offer affordable rides to LEO to nano-satellites as primary payloads meaning, small payloads can afford to specify their own launch and orbit parameters.

  1. Vehicle brake testing system

    SciTech Connect

    Stevens, Samuel S; Hodgson, Jeffrey W

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  2. Vehicle Dynamics and Control

    NASA Astrophysics Data System (ADS)

    Rajamani, Rajesh

    Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system topics covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire models and tire-road friction estimation. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics.

  3. Mini-trucks: Importing Used Motor Vehicles as Nonroad Vehicles

    EPA Pesticide Factsheets

    This fact sheet addresses EPA's revised regulations that affect the importation of vehicles that have been converted to nonroad use but were originally built and used as motor vehicles. (EPA Publication # EPA-420-F-09-014)

  4. Environmental Evaluation of New Generation Vehicles and Vehicle Components

    SciTech Connect

    Schexnayder, S.M.

    2002-02-06

    This report documents assessments that address waste issues and life cycle impacts associated with the vehicle materials and vehicle technologies being developed under the Partnership for a New Generation of Vehicles (PNGV) program. We refer to these vehicles as 3XVs, referring to the PNGV goal that their fuel mileage be three times better than the baseline vehicle. To meet the program's fuel consumption goals, these vehicles substitute lightweight materials for heavier materials such as steel and iron that currently dominate the composition of vehicles, and use engineering and power system changes. Alternative power systems being developed through the PNGV program include batteries for hybrid electric vehicles and fuel cells. With respect to all these developments, it is imperative to learn what effects they will have on the environment before adopting these designs and technologies on a large-scale basis.

  5. Batteries for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  6. The Electric Vehicle Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    This article describes a design activity that provides students with a solid understanding of the many issues involved with alternate energy system design. In this activity, students will be able to learn about electric vehicles and have the opportunity to design a way to recharge the batteries while the cars are parked in a commuter garage. The…

  7. Multiple environment unmanned vehicle

    DOEpatents

    Hobart, Clinton G.; Morse, William D.; Bickerstaff, Robert James

    2017-02-28

    A MEUV that is able to navigate aerial, aquatic, and terrestrial environments through the use of different mission mobility attachments is disclosed. The attachments allow the MEUV to be deployed from the air or through the water prior to any terrestrial navigation. The mobility attachments can be removed or detached by and from the vehicle during a mission.

  8. Vehicle Cabin Atmosphere Monitor

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara; Darrach, Muray

    2007-01-01

    Vehicle Cabin Atmosphere Monitor (VCAM) identifies gases that are present in minute quantities in the International Space Station (ISS) breathing air that could harm the crew s health. If successful, instruments like VCAM could accompany crewmembers during long-duration exploration missions to the Moon or traveling to Mars.

  9. Battery for vehicle

    SciTech Connect

    Uehara, M.

    1984-04-24

    In a battery of a vehicle such as motorcycle, the bottom is indented at both ends in the longitudinal direction; i.e., with respect to both end portions, in the longitudinal direction of the bottom, the middle portion protrudes downwardly, so that the battery is more advantageously accommodated in the triangular space formed by the motorcycle frame.

  10. Diesel Vehicle Maintenance Competencies.

    ERIC Educational Resources Information Center

    Braswell, Robert; And Others

    Designed to provide a model set of competencies, this manual presents tasks which were identified by employers, employees, and teachers as important in a postsecondary diesel vehicle maintenance curriculum. The tasks are divided into seven major component areas of instruction: chassis and suspension, diesel engines, diesel fuel, electrical,…

  11. Hybrid Turbine Electric Vehicle

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  12. Vehicle tracking systems

    SciTech Connect

    Schwalm, R.W.

    1987-01-01

    Several systems have been developed to accomplish vehicle location. The systems consist of three types: Dead Reckoning, Satellite, and LORAN C. If the information is to be sent back to a central location, some type of radiocommunication system is needed. One can use the existing voice radio or add a radio system just for transmitting the data.

  13. Recreational Vehicle Trades.

    ERIC Educational Resources Information Center

    Felice, Michael

    This curriculum guide provides materials for a competency-based course in recreational vehicle trades at the secondary level. The curriculum design uses the curriculum infused model for the teaching of basic skills as part of vocational education and demonstrates the relationship of vocationally related skills to communication, mathematics, and…

  14. Heavy Vehicle Systems

    SciTech Connect

    Sid Diamond; Richard Wares; Jules Routbort

    2000-04-11

    Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

  15. Recreational Vehicle Trades.

    ERIC Educational Resources Information Center

    Felice, Michael

    This curriculum guide provides materials for a competency-based course in recreational vehicle trades at the secondary level. The curriculum design uses the curriculum infused model for the teaching of basic skills as part of vocational education and demonstrates the relationship of vocationally related skills to communication, mathematics, and…

  16. Mars Exploratory Vehicles.

    ERIC Educational Resources Information Center

    Canizo, Thea L.; And Others

    1997-01-01

    Presents an activity in which students learn about the characteristics of the planet Mars. Challenges students to design and build a model of a robotic vehicle that can travel on the surface of Mars and accomplish an assigned task that will provide information useful for future manned trips to the planet. Outlines mission task cards and progress…

  17. 2008 Combat Vehicles Conference

    DTIC Science & Technology

    2008-10-22

    General Michael M. Brogan Combat Vehicles Conference Marine Corps Systems Command 21 October 2008 2 MCSC •LAV •AAV •Tank •HMMWV/ ECV •MRAP PEO LS...34,226 Total 56,649 1985 IOC 1996 M1114 armored HMMWV Limited Production 2006 M1100 series begins fielding scalable armor 2009-10 ECV II

  18. TARDEC Ground Vehicle Robotics

    DTIC Science & Technology

    2013-05-30

    UNCLASSIFIED UNCLASSIFIED 10 Optionally Manned Vehicles OMV can be driven by a soldier; OMV can drive a soldier; OMV can be remotely operated; OMV can be...all missions for OMV (i.e. shared driving) (i.e. remotely operated) 2 m od al iti es Mission Payloads UNCLASSIFIED UNCLASSIFIED 11 Ground

  19. Mars Exploratory Vehicles.

    ERIC Educational Resources Information Center

    Canizo, Thea L.; And Others

    1997-01-01

    Presents an activity in which students learn about the characteristics of the planet Mars. Challenges students to design and build a model of a robotic vehicle that can travel on the surface of Mars and accomplish an assigned task that will provide information useful for future manned trips to the planet. Outlines mission task cards and progress…

  20. Mars Rover Concept Vehicle

    NASA Image and Video Library

    2017-06-05

    Crowds gather around the scientifically-themed Mars rover concept vehicle at the Kennedy Space Center Visitor Complex. It is a part of the "Summer of Mars" program designed to provide a survey of NASA's studies of the Red Planet. The builders of the rover, Parker Brothers Concepts of Port Canaveral, Florida, incorporated input into its design from NASA subject matter experts.

  1. Engine & Vehicle Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum includes all competencies a student will acquire in an engine and vehicle mechanics educational program. It follows guidelines established for automobile technician training programs leading toward certification and addresses requirements of the National Institute for Automotive Service Excellence (ASE). The…

  2. Lunar transfer vehicle studies

    NASA Technical Reports Server (NTRS)

    Keeley, Joseph T.

    1993-01-01

    Lunar transportation architectures exist for several different mission scenarios. Direct flights from Earth are possible, as the Apollo program clearly demonstrated. Alternatively, a space transfer vehicle could be constructed in space by using the Space Station as a base of operations, or multiple vehicles could be launched from Earth and dock in LEO without using a space station for support. Similarly, returning personnel could proceed directly to Earth or rendezvous at the Space Station for a ride back home on the Space Shuttle. Multiple design concepts exist which are compatible with these scenarios and which can support requirements of cargo, personnel, and mission objectives. Regardless of the ultimate mission selected, some technologies will certainly play a key role in the design and operation of advanced lunar transfer vehicles. Current technologies are capable of delivering astronauts to the lunar surface, but improvements are needed to affordably transfer the material and equipment that will be needed for establishing a lunar base. Materials and structures advances, in particular, will enable the development of more capable cryogenic fluid management and propulsion systems, improved structures, and more efficient vehicle assembly, servicing and processing.

  3. 2011 Combat Vehicles Conference

    DTIC Science & Technology

    2011-10-26

    Capability-Platform (JBC-P) • Light-weight Crew-served Weapons • Joint Capability Release ( JCR ) • Combat Vehicle Improvements Mr. Scott Davis PEO...WIN-T INC 3 JTRS CREW V2 Relocation/V3 CS 11-12 OoC ( JCR ) BFT II VRC 103 & 104 CS 13-14 MSS Duke TI OSRVT (Rover 6) Nett

  4. Diesel Vehicle Maintenance Competencies.

    ERIC Educational Resources Information Center

    Braswell, Robert; And Others

    Designed to provide a model set of competencies, this manual presents tasks which were identified by employers, employees, and teachers as important in a postsecondary diesel vehicle maintenance curriculum. The tasks are divided into seven major component areas of instruction: chassis and suspension, diesel engines, diesel fuel, electrical,…

  5. Vehicle fuel system

    DOEpatents

    Risse, John T.; Taggart, James C.

    1976-01-01

    A vehicle fuel system comprising a plurality of tanks, each tank having a feed and a return conduit extending into a lower portion thereof, the several feed conduits joined to form one supply conduit feeding fuel to a supply pump and using means, unused fuel being returned via a return conduit which branches off to the several return conduits.

  6. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  7. The Electric Vehicle Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    This article describes a design activity that provides students with a solid understanding of the many issues involved with alternate energy system design. In this activity, students will be able to learn about electric vehicles and have the opportunity to design a way to recharge the batteries while the cars are parked in a commuter garage. The…

  8. Methylotroph cloning vehicle

    DOEpatents

    Hanson, R.S.; Allen, L.N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

  9. Locating the Vehicle Emissions Label

    EPA Pesticide Factsheets

    The EPA vehicle emissions label is entitled Vehicle Emission Control Information and contains the name and trademark of the manufacturer and an unconditional statement of compliance with EPA emission regulations.

  10. Vehicle and Fuel Emissions Testing

    EPA Pesticide Factsheets

    EPA's National Vehicle and Fuel Emissions Laboratory's primary responsibilities include: evaluating emission control technology; testing vehicles, engines and fuels; and determining compliance with federal emissions and fuel economy standards.

  11. Household vehicles energy consumption 1991

    SciTech Connect

    Not Available

    1993-12-09

    The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

  12. Vehicle Integrated Propulsion Research Tests

    NASA Technical Reports Server (NTRS)

    Lekki, John D.; Hunter, Gary W.; Simon, Don; Meredith, Roger; Wrbanek, John; Woike, Mark; Tokars, Roger; Guffanti, Marianne; Lyall, Eric

    2013-01-01

    Overview of the Vehicle Integrated Propulsion Research Tests in the Vehicle Systems Safety Technologies project. This overview covers highlights of the completed VIPR I and VIPR II tests and also covers plans for the VIPR III test.

  13. Hybrid-Vehicle Transmission System

    NASA Technical Reports Server (NTRS)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  14. Hybrid-Vehicle Transmission System

    NASA Technical Reports Server (NTRS)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  15. The reusable reentry satellite: A new capability for NASA - A vehicle for international cooperation

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Morey-Holton, Emily; Gilbreath, William P.; Halstead, Thora; Richardson, Michael L.

    1989-01-01

    NASA's LifeSat program, which is designed to study biological systems, is described. The program is also designed to understand how living organisms respond to microgravity as low as 0.00001 G, various levels of artificial gravity up to 1.5 G, and cosmic radiation. Modules to be developed for LifeSat missions include specialized modules to support animals, plants, cells, and tissues.

  16. The reusable reentry satellite: A new capability for NASA - A vehicle for international cooperation

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Morey-Holton, Emily; Gilbreath, William P.; Halstead, Thora; Richardson, Michael L.

    1989-01-01

    NASA's LifeSat program, which is designed to study biological systems, is described. The program is also designed to understand how living organisms respond to microgravity as low as 0.00001 G, various levels of artificial gravity up to 1.5 G, and cosmic radiation. Modules to be developed for LifeSat missions include specialized modules to support animals, plants, cells, and tissues.

  17. Vehicle Corrosion Expert System (CES)

    DTIC Science & Technology

    2000-07-19

    Report developed under SBlR contract for topic A99-092. This report describes the design and development of a vehicle Corrosion Expert System (CES). CES has immediate utility in the automotive industry by vehicle manufactures that have the...eliminate or reduce the expensive Accelerated Corrosion Testing phase of the new vehicle development effort. The Vehicle Corrosion Expert System supports...and level of detail required to allow the user to use the Expert System for his area of interest.

  18. Motor Vehicle Theft. Special Report.

    ERIC Educational Resources Information Center

    Harlow, Caroline Wolf

    Thirteen years of data from the National Crime Survey were analyzed to examine the characteristics of motor vehicle theft, to identify trends during the past 13 years, and to determine who are most likely to be victims of motor vehicle theft. All motor vehicle thefts reported to the National Crime Survey from 1973 through 1985 were examined.…

  19. Knowledge Navigation for Virtual Vehicles

    NASA Technical Reports Server (NTRS)

    Gomez, Julian E.

    2004-01-01

    A virtual vehicle is a digital model of the knowledge surrounding a potentially real vehicle. Knowledge consists not only of the tangible information, such as CAD, but also what is known about the knowledge - its metadata. This paper is an overview of technologies relevant to building a virtual vehicle, and an assessment of how to bring those technologies together.

  20. Emergency-vehicle VHF antenna

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Carlson, A. W.; Lewis, J.

    1977-01-01

    Helical VHF antenna mounts on roof of moving vehicle to communicate with distant stations via earth satellites. Antenna requires no pointing and can provide two-way communication while vehicle moves at high speed. Device has proved extremely successful in electrocardiogram transmission tests between medical services vehicle and hospital emergency room.

  1. Emergency-vehicle VHF antenna

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Carlson, A. W.; Lewis, J.

    1977-01-01

    Helical VHF antenna mounts on roof of moving vehicle to communicate with distant stations via earth satellites. Antenna requires no pointing and can provide two-way communication while vehicle moves at high speed. Device has proved extremely successful in electrocardiogram transmission tests between medical services vehicle and hospital emergency room.

  2. Electric vehicle equipment for grid-integrated vehicles

    DOEpatents

    Kempton, Willett

    2013-08-13

    Methods, systems, and apparatus for interfacing an electric vehicle with an electric power grid are disclosed. An exemplary apparatus may include a station communication port for interfacing with electric vehicle station equipment (EVSE), a vehicle communication port for interfacing with a vehicle management system (VMS), and a processor coupled to the station communication port and the vehicle communication port to establish communication with the EVSE via the station communication port, receive EVSE attributes from the EVSE, and issue commands to the VMS to manage power flow between the electric vehicle and the EVSE based on the EVSE attributes. An electric vehicle may interface with the grid by establishing communication with the EVSE, receiving the EVSE attributes, and managing power flow between the EVE and the grid based on the EVSE attributes.

  3. Appendix J - GPRA06 vehicle technologies program

    SciTech Connect

    None, None

    2009-01-18

    The target market for the Office of FreedomCAR and Vehicle Technologies (FCVT) program include light vehicles (cars and light trucks) and heavy vehicles (trucks more than 10,000 pounds Gross Vehicle Weight).

  4. How important is vehicle safety in the new vehicle purchase/lease process for fleet vehicles?

    PubMed

    Koppel, Sjaanie; Charlton, Judith; Fildes, Brian

    2007-06-01

    Despite the potential benefits that fleet vehicle purchase decisions could have on road safety, the role that vehicle safety plays in fleet managers' purchase decisions is poorly understood. In this study, fleet managers from Sweden and Spain completed a questionnaire regarding the importance of vehicle safety in the new vehicle purchase/lease process and the importance that is placed on safety options/features relative to other convenience and comfort features. The findings of the current study suggest that vehicle safety is generally not the primary consideration in the vehicle purchase process and is consistently outranked by factors such as price and dependability/reliability. For example, when asked to indicate the vehicle factors that are included in their company's criteria for purchasing/leasing a new vehicle, fleet managers from both Sweden and Spain were more likely to list the vehicle's price, reliability, running costs, size, and fuel consumption than the vehicle's safety (defined as the vehicle's EuroNCAP rating/other safety reports). In addition, the findings of this study suggest that the importance of vehicle safety did not differ across the two countries. For example, there was no significant difference in the proportion of fleet managers who indicated that EuroNCAP ratings were part of their official policy across the two countries. The findings highlighted the need to educate fleet managers about vehicle safety in the new vehicle purchase/lease process. In addition, vehicle safety information, such as EuroNCAP results or other crash test results need to be promoted more widely and effectively so that they play a more prominent role in their new vehicle choices.

  5. Methane-Powered Vehicles

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Liquid methane is beginning to become an energy alternative to expensive oil as a power source for automotive vehicles. Methane is the principal component of natural gas, costs less than half as much as gasoline, and its emissions are a lot cleaner than from gasoline or diesel engines. Beech Aircraft Corporation's Boulder Division has designed and is producing a system for converting cars and trucks to liquid methane operation. Liquid methane (LM) is a cryogenic fuel which must be stored at a temperature of 260 degrees below zero Fahrenheit. The LM system includes an 18 gallon fuel tank in the trunk and simple "under the hood" carburetor conversion equipment. Optional twin-fuel system allows operator to use either LM or gasoline fuel. Boulder Division has started deliveries for 25 vehicle conversions and is furnishing a liquid methane refueling station. Beech is providing instruction for Northwest Natural Gas, for conversion of methane to liquid state.

  6. Small reentry vehicles

    NASA Astrophysics Data System (ADS)

    Sudmeijer, K. J.

    1987-12-01

    The design and potential applications of a small modular unguided reentry vehicle (SMURV) being developed for ESA are discussed. The first studies of the SMURV concept in the Spacemail program (for transporting small payloads from the Space Shuttle to earth) are recalled; the steps in a typical Spacemail operation are listed and briefly characterized; and the smaller version of SMURV (40 kg instead of 120 kg) developed for a Space Station Spacemail project (requiring 1000-1500 SMURVs) is described. This SMURV configuration comprises a detachable propulsion module and a reentry module (containing the parachute system and the recovery module). Consideration is given to a SMURV-type vehicle to return microgravity processing samples from the ESA Interim Flight Opportunity spacecraft, the technological challenges posed by SMURV design, and SMURV applications to the Comet Nucleus Sample Return and Cassini Titan Lander missions. Diagrams and drawings are provided.

  7. Rapid road repair vehicle

    DOEpatents

    Mara, L.M.

    1998-05-05

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

  8. Rapid road repair vehicle

    DOEpatents

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  9. Miniature Autonomous Robotic Vehicle (MARV)

    SciTech Connect

    Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

    1996-12-31

    Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

  10. Laser vehicle detector/classifier

    NASA Astrophysics Data System (ADS)

    Schwartz, William C.

    1995-01-01

    This paper describes a diode-laser-based vehicle detector/classifier (VDC) presently being developed by Schwartz Electro-Optics (SEO) under an IVHS-IDEA program for the National Academy of Sciences. The VDC employs a scanning laser rangefinder to measure three- dimensional vehicle profiles that can be used for very accurate vehicle classification. The narrow laser beam width permits the detection of closely spaced vehicles moving at high speed; even a two-inch-wide tow bar can be detected. The VDC shows great promise for applications involving electronic toll collection from vehicles at freeway speeds, where very high detection and classification accuracy is mandatory.

  11. Stabilizing Wheels For Rover Vehicle

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1990-01-01

    Proposed articulated, normally-four-wheeled vehicle holds extra pair of wheels in reserve. Deployed to lengthen wheelbase on slopes, thereby making vehicle more stable, and to aid vehicle in negotiating ledge or to right vehicle if turned upside down. Extra wheels are drive wheels mounted on arms so they pivot on axis of forward drive wheels. Both extra wheels and arms driven by chains, hydraulic motors, or electric motors. Concept promises to make remotely controlled vehicles more stable and maneuverable in such applications as firefighting, handling hazardous materials, and carrying out operations in dangerous locations.

  12. Payload vehicle aerodynamic reentry analysis

    NASA Astrophysics Data System (ADS)

    Tong, Donald

    An approach for analyzing the dynamic behavior of a cone-cylinder payload vehicle during reentry to insure proper deployment of the parachute system and recovery of the payload is presented. This analysis includes the study of an aerodynamic device that is useful in extending vehicle axial rotation through the maximum dynamic pressure region. Attention is given to vehicle configuration and reentry trajectory, the derivation of pitch static aerodynamics, the derivation of the pitch damping coefficient, pitching moment modeling, aerodynamic roll device modeling, and payload vehicle reentry dynamics. It is shown that the vehicle dynamics at parachute deployment are well within the design limit of the recovery system, thus ensuring successful payload recovery.

  13. Vehicle Based Vector Sensor

    DTIC Science & Technology

    2015-09-28

    300001 1 of 16 VEHICLE-BASED VECTOR SENSOR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The invention is an... invention , is a small volume of fluid surrounding a point where averaged properties (e.g., velocity, temperature, etc.) can be analyzed with continuum

  14. Autonomous Vehicle Navigation

    DTIC Science & Technology

    1986-01-31

    Teresa M. Silberberg, Larry Davis and David Harwood, "An Iterative Hough Procedure for Three-Dimensional Object Recognition." CAR-TR-20, CS-TR-1317...obtain the new estimate of vehicle position and position uncertainty. 13. Matti Pietikainen and David Harwood, "Edge Information in Color Images Based on...the disparity functional), not just estimates of disparity at isolated points. This refines the notion of local support defined by Marr and Poggio

  15. Experiences with Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The presentation "NASA Experience with Launch Vehicles" is a compilation of Mr. Dumbacher's career experiences with the Space Shuttle Program, the Delta - Clipper Experimental flight test project, the X-33 demonstrator project, and recent experiences with the Orbital Spaceplane Program agd the current NASA effort on Exploration Launch Systems. Mr. Dumbacher will discuss his personal experiences and provide lessons learned from each program. The accounts provided by Mr. Dumbacher are his own and do not necessarily represent the official NASA position.

  16. 2006 Combat Vehicles Conference

    DTIC Science & Technology

    2006-10-25

    and Agreements Supply Chain Management Logistics Solutions for the Warfighter Guam & Saipan Diego Garcia Mediterranean SS KOCAK MV PHILLIPS MV...BUTTON MV LOPEZ USNS STOCKHAM SS PLESS MV HAUGE MV LUMMUS MV ANDERSON MV BONNYMAN USNS MARTIN SS OBREGON MV BAUGH MV WILLIAMS MV BOBO USNS WHEAT MPS...importantly it delivers the most valuable weapon on the battlefield – a soldier. LTC Erik Kurilla CDR, 1-24 Infantry Stryker Vehicles are 312 pieces

  17. Expendable launch vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Fuller, Paul N.

    1991-01-01

    The current status is reviewed of the U.S. Expendable Launch Vehicle (ELV) fleet, the international competition, and the propulsion technology of both domestic and foreign ELVs. The ELV propulsion technology areas where research, development, and demonstration are most needed are identified. These propulsion technology recommendations are based on the work performed by the Commercial Space Transportation Advisory Committee (COMSTAC), an industry panel established by the Dept. of Transportation.

  18. 2010 Combat Vehicles Conference

    DTIC Science & Technology

    2010-11-09

    Overview Vehicles Power Road Ahead 10 11 0.00 20,000,000.00 40,000,000.00 60,000,000.00 80,000,000.00 100,000,000.00 120,000,000.00 LAV-25 HMMWV ( ECV ... ECV ) M1151 M-ATV Purchase Cost Purchase Cost 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 LAV-25 HMMWV ( ECV ) M1151 M-ATV Cougar CAT I

  19. Implementing Vehicle Routing Algorithms

    DTIC Science & Technology

    1975-09-01

    Common examples include newspaper delivery [29], schoolbus routing [8], municipal waste collection [71, fuel oil delivery [25], and truck...34Networks and Vehicle Routing for Municipal Waste Collection ," Networks, Vol. 4, No. 1, 1974, pp. 65-94. 8. Bennett, B., and Gazis, D., "School Bus Routing...Thesis in Business Administration, Indiana University, 1967. 35. Hudson, J., Grossman, D., and Marks, D., "Analysis Models for Solid Waste Collection

  20. Supercavitating Vehicle Control

    DTIC Science & Technology

    2008-10-10

    herein as winglets , are supported by a strut attached to the vehicle. The angle of attack of each winglet is controlled by a winglet actuator. The... winglet assembly may be extended into or retracted from the water by means of a spring-loaded actuated mount, which pivots the strut supporting the... winglet . When fully retracted, the winglet assembly is contained completely within the cavity. [0014] The segmented ring wing is controlled by one or more