Science.gov

Sample records for as-doped buried amorphous

  1. Lithium implantation at low temperature in silicon for sharp buried amorphous layer formation and defect engineering

    SciTech Connect

    Oliviero, E.; David, M. L.; Beaufort, M. F.; Barbot, J. F.; Fichtner, P. F. P.

    2013-02-28

    The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes place and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.

  2. Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics

    SciTech Connect

    Olivares, J.; Garcia-Navarro, A.; Garcia, G.; Agullo-Lopez, F.; Agullo-Rueda, F.; Garcia-Cabanes, A.; Carrascosa, M.

    2007-02-01

    The formation of buried heavily damaged and amorphous layers by a variety of swift-ion irradiations (F at 22 MeV, O at 20 MeV, and Mg at 28 MeV) on congruent LiNbO{sub 3} has been investigated. These irradiations assure that the electronic stopping power S{sub e}(z) is dominant over the nuclear stopping S{sub n}(z) and reaches a maximum value inside the crystal. The structural profile of the irradiated layers has been characterized in detail by a variety of spectroscopic techniques including dark-mode propagation, micro-Raman scattering, second-harmonic generation, and Rutherford backscattering spectroscopy/channeling. The growth of the damage on increasing irradiation fluence presents two differentiated stages with an abrupt structural transition between them. The heavily damaged layer reached as a final stage is optically isotropic (refractive index n=2.10, independent of bombarding ion) and has an amorphous structure. Moreover, it has sharp profiles and its thickness progressively increases with irradiation fluence. The dynamics under irradiation of the amorphous-crystalline boundaries has been associated with a reduction of the effective amorphization threshold due to the defects created by prior irradiation (cumulative damage). The kinetics of the two boundaries of the buried layer is quite different, suggesting that other mechanisms aside from the electronic stopping power should play a role on ion-beam damage.

  3. Impact of solid-phase crystallization of amorphous silicon on the chemical structure of the buried Si/ZnO thin film solar cell interface

    SciTech Connect

    Bar, M.; Wimmer, M.; Wilks, R. G.; Roczen, M.; Gerlach, D.; Ruske, F.; Lips, K.; Rech, B.; Weinhardt, L.; Blum, M.; Pookpanratana, S.; Krause, S.; Zhang, Y.; Heske, C.; Yang, W.; Denlinger, J. D.

    2010-04-30

    The chemical interface structure between phosphorus-doped hydrogenated amorphous silicon and aluminum-doped zinc oxide thin films is investigated with soft x-ray emission spectroscopy (XES) before and after solid-phase crystallization (SPC) at 600C. In addition to the expected SPC-induced phase transition from amorphous to polycrystalline silicon, our XES data indicates a pronounced chemical interaction at the buried Si/ZnO interface. In particular, we find an SPC-enhanced formation of Si-O bonds and the accumulation of Zn in close proximity to the interface. For an assumed closed and homogeneous SiO2 interlayer, an effective thickness of (5+2)nm after SPC could be estimated.

  4. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  5. Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO 4 · 2H 2O) and their application to arsenic behavior in buried mine tailings

    NASA Astrophysics Data System (ADS)

    Langmuir, Donald; Mahoney, John; Rowson, John

    2006-06-01

    Published solubility data for amorphous ferric arsenate and scorodite have been reevaluated using the geochemical code PHREEQC with a modified thermodynamic database for the arsenic species. Solubility product calculations have emphasized measurements obtained under conditions of congruent dissolution of ferric arsenate (pH < 3), and have taken into account ion activity coefficients, and ferric hydroxide, ferric sulfate, and ferric arsenate complexes which have association constants of 10 4.04 (FeH 2AsO 42+), 10 9.86 (FeHAsO 4+), and 10 18.9 (FeAsO 4). Derived solubility products of amorphous ferric arsenate and crystalline scorodite (as log Ksp) are -23.0 ± 0.3 and -25.83 ± 0.07, respectively, at 25 °C and 1 bar pressure. In an application of the solubility results, acid raffinate solutions (molar Fe/As = 3.6) from the JEB uranium mill at McClean Lake in northern Saskatchewan were neutralized with lime to pH 2-8. Poorly crystalline scorodite precipitated below pH 3, removing perhaps 98% of the As(V) from solution, with ferric oxyhydroxide (FO) phases precipitated starting between pH 2 and 3. Between pH 2.18 and 7.37, the apparent log Ksp of ferric arsenate decreased from -22.80 to -24.67, while that of FO (as Fe(OH) 3) increased from -39.49 to -33.5. Adsorption of As(V) by FO can also explain the decrease in the small amounts of As(V)(aq) that remain in solution above pH 2-3. The same general As(V) behavior is observed in the pore waters of neutralized tailings buried for 5 yr at depths of up to 32 m in the JEB tailings management facility (TMF), where arsenic in the pore water decreases to 1-2 mg/L with increasing age and depth. In the TMF, average apparent log Ksp values for ferric arsenate and ferric hydroxide are -25.74 ± 0.88 and -37.03 ± 0.58, respectively. In the laboratory tests and in the TMF, the increasing crystallinity of scorodite and the amorphous character of the coexisting FO phase increases the stability field of scorodite relative to that of

  6. Buried Ends

    NASA Technical Reports Server (NTRS)

    2006-01-01

    7 August 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a flow or landslide feature on a hillslope facing north (toward top/upper right) that is buried on both ends. Both the uphill portion of the slide (just below the center of the image) and the bottom end of the slide, or flow feature (near the upper right corner of the image), is buried. Whether this partially buried landform was formed by simple, dry mass movement (a landslide) or by flow of an ice-rich material, is unclear. The features in this image occur among the massifs located east of the Hellas basin.

    Location near: 45.6oS, 248.5oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  7. Buried Craters

    NASA Technical Reports Server (NTRS)

    2005-01-01

    26 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows two circular features on the plains of northern Utopia. A common sight on the martian northern plains, these rings indicate the locations of buried impact craters.

    Location near: 65.1oN, 261.2oW Image width: 2 km (1.2 mi) Illumination from: lower left Season: Northern Summer

  8. Buried Crater

    NASA Image and Video Library

    2002-12-04

    With a location roughly equidistant between two of the largest volcanic constructs on the planet, the fate of the approximately 50 km 31 mile impact crater in this image from NASA Mars Odyssey was sealed. It has been buried to the rim by lava flows. The MOLA context image shows pronounced flow lobes surrounding the crater, a clear indication of the most recent episode of volcanism that could have contributed to its infilling. Breaches in the rim are clearly evident in the image and suggest locations through which lavas could have flowed. These openings appear to be limited to the west side of the crater. Other craters in the area are nearly obliterated by the voluminous lava flows, further demonstrating one of the means by which Mars renews its surface. The MOLA context image shows pronounced flow lobes surrounding the crater, a clear indication of the most recent episode of volcanism that could have contributed to its infilling. Breaches in the rim are clearly evident in the image and suggest locations through which lavas could have flowed. These openings appear to be limited to the west side of the crater. Other craters in the area are nearly obliterated by the voluminous lava flows, further demonstrating one of the means by which Mars renews its surface. http://photojournal.jpl.nasa.gov/catalog/PIA04018

  9. Buried Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    With a location roughly equidistant between two of the largest volcanic constructs on the planet, the fate of the 50 km impact crater in this image was sealed. It has been buried to the rim by lava flows. The MOLA context image shows pronounced flow lobes surrounding the crater, a clear indication of the most recent episode of volcanism that could have contributed to its infilling. Breaches in the rim are clearly evident in the image and suggest locations through which lavas could have flowed. These openings appear to be limited to the west side of the crater. Other craters in the area are nearly obliterated by the voluminous lava flows, further demonstrating one of the means by which Mars renews its surface.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Method of forming buried oxide layers in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  11. Buried Craters of Utopia

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-365, 19 May 2003

    Beneath the northern plains of Mars are numerous buried meteor impact craters. One of the most heavily-cratered areas, although buried, occurs in Utopia Planitia, as shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. The history of Mars is complex; impact craters provide a tool by which to understand some of that history. In this case, a very ancient, cratered surface was thinly-buried by younger material that is not cratered at all. This area is near 48.1oN, 228.2oW; less than 180 km (112 mi) west of the Viking 2 lander site. Sunlight illuminates the scene from the lower left.

  12. Plasmonics in buried structures.

    PubMed

    Romero, I; García de Abajo, F J

    2009-10-12

    We describe plasmon propagation in silica-filled coupled nanovoids fully buried in gold. Propagation bands and band gaps are shown to be tunable through the degree of overlap and plasmon hybridization between contiguous voids. The effect of disorder and fabrication imperfections is thoroughly investigated. Our work explores a novel paradigm for plasmon photonics relying on plasmon modes in metal-buried structures, which can benefit from long propagation distances, cancelation of radiative losses, minimum crosstalk between neighboring waveguides, and maximum optical integration in three-dimensional arrangements.

  13. Cracked Plain, Buried Craters

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a cracked plain in western Utopia Planitia. The three circular crack patterns indicate the location of three buried meteor impact craters. These landforms are located near 41.9oN, 275.9oW. The image covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this scene from the lower left.

  14. UHF ground penetration measurements of buried and partially buried trihedrals

    SciTech Connect

    Blejer, D.; Frost, C.; Scarborough, S.

    1994-12-31

    The Lincoln Laboratory ground-based rail SAR was used to collect UHF band data on buried and partially buried trihedral corner reflectors in Yuma soil. The frequency range was 0.25 to 1 GHz in descrete steps. Both HH and VV polarization data were collected in the vicinity of the pseudo-Brewster angle. The partially buried trihedrals revealed two principal components for the returned signals: (1) a surface reflected component, and (2) a ground penetrated component. A model is described for partially buried trihedrals that accounts for these two components and the model is used in estimating ground penetration parameters.

  15. Amorphic complexity

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.; Gröger, M.; Jäger, T.

    2016-02-01

    We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems. After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.

  16. Electromagnetic modeling of buried objects

    SciTech Connect

    Lee, C.F.

    1994-12-31

    In this paper, radar cross section (RCS) models of buried dipoles, surface steel pipe, and buried steel pipes are discussed. In all these models, the ground is assumed to be a uniform half space. The calculated results for the buried dipoles and the surface steel pipe compare favorably with those measured in the 1993 Yuma ground penetration radar (GPR) experiment. For the buried dipoles, a first-order RCS model is developed. In this model, a solution for an infinitely long conducting cylinder, together with a mirror image approximation (which accounts for the coupling between the dipole and the ground-air interface) is used to calculate the dipole RCS. This RCS model of the buried dipoles explains the observed loss of dipole RCS. For the surface steel pipe, a geometrical optics model, which includes the multipath interaction, is developed. This model explains the observed multipath gain/loss. For the buried steel pipes, a zero order physical optics model is developed. Also discussed is desert radar clutter statistics as a function of depression angle. Preliminary analysis, based on samples of Yuma desert surface profiles, indicates that simple rough-surface models cannot explain the observed average backscatter from desert clutter.

  17. Buried penis after newborn circumcision.

    PubMed

    Eroğlu, Egemen; Bastian, Okan W; Ozkan, Hilda C; Yorukalp, Ozlem E; Goksel, Ayla K

    2009-04-01

    Buried penis may develop after circumcision, mostly during infancy, presumably due to peripubic fat. A surgical approach may be recommended for psychological benefits to patients and parents, and because it is believed that this condition will not improve on its own with time. The aim of this study was to assess the natural history of buried penis after newborn circumcision. During a routine visit to the pediatrician infants with buried penis were assessed by a single pediatric surgeon between January 2004 and June 2007. In December 2007 all of these children were reexamined by the same pediatric surgeon and the natural growth of the genitalia was analyzed. A total of 88 infants were enrolled in the study. When they were first examined they were 3 to 6 months old (mean 3.3). In December 2007, after reexamination, patients were divided into groups based on age, including those younger than 1 year (14 patients), 1 to 3 years (59) and older than 3 years (15). The aspect of the genitalia was evaluated by the same pediatric surgeon for each patient. Buried penis was noted in 14 of 14 patients younger than 1 year (100%), 19 of 59 patients 1 to 3 years old (32.2%) and 1 of 15 patients older than 3 years (6.7%). Buried penis after newborn circumcision is not permanent. As infants get older, and after beginning to walk, the appearance usually turns out to be normal. This resolution may be due to growth and/or maturation alone. Based on our results, we do not recommend surgery for buried penis in children younger than 3 years.

  18. Ultrasonic isolation of buried pipes

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2016-02-01

    Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such

  19. Thin film buried anode battery

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  20. Amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  1. [Congenital buried penis in children].

    PubMed

    Lardellier-Reynaud, F; Varlet, F; François, M; Mouriquand, P

    2011-10-01

    Congenital buried penis in children is an uncommon and poorly known entity. The aims of this study were to report an original technique for correction of buried penis and to evaluate its results. It is a retrospective study of buried penis operated between November 1998 and May 2009. The acquired concealed penis and hypospadias were excluded from this study. The procedure includes several stages: degloving of the penis through a ventral anchor-like incision; division of the adherent layers surrounding the corpora cavernosa; anchorage of the Buck's fascia to the corporeal albuginea at the base of the penis; and ventral cutaneous coverage. The long-term results were evaluated by the parents and the surgeon according to anatomical, functional and aesthetic criterion. Twenty-five boys were evaluated. The mean age at surgery was 27 months (seven days-120 months). Two children required an additional plasty. Results were satisfactory in 24 cases (96%). One child required a redo procedure for unsatisfactory outcome. Of seven children with redundant skin (28%), three underwent a complementary cutaneous excision. Congenital buried penis remains a controversial issue. Our technique was simple and easily reproducible. Voiding difficulties, urinary tract infection or strong parental request were the main indications of this surgery in our experience. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  2. The Buried Town of Beaver.

    ERIC Educational Resources Information Center

    Jostad, Karen

    Local history as source material for environmental education is uniquely portrayed in this resource kit. Utilizing a Winona County Historical Society publication, "The Beaver Story" and accompanied by a teacher's guide, "The Buried Town of Beaver," and other teaching aids, a case study of the area can be developed. Based on the reminiscences of…

  3. Buried metalic object identification by EMI sensor

    NASA Astrophysics Data System (ADS)

    Sezgin, Mehmet; Kaplan, Gülay; Birim, Melih; Bahadırlar, Yıldırım

    2007-04-01

    Electromagnetic Induction sensor (Metal Detector) has wide application areas for buried metallic object searching, such as detection of buried pipes, mine and mine like-targets, etc. In this paper, identification of buried metallic objects was studied. The distinctive features of the signal were obtained, than classification process was performed. Identification process was realized by utilizing k-Nearest neighbor and Neural Network Classifiers.

  4. 47 CFR 32.2423 - Buried cable.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Buried cable. 32.2423 Section 32.2423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2423 Buried cable. (a) This account shall include the original cost of buried cable as well as the cost of other material used...

  5. Electromagnetic scattering from buried objects

    SciTech Connect

    Brock, B.C.; Sorensen, K.W.

    1994-10-01

    Radar imaging and detection of objects buried in soil has potentially important applications in the areas of nonproliferation of weapons, environmental monitoring, hazardous-waste site location and assessment, and even archeology. In order to understand and exploit this potential, it is first necessary to understand how the soil responds to an electromagnetic wave, and how targets buried within the soil scatter the electromagnetic wave. We examine the response of the soil to a short pulse, and illustrate the roll of the complex dielectric permittivity of the soil in determining radar range resolution. This leads to a concept of an optimum frequency and bandwidth for imaging in a particular soil. We then propose a new definition for radar cross section which is consistent with the modified radar equation for use with buried targets. This radar cross section plays the same roll in the modified radar equation as the traditional radar cross section does in the free-space radar equation, and is directly comparable to it. The radar cross section of several canonical objects in lossy media is derived, and examples are given for several object/soil combinations.

  6. Theory of amorphous ices

    PubMed Central

    Limmer, David T.; Chandler, David

    2014-01-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens. PMID:24858957

  7. Blast wave from buried charges

    SciTech Connect

    Reichenbach, H.; Behrens, K.; Kuhl, A.L.

    1993-08-01

    While much airblast data are available for height-of-burst (HOB) effects, systematic airblast data for depth-of-burst (DOB) effects are more limited. It is logical to ask whether the spherical 0.5-g Nitropenta charges that, proved to be successful for HOB tests at EMI are also suitable for experiments with buried charges in the laboratory scale; preliminary studies indicated in the alternative. Of special interest is the airblast environment generated by detonations just above or below the around surface. This paper presents a brief summary of the test results.

  8. BATATA: a buried muon hodoscope

    NASA Astrophysics Data System (ADS)

    Sánchez, F.; Supanitsky, A. D.; Medina-Tanco, G.; Paic, G.; Salazar, M. E. Patiño; D'Olivo, J. C.; Molina, R. Alfaro

    2009-04-01

    Muon hodoscopes have several applications, ranging from astrophysics to fundamental particle physics. In this work, we present a detector dedicated to the study, at ground level, of the main signals of cosmic-ray induced showers above 6 PeV. The whole detector is composed by a set of three parallel dual-layer scintillator planes buried at fix depths ranging from 120 g/cm2 to 600 g/cm2 and by a triangular array of water cerenkov detectors located nearby on ground.

  9. Rat defensive behavior: burying noxious food.

    PubMed Central

    Wilkie, D M; MacLennan, A J; Pinel, J P

    1979-01-01

    In Experiment 1, rats living in chambers containing bedding material were injected with a toxicosis-producing dose of lithium chloride shortly after their initial taste of sweetened condensed milk. They consumed no additional milk and used the bedding to bury the spout through which the milk had been delivered, although they did not bury a concurrently available water spout. In another control condition, rats did not bury a spout containing a novel solution (saccharin) not paired with toxicosis. In Experiment 2, rats did not bury a milk spout until milk consumption was followed by toxicosis. In Experiment 3, rats buried a spout containing Tabasco pepper sauce but not a concurrently available water spout. Thus, burying the food source appears to be an integral component of the rat's defensive reaction to noxious food. PMID:572863

  10. Rat defensive behavior: burying noxious food.

    PubMed

    Wilkie, D M; MacLennan, A J; Pinel, J P

    1979-05-01

    In Experiment 1, rats living in chambers containing bedding material were injected with a toxicosis-producing dose of lithium chloride shortly after their initial taste of sweetened condensed milk. They consumed no additional milk and used the bedding to bury the spout through which the milk had been delivered, although they did not bury a concurrently available water spout. In another control condition, rats did not bury a spout containing a novel solution (saccharin) not paired with toxicosis. In Experiment 2, rats did not bury a milk spout until milk consumption was followed by toxicosis. In Experiment 3, rats buried a spout containing Tabasco pepper sauce but not a concurrently available water spout. Thus, burying the food source appears to be an integral component of the rat's defensive reaction to noxious food.

  11. Buried penis: classification surgical approach.

    PubMed

    Hadidi, Ahmed T

    2014-02-01

    The purpose of this study was to describe morphological classification of congenital buried penis (BP) and present a versatile surgical approach for correction. Sixty-one patients referred with BP were classified into 3 grades according to morphological findings: Grade 1-29 patients with Longer Inner Prepuce (LIP) only, Grade II-20 patients who presented with LIP associated with indrawn penis that required division of the fundiform and suspensory ligaments, and Grade III-12 patients who had in addition to the above, excess supra-pubic fat. A ventral midline penile incision extending from the tip of prepuce down to the penoscrotal junction was used in all patients. The operation was tailored according to the BP Grade. All patients underwent circumcision. Mean follow up was 3 years (range 1 to 10). All 61 patients had an abnormally long inner prepuce (LIP). Forty-seven patients had a short penile shaft. Early improvement was noted in all cases. Satisfactory results were achieved in all 29 patients in grade I and in 27 patients in grades II and III. Five children (Grades II and III) required further surgery (9%). Congenital buried penis is a spectrum characterized by LIP and may include in addition; short penile shaft, abnormal attachment of fundiform, and suspensory ligaments and excess supra-pubic fat. Congenital Mega Prepuce (CMP) is a variant of Grade I BP, with LIP characterized by intermittent ballooning of the genital area. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Seismic assessment of buried pipelines

    SciTech Connect

    Al-Chaar, G.; Brady, P.; Fernandez, G.

    1995-12-31

    A structure and its lifelines are closely linked because the disruption of lifeline systems will obstruct emergency service functions that are vitally needed after an earthquake. As an example of the criticality of these systems, the Association of Bay Area Government (ABAG) recorded thousands of leaks in pipelines that resulted in more than twenty million gallons of hazardous materials being released in several recorded earthquakes. The cost of cleaning the spills from these materials was very high. This information supports the development of seismic protection of lifeline systems. The US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL) has, among its missions, the responsibility to develop seismic vulnerability assessment procedures for military installations. Within this mission, a preliminary research program to assess the seismic vulnerability of buried pipeline systems on military installations was initiated. Phase 1 of this research project resulted in two major studies. In the first, evaluating current procedures to seismically design or evaluate existing lifeline systems, the authors found several significant aspects that deserve special consideration and need to be addressed in future research. The second was focused on identifying parameters related to buried pipeline system vulnerability and developing a generalized analytical method to relate these parameters to the seismic vulnerability assessment of existing pipeline systems.

  13. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  14. Tritium in amorphous silicon

    SciTech Connect

    Sidhu, L.S.; Kosteski, T.; O`Leary, S.K.; Gaspari, F.; Zukotynski, S.; Kherani, N.P.; Shmadya, W.

    1996-12-31

    Preliminary results on infrared and luminescence measurements of tritium incorporated amorphous silicon are reported. Tritium is an unstable isotope that readily substitutes hydrogen in the amorphous silicon network. Due to its greater mass, bonded tritium is found to introduce new stretching modes in the infrared spectrum. Inelastic collisions between the beta particles, produced as a result of tritium decay, and the amorphous silicon network, results in the generation of excess electron-hole pairs. Radiative recombination of these carriers is observed.

  15. Trehalose amorphization and recrystallization.

    PubMed

    Sussich, Fabiana; Cesàro, Attilio

    2008-10-13

    The stability of the amorphous trehalose prepared by using several procedures is presented and discussed. Amorphization is shown to occur by melting (T(m)=215 degrees C) or milling (room temperature) the crystalline anhydrous form TRE-beta. Fast dehydration of the di-hydrate crystalline polymorph, TRE-h, also produces an amorphous phase. Other dehydration procedures of TRE-h, such as microwave treatment, supercritical extraction or gentle heating at low scan rates, give variable fractions of the polymorph TRE-alpha, that undergo amorphization upon melting (at lower temperature, T(m)=130 degrees C). Additional procedures for amorphization, such as freeze-drying, spray-drying or evaporation of trehalose solutions, are discussed. All these procedures are classified depending on the capability of the undercooled liquid phase to undergo cold crystallization upon heating the glassy state at temperatures above the glass transition temperature (T(g)=120 degrees C). The recrystallizable amorphous phase is invariably obtained by the melt of the polymorph TRE-alpha, while other procedures always give an amorphous phase that is unable to crystallize above T(g). The existence of two different categories is analyzed in terms of the transformation paths and the hypothesis that the systems may exhibit different molecular mobilities.

  16. Hydrogen in amorphous silicon

    SciTech Connect

    Peercy, P. S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH/sub 1/) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon.

  17. Visualization of Buried Marte Vallis Channels

    NASA Image and Video Library

    2013-03-07

    This illustration schematically shows where the Shallow Radar instrument on NASA Mars Reconnaissance Orbiter detected flood channels that had been buried by lava flows in the Elysium Planitia region of Mars.

  18. A Buried Precambrian Impact Crater in Scotland

    NASA Astrophysics Data System (ADS)

    Simms, M. J.

    2016-08-01

    Field evidence indicates that the source of the Stac Fada impact deposit (Mesoproterozoic) in NW Scotland was to the east, and that the now buried crater is represented by the 40+ km diameter Lairg Gravity Low.

  19. Buried Waste Integrated Demonstration. Technology summary

    SciTech Connect

    Not Available

    1994-03-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that offer promising solutions to the problems associated with the remediation of buried waste. BWID addresses the difficult remediation problems associated with DOE complex-wide buried waste, particularly transuranic (TRU) contaminated buried waste. BWID has implemented a systems approach to the development and demonstration of technologies that will characterize, retrieve, treat, and dispose of DOE buried wastes. This approach encompasses the entire remediation process from characterization to post-monitoring. The development and demonstration of the technology is predicated on how a technology fits into the total remediation process. To address all of these technological issues, BWID has enlisted scientific expertise of individuals and groups from within the DOE Complex, as well as experts from universities and private industry. The BWID mission is to support development and demonstration of a suite of technologies that, when integrated with commercially-available technologies, forms a comprehensive, remediation system for the effective and efficient remediation of buried waste throughout the DOE Complex. BWID will evaluate and validate demonstrated technologies and transfer this information and equipment to private industry to support the Office of Environmental Restoration (ER), Office of Waste Management (WM), and Office of Facility Transition (FT) remediation planning and implementation activities.

  20. TNX Burying Ground: Environmental information document

    SciTech Connect

    Dunaway, J.K.W.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.

    1987-03-01

    The TNX Burying Ground, located within the TNX Area of the Savannah River Plant (SRP), was originally built to dispose of debris from an experimental evaporator explosion at TNX in 1953. This evaporator contained approximately 590 kg of uranyl nitrate. From 1980 to 1984, much of the waste material buried at TNX was excavated and sent to the SRP Radioactive Waste Burial Grounds for reburial. An estimated 27 kg of uranyl nitrate remains buried at TNX. The TNX Burying Ground consists of three sites known to contain waste and one site suspected of containing waste material. All four sites are located within the TNX security fenceline. Groundwater at the TNX Burying Ground was not evaluated because there are no groundwater monitoring wells installed in the immediate vicinity of this waste site. The closure options considered for the TNX Burying Ground are waste removal and closure, no waste removal and closure, and no action. The predominant pathways for human exposure to chemical and/or radioactive constituents are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options were estimated.

  1. Amorphous pharmaceutical solids.

    PubMed

    Vranić, Edina

    2004-07-01

    Amorphous forms are, by definition, non-crystalline materials which possess no long-range order. Their structure can be thought of as being similar to that of a frozen liquid with the thermal fluctuations present in a liquid frozen out, leaving only "static" structural disorder. The amorphous solids have always been an essential part of pharmaceutical research, but the current interest has been raised by two developments: a growing attention to pharmaceutical solids in general, especially polymorphs and solvates and a revived interest in the science of glasses and the glass transition. Amorphous substances may be formed both intentionally and unintentionally during normal pharmaceutical manufacturing operations. The properties of amorphous materials can be exploited to improve the performance of pharmaceutical dosage forms, but these properties can also give rise to unwanted effects that need to be understood and managed in order for the systems to perform as required.

  2. Amorphous diamond films

    DOEpatents

    Falabella, S.

    1998-06-09

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  3. Improved charge collection of the buried p-i-n a-Si:H radiation detectors

    SciTech Connect

    Fujieda, I.; Cho, G.; Conti, M.; Drewery, J.; Kaplan, S.N.; Perez-Mendez, V.; Qureshi, S.; Street, R.A.; Xerox Palo Alto Research Center, CA )

    1989-09-01

    Charge collection in hydrogenated amorphous silicon (a-Si:H) radiation detectors is improved for high LET particle detection by adding thin intrinsic layers to the usual p-i-n structure. This buried p-i-n structure enables us to apply higher bias and the electric field is enhanced. When irradiated by 5.8 MeV {alpha} particles, the 5.7 {mu}m thick buried p-i-n detector with bias 300V gives a signal size of 60,000 electrons, compared to about 20,000 electrons with the simple p-i-n detectors. The improved charge collection in the new structure is discussed. The capability of tailoring the field profile by doping a-Si:H opens a way to some interesting device structures. 17 refs., 7 figs.

  4. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  5. Remote technologies for buried waste retrieval

    SciTech Connect

    Smith, A.M.; Rice, P.

    1995-10-01

    The DOE is evaluating what should be done with this buried waste. Although the radioactive waste is not particularly mobile unless airborne, some of it was buried with volatile organics and/or other substances that tend to spread easily to surrounding soil or water tables. Volatile organics are hazardous materials (such as trichloroethylene) and require clean-up at certain levels in drinking water. There is concern that the buried volatile organics will spread into the water table and contaminate drinking water. Because of this, the DOE is considering options for handling this buried waste and reducing the risks of spreading or exposure. There are two primary options: containment and stabilization, or retrieval. Containment and stabilization systems would include systems that would leave the waste where it is, but contain and stabilize it so that the radioactive and hazardous materials would not spread to the surrounding soil, water, or air. For example, an in situ vitrification system could be used to melt the waste into a composite glass-like material that would not leach into the surrounding soil, water, or air. Retrieval systems are those that would remove the waste from its burial location for treatment and/or repackaging for long term storage. The objective of this project was to develop and demonstrate remote technologies that would minimize dust generation and the spread of airborne contaminants during buried waste retrieval. Remote technologies are essential for the retrieval of buried waste because they remove workers from the hazardous environment and provide greater automation, reducing the chances of human error. Minimizing dust generation is also essential to increased safety for the workers and the environment during buried waste retrieval. The main contaminants within the waste are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides, which are easily suspended in air and spread if disturbed.

  6. Arsenic complexes optical signatures in As-doped HgCdTe

    SciTech Connect

    Gemain, F.; Robin, I. C.; Brochen, S.; Ballet, P.; Gravrand, O.; Feuillet, G.

    2013-04-08

    In this paper, the optical signatures of arsenic complexes in As-doped HgCdTe samples grown by molecular beam epitaxy are clearly identified using comparison between photoluminescence spectra, Extended X-Ray Absorption Fine Structure, and Hall measurements. The ionization energies of the different complexes are measured both by photoluminescence and Hall measurements.

  7. Concealed epispadias associated with a buried penis.

    PubMed

    Sol Melgar, Ricardo; Gorduza, Daniela; Demède, Delphine; Mouriquand, Pierre

    2016-12-01

    The aim was to describe the clinical presentation and the surgical management of penile epispadias associated with a buried penis in five children. This is a 5-year retrospective review of patients presenting with a buried penis, a congenital defect of the penile skin shaft associated with an unretractable foreskin for whom a penile epispadias was found at the time of surgery. All had undergone surgery combining a Cantwell-Ransley procedure and refashioning of the penile skin following the authors' technique. Three children had a glanular epispadias and two had a midshaft epispadias. Four had a satisfactory outcome, and one required a complementary urethroplasty for glanular dehiscence. Buried penis and epispadias are usually isolated congenital anomalies, although they can be associated. It is therefore recommended to warn parents about the possibility of underlying penile anomaly in children with buried penises and unretractable foreskin. Careful palpation of the dorsum of the glans through the foreskin looking for a dorsal cleft could indicate an associated epispadiac urethra. Surgical correction of both anomalies can be done at the same time. Parents of boys with buried penises should be warned that underlying penile anomaly may exist. Copyright © 2016 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  8. Formation of amorphous materials

    DOEpatents

    Johnson, William L.; Schwarz, Ricardo B.

    1986-01-01

    Metastable amorphous or fine crystalline materials are formed by solid state reactions by diffusion of a metallic component into a solid compound or by diffusion of a gas into an intermetallic compound. The invention can be practiced on layers of metals deposited on an amorphous substrate or by intermixing powders with nucleating seed granules. All that is required is that the diffusion of the first component into the second component be much faster than the self-diffusion of the first component. The method is practiced at a temperature below the temperature at which the amorphous phase transforms into one or more crystalline phases and near or below the temperature at which the ratio of the rate of diffusion of the first component to the rate of self-diffusion is at least 10.sup.4. This anomalous diffusion criteria is found in many binary, tertiary and higher ordered systems of alloys and appears to be found in all alloy systems that form amorphous materials by rapid quenching. The method of the invention can totally convert much larger dimensional materials to amorphous materials in practical periods of several hours or less.

  9. Ballistic electron spectroscopy of individual buried molecules

    NASA Astrophysics Data System (ADS)

    Kirczenow, George

    2007-01-01

    A theoretical study is presented of the ballistic electron emission spectra (BEES) of individual insulating and conducting organic molecules chemisorbed on a silicon substrate and buried under a thin gold film. It is predicted that ballistic electrons injected into the gold film from a scanning tunneling microscope tip should be transmitted so weakly to the silicon substrate by alkane molecules of moderate length (decane, hexane) and their thiolates that individual buried molecules of this type will be difficult to detect in BEES experiments. However, resonant transmission by molecules containing unsaturated C-C bonds or aromatic rings is predicted to be strong enough for BEES spectra of individual buried molecules of these types to be measured. Calculated BEES spectra of molecules of both types are presented and the effects of some simple interstitial and substitutional gold defects that may occur in molecular films are also briefly discussed.

  10. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  11. Body Positioning of Buried Avalanche Victims.

    PubMed

    Kornhall, Daniel K; Logan, Spencer; Dolven, Thomas

    2016-06-01

    The immediate medical management of buried avalanche victims will to some extent be dictated by the victim's body positioning in the snow. Medical personnel are trained to assess and manage victims in a supine body position. Furthermore, avalanche first responders are trained to handle extricated avalanche victims carefully out of concerns for causing hemodynamic instability or for aggravating spinal injury. Thus, locating and extricating avalanche victims in positions other than supine has the potential to complicate immediate medical management. To our knowledge, the current medical literature does not detail the body positioning of buried victims. In order to ascertain the most common body positioning of buried avalanche victims we reviewed the avalanche incident database of the Colorado Avalanche Information Center (CAIC). This comprehensive database strives to track over 160 fields of information for each avalanche victim, including the body and head positioning of buried victims. Head positioning was recorded for 159 buried victims. We found that 65% of buried avalanche victims were found with their heads in a downhill position, 23% with their heads uphill and 11% with their heads in the same level as the rest of their bodies. Body positioning was recorded in 253 victims. 45% of victims were found lying prone, 24% supine, 16% were sitting or standing and 15% were found lying on their sides. We identified 135 victims where both head and body position was registered. 40% of victims were found prone with their heads in a downhill position The majority of victims will be extricated with their heads in a downhill position. Moreover, almost half of victims will be found prone. We believe this will have significant impact on the immediate medical management. We believe current training in avalanche medical rescue should emphasize managing victims in non-supine positions. Finally, our findings may represent another benefit of modern extrication techniques. Copyright

  12. Seismic damage estimation for buried pipeline systems

    SciTech Connect

    Heubach, W.F.

    1995-12-31

    A methodology for estimating seismic damage rates for buried pipeline systems is presented. The methodology is intended for damage estimation of buried pipeline systems in areas where use of more rigorous structural analysis techniques is not practical. Damage is estimated for areas subjected to ground shaking and permanent ground deformation. Although the methodology employs previously developed ground shaking damage algorithms, new damage algorithms are developed for permanent ground deformation. These new algorithms reflect the high levels of damage observed in areas of soil liquefaction.

  13. Prioritization for rehabilitation of buried lifelines

    SciTech Connect

    Wang, L.R.L.; Ishibashi, I.; Li, H.

    1995-12-31

    Seismic rehabilitation or retrofit is a cost-effective way to prevent pipeline damage caused by future earthquakes. In general, it is very difficult, if not impossible, to rehabilitate all buried pipelines at the same time because of limited funds and time available. The purpose of this study is to establish a priority strategy for rehabilitation of buried pipelines considering several important factors such as pipeline damage probability, rehabilitation cost, rehabilitation rate (e.g. km/day), pipeline importance and total funds available.

  14. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1996-01-01

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  15. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1998-06-02

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  16. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1996-01-30

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  17. Buried Waste Integrated Demonstration test objectives

    SciTech Connect

    Morrison, J.L.; Heard, R.E.

    1993-05-01

    The mission of the Buried Waste Integrated Demonstration Program (BWID) is to support the development and demonstration of a suite of technologies that when integrated with commercially available baseline technologies form a comprehensive system for the effective and efficient remediation of buried waste throughout the US Department of Energy complex. To accomplish this mission of identifying technology solutions for remediation deficiencies, the Office of Technology Development initiated the BWID at the Idaho National Engineering Laboratory in fiscal year (FY) 1991. This document provides the test objectives against which the demonstrations will be tested during FY-93.

  18. Buried Waste Integrated Demonstration stakeholder involvement model

    SciTech Connect

    Kaupanger, R.M.; Kostelnik, K.M.; Milam, L.M.

    1994-04-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy (DOE) Office of Technology Development. BWID supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. Stakeholder participation in the DOE Environmental Management decision-making process is critical to remediation efforts. Appropriate mechanisms for communication with the public, private sector, regulators, elected officials, and others are being aggressively pursued by BWID to permit informed participation. This document summarizes public outreach efforts during FY-93 and presents a strategy for expanded stakeholder involvement during FY-94.

  19. Limited Panniculectomy for Adult Buried Penis Repair.

    PubMed

    Figler, Bradley D; Chery, Lisly; Friedrich, Jeffrey B; Wessells, Hunter; Voelzke, Bryan B

    2015-11-01

    Patients with buried or hidden penis may be unable to carry out normal hygiene, void with a directable urine stream, or be sexually active as a result of the condition. Although these patients are nearly always obese, weight loss often does not reverse the problem, as the mons pannus may remain after weight loss. Furthermore, associated penile skin changes such as lichen sclerosus or stenosis of the penile shaft skin are often irreversible. Treatment includes removal of the diseased shaft skin surrounding the penis, in combination with a limited panniculectomy. The authors present their technique for this procedure in a typical patient with buried penis that prevented him from voiding effectively.

  20. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1998-06-02

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  1. Amorphous silicon photovoltaic devices

    DOEpatents

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  2. Disorder-induced amorphization

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R.; Li, Mo

    1997-03-01

    Many crystalline materials undergo a crystalline-to-amorphous (c-a) phase transition when subjected to energetic particle irradiation at low temperatures. By focusing on the mean-square static atomic displacement as a generic measure of chemical and topological disorder, we are led quite naturally to a generalized version of the Lindemann melting criterion as a conceptual framework for a unified thermodynamic approach to solid-state amorphizing transformations. In its simplest form, the generalized Lindemann criterion assumes that the sum of the static and dynamic mean-square atomic displacements is constant along the polymorphous melting curve so that c-a transformations can be understood simply as melting of a critically-disordered crystal at temperatures below the glass transition temperature where the supercooled liquid can persist indefinitely in a configurationally-frozen state. Evidence in support of the generalized Lindemann melting criterion for amorphization is provided by a large variety of experimental observations and by molecular dynamics simulations of heat-induced melting and of defect-induced amorphization of intermetallic compounds.

  3. Amorphous semiconductor solar cell

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  4. 7 CFR 1755.505 - Buried services.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to the surface of the soil may be used; and (5) Where adequate advance planning has been done, burial... in § 1755.510. (5) The first above-ground attachment for a buried service wire or cable, unless it is... 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from NFPA, 1 Batterymarch Park, P.O....

  5. Preputial flaps to correct buried penis.

    PubMed

    Chu, Chih-Chun; Chen, Yi-Hsin; Diau, Guan-Yeu; Loh, Ih-Wei; Chen, Ke-Chi

    2007-11-01

    The authors developed a preputial skin flap technique to correct the buried penis which was simple and practical. This simple procedure can be applied to most boys with buried penis. In the last 3 years, we have seen 12 boys with buried penis and have been treated by using preputial flaps. The mean age is about 5.1 (from 3 to 12). By making a longitudinal incision on the ventral side of penis, the tightness of the foreskin is released and leave a diamond-shaped skin defect. It allows the penile shaft to extend out. A circumferential incision is made about 5 mm proximal to the coronal sulcus. Pedicled preputial flaps are obtained leaving optimal penile skin on the dorsal side. The preputial skin flaps are rotated onto the ventral side and tailored to cover the defect. All patients are followed for at least 3 months. Edema and swelling on the flaps are common, but improves with time. None of our patients need a second operation. The preputial flaps technique is a simple technique which allows surgeons to deal with most cases of buried penis by tailoring the flaps providing good cosmetic and functional results.

  6. Prestressing buried pipelines by heating with air

    SciTech Connect

    King, G. )

    1993-11-01

    Buried pipelines operating at elevated temperatures experience high longitudinal compressive stresses because the surrounding soil prevents thermal expansion. At high operating temperatures, buried pipelines can push through the soil at bends and buckle catastrophically. In soft soils they can lose lateral stability, and they can develop plastic failures. Thermally induced problems can be prevented with varying degrees of success by using thicker wall pipe, higher strength prevented with varying degrees of success by using thicker wall pipe, higher strength steel, longer radius bends, deeper burial, better backfill compaction, and/or prestressing during construction. Prestressing is most appropriate for pipelines operating at temperatures more than 80 C above ambient. One technique for prestressing a buried pipeline, that has been found to be both easy and economical for a liquid sulfur pipeline in Alberta, is to heat it with hot air and bury it while it is still hot. Pipe diameter and prestressing temperature both have a significant impact on the kind of heating equipment that is required.

  7. Buried plastic pipe technology: 2nd Volume

    SciTech Connect

    Eckstein, D.

    1994-01-01

    The goal of this symposium was to provide an update in the technology of buried plastic pipe. Papers are divided into five sections: Field testing; Design and installation; Rehabilitation; Laboratory testing; and Trenchless construction. Twelve of the papers have been processed separately for inclusion on the data base.

  8. Sensor feature fusion for detecting buried objects

    SciTech Connect

    Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.; Hernandez, J.E.; Buhl, M.R.; Schaich, P.C.; Kane, R.J.; Barth, M.J.; DelGrande, N.K.

    1993-04-01

    Given multiple registered images of the earth`s surface from dual-band sensors, our system fuses information from the sensors to reduce the effects of clutter and improve the ability to detect buried or surface target sites. The sensor suite currently includes two sensors (5 micron and 10 micron wavelengths) and one ground penetrating radar (GPR) of the wide-band pulsed synthetic aperture type. We use a supervised teaming pattern recognition approach to detect metal and plastic land mines buried in soil. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in a two step process to classify a subimage. Thee first step, referred to as feature selection, determines the features of sub-images which result in the greatest separability among the classes. The second step, image labeling, uses the selected features and the decisions from a pattern classifier to label the regions in the image which are likely to correspond to buried mines. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the sensors add value to the detection system. The most important features from the various sensors are fused using supervised teaming pattern classifiers (including neural networks). We present results of experiments to detect buried land mines from real data, and evaluate the usefulness of fusing feature information from multiple sensor types, including dual-band infrared and ground penetrating radar. The novelty of the work lies mostly in the combination of the algorithms and their application to the very important and currently unsolved operational problem of detecting buried land mines from an airborne standoff platform.

  9. Regrowth-related defect formation and evolution in 1 MeV amorphized (001) Ge

    SciTech Connect

    Hickey, D. P.; Bryan, Z. L.; Jones, K. S.; Elliman, R. G.; Haller, E. E.

    2007-03-26

    Ge implanted with 1 MeV Si{sup +} at a dose of 1x10{sup 15} cm{sup -2} creates a buried amorphous layer that, upon regrowth, exhibits several forms of defects-end-of-range (EOR), regrowth-related, and clamshell defects. Unlike Si, no planar (311) defects are observed. The minimal EOR defects are small dotlike defects and are very unstable, dissolving between 450 and 550 deg. C. This is in contrast to Si, where the EOR defects are very stable. The amorphous layer results in both regrowth-related defects and clamshell defects, which were more stable than the EOR damage.

  10. 47 CFR 32.6423 - Buried cable expense.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Buried cable expense. 32.6423 Section 32.6423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6423 Buried cable expense. (a) This account shall include expenses associated with buried cable. (b) Subsidiary record categories...

  11. 47 CFR 32.6423 - Buried cable expense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Buried cable expense. 32.6423 Section 32.6423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6423 Buried cable expense. (a) This account shall include expenses associated with buried cable. (b) Subsidiary record categories...

  12. 47 CFR 32.6423 - Buried cable expense.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Buried cable expense. 32.6423 Section 32.6423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6423 Buried cable expense. (a) This account shall include expenses associated with buried cable. (b) Subsidiary record categories...

  13. 47 CFR 32.6423 - Buried cable expense.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Buried cable expense. 32.6423 Section 32.6423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6423 Buried cable expense. (a) This account shall include expenses associated with buried cable. (b) Subsidiary record categories...

  14. 47 CFR 32.6423 - Buried cable expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Buried cable expense. 32.6423 Section 32.6423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6423 Buried cable expense. (a) This account shall include expenses associated with buried cable. (b) Subsidiary record categories...

  15. Amorphous metallic foam

    NASA Astrophysics Data System (ADS)

    Schroers, Jan; Veazey, Chris; Johnson, William L.

    2003-01-01

    The bulk glass forming alloy Pd43Ni10Cu27P20 is processed into a low-density amorphous metallic foam. Pd43Ni10Cu27P20 is mixed with hydrated B2O3, which releases gas at elevated temperature and/or low pressure. Very homogeneous foams are achieved due to the high viscosity of the alloy even at its liquidus temperature. By processing at the liquidus temperature and decreasing the pressure to 10-2 mbar, well-distributed bubbles expand to foam the material. Foam densities as low as 1.4×103 kg/m3 were obtained, corresponding to a bubble volume fraction of 84%. The bubble diameter ranges between 2×10-4 and 1×10-3 m. Thermal analysis by differential scanning calorimetry confirms the amorphous nature of the foam. Furthermore, it reveals that the foam's thermal stability is comparable to the bulk material.

  16. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  17. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  18. Defects in Amorphous Metals.

    DTIC Science & Technology

    1982-07-01

    this map with a similar plot of the experimental data. An experimental deformation data map for Pd-based amorphous al- loys is shown in fig. 10. In the...Masumoto. I Mat. Sci. 12 (1977) 1927, [IgI T M Ha.es. J. W Allen. J. Tauc . B. C. Giessen and J. J. Hauser. Phys. Re. Lett. 41 i197s) 1282 [191 J

  19. Buried Waste Integrated Demonstration Strategy Plan

    SciTech Connect

    Kostelnik, K.M.

    1993-02-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy (DOE), Environmental Restoration and Waste Management (ERWM) needs and objectives. The present focus of BWID is to support retrieval and ex situ treatment configuration options. Future activities will explore and support containment and stabilization efforts in addition to the retrieval/ex situ treatment options. Long and short term strategies of the BWID are provided. Processes for identifying technological needs, screening candidate technologies for BWID applicability, researching technical issues, field demonstrating technologies, evaluating demonstration results to determine each technology`s threshold of capability, and commercializing successfully demonstrated technologies for implementation for environmental restoration also are presented in this report.

  20. Buried Waste Integrated Demonstration Strategy Plan

    SciTech Connect

    Kostelnik, K.M.

    1993-02-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy (DOE), Environmental Restoration and Waste Management (ERWM) needs and objectives. The present focus of BWID is to support retrieval and ex situ treatment configuration options. Future activities will explore and support containment and stabilization efforts in addition to the retrieval/ex situ treatment options. Long and short term strategies of the BWID are provided. Processes for identifying technological needs, screening candidate technologies for BWID applicability, researching technical issues, field demonstrating technologies, evaluating demonstration results to determine each technology's threshold of capability, and commercializing successfully demonstrated technologies for implementation for environmental restoration also are presented in this report.

  1. Buried pipelines in large fault movements

    SciTech Connect

    Wang, L.J.; Wang, L.R.L.

    1995-12-31

    Responses of buried pipelines in large fault movements are examined based upon a non-linear cantilever beam analogy. This analogy assumes that the pipeline in a large deflection zone behaves like a cantilever beam under a transverse-concentrated shear at the inflection point with a uniformly distributed soil pressure along the entire span. The tangent modulus approach is adopted to analyze the coupled axial force-bending moment interaction on pipeline deformations in the inelastic range. The buckling load of compressive pipeline is computed by the modified Newmark`s numerical integration scheme. Parametric studies of both tensile and compressive pipeline responses to various fault movements, pipeline/fault crossing angles, soil/pipe friction angles, buried depths, pipe diameters and thickness are investigated. It is shown by the comparisons that previous findings were unconservative.

  2. Shell model response analysis of buried pipelines

    SciTech Connect

    Takada, Shiro; Katagiri, Shin; Shinmi, Tatsuhiko

    1995-12-31

    A shell model analysis can calculate the cross-sectional deformation and hoop stress of buried pipelines. This paper proposes an analytical method to calculate the response of buried straight and bent pipelines modeled as cylindrical shell structures. A modified transfer matrix method is employed instead of a stiffness matrix method to avoid the problem of computational memory caused by huge matrixes. Results calculated by the developed program are compared with experimental ones obtained by a pipe bending test of straight and bent pipe segments. In addition, several differences of the pipe response between the beam model and the shell model are examined through response simulations of straight and bent pipelines subjected to ground subsidence.

  3. Buried caldera of mauna kea volcano, hawaii.

    PubMed

    Porter, S C

    1972-03-31

    An elliptical caldera (2.1 by 2.8 kilometers) at the summit of Mauna Kea volcano is inferred to lie buried beneath hawaiite lava flows and pyroclastic cones at an altitude of approximately 3850 meters. Stratigraphic relationships indicate that hawaiite eruptions began before a pre-Wisconsin period of ice-cap glaciation and that the crest of the mountain attained its present altitude and gross form during a glaciation of probable Early Wisconsin age.

  4. Coaxial inverted geometry transistor having buried emitter

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Cress, S. B.; Dunn, W. R. (Inventor)

    1973-01-01

    The invention relates to an inverted geometry transistor wherein the emitter is buried within the substrate. The transistor can be fabricated as a part of a monolithic integrated circuit and is particularly suited for use in applications where it is desired to employ low actuating voltages. The transistor may employ the same doping levels in the collector and emitter, so these connections can be reversed.

  5. DOE complex buried waste characterization assessment

    SciTech Connect

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m[sup 3] of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993).

  6. Breakdown mechanism in buried silicon oxide films

    NASA Astrophysics Data System (ADS)

    Mayo, Santos; Suehle, John S.; Roitman, Peter

    1993-09-01

    Charge injection leading to catastrophic breakdown has been used to study the dielectric properties of the buried oxide layer in silicon implanted with high-energy oxygen ions. Current versus gate bias, current versus time, and capacitance versus gate bias were used to characterize, at various temperatures, MOS metal-oxide-semiconductor capacitors with areas in the 1×10-4-1×10-2 cm2 range fabricated with commercially available single- or triple-implant separation by implanted oxygen silicon wafers. The data show that injected charge accumulates in the buried oxide at donorlike oxide traps ultimately leading to catastrophic breakdown. Both Poole-Frenkel and Fowler-Nordheim conduction, as well as impact-ionization mechanisms, have been identified in the oxide. The charge and field to breakdown in the best buried oxides are, respectively, near 1 C cm-2 and 10 MV cm-1, similar to the thermally grown oxide parameters. Cumulative distributions of these parameters measured over a large number of capacitors show that the frequency of breakdown events caused by extrinsic defects is scaled with the capacitor area. Intrinsic and extrinsic defect distributions are broader than with thermally grown oxides.

  7. Blepharoptosis correction with buried suture method.

    PubMed

    Park, Jang Woo; Kang, Moon Seok; Nam, Seung Min; Kim, Yong Bae

    2015-02-01

    Many surgical techniques have been developed to correct blepharoptosis, including the anterior levator resection or advancement, tarsoaponeurectomy, and Fasanella-Servat Müllerectomy. However, to minimize surgical scarring and reduce the postoperative recovery time, the procedure has been developed from a complete incision to a partial incision, which is appealing to patients. To aid the procedural development, this study describes a surgical technique in which the correction of blepharoptosis and a double eyelid fold operation are performed using a buried suture technique during the same operation. A retrospective review was conducted using the medical records and preoperative and postoperative photography of 121 patients who underwent simultaneous correction of blepharoptosis and had a double eyelid fold created between October 2010 and July 2011. All of the patients had mild (1-2 mm) or moderate (3-4 mm) bilateral blepharoptosis and excellent or good levator function (>8 mm). The average preoperative marginal reflex distance (MRD1) measured 1.174 (0.3) mm. No intraoperative complications occurred. The average postoperative MRD1 measured 3.968 (0.2) mm. There was statistical significance improvement between preoperative MRD1 and postoperative MRD1 (P<0.05). No symptomatic dry eye and exposure keratopathy were noted. Blepharoptosis correction using the buried suture technique is an effective technique for young patients experiencing mild to moderate blepharoptosis who want to have the double eyelid fold operation using the buried suture technique.

  8. Burying by rats in response to aversive and nonaversive stimuli

    PubMed Central

    Poling, Alan; Cleary, James; Monaghan, Michael

    1981-01-01

    Previous investigations have shown that rats bury a variety of conditioned and unconditioned aversive stimuli. Such burying has been considered as a species-typical defensive reaction. In the present studies, rats buried spouts filled with Tabasco sauce, or condensed milk to which a taste aversion was conditioned, but did not bury water-filled spouts or spouts filled with a palatable novel food (apple juice) to which a taste aversion was not conditioned. However, in other experiments rats consistently and repeatedly buried Purina Rat Chow, Purina Rat Chow coated with quinine, and glass marbles. This indicates that a variety of stimuli, not all aversive or novel, evoke burying by rats. Whereas the behavior may reasonably be considered as a species-typical defensive behavior in some situations, the wide range of conditions that occasion burying suggests that the behavior has no single biological function. PMID:16812198

  9. Burying by rats in response to aversive and nonaversive stimuli.

    PubMed

    Poling, A; Cleary, J; Monaghan, M

    1981-01-01

    Previous investigations have shown that rats bury a variety of conditioned and unconditioned aversive stimuli. Such burying has been considered as a species-typical defensive reaction. In the present studies, rats buried spouts filled with Tabasco sauce, or condensed milk to which a taste aversion was conditioned, but did not bury water-filled spouts or spouts filled with a palatable novel food (apple juice) to which a taste aversion was not conditioned. However, in other experiments rats consistently and repeatedly buried Purina Rat Chow, Purina Rat Chow coated with quinine, and glass marbles. This indicates that a variety of stimuli, not all aversive or novel, evoke burying by rats. Whereas the behavior may reasonably be considered as a species-typical defensive behavior in some situations, the wide range of conditions that occasion burying suggests that the behavior has no single biological function.

  10. The Stabilization of Amorphous Zopiclone in an Amorphous Solid Dispersion.

    PubMed

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique

    2015-10-01

    Zopiclone is a poorly soluble psychotherapeutic agent. The aim of this study was to prepare and characterize an amorphous form of zopiclone as well as the characterization and performance of a stable amorphous solid dispersion. The amorphous form was prepared by the well-known method of quench-cooling of the melt. The solid dispersion was prepared by a solvent evaporation method of zopiclone, polyvinylpyrrolidone-25 (PVP-25), and methanol, followed by freeze-drying. The physico-chemical properties and stability of amorphous zopiclone and the solid dispersion was studied using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), hot-stage microscopy (HSM), X-ray diffractometry (XRD), solubility, and dissolution studies. The zopiclone amorphous solid-state form was determined to be a fragile glass; it was concluded that the stability of the amorphous form is influenced by both temperature and water. Exposure of amorphous zopiclone to moisture results in rapid transformation of the amorphous form to the crystalline dihydrated form. In comparison, the amorphous solid dispersion proved to be more stable with increased aqueous solubility.

  11. [Growth hormone and IGF-1 as doping agents in competitive sport].

    PubMed

    Jóźków, Paweł; Medraś, Marek

    2009-01-01

    Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) are often used by athletes as doping agents. It is estimated that up to 25% of sportsmen using anabolic-androgenic steroids also take GH. Available data do not confirm the influence of GH or IGF-1 preparations on physical performance improvement. However, there is some evidences for many adverse effects in athletes using this form of doping. Blood tests to detect growth hormone abuse are available since several years. Surprisingly, no one has been proven to use illegal doping agents influencing GH/IGF-1 axis.

  12. Synthesis of quenchable amorphous diamond

    DOE PAGES

    Zeng, Zhidan; Yang, Liuxiang; Zeng, Qiaoshi; ...

    2017-08-22

    Diamond owes its unique mechanical, thermal, optical, electrical, chemical, and biocompatible materials properties to its complete sp3-carbon network bonding. Crystallinity is another major controlling factor for materials properties. Although other Group-14 elements silicon and germanium have complementary crystalline and amorphous forms consisting of purely sp3 bonds, purely sp3-bonded tetrahedral amorphous carbon has not yet been obtained. In this letter, we combine high pressure and in situ laser heating techniques to convert glassy carbon into “quenchable amorphous diamond”, and recover it to ambient conditions. Our X-ray diffraction, high-resolution transmission electron microscopy and electron energy-loss spectroscopy experiments on the recovered sample andmore » computer simulations confirm its tetrahedral amorphous structure and complete sp3 bonding. This transparent quenchable amorphous diamond has, to our knowledge, the highest density among amorphous carbon materials, and shows incompressibility comparable to crystalline diamond.« less

  13. Hydrogenated Amorphous Silicon

    NASA Astrophysics Data System (ADS)

    Street, R. A.

    1991-08-01

    Divided roughly into two parts, the book describes the physical properties and device applications of hydrogenated amorphous silicon. The first section is concerned with the atomic and electronic structure, and covers growth defects and doping and defect reactions. The emphasis is on the optical and electronic properties that result from the disordered structure. The second part of the book describes electronic conduction, recombination, interfaces, and multilayers. The special attribute of a-Si:H which makes it useful is the ability to deposit the material inexpensively over large areas, while retaining good semiconducting properties, and the final chapter discusses various applications and devices.

  14. ENDEAVOUR to understand EUV buried defect printability

    NASA Astrophysics Data System (ADS)

    Seki, Kazunori; Isogawa, Takeshi; Kagawa, Masayuki; Akima, Shinji; Kodera, Yutaka; Badger, Karen; Qi, Zhengqing J.; Lawliss, Mark; Rankin, Jed; Bonam, Ravi

    2015-07-01

    NAP-PD (Native Acting Phase - Programmed Defects), otherwise known as buried program defects, with attributes very similar to native defects, are successfully fabricated using a high accuracy overlay technique. The defect detectability and visibility are analyzed with conventional phase contrast blank inspection @193 nm wavelength, pattern inspection @193 nm wavelength and SEM. The mask is also printed on wafer and printability is discussed. Finally, the inspection sensitivity and wafer printability are compared, leading to the observation that the current blank and pattern inspection sensitivity is not enough to detect all of the printable defects.

  15. Fabrication of Buried Nanochannels From Nanowire Patterns

    NASA Technical Reports Server (NTRS)

    Choi, Daniel; Yang, Eui-Hyeok

    2007-01-01

    A method of fabricating channels having widths of tens of nanometers in silicon substrates and burying the channels under overlying layers of dielectric materials has been demonstrated. With further refinement, the method might be useful for fabricating nanochannels for manipulation and analysis of large biomolecules at single-molecule resolution. Unlike in prior methods, burying the channels does not involve bonding of flat wafers to the silicon substrates to cover exposed channels in the substrates. Instead, the formation and burying of the channels are accomplished in a more sophisticated process that is less vulnerable to defects in the substrates and less likely to result in clogging of, or leakage from, the channels. In this method, the first step is to establish the channel pattern by forming an array of sacrificial metal nanowires on an SiO2-on-Si substrate. In particular, the wire pattern is made by use of focused-ion-beam (FIB) lithography and a subsequent metallization/lift-off process. The pattern of metal nanowires is then transferred onto the SiO2 layer by reactive-ion etching, which yields sacrificial SiO2 nanowires covered by metal. After removal of the metal covering the SiO2 nanowires, what remains are SiO2 nanowires on an Si substrate. Plasma-enhanced chemical vapor deposition (PECVD) is used to form a layer of a dielectric material over the Si substrate and over the SiO2 wires on the surface of the substrate. FIB milling is then performed to form trenches at both ends of each SiO2 wire. The trenches serve as openings for the entry of chemicals that etch SiO2 much faster than they etch Si. Provided that the nanowires are not so long that the diffusion of the etching chemicals is blocked, the sacrificial SiO2 nanowires become etched out from between the dielectric material and the Si substrate, leaving buried channels. At the time of reporting the information for this article, channels 3 m long, 20 nm deep, and 80 nm wide (see figure) had been

  16. Transverse seismic analysis of buried pipelines

    SciTech Connect

    Mavridis, G.A.; Pitilakis, K.D.

    1995-12-31

    The objective of this study is to develop an analytical procedure for calculating upper bounds for stresses and strains for the case of the transverse seismic shaking of continuous buried pipelines taking into account the soil-pipeline interaction effects. A sensibility analysis of some critical parameters is performed. The influence of various parameters such as the apparent propagation velocity, the frequency content of the seismic ground excitation, the dynamic soil properties, the pipe`s material and size, on the ratio of the pipe to ground displacements amplitudes and consequently to the induced pipe strains, are studied parametrically.

  17. Buried waste integrated demonstration configuration management plan

    SciTech Connect

    Cannon, P.G.

    1992-02-01

    This document defines plans for the configuration management requirements for the Buried Waste Integrated Demonstration (BWID) Program. Since BWID is managed programmatically by the Waste Technology Development Department (WTDD), WTDD Program Directive (PD) 1.5 (Document Preparation, Review, Approval, Publication, Management and Change Control) is to be followed for all internal EG G Idaho, Inc., BWID programmatic documentation. BWID documentation generated by organizations external to EG G Idaho is not covered by this revision of the Configuration Management Plan (CMP), but will be addressed in subsequent revisions.

  18. Buried waste integrated demonstration configuration management plan

    SciTech Connect

    Cannon, P.G.

    1992-02-01

    This document defines plans for the configuration management requirements for the Buried Waste Integrated Demonstration (BWID) Program. Since BWID is managed programmatically by the Waste Technology Development Department (WTDD), WTDD Program Directive (PD) 1.5 (Document Preparation, Review, Approval, Publication, Management and Change Control) is to be followed for all internal EG&G Idaho, Inc., BWID programmatic documentation. BWID documentation generated by organizations external to EG&G Idaho is not covered by this revision of the Configuration Management Plan (CMP), but will be addressed in subsequent revisions.

  19. A novel buried-drain DMOSFET structure

    NASA Astrophysics Data System (ADS)

    Fichtner, W.; Cooper, J. A., Jr.; Tretola, A. R.; Kahng, D.

    1982-11-01

    A novel buried-drain MOSFET (BDMOS) structure is presented which utilizes a double-implanted source region to achieve short-channel lengths. The fabrication sequence of a six-mask silicon-gate process shows the highlights of this new technology. Strong emphasis has been given on using process and device simulation tools, in order to optimize device performance. Experimental results on fabricated devices with source-drain distances between 0.5 and 3 microns and active channel lengths of 0.25 micron show the inherent potential of this new structure.

  20. Substrate discrimination in burying beetles, Nicrophorus orbicollis (Coleoptera: Silphidae)

    USGS Publications Warehouse

    Muths, Erin Louise

    1991-01-01

    Burying beetles Nicrophorus orbicollis (Coleoptera: Silphidae) secure and bury small vertebrate carcasses as a food resource for their offspring and themselves. Burial may take place at the point of carcass discovery or at some distance from that site. Burying beetles were tested to determine if they discriminate between different substrates when burying a carcass. Three substrates were presented simultaneously. Substrate one contained soil from typical beetle habitat; substrates two and three contained 2:1 and 5:1 ratios, respectively, of soil and a senescent prairie grass (Panicum virgatum), which added a bulk structural component to the soil. Beetles generally moved and buried the carcass within 24 hours. Results for both paired and individual trials suggest that burying beetles discriminate between substrates, preferring substrates with added bulk over those without.

  1. Compensated amorphous silicon solar cell

    DOEpatents

    Carlson, David E.

    1980-01-01

    An amorphous silicon solar cell incorporates a region of intrinsic hydrogenated amorphous silicon fabricated by a glow discharge wherein said intrinsic region is compensated by P-type dopants in an amount sufficient to reduce the space charge density of said region under illumination to about zero.

  2. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  3. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  4. Virtual environmental applications for buried waste characterization technology evaluation report

    SciTech Connect

    1995-05-01

    The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year.

  5. Compensated amorphous silicon solar cell

    DOEpatents

    Devaud, Genevieve

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  6. Sensor system for buried waste containment sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, May Catherine

    2000-01-01

    A sensor system is disclosed for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  7. As doping of Si-Ge-Sn epitaxial semiconductor materials on a commercial CVD reactor

    NASA Astrophysics Data System (ADS)

    Bhargava, Nupur; Margetis, Joe; Tolle, John

    2017-09-01

    In this work we present the As doping, via AsH3, of Ge1-x Sn x and SiyGe1-y-x Sn x alloys grown in a commercial RPCVD reactor. The composition, thickness, and resistivity of the layers were measured for varying AsH3 flows and AsH3 growth kinetics was discussed. We find that the addition of As to the lattice induces compressive strain in the layer despite a smaller covalent radius relative to Ge and Sn. N-type dopant incorporation and activation is compared for AsH3 and PH3-based processes, and we find that As incorporates more efficiently than P. As concentrations > 2 × 1020 cm-3 were achieved for both Ge1-x Sn x and SiyGe1-y-x Sn x with resistivity as low as 0.6 mΩ cm.

  8. System and method for removal of buried objects

    DOEpatents

    Alexander, Robert G.; Crass, Dennis; Grams, William; Phillips, Steven J.; Riess, Mark

    2008-06-03

    The present invention is a system and method for removal of buried objects. According to one embodiment of the invention, a crane with a vibrator casing driver is used to lift and suspend a large diameter steel casing over the buried object. Then the casing is driven into the ground by the vibratory driver until the casing surrounds the buried object. Then the open bottom of the casing is sealed shut by injecting grout into the ground within the casing near its bottom. When the seal has cured and hardened, the top of the casing is lifted to retrieve the casing, with the buried object inside, from the ground.

  9. Multi channel FM reflection profiler for buried pipeline surveying

    SciTech Connect

    Schock, S.G.; LeBlanc, L.R.

    1996-12-31

    A towed multi-channel FM acoustic reflection profiler has been developed for locating and generating images of buried objects. One significant application of this sonar is buried pipeline surveying. The multi-channel reflection profiler uses 16 line arrays mounted in a towed vehicle to determine the position and burial depth of an 18 inch steel pipe filled with concrete buried under 1.5 meters of sand. This sonar will allow a survey vessel to continuously track a buried pipeline providing a continuous record of pipe burial depth and position.

  10. Bulk amorphous materials

    SciTech Connect

    Schwarz, R.B.; Archuleta, J.I.; Sickafus, K.E.

    1998-12-01

    This is the final report for a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this work was to develop the competency for the synthesis of novel bulk amorphous alloys. The authors researched their synthesis methods and alloy properties, including thermal stability, mechanical, and transport properties. The project also addressed the development of vanadium-spinel alloys for structural applications in hostile environments, the measurement of elastic constants and thermal expansion in single-crystal TiAl from 300 to 750 K, the measurement of elastic constants in gallium nitride, and a study of the shock-induced martensitic transformations in NiTi alloys.

  11. Containerless processing of amorphous ceramics

    NASA Technical Reports Server (NTRS)

    Weber, J. K. Richard; Krishnan, Shankar; Schiffman, Robert A.; Nordine, Paul C.

    1990-01-01

    The absence of gravity allows containerless processing of materials which could not otherwise be processed. High melting point, hard materials such as borides, nitrides, and refractory metals are usually brittle in their crystalline form. The absence of dislocations in amorphous materials frequently endows them with flexibility and toughness. Systematic studies of the properties of many amorphous materials have not been carried out. The requirements for their production is that they can be processed in a controlled way without container interaction. Containerless processing in microgravity could permit the control necessary to produce amorphous forms of hard materials.

  12. Entomofauna of buried bodies in northern France.

    PubMed

    Bourel, Benoit; Tournel, Gilles; Hédouin, Valéry; Gosset, Didier

    2004-08-01

    Autopsies of exhumed cadavers can reveal important evidence for clarification of medical insurance and social issues. This study concerns insects sampled on 22 exhumed cadavers in the Lille area. For each corpse, the species and the stages of development were noted, as well as the time elapsed after burial, the location of the cemetery, the stage of decay and possible preservation treatment. A total of eight Diptera and two Coleoptera species were sampled on the corpses. The relationships between entomofauna and conditions of burial are discussed. Three species were regularly found because of their preference for underground environments or closed environments: Conicera tibialis, typically associated with buried bodies, Leptocera caenosa which is known to be associated with human faeces, water closets, caves and cracked soil pipes, and Ophyra capensis, sometimes found on human bodies kept indoors for several months, where blowflies have not had access. Triphleba hyalinata, which is associated with human bodies in wooden coffins, was found only twice.

  13. Landslide Buries Valley of the Geysers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Geysers are a rare natural phenomena found only in a few places, such as New Zealand, Iceland, the United States (Yellowstone National Park), and on Russia's far eastern Kamchatka Peninsula. On June 3, 2007, one of these rare geyser fields was severely damaged when a landslide rolled through Russia's Valley of the Geysers. The landslide--a mix of mud, melting snow, trees, and boulders--tore a scar on the land and buried a number of geysers, thermal pools, and waterfalls in the valley. It also blocked the Geyser River, causing a new thermal lake to pool upstream. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this infrared-enhanced image on June 11, 2007, a week after the slide. The image shows the valley, the landslide, and the new thermal lake. Even in mid-June, just days from the start of summer, the landscape is generally covered in snow, though the geologically heated valley is relatively snow free. The tree-covered hills are red (the color of vegetation in this false-color treatment), providing a strong contrast to the aquamarine water and the gray-brown slide. According to the Russian News and Information Agency (RIA) [English language], the slide left a path roughly a kilometer and a half (one mile) long and 200 meters (600 feet) wide. Within hours of the landslide, the water in the new lake inundated a number of additional geysers. The geysers directly buried under the landslide now lie under as much as 60 meters (180 feet) of material, according to RIA reports. It is unlikely that the geysers will be able to force a new opening through this thick layer, adds RIA. Among those directly buried is Pervenets (Firstborn), the first geyser found in the valley, in 1941. Other geysers, such as the Bolshoi (Greater) and Maly (Lesser) Geysers, were silenced when buried by water building up behind the new natural dam. According to Vladimir and Andrei Leonov of the Russian Federation Institute of

  14. Buried waste integrated demonstration technology integration process

    SciTech Connect

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

  15. Buried waste integrated demonstration technology integration process

    SciTech Connect

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

  16. Piezoelectric radiofrequency transducers as passive buried sensors

    NASA Astrophysics Data System (ADS)

    Rétornaz, T.; Friedt, J.-M.; Alzuaga, S.; Baron, T.; Lebrasseur, É.; Martin, G.; Laroche, T.; Ballandras, S.; Griselin, M.; Simonnet, J.-P.

    2012-09-01

    We demonstrate that single-piezoelectric substrate-based acoustic transducers act as ideal sensors for probing with various RADAR strategies. Because these sensors are intrinsically passive devices working in the radiofrequency range, they exhibit improved interrogation range and robustness with respect to silicon-based radio frequency identification tags. Both wideband (acoustic delay lines) and narrowband (acoustic resonators) transducers are shown to be compatible with pulse-mode and frequency-modulated continuous-wave RADAR strategies, respectively. We particularly focus on the ground-penetrating RADAR (GPR) application in which the lack of local energy source makes these sensors suitable candidates for buried applications in roads, building or civil engineering monitoring. A novel acoustic sensor concept - high-overtone bulk acoustic resonator - is especially suited as sensor interrogated by a wide range of antenna set, as demonstrated with GPR units working in the 100 and 200 MHz range.

  17. Acoustic imaging of objects buried in soil.

    PubMed

    Frazier, C H; Cadalli, N; Munson, D C; O'Brien, W D

    2000-07-01

    In this study, we demonstrate an acoustic system for high-resolution imaging of objects buried in soil. Our goal is to image cultural artifacts in order to assess in a rapid manner the historical significance of a potential construction site. We describe the imaging system and present preliminary images produced from data collected from a soil phantom. A mathematical model and associated computer software are developed in order to simulate the signals acquired by the system. We have built the imaging system, which incorporates a single element source transducer and a receiver array. The source and receiver array are moved together along a linear path to collect data. Using this system, we have obtained B-mode images of several targets by using delay-and-sum beamforming, and we have also applied synthetic aperture theory to this problem.

  18. Optical cues for buried landmine detection

    NASA Astrophysics Data System (ADS)

    Hibbitts, Charles A.; Staszewski, James; Cempa, Andrew; Sha, Vincent; Abraham, Stephen

    2009-05-01

    Objects buried in unimproved surfaces can be inferred from the disturbance of the soil above them. We have found for mines emplaced according to U.S. military doctrine in clay-rich soils, that imaging at visible, shortwave infrared, and thermal infrared are effective at different times under various illumination conditions, and that these techniques can be synergistic. Complementary visible - thermal infrared laboratory spectral measurements show that grain size differences associated with disturbed soils can make them more reflective or emissive than undisturbed soils. However, the field measurements demonstrate that grain size effects are not significant under passive visible and shortwave infrared illumination. Instead, shortwave infrared (1.55 - 1.7 μm) imaging, in particular, is effective because the roughened disturbed soil casts a pattern of shadows under a wide range of illumination conditions that are also emphasized by a background of undisturbed soil possessing few contrast variations.

  19. Acute buried bumper syndrome: an endoscopic peg tube salvage approach.

    PubMed

    Bhat, Ganesh; Suvarna, Deepak; Pai, Cannanore Ganesh

    2010-05-01

    Acute buried bumper syndrome is an uncommon complication of percutaneous endoscopic gastrostomy (PEG) tube placement. If not recognized and treated appropriately, it can lead to serious complications including death. We report a case of an acute buried bumper syndrome, successfully managed with PEG tube repositioning through the original tract, without the need of replacement.

  20. Buried Oxide Densification for Low Power, Low Voltage CMOS Applications

    NASA Technical Reports Server (NTRS)

    Allen, L. P.; Anc, M. J.; Dolan, B.; Jiao, J.; Guss, B.; Seraphin, S.; Liu, S. T.; Jenkins, W.

    1998-01-01

    Special technology and circuit architecture are of growing interest for implementation of circuits which operate at low supply voltages and consume low power levels without sacrificing performance[1]. Use of thin buried oxide SOI substrates is a primary approach to simultaneously achieve these goals. A significant aspect regarding SIMOX SOI for low voltage, low power applications is the reliability and performance of the thin buried oxide. In addition, when subjected to high total dose irradiation, the silicon islands within the BOX layer of SIMOX can store charges and significantly effect the back channel threshold voltages of devices. Thus, elimination of the islands within the buried oxide (BOX) layer is preferred in order to prevent leakage through these conductive islands and charge build-up within the buried oxide layer. A differential (2-step) ramp rate as applied to full and 100 nm BOX SIMOX was previously reported to play a significant role in the stoichiometry and island formation within the buried layer[2]. This paper focus is on the properties of a thin (120nm) buried oxide as a function of the anneal ramp rate and the temperature of anneal. In this research, we have found an improvement in the buried oxide stoichiometry with the use of a slower, singular ramp rate for specified thin buried oxides, with slower ramp rates and higher temperatures of anneal suggested for reducing the presence of Si islands within the BOX layer.

  1. Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate.

    PubMed

    Ibsen, Casper J S; Chernyshov, Dmitry; Birkedal, Henrik

    2016-08-22

    Crystallization from amorphous phases is an emerging pathway for making advanced materials. Biology has made use of amorphous precursor phases for eons and used them to produce structures with remarkable properties. Herein, we show how the design of the amorphous phase greatly influences the nanocrystals formed therefrom. We investigate the transformation of mixed amorphous calcium phosphate/amorphous calcium carbonate phases into bone-like nanocrystalline apatite using in situ synchrotron X-ray diffraction and IR spectroscopy. The speciation of phosphate was controlled by pH to favor HPO4 (2-) . In a carbonate free system, the reaction produces anisotropic apatite crystallites with large aspect ratios. The first formed crystallites are highly calcium deficient and hydrogen phosphate rich, consistent with thin octacalcium phosphate (OCP)-like needles. During growth, the crystallites become increasingly stoichiometric, which indicates that the crystallites grow through addition of near-stoichiometric apatite to the OCP-like initial crystals through a process that involves either crystallite fusion/aggregation or Ostwald ripening. The mixed amorphous phases were found to be more stable against phase transformations, hence, the crystallization was inhibited. The resulting crystallites were smaller and less anisotropic. This is rationalized by the idea that a local phosphate-depletion zone formed around the growing crystal until it was surrounded by amorphous calcium carbonate, which stopped the crystallization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Predicting arsenic concentrations in porewaters of buried uranium mill tailings

    SciTech Connect

    Langmuir, D.; Mahoney, J.; MacDonald, A.; Rowson, J.

    1999-10-01

    The proposed JEB Tailings Management Facility (TMF) to be emplaced below the groundwater table in northern Saskatchewan, Canada, will contain uranium mill tailings from McClean Lake, Midwest and Cigar Lake ore bodies, which are high in arsenic (up to 10%) and nickel (up to 5%). A serious concern is the possibility that high arsenic and nickel concentrations may be released from the buried tailings, contaminating adjacent groundwaters and a nearby lake. Laboratory tests and geochemical modeling were performed to examine ways to reduce the arsenic and nickel concentrations in TMF porewaters so as to minimize such contamination from tailings buried for 50 years and longer. The tests were designed to mimic conditions in the mill neutralization circuit (3 hr tests at 25 C), and in the TMF after burial (5--49 day aging tests). The aging tests were run at 50, 25 and 4 C (the temperature in the TMF). In order to optimize the removal of arsenic by adsorption and precipitation, ferric sulfate was added to tailings raffinates having Fe/As ratios of less than 3--5. The acid raffinates were then neutralized by addition of slaked lime to nominal pH values of 7, 8, or 9. Analysis and modeling of the test results showed that with slaked lime addition to acid tailings raffinates, relatively amorphous scorodite (ferric arsenate) precipitates near pH 1, and is the dominant form of arsenate in slake limed tailings solids except those high in Ni and As and low in Fe, in which cabrerite-annabergite (Ni, Mg, Fe(II) arsenate) may also precipitate near pH 5--6. In addition to the arsenate precipitates, smaller amounts of arsenate are also adsorbed onto tailings solids. The aging tests showed that after burial of the tailings, arsenic concentrations may increase with time from the breakdown of the arsenate phases (chiefly scorodite). However, the tests indicate that the rate of change decreases and approaches zero after 72 hrs at 25 C, and may equal zero at all times in the TMF at 4 C

  3. Fabrication of amorphous diamond films

    DOEpatents

    Falabella, S.

    1995-12-12

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  4. Amorphous and Ultradisperse Crystalline Materials,

    DTIC Science & Technology

    The book sums up experimental and theoretical findings on amorphous and ultradisperse crystalline materials , massive and film types. Present-day... crystalline materials of metallic systems are presented. Emphasis is placed on inorganic film materials.

  5. DOE complex buried waste characterization assessment. Buried Waste Integrated Demonstration Program

    SciTech Connect

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m{sup 3} of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993).

  6. Characterization Techniques for Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Carow-Watamura, U.; Louzguine, D. V.; Takeuchi, A.

    This document is part of Part 2 http://dx.doi.org/10.1007/9getType="URL"/> 'Systems from B-Be-Fe to Co-W-Zr' of Subvolume B 'Physical Properties of Ternary Amorphous Alloys' of Volume 37 'Phase Diagrams and Physical Properties of Nonequilibrium Alloys' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains the Chapter '2 Characterization Techniques for Amorphous Alloys' with the content:

  7. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  8. Hydrogenated amorphous silicon photonics

    NASA Astrophysics Data System (ADS)

    Narayanan, Karthik

    2011-12-01

    Silicon Photonics is quickly proving to be a suitable interconnect technology for meeting the future goals of on-chip bandwidth and low power requirements. However, it is not clear how silicon photonics will be integrated into CMOS chips, particularly microprocessors. The issue of integrating photonic circuits into electronic IC fabrication processes to achieve maximum flexibility and minimum complexity and cost is an important one. In order to minimize usage of chip real estate, it will be advantageous to integrate in three-dimensions. Hydrogenated amorphous silicon (a-Si:H) is emerging as a promising material for the 3-D integration of silicon photonics for on-chip optical interconnects. In addition, a-Si:H film can be deposited using CMOS compatible low temperature plasma-enhanced chemical vapor deposition (PECVD) process at any point in the fabrication process allowing maximum flexibility and minimal complexity. In this thesis, we demonstrate a-Si:H as a high performance alternate platform to crystalline silicon, enabling backend integration of optical interconnects in a hybrid photonic-electronic network-on-chip architecture. High quality passive devices are fabricated on a low-loss a-Si:H platform enabling wavelength division multiplexing schemes. We demonstrate a broadband all-optical modulation scheme based on free-carrier absorption effect, which can enable compact electro-optic modulators in a-Si:H. Furthermore, we comprehensively characterize the optical nonlinearities in a-Si:H and observe that a-Si:H exhibits enhanced nonlinearities as compared to crystalline silicon. Based on the enhanced nonlinearities, we demonstrate low-power four-wave mixing in a-Si:H waveguides enabling high speed all-optical devices in an a-Si:H platform. Finally, we demonstrate a novel data encoding scheme using thermal and all-optical tuning of silicon waveguides, increasing the spectral efficiency in an interconnect link.

  9. Amorphous carbon for photovoltaics

    NASA Astrophysics Data System (ADS)

    Risplendi, Francesca; Grossman, Jeffrey C.

    2015-03-01

    All-carbon solar cells have attracted attention as candidates for innovative photovoltaic devices. Carbon-based materials such as graphene, carbon nanotubes (CNT) and amorphous carbon (aC) have the potential to present physical properties comparable to those of silicon-based materials with advantages such as low cost and higher thermal stability.In particular a-C structures are promising systems in which both sp2 and sp3 hybridization coordination are present in different proportions depending on the specific density, providing the possibility of tuning their optoelectronic properties and achieving comparable sunlight absorption to aSi. In this work we employ density functional theory to design suitable device architectures, such as bulk heterojunctions (BHJ) or pn junctions, consisting of a-C as the active layer material.Regarding BHJ, we study interfaces between aC and C nanostructures (such as CNT and fullerene) to relate their optoelectronic properties to the stoichiometry of aC. We demonstrate that the energy alignment between the a-C mobility edges and the occupied and unoccupied states of the CNT or C60 can be widely tuned by varying the aC density to obtain a type II interface.To employ aC in pn junctions we analyze the p- and n-type doping of a-C focusingon an evaluation of the Fermi level and work function dependence on doping.Our results highlight promising features of aC as the active layer material of thin-film solar cells.

  10. Dual-band infrared capabilities for imaging buried object sites

    SciTech Connect

    Del Grande, N.K.; Durbin, P.F.; Gorvad, M.R.; Perkins, D.E.; Clark, G.A.; Hernandez, J.E.; Sherwood, R.J.

    1993-04-02

    We discuss dual-band infrared (DBIR) capabilities for imaging buried object sizes. We identify physical features affecting thermal contrast needed to distinguish buried object sites from undisturbed sites or surface clutter. Apart from atmospheric transmission and system performance, these features include: object size, shape, and burial depth; ambient soil, disturbed soil and object site thermal diffusivity differences; surface temperature, emissivity, plant-cover, slope, albedo and roughness variations; weather conditions and measurement times. We use good instrumentation to measure the time-varying temperature differences between buried object sites and undisturbed soil sites. We compare near surface soil temperature differences with radiometric infrared (IR) surface temperature differences recorded at 4.7 {plus_minus} 0.4 {mu}m and at 10.6 {plus_minus} 1.0 {mu}m. By producing selective DBIR image ratio maps, we distinguish temperature-difference patterns from surface emissivity effects. We discuss temperature differences between buried object sites, filled hole site (without buried objects), cleared (undisturbed) soil sites, and grass-covered sites (with and without different types of surface clutter). We compare temperature, emissivity-ratio, visible and near-IR reflectance signatures of surface objects, leafy plants and sod. We discuss the physical aspects of environmental, surface and buried target features affecting interpretation of buried targets, surface objects and natural backgrounds.

  11. Compact Buried Ducts in a Hot-Humid Climate House

    SciTech Connect

    Mallay, Dave

    2016-01-07

    "9A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely on encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences; 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs; 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.

  12. Odor analysis of decomposing buried human remains

    SciTech Connect

    Vass, Arpad Alexander; Smith, Rob R; Thompson, Cyril V; Burnett, Michael N; Dulgerian, Nishan; Eckenrode, Brian A

    2008-01-01

    This study, conducted at the University of Tennessee's Anthropological Research Facility (ARF), lists and ranks the primary chemical constituents which define the odor of decomposition of human remains as detected at the soil surface of shallow burial sites. Triple sorbent traps were used to collect air samples in the field and revealed eight major classes of chemicals which now contain 478 specific volatile compounds associated with burial decomposition. Samples were analyzed using gas chromatography-mass spectrometry (GC-MS) and were collected below and above the body, and at the soil surface of 1.5-3.5 ft. (0.46-1.07 m) deep burial sites of four individuals over a 4-year time span. New data were incorporated into the previously established Decompositional Odor Analysis (DOA) Database providing identification, chemical trends, and semi-quantitation of chemicals for evaluation. This research identifies the 'odor signatures' unique to the decomposition of buried human remains with projected ramifications on human remains detection canine training procedures and in the development of field portable analytical instruments which can be used to locate human remains in shallow burial sites.

  13. Buried nanoantenna arrays: versatile antireflection coating.

    PubMed

    Kabiri, Ali; Girgis, Emad; Capasso, Federico

    2013-01-01

    Reflection is usually a detrimental phenomenon in many applications such as flat-panel-displays, solar cells, photodetectors, infrared sensors, and lenses. Thus far, to control and suppress the reflection from a substrate, numerous techniques including dielectric interference coatings, surface texturing, adiabatic index matching, and scattering from plasmonic nanoparticles have been investigated. A new technique is demonstrated to manage and suppress reflection from lossless and lossy substrates. It provides a wider flexibility in design versus previous methods. Reflection from a surface can be suppressed over a narrowband, wideband, or multiband frequency range. The antireflection can be dependent or independent of the incident wave polarization. Moreover, antireflection at a very wide incidence angle can be attained. The reflection from a substrate is controlled by a buried nanoantenna array, a structure composed of (1) a subwavelength metallic array and (2) a dielectric cover layer referred to as a superstrate. The material properties and thickness of the superstrate and nanoantennas' geometry and periodicity control the phase and intensity of the wave circulating inside the superstrate cavity. A minimum reflectance of 0.02% is achieved in various experiments in the mid-infrared from a silicon substrate. The design can be integrated in straightforward way in optical devices. The proposed structure is a versatile AR coating to optically impedance matches any substrate to free space in selected any narrow and broadband spectral response across the entire visible and infrared spectrum.

  14. Xenon Isotope Releases from Buried Transuranic Waste

    NASA Astrophysics Data System (ADS)

    Dresel, P. E.; Waichler, S. R.; Kennedy, B. M.; Hayes, J. C.; McIntyre, J. I.; Giles, J. R.; Sondrup, A. J.

    2004-12-01

    Xenon is an inert rare gas produced as a fission product in nuclear reactors and through spontaneous fission of some transuranic isotopes. Thus, xenon will be released from buried transuranic waste. Two complementary methods are used to measure xenon isotopes: radiometric analysis for short-lived radioxenon isotopes and mass spectrometry for detection of stable xenon isotopes. Initial measurements near disposal facilities at the U.S. Department of Energy's Hanford Site show radioxenon and stable xenon isotopic signatures that are indicative of transuranic waste. Radioxenon analysis has greater sensitivity due to the lower background concentrations and indicates spontaneous fission due to the short half life of the isotopes. Stable isotope ratios may be used to distinguish irradiated fuel sources from pure spontaneous fission sources and are not as dependent on rapid release from the waste form. The release rate is dependent on the type of waste and container integrity and is the greatest unknown in application of this technique. Numerical multi-phase transport modeling of burial grounds at the Idaho National Engineering and Environmental Laboratory indicates that, under generalized conditions, the radioxenon isotopes will diffuse away from the waste and be found in the soil cap and adjacent to the burial ground at levels many orders of magnitude above the detection limit.

  15. Odor analysis of decomposing buried human remains.

    PubMed

    Vass, Arpad A; Smith, Rob R; Thompson, Cyril V; Burnett, Michael N; Dulgerian, Nishan; Eckenrode, Brian A

    2008-03-01

    This study, conducted at the University of Tennessee's Anthropological Research Facility (ARF), lists and ranks the primary chemical constituents which define the odor of decomposition of human remains as detected at the soil surface of shallow burial sites. Triple sorbent traps were used to collect air samples in the field and revealed eight major classes of chemicals which now contain 478 specific volatile compounds associated with burial decomposition. Samples were analyzed using gas chromatography-mass spectrometry (GC-MS) and were collected below and above the body, and at the soil surface of 1.5-3.5 ft. (0.46-1.07 m) deep burial sites of four individuals over a 4-year time span. New data were incorporated into the previously established Decompositional Odor Analysis (DOA) Database providing identification, chemical trends, and semi-quantitation of chemicals for evaluation. This research identifies the "odor signatures" unique to the decomposition of buried human remains with projected ramifications on human remains detection canine training procedures and in the development of field portable analytical instruments which can be used to locate human remains in shallow burial sites.

  16. Buried plastic scintillator muon telescope (BATATA)

    NASA Astrophysics Data System (ADS)

    Alfaro, R.; de Donato, C.; D'Olivo, J. C.; Guzmán, A.; Medina-Tanco, G.; Moreno Barbosa, E.; Paic, G.; Patiño Salazar, E.; Salazar Ibarguen, H.; Sánchez, F. A.; Supanitsky, A. D.; Valdés-Galicia, J. F.; Vargas Treviño, A. D.; Vergara Limón, S.; Villaseñor, L. M.; Auger Collaboration

    2010-05-01

    Muon telescopes have multiple applications in the area of cosmic ray research. We are currently building such a detector with the objective of comparing the ground penetration of muon vs. electron-gamma signals originated in cosmic ray showers. The detector is composed by a set of three parallel dual-layer scintillator planes, buried at fixed depths ranging from 120 to 600g/cm2. Each layer is 4m2 and is composed by 49 rectangular strips of 4cm×2m, oriented at a 90∘ angle with respect to its companion layer, which gives an xy-coincidence pixel of 4×4cm2. The scintillators are MINOS extruded polystyrene strips, with an embedded Bicron BC92 wavelength shifting (WLS) fibers, of 1.5 mm in diameter. Light is collected by Hamamatsu H7546B multi-anode PMTs of 64 pixels. The front-end (FE) electronics works in counting mode and signals are transmitted to the surface DAQ stage using low-voltage differential signaling (LVDS). Any strip signal above threshold opens a GPS-tagged 2μs data collection window. Data, including signal and background, are acquired by a system of FPGA (Spartan 2E) boards and a single-board computer (TS7800).

  17. Buried waste containment system materials. Final Report

    SciTech Connect

    Weidner, J.R.; Shaw, P.G.

    1997-10-01

    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers.

  18. A diphtheria outbreak in Buri Ram, Thailand.

    PubMed

    Pantukosit, Pantavee; Arpornsuwan, Manote; Sookananta, Kanokporn

    2008-07-01

    In May 1996 there was an outbreak of diphtheria in Buri Ram, Thailand which infected 31 patients, 8 males and 23 females. The mean age of the patients was 8 +/- 5 years. Seventy-four percent had a history of childhood vaccinations. Common signs and symptoms included fever (100%) which was low grade in 61%, sore throat (90%), upper airway obstruction (3%), and hoarseness (10%). Pseudomembranes (seen in 100%) were located on the tonsils (71%), pharynx (22%), larynx (9.6%), and uvula (6%). The mean duration of symptoms prior to admission was 2 days with a range of 1 to 5 days. Complications included upper airway obstruction (10%) and cardiac complications (10%). There were no neurological complication or deaths. There were negative associations between cardiac complications, severity of disease and previous diphtheria vaccination. The ages varied from children to adults. Early recognition and prompt treatment decreased complications and mortality in this group of patients when compared with Chiang Mai and Queen Sirikit National Institute of Child Health (QSNICH) studies.

  19. ISV technology development plan for buried waste

    SciTech Connect

    Nickelson, D.F.; Callow, R.A. ); Luey, J.K. )

    1992-07-01

    This report identifies the main technical issues facing the in situ vitrification (ISV) application to buried waste, and presents a plan showing the top-level schedule and projected resources needed to develop and demonstrate the technology for meeting Environmental Restoration Department (ERD) needs. The plan also proposes a model strategy for the technology transfer from the Department of Energy's Office of Technology Development (DOE-OTD) to the Office of Environmental Restoration (DOE-ER) as the technology proceeds from issues resolution (development) to demonstration and remedial readiness. Implementation of the plan would require $34,91 1K in total funding to be spread in the years FY-93 through FY-98. Of this amount, $10,183K is planned to be funded by DOE-OTD through the ISV Integrated Program. The remaining amount, $24,728K, is recommended to be split between the Department of Energy (DOE) Office of Technology Development ($6,670K) and DOE Office of Environmental Restoration ($18,058K).

  20. ISV technology development plan for buried waste

    SciTech Connect

    Nickelson, D.F.; Callow, R.A.; Luey, J.K.

    1992-07-01

    This report identifies the main technical issues facing the in situ vitrification (ISV) application to buried waste, and presents a plan showing the top-level schedule and projected resources needed to develop and demonstrate the technology for meeting Environmental Restoration Department (ERD) needs. The plan also proposes a model strategy for the technology transfer from the Department of Energy`s Office of Technology Development (DOE-OTD) to the Office of Environmental Restoration (DOE-ER) as the technology proceeds from issues resolution (development) to demonstration and remedial readiness. Implementation of the plan would require $34,91 1K in total funding to be spread in the years FY-93 through FY-98. Of this amount, $10,183K is planned to be funded by DOE-OTD through the ISV Integrated Program. The remaining amount, $24,728K, is recommended to be split between the Department of Energy (DOE) Office of Technology Development ($6,670K) and DOE Office of Environmental Restoration ($18,058K).

  1. Computer vision and sensor fusion for detecting buried objects

    SciTech Connect

    Clark, G.A.; Hernandez, J.E.; Sengupta, S.K.; Sherwood, R.J.; Schaich, P.C.; Buhl, M.R.; Kane, R.J.; DelGrande, N.K.

    1992-10-01

    Given multiple images of the surface of the earth from dual-band infrared sensors, our system fuses information from the sensors to reduce the effects of clutter and improve the ability to detect buried or surface target sites. Supervised learning pattern classifiers (including neural networks,) are used. We present results of experiments to detect buried land mines from real data, and evaluate the usefulness of fusing information from multiple sensor types. The novelty of the work lies mostly in the combination of the algorithms and their application to the very important and currently unsolved problem of detecting buried land mines from an airborne standoff platform.

  2. The problem of burying radioactive wastes containing transplutonium elements (TPE)

    SciTech Connect

    Bryzgalova, R.V.; Krivokhatskii, A.S.; Rogozin, Y.M.; Sinitsyna, G.S.

    1986-09-01

    This paper discusses the problem of burying radioactive wastes containing TPE. The most acceptable and developed method at present is that of disposal into continental, deep-lying, geological formatins. Based on an analysis of estimates of the thermal conditions on burying highly active wastes, including TPE concentrates, data on the filtration and sorption characteristics of rocks, estimates of the diffusion of radionuclide species capable of migrating, and taking into account the retention powers of rocks it is concluded that it is possible to bury such wastes in weakly permeable geological formations possessing shielding characteristics which ensure reliability and safety in burial.

  3. Allotropic composition of amorphous carbon

    SciTech Connect

    Yastrebov, S. G. Ivanov-Omskii, V. I.

    2007-08-15

    Using the concept of an inhomogeneous broadening of spectral lines of the basic oscillators responsible for forming the spectrum, the experimental dependences of the dispersion of the imaginary part of permittivity are analyzed for amorphous carbon. It turned out that four types of oscillators contribute to this dependence. The first three types represent the electron transitions from the energy-spectrum ground state for {pi} and {sigma} electrons of amorphous carbon to an excited state. The fourth type is related to the absorption of electromagnetic radiation by free charge carriers. The absolute values of squared plasma frequencies of oscillators are estimated, and, using them, the relative fraction of sp{sup 2}-bonded atoms forming the amorphous-carbon skeleton is calculated. This estimate agrees closely with the theoretical predictions for amorphous carbon of the same density as the material under study. The dependence of the relative fraction of sp{sup 2}-bonded atoms contained in amorphous hydrogenised carbon on annealing temperature is determined. The developed method is also applied to the analysis of the normalized curve for the light extinction in the interstellar medium. The contribution to the extinction of two varieties of interstellar matter is detected.

  4. Nanostructures having crystalline and amorphous phases

    DOEpatents

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  5. Universal features of amorphous plasticity

    NASA Astrophysics Data System (ADS)

    Budrikis, Zoe; Castellanos, David Fernandez; Sandfeld, Stefan; Zaiser, Michael; Zapperi, Stefano

    2017-07-01

    Plastic yielding of amorphous solids occurs by power-law distributed deformation avalanches whose universality is still debated. Experiments and molecular dynamics simulations are hampered by limited statistical samples, and although existing stochastic models give precise exponents, they require strong assumptions about fixed deformation directions, at odds with the statistical isotropy of amorphous materials. Here, we introduce a fully tensorial, stochastic mesoscale model for amorphous plasticity that links the statistical physics of plastic yielding to engineering mechanics. It captures the complex shear patterning observed for a wide variety of deformation modes, as well as the avalanche dynamics of plastic flow. Avalanches are described by universal size exponents and scaling functions, avalanche shapes, and local stability distributions, independent of system dimensionality, boundary and loading conditions, and stress state. Our predictions consistently differ from those of mean-field depinning models, providing evidence that plastic yielding is a distinct type of critical phenomenon.

  6. Amorphous-diamond electron emitter

    DOEpatents

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  7. Generalized melting criterion for amorphization

    SciTech Connect

    Devanathan, R. |; Lam, N.Q.; Okamoto, P.R.; Meshii, M.

    1992-12-01

    We present a thermodynamic model of solid-state amorphization based on a generalization of the well-known Lindemann criterion. The original Lindemann criterion proposes that melting occurs when the root-mean-square amplitude of thermal displacement exceeds a critical value. This criterion can be generalized to include solid-state amorphization by taking into account the static displacements. In an effort to verify the generalized melting criterion, we have performed molecular dynamics simulations of radiation-induced amorphization in NiZr, NiZr{sub 2}, NiTi and FeTi using embedded-atom potentials. The average shear elastic constant G was calculated as a function of the total mean-square atomic displacement following random atom-exchanges and introduction of Frenkel pairs. Results provide strong support for the generalized melting criterion.

  8. Universal features of amorphous plasticity

    PubMed Central

    Budrikis, Zoe; Castellanos, David Fernandez; Sandfeld, Stefan; Zaiser, Michael; Zapperi, Stefano

    2017-01-01

    Plastic yielding of amorphous solids occurs by power-law distributed deformation avalanches whose universality is still debated. Experiments and molecular dynamics simulations are hampered by limited statistical samples, and although existing stochastic models give precise exponents, they require strong assumptions about fixed deformation directions, at odds with the statistical isotropy of amorphous materials. Here, we introduce a fully tensorial, stochastic mesoscale model for amorphous plasticity that links the statistical physics of plastic yielding to engineering mechanics. It captures the complex shear patterning observed for a wide variety of deformation modes, as well as the avalanche dynamics of plastic flow. Avalanches are described by universal size exponents and scaling functions, avalanche shapes, and local stability distributions, independent of system dimensionality, boundary and loading conditions, and stress state. Our predictions consistently differ from those of mean-field depinning models, providing evidence that plastic yielding is a distinct type of critical phenomenon. PMID:28671191

  9. Universal features of amorphous plasticity.

    PubMed

    Budrikis, Zoe; Castellanos, David Fernandez; Sandfeld, Stefan; Zaiser, Michael; Zapperi, Stefano

    2017-07-03

    Plastic yielding of amorphous solids occurs by power-law distributed deformation avalanches whose universality is still debated. Experiments and molecular dynamics simulations are hampered by limited statistical samples, and although existing stochastic models give precise exponents, they require strong assumptions about fixed deformation directions, at odds with the statistical isotropy of amorphous materials. Here, we introduce a fully tensorial, stochastic mesoscale model for amorphous plasticity that links the statistical physics of plastic yielding to engineering mechanics. It captures the complex shear patterning observed for a wide variety of deformation modes, as well as the avalanche dynamics of plastic flow. Avalanches are described by universal size exponents and scaling functions, avalanche shapes, and local stability distributions, independent of system dimensionality, boundary and loading conditions, and stress state. Our predictions consistently differ from those of mean-field depinning models, providing evidence that plastic yielding is a distinct type of critical phenomenon.

  10. Carbon limitation patterns in buried and open urban streams

    EPA Science Inventory

    Urban streams alternate between darkened buried segments dominated by heterotrophic processes and lighted open segments dominated by autotrophic processes. We hypothesized that labile carbon leaking from autotrophic cells would reduce heterotrophic carbon limitation in open chan...

  11. Seismic analysis and design of buried pipelines for fault movement

    SciTech Connect

    Wang, L.R.L.; Yeh, Y.H.

    1984-06-01

    Lifelines, such as gas and oil transmission lines and water and sewer pipelines have been damaged heavily in recent earthquakes. The damages of these lifelines have caused major, catastrophic disruption of essential service to human needs. Large abrupt differential ground movements resulted at an active fault present one of the most severe earthquake effects on a buried pipeline system. Although simplified analysis procedures for buried pipelines across strike-slip fault zones causing tensive failure of the pipeline (called tensile strike-slip fault) have been proposed, the results are not accurate enough because of several assumptions involved. Furthermore, several other important failure mechanisms and parameters have not been investigated. This paper is to present the analysis procedures and results for buried pipeline subjected to tensile strike-slip fault after modifying some of the assumptions used previously. Based on the analysis results, this paper also discusses the design criteria for buried pipelines subjected to various fault movements.

  12. Carbon limitation patterns in buried and open urban streams

    EPA Science Inventory

    Urban streams alternate between darkened buried segments dominated by heterotrophic processes and lighted open segments dominated by autotrophic processes. We hypothesized that labile carbon leaking from autotrophic cells would reduce heterotrophic carbon limitation in open chan...

  13. Record Blizzard Buries U.S. Northeast

    NASA Technical Reports Server (NTRS)

    2005-01-01

    After two days of blustery weather, the skies cleared over Massachusetts on January 24, 2005. Along with other northeastern U.S. states, Massachusetts was slammed with a powerful blizzard on January 22 and 23 that shut down travel and businesses and extinguished power. The storm brought record snow to many places, but Massachusetts topped the list. The cities of Salem and Plymouth were buried in 38 inches (96.5 cm) of snow, and strong winds created drifts up to seven feet (2 meters) high, according to the National Weather Service. For Boston, the storm was the fifth worst blizzard to hit the city since 1892, dumping 22.5 inches (57 cm) of snow in two days. Of that, 13.4 inches (34 cm) fell on January 23' the most snow to fall on the city in a single day since records began. These totals gave Boston nearly twice its average snowfall for January (the average is 13.5 inches, 34.3 cm), and over half its annual average snow of 41.8 inches (106 cm). This Moderate Resolution Imaging Spectroradiometer (MODIS) image, taken on January 24 by NASA's Terra satellite, shows the effects of the storm on Massachusetts and its southern neighbors, Connecticut (left) and Rhode Island (right). New York's Long Island is in the lower left corner of the image. The entire region is coated with snow, though clouds obscure the ground on the left side of the image. The snow was accompanied by powerful hurricane-force winds that helped create white-out conditions and large snowdrifts. The wind also churned ocean waters around Cape Cod, leaving them milky with sediment. NASA image courtesy the MODIS Rapid Response Team at NASA GSFC.

  14. Airblast environments from buried HE charges

    SciTech Connect

    Reichenbach, H.; Behrens, K.; Kuhl, A.

    1993-01-01

    Laboratory experiments were conducted to measure the airblast environment generated by the detonation of buried HE charges. Spherical 0.5-g charges of Nitropenta were used as the HE source. Three ground materials were used: (1) a porous, crushable grout (YTONG, {rho} = 0.4 g/cm{sup 3}); (2) a water-saturated grout ({rho} {approx_equal} 0.7 g/Cm{sup 3}) to investigate the effects of density increase; and (3) a clay-loam material ({rho} {approx_equal} 1.8 g/cm{sup 3}) to simulate some of the previous field tests conducted in clay. Diagnostics consisted of 13 flush-mounted pressure gauges, and single-frame schlieren photography. A special shock isolation system was used to eliminate the acceleration effects on the gauges that were induced by the cratering process. Analysis of the pressure measurements resulted in an experimental definition of the airblast environment as a function of ground range (GR) and depth-of-burst (DOB). Synthesis of these results allowed one to construct airblast DOB curves, similar to the airblast height-of-burst curves that we published previously for Nitropenta charges. Variables analyzed were: peak pressure, arrival time, positive phase duration and impulse. As in field tests, we found that the airblast waveforms changed character with increasing DOB. The crater characteristics (e.a., depth, radius and volume) were also measured. The cube-root-scaled crater volume was in qualitative agreement with data from field tests (e.g., charge weights up to 10{sup 4} lbs.). Since the present scaled results compare well with data from large-scale HE tests, we conclude that the present experimental technique provides a useful tool for parametric investigations of explosion effects in the laboratory.

  15. Decomposition of forest products buried in landfills

    SciTech Connect

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  16. Decomposition of forest products buried in landfills.

    PubMed

    Wang, Xiaoming; Padgett, Jennifer M; Powell, John S; Barlaz, Morton A

    2013-11-01

    The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C+H) loss of up to 38%, while loss for the other wood types was 0-10% in most samples. The C+H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27gOCg(-1) dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported.

  17. Record Blizzard Buries U.S. Northeast

    NASA Technical Reports Server (NTRS)

    2005-01-01

    After two days of blustery weather, the skies cleared over Massachusetts on January 24, 2005. Along with other northeastern U.S. states, Massachusetts was slammed with a powerful blizzard on January 22 and 23 that shut down travel and businesses and extinguished power. The storm brought record snow to many places, but Massachusetts topped the list. The cities of Salem and Plymouth were buried in 38 inches (96.5 cm) of snow, and strong winds created drifts up to seven feet (2 meters) high, according to the National Weather Service. For Boston, the storm was the fifth worst blizzard to hit the city since 1892, dumping 22.5 inches (57 cm) of snow in two days. Of that, 13.4 inches (34 cm) fell on January 23' the most snow to fall on the city in a single day since records began. These totals gave Boston nearly twice its average snowfall for January (the average is 13.5 inches, 34.3 cm), and over half its annual average snow of 41.8 inches (106 cm). This Moderate Resolution Imaging Spectroradiometer (MODIS) image, taken on January 24 by NASA's Terra satellite, shows the effects of the storm on Massachusetts and its southern neighbors, Connecticut (left) and Rhode Island (right). New York's Long Island is in the lower left corner of the image. The entire region is coated with snow, though clouds obscure the ground on the left side of the image. The snow was accompanied by powerful hurricane-force winds that helped create white-out conditions and large snowdrifts. The wind also churned ocean waters around Cape Cod, leaving them milky with sediment. NASA image courtesy the MODIS Rapid Response Team at NASA GSFC.

  18. Compact Buried Ducts in a Hot-Humid Climate House

    SciTech Connect

    Mallay, D.

    2016-01-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval.

  19. Data fusion for the detection of buried land mines

    SciTech Connect

    Clark, G.A.; Sengupta, S.K.; Schaich, P.C.; Sherwood, R.J.; Buhl, M.R.; Hernandez, J.E.; Kane, R.J.; Barth, M.J.; Fields, D.J.; Carter, M.R.

    1993-10-01

    The authors conducted experiments to demonstrate the enhanced delectability of buried land mines using sensor fusion techniques. Multiple sensors, including imagery, infrared imagery, and ground penetrating radar, have been used to acquire data on a number of buried mines and mine surrogates. The authors present this data along with a discussion of the application of sensor fusion techniques for this particular detection problem. The authors describe the data fusion architecture and discuss some relevant results of these classification methods.

  20. Centrifugal and Analytical Modeling of a Buried Flexible Culvert.

    DTIC Science & Technology

    1985-10-31

    INTRODUCTION 1.1 Introduction The complex problem of the reaction of a buried culvert to loads applied at the ground surface is studied using physical ...buckling (Allgood et al., 1968, Luscher 1966, Whitman et al., 1962). Since the failure mode of the culvert is controlled by the geometry and the...occur before the buckling failure in this case. Larsen (1977) analyzed the earth pressure around the buried concrete pipe by testing scale physical

  1. Buried and Encapsulated Ducts, Jacksonville, Florida (Fact Sheet)

    SciTech Connect

    None, None

    2013-11-01

    Ductwork installed in unconditioned attics can significantly increase the overall heating and cooling costs of residential buildings. In fact, estimated duct thermal losses for single-family residential buildings with ductwork installed in unconditioned attics range from 10% to 45%. In a study of three single-story houses in Florida, the Building America research team Consortium for Advanced Residential Buildings (CARB) investigated the strategy of using buried and/or encapsulated ducts (BED) to reduce duct thermal losses in existing homes. The BED strategy consists of burying ducts in loose-fill insulation and/or encapsulating them in closed cell polyurethane spray foam (ccSPF) insulation. There are three possible combinations of BED strategies: (1) buried ducts; (2) encapsulated ducts (with ccSPF); and (3) buried and encapsulated ducts. The best solution for each situation depends on the climate, age of the house, and the configuration of the HVAC system and attic. For new construction projects, the team recommends that ducts be both encapsulated and buried as the minimal planning and costs required for this will yield optimal energy savings. The encapsulated/buried duct strategy, which utilizes ccSPF to address condensation concerns, is an approach that was developed specifically for humid climates.

  2. Ultrastable Amorphous Sb2Se3 Film.

    PubMed

    Zhang, Kai; Li, Yang; Huang, Quan; Wang, Bihan; Zheng, Xuerong; Ren, Yang; Yang, Wenge

    2017-08-31

    Increasing the thermostability of amorphous materials has been a long journey to improve their properties. The metastable nature of chalcogenide glasses limits their practical applications as an amorphous semiconductor in photovoltaic performance. Here, we report the formation and physical properties of ultrastable amorphous Sb2Se3 with an enhanced thermal stability compared to ordinary amorphous Sb2Se3 (ΔTx= 17 K). By in situ high temperature-high energy synchrotron X-ray diffraction, the difference in structure relaxation between ordinary and ultrastable amorphous Sb2Se3 was manifested by local structure evolution. Ultrastable amorphous Sb2Se3 showed the smallest surface roughness and highest refractive index, the mechanism behind was further discussed in terms of fast molecular mobility and molecular orientation during vapor deposition. Formation of ultrastable amorphous Sb2Se3 demonstrated a promising avenue to obtain novel functional amorphous semiconductor with modulated structure and property.

  3. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  4. Imprinting bulk amorphous alloy at room temperature

    PubMed Central

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  5. Amorphous rare earth magnet powders

    SciTech Connect

    Sellers, C.H.; Branagan, D.J.; Hyde, T.A.; Lewis, L.H.; Panchanathan, V.

    1996-08-01

    Gas atomization (GA) processing does not generally have a high enough cooling rate to produce the initial amorphous microstructure needed to obtain optimal magnetic properties in RE{sub 2}Fe{sub 14}B alloys. Phase separation and an underquenched microstructure result from detrimental {alpha}-Fe precipitation, and the resulting magnetic domain structure is very coarse. Additionally, there is a dramatic dependence of the magnetic properties on the cooling rate (and therefore the particle size) and the powders can be sensitive to environmental degradation. Alloy compositions designed just for GA (as opposed to melt spinning) are necessary to produce an amorphous structure that can be crystallized to result in a fine structure with magnetic properties which are independent of particle size. The addition of titanium and carbon to the melt has been found to change the solidification process sufficiently to result in an ``overquenched`` state in which most of the powder size fractions have an amorphous component. Crystallization with a brief heat treatment produces a structure which has improved magnetic properties, in part due to the ability to use compositions with higher Fe contents without {alpha}-Fe precipitation. Results from magnetometry, magnetic force microscopy, and x-ray analyses will be used to contrast the microstructure, domain structure, and magnetic properties of this new generation of amorphous powders with their multiphase predecessors.

  6. Amorphous titanium-oxide supercapacitors

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-10-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

  7. Model for amorphous aggregation processes

    NASA Astrophysics Data System (ADS)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  8. Optical absorption in amorphous silicon

    SciTech Connect

    O`Leary, S.K.; Zukotynski, S.; Perz, J.M.; Sidhu, L.S.

    1996-12-31

    The role that disorder plays in shaping the form of the optical absorption spectrum of hydrogenated amorphous silicon is investigated. Disorder leads to a redistribution of states, which both reduces the Tauc gap and broadens the absorption tail. The observed relationship between the Tauc gap and the breadth of the absorption tail is thus explained.

  9. Amorphous titanium-oxide supercapacitors

    PubMed Central

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-01-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system. PMID:27767103

  10. Buried Alive in the Coronal Graveyard

    NASA Astrophysics Data System (ADS)

    Ayres, T. R.; Brown, A.; Harper, G. M.

    2002-12-01

    We have used the highly sensitive ``solar-blind'' Chandra High Resolution Camera (HRC-I) to search for 0.2--10 keV coronal X-ray emission from the key ``noncoronal'' red giants Arcturus (α Boo: K1 III) and Aldebaran (α Tauri: K5 III). Our program follows up previous detections of subcoronal (T ~ 105 K) emission lines, such as C 4 λ 1548, by HST STIS, and its predecessor GHRS. The two deep (19 ks) HRC-I pointings failed to detect either red giant, however, with 3 σ upper limits of 1x 10-4 cnts s-1 and 2x 10-4 cnts s-1 for Arcturus and Aldebaran, respectively. The corresponding 0.2--2.0 keV L X/L bol levels are a factor of a thousand lower than the Sun (itself already an inconspicuous coronal object), establishing new limits of coronal futility among late-type stars. At the same time, STIS far-ultraviolet spectra suggest the presence of a ``cool absorber'' in the red giant atmosphere capable of selectively extinguishing the subcoronal spectrum shortward of ~ 1500 Å. The cool absorber must lie beneath the extensive chromospheric (T ~ 7000 K) envelope, because the chromospheric lines lack absorption signatures from the cool layer. As a result, the hot-line structures must be doubly buried under a large column of neutral hydrogen, undoubtedly smothering any soft X-ray emission that might be present. If small-scale magnetic active regions indeed exist in the lower atmospheres of red giants like Arcturus and Aldebaran, they might in some way be responsible for initiating and sustaining the cool outflows of such stars. The source of the near surface magnetism could be analogous to that of the small-scale ephemeral bipolar regions seen ubiquitously on the Sun throughout the sunspot cycle, and thought to be of direct convective origin. [-3mm] This work was supported by Chandra grant G02-3014X and HST grant GO-09273.01--A to the University of Colorado.

  11. Buried Alive in the Coronal Graveyard

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.; Brown, Alexander; Harper, Graham M.

    2003-11-01

    We have used the High Resolution Camera (HRC-I) of the Chandra X-Ray Observatory to search for coronal (T~106 K) emission from the archetype ``noncoronal'' red giants Arcturus (α Bootis=HD 124897, K1 III) and Aldebaran (α Tauri=HD 29139, K5 III). Our program follows up previous detections of ultraviolet coronal proxies such as C IV λ1548 (T~1×105 K) and O VI λ1031 (T~3×105 K). The deep (~19 ks) HRC-I pointings obtained a tentative 3 σ detection of Arcturus, with fX(0.2-2keV)=1.0+1.8-0.8×10-15 ergs cm-2 s-1 (95% confidence limits [CLs]), but failed to record Aldebaran, with an upper limit of <~1.5×10-15 ergs cm-2 s-1 (also at 95% CL). The corresponding LX/Lbol ratios are a factor of ten thousand less than the Sun, a low-activity coronal dwarf. At the same time, Hubble Space Telescope Imaging Spectrograph far-ultraviolet spectra suggest the presence of a ``cool absorber,'' probably near the base of the red giant chromosphere, imprinting discrete low-excitation absorptions on top of highly ionized features such as Si IV λ1393. The hot emission zones thus are at least partially buried under a large column of chromospheric material, which would severely attenuate any soft X-rays that might be emitted. The submerged hot structures presumably are magnetic because of their high temperatures and broad C IV profiles (FWHM~130 km s-1). Perhaps these structures are analogous to small-scale ephemeral bipolar regions seen ubiquitously on the Sun throughout the sunspot cycle and thought to be of direct convective origin. If small-scale magnetic fields indeed are present in the lower atmospheres of red giants such as Arcturus and Aldebaran, they might play a role in initiating the cool winds of such stars, perhaps through a mechanism similar to solar spicules.

  12. Buried object remote detection technology for law enforcement

    NASA Astrophysics Data System (ADS)

    del Grande, Nancy K.; Clark, Gregory A.; Durbin, Philip F.; Fields, David J.; Hernandez, Jose E.; Sherwood, Robert J.

    1991-08-01

    A precise airborne temperature-sensing technology to detect buried objects for use by law enforcement is developed. Demonstrations have imaged the sites of buried foundations, walls and trenches; mapped underground waterways and aquifers; and been used to locate underground military objects. The methodology is incorporated in a commercially available, high signal-to-noise, dual-band infrared scanner with real-time, 12-bit digital image processing software and display. The method creates color-coded images based on surface temperature variations of 0.2 degree(s)C. Unlike other less-sensitive methods, it maps true (corrected) temperatures by removing the (decoupled) surface emissivity mask equivalent to 1 degree(s)C or 2 degree(s)C; this mask hinders interpretation of apparent (blackbody) temperatures. Once removed, it is possible to identify surface temperature patterns from small diffusivity changes at buried object sites which heat and cool differently from their surroundings. Objects made of different materials and buried at different depths are identified by their unique spectral, spatial, thermal, temporal, emissivity and diffusivity signatures. The authors have successfully located the sites of buried (inert) simulated land mines 0.1 to 0.2 m deep; sod-covered rock pathways alongside dry ditches, deeper than 0.2 m; pavement covered burial trenches and cemetery structures as deep as 0.8 m; and aquifers more than 6 m and less than 60 m deep. The technology could be adapted for drug interdiction and pollution control. For the former, buried tunnels, underground structures built beneath typical surface structures, roof-tops disguised by jungle canopies, and covered containers used for contraband would be located. For the latter, buried waste containers, sludge migration pathways from faulty containers, and the juxtaposition of groundwater channels, if present, nearby, would be depicted. The precise airborne temperature-sensing technology has a promising potential

  13. Buried Quaternary Valleys In NW Europe - Aquifers and Drilling Hazards

    NASA Astrophysics Data System (ADS)

    Huuse, M.; Lykke-Andersen, H.; Piotrowski, J.

    Buried Quaternary valleys are extremely widespread in the formerly glaciated, low- land areas of NW Europe (Huuse &Lykke-Andersen 2000, Fig. 4). The valleys may be several hundred metres deep, some kilometres across and few to several tens of kilometres long. Most of the deep valleys have irregular length profiles with sills and basins, unlike standard subaerial river systems. We interpret these as overdeepened valleys, formed mainly by subglacial meltwater erosion. Buried valleys located on- shore often provide sheltered reservoirs of clean groundwater, and much attention is presently focused on locating onshore valleys and quantifying their potential as groundwater aquifers. In nearshore areas, buried valleys may be a risk factor by pro- viding pathways of salt-water intrusion of onshore groundwater aquifers. Far offshore, buried valleys are located in the shallow subsurface above the prolific oil and gas fields of the central North Sea. Here, the valleys pose a risk for drilling operations by hosting shallow gas and potentially unstable sediments. The central North Sea is now largely covered by 3D seismic data, which often image the buried valleys in a level of de- tail much greater than that available onshore. Hence offshore valleys imaged by 3D seismic data may be used as analogues for groundwater reservoirs onshore NW Eu- rope. Here, we present examples of buried valleys from onshore, nearshore and far offshore locations, to illustrate how genetically and morphologically identical valleys may benefit or hamper the exploitation of subsurface accummulations of groundwater and hydrocarbons. Huuse, M. &Lykke-Andersen, H. 2000. Buried Quaternary valleys in the eastern Dan- ish North Sea: morphology and origin. Quaternary Science Reviews 19, 1233-1253.

  14. Flexible amorphous metal films with high stability

    NASA Astrophysics Data System (ADS)

    Liu, M.; Cao, C. R.; Lu, Y. M.; Wang, W. H.; Bai, H. Y.

    2017-01-01

    We report the formation of amorphous Cu50Zr50 films with a large-area of more than 100 cm2. The films were fabricated by ion beam assisted deposition with a slow deposition rate at moderate temperature. The amorphous films have markedly enhanced thermal stability, excellent flexibility, and high reflectivity with atomic level smoothness. The multifunctional properties of the amorphous films are favorites in the promising applications of smart skin or wearable devices. The method of preparing highly stable amorphous metal films by tuning the deposition rate instead of deposition temperature could pave a way for exploring amorphous metal films with unique properties.

  15. Experimental investigation of buried tritium in plant and animal tissues

    SciTech Connect

    Kim, S. B.; Workman, W. J. G.; Davis, P. A.

    2008-07-15

    Buried exchangeable tritium appears as part of organically bound tritium (OBT) in the traditional experimental determination of OBT. Since buried tritium quickly exchanges with hydrogen atoms in the body following ingestion, assuming that it is part of OBT rather than part of tritiated water (HTO) could result in a significant overestimate of the ingestion dose. This paper documents an experimental investigation into the existence, amount and significance of buried tritium in plant and fish samples. OBT concentrations in the samples were determined in the traditional way and also following denaturing with five chemical solutions that break down large molecules and expose buried tritium to exchange with free hydrogen atoms. A comparison of the OBT concentrations before and after denaturing, together with the concentration of HTO in the supernatant obtained after denaturing, suggests that buried OBT may exist but makes up less than 5% of the OBT concentration in plants and at most 20% of the OBT concentration in fish. The effects of rinse time and rinse water volumes were investigated to optimize the removal of exchangeable OBT from the samples. (authors)

  16. Local flexibility facilitates oxidization of buried methionine residues.

    PubMed

    Xu, Kuiran; Uversky, Vladimir N; Xue, Bin

    2012-06-01

    In proteins, all amino acid residues are susceptible to oxidation by various reactive oxygen species (ROS), with methionine and cysteine residues being particularly sensitive to oxidation. Methionine oxidation is known to lead to destabilization and inactivation of proteins, and oxidatively modified proteins can accumulate during aging, oxidative stress, and in various age-related diseases. Although the efficiency of a given methionine oxidation can depend on its solvent accessibility (evaluated from a protein structure as the accessible surface area of the corresponding methionine residue), many experimental results on oxidation rate and oxidation sites cannot be unequivocally explained by the methionine solvent accessible surface area alone. In order to explore other possible mechanisms, we analyzed a set of seventy-one oxidized methionines contained in thirty-one proteins by various bioinformatics tools. In which, 41% of the methionines are exposed, 15% are buried but with various degree of flexibility, and the rest 44% are buried and structured. Buried but highly flexible methionines can be oxidized. Buried and less flexible methionines can acquire additional local structural flexibility from flanking regions to facilitate the oxidation. Oxidation of buried and structured methionine can also be promoted by the oxidation of neighboring methionine that is more exposed and/or flexible. Our data are consistent with the hypothesis that protein structural flexibility represents another important factor favoring the oxidation process.

  17. Mapping buried nanostructures using subsurface ultrasonic resonance force microscopy.

    PubMed

    van Es, Maarten H; Mohtashami, Abbas; Thijssen, Rutger M T; Piras, Daniele; van Neer, Paul L M J; Sadeghian, Hamed

    2017-09-23

    Nondestructive subsurface nanoimaging of buried nanostructures is considered to be extremely challenging and is essential for the reliable manufacturing of nanotechnology products such as three-dimensional (3D) transistors, 3D NAND memory, and future quantum electronics. In scanning probe microscopy (SPM), a microcantilever with a sharp tip can measure the properties of a surface with nanometer resolution. SPM combined with ultrasound excitation, known as ultrasound SPM, has shown the capability to image buried nanoscale features. In this paper, the development of a modified type of ultrasound SPM called subsurface ultrasonic resonance force microscopy (SSURFM) is reported. The capability and versatility of this method is demonstrated by the subsurface imaging of various samples including rigid structures buried under a soft matrix (aluminum under a polymer), rigid structures buried under multiple layers (aluminum under a polymer and titanium layer), and rigid structures under a rigid matrix (aluminum under silicon oxide). Furthermore, tuning and optimization of the image contrast are reported. The experimental results provide possible new industrial metrology and inspection solutions for nanostructures buried below the surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Topological Insulators in Amorphous Systems

    NASA Astrophysics Data System (ADS)

    Agarwala, Adhip; Shenoy, Vijay B.

    2017-06-01

    Much of the current understanding of topological insulators, which informs the experimental search for topological materials and systems, is based on crystalline band theory, where local electronic degrees of freedom at different crystal sites hybridize with each other in ways that produce nontrivial topology. Here we provide a novel theoretical demonstration of realizing topological phases in amorphous systems, as exemplified by a set of sites randomly located in space. We show this by constructing hopping models on such random lattices whose gapped ground states are shown to possess nontrivial topological nature (characterized by Bott indices) that manifests as quantized conductances in systems with a boundary. Our study adds a new dimension, beyond crystalline solids, to the search for topological systems by pointing to the promising possibilities in amorphous solids and other engineered random systems.

  19. Topological Insulators in Amorphous Systems.

    PubMed

    Agarwala, Adhip; Shenoy, Vijay B

    2017-06-09

    Much of the current understanding of topological insulators, which informs the experimental search for topological materials and systems, is based on crystalline band theory, where local electronic degrees of freedom at different crystal sites hybridize with each other in ways that produce nontrivial topology. Here we provide a novel theoretical demonstration of realizing topological phases in amorphous systems, as exemplified by a set of sites randomly located in space. We show this by constructing hopping models on such random lattices whose gapped ground states are shown to possess nontrivial topological nature (characterized by Bott indices) that manifests as quantized conductances in systems with a boundary. Our study adds a new dimension, beyond crystalline solids, to the search for topological systems by pointing to the promising possibilities in amorphous solids and other engineered random systems.

  20. Autonomous robotic platforms for locating radio sources buried under rubble

    NASA Astrophysics Data System (ADS)

    Tasu, A. S.; Anchidin, L.; Tamas, R.; Paun, M.; Danisor, A.; Petrescu, T.

    2016-12-01

    This paper deals with the use of autonomous robotic platforms able to locate radio signal sources such as mobile phones, buried under collapsed buildings as a result of earthquakes, natural disasters, terrorism, war, etc. This technique relies on averaging position data resulting from a propagation model implemented on the platform and the data acquired by robotic platforms at the disaster site. That allows us to calculate the approximate position of radio sources buried under the rubble. Based on measurements, a radio map of the disaster site is made, very useful for locating victims and for guiding specific rubble lifting machinery, by assuming that there is a victim next to a mobile device detected by the robotic platform; by knowing the approximate position, the lifting machinery does not risk to further hurt the victims. Moreover, by knowing the positions of the victims, the reaction time is decreased, and the chances of survival for the victims buried under the rubble, are obviously increased.

  1. Tabernaemontana divaricata leaves extract exacerbate burying behavior in mice

    PubMed Central

    Chanchal, Raj; Balasubramaniam, Arumugam; Navin, Raj; Nadeem, Sayyed

    2015-01-01

    Objective: Tabernaemontana divaricata (TD) from Apocynaceae family offers the traditional folklore medicinal benefits such as an anti-epileptic, anti-mania, brain tonic, and anti-oxidant. The aim of the present study was to evaluate the effect of ethanolic extract of TD leaves on burying behavior in mice. Materials and Methods: Mice were treated with oral administration (p.o.) of ethanolic extract of TD (100, 200, and 300 mg/kg). Fluoxetine (FLX, a selective serotonin reuptake inhibitor) was used as a reference drug. Obsessive-compulsive behavior was evaluated using marble-burying apparatus. Results: TD at doses of 100, 200, and 300 mg/kg dose-dependently inhibited the obsessive and compulsive behavior. The similar results were obtained from 5, 10, and 20 mg/kg of FLX. TD and FLX did not affect motor activity. Conclusion: The results indicated that TD and FLX produced similar inhibitory effects on marble-burying behavior. PMID:26445709

  2. The gravity field of topography buried by sediments

    NASA Technical Reports Server (NTRS)

    Sandwell, D. T.; Liu, C. S.

    1985-01-01

    The gravity field over topography in the northern Indian Ocean that was completely buried by sediments of the Bengal Fan was investigated to understand the effect of sedimentation on the continental gravity field. An isopach map made from the seismic reflection and refraction in the Bay of Bengal shows two prominent N-S trending features in the basement topography. The northernmost portion of the Ninetyeast Ridge is totally buried by sediments north of 10 deg N. The other buried ridge trends roughly N-S for 1400 km at 85 deg E to the latitude of Sri Lanka and then curves toward the west. It has basement relief up to 6 km. Two free air gravity anomaly profiles across the region show a strong gravity low over the 85 deg E ridge, while the Ninetyeast Ridge shows a gravity high.

  3. Buried waste integrated demonstration FY 94 deployment plan

    SciTech Connect

    Hyde, R.A.; Walker, S.; Garcia, M.M.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document.

  4. End effectors and attachments for buried waste excavation equipment

    SciTech Connect

    King, R.H.

    1993-09-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. Their efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER&WM) Department`s needs and objectives. The present focus of BWID is to support retrieval and ex-situ treatment configuration options. Future activities will explore and support containment, and stabilization efforts in addition to the retrieval/ex situ treatment options. This report presents a literature search on the state-of-the-art in end effectors and attachments in support of excavator of buried transuranic waste. Included in the report are excavator platforms and a discussion of the various attachments. Also included is it list of vendors and specifications.

  5. Prediction of buried helices in multispan alpha helical membrane proteins.

    PubMed

    Adamian, Larisa; Liang, Jie

    2006-04-01

    Analysis of a database of structures of membrane proteins shows that membrane proteins composed of 10 or more transmembrane (TM) helices often contain buried helices that are inaccessible to phospholipids. We introduce a method for identifying TM helices that are least phospholipid accessible and for prediction of fully buried TM helices in membrane proteins from sequence information alone. Our method is based on the calculation of residue lipophilicity and evolutionary conservation. Given that the number of buried helices in a membrane protein is known, our method achieves an accuracy of 78% and a Matthew's correlation coefficient of 0.68. A server for this tool (RANTS) is available online at http://gila.bioengr.uic.edu/lab/.

  6. Buried wire gage for wall shear stress measurements

    NASA Technical Reports Server (NTRS)

    Murthy, V. S.; Rose, W. C.

    1978-01-01

    A buried wire gage for measuring wall shear stress in fluid flow was studied and further developed. Several methods of making this relatively new type of gage were examined to arrive at a successful technique that is well-suited for wind-tunnel testing. A series of measurements was made to demonstrate the adequacy of a two-point calibration procedure for these gages. The buried wire gage is also demonstrated to be ideally suited for quantitative measurement of wall shear stress in wind-tunnel testing.

  7. Buried Waste Integrated Demonstration commercialization actions plans. Volume 1

    SciTech Connect

    Kaupanger, R.M.; Glore, D.

    1994-04-01

    The Buried Waste Integrated Demonstration (BWID) is sponsored by US Department of Energy (DOE) Office of Technology Development. BWID supports the development and demonstration of a suite of technologies that when integrated with commercially available baseline technologies form a comprehensive system for the effective and efficient remediation of buried waste throughout the DOE complex. BWID evaluates, validates, and demonstrates technologies and transfers this information throughout DOE and private industry to support DOE. remediation planning and implementation activities. This report documents commercialization action plans for five technologies with near-term commercialization/ implementation potential as well as provides a status of commercial and academic partners for each technology.

  8. Gnathostoma infection in Nakhon Nayok and Prachin Buri, Central Thailand.

    PubMed

    Rojekittikhun, Wichit; Chaiyasith, Tossapon; Nuamtanong, Supaporn; Pubampen, Somchit; Maipanich, Wanna; Tungtrongchitr, Rungsunn

    2002-09-01

    Gnathostoma infection in Nakhon Nayok and Prachin Buri Provinces, Central Thailand, was investigated. The prevalence and intensity of infection of swamp eels were determined; dog fecal samples and fresh-water copepods were examined for evidence of infection. The overall prevalence of eel infection was 38.1% (117/307) in Nakhon Nayok and 24.0% (74/308) in Prachin Buri--the former rate being significantly higher than the latter. Most of the positive Nalkhon Nayok eels (53.8%) harbored only 1-9 larvae; only one eel bore more than 50 larvae. In Prachin Buri, 67.6% of the positive eels harbored 1-9 larvae; again, only one eel bore more than 50 larvae. The mean number of 11.0 +/- 10.4 larvae/eel in Nakhon Nayok was not significantly different from that of Prachin Buri (9.3 +/- 11.4). A total of 1,292 gnathostome larvae were recovered from 307 eels in Nakhon Nayok. Of these, 52.3% had accumulated in the liver and 47.7% had spread throughout the muscles. In eels from Prachin Buri, 50.6% and 49.4% of the total of 688 larvae (from 308 eels) were found in the liver and muscles, respectively. The larvae preferred encysting in ventral of muscles rather than dorsal part; they preferred the middle portion to the anterior and posterior portions. The average length of gnathostome larvae recovered from Nakhon Nayok eels was 4.0 +/- 0.5 mm (range 2.5-5.1 mm) and the average body width was 0.40 +/- 0.05 mm (range 0.29-0.51 mm). Those from eels in Prachin Buri were 3.9 +/- 0.5 mm (range 2.2-5.1 mm) and 0.34 +/- 0.05 mm (range 0.20-0.48 mm), respectively. The mean body length and width of the larvae from eels in Nakhon Nayok were significantly greater than those of the larvae from eels in Prachin Buri. In Ban Phrao, Nakhon Nayok, none of the first 44 fecal specimens examined was positive. Of the second (68) and the third (70) specimens, one (1.5%) and two (2.9%) samples were positive. However, six months after the third fecal collection, no eggs were found. In Tha Ngam, Prachin Buri, no

  9. Guided wave attenuation in coated pipes buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.

    2016-02-01

    Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8" pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm-1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm-1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.

  10. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance

    NASA Astrophysics Data System (ADS)

    Desta, Derese; Ram, Sanjay K.; Rizzoli, Rita; Bellettato, Michele; Summonte, Caterina; Jeppesen, Bjarke R.; Jensen, Pia B.; Tsao, Yao-Chung; Wiggers, Hartmut; Pereira, Rui N.; Balling, Peter; Larsen, Arne Nylandsted

    2016-06-01

    A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering. The n-i-p amorphous silicon thin-film solar cells grown on such a back-reflector show enhanced light absorption resulting in improved external quantum efficiency. The benefit of the light trapping in those solar cells is evidenced by the gains in short-circuit current density and efficiency up to 15.6% and 19.3% respectively, compared to the reference flat solar cells. This improvement in the current generation in the solar cells grown on the flat-topped (buried pyramid) back-reflector is observed even when the irradiation takes place at large oblique angles of incidence. Finite-difference-time-domain simulation results of optical absorption and ideal short-circuit current density values agree well with the experimental findings. The proposed approach uses a low cost and simple fabrication technique and allows effective light manipulation by utilizing the optical properties of micro-scale structures and nanoscale constituent particles.

  11. On Structure and Properties of Amorphous Materials

    PubMed Central

    Stachurski, Zbigniew H.

    2011-01-01

    Mechanical, optical, magnetic and electronic properties of amorphous materials hold great promise towards current and emergent technologies. We distinguish at least four categories of amorphous (glassy) materials: (i) metallic; (ii) thin films; (iii) organic and inorganic thermoplastics; and (iv) amorphous permanent networks. Some fundamental questions about the atomic arrangements remain unresolved. This paper focuses on the models of atomic arrangements in amorphous materials. The earliest ideas of Bernal on the structure of liquids were followed by experiments and computer models for the packing of spheres. Modern approach is to carry out computer simulations with prediction that can be tested by experiments. A geometrical concept of an ideal amorphous solid is presented as a novel contribution to the understanding of atomic arrangements in amorphous solids. PMID:28824158

  12. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  13. Identification of buried victims in natural disaster with GPR method

    NASA Astrophysics Data System (ADS)

    Dewi, Rianty Kusuma; Kurniawan, Adityo; Taqwantara, Reyhan Fariz; Iskandar, Farras M.; Naufal, Taufiq Ziyan; Widodo

    2017-07-01

    Indonesian is one of the most seismically active regions in the world and has very complicated plate convergence because there is meeting point of several tectonic plates. The complexity of tectonic features causes a lot of natural disasters such as landslides, tsunamis, earth quakes, volcanoes eruption, etc. Sometimes, the disasters occurs in high populated area and causing thousands to millions of victim been buried under the rumble. Unfortunately, the evacuation still uses the conventional method such using rescue dogs whereas the sensitivity of smell is decrease when the victims buried under the level of the ground. The purpose of this study is to detect buried bodies using GPR method, so it can enhance the effectiveness and the efficiency in looking for the disaster victims. GPR method is used because it can investigate things under the ground. A detailed GPR research has been done in Cikutra Graveyard, Bandung, with corpse buried two week until two years before the research. The radar profiles from this research showed amplitude contras anomaly between the new corpse and the old ones. We obtained the amplitude contras at 1.2-1.4 meters under the surface. This method proved to be effective but still need more attention on undulated surface and non-soil areas.

  14. Disposal of logging slash, thinnings, and brush by burying

    Treesearch

    Harry E Schimke; Ronald H. Dougherty

    1966-01-01

    A feasibility study was conducted on the Stanislaus National Forest to find out if logging slash, thinnings, and brush could be disposed of by burying. This method of slash disposal shows promise and has some distinct advantages over disposal by chipping and burning.

  15. Thickness Map of Buried Carbon-Dioxide Deposit

    NASA Image and Video Library

    2011-04-21

    NASA Mars Reconnaissance Orbiter color-codes thickness estimates in a newly found, buried deposit of frozen carbon dioxide, dry ice, near the south pole of Mars contains ~30 times more carbon dioxide than previously estimated to be frozen near the pole.

  16. Melter development needs assessment for RWMC buried wastes

    SciTech Connect

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form (Iron-Enriched Basalt (IEB) glass/ceramic). The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended.

  17. Melter development needs assessment for RWMC buried wastes

    SciTech Connect

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form [Iron-Enriched Basalt (IEB) glass/ceramic]. The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended.

  18. Model Development to Support Analysis of Acoustic Buried Target Data

    DTIC Science & Technology

    2007-09-30

    matrix scattering solution for a buried elongated scatterer is in progress. The spheroidal-basis T - matrix code was also exercised to compare its...superspheroid, its shape approaches that of a flat-endcapped cylinder. However, even with the use of spheroidal basis functions, stability of the T - matrix code is

  19. System design for buried high-pressure/high-temperature pipelines

    SciTech Connect

    1998-06-01

    A pipeline expands or contracts when temperatures or pressures vary from the conditions at the time the pipeline was installed. Buried pipelines operating at high temperatures and pressures experience extreme compressive loads. Because radial expansion is limited by soil restraint, buried pipelines expand axially. High axial forces combined with imperfections in the seabed may overstress the pipeline or result in upheaval buckling. Methods to control expansion and upheaval buckling were investigated for the design of a buried high-pressure/high temperature (HP/HT) sour-gas flowline in Mobile Bay, Alabama. After investigating conventional and unconventional methods, the decision was made to use expansion loops over the length of the pipeline to protect the risers and reduce axial force in the middle of the pipeline. Expansion loops and doglegs act as springs to absorb pipeline expansion. Methods were investigated to prevent soil from accumulating around the buried expansion loops. Commercially available concrete dog houses used to protect pipelines and expansion loops from dropped objects were not suitable for burial, and fabrication of custom concrete housing was expensive. Fabrication of a steel enclosure was the solution chosen. A mathematical model based on internal-design guidelines and ultimate soil friction was used to determine placement and size of the expansion loops.

  20. 49 CFR 195.248 - Cover over buried pipeline.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... exempted in this subpart, all pipe must be buried so that it is below the level of cultivation. Except as provided in paragraph (b) of this section, the pipe must be installed so that the cover between the top of the pipe and the ground level, road bed, river bottom, or underwater natural bottom (as determined by...

  1. 49 CFR 195.248 - Cover over buried pipeline.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... exempted in this subpart, all pipe must be buried so that it is below the level of cultivation. Except as provided in paragraph (b) of this section, the pipe must be installed so that the cover between the top of the pipe and the ground level, road bed, river bottom, or underwater natural bottom (as determined by...

  2. 49 CFR 195.248 - Cover over buried pipeline.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... exempted in this subpart, all pipe must be buried so that it is below the level of cultivation. Except as provided in paragraph (b) of this section, the pipe must be installed so that the cover between the top of the pipe and the ground level, road bed, river bottom, or underwater natural bottom (as determined by...

  3. 49 CFR 195.248 - Cover over buried pipeline.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... exempted in this subpart, all pipe must be buried so that it is below the level of cultivation. Except as provided in paragraph (b) of this section, the pipe must be installed so that the cover between the top of the pipe and the ground level, road bed, river bottom, or underwater natural bottom (as determined by...

  4. 49 CFR 195.248 - Cover over buried pipeline.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... exempted in this subpart, all pipe must be buried so that it is below the level of cultivation. Except as provided in paragraph (b) of this section, the pipe must be installed so that the cover between the top of the pipe and the ground level, road bed, river bottom, or underwater natural bottom (as determined by...

  5. High voltage REBULF LDMOS with N + buried layer

    NASA Astrophysics Data System (ADS)

    Duan, Baoxing; Yang, Yintang; Zhang, Bo

    2010-07-01

    A novel concept of REBULF (REduced BULk Field) is proposed for the developing smart power integrated circuit with the thin epitaxy layer. The REBULF LDMOS structure is designed with N + buried layer embedded in the high-resistance substrate. The mechanism of breakdown of the new device is that the high electric field around the drain is reduced by N + buried layer, which causes the redistribution of the bulk electric field in the drift region of the REBULF LDMOS so that the substrate supports more biases. The critical condition of the REBULF technology is analyzed and validated by 2-D MEDICI simulation results, which is the product of the location of N + buried layer and substrate's doping is not more than 1 × 1012 cm -2. The breakdown voltage of REBULF LDMOS is increased by 75% in comparison to the conventional RESURF LDMOS from the simulation results. The experimental results show the high electric field around the drain is reduced as the depletion region spreads to N + buried layer. Although the leakage has increased a little, this increase is not enough to cause the avalanche breakdown.

  6. Buried mine detection using ground-penetrating impulse radar

    SciTech Connect

    Sargis, P.D.

    1995-03-01

    LLNL is developing a side-looking, ground-penetrating impulse radar system that can eventually be mounted on a robotic vehicle or an airborne platform to locate buried land mines. The system is described and results from field experiments are presented.

  7. Mobility of {sup 129}I in buried waste

    SciTech Connect

    Hawkins, J.R.

    1983-06-15

    To quantify the potential for {sup 129}I to migrate from buried waste at the Savannah River Plant (SRP) burial ground, a four year study was made. Spent berl saddles containing 68.7 mCi of {sup 129}I from separations process air filters were buried in a 10 ft. {times} 10 ft. {times} 12 ft. deep lysimeter exposed to normal weather conditions at the burial ground. During the four year study leaching and migration released 48.5 nCi of {sup 129}I from the 68.7 mCi buried in the lysimeter. This represents an average 1.77 {times} 10{sup {minus}7} fraction/year released. The release rate was relatively constant during the four years, varying mainly with seasonal rainfall. Calculations based on these results indicate a release of <3 {mu}Ci/year of {sup 129}I from SRP buried waste to the groundwater. Qualitatively this release and subsequent migration has recently been confirmed by measurement of 0.25 pCi {sup 129}I /1 in water from a well 600{prime} southwest of the burial ground.

  8. Modeling the electromagnetic detection of buried cylindrical conductors

    SciTech Connect

    Moses, R.W.; Kelly, R.E.; Mack, J.M.

    1996-05-01

    The remote detection of buried structures and tunnels is important to the mining, construction, and defense industries. It is often desirable to identify underground power lines, pipe lines, and utility tunnels which have unique electromagnetic cross sections. A computational model for the electromagnetic detection of buried conducting cylinders is described in this paper. The source of electromagnetic radiation is either current injection into the soil or a surface based magnetic dipole with possible extensions to airborne platforms. Frequency ranges from a few kHz to 100 kHz are considered. The target conductor is a cylinder buried directly in the soil or placed inside an insulating pipe. The receiver is a magnetic gradiometer held 1m above the ground, separate from the transmitter. Data are taken widely over the terrain under investigation. Cases where the target conductor is grounded at both ends, one end, or not at all are modeled. The scattered field and field gradient are computed at or above ground level and compared in magnitude and phase with the transmitted signal. Calculated results are compared with experimental tests done to detect a buried wire at Sandia National Laboratory and a tunnel at Yucca Mountain. Essential factors affecting detection performance are frequency optimization, dynamic range of reception and proper data processing.

  9. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Chen, Zhan

    2010-01-01

    This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques. PMID:21113334

  10. Classification System for Individualized Treatment of Adult Buried Penis Syndrome.

    PubMed

    Tausch, Timothy J; Tachibana, Isamu; Siegel, Jordan A; Hoxworth, Ronald; Scott, Jeremy M; Morey, Allen F

    2016-09-01

    The authors present their experience with reconstructive strategies for men with various manifestations of adult buried penis syndrome, and propose a comprehensive anatomical classification system and treatment algorithm based on pathologic changes in the penile skin and involvement of neighboring abdominal and/or scrotal components. The authors reviewed all patients who underwent reconstruction of adult buried penis syndrome at their referral center between 2007 and 2015. Patients were stratified by location and severity of involved anatomical components. Procedures performed, demographics, comorbidities, and clinical outcomes were reviewed. Fifty-six patients underwent reconstruction of buried penis at the authors' center from 2007 to 2015. All procedures began with a ventral penile release. If the uncovered penile skin was determined to be viable, a phalloplasty was performed by anchoring penoscrotal skin to the proximal shaft, and the ventral shaft skin defect was closed with scrotal flaps. In more complex patients with circumferential nonviable penile skin, the penile skin was completely excised and replaced with a split-thickness skin graft. Complex patients with severe abdominal lipodystrophy required adjacent tissue transfer. For cases of genital lymphedema, the procedure involved complete excision of the lymphedematous tissue, and primary closure with or without a split-thickness skin graft, also often involving the scrotum. The authors' overall success rate was 88 percent (49 of 56), defined as resolution of symptoms without the need for additional procedures. Successful correction of adult buried penis often necessitates an interdisciplinary, multimodal approach. Therapeutic, IV.

  11. Modeling Blast Loading on Buried Reinforced Concrete Structures with Zapotec

    DOE PAGES

    Bessette, Greg C.

    2008-01-01

    A coupled Euler-Lagrange solution approach is used to model the response of a buried reinforced concrete structure subjected to a close-in detonation of a high explosive charge. The coupling algorithm is discussed along with a set of benchmark calculations involving detonations in clay and sand.

  12. Detection and characterization of buried lunar craters with GRAIL data

    NASA Astrophysics Data System (ADS)

    Sood, Rohan; Chappaz, Loic; Melosh, Henry J.; Howell, Kathleen C.; Milbury, Colleen; Blair, David M.; Zuber, Maria T.

    2017-06-01

    We used gravity mapping observations from NASA's Gravity Recovery and Interior Laboratory (GRAIL) to detect, characterize and validate the presence of large impact craters buried beneath the lunar maria. In this paper we focus on two prominent anomalies detected in the GRAIL data using the gravity gradiometry technique. Our detection strategy is applied to both free-air and Bouguer gravity field observations to identify gravitational signatures that are similar to those observed over buried craters. The presence of buried craters is further supported by individual analysis of regional free-air gravity anomalies, Bouguer gravity anomaly maps, and forward modeling. Our best candidate, for which we propose the informal name of Earhart Crater, is approximately 200 km in diameter and forms part of the northwestern rim of Lacus Somniorum, The other candidate, for which we propose the informal name of Ashoka Anomaly, is approximately 160 km in diameter and lies completely buried beneath Mare Tranquillitatis. Other large, still unrecognized, craters undoubtedly underlie other portions of the Moon's vast mare lavas.

  13. Detection of concealed and buried chemicals by using multifrequency excitations

    SciTech Connect

    Gao Yaohui; Chen, Meng-Ku; Yang, Chia-En; Chang, Yun-Ching; Yao, Jim; Cheng Jiping; Yin, Stuart; Hui Rongqing; Ruffin, Paul; Brantley, Christina; Edwards, Eugene; Luo, Claire

    2010-08-15

    In this paper, we present a new type of concealed and buried chemical detection system by stimulating and enhancing spectroscopic signatures with multifrequency excitations, which includes a low frequency gradient dc electric field, a high frequency microwave field, and higher frequency infrared (IR) radiations. Each excitation frequency plays a unique role. The microwave, which can penetrate into the underground and/or pass through the dielectric covers with low attenuation, could effectively transform its energy into the concealed and buried chemicals and increases its evaporation rate from the sample source. Subsequently, a gradient dc electric field, generated by a Van De Graaff generator, not only serves as a vapor accelerator for efficiently expediting the transportation process of the vapor release from the concealed and buried chemicals but also acts as a vapor concentrator for increasing the chemical concentrations in the detection area, which enables the trace level chemical detection. Finally, the stimulated and enhanced vapors on the surface are detected by the IR spectroscopic fingerprints. Our theoretical and experimental results demonstrate that more than sixfold increase in detection signal can be achieved by using this proposed technology. The proposed technology can also be used for standoff detection of concealed and buried chemicals by adding the remote IR and/or thermal spectroscopic and imaging detection systems.

  14. Growth and conduction mechanism of As-doped p-type ZnO thin films deposited by MOCVD

    SciTech Connect

    Ma, Y.; Gao, Q.; Wu, G.G.; Li, W.C.; Gao, F.B.; Yin, J.Z.; Zhang, B.L.; Du, G.T.

    2013-03-15

    Highlight: ► P-type As-doped ZnO thin films was fabricated by MOCVD after post-growth annealing. ► The formation mechanism of p-ZnO with high hole concentration above 10{sup 19} cm{sup −3} was elucidated. ► Besides As{sub Zn}–2V{sub Zn} complex, C impurities also played an important role in realizing p-ZnO. ► The formations of As{sub O} and O-C-O complex were partially contributed to the p-type ZnO: As films. - Abstract: As-doped p-type ZnO thin films were fabricated by metal organic chemical vapor deposition (MOCVD) after in situ annealing in a vacuum. The p-type conduction mechanism was suggested by the analysis of X-ray photoelectron spectroscopy and ultraviolet photoemission spectroscopy. It was found that most of the As dopants in p-ZnO thin films formed As{sub Zn}–2V{sub Zn} shallow acceptor complex, simultaneously, carbon impurities also played an important role in realizing p-type conductivity in ZnO. Substitutional carbon on oxygen site created passivated defect bands by combining with Ga atoms due to the donor-acceptor pair Coulomb binding, which shifted the valence-band maximum upwards for ZnO and thus increased the hole concentration.

  15. Amorphous silicon solar cell allowing infrared transmission

    DOEpatents

    Carlson, David E.

    1979-01-01

    An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.

  16. Amorphous-Amorphous Phase Separation in API/Polymer Formulations.

    PubMed

    Luebbert, Christian; Huxoll, Fabian; Sadowski, Gabriele

    2017-02-15

    The long-term stability of pharmaceutical formulations of poorly-soluble drugs in polymers determines their bioavailability and therapeutic applicability. However, these formulations do not only often tend to crystallize during storage, but also tend to undergo unwanted amorphous-amorphous phase separations (APS). Whereas the crystallization behavior of APIs in polymers has been measured and modeled during the last years, the APS phenomenon is still poorly understood. In this study, the crystallization behavior, APS, and glass-transition temperatures formulations of ibuprofen and felodipine in polymeric PLGA excipients exhibiting different ratios of lactic acid and glycolic acid monomers in the PLGA chain were investigated by means of hot-stage microscopy and DSC. APS and recrystallization was observed in ibuprofen/PLGA formulations, while only recrystallization occurred in felodipine/PLGA formulations. Based on a successful modeling of the crystallization behavior using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT), the occurrence of APS was predicted in agreement with experimental findings.

  17. The physics and applications of amorphous semiconductors

    SciTech Connect

    Madan, A.; Shaw, M.P.

    1988-01-01

    This is a treatise on the physics and applications of the new emerging technology of amorphous semiconductors. The authors focus upon research problems such as the optimization of device performance while also presenting the general physics of amorphous semiconductors. The first part of the book covers hydrogenated amorphous silicon type alloys, whose applications include inexpensive solar cells, thin film transistors, image scanners, electrophotography, optical recording, and gas sensors. The second part of the book discusses amorphous chalcogenides, whose applications include electrophotography, switching, and memory elements.

  18. Development of a teleoperated backhoe for buried waste excavation

    SciTech Connect

    Burks, B.L.; Killough, S.M.; Thompson, D.H.

    1992-01-01

    For nearly five decades the United States (US) Department of Energy (DOE) and its predecessor agencies have engaged in broad-based research and development activities as well as nuclear weapons component production. As a by-product of these activities, large quantities of waste materials have been granted. One of the most common approaches used for solid waste storage was to bury waste containers in pits and trenches. With the current emphasis on environmental restoration, DOE now plans to either retrieve much of the legacy of buried waste or stabilize the waste in place via in situ vitrification or other means. Because of the variety of materials that have been buried over the years, the hazards of retrieval are significant if performed using conventional manned operations. The potential hazards, in addition to radiation exposure, include pyrophorics, toxic chemicals, and explosives. Although manifests exist for much of the buried waste, these records are often incomplete compared to today's requirements. Because of the potential hazards and uncertainty about waste contents and container integrity, it is highly desirable to excavate these wastes using remotely operated equipment. In this paper the authors describe the development of a teleoperated military tractor called the Small Emplacement Excavator (SEE). Development of the SEE is being funded jointly by both DOE and the US Army. The DOE sponsor is the Office of Technology Development (OTD) Robotics Program. The US Army sponsor is the Program Manager for Ammunition Logistics, Picatinny Arsenal. The primary interest for DOE is in the application to remote excavation of buried waste, while the primary emphasis for the US Army is in the remote retrieval of unexploded ordnance. Technical requirements for these two tasks are very similar and, therefore, justify a joint development project. 1 ref.

  19. Development of a teleoperated backhoe for buried waste excavation

    SciTech Connect

    Burks, B.L.; Killough, S.M.; Thompson, D.H.

    1992-05-01

    For nearly five decades the United States (US) Department of Energy (DOE) and its predecessor agencies have engaged in broad-based research and development activities as well as nuclear weapons component production. As a by-product of these activities, large quantities of waste materials have been granted. One of the most common approaches used for solid waste storage was to bury waste containers in pits and trenches. With the current emphasis on environmental restoration, DOE now plans to either retrieve much of the legacy of buried waste or stabilize the waste in place via in situ vitrification or other means. Because of the variety of materials that have been buried over the years, the hazards of retrieval are significant if performed using conventional manned operations. The potential hazards, in addition to radiation exposure, include pyrophorics, toxic chemicals, and explosives. Although manifests exist for much of the buried waste, these records are often incomplete compared to today`s requirements. Because of the potential hazards and uncertainty about waste contents and container integrity, it is highly desirable to excavate these wastes using remotely operated equipment. In this paper the authors describe the development of a teleoperated military tractor called the Small Emplacement Excavator (SEE). Development of the SEE is being funded jointly by both DOE and the US Army. The DOE sponsor is the Office of Technology Development (OTD) Robotics Program. The US Army sponsor is the Program Manager for Ammunition Logistics, Picatinny Arsenal. The primary interest for DOE is in the application to remote excavation of buried waste, while the primary emphasis for the US Army is in the remote retrieval of unexploded ordnance. Technical requirements for these two tasks are very similar and, therefore, justify a joint development project. 1 ref.

  20. Test plan for buried waste containment system materials

    SciTech Connect

    Weidner, J.; Shaw, P.

    1997-03-01

    The objectives of the FY 1997 barrier material work at the Idaho National Engineering and Environmental Laboratory are to (1) select a waste barrier material and verify that it is compatible with the Buried Waste Containment System Process, and (2) determine if, and how, the Buried Waste Containment System emplacement process affects the material properties and performance (on proof of principle scale). This test plan describes a set of measurements and procedures used to validate a waste barrier material for the Buried Waste Containment System. A latex modified proprietary cement manufactured by CTS Cement Manufacturing Company will be tested. Emplacement properties required for the Buried Waste Containment System process are: slump between 8 and 10 in., set time between 15 and 30 minutes, compressive strength at set of 20 psi minimum, and set temperature less than 100{degrees}C. Durability properties include resistance to degradation from carbonate, sulfate, and waste-site soil leachates. A set of baseline barrier material properties will be determined to provide a data base for comparison with the barrier materials when tested in the field. The measurements include permeability, petrographic analysis to determine separation and/or segregation of mix components, and a set of mechanical properties. The measurements will be repeated on specimens from the field test material. The data will be used to determine if the Buried Waste Containment System equipment changes the material. The emplacement properties will be determined using standard laboratory procedures and instruments. Durability of the barrier material will be evaluated by determining the effect of carbonate, sulfate, and waste-site soil leachates on the compressive strength of the barrier material. The baseline properties will be determined using standard ASTM procedures. 9 refs., 1 fig., 2 tabs.

  1. Amorphous silicon based radiation detectors

    SciTech Connect

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Qureshi, S.; Wildermuth, D. ); Fujieda, I.; Street, R.A. )

    1991-07-01

    We describe the characteristics of thin(1 {mu}m) and thick (>30{mu}m) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and {gamma} rays. For x-ray, {gamma} ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs.

  2. Preparation of amorphous sulfide sieves

    DOEpatents

    Siadati, Mohammad H.; Alonso, Gabriel; Chianelli, Russell R.

    2006-11-07

    The present invention involves methods and compositions for synthesizing catalysts/porous materials. In some embodiments, the resulting materials are amorphous sulfide sieves that can be mass-produced for a variety of uses. In some embodiments, methods of the invention concern any suitable precursor (such as thiomolybdate salt) that is exposed to a high pressure pre-compaction, if need be. For instance, in some cases the final bulk shape (but highly porous) may be same as the original bulk shape. The compacted/uncompacted precursor is then subjected to an open-flow hot isostatic pressing, which causes the precursor to decompose and convert to a highly porous material/catalyst.

  3. Structural study of amorphous polyaniline

    NASA Astrophysics Data System (ADS)

    Laridjani, M.; Pouget, J. P.; MacDiarmid, A. G.; Epstein, A. J.

    1992-06-01

    Many materials, especially polymers, have a substantial volume fraction with no long range crystalline order. Through these regions are often termed amorphous, they frequently have a specific local order. We describe and use here a method, base on a non-energy dispersive X-ray diffraction technique, to obtain good quality interference functions and, by Fourier transform, radial distribution functions of the amorphous structure of polymers. We apply this approach to members of a family of electronic polymers of current interest : polyaniline emeraldine bases. We show that the local order exhibits significant differences in type I and type II materials, precipitated as salt and base respectively. These studies demonstrate the importance of sample preparation in evaluating the physical properties of polyaniline, and provide a structural origin for memory effects observed in the doping-dedoping processes. Beaucoup de matériaux, spécialement les polymères, ont une importante fraction de leur volume sans ordre cristallin à longue portée. Bien que ces régions soient souvent appelées amorphes, elles présentent fréquemment un ordre local caractéristique. Nous décrivons et utilisons dans ce papier une méthode, basée sur une technique de diffraction de rayons X non dispersive en énergie, pour obtenir des fonctions d'interférence de bonne qualité et, par transformée de Fourier, la fonction de distribution radiale des polymères amorphes. Nous appliquons cette technique à plusieurs éléments d'une même famille de polymères électroniques d'intérêt actuel : les polyanilines éméraldine bases. Nous montrons que l'ordre local présente d'appréciables différences dans les matériaux de type I et II, préparés respectivement sous forme de sel et de base. Cette étude démontre l'importance des conditions de préparation sur les propriétés physiques du polyaniline et donne une base structurale aux effets observés dans les processus de dopage-dédopage de

  4. 75 FR 38042 - Specifications and Drawings for Construction of Direct Buried Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... Construction of Direct Buried Plant AGENCY: Rural Utilities Service, USDA. ACTION: Proposed Rule; correction... and Drawings for Construction of Direct Buried Plant (Form 515a). This document corrects the Docket ID...

  5. SFG analysis of the molecular structures at the surfaces and buried interfaces of PECVD ultralow-dielectric constant pSiCOH: Reactive ion etching and dielectric recovery

    NASA Astrophysics Data System (ADS)

    Myers, John N.; Zhang, Xiaoxian; Huang, Huai; Shobha, Hosadurga; Grill, Alfred; Chen, Zhan

    2017-05-01

    Molecular structures at the surface and buried interface of an amorphous ultralow-k pSiCOH dielectric film were quantitatively characterized before and after reactive ion etching (RIE) and subsequent dielectric repair using sum frequency generation (SFG) vibrational spectroscopy and Auger electron spectroscopy. SFG results indicated that RIE treatment of the pSiCOH film resulted in a depletion of ˜66% of the surface methyl groups and changed the orientation of surface methyl groups from ˜47° to ˜40°. After a dielectric recovery process that followed the RIE treatment, the surface molecular structure was dominated by methyl groups with an orientation of ˜55° and the methyl surface coverage at the repaired surface was 271% relative to the pristine surface. Auger depth profiling indicated that the RIE treatment altered the top ˜25 nm of the film and that the dielectric recovery treatment repaired the top ˜9 nm of the film. Both SFG and Auger profiling results indicated that the buried SiCNH/pSiCOH interface was not affected by the RIE or the dielectric recovery process. Beyond characterizing low-k materials, the developed methodology is general and can be used to distinguish and characterize different molecular structures and elemental compositions at the surface, in the bulk, and at the buried interface of many different polymer or organic thin films.

  6. Is Mg-stabilized amorphous calcium carbonate a homogeneous mixture of amorphous magnesium carbonate and amorphous calcium carbonate?

    PubMed

    Yang, Sheng-Yu; Chang, Hsun-Hui; Lin, Cang-Jie; Huang, Shing-Jong; Chan, Jerry C C

    2016-10-04

    We find two types of carbonate ions in Mg stabilized amorphous calcium carbonate (Mg-ACC), whose short-range orders are identical to those of ACC and amorphous magnesium carbonate (AMC). Mg-ACC comprises a homogeneous mixture of the nano-clusters of ACC and AMC. Their relative amount varies systematically at different pH.

  7. Laser surface treatment of amorphous metals

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  8. Electromagnetic response of buried cylindrical structures for line current excitation

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Ponti, Cristina

    2013-04-01

    The Cylindrical-Wave Approach (CWA) rigorously solves, in the spectral domain, the electromagnetic forward scattering by a finite set of buried two-dimensional perfectly-conducting or dielectric objects [1]-[2]. In this technique, the field scattered by underground objects is represented in terms of a superposition of cylindrical waves. Use is made of the plane-wave spectrum [1] to take into account the interaction of such waves with the planar interface between air and soil, and between different layers eventually present in the ground [3]. Obstacles of general shape can be simulated through the CWA with good results, by using a suitable set of small circular-section cylinders [4]. Recently, we improved the CWA by facing the fundamental problem of losses in the ground [5]: this is of significant importance in remote-sensing applications, since real soils often have complex permittivity and conductivity, and sometimes also a complex permeability. While in previous works concerning the CWA a monochromatic or pulsed plane-wave incident field was considered, in the present work a different source of scattering is present: a cylindrical wave radiated by a line source. Such a source is more suitable to model the practical illumination field used in GPR surveys. The electric field radiated by the line current is expressed by means of a first-kind Hankel function of 0-th order. The theoretical solution to the scattering problem is developed for both dielectric and perfectly-conducting cylinders buried in a dielectric half-space. The approach is implemented in a Fortran code; an accurate numerical evaluation of the involved spectral integrals is performed, the highly-oscillating behavior of the homogeneous waves is correctly followed and evanescent contributions are taken into account. The electromagnetic field scattered in both air and ground can be obtained, in near- and far-field regions, for arbitrary radii and permittivity of the buried cylinders, as well as for

  9. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been...

  10. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been...

  11. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...

  12. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...

  13. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...

  14. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  15. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, Raoul B.

    1988-01-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  16. Imprinting bulk amorphous alloy at room temperature

    DOE PAGES

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; ...

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  17. Amorphization of solids irradiated by fast neutrons

    NASA Astrophysics Data System (ADS)

    Parkhomenko, V.; Dubinin, S.; Teploukhov, S.; Goshchitskii, B.

    2000-03-01

    The diffraction patterns of amorphous solids produced by both a conventional technique and fast neutron irradiation were systematized. It is shown for the first time that neutron radiation-modified solids belong to the group of amorphous substances of a distortion type.

  18. Evolution of the structure of amorphous ice: from low-density amorphous through high-density amorphous to very high-density amorphous ice.

    PubMed

    Martonák, R; Donadio, D; Parrinello, M

    2005-04-01

    We report results of molecular dynamics simulations of amorphous ice for pressures up to 22.5 kbar. The high-density amorphous ice (HDA) as prepared by pressure-induced amorphization of I(h) ice at T=80 K is annealed to T=170 K at various pressures to allow for relaxation. Upon increase of pressure, relaxed amorphous ice undergoes a pronounced change of structure, ranging from the low-density amorphous ice at p=0, through a continuum of HDA states to the limiting very high-density amorphous ice (VHDA) regime above 10 kbar. The main part of the overall structural change takes place within the HDA megabasin, which includes a variety of structures with quite different local and medium-range order as well as network topology and spans a broad range of densities. The VHDA represents the limit to densification by adapting the hydrogen-bonded network topology, without creating interpenetrating networks. The connection between structure and metastability of various forms upon decompression and heating is studied and discussed. We also discuss the analogy with amorphous and crystalline silica. Finally, some conclusions concerning the relation between amorphous ice and supercooled water are drawn.

  19. Electron beam recrystallization of amorphous semiconductor materials

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.

    1968-01-01

    Nucleation and growth of crystalline films of silicon, germanium, and cadmium sulfide on substrates of plastic and glass were investigated. Amorphous films of germanium, silicon, and cadmium sulfide on amorphous substrates of glass and plastic were converted to the crystalline condition by electron bombardment.

  20. Electron tunnelling into amorphous germanium and silicon.

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Clark, A. H.

    1972-01-01

    Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.

  1. Method of making amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1982-01-01

    The process comprises placing an amorphous metal in particulate form and a low molecular weight (e.g., 1000-5000) thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  2. Co amorphous systems: A product development perspective.

    PubMed

    Chavan, Rahul B; Thipparaboina, Rajesh; Kumar, Dinesh; Shastri, Nalini R

    2016-12-30

    Solubility is one of the major problems associated with most of the new chemical entities that can be reasonably addressed by drug amorphization. However, being a high-energy form, it usually tends to re-crystallize, necessitating new formulation strategies to stabilize amorphous drugs. Polymeric amorphous solid dispersion (PASD) is one of the widely investigated strategies to stabilize amorphous drug, with major limitations like limited polymer solubility and hygroscopicity. Co amorphous system (CAM), a new entrant in amorphous arena is a promising alternative to PASD. CAMs are multi component single phase amorphous solid systems made up of two or more small molecules that may be a combination of drugs or drug and excipients. Excipients explored for CAM preparation include amino acids, carboxylic acids, nicotinamide and saccharine. Advantages offered by CAM include improved aqueous solubility and physical stability of amorphous drug, with a potential to improve therapeutic efficacy. This review attempts to address different aspects in the development of CAM as drug products. Criterion for co-former selection, various methods involved in CAM preparation, characterization tools, stability, scale up and regulatory requirements for the CAM product development are discussed.

  3. Neutron irradiation induced amorphization of silicon carbide

    SciTech Connect

    Snead, L.L.; Hay, J.C.

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  4. Structure, thermodynamics, and crystallization of amorphous hafnia

    SciTech Connect

    Luo, Xuhui; Demkov, Alexander A.

    2015-09-28

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO{sub 2}. The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia.

  5. Amorphization of sugar hydrates upon milling.

    PubMed

    Willart, J F; Dujardin, N; Dudognon, E; Danède, F; Descamps, M

    2010-07-19

    The possibility to amorphize anhydrous crystalline sugars, like lactose, trehalose and glucose, by mechanical milling was previously reported. We test here the possibility to amorphize the corresponding crystalline hydrates: lactose monohydrate, trehalose dihydrate and glucose monohydrate using fully identical milling procedures. The results show that only the first hydrate amorphizes while the other two remain structurally invariant. These different behaviours are attributed to the plasticizing effect of the structural water molecules which can decrease the glass transition temperature below the milling temperature. The results reveal clearly the fundamental role of the glass transition in the solid-state amorphization process induced by milling, and they also explain why crystalline hydrates are systematically more difficult to amorphize by milling than their anhydrous counterpart. The investigations have been performed by differential scanning calorimetry and powder X-ray diffraction.

  6. Compensated amorphous-silicon solar cell

    DOEpatents

    Devaud, G.

    1982-06-21

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the elecrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF/sub 3/ doped intrinsic layer.

  7. Role of diffusion in amorphous-phase formation and crystallization of amorphous Ni--Zr

    SciTech Connect

    Barbour, J.C.; de Reus, R.; Denier van der Gon, A.W.; Saris, F.W.

    1987-03-01

    The Ni--Zr system is examined as a representative system for the formation of an amorphous phase by diffusion and for the crystallization of an amorphous phase by diffusion. High-resolution electron microscopy (HREM) is used to show that the amorphous phase grows by bulk diffusion through the amorphous material rather than by short-circuit diffusion. Also, the HREM shows that the amorphous phase formed by diffusion appears to be the same as the vapor-deposited amorphous phase. A correlation between crystallization temperatures (T/sub x/) and the enthalpy of large-atom hole formation is given. This correlation predicts values of T/sub x/ that are lower than those predicted from the small-atom hole-formation model. The difference in hole-formation enthalpies for the large and small atoms is given as a criterion for amorphous-phase formation via diffusion.

  8. Technology Solutions Case Study: Buried and Encapsulated Ducts, Jacksonville, Florida

    SciTech Connect

    2013-11-01

    Ductwork installed in unconditioned attics can significantly increase the overall heating and cooling costs of residential buildings. In fact, estimated duct thermal losses for single-family residential buildings with ductwork installed in unconditioned attics range from 10% to 45%. In a study of three single-story houses in Florida, the Building America research team Consortium for Advanced Residential Buildings (CARB) investigated the strategy of using buried and/or encapsulated ducts (BED) to reduce duct thermal losses in existing homes. The BED strategy consists of burying ducts in loose-fill insulation and/or encapsulating them in closed cell polyurethane spray foam (ccSPF) insulation; specifically for use in humid climates.

  9. In situ grouting of buried transuranic waste with polyacrylamide

    SciTech Connect

    Spalding, B.P.; Lee, S.Y.; Farmer, C.D.; Hyder, L.K.; Supaokit, P.

    1987-01-01

    This project is a demonstration and evaluation of the in situ hydrologic stabilization of buried transuranic waste at a humid site via grout injection. Two small trenches, containing buried transuranic waste, were filled with 34.000 L of polyacrylamide grout. Initial field results have indicated that voids within the trenches were totally filled by the grout and that the intratrench hydraulic conductivity was reduced to below field-measurable values. No evidence of grout constituents were observed in twelve perimeter groundwater monitoring wells indicating that grout was contained completely within the two trenches. Polyacrylamide grout was selected for field demonstration over the polyacrylate grout due to its superior performance in laboratory degradation studies. Also supporting the selection of polyacrylamide was the difficulty in controlling the set time of the acrylate polymerization. Based on preliminary degradation monitoring, the polyacrylamide was estimated to have a microbiological half-life of 362 years in the test soil. 15 refs., 9 figs., 12 tabs.

  10. Imaging and controlling plasmonic interference fields at buried interfaces.

    PubMed

    Lummen, Tom T A; Lamb, Raymond J; Berruto, Gabriele; LaGrange, Thomas; Dal Negro, Luca; García de Abajo, F Javier; McGrouther, Damien; Barwick, B; Carbone, F

    2016-10-11

    Capturing and controlling plasmons at buried interfaces with nanometre and femtosecond resolution has yet to be achieved and is critical for next generation plasmonic devices. Here we use light to excite plasmonic interference patterns at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is followed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at ∼0.3 times the speed of light, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. This work, demonstrating dynamical imaging with PINEM, paves the way for the femtosecond and nanometre visualization and control of plasmonic fields in advanced heterostructures based on novel two-dimensional materials such as graphene, MoS2, and ultrathin metal films.

  11. Imaging and controlling plasmonic interference fields at buried interfaces

    NASA Astrophysics Data System (ADS)

    Lummen, Tom T. A.; Lamb, Raymond J.; Berruto, Gabriele; Lagrange, Thomas; Dal Negro, Luca; García de Abajo, F. Javier; McGrouther, Damien; Barwick, B.; Carbone, F.

    2016-10-01

    Capturing and controlling plasmons at buried interfaces with nanometre and femtosecond resolution has yet to be achieved and is critical for next generation plasmonic devices. Here we use light to excite plasmonic interference patterns at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is followed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at ~0.3 times the speed of light, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. This work, demonstrating dynamical imaging with PINEM, paves the way for the femtosecond and nanometre visualization and control of plasmonic fields in advanced heterostructures based on novel two-dimensional materials such as graphene, MoS2, and ultrathin metal films.

  12. Common causes of material degradation in buried piping

    SciTech Connect

    Jenkins, C.F.

    1997-01-20

    Buried pipe may fail for innumerable reasons. Causes can be mechanical damage/breakage, chemically initiated corrosion, or a combination. Failures may originate either internally or externally on the pipe. They may be related to flaws in the design, to excessive or unanticipated internal pressure or ground level loading, and/or to poor or uncertain installation practice. Or the pipe may simply ``wear out`` in service. Steel is strong and very forgiving in underground applications, especially with regard to backfill. However, soil support developed through densification or compaction is critical for brittle concrete and vitrified clay tile pipe, and is very important for cast iron and plastic pipe. Chemistry of the soil determines whether or not it will enhance corrosion or other types of degradation. Various causes and mechanisms for deterioration of buried pipe are indicated. Some peculiarities of the different materials of construction are characterized. Repair methods and means to circumvent special problems are described.

  13. Research on analysis method for lateral displacement of buried pipeline

    NASA Astrophysics Data System (ADS)

    Liu, Yuqing; Zhang, Zhenyong; Liu, Shaoxing

    2017-03-01

    Oil and gas pipeline will inevitably pass through the area such as active fault, mine goaf and soft soil where ground movement is likely to happen. In such area, the pipeline is easy to move laterally along the direction vertical to axial direction with the movement of ground. Displacement will occur at the interface of external constraint section and section with large displacement due to continuity of deformation of pipeline, i. e. there is a deflection at the end of external constraint section. In this paper, deflection equation for lateral movement of buried pipeline is derived depending on fundamental principle in structural mechanics for elastic foundation beam. It is verified by means of finite element method that the equation has high accuracy and can reflect the deformation of buried pipeline. The equation presented in this paper lays a foundation for establishing analysis method for lateral displacement of pipeline and its engineering application.

  14. FY-94 buried waste integrated demonstration program report

    SciTech Connect

    Not Available

    1994-11-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a multitude of advanced technologies. These technologies are being integrated to form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER/WM) needs and objectives. This document summarizes previous demonstrations and describes the FY-94 BWID technology development and demonstration activities. Sponsored by the DOE Office of Technology Development (OTD), BWID works with universities and private industry to develop these technologies, which are being transferred to the private sector for use nationally and internationally. A public participation policy has been established to provide stakeholders with timely and accurate information and meaningful opportunities for involvement in the technology development and demonstration process.

  15. Vertical bipolar charge plasma transistor with buried metal layer.

    PubMed

    Nadda, Kanika; Kumar, M Jagadesh

    2015-01-19

    A self-aligned vertical Bipolar Charge Plasma Transistor (V-BCPT) with a buried metal layer between undoped silicon and buried oxide of the silicon-on-insulator substrate, is reported in this paper. Using two-dimensional device simulation, the electrical performance of the proposed device is evaluated in detail. Our simulation results demonstrate that the V-BCPT not only has very high current gain but also exhibits high BVCEO · f(T) product making it highly suitable for mixed signal high speed circuits. The proposed device structure is also suitable for realizing doping-less bipolar charge plasma transistor using compound semiconductors such as GaAs, SiC with low thermal budgets. The device is also immune to non-ideal current crowding effects cropping up at high current densities.

  16. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  17. Radar glory from buried craters on icy moons

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.

    1986-01-01

    Three ice-covered moons of Jupiter, in comparison with rocky planets and earth's moon, produce radar echoes of astounding strengths and bizarre polarizations. Scattering from buried craters can explain these and other anomalous properties of the echoes. The role of such craters is analogous to that of the water droplets that create the apparition known as 'the glory', the optically bright region surrounding an observer's shadow on a cloud. Both situations involve the electromagnetic phenomenon of total internal reflection at a dielectric interface, operating in a geometry that strongly favors exact backscattering. Dim surface craters are transformed into bright glory holes by being buried under somewhat denser material, thereby increasing the intensity of their echoes by factors of hundreds. The dielectric interface thus formed at the crater walls nicely accounts for the unusual polarizations of the echoes.

  18. Radar glory from buried craters on icy moons

    NASA Astrophysics Data System (ADS)

    Eshleman, Von R.

    1986-10-01

    Three ice-covered moons of Jupiter, in comparison with rocky planets and earth's moon, produce radar echoes of astounding strengths and bizarre polarizations. Scattering from buried craters can explain these and other anomalous properties of the echoes. The role of such craters is analogous to that of the water droplets that create the apparition known as 'the glory', the optically bright region surrounding an observer's shadow on a cloud. Both situations involve the electromagnetic phenomenon of total internal reflection at a dielectric interface, operating in a geometry that strongly favors exact backscattering. Dim surface craters are transformed into bright glory holes by being buried under somewhat denser material, thereby increasing the intensity of their echoes by factors of hundreds. The dielectric interface thus formed at the crater walls nicely accounts for the unusual polarizations of the echoes.

  19. Continuum soil modeling in the static analysis of buried structures

    SciTech Connect

    Julyk, L.J.; Marlow, R.S.; Moore, C.J.; Day, J.P.; Dyrness, A.D.

    1993-10-01

    Soil loading traditionally has been modeled as a hydrostatic pressure, a practice acceptable for many design applications. In the analyses of buried structure with predictive goals, soil compliance and load redistribution in the presence of soil plasticity are important factors to consider in determining the appropriate response of the structure. In the analysis of existing buried waste-storage tanks at the US Department of Energy`s Hanford Site, three soil-tank interaction modeling considerations are addressed. First, the soil interacts with the tank as the tank expands and contracts during thermal cycles associated with changes in the heat generated by the waste material as a result of additions and subtractions of the waste. Second, the soil transfers loads from the surface to the tank and provides support by resisting radial displacement of the tank haunch. Third, conventional finite-element mesh development causes artificial stress concentrations in the soil associated with differential settlement.

  20. Prediction of the TNT signature from buried UXO/landmines

    SciTech Connect

    Webb, S.W.; Phelan, J.M.; Finsterle, S.A.; Pruess, K.

    1998-06-01

    The detection and removal of buried unexploded ordnance (UXO) and landmines is one of the most important problems facing the world today. Numerous detection strategies are being developed, including infrared, electrical conductivity, ground-penetrating radar, and chemical sensors. Chemical sensors rely on the detection of TNT molecules, which are transported from buried UXO/landmines by advection and diffusion in the soil. As part of this effort, numerical models are being developed to predict TNT transport in soils including the effect of precipitation and evaporation. Modifications will be made to TOUGH2 for application to the TNT chemical sensing problem. Understanding the fate and transport of TNT in the soil will affect the design, performance and operation of chemical sensors by indicating preferred sensing strategies.

  1. Field test plan: Buried waste technologies, Fiscal Year 1995

    SciTech Connect

    Heard, R.E.; Hyde, R.A.; Engleman, V.S.; Evans, J.D.; Jackson, T.W.

    1995-06-01

    The US Department of Energy, Office of Technology Development, supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that, when integrated with commercially available baseline technologies, form a comprehensive remediation system for the effective and efficient remediation of buried waste. The Fiscal Year 1995 effort is to deploy and test multiple technologies from four functional areas of buried waste remediation: site characterization, waste characterization, retrieval, and treatment. This document is the basic operational planning document for the deployment and testing of the technologies that support the field testing in Fiscal Year 1995. Discussed in this document are the scope of the tests; purpose and objective of the tests; organization and responsibilities; contingency plans; sequence of activities; sampling and data collection; document control; analytical methods; data reduction, validation, and verification; quality assurance; equipment and instruments; facilities and utilities; health and safety; residuals management; and regulatory management.

  2. Aeromagnetic Expression of Buried Basaltic Volcanoes Near Yucca Mountain, Nevada

    USGS Publications Warehouse

    O'Leary, D. W.; Mankinen, E.A.; Blakely, R.J.; Langenheim, V.E.; Ponce, D.A.

    2002-01-01

    A high-resolution aeromagnetic survey has defined a number of small dipolar anomalies indicating the presence of magnetic bodies buried beneath the surface of Crater Flat and the Amargosa Desert. Results of potential-field modeling indicate that isolated, small-volume, highly magnetic bodies embedded within the alluvial deposits of both areas produce the anomalies. Their physical characteristics and the fact that they tend to be aligned along major structural trends provide strong support for the hypothesis that the anomalies reflect buried basaltic volcanic centers. Other, similar anomalies are identified as possible targets for further investigation. High-resolution gravity and ground-magnetic surveys, perhaps along with drilling sources of selected anomalies and radiometric age determinations, can provide valuable constraints in estimating potential volcanic hazard to the potential nuclear waste repository at Yucca Mountain.

  3. Selective porous silicon formation in buried p + layers

    NASA Astrophysics Data System (ADS)

    Tsao, S. S.; Myers, D. R.; Guilinger, T. R.; Kelly, M. J.; Datye, A. K.

    1987-11-01

    We report a systematic microstructural study of enhanced lateral porous silicon formation in the buried p+ layers of n/p+/p- and p-/p+/p- structures. We find, surprisingly, extremely selective porous silicon formation due to the thin p+ layer in both structures, despite the absence of a p-n junction in the p-/p+/p- structure. The interface between the isolated island and the buried porous silicon layer was always located at the depth where the net p-type dopant concentration was 1-8×1015/cm3. The observed microstructure can largely be understood in terms of a recent model for porous Si formation in uniformly doped Si, proposed by Beale et al. [J. Cryst. Growth 73, 622 (1985)]. However, we also observe, for the first time, important effects unique to a nonuniform dopant concentration.

  4. Vertical Bipolar Charge Plasma Transistor with Buried Metal Layer

    PubMed Central

    Nadda, Kanika; Kumar, M. Jagadesh

    2015-01-01

    A self-aligned vertical Bipolar Charge Plasma Transistor (V-BCPT) with a buried metal layer between undoped silicon and buried oxide of the silicon-on-insulator substrate, is reported in this paper. Using two-dimensional device simulation, the electrical performance of the proposed device is evaluated in detail. Our simulation results demonstrate that the V-BCPT not only has very high current gain but also exhibits high BVCEO · fT product making it highly suitable for mixed signal high speed circuits. The proposed device structure is also suitable for realizing doping-less bipolar charge plasma transistor using compound semiconductors such as GaAs, SiC with low thermal budgets. The device is also immune to non-ideal current crowding effects cropping up at high current densities. PMID:25597295

  5. Detection of Buried Mines and Unexploded Ordnance (UXO)

    DTIC Science & Technology

    2007-04-20

    probabilities of detection. 4 Through the ERDC’s Cold Regions Research and Engineering Laboratory (CRREL) and ERDC’s Environmental Laboratory. II-3...IMS is a promising technique for detecting buried explosives. An ion mobility spectrometer is composed of a sample inlet, an atmospheric pressure ion...a self-colliding plasma through the deuteron plus Boron (d+B) reaction. Fast neutrons (6–8 MeV) react with nitrogen and other elements. The 14N(n

  6. GPR for detecting buried animal bones in controlled sandbox experiments

    NASA Astrophysics Data System (ADS)

    Schneider, B.; Tsoflias, G. P.

    2016-12-01

    Bone-beds can provide a wealth of information at archeological sites, including age of the site, site formation processes, seasonality of the kill, size and gender of the herd, and paleoenvironmental conditions at the time of the kill. Ground-penetrating radar (GPR) is a non-invasive, cost-effective technique that has the potential to delineate the horizontal and vertical limits of bone-beds in different geomorphological settings. Furthermore, the identification of a bone signature from geophysical methods can have modern day applications, particularly in forensic research investigations. There have been previous attempts, mostly in forensic studies and studies that involve mapping graveyards, to locate buried bone using geophysics. Although geophysical tools have successfully identified buried remains of homicide victims and the location of graves, these finds resulted from the identification of anomalies related to the disturbed soil in graves and not to an anomalous signal from the bone itself. It is necessary to detect the signal from the bone at these archaeological sites, because prehistoric animal remains typically were not buried immediately upon death, but instead became covered over time by sediment. Initial lab experiments determined the electrical properties (i.e. the relative permittivity, loss factor, and loss tangent values) of modern animal bone and indicate that bone is a desirable low-loss target for GPR detection. In order to test these results, we have built a 1x2x1 meter sandbox and placed modern bison bone inside of it to simulate natural burial conditions. This research presents successful GPR detection of the vertical and horizontal extents of the buried bison bone. In addition, changes in variables such as depth of burial, size and shape of target, and antenna orientation are presented to assess the overall detection capability of GPR for this unique archaeological feature.

  7. Final Report: Imaging of Buried Nanoscale Optically Active Materials

    SciTech Connect

    Appelbaum, Ian

    2011-07-05

    This is a final report covering work done at University of Maryland to develop a Ballistic Electron Emission Luminescence (BEEL) microscope. This technique was intended to examine the carrier transport and photon emission in deeply buried optically-active layers and thereby provide a means for materials science to unmask the detailed consequences of experimentally controllable growth parameters, such as quantum dot size, statistics and orientation, and defect density and charge recombination pathways.

  8. Investigation of guided waves propagation in pipe buried in sand

    SciTech Connect

    Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.

    2014-02-18

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.

  9. The Thermal Regime Around Buried Submarine High-Voltage Cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.

    2015-12-01

    The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.

  10. Quantitation of buried contamination by use of solvents

    NASA Technical Reports Server (NTRS)

    Pappas, S. P.; Hsiao, P.; Hill, L. W.

    1973-01-01

    A method for determining the quantity of buried contamination using solvents is presented. A nonsporocidal method with which high spore recoveries are achievable from silicone coatings and potting compounds was developed. An extension of the method to silicon potting compound RTV 60 is reported. It is stated that spores remain viable during chemical curing of silicone potting compounds and more than ninety percent of the spore population is recoverable by amine dissolution and proper plating techniques.

  11. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2016-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  12. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2014-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  13. Biologically formed amorphous calcium carbonate.

    PubMed

    Weiner, Steve; Levi-Kalisman, Yael; Raz, Sefi; Addadi, Lia

    2003-01-01

    Many organisms from a wide variety of taxa produce amorphous calcium carbonate (ACC), despite the fact that it is inherently unstable and relatively soluble in its pure state. These properties also make it difficult to detect and characterize ACC. Raman spectroscopy is a particularly useful method for investigating ACC because the sample can be examined wet, and extended X-ray absorption fine structure (EXAFS) analysis can provide detailed information on the short-range order. Other methods for characterizing ACC include infrared spectroscopy, thermogravimetric analysis and differential thermal analysis (TGA and DTA), transmission electron microscopy (TEM), and electron and X-ray diffraction. Because of the difficulties involved, we suspect that ACC is far more widely distributed than is presently known, and a comparison of EXAFS spectra shows that different biogenic ACC phases have different short-range order structures. We also suspect that ACC fulfils many different functions, including as a transient precursor phase during the formation of crystalline calcium carbonate.

  14. Detection of buried objects using reflected GNSS signals

    NASA Astrophysics Data System (ADS)

    Notarpietro, Riccardo; De Mattia, Salvatore; Campanella, Maurizio; Pei, Yuekun; Savi, Patrizia

    2014-12-01

    The use of reflected Global Navigation Satellite System (GNSS) signals for sensing the Earth has been growing rapidly in recent years. This technique is founded on the basic principle of detecting GNSS signals after they have been reflected off the Earth's surface and using them to determine the properties of the reflecting surface remotely. This is the so-called GNSS reflectometry (GNSS-R) technique. In this paper, a new application regarding the detection of metallic buried objects is analyzed and it is validated through several experimental campaigns. Although the penetration depth of GNSS signals into the ground is not optimal and depends on the soil moisture, GNSS signals can likely interact approximately with the first 10 cm of the ground and therefore can be reflected back by any metallic object buried on the first terrain layer. A very light and low-cost GNSS receiver prototype based on a software-defined radio approach was developed. This receiver can be used as a payload on board small drones or unmanned aerial systems to detect metallic objects (mines or other explosive devices). A signal processing tool based on an open-loop GNSS signal acquisition strategy was developed. The results of two experiments which show the possibility of using GNSS-R signals to detect buried metallic objects and to provide an estimate of their dimensions are discussed.

  15. Degradation of carbohydrates and lignins in buried woods

    USGS Publications Warehouse

    Hedges, J.I.; Cowie, G.L.; Ertel, J.R.; James, Barbour R.; Hatcher, P.G.

    1985-01-01

    Spruce, alder, and oak woods deposited in coastal sediments were characterized versus their modern counterparts by quantification of individual neutral sugars and lignin-derived phenols as well as by scanning electron microscopy, 13C NMR, and elemental analysis. The buried spruce wood from a 2500 yr old deposit was unaltered whereas an alder wood from the same horizon and an oak wood from an open ocean sediment were profoundly degraded. Individual sugar and lignin phenol analyses indicate that at least 90 and 98 wt% of the initial total polysaccharides in the buried alder and oak woods, respectively, have been degraded along with 15-25 wt% of the lignin. At least 75% of the degraded biopolymer has been physically lost from these samples. This evidence is supported by the SEM, 13C NMR and elemental analyses, all of which indicate selective loss of the carbohydrate moiety. The following order of stability was observed for the major biochemical constituents of both buried hardwoods: vanillyl and p-hydroxyl lignin structural units > syringyl lignin structural units > pectin > ??-cellulose > hemicellulose. This sequence can be explained by selective preservation of the compound middle lamella regions of the wood cell walls. The magnitude and selectivity of the indicated diagenetic reactions are sufficient to cause major changes in the chemical compositions of wood-rich sedimentary organic mixtures and to provide a potentially large in situ nutrient source. ?? 1985.

  16. Degradation of carbohydrates and lignins in buried woods

    NASA Astrophysics Data System (ADS)

    Hedges, John I.; Cowie, Gregory L.; Ertel, John R.; James Barbour, R.; Hatcher, Patrick G.

    1985-03-01

    Spruce, alder, and oak woods deposited in coastal sediments were characterized versus their modern counterparts by quantification of individual neutral sugars and lignin-derived phenols as well as by scanning electron microscopy, 13C NMR, and elemental analysis. The buried spruce wood from a 2500 yr old deposit was unaltered whereas an alder wood from the same horizon and an oak wood from an open ocean sediment were profoundly degraded. Individual sugar and lignin phenol analyses indicate that at least 90 and 98 wt% of the initial total polysaccharides in the buried alder and oak woods, respectively, have been degraded along with 15-25 wt% of the lignin. At least 75% of the degraded biopolymer has been physically lost from these samples. This evidence is supported by the SEM, 13C NMR and elemental analyses, all of which indicate selective loss of the carbohydrate moiety. The following order of stability was observed for the major biochemical constituents of both buried hardwoods: vanillyl and p- hydroxyl lignin structural units > syringyl lignin structural units > pectin > α-cellulose > hemicellulose. This sequence can be explained by selective preservation of the compound middle lamella regions of the wood cell walls. The magnitude and selectivity of the indicated diagenetic reactions are sufficient to cause major changes in the chemical compositions of wood-rich sedimentary organic mixtures and to provide a potentially large in situ nutrient source.

  17. New Technique for the Treatment of Buried Penis in Children.

    PubMed

    Liu, Feng; Lin, Tao; He, Dawei; Wei, Guanghui; Liu, Junhong; Liu, Xing; Hua, Yi; Zhang, Deying; Lu, Peng; Wu, Shengde; Li, Xuliang

    2016-02-01

    To present our treatment experience of buried penis, which has no consensus therapeutic technique for all cases of buried penis, by using a new technique for the repair of this condition, in which the approach is through the ventral penile root. We performed a retrospective review of 153 patients (median age: 6.5 years) who underwent repair of a buried penis between March 2005 and March 2013. The technique involves the creation of a wedge-shaped cut of the ventral penile skin, followed by fixation of the subcutaneous penile skin at the base of the degloved penis to the Buck fascia at the 2- and 10-o'clock positions. The ventral outer preputial skin is split down the midline, and the dorsal inner preputial skin is cut with oblique incision. All patients were followed for an average of 12 months after repair. Other than 2 cases (1.3%) of trapped penis with a ring of scar tissue, which required subsequent excision, there were no complications and the cosmetic appearance was satisfactory. The described ventral penile approach is a simple and effective procedure with good cosmetic outcomes and few complications. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Buried-euxenic-basin model sets Tarim basin potential

    SciTech Connect

    Hsu, K.J. )

    1994-11-28

    The Tarim basin is the largest of the three large sedimentary basins of Northwest China. The North and Southwest depressions of Tarim are underlain by thick sediments and very thin crust. The maximum sediment thickness is more than 15 km. Of the several oil fields of Tarim, the three major fields were discovered during the last decade, on the north flank of the North depression and on the Central Tarim Uplift. The major targets of Tarim, according to the buried-euxenic-basin model, should be upper Paleozoic and lower Mesozoic reservoirs trapping oil and gas condensates from lower Paleozoic source beds. The paper describes the basin and gives a historical perspective of exploration activities and discoveries. It then explains how this basin can be interpreted by the buried-euxenic-basin model. The buried-euxenic-basin model postulates four stages of geologic evolution: (1) Sinian and early Paleozoic platform sedimentation on relic arcs and deep-marine sedimentation in back-arc basins in Xinjiang; (2) Late Paleozoic foreland-basin sedimentation in north Tarim; (3) Mesozoic and Paleogene continental deposition, subsidence under sedimentary load; and (4) Neogene pull-apart basin, wrench faulting and extension.

  19. Hygrothermal aging effects on buried molecular structures at epoxy interfaces.

    PubMed

    Myers, John N; Zhang, Chi; Lee, Kang-Wook; Williamson, Jaimal; Chen, Zhan

    2014-01-14

    Interfacial properties such as adhesion are determined by interfacial molecular structures. Adhesive interfaces in microelectronic packages that include organic polymers such as epoxy are susceptible to delamination during accelerated stress testing. Infrared-visible sum frequency generation vibrational spectroscopy (SFG) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) were used to study molecular structures at buried epoxy interfaces during hygrothermal aging to relate molecular structural changes at buried interfaces to decreases in macroscopic adhesion strength. SFG peaks associated with strongly hydrogen bonded water were detected at hydrophilic epoxy interfaces. Ordered interfacial water was also correlated to large decreases in interfacial adhesion strength that occurred as a result of hygrothermal aging, which suggests that water diffused to the interface and replaced original hydrogen bond networks. No water peaks were observed at hydrophobic epoxy interfaces, which was correlated with a much smaller decrease in adhesion strength from the same aging process. ATR-FTIR water signals observed in the epoxy bulk were mainly contributed by relatively weakly hydrogen bonded water molecules, which suggests that the bulk and interfacial water structure was different. Changes in interfacial methyl structures were observed regardless of the interfacial hydrophobicity which could be due to water acting as a plasticizer that restructured both the bulk and interfacial molecular structure. This research demonstrates that SFG studies of molecular structural changes at buried epoxy interfaces during hygrothermal aging can contribute to the understanding of moisture-induced failure mechanisms in electronic packages that contain organic adhesives.

  20. FY-95 technology catalog. Technology development for buried waste remediation

    SciTech Connect

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  1. Buried Waste Integrated Demonstration FY-95 Deployment Plan

    SciTech Connect

    Stacey, D.E.

    1995-03-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The FY-95 effort will fund 24 technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. Ten of these technologies will take part in the integrated field demonstration that will take place at the Idaho National Engineering Laboratory (INEL) facilities in the summer of 1995. This document is the basic operational planning document for deployment of all BWID projects funded in FY-95. Discussed in this document are the BWID preparations for the INEL integrated field demonstration, INEL research and development (R&D) demonstrations, non-INEL R&D demonstrations, and office research and technical review meetings. Each project will have a test plan detailing the specific procedures, objectives, and tasks of the test. Therefore, information that is specific to testing each technology is intentionally limited in this document.

  2. [Cost-effectiveness analysis of mechanical and manual soil-buried methods for Oncomelania hupensis control].

    PubMed

    Jiang, Neng-ming; Ye, Xiao-dong; Huang, Li-lan; Wang, Song-bo; Zheng, Shou-gui

    2014-06-01

    To explore a high molluscicidal efficient method in special Oncomelania hupensis snail environments. In 2005 and 2006, in large special environments (rubble creek beaches and seepage barren hills with snails), the mechanical soil-buried method (excavator digging to bury deep snails) and manual soil-buried method were used respectively, and the results were compared for the cost-effectiveness. With the mechanical soil-buried method in 2006, the investment was 0.78 yuan/m2, and the compression rate of snail areas was 100%; with the manual soil-buried method in 2005, the investment was 1.34 yuan/m2, and the compression rate of snail areas was 20.26%. The former was much better than the latter. In the large special environments with snails, the mechanical soil-buried method is superior to manual soil-buried method.

  3. Crystalline to amorphous transformation in silicon

    SciTech Connect

    Cheruvu, S.M.

    1982-09-01

    In the present investigation, an attempt was made to understand the fundamental mechanism of crystalline-to-amorphous transformation in arsenic implanted silicon using high resolution electron microscopy. A comparison of the gradual disappearance of simulated lattice fringes with increasing Frenkel pair concentration with the experimental observation of sharp interfaces between crystalline and amorphous regions was carried out leading to the conclusion that when the defect concentration reaches a critical value, the crystal does relax to an amorphous state. Optical diffraction experiments using atomic models also supported this hypothesis. Both crystalline and amorphous zones were found to co-exist with sharp interfaces at the atomic level. Growth of the amorphous fraction depends on the temperature, dose rate and the mass of the implanted ion. Preliminary results of high energy electron irradiation experiments at 1.2 MeV also suggested that clustering of point defects occurs near room temperature. An observation in a high resolution image of a small amorphous zone centered at the core of a dislocation is presented as evidence that the nucleation of an amorphous phase is heterogeneous in nature involving clustering or segregation of point defects near existing defects.

  4. Origin of Magnetic Properties in Amorphous Metals.

    DTIC Science & Technology

    1979-12-01

    Magnetic Properties of Fe-Ni-B Amorphous Alloys," F. E. Luborsky, J. L. Walter, and H. H. Liebermann , IEEE Trans. on Magnetics MAG-15, 909 (1979). Also GE...Report 78CRD132. 2. "Formation and Magnetic Properties of Fe-B-Si Amorphous Alloys," F. E. Luborsky, J. J. Becker, J. L. Walter, and H. H. Liebermann ...Amorphous Alloys," F. E. Luborsky and H. H. Liebermann , J. Appl. Phys., to appear. Also GE Report 79CRD177. 4. "The Effect of Temperature on Magnetic

  5. Characterization of mechanical heterogeneity in amorphous solids

    NASA Astrophysics Data System (ADS)

    Peng, H. L.; Li, M. Z.; Sun, B. A.; Wang, W. H.

    2012-07-01

    The structural geometry and size distribution of the local atomic rearrangements induced by external stress in amorphous solids are investigated by molecular dynamics studies. We find that the size distribution exhibits a generic power-law behavior and their structural geometry shows fractal feature. This indicates that the local atomic rearrangements in amorphous solids are self-organized during deformation. A simple theoretical model based on the interaction of the heterogeneous elastic field sources is proposed which predicts the power-law scaling and characterizes the properties of the local atomic rearrangements in amorphous solids.

  6. Laser irradiation to produce amorphous pharmaceuticals.

    PubMed

    Titapiwatanakun, Varin; Tankul, Junlathip; Basit, Abdul W; Gaisford, Simon

    2016-11-30

    Using a high-power CO2 laser to irradiate powder beds, it was possible to induce phase transformation to the amorphous state. Irradiation of a model drug, indometacin, resulted in formation of a glass. Varying the settings of the laser (power and raster speed) was shown to change the physicochemical properties of the glasses produced and all irradiated glasses were found to be more stable than a reference glass produced by melt-quenching. Irradiation of a powder blend of paracetamol and polyvinylpyrrolidone K30 was found to produce a solid amorphous dispersion. The results suggest that laser-irradiation might be a useful method for making amorphous pharmaceuticals.

  7. Photonic crystals, amorphous materials, and quasicrystals.

    PubMed

    Edagawa, Keiichi

    2014-06-01

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states.

  8. Photonic crystals, amorphous materials, and quasicrystals

    PubMed Central

    Edagawa, Keiichi

    2014-01-01

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states. PMID:27877676

  9. Amorphous to Amorphous Form Transitions of Water Ice and Astrophysical Implications

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Blake, David F.; Chang, Sherwood (Technical Monitor)

    1994-01-01

    We have combined Selected Area Electron Diffraction (SAED) and cryogenic techniques in an instrumental configuration that allows observing the structure of vapor deposited ice as it evolves during warmup. The ice is deposited in-situ inside an Hitachi H-500 H transmission electron microscope at a base pressure of 1-5 x 10(exp -7) torr on a thin amorphous carbon substrate at 15K or 86K and warmed up at a rate of 1-2 K/min. We find a progression of amorphous forms and well defined amorphous to amorphous transitions. Apart from the well known low-density form of ice, we confirm the presence of a high-density form and find a third amorphous form that coexists with cubic ice. We will report too on the amorphous to crystalline transition and the implications of these results for radical diffusion and gas retention observed in laboratory analog studies of interstellar and cometary ices.

  10. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  11. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  12. Amorphization of Silicon Carbide by Carbon Displacement

    SciTech Connect

    Devanathan, Ram; Gao, Fei; Weber, William J.

    2004-05-10

    We have used molecular dynamics simulations to examine the possibility of amorphizing silicon carbide (SiC) by exclusively displacing C atoms. At a defect generation corresponding to 0.2 displacements per atom, the enthalpy surpasses the level of melt-quenched SiC, the density decreases by about 15%, and the radial distribution function shows a lack of long-range order. Prior to amorphization, the surviving defects are mainly C Frenkel pairs (67%), but Si Frenkel pairs (18%) and anti-site defects (15%) are also present. The results indicate that SiC can be amorphized by C sublattice displacements. Chemical short-range disorder, arising mainly from interstitial production, plays a significant role in the amorphization.

  13. Amorphous Phases on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Ruff, S. W.; Horgan, B.; Dehouck, E.; Achilles, C. N.; Ming, D. W.; Bish, D. L.; Chipera, S. J.

    2014-01-01

    Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made

  14. Ion-beam amorphization of semiconductors: A physical model based on the amorphous pocket population

    SciTech Connect

    Mok, K.R.C.; Jaraiz, M.; Martin-Bragado, I.; Rubio, J.E.; Castrillo, P.; Pinacho, R.; Barbolla, J.; Srinivasan, M.P.

    2005-08-15

    We introduce a model for damage accumulation up to amorphization, based on the ion-implant damage structures commonly known as amorphous pockets. The model is able to reproduce the silicon amorphous-crystalline transition temperature for C, Si, and Ge ion implants. Its use as an analysis tool reveals an unexpected bimodal distribution of the defect population around a characteristic size, which is larger for heavier ions. The defect population is split in both size and composition, with small, pure interstitial and vacancy clusters below the characteristic size, and amorphous pockets with a balanced mixture of interstitials and vacancies beyond that size.

  15. Amorphization strategy affects the stability and supersaturation profile of amorphous drug nanoparticles.

    PubMed

    Cheow, Wean Sin; Kiew, Tie Yi; Yang, Yue; Hadinoto, Kunn

    2014-05-05

    Amorphous drug nanoparticles have recently emerged as a promising bioavailability enhancement strategy of poorly soluble drugs attributed to the high supersaturation solubility generated by the amorphous state and fast dissolution afforded by the nanoparticles. Herein we examine the effects of two amorphization strategies in the nanoscale, i.e., (1) molecular mobility restrictions and (2) high energy surface occupation, both by polymer excipient stabilizers, on the (i) morphology, (ii) colloidal stability, (iii) drug loading, (iv) amorphous state stability after three-month storage, and (v) in vitro supersaturation profiles, using itraconazole (ITZ) as the model drug. Drug-polyelectrolyte complexation is employed in the first strategy to prepare amorphous ITZ nanoparticles using dextran sulfate as the polyelectrolyte (ITZ nanoplex), while the second strategy employs pH-shift precipitation using hydroxypropylmethylcellulose as the surface stabilizer (nano-ITZ), with both strategies resulting in >90% ITZ utilization. Both amorphous ITZ nanoparticles share similar morphology (∼300 nm spheres) with the ITZ nanoplex exhibiting better colloidal stability, albeit at lower ITZ loading (65% versus 94%), due to the larger stabilizer amount used. The ITZ nanoplex also exhibits superior amorphous state stability, attributed to the ITZ molecular mobility restriction by electrostatic complexation with dextran sulfate. The higher stability, however, is obtained at the expense of slower supersaturation generation, which is maintained over a prolonged period, compared to the nano-ITZ. The present results signify the importance of selecting the optimal amorphization strategy, in addition to formulating the excipient stabilizers, to produce amorphous drug nanoparticles having the desired characteristics.

  16. Using containerless methods to develop amorphous pharmaceuticals.

    PubMed

    Weber, J K R; Benmore, C J; Suthar, K J; Tamalonis, A J; Alderman, O L G; Sendelbach, S; Kondev, V; Yarger, J; Rey, C A; Byrn, S R

    2017-01-01

    Many pipeline drugs have low solubility in their crystalline state and require compounding in special dosage forms to increase bioavailability for oral administration. The use of amorphous formulations increases solubility and uptake of active pharmaceutical ingredients. These forms are rapidly gaining commercial importance for both pre-clinical and clinical use. Synthesis of amorphous drugs was performed using an acoustic levitation containerless processing method and spray drying. The structure of the products was investigated using in-situ high energy X-ray diffraction. Selected solvents for processing drugs were investigated using acoustic levitation. The stability of amorphous samples was measured using X-ray diffraction. Samples processed using both spray drying and containerless synthesis were compared. We review methods for making amorphous pharmaceuticals and present data on materials made by containerless processing and spray drying. It was shown that containerless processing using acoustic levitation can be used to make phase-pure forms of drugs that are known to be difficult to amorphize. The stability and structure of the materials was investigated in the context of developing and making clinically useful formulations. Amorphous compounds are emerging as an important component of drug development and for the oral delivery of drugs with low solubility. Containerless techniques can be used to efficiently synthesize small quantities of pure amorphous forms that are potentially useful in pre-clinical trials and for use in the optimization of clinical products. Developing new pharmaceutical products is an essential enterprise to improve patient outcomes. The development and application of amorphous pharmaceuticals to increase absorption is rapidly gaining importance and it provides opportunities for breakthrough research on new drugs. There is an urgent need to solve problems associated with making formulations that are both stable and that provide high

  17. A Magnetic Sensor with Amorphous Wire

    PubMed Central

    He, Dongfeng; Shiwa, Mitsuharu

    2014-01-01

    Using a FeCoSiB amorphous wire and a coil wrapped around it, we have developed a sensitive magnetic sensor. When a 5 mm long amorphous wire with the diameter of 0.1 mm was used, the magnetic field noise spectrum of the sensor was about 30 pT/√Hz above 30 Hz. To show the sensitivity and the spatial resolution, the magnetic field of a thousand Japanese yen was scanned with the magnetic sensor. PMID:24940865

  18. Picosecond Electronic Relaxations In Amorphous Semiconductors

    NASA Astrophysics Data System (ADS)

    Tauc, Jan

    1983-11-01

    Using the pump and probe technique the relaxation processes of photogenerated carriers in amorphous tetrahedral semiconductors and chalcogenide glasses in the time domain from 0.5 Ps to 1.4 ns have been studied. The results obtained on the following phenomena are reviewed: hot carrier thermalization in amorphous silicon; trapping of carriers in undoped a-Si:H; trapping of carriers in deep traps produced by doping; geminate recombination in As2S3-xSex glasses.

  19. Tests Of Amorphous-Silicon Photovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G., Jr.

    1988-01-01

    Progress in identification of strengths and weaknesses of amorphous-silicon technology detailed. Report describes achievements in testing reliability of solar-power modules made of amorphous-silicon photovoltaic cells. Based on investigation of modules made by U.S. manufacturers. Modules subjected to field tests, to accelerated-aging tests in laboratory, and to standard sequence of qualification tests developed for modules of crystalline-silicon cells.

  20. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    NASA Technical Reports Server (NTRS)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  1. Detection and identification of buried objects in shallow water

    NASA Astrophysics Data System (ADS)

    Goo, Gee-In; Au, Withlow W. L.

    1996-05-01

    A variety of experimental results indicate that Dolphins possess a unique and highly sophisticated sonar system. In addition, this sonar system is highly adaptive in detecting, discriminating and recognizing objects in highly reverberating and noisy environments. This paper presents possibly a new technique for target detection and recognition using the G- Transform and a new approach based on Resonance and Resonant Scattering Theory. These results show that this approach and signal processing technique used with neural networks may be useful in detection and identification of buried mine and minelike targets.

  2. Elastic Phase Response of Silica Nanoparticles Buried in Soft Matter

    SciTech Connect

    Tetard, Laurene; Passian, Ali; Lynch, Rachel M; Voy, Brynn H; Shekhawat, Gajendra; Dravid, Vinayak; Thundat, Thomas George

    2008-01-01

    Tracking the uptake of nanomaterials by living cells is an important component in assessing both potential toxicity and in designing future materials for use in vivo. We show that the difference in the local elasticity at the site of silica (SiO{sub 2}) nanoparticles confined within a macrophage enables functional ultrasonic interactions. By elastically exciting the cell, a phase perturbation caused by the buried SiO{sub 2} nanoparticles was detected and used to map the subsurface populations of nanoparticles. Localization and mapping of stiff chemically synthesized silica nanoparticles within the cellular structures of a macrophage are important in basic as well as applied studies.

  3. Buried archaeological structures detection using MIVIS hyperspectral airborne data

    NASA Astrophysics Data System (ADS)

    Merola, P.; Allegrini, A.; Guglietta, D.; Sampieri, S.

    2006-08-01

    The identification of buried archaeological structures, using remote sensing technologies (aerophotos or satellite and airborne images) is based on the analysis of surface spectral features changes that overlying underground terrain units, located on the basis of texture variations, humidity and vegetation cover. The study of these anomalies on MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) hyperspectral data is the main goal of a research project that the CNR-IIA has carried on over different archaeological test sites. The major archaeological information were gathered by data analysis in the VIS and NIR spectral region and by use of the apparent thermal inertia image and their different vegetation index.

  4. Technology status report: In situ vitrification applied to buried wastes

    SciTech Connect

    Thompson, L.E. ); Bates, S.O. ); Hansen, J.E. )

    1992-09-01

    This document is a technical status report on In Situ Vitrification (ISV) as applied to buried waste; the report takes both technical and institutional concerns into perspective. The ISV process involves electrically melting such contaminated solid media as soil, sediment, sludge, and mill tailings. The resultant product is a high-quality glass-and-crystalline waste form that possesses high resistance to corrosion and leaching and is capable of long-term environmental exposure without significant degradation. The process also significantly reduces the volume of the treated solid media due to the removal of pore spaces in the soil.

  5. Low-Frequency Electromagnetic Backscatter from Buried Tunnels

    SciTech Connect

    Casey, K; Pao, H

    2006-06-21

    This progress report is submitted under a contract between the Special Project Office of DARPA and Lawrence Livermore National Laboratory. The Project Manager at DARPA is Dr. Michael Zatman. Our purpose under this contract is to investigate interactions between electromagnetic waves and a class of buried targets located in multilayered media with rough interfaces. In this report, we investigate three preliminary problems. In each case our specific goal is to understand various aspects of the electromagnetic wave interaction mechanisms with targets in layered media. The first problem, discussed in Section 2, is that of low-frequency electromagnetic backscattering from a tunnel that is cut into a lossy dielectric half-space. In this problem, the interface between the upper (free space) region and the lower (ground) region is smooth. The tunnel is assumed to be a cylindrical free-space region of infinite extent in its axial direction and with a diameter that is small in comparison to the free-space wavelength. Because its diameter is small, the tunnel can be modeled as a buried ''wire'' described by an equivalent impedance per unit length. In Section 3 we extend the analysis to include a statistically rough interface between the air and ground regions. The interface is modeled as a random-phase screen. Such a screen reduces the coherent power in a plane wave that is transmitted through it, scattering some of the total power into an incoherent field. Our analysis of this second problem quantifies the reduction in the coherent power backscattered from the buried tunnel that is caused by the roughness of the air-ground interface. The problem of low-frequency electromagnetic backscattering from two buried tunnels, parallel to each other but at different locations in the ground, is considered in Section 4. In this analysis, we wish to determine the conditions under which the presence of more than one tunnel can be detected via backscattering. Section 5 concludes the report

  6. Approximation functions for airblast environments from buried charges

    SciTech Connect

    Reichenbach, H.; Behrens, K.; Kuhl, A.L.

    1993-11-01

    In EMI report E 1/93, ``Airblast Environments from Buried HE-Charges,`` fit functions were used for the compact description of blastwave parameters. The coefficients of these functions were approximated by means of second order polynomials versus DOB. In most cases, the agreement with the measured data was satisfactory; to reduce remaining noticeable deviations, an approximation by polygons (i.e., piecewise-linear approximation) was used instead of polynomials. The present report describes the results of the polygon approximation and compares them to previous data. We conclude that the polygon representation leads to a better agreement with the measured data.

  7. Radar Profiling of Buried Reflectors and the Groundwater Table

    DTIC Science & Technology

    1983-04-01

    8217.• .. P.V. Sellmann, S.A. Arcone and A.J. Delaney ɜ*, ,& AcCOPOFo -"- Prepared for •""OFFICE OF THE CHIEF OF ENGINEERS Unclassified SECURITY...GROUNDWATER TABLE 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(&) P.V. Sellmann, S.A. Arcone and AJ. Delaney 9...elmnGooit Goehia eerc rnh xei .4 RADAR PROFILING OF BURIED REFLECTORS AND THE GROUNDWATER TABLE P.V. Sellmann, S.A. Arcone and A.J. Delaney INTRODUCTION

  8. The study of traumatic intracerebral hematoma at Buri Ram Hospital.

    PubMed

    Nagabhand, A; Sangcham, K

    1993-07-01

    This report describes the study of traumatic intracerebral hematoma at Buri Ram Hospital. The total number was 71 cases. There were 26 cases with no investigation and were treated by exploratory burr hole with the mortality rate of 57.5 per cent, and 45 cases which were sent for CT scan before operation with the mortality rate of 37.5 per cent. CT scanning is a useful investigative tool for correct diagnosis and rapid treatment of head injury and the operation which helps to reduce the mortality rate.

  9. Ion-implanted planar-buried-heterostructure diode laser

    DOEpatents

    Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.

    1991-01-01

    A Planar-Buried-Heterostructure, Graded-Index, Separate-Confinement-Heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding layer 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an ion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

  10. High efficiency, low cost buried contact silicon solar cells

    SciTech Connect

    Honsberg, C.B.; Wenham, S.R.; Ebong, A.

    1994-12-31

    The buried contact (BC) technology has demonstrated both an efficiency and cost advantage over conventional screen printed solar cells. New BC structures, in particular the double sided (DS) BC cell, allow further improvements in cost and efficiency. Improvements in efficiency arise through improved rear surface passivation. Experimental results from DSBC cells using various passivation methods demonstrate that a floating junction (FJ) passivates as well as passivation schemes used with high efficiency cells. 2D analysis and experimental results both show localized defects have prevented FJ passivation from achieving its potential and that optimization of the rear doping or by bifacial operation can improve performance.

  11. Remote Excavation System technology evaluation report: Buried Waste Robotics Program

    SciTech Connect

    Not Available

    1993-09-01

    This document describes the results from the Remote Excavation System demonstration and testing conducted at the Idaho National Engineering Laboratory during June and July 1993. The purpose of the demonstration was to ascertain the feasibility of the system for skimming soil and removing various types of buried waste in a safe manner and within all regulatory requirements, and to compare the performances of manual and remote operation of a backhoe. The procedures and goals of the demonstration were previously defined in The Remote Excavation System Test Plan, which served as a guideline for evaluating the various components of the system and discussed the procedures used to conduct the tests.

  12. Explosive fluid transmitted shock method for mining deeply buried coal

    DOEpatents

    Archibald, Paul B.

    1976-06-22

    A method for recovering coal from deeply buried deposits comprising drilling a hole down into a coal seam, filling the hole with water, and periodically detonating an explosive charge at the bottom of the water-filled hole. The water transmits the explosive shock wave to the face of the coal seam, thereby fracturing and dislodging the coal. The resulting suspension of loose coal in water is then pumped to the surface where the coal is recovered and the water is recycled to the mining operation.

  13. Polarization lidar measurements of honeybees for locating buried landmines

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph A.; Seldomridge, Nathan L.; Dunkle, Dustin L.; Nugent, Paul W.; Spangler, Lee H.; Churnside, James H.; Wilson, James W.; Bromenshenk, Jerry J.; Henderson, Colin B.

    2005-08-01

    A polarization-sensitive lidar was used to detect honeybees trained to locate buried landmines by smell. Lidar measurements of bee location agree reasonably well with maps of chemical plume strength and bee density determined by visual and video counts, indicating that the bees are preferentially located near the explosives and that the lidar identifies the locations of higher bee concentration. The co-polarized lidar backscatter signal is more effective than the cross-polarized signal for bee detection. Laboratory measurements show that the depolarization ratio of scattered light is near zero for bee wings and up to approximately thirty percent for bee bodies.

  14. The thermal regime around buried submarine high-voltage cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Hughes, T. J.; Dix, J. K.; Gernon, T. M.; Henstock, T. J.; Thompson, C. E. L.; Pilgrim, J. A.

    2016-08-01

    The expansion of offshore renewable energy infrastructure and the need for trans-continental shelf power transmission require the use of submarine high-voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70 °C and are typically buried 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the heat flow pattern and potential effects on the sedimentary environments around such anomalously high heat sources in the near-surface sediments are poorly understood. We present temperature measurements from a 2-D laboratory experiment representing a buried submarine HV cable, and identify the thermal regimes generated within typical unconsolidated shelf sediments—coarse silt, fine sand and very coarse sand. We used a large (2 × 2.5 m2) tank filled with water-saturated spherical glass beads (ballotini) and instrumented with a buried heat source and 120 thermocouples to measure the time-dependent 2-D temperature distributions. The observed and corresponding Finite Element Method simulations of the steady state heat flow regimes and normalized radial temperature distributions were assessed. Our results show that the heat transfer and thus temperature fields generated from submarine HV cables buried within a range of sediments are highly variable. Coarse silts are shown to be purely conductive, producing temperature increases of >10 °C up to 40 cm from the source of 60 °C above ambient; fine sands demonstrate a transition from conductive to convective heat transfer between cf. 20 and 36 °C above ambient, with >10 °C heat increases occurring over a metre from the source of 55 °C above ambient; and very coarse sands exhibit dominantly convective heat transfer even at very low (cf. 7 °C) operating temperatures and reaching temperatures of up to 18 °C above ambient at a metre from the source at surface temperatures of only 18 °C. These findings are important for the surrounding near

  15. Thermal transport in amorphous materials: a review

    NASA Astrophysics Data System (ADS)

    Wingert, Matthew C.; Zheng, Jianlin; Kwon, Soonshin; Chen, Renkun

    2016-11-01

    Thermal transport plays a crucial role in performance and reliability of semiconductor electronic devices, where heat is mainly carried by phonons. Phonon transport in crystalline semiconductor materials, such as Si, Ge, GaAs, GaN, etc, has been extensively studied over the past two decades. In fact, study of phonon physics in crystalline semiconductor materials in both bulk and nanostructure forms has been the cornerstone of the emerging field of ‘nanoscale heat transfer’. On the contrary, thermal properties of amorphous materials have been relatively less explored. Recently, however, a growing number of studies have re-examined the thermal properties of amorphous semiconductors, such as amorphous Si. These studies, which included both computational and experimental work, have revealed that phonon transport in amorphous materials is perhaps more complicated than previously thought. For instance, depending on the type of amorphous materials, thermal transport occurs via three types of vibrations: propagons, diffusons, and locons, corresponding to the propagating, diffusion, and localized modes, respectively. The relative contribution of each of these modes dictates the thermal conductivity of the material, including its magnitude and its dependence on sample size and temperature. In this article, we will review the fundamental principles and recent development regarding thermal transport in amorphous semiconductors.

  16. Amorphous boron nitride at high pressure

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2016-06-01

    The pressure-induced phase transformation in hexagonal boron nitrite and amorphous boron nitrite is studied using ab initio molecular dynamics simulations. The hexagonal-to-wurtzite phase transformation is successfully reproduced in the simulation with a transformation mechanism similar to one suggested in experiment. Amorphous boron nitrite, on the other hand, gradually transforms to a high-density amorphous phase with the application of pressure. This phase transformation is irreversible because a densified amorphous state having both sp3 and sp2 bonds is recovered upon pressure release. The high-density amorphous state mainly consists of sp3 bonds and its local structure is quite similar to recently proposed intermediate boron nitrite phases, in particular tetragonal structure (P42/mnm), rather than the known the wurtzite or cubic boron nitrite due to the existence of four membered rings and edge sharing connectivity. On the basis of this finding we propose that amorphous boron nitrite might be best candidate as a starting structure to synthesize the intermediate phase(s) at high pressure and temperature (probably below 800 °C) conditions.

  17. Wear Resistant Amorphous and Nanocomposite Steel Coatings

    SciTech Connect

    Branagan, Daniel James; Swank, William David; Haggard, Delon C; Fincke, James Russell; Sordelet, D.

    2001-10-01

    In this article, amorphous and nanocomposite thermally deposited steel coatings have been formed by using both plasma and high-velocity oxy-fuel (HVOF) spraying techniques. This was accomplished by developing a specialized iron-based composition with a low critical cooling rate (?104 K/s) for metallic glass formation, processing the alloy by inert gas atomization to form micron-sized amorphous spherical powders, and then spraying the classified powder to form coatings. A primarily amorphous structure was formed in the as-sprayed coatings, independent of coating thickness. After a heat treatment above the crystallization temperature (568°C), the structure of the coatings self-assembled (i.e., devitrified) into a multiphase nanocomposite microstructure with 75 to 125 nm grains containing a distribution of 20 nm second-phase grain-boundary precipitates. Vickers microhardness testing revealed that the amorphous coatings were very hard (10.2 to 10.7 GPa), with further increases in hardness after devitrification (11.4 to 12.8 GPa). The wear characteristics of the amorphous and nanocomposite coatings were determined using both two-body pin-on-disk and three-body rubber wheel wet-slurry sand tests. The results indicate that the amorphous and nanocomposite steel coatings are candidates for a wide variety of wear-resistant applications.

  18. Neutron irradiation induced amorphization of silicon carbide

    NASA Astrophysics Data System (ADS)

    Snead, L. L.; Hay, J. C.

    1999-07-01

    This paper provides the properties of bulk stoichiometric silicon carbide which has been amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60°C to a total fast neutron fluence of 2.6 × 10 25 n/m 2. Amorphization was seen in both materials as evidenced by TEM, electron diffraction and X-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the amorphized CVD SiC. Using measured thermal conductivity data for the CVD SiC sample, the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than ˜125°C.

  19. Sexual and Overall Quality of Life Improvements After Surgical Correction of "Buried Penis".

    PubMed

    Hughes, Duncan B; Perez, Edgar; Garcia, Ryan M; Aragón, Oriana R; Erdmann, Detlev

    2016-05-01

    "Buried penis" is an increasing burden in our population with many possible etiologies. Although surgical correction of buried penis can be rewarding and successful for the surgeon, the psychological and functional impact of buried penis on the patient is less understood. The study's aim was to evaluate the sexual satisfaction and overall quality of life before and after buried penis surgery in a single-surgeon's patient population using a validated questionnaire (Changes in Sexual Functioning Questionnaire short-form). Using Likert scales generated from the questionnaire and 1-tailed paired t test analysis, we found that there was significantly improved sexual function after correction of a buried penis. Variables individually showed that there was significant improvement with sexual pleasure, urinating, and with genital hygiene postoperatively. There were no significant differences concerning frequency of pain with orgasms. Surgical correction of buried penis significantly improves the functional, sexual, and psychological aspects of patient's lives.

  20. Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program

    SciTech Connect

    Stapp, D.C.

    1993-01-01

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  1. Amorphous calcium (ortho)phosphates.

    PubMed

    Dorozhkin, Sergey V

    2010-12-01

    Amorphous calcium phosphates (ACPs) represent a unique class of biomedically relevant calcium orthophosphate salts, having variable chemical but essentially identical glass-like physical properties, in which there is neither translational nor orientational long-range ordering of the atomic positions. Normally, ACPs are the first solid phases, precipitated after a rapid mixing of aqueous solutions containing ions of Ca(2+) and PO₄³⁻; however, other production techniques are known. Interestingly, ACPs prepared by wet-chemical techniques were found to have a relatively constant chemical composition over a relatively wide range of preparation conditions, which suggests the presence of a well-defined local structural unit, presumably with the structure of Ca₉(PO₄)₆ - so-called Posner cluster. However, the presence of similar clusters in ACPs produced by other techniques remains uncertain. All ACPs are thermodynamically unstable compounds and, unless stored in dry conditions or doped by stabilizers, spontaneously tend to transform to crystalline calcium orthophosphates, mainly to calcium apatites. This solution instability of ACPs and their easy transformation to crystalline phases are of a great biological relevance. Specifically, the initiating role ACPs play in matrix vesicle biomineralization raises the importance of ACPs from a mere laboratory curiosity to that of a key intermediate in skeletal calcification. In addition, due to significant chemical and structural similarities with calcified mammalian tissues, as well as excellent biocompatibility and bioresorbability, all types of ACPs are very promising candidates for the manufacture of artificial bone grafts. This review summarizes the current knowledge on the occurrence, preparation, composition, structure, major properties and biomedical applications of ACPs. To assist readers in looking for the specific details on ACPs, a great number of references have been collected and systematized. Copyright

  2. Beam and shell modes of buckling of buried pipes induced by compressive ground failure

    SciTech Connect

    Chiou, Y.J.; Chi, S.Y.

    1995-12-31

    The buckling of buried pipeline induced by compressive ground failure was investigated. Both the beam mode of buckling and local shell mode of buckling, and their interactions were studied. The pipeline response was analyzed numerically. The results agree qualitatively with past researches and possess satisfactory comparisons with actual case histories. The relations of critical buried depth versus ratio of pipe diameter to thickness for buried pipe with different imperfections and various soil foundations were established.

  3. Dynamic model of open shell structures buried in poroelastic soils

    NASA Astrophysics Data System (ADS)

    Bordón, J. D. R.; Aznárez, J. J.; Maeso, O.

    2017-08-01

    This paper is concerned with a three-dimensional time harmonic model of open shell structures buried in poroelastic soils. It combines the dual boundary element method (DBEM) for treating the soil and shell finite elements for modelling the structure, leading to a simple and efficient representation of buried open shell structures. A new fully regularised hypersingular boundary integral equation (HBIE) has been developed to this aim, which is then used to build the pair of dual BIEs necessary to formulate the DBEM for Biot poroelasticity. The new regularised HBIE is validated against a problem with analytical solution. The model is used in a wave diffraction problem in order to show its effectiveness. It offers excellent agreement for length to thickness ratios greater than 10, and relatively coarse meshes. The model is also applied to the calculation of impedances of bucket foundations. It is found that all impedances except the torsional one depend considerably on hydraulic conductivity within the typical frequency range of interest of offshore wind turbines.

  4. Probing Molecular Organization and Electronic Dynamics at Buried Organic Interfaces

    NASA Astrophysics Data System (ADS)

    Roberts, Sean

    2015-03-01

    Organic semiconductors are a promising class of materials due to their ability to meld the charge transport capabilities of semiconductors with many of the processing advantages of plastics. In thin film organic devices, interfacial charge transfer often comprises a crucial step in device operation. As molecular materials, the density of states within organic semiconductors often reflect their intermolecular organization. Truncation of the bulk structure of an organic semiconductor at an interface with another material can lead to substantial changes in the density of states near the interface that can significantly impact rates for interfacial charge and energy transfer. Here, we will present the results of experiments that utilize electronic sum frequency generation (ESFG) to probe buried interfaces in these materials. Within the electric dipole approximation, ESFG is only sensitive to regions of a sample that experience a breakage of symmetry, which occurs naturally at material interfaces. Through modeling of signals measured for thin organic films using a transfer matrix-based formalism, signals from buried interfaces between two materials can be isolated and used to uncover the interfacial density of states.

  5. Preliminary observations of arthropods associated with buried carrion on Oahu.

    PubMed

    Rysavy, Noel M; Goff, M Lee

    2015-03-01

    Several studies in Hawaii have focused on arthropod succession and decomposition patterns of surface remains, but the current research presents the first study to focus on shallow burials in this context. Three domestic pig carcasses (Sus scrofa L.) were buried at the depths of 20-40 cm in silty clay loam soil on an exposed ridge on the leeward side of the volcanically formed Koolau Mountain Range. One carcass was exhumed after 3 weeks, another after 6 weeks, and the last carcass was exhumed after 9 weeks. An inventory of arthropod taxa present on the carrion and in the surrounding soil and observations pertaining to decomposition were recorded at each exhumation. The longer the carrion was buried, the greater the diversity of arthropod species that were recovered from the remains. Biomass loss was calculated to be 49% at the 3-week interval, 56% at the 6-week interval, and 59% at the 9-week interval.

  6. Buried Impact Basins and the Earliest History of Mars

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    2003-01-01

    The "Quasi-Circular Depressions" (QCDs) seen in MOLA data which have little or no visible appearance in image data have been interpreted as buried impact basins on Mars. These have important implications for the age of the lowland crust, what mechanisms could produce the crustal dichotomy, and the existence of crust older than the oldest observed surface units on Mars. A global survey of large QCDs using high resolution MOLA data now available has provided further details of the earliest history of Mars. The lowlands are of Early Noachian age, slightly younger than the buried highlands and definitely older than the exposed highland surface. A depopulation of large visible basins at diameters 800 to 1300 km suggests some global scale event early in martian history, maybe related to the formation of the lowlands and/or the development of Tharsis. A suggested early disappearance of the global magnetic field can be placed within a temporal sequence of formation of the very largest impact basins.

  7. Instrumentation for monitoring buried pipe behavior during backfilling

    SciTech Connect

    McGrath, T.J.; Selig, E.T.; Webb, M.C.

    1999-07-01

    An extensive instrumentation plan was devised to monitor buried pipe behavior, soil behavior and pipe-soil interaction during backfilling. The emphasis of the instrumentation plan was to monitor these parameters under different installation techniques without impeding construction operations. Different types and sizes of pipe were selected for installation in trenches excavated in undisturbed in situ soil conditions. Installation variables included in situ soil conditions, trench widths, backfill material (including controlled low strength material), haunching effort, and compaction methods. A total of fourteen tests, each including reinforced concrete, corrugated steel, and corrugated HDPE, were conducted. Eleven of the installations were conducted with 900 mm inside diameter pipe and three with 1,500 mm inside diameter pipe. The pipes were buried to a cover depth of 1.2 m. Measurements of pipe shape, pipe strains, pipe-soil interface pressures, soil density, soil stresses, and soil strains were collected. Pipe shape changes were measured by a custom built profilometer. Custom designed bending beam pressure transducers were used in the steel pipe to measure interface pressures. Most of the instrumentation performed well and measured results were within the range expected. Pipe-soil interaction effects were effectively measured with the instruments selected. Pipe shape changes were a very valuable parameter for investigating pipe-soil interaction.

  8. Sensor System Fo4r Buried Waste Containment Sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine

    2003-11-18

    A sensor system for a buried waste containment site having a bottom wall barrier and sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  9. Sensor System Fo4r Buried Waste Containment Sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine

    2005-09-27

    A sensor system for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  10. Buried Impact Basins and the Earliest History of Mars

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    2003-01-01

    The "Quasi-Circular Depressions" (QCDs) seen in MOLA data which have little or no visible appearance in image data have been interpreted as buried impact basins on Mars. These have important implications for the age of the lowland crust, what mechanisms could produce the crustal dichotomy, and the existence of crust older than the oldest observed surface units on Mars. A global survey of large QCDs using high resolution MOLA data now available has provided further details of the earliest history of Mars. The lowlands are of Early Noachian age, slightly younger than the buried highlands and definitely older than the exposed highland surface. A depopulation of large visible basins at diameters 800 to 1300 km suggests some global scale event early in martian history, maybe related to the formation of the lowlands and/or the development of Tharsis. A suggested early disappearance of the global magnetic field can be placed within a temporal sequence of formation of the very largest impact basins.

  11. Full-scale retrieval of simulated buried transuranic waste

    SciTech Connect

    Valentich, D.J.

    1993-09-01

    This report describes the results of a field test conducted to determine the effectiveness of using conventional type construction equipment for the retrieval of buried transuranic (TRU) waste. A cold (nonhazardous and nonradioactive) test pit (1,100 yd{sup 3} volume) was constructed with boxes and drums filled with simulated waste materials, such as metal, plastic, wood, concrete, and sludge. Large objects, including truck beds, tanks, vaults, pipes, and beams, were also placed in the pit. These materials were intended to simulate the type of wastes found in TRU buried waste pits and trenches. A series of commercially available equipment items, such as excavators and tracked loaders outfitted with different end effectors, were used to remove the simulated waste. Work was performed from both the abovegrade and belowgrade positions. During the demonstration, a number of observations, measurements, and analyses were performed to determine which equipment was the most effective in removing the waste. The retrieval rates for the various excavation techniques were recorded. The inherent dust control capabilities of the excavation methods used were observed. The feasibility of teleoperating reading equipment was also addressed.

  12. Sub-critical insonification of buried elastic shells

    NASA Astrophysics Data System (ADS)

    Veljkovic, Irena; Schmidt, Henrik

    2002-11-01

    In a shallow water environment a high frequency high grazing angle mine-hunting sonar approach is vastly limited by the coverage rate, making the detection and classification of buried objects using subcritical grazing incidence an attractive alternative. One of the central issues in mine countermeasurements regarding the physics of scattering from spherical shells is the isolation and the analysis of the resonant excitations of the system distinguishing the manmade elastic targets from rocks or other clutter. Burial of an elastic target in the seabed results in a variety of modifications to the scattered response caused by different physical mechanisms, geometric constrains, and intrinsic sediment properties. The aim of this research is to identify, analyze, and explain the fundamental effects of the sediment and the proximity of the seabed interface on the scattering of sound from elastic spherical shells insonified using low frequencies at subcritical incident angles. A new, comprehensive understanding of the goats98 experimental data was obtained distinguishing the effects of the acoustics environment from the resonant signature of a buried elastic target. To achieve this and to further investigate the more intricate details of the scattering process, a numerically improved, OASES-3D modeling framework was used. [Work supported by ONR.

  13. Imaging and controlling plasmonic interference fields at buried interfaces

    PubMed Central

    Lummen, Tom T. A.; Lamb, Raymond J.; Berruto, Gabriele; LaGrange, Thomas; Dal Negro, Luca; García de Abajo, F. Javier; McGrouther, Damien; Barwick, B.; Carbone, F.

    2016-01-01

    Capturing and controlling plasmons at buried interfaces with nanometre and femtosecond resolution has yet to be achieved and is critical for next generation plasmonic devices. Here we use light to excite plasmonic interference patterns at a buried metal–dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is followed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at ∼0.3 times the speed of light, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. This work, demonstrating dynamical imaging with PINEM, paves the way for the femtosecond and nanometre visualization and control of plasmonic fields in advanced heterostructures based on novel two-dimensional materials such as graphene, MoS2, and ultrathin metal films. PMID:27725670

  14. Analyses of SRS waste glass buried in granite in Sweden and salt in the United States

    SciTech Connect

    Williams, J.P.; Wicks, G.G.; Clark, D.E.; Lodding, A.R.

    1991-12-31

    Simulated Savannah River Site (SRS) waste glass forms have been buried in the granite geology of the Stirpa mine in Sweden for two years. Analyses of glass surfaces provided a measure of the performance of the waste glasses as a function of time. Similar SRS waste glass compositions have also been buried in salt at the WIPP facility in Carlsbad, New Mexico for a similar time period. Analyses of the SRS waste glasses buried in-situ in granite will be presented and compared to the performance of these same compositions buried in salt at WIPP.

  15. Analyses of SRS waste glass buried in granite in Sweden and salt in the United States

    SciTech Connect

    Williams, J.P. ); Wicks, G.G. ); Clark, D.E. ); Lodding, A.R. )

    1991-01-01

    Simulated Savannah River Site (SRS) waste glass forms have been buried in the granite geology of the Stirpa mine in Sweden for two years. Analyses of glass surfaces provided a measure of the performance of the waste glasses as a function of time. Similar SRS waste glass compositions have also been buried in salt at the WIPP facility in Carlsbad, New Mexico for a similar time period. Analyses of the SRS waste glasses buried in-situ in granite will be presented and compared to the performance of these same compositions buried in salt at WIPP.

  16. Stabilization of ancient organic matter in deep buried paleosols

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, E.; Chaopricha, N. T.; Mueller, C.; Diefendorf, A. F.; Plante, A. F.; Grandy, S.; Mason, J. A.

    2012-12-01

    Buried soils representing ancient surface horizons can contain large organic carbon reservoirs that may interact with the atmosphere if exposed by erosion, road construction, or strip mining. Paleosols in long-term depositional sites provide a unique opportunity for studying the importance of different mechanisms on the persistence of organic matter (OM) over millennial time-scales. We report on the chemistry and bioavailability of OM stored in the Brady soil, a deeply buried (7 m) paleosol in loess deposits of southwestern Nebraska, USA. The Brady Soil developed 9,000-13,500 years ago during a time of warming and drying. The Brady soil represents a dark brown horizon enriched in C relative to loess immediately above and below. Spanning much of the central Great Plains, this buried soil contains large C stocks due to the thickness of its A horizon (0.5 to 1 m) and wide geographic extent. Our research provides a unique perspective on long-term OM stabilization in deep soils using multiple analytical approaches. Soils were collected from the Brady soil A horizon (at 7 m depth) and modern surface A horizons (0-15 cm) at two sites for comparison. Soils were separated by density fractionation using 1.85 g ml-1 sodium polytungstate into: free particulate organic matter (fPOM) and aggregate-occluded (oPOM) of two size classes (large: >20 μm, and small: < 20 μm). The remaining dense fraction was separated into sand, silt, and clay size fractions. The distribution and age of C among density and particle-size fractions differed between surface and Brady soils. We isolated the source of the characteristic dark coloring of the Brady soil to the oPOM-small fraction, which also contained 20% of the total organic C pool in the Brady soil. The oPOM-small fraction and the bulk soil in the middle of the Brady A horizon had 14C ages of 10,500-12,400 cal yr BP, within the time that the soil was actively forming at the land surface. Surface soils showed modern ages. Lipid analyses of

  17. Electrons and phonons in amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Prasai, Kiran; Biswas, Parthapratim; Drabold, D. A.

    2016-07-01

    The coupling between lattice vibrations and electrons is one of the central concepts of condensed matter physics. The subject has been deeply studied for crystalline materials, but far less so for amorphous and glassy materials, which are among the most important for applications. In this paper, we explore the electron-lattice coupling using current tools of a first-principles computer simulation. We choose three materials to illustrate the phenomena: amorphous silicon (a-Si), amorphous selenium (a-Se) and amorphous gallium nitride (a-GaN). In each case, we show that there is a strong correlation between the localization of electron states and the magnitude of thermally induced fluctuations in energy eigenvalues obtained from the density-functional theory (i.e. Kohn-Sham eigenvalues). We provide a heuristic theory to explain these observations. The case of a-GaN, a topologically disordered partly ionic insulator, is distinctive compared to the covalent amorphous examples. Next, we explore the consequences of changing the charge state of a system as a proxy for tracking photo-induced structural changes in the materials. Where transport is concerned, we lend insight into the Meyer-Neldel compensation rule and discuss a thermally averaged Kubo-Greenwood formula as a means to estimate electrical conductivity and especially its temperature dependence. We close by showing how the optical gap of an amorphous semiconductor can be computationally engineered with the judicious use of Hellmann-Feynman forces (associated with a few defect states) using molecular dynamics simulations. These forces can be used to close or open an optical gap, and identify a structure with a prescribed gap. We use the approach with plane-wave density functional methods to identify a low-energy amorphous phase of silicon including several coordination defects, yet with a gap close to that of good quality a-Si models.

  18. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOEpatents

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  19. Amorphous Silicon Based Neutron Detector

    SciTech Connect

    Xu, Liwei

    2004-12-12

    Various large-scale neutron sources already build or to be constructed, are important for materials research and life science research. For all these neutron sources, neutron detectors are very important aspect. However, there is a lack of a high-performance and low-cost neutron beam monitor that provides time and temporal resolution. The objective of this SBIR Phase I research, collaboratively performed by Midwest Optoelectronics, LLC (MWOE), the University of Toledo (UT) and Oak Ridge National Laboratory (ORNL), is to demonstrate the feasibility for amorphous silicon based neutron beam monitors that are pixilated, reliable, durable, fully packaged, and fabricated with high yield using low-cost method. During the Phase I effort, work as been focused in the following areas: 1) Deposition of high quality, low-defect-density, low-stress a-Si films using very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) at high deposition rate and with low device shunting; 2) Fabrication of Si/SiO2/metal/p/i/n/metal/n/i/p/metal/SiO2/ device for the detection of alpha particles which are daughter particles of neutrons through appropriate nuclear reactions; and 3) Testing of various devices fabricated for alpha and neutron detection; As the main results: · High quality, low-defect-density, low-stress a-Si films have been successfully deposited using VHF PECVD on various low-cost substrates; · Various single-junction and double junction detector devices have been fabricated; · The detector devices fabricated have been systematically tested and analyzed. · Some of the fabricated devices are found to successfully detect alpha particles. Further research is required to bring this Phase I work beyond the feasibility demonstration toward the final prototype devices. The success of this project will lead to a high-performance, low-cost, X-Y pixilated neutron beam monitor that could be used in all of the neutron facilities worldwide. In addition, the technologies

  20. Consecutively Preparing D-Xylose, Organosolv Lignin, and Amorphous Ultrafine Silica from Rice Husk

    PubMed Central

    Zhang, Hongxi; Ding, Xuefeng; Wang, Zichen; Zhao, Xu

    2014-01-01

    Rice husk is an abundant agricultural by-product reaching the output of 80 million tons annually in the world. The most common treatment method of rice husk is burning or burying, which caused serious air pollution and resource waste. In order to solve this problem, a new method is proposed to comprehensively utilize the rice husk in this paper. Firstly, the D-xylose was prepared from the semicellulose via dilute acid hydrolysis. Secondly, the lignin was separated via organic solvent pulping from the residue. Finally, the amorphous ultrafine silica was prepared via pyrolysis of the residue produced in the second process. In this way, the three main contents of rice husk (semicellulose, lignin, and silica) are consecutively converted to three fine chemicals, without solid waste produced. The yields of D-xylose and organosolv lignin reach 58.2% and 58.5%, respectively. The purity and specific surface of amorphous ultrafine silica reach 99.92% and 225.20 m2/g. PMID:25140120

  1. Consecutively preparing d-xylose, organosolv lignin, and amorphous ultrafine silica from rice husk.

    PubMed

    Zhang, Hongxi; Ding, Xuefeng; Wang, Zichen; Zhao, Xu

    2014-01-01

    Rice husk is an abundant agricultural by-product reaching the output of 80 million tons annually in the world. The most common treatment method of rice husk is burning or burying, which caused serious air pollution and resource waste. In order to solve this problem, a new method is proposed to comprehensively utilize the rice husk in this paper. Firstly, the D-xylose was prepared from the semicellulose via dilute acid hydrolysis. Secondly, the lignin was separated via organic solvent pulping from the residue. Finally, the amorphous ultrafine silica was prepared via pyrolysis of the residue produced in the second process. In this way, the three main contents of rice husk (semicellulose, lignin, and silica) are consecutively converted to three fine chemicals, without solid waste produced. The yields of D-xylose and organosolv lignin reach 58.2% and 58.5%, respectively. The purity and specific surface of amorphous ultrafine silica reach 99.92% and 225.20 m(2)/g.

  2. Novel Internal Friction of Amorphous Solids

    NASA Astrophysics Data System (ADS)

    Liu, Xiao

    1998-03-01

    Owing to the great sensitivity of the double-paddle oscillators, we have recently measured the low-temperature internal friction of amorphous silicon films (X. Liu, B. E. White, Jr., R. O. Pohl, E. Iwanizcko, K. M. Jones, A. H. Mahan, B. N. Nelson, R. S. Crandall, S. Veprek, Phys. Rev. Lett. 78), 4418 (1997). While e-beam evaporation, sputtering, or Si^+ ion implantation produce a-Si films with similar tunneling states as in all amorphous solids, hydrogenated a-Si films with 1 at.% H prepared by hot-wire chemical vapor deposition show no sign of any significant low energy excitations. This observation offers an exciting opportunity to study the structural origin of the low energy excitations common to amorphous solids. A possible explanation is that in the hydrogenated films the amorphous structure is closer to the fourfold coordinated continuous random network expected in amorphous Si, and thus the lattice is more constrained, resulting in the absence of tunneling states.

  3. SURVIVAL OF AMORPHOUS WATER ICE ON CENTAURS

    SciTech Connect

    Guilbert-Lepoutre, Aurelie

    2012-10-01

    Centaurs are believed to be Kuiper Belt objects in transition between Jupiter and Neptune before possibly becoming Jupiter family comets. Some indirect observational evidence is consistent with the presence of amorphous water ice in Centaurs. Some of them also display a cometary activity, probably triggered by the crystallization of the amorphous water ice, as suggested by Jewitt and this work. Indeed, we investigate the survival of amorphous water ice against crystallization, using a fully three-dimensional thermal evolution model. Simulations are performed for varying heliocentric distances and obliquities. They suggest that crystallization can be triggered as far as 16 AU, though amorphous ice can survive beyond 10 AU. The phase transition is an efficient source of outgassing up to 10-12 AU, which is broadly consistent with the observations of the active Centaurs. The most extreme case is 167P/CINEOS, which barely crystallizes in our simulations. However, amorphous ice can be preserved inside Centaurs in many heliocentric distance-obliquity combinations, below a {approx}5-10 m crystallized crust. We also find that outgassing due to crystallization cannot be sustained for a time longer than 10{sup 4}-10{sup 4} years, leading to the hypothesis that active Centaurs might have recently suffered from orbital changes. This could be supported by both observations (although limited) and dynamical studies.

  4. Amorphous silicon detectors in positron emission tomography

    SciTech Connect

    Conti, M. Lawrence Berkeley Lab., CA ); Perez-Mendez, V. )

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  5. Detecting buried remains in Florida using ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Schultz, John Joseph

    This research tested the applicability of using ground-penetrating radar (GPR) in Florida to detect buried bodies; and assessed the effect of body size, depth, antenna type, time, and soil type on grave detection. Furthermore, because of the emphasis on decomposition, it was possible to address the role of depth, body size, time, and soil type on decomposition. The site was located in an open pasture, where 20 pig (Sus scrofa) cadavers of two average weights (29.7 and 63.8 kg) were buried at two depths (50 to 60 or 100 to 110 cm). The cadavers were monitored monthly for durations up to 21 months with GPR using 900- and 500-MHz antennae. Two different soil types were used: one composed solely of sand horizons and one composed of sand with clay horizons at approximately 1.00 m. The graves were excavated at the termination of each monitoring period to collect soil samples and score decomposition. Overall, depth was the most significant factor controlling decomposition, followed by time. Body size and soil type were not major factors. Ground-penetrating radar can be a very effective tool for grave detection in Florida. Salient anomalies were produced for the duration of this study due to a strong enough contrast between the skeleton, or decomposing body, and the surrounding soil with that of the undisturbed soil. While cadaver size and time were not major factors in grave detection, soil type and antenna choice were. Although it was possible to detect a decomposing body and a skeleton in both shallow and deep sand graves, it was difficult to image large pig cadavers retaining extensive soft tissue buried in proximity to the clay horizon in as little as six months. The clay masked the contrast of the cadavers by reducing their relative dielectric permittivity. Pig cadaver size was not a major factor in grave detection. The imagery of the 500-MHz antenna was preferred over the higher resolution of the 900-MHz, because the increased detail may result in difficulty

  6. Lunar Radar Scattering from Near-Surface Buried Crater Ejecta

    NASA Astrophysics Data System (ADS)

    Thompson, T. W.; Ustinov, E. A.; Heggy, E.

    2009-12-01

    The Apollo 15, 16, and 17 core tubes show that the uppermost few meters of the lunar regolith are interlaced layers of a fine grained powders and blocky crater ejecta. The layers of crater ejecta have dielectric constants in the range of 7-9 while the fine-grained powders has dielectric constant on the order of 2.7. These differences in dielectric constant, in turn, create radar reflections that are both refracted and reflected back through the space-regolith interface. Note that for a dielectric constant of 2.7 for the lunar regolith, radio waves incident on the lunar surface at the angle of 30-degrees from the normal will propagate in the regolith at an angle of 18-degrees. At the limb, radio waves incident on the lunar surface at an angle near 90-degrees from the normal will propagate in the regolith at an angle of about 37-degrees. These angles are within the range where radar backscatter is in the quasi-specular regime. When these buried crater ejecta layers are modeled using Hagfors’ formulation (Hagfors, 1963), echo powers match the behavior observed for average lunar backscatter at centimeter wavelengths for higher (30° to 90°) angles of incidence. In addition, Hagfors et al. (1965) conducted an experiment where the Moon was illuminated at 23-cm wavelength with circular polarization and the differences were observed in orthogonal linear polarizations. Modeling of these observations and assuming again that the buried crater ejecta scatter in a quasi-specular manner, echo differences in horizontal and vertical linear polarizations are in relatively good agreement with the observations. The data from Chandrayaan Mini-RF radar, which operated at S-Band (13cm) wavelength, and the Lunar Reconnaissance Orbiter (LRO) Mini-RF radar, which is operating at S-Band and X-Band (4-cm) wavelengths, provide an opportunity for a new examination of whether radar backscatter from buried crater ejecta behaves like a quasi-specular scatter. These radars reproduce the

  7. Large-Diameter Visible and Buried Impact Basins on Mars: Implications for age of the Highlands and (Buried) Lowlands and Turn-off of the Global Magnetic Field

    NASA Technical Reports Server (NTRS)

    Frey, Herbert V.

    2003-01-01

    The global populations of visible and buried impact basins less than 200 km diameter revealed by high resolution gridded MOLA indicate: (a) a small (approx. 10) number of very large basins (D=1300-3000km), most of which have remained visible over martian history; (b) a much larger population of smaller basins (D=200-800 km) with many more buried than visible (on images); (c) a depletion of visible basins at intermediate diameters which may be a signature of some global-scale event (formation of the lowlands? origin of Tharsis?); and (d) a crater retention age for the buried lowlands greater than that of the visible highlands but less than that of the total (visible + buried) highlands. Crustal magnetic anomalies are generally not present in the interiors of the largest basins with two exceptions: these two (which appear to be the oldest) may predate the demise of the global magnetic field.

  8. Large-Diameter Visible and Buried Impact Basins on Mars: Implications for Age of the Highlands and (Buried) Lowlands and Turn-Off of the Global Magnetic Field

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    2003-01-01

    The global populations of visible and buried impact basins greater than 200 km diameter revealed by high resolution gridded MOLA indicate: (a) a small (approximately 10) number of very large basins (D=1300-3000km), most of which have remained visible over martian history; (b) a much larger population of smaller basins (D=200-800 km) with many more buried than visible (on images); (c) a depletion of visible basins at intermediate diameters which may be a signature of some global-scale event (formation of the lowlands? origin of Tharsis?); and (d) a crater retention age for the buried lowlands greater than that of the visible highlands but less than that of the total (visible + buried) highlands. Crustal magnetic anomalies are generally not present in the interiors of the largest basins with two exceptions: these two (which appear to be the oldest) may predate the demise of the global magnetic field.

  9. Use of XPS to clarify the Hall coefficient sign variation in thin niobium layers buried in silicon

    NASA Astrophysics Data System (ADS)

    Demchenko, Iraida N.; Lisowski, Wojciech; Syryanyy, Yevgen; Melikhov, Yevgen; Zaytseva, Iryna; Konstantynov, Pavlo; Chernyshova, Maryna; Cieplak, Marta Z.

    2017-03-01

    Si/Nb/Si trilayers formed with 9.5 and 1.3 nm thick niobium layer buried in amorphous silicon were prepared by magnetron sputtering and studied using XPS depth-profile techniques in order to investigate the change of Hall coefficient sign with thickness. The analysis of high-resolution (HR) XPS spectra revealed that the thicker layer sample has sharp top interface and metallic phase of niobium, thus holes dominate the transport. In contrast, the analysis indicates that the thinner layer sample has a Nb-rich mixed alloy formation at the top interface. The authors suggest that the main effect leading to a change of sign of the Hall coefficient for the thinner layer sample (which is negative contrary to the positive sign for the thicker layer sample) may be related to strong boundary scattering enhanced by the presence of silicon ions in the layer close to the interface/s. The depth-profile reconstruction was performed by SESSA software tool confirming that it can be reliably used for quantitative analysis/interpretation of experimental XPS data.

  10. Phase transitions in biogenic amorphous calcium carbonate

    PubMed Central

    Gong, Yutao U. T.; Killian, Christopher E.; Olson, Ian C.; Appathurai, Narayana P.; Amasino, Audra L.; Martin, Michael C.; Holt, Liam J.; Wilt, Fred H.; Gilbert, P. U. P. A.

    2012-01-01

    Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC·H2O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC·H2O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC·H2O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC·H2O in vitro. PMID:22492931

  11. IUE observations of amorphous hot galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, S. A.; Hjellming, M. S.; Gallagher, J. S., III; Hunter, D. A.

    1985-01-01

    Blue amorphous galaxies are star-forming, irregularlike systems which lack the spatially distinct OB stellar groups that are characteristic of most late-type galaxies. In order to better understand the nature of star-formation processes in these unusual galaxies, short-wavelength IUE spectra of the amorphous galaxies NGC 1705 and NGC 1800 have been obtained. It is found that NGC 1705 contains a normal mix of OB stars, which is consistent with the nearly constant recent star-formation rate inferred from new optical data. NGC 1800 is likely to have similar properties, and blue galaxies with amorphous structures thus do not show evidence for anomalies in stellar populations. The UV spectra of these galaxies and a variety of other hot extragalactic stellar systems in fact have similar characteristics, which suggests OB stellar populations are often homogeneous in their properties.

  12. Investigation of superconducting interactions and amorphous semiconductors

    NASA Technical Reports Server (NTRS)

    Janocko, M. A.; Jones, C. K.; Gavaler, J. R.; Deis, D. W.; Ashkin, M.; Mathur, M. P.; Bauerle, J. E.

    1972-01-01

    Research papers on superconducting interactions and properties and on amorphous materials are presented. The search for new superconductors with improved properties was largely concentrated on the study of properties of thin films. An experimental investigation of interaction mechanisms revealed no new superconductivity mechanism. The properties of high transition temperature, type 2 materials prepared in thin film form were studied. A pulsed field solenoid capable of providing fields in excess of 300 k0e was developed. Preliminary X-ray measurements were made of V3Si to determine the behavior of cell constant deformation versus pressure up to 98 kilobars. The electrical properties of amorphous semiconducting materials and bulk and thin film devices, and of amorphous magnetic materials were investigated for developing radiation hard, inexpensive switches and memory elements.

  13. Amorphous metallic films in silicon metallization systems

    NASA Astrophysics Data System (ADS)

    So, F.; Kolawa, E.; Nicolet, M. A.

    1985-06-01

    Diffusion barrier research was focussed on lowering the chemical reactivity of amorphous thin films on silicon. An additional area of concern is the reaction with metal overlays such as aluminum, silver, and gold. Gold was included to allow for technology transfer to gallium arsenide PV cells. Amorphous tungsten nitride films have shown much promise. Stability to annealing temperatures of 700, 800, and 550 C were achieved for overlays of silver, gold, and aluminum, respectively. The lower results for aluminum were not surprising because there is an eutectic that can form at a lower temperature. It seems that titanium and zirconium will remove the nitrogen from a tungsten nitride amorphous film and render it unstable. Other variables of research interest were substrate bias and base pressure during sputtering.

  14. Nanocrystalline silicon/amorphous silicon dioxide superlattices

    SciTech Connect

    Fauchet, P.M.; Tsybeskov, L.; Zacharias, M. |; Hirschman, K. |

    1998-12-31

    Thin layers made of densely packed silicon nanocrystals sandwiched between amorphous silicon dioxide layers have been manufactured and characterized. An amorphous silicon/amorphous silicon dioxide superlattice is first grown by CVD or RF sputtering. The a-Si layers are recrystallized in a two-step procedure (nucleation + growth) for form layers of nearly identical nanocrystals whose diameter is given by the initial a-Si layer thickness. The recrystallization is monitored using a variety of techniques, including TEM, X-Ray, Raman, and luminescence spectroscopies. When the a-Si layer thickness decreases (from 25 nm to 2.5 nm) or the a-SiO{sub 2} layer thickness increases (from 1.5 nm to 6 nm), the recrystallization temperature increases dramatically compared to that of a single a-Si film. The removal of the a-Si tissue present between the nanocrystals, the passivation of the nanocrystals, and their doping are discussed.

  15. Amorphous metallic films in silicon metallization systems

    NASA Technical Reports Server (NTRS)

    So, F.; Kolawa, E.; Nicolet, M. A.

    1985-01-01

    Diffusion barrier research was focussed on lowering the chemical reactivity of amorphous thin films on silicon. An additional area of concern is the reaction with metal overlays such as aluminum, silver, and gold. Gold was included to allow for technology transfer to gallium arsenide PV cells. Amorphous tungsten nitride films have shown much promise. Stability to annealing temperatures of 700, 800, and 550 C were achieved for overlays of silver, gold, and aluminum, respectively. The lower results for aluminum were not surprising because there is an eutectic that can form at a lower temperature. It seems that titanium and zirconium will remove the nitrogen from a tungsten nitride amorphous film and render it unstable. Other variables of research interest were substrate bias and base pressure during sputtering.

  16. Amorphous/epitaxial superlattice for thermoelectric application

    NASA Astrophysics Data System (ADS)

    Ishida, Akihiro; Thao, Hoang Thi Xuan; Shibata, Mamoru; Nakashima, Seisuke; Tatsuoka, Hirokazu; Yamamoto, Hidenari; Kinoshita, Yohei; Ishikiriyama, Mamoru; Nakamura, Yoshiaki

    2016-08-01

    An amorphous/epitaxial superlattice system is proposed for application to thermoelectric devices, and the superlattice based on a PbGeTeS system was prepared by the alternate deposition of PbS and GeTe using a hot wall epitaxy technique. The structure was analyzed by high-resolution transmission electron microscopy (HRTEM) and X-ray analysis, and it was found that the superlattice consists of an epitaxial PbTe-based layer and a GeS-based amorphous layer by the reconstruction of the constituents. A reduction in thermal conductivity due to the amorphous/epitaxial system was confirmed by a 2ω method. Electrical and thermoelectric properties were measured for the samples.

  17. Retrieval of Shape Characteristics for Buried Objects with GPR Monitoring

    NASA Astrophysics Data System (ADS)

    Soldovieri, F.; Comite, D.; Galli, A.; Valerio, G.; Barone, P. M.; Lauro, S. E.; Mattei, E.; Pettinelli, E.

    2012-04-01

    Information retrieval on the location and the geometrical features (dimensions and shape) of buried objects is of fundamental importance in geosciences areas involving environmental protection, mine clearance, archaeological investigations, space and planetary exploration, and so forth. Among the different non-invasive sensing techniques usually employed to achieve this kind of information, those based on ground-penetrating-radar (GPR) instruments are well-established and suitable to the mentioned purposes [1]. In this context, our interest in the present work is specifically focused on testing the potential performance of typical GPR instruments by means of appropriate data processing. It will be shown in particular to what extent the use of a suitable "microwave tomographic approach" [2] is able to furnish a shape estimation of the targets, possibly recognizing different kinds of canonical geometries, even having reduced cross sections and in critical conditions, where the scatterer size is comparable with resolution limits imposed by the usual measurement configurations. Our study starts by obtaining the typical "direct" information from the GPR techniques that is the scattered field in subsurface environments under the form of radargrams. In order to get a wide variety of scenarios for the operating conditions, this goal is achieved by means of two different and independent approaches [3]. One approach is based on direct measurements through an experimental laboratory setup: commercial GPR instruments (typically bistatic configurations operating around 1 GHz frequency range) are used to collect radargram profiles by investigating an artificial basin filled of liquid and/or granular materials (sand, etc.), in which targets (having different constitutive parameters, shape, and dimensions) can be buried. The other approach is based on numerical GPR simulations by means of a commercial CAD electromagnetic tool (CST), whose suitable implementation and data

  18. Solid state television camera (CCD-buried channel), revision 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An all solid state television camera was designed which uses a buried channel charge coupled device (CCD) as the image sensor. A 380 x 488 element CCD array is utilized to ensure compatibility with 525-line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (1) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (2) techniques for the elimination or suppression of CCD blemish effects, and (3) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.

  19. Solid state television camera (CCD-buried channel)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development of an all solid state television camera, which uses a buried channel charge coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array is utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control (i.e., ALC and AGC) techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.

  20. Measure Guideline: Buried and/or Encapsulated Ducts

    SciTech Connect

    Shapiro, C.; Zoeller, W.; Mantha, P.

    2013-08-01

    Buried and/or encapsulated ducts (BEDs) are a class of advanced, energy-efficiency strategies intended to address the significant ductwork thermal losses associated with ducts installed in unconditioned attics. BEDs are ducts installed in unconditioned attics that are covered in loose-fill insulation and/or encapsulated in closed cell polyurethane spray foam insulation. This Measure Guideline covers the technical aspects of BEDs as well as the advantages, disadvantages, and risks of BEDs compared to other alternative strategies. This guideline also provides detailed guidance on installation of BEDs strategies in new and existing homes through step-by-step installation procedures. Some of the procedures presented here, however, require specialized equipment or expertise. In addition, some alterations to duct systems may require a specialized license.

  1. External pipeline coating selection for new and existing buried pipelines

    SciTech Connect

    Brown, M.D.

    1996-12-31

    The majority of existing and new pipelines are externally coated. The opportunity to examine buried pipelines has shown that selection of both shop and over-the-ditch field applied coatings has resulted in many failures. Coating selection in 19896 has become more complex because of the abundance of available products. Not only are there many available coating types but there are also competitive products within each category. The safe approach is to select a coating that will perform well under the most severe conditions but this approach can be very costly and often a lesser coating is selected with the realization that it affects the risk of failure. This paper addresses the criteria that need to be considered during coating selection and provides an outline for the decision making process. Examples are used to illustrate the effect of different factors on coating performance.

  2. Narrow linewidth operation of buried-heterostructure photonic crystal nanolaser.

    PubMed

    Kim, Jimyung; Shinya, Akihiko; Nozaki, Kengo; Taniyama, Hideaki; Chen, Chin-Hui; Sato, Tomonari; Matsuo, Shinji; Notomi, Masaya

    2012-05-21

    We investigate the spectral linewidth of a monolithic photonic crystal nanocavity laser. The nanocavity laser is based on a buried heterostructure cavity in which an ultra-small InGaAsP active region is embedded in an InP photonic crystal. Although it was difficult to achieve narrow linewidth operation in previously reported photonic crystal nanocavity lasers, we have successfully demonstrated a linewidth of 143.5 MHz, which is far narrower than the cold cavity linewidth and the narrowest value yet reported for nanolasers and photonic crystal lasers. The narrow linewidth is accompanied by a low power consumption and an ultrasmall footprint, thus making this particular laser especially suitable for use as an integrated multi-purpose sensor.

  3. Modeling the GPR response of leaking, buried pipes

    SciTech Connect

    Powers, M.H.; Olhoeft, G.R.

    1996-11-01

    Using a 2.5D, dispersive, full waveform GPR modeling program that generates complete GPR response profiles in minutes on a Pentium PC, the effects of leaking versus non-leaking buried pipes are examined. The program accounts for the dispersive, lossy nature of subsurface materials to GPR wave propagation, and accepts complex functions of dielectric permittivity and magnetic permeability versus frequency through Cole-Cole parameters fit to laboratory data. Steel and plastic pipes containing a DNAPL chlorinated solvent, an LNAPL hydrocarbon, and natural gas are modeled in a surrounding medium of wet, moist, and dry sand. Leaking fluids are found to be more detectable when the sand around the pipes is fully water saturated. The short runtimes of the modeling program and its execution on a PC make it a useful tool for exploring various subsurface models.

  4. Ground-penetrating radar for buried mine detection

    SciTech Connect

    Sargis, P.D.; Lee, F.D.; Fulkerson, E.S.; McKinley, B.J.; Aimonetti, W.D.

    1994-04-01

    Lawrence Livermore National Laboratory (LLNL) is developing an ultra-wideband, side-looking, ground-penetrating impulse radar system that can be mounted on an airborne platform for the purpose of locating buried mines. The radar system is presently mounted on an 18-meter boom. The authors have successfully imaged a minefield located at the Nevada Test Site. The minefield consists of real and surrogate mines of various materials and sizes placed in natural vegetation. Some areas have been cleared for non-cluttered studies. A technical description of the system is presented, describing the wideband antennas, the video pulser, the receiver hardware, and the data acquisition system. The receiver and data acquisition hardware are off-the-shelf components. The data was processed using LLNL-developed image reconstruction software, and has been registered against the ground truth data. Images showing clearly visible mines, surface reference markers, and ground clutter are presented.

  5. The Phagocytosis and Toxicity of Amorphous Silica

    PubMed Central

    Costantini, Lindsey M.; Gilberti, Renée M.; Knecht, David A.

    2011-01-01

    Background Inhalation of crystalline silica is known to cause an inflammatory reaction and chronic exposure leads to lung fibrosis and can progress into the disease, silicosis. Cultured macrophages bind crystalline silica particles, phagocytose them, and rapidly undergo apoptotic and necrotic death. The mechanism by which particles are bound and internalized and the reason particles are toxic is unclear. Amorphous silica has been considered to be a less toxic form, but this view is controversial. We compared the uptake and toxicity of amorphous silica to crystalline silica. Methodology/Principal Findings Amorphous silica particles are phagocytosed by macrophage cells and a single internalized particle is capable of killing a cell. Fluorescent dextran is released from endo-lysosomes within two hours after silica treatment and Caspase-3 activation occurs within 4 hours. Interestingly, toxicity is specific to macrophage cell lines. Other cell types are resistant to silica particle toxicity even though they internalize the particles. The large and uniform size of the spherical, amorphous silica particles allowed us to monitor them during the uptake process. In mCherry-actin transfected macrophages, actin rings began to form 1-3 minutes after silica binding and the actin coat disassembled rapidly following particle internalization. Pre-loading cells with fluorescent dextran allowed us to visualize the fusion of phagosomes with endosomes during internalization. These markers provided two new ways to visualize and quantify particle internalization. At 37°C the rate of amorphous silica internalization was very rapid regardless of particle coating. However, at room temperature, opsonized silica is internalized much faster than non-opsonized silica. Conclusions/Significance Our results indicate that amorphous and crystalline silica are both phagocytosed and both toxic to mouse alveolar macrophage (MH-S) cells. The pathway leading to apoptosis appears to be similar in both

  6. SEM based overlay measurement between resist and buried patterns

    NASA Astrophysics Data System (ADS)

    Inoue, Osamu; Okagawa, Yutaka; Hasumi, Kazuhisa; Shao, Chuanyu; Leray, Philippe; Lorusso, Gian; Baudemprez, Bart

    2016-03-01

    With the continuous shrink in pattern size and increased density, overlay control has become one of the most critical issues in semiconductor manufacturing. Recently, SEM based overlay of AEI (After Etch Inspection) wafer has been used for reference and optimization of optical overlay (both Image Based Overlay (IBO) and Diffraction Based Overlay (DBO)). Overlay measurement at AEI stage contributes monitor and forecast the yield after formation by etch and calibrate optical measurement tools. however those overlay value seems difficult directly for feedback to a scanner. Therefore, there is a clear need to have SEM based overlay measurements of ADI (After Develop Inspection) wafers in order to serve as reference for optical overlay and make necessary corrections before wafers go to etch. Furthermore, to make the corrections as accurate as possible, actual device like feature dimensions need to be measured post ADI. This device size measurement is very unique feature of CDSEM , which can be measured with smaller area. This is currently possible only with the CD-SEM. This device size measurement is very unique feature of CD-SEM , which can be measured with smaller area. In this study, we assess SEM based overlay measurement of ADI and AEI wafer by using a sample from an N10 process flow. First, we demonstrate SEM based overlay performance at AEI by using dual damascene process for Via 0 (V0) and metal 1 (M1) layer. We also discuss the overlay measurements between litho-etch-litho stages of a triple patterned M1 layer and double pattern V0. Second, to illustrate the complexities in image acquisition and measurement we will measure overlay between M1B resist and buried M1A-Hard mask trench. Finally, we will show how high accelerating voltage can detect buried pattern information by BSE (Back Scattering Electron). In this paper we discuss the merits of this method versus standard optical metrology based corrections.

  7. Surface acoustic wave devices as passive buried sensors

    NASA Astrophysics Data System (ADS)

    Friedt, J.-M.; Rétornaz, T.; Alzuaga, S.; Baron, T.; Martin, G.; Laroche, T.; Ballandras, S.; Griselin, M.; Simonnet, J.-P.

    2011-02-01

    Surface acoustic wave (SAW) devices are currently used as passive remote-controlled sensors for measuring various physical quantities through a wireless link. Among the two main classes of designs—resonator and delay line—the former has the advantage of providing narrow-band spectrum informations and hence appears compatible with an interrogation strategy complying with Industry-Scientific-Medical regulations in radio-frequency (rf) bands centered around 434, 866, or 915 MHz. Delay-line based sensors require larger bandwidths as they consists of a few interdigitated electrodes excited by short rf pulses with large instantaneous energy and short response delays but is compatible with existing equipment such as ground penetrating radar (GPR). We here demonstrate the measurement of temperature using the two configurations, particularly for long term monitoring using sensors buried in soil. Although we have demonstrated long term stability and robustness of packaged resonators and signal to noise ratio compatible with the expected application, the interrogation range (maximum 80 cm) is insufficient for most geology or geophysical purposes. We then focus on the use of delay lines, as the corresponding interrogation method is similar to the one used by GPR which allows for rf penetration distances ranging from a few meters to tens of meters and which operates in the lower rf range, depending on soil water content, permittivity, and conductivity. Assuming propagation losses in a pure dielectric medium with negligible conductivity (snow or ice), an interrogation distance of about 40 m is predicted, which overcomes the observed limits met when using interrogation methods specifically developed for wireless SAW sensors, and could partly comply with the above-mentioned applications. Although quite optimistic, this estimate is consistent with the signal to noise ratio observed during an experimental demonstration of the interrogation of a delay line buried at a depth of 5

  8. Spectral Analysis of Surface Waves to Detect Buried Concrete Conduits

    NASA Astrophysics Data System (ADS)

    Hajiani, P.; Anderson, N.; Rogers, J. D.; Elkrry, A.

    2016-12-01

    The detection of underground cavities is of significant concern to geotechnical engineers working in karst terrain. In spite of the marked progress in nondestructive geophysical methods for detecting shallow underground voids, no unique methodology has emerged that can be applied globally. Various studies have been performed on the use of Rayleigh waves to detect shallow tunnels. In this study, we examined the potential of both Rayleigh and Love waves for detecting subsurface voids. Vertical geophones with Eigen-frequencies of 4.5 Hz, 14 Hz, and 100 Hz were utilized to evaluate Rayleigh waves to resolve near-surface tunnels. Seismic surveys were carried out using horizontal 14 Hz geophones to verify the feasibility of using Love waves to detect shallow tunnels. Two buried conduits of known size and embedment were chosen for the study. One conduit serves as a spillway outfall for an embankment dam, and the other as a low flow outlet for aa flood retention basin. Attenuation analyses of surface waves were performed on all of the data sets to identify locations of the buried concrete conduits. In order to minimize the far-field effects, such as body-wave domination, or low signal-to-noise ratio, it was suggested that we try muting the direct waves, refraction, reflection, air wave, and ambient noise. An amplification of energy on, or in front of the near boundary of the conduits was thereby observed. The muting process greatly reduced the number of false positives. The results of this study not only confirmed previous work, but also displayed the ability of Love waves in detecting the shallow subsurface tunnels or conduits.

  9. Guided wave attenuation in pipes buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Cawley, Peter; Lowe, Michael JS

    2015-03-01

    Long-range ultrasonic guided wave testing of pipelines is used routinely for detection of corrosion defects in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipelines that are buried in soil, test ranges tend to be significantly compromised compared to those achieved for pipelines above ground because of the attenuation of the guided wave, due to energy leaking into the embedding soil. The attenuation characteristics of guided wave propagation in a pipe buried in sand are investigated using a full scale experimental rig. The apparatus consists of an 8"-diameter, 6-meters long steel pipe embedded over 3 meters in a rectangular container filled with sand and fitted with an air-bladder for the application of overburden pressure. Measurements of the attenuation of the T(0,1) and L(0,2) guided wave modes over a range of sand conditions, including loose, compacted, water saturated and drained, are presented. Attenuation values are found to be in the range of 1-5.5 dB/m. The application of overburden pressure modifies the compaction of the sand and increases the attenuation. The attenuation decreases in the fully water-saturated sand, while it increases in drained sand to values comparable with those obtained for the compacted sand. The attenuation behavior of the torsional guided wave mode is found not to be captured by a uniform soil model; comparison with predictions obtained with the Disperse software suggest that this is likely to be due to a layer of sand adhering to the surface of the pipe.

  10. Buried paleosols of the Upper Paleolithic multilayered site Kostenki-1

    NASA Astrophysics Data System (ADS)

    Aparin, B. F.; Platonova, N. I.; Sukhacheva, E. Yu.; Dudin, A. E.

    2016-12-01

    The morphology and chemical and physicochemical properties of paleosols buried at the Upper Paleolithic multilayered site Kostenki-1 in Kostenki-Borshchevo district of Voronezh oblast were studied. Four in situ paleosols formed 20-40(45) ka ago were separated in the archaeological excavation. Together with the surface soils, they characterized two different epochs of pedogenesis—the interstadial and interglacial (Holocene) epochs—and three shorter cycles of pedogenesis. The traces of human occupation in the studied hollow in the Late Paleolithic were found in the layers corresponding to the interstadial epoch. The buried paleosols had a simple horizonation: A(W)-C. A shallow thickness of the soil profiles could be due to relatively short periods of pedogenesis and to the shallow embedding by the carbonate geochemical barrier. The degree of the organic matter humification in the paleosols varied from 0.6 to 1.5, which corresponded to the mean duration of the period of biological activity of 60 to 150 days per year characterizing the climatic conditions of the tundra, taiga, forest-steppe, and steppe natural zones. In the excavation Kostenki-1 (2004-2005), soil-sediment sequences composed of five series of lithological layers with soil layers on top of them were found. Their deposition proceeded in two phases—the water phase and the aerial phase—that predetermined the morphology and composition of the soil-sediment sequences. The history of sediment accumulation in the studied hollow consisted of five stages. Similar morphologies and compositions of the soil-sediment sequences corresponding to these stages attest to the cyclic pattern of their development. The stages of sedimentation and soil formation corresponded to cyclic climate fluctuations with changes in the temperature and moisture conditions. A comparative analysis of the morphology and properties of the paleosols and soil-sediment sequences made it possible to characterize the environmental

  11. 49 CFR 192.459 - External corrosion control: Examination of buried pipeline when exposed.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Examination of buried... Requirements for Corrosion Control § 192.459 External corrosion control: Examination of buried pipeline when... portion must be examined for evidence of external corrosion if the pipe is bare, or if the coating...

  12. 49 CFR 192.459 - External corrosion control: Examination of buried pipeline when exposed.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Examination of buried... Requirements for Corrosion Control § 192.459 External corrosion control: Examination of buried pipeline when... portion must be examined for evidence of external corrosion if the pipe is bare, or if the coating...

  13. 49 CFR 192.459 - External corrosion control: Examination of buried pipeline when exposed.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Examination of buried... Requirements for Corrosion Control § 192.459 External corrosion control: Examination of buried pipeline when... portion must be examined for evidence of external corrosion if the pipe is bare, or if the coating is...

  14. 49 CFR 192.459 - External corrosion control: Examination of buried pipeline when exposed.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Examination of buried... Requirements for Corrosion Control § 192.459 External corrosion control: Examination of buried pipeline when... portion must be examined for evidence of external corrosion if the pipe is bare, or if the coating is...

  15. 49 CFR 192.459 - External corrosion control: Examination of buried pipeline when exposed.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Examination of buried... Requirements for Corrosion Control § 192.459 External corrosion control: Examination of buried pipeline when... portion must be examined for evidence of external corrosion if the pipe is bare, or if the coating is...

  16. 75 FR 32313 - Specifications and Drawings for Construction Direct Buried Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... Rural Utilities Service 7 CFR Part 1755 Specifications and Drawings for Construction Direct Buried Plant... Construction of Direct Buried Plant (Form 515a). The revised specification will include new construction units... to Michele Brooks, Director, Program Development and Regulatory Analysis, USDA-Rural...

  17. 75 FR 59933 - Specifications and Drawings for Construction of Direct Buried Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... Service 7 CFR Part 1755 Specifications and Drawings for Construction of Direct Buried Plant AGENCY: Rural... Forms, by revising RUS Bulletin 1753F-150, Specifications and Drawings for Construction of Direct Buried Plant (Form 515a). The revised specifications will include new construction units for Fiber-to-the-Home...

  18. Numerical Modeling of Mechanical Behavior for Buried Steel Pipelines Crossing Subsidence Strata

    PubMed Central

    Han, C. J.

    2015-01-01

    This paper addresses the mechanical behavior of buried steel pipeline crossing subsidence strata. The investigation is based on numerical simulation of the nonlinear response of the pipeline-soil system through finite element method, considering large strain and displacement, inelastic material behavior of buried pipeline and the surrounding soil, as well as contact and friction on the pipeline-soil interface. Effects of key parameters on the mechanical behavior of buried pipeline were investigated, such as strata subsidence, diameter-thickness ratio, buried depth, internal pressure, friction coefficient and soil properties. The results show that the maximum strain appears on the outer transition subsidence section of the pipeline, and its cross section is concave shaped. With the increasing of strata subsidence and diameter-thickness ratio, the out of roundness, longitudinal strain and equivalent plastic strain increase gradually. With the buried depth increasing, the deflection, out of roundness and strain of the pipeline decrease. Internal pressure and friction coefficient have little effect on the deflection of buried pipeline. Out of roundness is reduced and the strain is increased gradually with the increasing of internal pressure. The physical properties of soil have a great influence on the mechanical properties of buried pipeline. The results from the present study can be used for the development of optimization design and preventive maintenance for buried steel pipelines. PMID:26103460

  19. Broadband infrared electro-optic modulator having a buried microstrip network

    NASA Technical Reports Server (NTRS)

    Cheo, Peter K. (Inventor); Gilden, Meyer (Inventor)

    1987-01-01

    A microwave infrared modulator having a novel three dimensional structure is presented. The modulator includes a waveguide and metal base with a dielectric wafer buried therebetween. The buried wafer allows for conventional microstrip structures to be employed with larger microstrip electrode dimensions than would otherwise be possible.

  20. Numerical Modeling of Mechanical Behavior for Buried Steel Pipelines Crossing Subsidence Strata.

    PubMed

    Zhang, J; Liang, Z; Han, C J

    2015-01-01

    This paper addresses the mechanical behavior of buried steel pipeline crossing subsidence strata. The investigation is based on numerical simulation of the nonlinear response of the pipeline-soil system through finite element method, considering large strain and displacement, inelastic material behavior of buried pipeline and the surrounding soil, as well as contact and friction on the pipeline-soil interface. Effects of key parameters on the mechanical behavior of buried pipeline were investigated, such as strata subsidence, diameter-thickness ratio, buried depth, internal pressure, friction coefficient and soil properties. The results show that the maximum strain appears on the outer transition subsidence section of the pipeline, and its cross section is concave shaped. With the increasing of strata subsidence and diameter-thickness ratio, the out of roundness, longitudinal strain and equivalent plastic strain increase gradually. With the buried depth increasing, the deflection, out of roundness and strain of the pipeline decrease. Internal pressure and friction coefficient have little effect on the deflection of buried pipeline. Out of roundness is reduced and the strain is increased gradually with the increasing of internal pressure. The physical properties of soil have a great influence on the mechanical properties of buried pipeline. The results from the present study can be used for the development of optimization design and preventive maintenance for buried steel pipelines.

  1. Atomic Bond Deficiency Defects in Amorphous Metals

    NASA Astrophysics Data System (ADS)

    Zhu, Aiwu; Shiflet, Gary J.; Poon, S. Joseph

    2012-10-01

    Atomic bond deficiency (BD) is considered to be characteristic structural defects in amorphous metals. They are the necessary feature of local atomic configurations that facilitate various atomic transports under different driving forces. Compared with vacancies in crystalline solids, they are "small" in terms of their formation energies, volume costs, and elementary steps involved in atomic transport. This article reviews the authors' recent efforts made to analyze how various local configurations containing BD are related to amorphous metal's unique characteristics, such as glass transition, diffusion, shear flow, and structural relaxation.

  2. Neutron scattering studies of amorphous Invar alloys

    SciTech Connect

    Fernandez-Baca, J.A.

    1989-01-01

    This paper reviews recent inelastic neutron scattering experiments performed to study the spin dynamics of two amorphous Invar systems: Fe/sub 100-x/B/sub x/ and Fe/sub 90-x/Ni/sub x/Zr/sub 10/. As in crystalline Invar Fe/sub 65/Ni/sub 35/ and Fe/sub 3/Pt, the excitation of conventional long-wavelength spin waves in these amorphous systems cannot account for the relatively rapid change of their magnetization with temperature. These results are discussed in terms of additional low-lying excitations which apparently have a density of states similar to the spin waves.

  3. Thermal conductivity of sputtered amorphous Ge films

    SciTech Connect

    Zhan, Tianzhuo; Xu, Yibin; Goto, Masahiro; Tanaka, Yoshihisa; Kato, Ryozo; Sasaki, Michiko; Kagawa, Yutaka

    2014-02-15

    We measured the thermal conductivity of amorphous Ge films prepared by magnetron sputtering. The thermal conductivity was significantly higher than the value predicted by the minimum thermal conductivity model and increased with deposition temperature. We found that variations in sound velocity and Ge film density were not the main factors in the high thermal conductivity. Fast Fourier transform patterns of transmission electron micrographs revealed that short-range order in the Ge films was responsible for their high thermal conductivity. The results provide experimental evidences to understand the underlying nature of the variation of phonon mean free path in amorphous solids.

  4. Amorphous graphene: a realization of Zachariasen's glass.

    PubMed

    Kumar, Avishek; Wilson, Mark; Thorpe, M F

    2012-12-05

    Amorphous graphene is a realization of a two-dimensional Zachariasen glass as first proposed 80 years ago. Planar continuous random networks of this archetypal two-dimensional network are generated by two complementary simulation methods. In the first, a Monte Carlo bond switching algorithm is employed to systematically amorphize a crystalline graphene sheet. In the second, molecular dynamics simulations are utilized to quench from the high temperature liquid state. The two approaches lead to similar results as detailed here, through the pair distribution function and the associated diffraction pattern. Details of the structure, including ring statistics and angular distortions, are shown to be sensitive to preparation conditions, and await experimental confirmation.

  5. Radiation-induced amorphization of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Lam, N. Q.; Sabochick, M. J.; Okamoto, P. R.

    1994-06-01

    In the present paper, important results of our recent computer simulation of radiation-induced amorphization in the ordered compounds CuTi and Cu4Ti3 are summarized. The energetic, structural, thermodynamic and mechanical responses of these intermetallics during chemical disordering, point-defect production and heating were simulated, using molecular dynamics and embedded-atom potentials. From the atomistic details obtained, the critical role of radiation-induced structural disorder in driving the crystalline-to-amorphous phase transformation is discussed.

  6. Amorphous Insulator Films With Controllable Properties

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Warner, Joseph D.; Liu, David C.; Pouch, John J.

    1987-01-01

    In experiments described in report, amorphous hydrogenated carbon films grown at room temperature by low-frequency plasma deposition, using methane or butane gas. Films have unique array of useful properties; (a) adhere to wide variety of materials; (b) contain only carbon and hydrogen; (c) smooth and free of pinholes; (d) resistant to attack by moisture and chemicals; and (e) have high electric-breakdown strength and electrical resistivity. Two of optical properties and hardness of this film controlled by deposition conditions. Amorphous a-C:H and BN films used for hermetic sealing and protection of optical, electronic, magnetic, or delicate mechanical systems, and for semiconductor field dielectrics.

  7. Ion bombardment and disorder in amorphous silicon

    SciTech Connect

    Sidhu, L.S.; Gaspari, F.; Zukotynski, S.

    1997-07-01

    The effect of ion bombardment during growth on the structural and optical properties of amorphous silicon are presented. Two series of films were deposited under electrically grounded and positively biased substrate conditions. The biased samples displayed lower growth rates and increased hydrogen content relative to grounded counterparts. The film structure was examined using Raman spectroscopy. The transverse optic like phonon band position was used as a parameter to characterize network order. Biased samples displayed an increased order of the amorphous network relative to grounded samples. Furthermore, biased samples exhibited a larger optical gap. These results are correlated and attributed to reduced ion bombardment effects.

  8. Magnetic Phases in Amorphous Alloys.

    NASA Astrophysics Data System (ADS)

    Mazumdar, Prosenjit

    In magnetic amorphous alloy with competiting exchange interactions, there exists a multicritical point (MCP) in the temperature (T) vs. concentration (x) phase diagram (x(,c), (theta)(,c)). In the present work, the static (equilibrium) magnetic response near the MCP is thoroughly investigated using low, d.c. fields (B(,a) < 10 Oe) in two systems of alloys: (I) Fe(,x)Ni(,75-x)P(,16)B(,6)Al(,3) and (II) Fe(,x)Ni(,80-x)P(,14)B(,6). From the measurements of the reversible magnetization M(x, T, B(,a)), the following notable results are found: (1) The phase diagram exhibits a non-montonic FM-SG transition line (i.e. T(,f)'s) in both the systems. (2) There is a dramatic change in the magnetic response as x goes across x(,c). (3) The magnetization collapses as M(,P) (TURN) (x - x(,c))('0.3(+OR-)0.1) when x (--->) x(,c)('+). (4) The peak susceptibility diverges as (chi)(,P) (TURN) (x(,c) - x)('-1.5(+OR-)0.2) when x (--->) x(,c)('-). (5) The results (2), (3), and (4) are highly suggestive of a percolation transition in the magnetic network at the critical concentration for ferromagnetism (i.e. x(,c)). (6) Dramatic changes in the transition temperatures and a perceptible shift in x(,c) are observed when normal boron is replaced by enriched boron ((TURN)100% B('11)) in the series (I) samples. (7) The non-linear susceptibility ((chi)(,H)) exhibits the expected divergence at T(,g) with 'universal' exponents in concentrated spin glasses. (8) In the latter, a divergence in the linear susceptibility ((chi)(,o)) is observed for the first time. This is attributed to the close proximity of the ferromagnetic phase at x(,c). The study of the irreversible moment M(,i) (x, T, B(,a)) reveals the following: (9) Depending on the various methods of preparation, it is possible to generate states with different values of M(,i) at low T, all of which are stable (metastable) in time. This implies non -ergodic behavior. (10) For re-entrants (x > x(,c)), the amount of freezing achieved viz. M

  9. Predicting arsenic concentrations in the porewaters of buried uranium mill tailings

    NASA Astrophysics Data System (ADS)

    Langmuir, Donald; Mahoney, John; MacDonald, Anjali; Rowson, John

    1999-10-01

    The proposed JEB Tailings Management Facility (TMF) to be emplaced below the groundwater table in northern Saskatchewan, Canada, will contain uranium mill tailings from McClean Lake, Midwest and Cigar Lake ore bodies, which are high in arsenic (up to 10%) and nickel (up to 5%). A serious concern is the possibility that high arsenic and nickel concentrations may be released from the buried tailings, contaminating adjacent groundwaters and a nearby lake. Laboratory tests and geochemical modeling were performed to examine ways to reduce the arsenic and nickel concentrations in TMF porewaters so as to minimize such contamination from tailings buried for 50 years and longer. The tests were designed to mimic conditions in the mill neutralization circuit (3 hr tests at 25°C), and in the TMF after burial (5-49 day aging tests). The aging tests were run at, 50, 25 and 4°C (the temperature in the TMF). In order to optimize the removal of arsenic by adsorption and precipitation, ferric sulfate was added to tailings raffinates having Fe/As ratios of less that 3-5. The acid raffinates were then neutralized by addition of slaked lime to nominal pH values of 7, 8, or 9. Analysis and modeling of the test results showed that with slaked lime addition to acid tailings raffinates, relatively amorphous scorodite (ferric arsenate) precipitates near pH 1, and is the dominant form of arsenate in slake limed tailings solids except those high in Ni and As and low in Fe, in which cabrerite-annabergite (Ni, Mg, Fe(II) arsenate) may also precipitate near pH 5-6. In addition to the arsenate precipitates, smaller amounts of arsenate are also adsorbed onto tailings solids. The aging tests showed that after burial of the tailings, arsenic concentrations may increase with time from the breakdown of the arsenate phases (chiefly scorodite). However, the tests indicate that the rate of change decreases and approaches zero after 72 hrs at 25°C, and may equal zero at all times in the TMF at 4

  10. Fast evaluation of Sommerfeld integrals for EM scattering and radiation by three-dimensional buried objects

    SciTech Connect

    Cui, T.J.; Chew, W.C.

    1999-03-01

    This paper presents a fast method for electromagnetic scattering and radiation problems pertinent to three-dimensional (3-D) buried objects. In this approach, a new symmetrical form of the Green`s function is derived, which can reduce the number of Sommerfeld integrals involved in the buried objects problem. The integration along steepest descent paths and leading-order approximations are introduced to evaluate these Sommerfeld integrals, which can greatly accelerate the computation. Based on the fast evaluation of Sommerfeld integrals, the radiation of an arbitrarily oriented electric dipole buried in a half space is first analyzed and computed. Then, the scattering by buried dielectric objects and conducting objects is considered using the method of moments (MOM). Numerical results show that the fast method can save tremendous CPU time in radiation and scattering problems involving buried objects.

  11. Buried topography of Utopia, Mars: Persistence of a giant impact depression

    SciTech Connect

    McGill, G.E. )

    1989-12-01

    Knobs, partially buried craters, ring fractures, and some mesas permit a qualitative determination of the topography buried beneath younger northern plains materials. These features are widely distributed in the Utopia area but are absent in a large, roughly circular region centered at about 48{degree}N, 240{degree}W. This implies the existence of a circular depression about 3,300 km in diameter buried beneath Utopia Planitia that is here interpreted to represent the central part of a very large impact basin. The presence of buried curved massifs around part of this depression, and a roughly coincident mascon, lend further support. Present topography, areal geology, and paleotopography of buried surfaces all point to the persistence of this major depression for almost the entire history of Mars.

  12. Buried topography of Utopia, Mars - Persistence of a giant impact depression

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.

    1989-01-01

    Knobs, partially buried craters, ring fractures, and some mesas permit a qualitative determination of the topography buried beneath younger northern plains materials. These features are widely distributed in the Utopia area but are absent in a large, roughly circular region centered at about 48 deg N, 240 deg W. This implies the existence of a circular depression about 3300 km in diameter buried beneath Utopia Planitia that is interpreted to represent the central part of a very large impact basin. The presence of buried curved massifs around part of this depression, and a roughly coincident mascon, lend further support. Present topography, areal geology, and paleotopography of buried surfaces all point to the persistence of this major depression for almost the entire history of Mars.

  13. Contribution to classification of buried objects based on acoustic impedance matching.

    PubMed

    Stepanić, J; Wüstenberg, H; Krstelj, V; Mrasek, H

    2003-03-01

    Determination of material the buried objects are made of could contribute significantly to their recognition, or classification. This is important in detecting buried antipersonnel landmines within the context of humanitarian demining, as well as in a variety of other applications. In this article the concept has been formulated of the approach to buried object's material determination starting with ultrasonic impulse propagation analysis in a particular testing set configuration. The impulse propagates through a characterized transfer material in such a way that a part of it, a reflected wave, carries the information about the buried object's surface material acoustic impedance. The limit of resolution capability is theoretically analyzed and experimentally evaluated and the influencing factors described. Among these, the contact between clean surfaces of the transfer material and buried object is emphasized.

  14. Buried topography of Utopia, Mars - Persistence of a giant impact depression

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.

    1989-01-01

    Knobs, partially buried craters, ring fractures, and some mesas permit a qualitative determination of the topography buried beneath younger northern plains materials. These features are widely distributed in the Utopia area but are absent in a large, roughly circular region centered at about 48 deg N, 240 deg W. This implies the existence of a circular depression about 3300 km in diameter buried beneath Utopia Planitia that is interpreted to represent the central part of a very large impact basin. The presence of buried curved massifs around part of this depression, and a roughly coincident mascon, lend further support. Present topography, areal geology, and paleotopography of buried surfaces all point to the persistence of this major depression for almost the entire history of Mars.

  15. The effect of immersion time on burying depth of the bivalve Macoma balthica (Tellinidae)

    NASA Astrophysics Data System (ADS)

    de Goeij, Petra; Honkoop, Pieter J. C.

    2002-03-01

    As a characteristic buried tellinid bivalve, Macoma balthica has a long inhalent siphon that enables it to feed in two different ways: deposit and suspension feeding. To deposit feed efficiently on benthic microalgae, Macoma has to live close to the sediment surface, where it can graze an extensive surface area, but is within reach of many predators. Individuals that are more safely buried at a greater depth can only suspension feed, or deposit feed from a small surface area. We expected local differences in burying depth on intertidal mudflats to be caused by differences in immersion time (i.e. time available for feeding, particularly suspension feeding), since immersion time has been shown experimentally to affect body condition positively, and since body condition and burying depth in Macoma are postively related in the field. To test this we experimentally manipulated immersion time, and followed changes in burying depth and body condition. In the experiments, longer immersion time went consistently with greater burying depth of Macoma and higher body condition. On a transect in the western Wadden Sea, the deepest Macoma were indeed found at the intertidal level with the longest immersion time, but these were at that time not the animals with the highest body condition. Within each locality, however, body condition was positively correlated with burying depth. The experimental data and the within-locality data support the hypothesis that longer immersion time may influence burying depth through body condition. However, the fact that between-locality differences in burying depth seemed to be consistently related to immersion time, but not to body condition, indicates that body condition alone does not explain place-to-place variation in burying depth.

  16. Amorphization and nanocrystallization of silcon under shock compression

    SciTech Connect

    Remington, B. A.; Wehrenberg, C. E.; Zhao, S.; Hahn, E. N.; Kad, B.; Bringa, E. M.; Meyers, M. A.

    2015-11-06

    High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. As a result, the nucleation of amorphization is analyzed qualitatively by classical nucleation theory.

  17. Inverted amorphous silicon solar cell utilizing cermet layers

    DOEpatents

    Hanak, Joseph J.

    1979-01-01

    An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

  18. Metal electrode for amorphous silicon solar cells

    DOEpatents

    Williams, Richard

    1983-01-01

    An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

  19. Amorphous calcium carbonate particles form coral skeletons.

    PubMed

    Mass, Tali; Giuffre, Anthony J; Sun, Chang-Yu; Stifler, Cayla A; Frazier, Matthew J; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V; Marcus, Matthew A; Gilbert, Pupa U P A

    2017-08-28

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed "vital effects," that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.

  20. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, A.K.

    1979-07-18

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  1. Structural modeling of amorphous conducting carbon film

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Somnath; Pati, Swapan K.; Subramanyam, S. V.

    1998-04-01

    Amorphous conducting carbon films are prepared using plasma assisted polymerization process. SEM and TEM shows random aggregate of globular clusters of micron size inside the samples. Electrical measurements indicate a near metallic nature. A tendency of saturation of resistivity at low temperature is observed. From spectroscopic analysis we find some unusual features. Based on these observations a structural model of this carbon is proposed.

  2. Low temperature internal friction of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Metcalf, Thomas; Jernigan, Glenn; Jugdersuren, Battogtokh; Kearney, Brian; Culberston, James

    The ubiquitous low-energy excitations, known as two-level tunnelling systems (TLS), are one of the universal phenomena of amorphous solids. These excitations dominate the acoustic, dielectric, and thermal properties of structurally disordered solids. Using the double-paddle oscillator internal friction measurement technique, we have shown that TLS can be made to almost completely disappear in e-beam deposited amorphous silicon (a-Si) as the growth temperature increased to 400°C. However, there is a mysterious broad maximum in internal friction at 2-3K, which we suspect to come from metallic contamination of our oscillators and is not related to a-Si. Our new result of a-Si, deposited in a different UHV system and on oscillators with a different type of metallic electrodes, confirms our suspicion. This lowers the upper bound of possible TLS content in a-Si, in terms of tunnelling strength, to below 10-6. Our results offer an encouraging opportunity to use growth temperature to improve the structure order of amorphous thin films and to develop high quality amorphous dielectrics for applications, such as in modern quantum devices. Work supported by the Office of Naval Research.

  3. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  4. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  5. TRANSIENT AMORPHOUS CALCIUM PHOSPHATE IN FORMING ENAMEL

    PubMed Central

    Beniash, Elia; Metzler, Rebecca A.; Lam, Raymond S.K.; Gilbert, P.U.P.A.

    2009-01-01

    Enamel, the hardest tissue in the body, begins as a three-dimensional network of nanometer size mineral particles, suspended in a protein gel. This mineral network serves as a template for mature enamel formation. To further understand the mechanisms of enamel formation we characterized the forming enamel mineral at an early secretory stage using x-ray absorption near-edge structure (XANES) spectromicroscopy, transmission electron microscopy (TEM), FTIR microspectroscopy and polarized light microscopy. We show that the newly formed enamel mineral is amorphous calcium phosphate (ACP), which eventually transforms into apatitic crystals. Interestingly, the size, shape and spatial organization of these amorphous mineral particles and older crystals are essentially the same, indicating that the mineral morphology and organization in enamel is determined prior to its crystallization. Mineralization via transient amorphous phases has been previously reported in chiton teeth, mollusk shells, echinoderm spicules and spines, and recent reports strongly suggest the presence transient amorphous mineral in forming vertebrate bones. The present finding of transient ACP in murine tooth enamel suggests that this strategy might be universal. PMID:19217943

  6. Amorphous calcium carbonate particles form coral skeletons

    PubMed Central

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.

    2017-01-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene–Eocene Thermal Maximum that occurred 56 Mya. PMID:28847944

  7. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, Auda K.

    1986-01-01

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  8. Amorphous Molecular Organic Solids for Gas Adsorption

    SciTech Connect

    Tian, Jian; Thallapally, Praveen K.; Dalgarno, Scott J.; McGrail, B. Peter; Atwood, Jerry L.

    2009-07-06

    We show that molecular organic compounds with large accessible internal cavities, as part of their rigid molecular structure, display exceptional ability for gas storage and separation in the amorphous solid state. This finding suggests for the first time that long-range molecular order is not a prerequisite for organic molecules to be engineered as porous materials

  9. Amorphous calcium carbonate particles form coral skeletons

    NASA Astrophysics Data System (ADS)

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.; Gilbert, Pupa U. P. A.

    2017-09-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene–Eocene Thermal Maximum that occurred 56 Mya.

  10. Amorphous silica-like carbon dioxide

    NASA Astrophysics Data System (ADS)

    Santoro, Mario; Gorelli, Federico A.; Bini, Roberto; Ruocco, Giancarlo; Scandolo, Sandro; Crichton, Wilson A.

    2006-06-01

    Among the group IV elements, only carbon forms stable double bonds with oxygen at ambient conditions. At variance with silica and germania, the non-molecular single-bonded crystalline form of carbon dioxide, phase V, only exists at high pressure. The amorphous forms of silica (a-SiO2) and germania (a-GeO2) are well known at ambient conditions; however, the amorphous, non-molecular form of CO2 has so far been described only as a result of first-principles simulations. Here we report the synthesis of an amorphous, silica-like form of carbon dioxide, a-CO2, which we call `a-carbonia'. The compression of the molecular phase III of CO2 between 40 and 48GPa at room temperature initiated the transformation to the non-molecular amorphous phase. Infrared spectra measured at temperatures up to 680K show the progressive formation of C-O single bonds and the simultaneous disappearance of all molecular signatures. Furthermore, state-of-the-art Raman and synchrotron X-ray diffraction measurements on temperature-quenched samples confirm the amorphous character of the material. Comparison with vibrational and diffraction data for a-SiO2 and a-GeO2, as well as with the structure factor calculated for the a-CO2 sample obtained by first-principles molecular dynamics, shows that a-CO2 is structurally homologous to the other group IV dioxide glasses. We therefore conclude that the class of archetypal network-forming disordered systems, including a-SiO2, a-GeO2 and water, must be extended to include a-CO2.

  11. Buried-object detection using time-reversed acoustics

    NASA Astrophysics Data System (ADS)

    Pierson, David Michael

    The work presented here is a comprehensive study of using time reversal to detect objects located in an inhomogeneous environment using backscattered signals with an emphasis on littoral environments. Time reversal of acoustic signals in the ocean has been studied for more than two decades with the emphasis on the use of the forward scattered field. All studies share similar geometries where both the acoustical source and an adjacent array of transducers are placed in the water column. This configuration, known as a time-reversal mirror (TRM), is not practical when detecting an object that is located in a different environment than the TRM, such as beneath the ocean floor. Little work has been done to study the efficacy of a single transceiver performing the time-reversal operation on the backscattered signals from targets buried beneath the ocean floor. Here, I start by presenting the theory for such a system in both time and frequency domains for scattering by a sphere. Then by using simulations I show that time reversal of backscattered signals provides a robust method to detect targets buried in an acoustically inhomogeneous sediment using a point transceiver in the water column several meters above the sea floor. Effects of the time-reversal window (TRW) on the iterative time-reversal operation are also presented. I define a signal-to-noise ratio (SNR) that treats the return with the sphere as the signal and the return without the sphere as noise to quantify improvements to the sphere returns. I consider two different sediment models and angle of incidence to show that the TRO operates independently of the sediment type and transceiver orientation. Theoretical analysis reveals that the time-reversal of backscattered signals converges to a subset of waveforms defined by the target and time-reversal window, not the initial pulse. Analysis further reveals that the time-reversal operator detects the sphere after only two iterations of the TRO, with more iterations

  12. Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer

    DOEpatents

    Carlson, David E.

    1982-01-01

    An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.

  13. Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data

    NASA Astrophysics Data System (ADS)

    Oldenborger, G. A.; Logan, C. E.; Hinton, M. J.; Pugin, A. J.-M.; Sapia, V.; Sharpe, D. R.; Russell, H. A. J.

    2016-05-01

    In glaciated terrain, buried valleys often host aquifers that are significant groundwater resources. However, given the range of scales, spatial complexity and depth of burial, buried valleys often remain undetected or insufficiently mapped. Accurate and thorough mapping of bedrock topography is a crucial step in detecting and delineating buried valleys and understanding formative valley processes. We develop a bedrock mapping procedure supported by the combination of seismic reflection data and helicopter time-domain electromagnetic data with water well records for the Spiritwood buried valley aquifer system in Manitoba, Canada. The limited spatial density of water well bedrock observations precludes complete depiction of the buried valley bedrock topography and renders the water well records alone inadequate for accurate hydrogeological model building. Instead, we leverage the complementary strengths of seismic reflection and airborne electromagnetic data for accurate local detection of the sediment-bedrock interface and for spatially extensive coverage, respectively. Seismic reflection data are used to define buried valley morphology in cross-section beneath survey lines distributed over a regional area. A 3D model of electrical conductivity is derived from inversion of the airborne electromagnetic data and used to extrapolate buried valley morphology over the entire survey area. A spatially variable assignment of the electrical conductivity at the bedrock surface is applied to different features of the buried valley morphology identified in the seismic cross-sections. Electrical conductivity is then used to guide construction of buried valley shapes between seismic sections. The 3D locus of points defining each morphological valley feature is constructed using a path optimization routine that utilizes deviation from the assigned electrical conductivities as the cost function. Our resulting map represents a bedrock surface of unprecedented detail with more

  14. Statistical survey of the buried waters in the Protein Data Bank.

    PubMed

    Carugo, Oliviero

    2016-01-01

    The structures of buried water molecules were studied in an ensemble of high-quality and non-redundant protein crystal structures. Buried water molecules were clustered and classified in lake-like clusters, which are completely isolated from the bulk solvent, and bay-like clusters, which are in contact with the bulk solvent through a surface water molecule. Buried water molecules are extremely common: lake-like clusters are found in 89 % of the protein crystal structures and bay-like clusters in 93 %. Clusters with only one water molecule are much more common than larger clusters. Both cluster types incline to be surrounded by loop residues, and to a minor extent by residues in extended secondary structure. Helical residues on the contrary do not tend to surround clusters of buried water molecules. One buried water molecule is found every 30-50 amino acid residues, depending on the secondary structures that are more abundant in the protein. Both main- and side-chain atoms are in contact with buried waters; they form four hydrogen bonds with the first water and 1-1.5 additional hydrogen bond for each additional water in the cluster. Consequently, buried water molecules appear to be firmly packed and rigid like the protein atoms. In this regard, it is remarkable to observe that prolines often surround water molecules buried in the protein interior. Interestingly, clusters of buried water molecules tend to be just beneath the protein surface. Moreover, water molecules tend to form a one-dimensional wire rather than more compact arrangements. This agrees with recent evidence of the mechanisms of solvent exchange between internal cavities and bulk solvent.

  15. Buried targets in layered media: A combined finite element/physical acoustics model and comparison to data on a half buried 2:1 cylinder.

    PubMed

    Williams, Kevin L

    2016-12-01

    Previously, a combined finite element/physical acoustics model for proud targets [K. L. Williams, S. G. Kargl, E. I. Thorsos, D. S. Burnett, J. L. Lopes, M. Zampolli, and P. L. Marston, J. Acoust. Soc. Am. 127, 3356-3371 (2010)] was compared to both higher fidelity finite element models and to experimental data for a proud 2:1 aluminum cylinder. Here that expression is generalized to address the case of a target buried in a layered media. The result is compared to data acquired for the same 2:1 cylinder but half buried in a mud layer that covers the sand sediment (considered here as infinite in extent below the mud layer). The generalized expression reduces to both the previous proud result and to the result for a target buried in an infinite medium under the appropriate limiting conditions. The model/data comparisons shown include both the previous proud model and data results along with the ones for the half buried cylinder. The comparison quantifies the reduction in target strength as a function of frequency in the half buried case relative to the proud case.

  16. Defect-induced solid state amorphization of molecular crystals

    NASA Astrophysics Data System (ADS)

    Lei, Lei; Carvajal, Teresa; Koslowski, Marisol

    2012-04-01

    We investigate the process of mechanically induced amorphization in small molecule organic crystals under extensive deformation. In this work, we develop a model that describes the amorphization of molecular crystals, in which the plastic response is calculated with a phase field dislocation dynamics theory in four materials: acetaminophen, sucrose, γ-indomethacin, and aspirin. The model is able to predict the fraction of amorphous material generated in single crystals for a given applied stress. Our results show that γ-indomethacin and sucrose demonstrate large volume fractions of amorphous material after sufficient plastic deformation, while smaller amorphous volume fractions are predicted in acetaminophen and aspirin, in agreement with experimental observation.

  17. Natural convection from a buried pipe with external baffles

    SciTech Connect

    Facas, G.N.

    1995-05-01

    Numerical solutions are presented for the natural convection heat transfer from a pipe with two baffles attached along its surface buried beneath a semi-infinite, saturated, porous medium. The surface of the medium is assumed to be permeable. The governing equations for Darcy flow are solved using finite differences. The complicated geometry is handled through the use of a body-fitted curvilinear coordinate system. Results are presented for three baffle lengths and a range of burial depths and Rayleigh numbers. The numerical simulations indicate that substantial energy savings can be realized if baffles are used. The results obtained in terms of the Nusselt number for the case of no-baffles are used. The results obtained in terms of the Nusselt number for the case of no-baffle are in excellent agreement with analytical and experimental results available in the literature. A simple correlation for {ovr Nu} has been developed as a function or Ra, pipe burial depth h/R, and baffle length l/R.

  18. Thermal processing system concepts and considerations for RWMC buried waste

    SciTech Connect

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  19. Detection of Buried Human Remains Using Bioreporter Fluorescence

    SciTech Connect

    Vass, A. Dr.; Singleton, G. B.

    2001-10-01

    The search for buried human remains is a difficult, laborious and time-consuming task for law enforcement agencies. This study was conducted as a proof of principle demonstration to test the concept of using bioreporter microorganisms as a means to cover large areas in such a search. These bioreporter microorganisms are affected by a particular component of decaying organic matter that is distinct from decaying vegetation. The diamino compounds cadaverine and putrescine were selected as target compounds for the proof-of-principle investigation, and a search for microorganisms and genes that are responsive to either of these compounds was conducted. One recombinant clone was singled out for characterization based on its response to putrescine. The study results show that small concentrations of putrescine increased expression from this bioreporter construct. Although the level of increase was small (making it difficult to distinguish the signal from background), the results demonstrate the principle that bioreporters can be used to detect compounds resulting from decaying human remains and suggest that a wider search for target compounds should be conducted.

  20. Parental care buffers against inbreeding depression in burying beetles.

    PubMed

    Pilakouta, Natalie; Jamieson, Seonaidh; Moorad, Jacob A; Smiseth, Per T

    2015-06-30

    When relatives mate, their inbred offspring often suffer a reduction in fitness-related traits known as "inbreeding depression." There is mounting evidence that inbreeding depression can be exacerbated by environmental stresses such as starvation, predation, parasitism, and competition. Parental care may play an important role as a buffer against inbreeding depression in the offspring by alleviating these environmental stresses. Here, we examine the effect of parental care on the fitness costs of inbreeding in the burying beetle Nicrophorus vespilloides, an insect with facultative parental care. We used a 2 × 2 factorial design with the following factors: (i) the presence or absence of a caring female parent during larval development and (ii) inbred or outbred offspring. We examined the joint influence of maternal care and inbreeding status on fitness-related offspring traits to test the hypothesis that maternal care improves the performance of inbred offspring more than that of outbred offspring. Indeed, the female's presence led to a higher increase in larval survival in inbred than in outbred broods. Receiving care at the larval stage also increased the lifespan of inbred but not outbred adults, suggesting that the beneficial buffering effects of maternal care can persist long after the offspring have become independent. Our results show that parental care has the potential to moderate the severity of inbreeding depression, which in turn may favor inbreeding tolerance and influence the evolution of mating systems and other inbreeding-avoidance mechanisms.

  1. The Challenging Buried Bumper Syndrome after Percutaneous Endoscopic Gastrostomy

    PubMed Central

    Afifi, Ibrahim; Zarour, Ahmad; Al-Hassani, Ammar; Peralta, Ruben; El-Menyar, Ayman; Al-Thani, Hassan

    2016-01-01

    Buried bumper syndrome (BBS) is a rare complication developed after percutaneous endoscopic gastrostomy (PEG). We report a case of a 38-year-old male patient who sustained severe traumatic brain injury that was complicated with early BBS after PEG tube insertion. On admission, bedside PEG was performed, and 7 days later the patient developed signs of sepsis with rapid progression to septic shock and acute kidney injury. Abdominal CT scan revealed no collection or leakage of the contrast, but showed malpositioning of the tube bumper at the edge of the stomach and not inside of it. Diagnostic endoscopy revealed that the bumper was hidden in the posterolateral part of the stomach wall forming a tract inside of it, which confirmed the diagnosis of BBS. The patient underwent laparotomy with a repair of the stomach wall perforation, and the early postoperative course was uneventful. Acute BBS is a rare complication of PEG tube insertion which could be manifested with severe complications such as pressure necrosis, peritonitis and septic shock. Early identification is the mainstay to prevent such complications. Treatment selection is primarily guided by the presenting complications, ranging from simple endoscopic replacement to surgical laparotomy. PMID:27462190

  2. Measure Guideline: Buried and/or Encapsulated Ducts

    SciTech Connect

    Shapiro, C.; Zoeller, W.; Mantha, P.

    2013-08-01

    Buried and/or encapsulated ducts (BEDs) are a class of advanced, energy-efficiency strategies intended to address the significant ductwork thermal losses associated with ducts installed in unconditioned attics. BEDs are ducts installed in unconditioned attics that are covered in loose-fill insulation and/or encapsulated in closed cell polyurethane spray foam insulation. This Measure Guideline covers the technical aspects of BEDs as well as the advantages, disadvantages, and risks of BEDs compared to other alternative strategies. This guideline also provides detailed guidance on installation of BEDs strategies in new and existing homes through step-by-step installation procedures. This Building America Measure Guideline synthesizes previously published research on BEDs and provides practical information to builders, contractors, homeowners, policy analysts, building professions, and building scientists. Some of the procedures presented here, however, require specialized equipment or expertise. In addition, some alterations to duct systems may require a specialized license. Persons implementing duct system improvements should not go beyond their expertise or qualifications. This guideline provides valuable information for a building industry that has struggled to address ductwork thermal losses in new and existing homes. As building codes strengthen requirements for duct air sealing and insulation, flexibility is needed to address energy efficiency goals. While ductwork in conditioned spaces has been promoted as the panacea for addressing ductwork thermal losses, BEDs installations approach - and sometimes exceed - the performance of ductwork in conditioned spaces.

  3. Thermal processing system concepts and considerations for RWMC buried waste

    SciTech Connect

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  4. Visualizing excitations at buried heterojunctions in organic semiconductor blends

    NASA Astrophysics Data System (ADS)

    Jakowetz, Andreas C.; Böhm, Marcus L.; Sadhanala, Aditya; Huettner, Sven; Rao, Akshay; Friend, Richard H.

    2017-05-01

    Interfaces play a crucial role in semiconductor devices, but in many device architectures they are nanostructured, disordered and buried away from the surface of the sample. Conventional optical, X-ray and photoelectron probes often fail to provide interface-specific information in such systems. Here we develop an all-optical time-resolved method to probe the local energetic landscape and electronic dynamics at such interfaces, based on the Stark effect caused by electron-hole pairs photo-generated across the interface. Using this method, we found that the electronically active sites at the polymer/fullerene interfaces in model bulk-heterojunction blends fall within the low-energy tail of the absorption spectrum. This suggests that these sites are highly ordered compared with the bulk of the polymer film, leading to large wavefunction delocalization and low site energies. We also detected a 100 fs migration of holes from higher- to lower-energy sites, consistent with these charges moving ballistically into more ordered polymer regions. This ultrafast charge motion may be key to separating electron-hole pairs into free charges against the Coulomb interaction.

  5. The Panther Mountain circular structure, a possible buried meteorite crater

    NASA Technical Reports Server (NTRS)

    Isachsen, Y. W.; Wright, S. F.; Revetta, F. A.; Duneen, R. J.

    1992-01-01

    Panther Mountain, located near Phoenicia, New York, is part of the Catskill Mountains, which form the eastern end of the Allegheny Plateau in New York. It is a circular mass defined physiographically by an anomalous circular drainage pattern produced by Esopus Creek and its tributary Woodland Creek. The circular valley that rings the mountain is fracture-controlled; where bedrock is exposed, it shows a joint density 5 to 10 times greater than that on either side of the valley. Where obscured by alluvial valley fill, the bedrock's low seismic velocity suggests that this anomalous fracturing is continuous in the bedrock underlying the rim valley. North-south and east-west gravity and magnetic profiles were made across the structure. Terrane-corrected, residual gravity profiles show an 18-mgal negative anomaly, and very steep gradients indicate a near-surface source. Several possible explanations of the gravity data were modeled. We conclude that the Panther Mountain circular structure is probably a buried meteorite crater that formed contemporaneously with marine or fluvial sedimentation during Silurian or Devonian time. An examination of drill core and cuttings in the region is underway to search for ejecta deposits and possible seismic and tsunami effects in the sedimentary section. Success would result in both dating the impact and furnishing a chronostratigraphic marker horizon.

  6. The Panther Mountain circular structure, a possible buried meteorite crater

    NASA Astrophysics Data System (ADS)

    Isachsen, Y. W.; Wright, S. F.; Revetta, F. A.; Duneen, R. J.

    Panther Mountain, located near Phoenicia, New York, is part of the Catskill Mountains, which form the eastern end of the Allegheny Plateau in New York. It is a circular mass defined physiographically by an anomalous circular drainage pattern produced by Esopus Creek and its tributary Woodland Creek. The circular valley that rings the mountain is fracture-controlled; where bedrock is exposed, it shows a joint density 5 to 10 times greater than that on either side of the valley. Where obscured by alluvial valley fill, the bedrock's low seismic velocity suggests that this anomalous fracturing is continuous in the bedrock underlying the rim valley. North-south and east-west gravity and magnetic profiles were made across the structure. Terrane-corrected, residual gravity profiles show an 18-mgal negative anomaly, and very steep gradients indicate a near-surface source. Several possible explanations of the gravity data were modeled. We conclude that the Panther Mountain circular structure is probably a buried meteorite crater that formed contemporaneously with marine or fluvial sedimentation during Silurian or Devonian time. An examination of drill core and cuttings in the region is underway to search for ejecta deposits and possible seismic and tsunami effects in the sedimentary section. Success would result in both dating the impact and furnishing a chronostratigraphic marker horizon.

  7. Detecting buried explosive hazards with handheld GPR and deep learning

    NASA Astrophysics Data System (ADS)

    Besaw, Lance E.

    2016-05-01

    Buried explosive hazards (BEHs), including traditional landmines and homemade improvised explosives, have proven difficult to detect and defeat during and after conflicts around the world. Despite their various sizes, shapes and construction material, ground penetrating radar (GPR) is an excellent phenomenology for detecting BEHs due to its ability to sense localized differences in electromagnetic properties. Handheld GPR detectors are common equipment for detecting BEHs because of their flexibility (in part due to the human operator) and effectiveness in cluttered environments. With modern digital electronics and positioning systems, handheld GPR sensors can sense and map variation in electromagnetic properties while searching for BEHs. Additionally, large-scale computers have demonstrated an insatiable appetite for ingesting massive datasets and extracting meaningful relationships. This is no more evident than the maturation of deep learning artificial neural networks (ANNs) for image and speech recognition now commonplace in industry and academia. This confluence of sensing, computing and pattern recognition technologies offers great potential to develop automatic target recognition techniques to assist GPR operators searching for BEHs. In this work deep learning ANNs are used to detect BEHs and discriminate them from harmless clutter. We apply these techniques to a multi-antennae, handheld GPR with centimeter-accurate positioning system that was used to collect data over prepared lanes containing a wide range of BEHs. This work demonstrates that deep learning ANNs can automatically extract meaningful information from complex GPR signatures, complementing existing GPR anomaly detection and classification techniques.

  8. Buried Mesozoic rift basins of Moroccan Atlantic continental margin

    SciTech Connect

    Mohamed, N.; Jabour, H.; El Mostaine, M.

    1995-08-01

    The Atlantic continental margin is the largest frontier area for oil and gas exploration in Morocco. Most of the activity has been concentrated where Upper Jurassic carbonate rocks have been the drilling objectives, with only one significant but non commercial oil discovery. Recent exploration activities have focused on early Mesozoic Rift basins buried beneath the post-rift sediments of the Middle Atlantic coastal plain. Many of these basins are of interest because they contain fine-grained lacustrine rocks that have sufficient organic richness to be classified as efficient oil prone source rock. Location of inferred rift basins beneath the Atlantic coastal plain were determined by analysis of drilled-hole data in combination with gravity anomaly and aeromagnetic maps. These rift basins are characterized by several half graben filled by synrift sediments of Triassic age probably deposited in lacustrine environment. Coeval rift basins are known to be present in the U.S. Atlantic continental margin. Basin modeling suggested that many of the less deeply bored rift basins beneath the coastal plain are still within the oil window and present the most attractive exploration targets in the area.

  9. Parental care buffers against inbreeding depression in burying beetles

    PubMed Central

    Pilakouta, Natalie; Jamieson, Seonaidh; Moorad, Jacob A.; Smiseth, Per T.

    2015-01-01

    When relatives mate, their inbred offspring often suffer a reduction in fitness-related traits known as “inbreeding depression.” There is mounting evidence that inbreeding depression can be exacerbated by environmental stresses such as starvation, predation, parasitism, and competition. Parental care may play an important role as a buffer against inbreeding depression in the offspring by alleviating these environmental stresses. Here, we examine the effect of parental care on the fitness costs of inbreeding in the burying beetle Nicrophorus vespilloides, an insect with facultative parental care. We used a 2 × 2 factorial design with the following factors: (i) the presence or absence of a caring female parent during larval development and (ii) inbred or outbred offspring. We examined the joint influence of maternal care and inbreeding status on fitness-related offspring traits to test the hypothesis that maternal care improves the performance of inbred offspring more than that of outbred offspring. Indeed, the female's presence led to a higher increase in larval survival in inbred than in outbred broods. Receiving care at the larval stage also increased the lifespan of inbred but not outbred adults, suggesting that the beneficial buffering effects of maternal care can persist long after the offspring have become independent. Our results show that parental care has the potential to moderate the severity of inbreeding depression, which in turn may favor inbreeding tolerance and influence the evolution of mating systems and other inbreeding-avoidance mechanisms. PMID:26080412

  10. Radar detection of buried targets in coastal environments

    NASA Astrophysics Data System (ADS)

    Brode, Chad M.; Narayanan, Ram M.

    2017-05-01

    Coastal soils offer a number of challenges in electromagnetic remote sensing applications. They are highly saline owing to their constant contact with salt water resulting in high values for the real and imaginary parts of their permittivity. Due to this fact, it is desirable to model these properties and determine how they will affect the detection and location of targets buried in coastal soil environments. We examined the propagation of a plane wave with three different incidence angles on a cubic perfect electric conductor (PEC) target contained within an semi-infinite dielectric material with the same properties as the soil. This response was then compared to that of a baseline target with no dielectric surrounding it and a dielectric mimicking dry sandy soil. The results show that the signal is both highly reflected at the surface of the wet coastal soil, and significantly attenuated as it propagates through the wet soil dielectric. The results of our modeling and simulation studies over a wide range of conditions (e.g. frequency, soil salinity, burial depth, etc.) are presented and trade-offs examined in order to develop a cognitive radar system for enhancing target detection and clutter suppression.

  11. The Challenging Buried Bumper Syndrome after Percutaneous Endoscopic Gastrostomy.

    PubMed

    Afifi, Ibrahim; Zarour, Ahmad; Al-Hassani, Ammar; Peralta, Ruben; El-Menyar, Ayman; Al-Thani, Hassan

    2016-01-01

    Buried bumper syndrome (BBS) is a rare complication developed after percutaneous endoscopic gastrostomy (PEG). We report a case of a 38-year-old male patient who sustained severe traumatic brain injury that was complicated with early BBS after PEG tube insertion. On admission, bedside PEG was performed, and 7 days later the patient developed signs of sepsis with rapid progression to septic shock and acute kidney injury. Abdominal CT scan revealed no collection or leakage of the contrast, but showed malpositioning of the tube bumper at the edge of the stomach and not inside of it. Diagnostic endoscopy revealed that the bumper was hidden in the posterolateral part of the stomach wall forming a tract inside of it, which confirmed the diagnosis of BBS. The patient underwent laparotomy with a repair of the stomach wall perforation, and the early postoperative course was uneventful. Acute BBS is a rare complication of PEG tube insertion which could be manifested with severe complications such as pressure necrosis, peritonitis and septic shock. Early identification is the mainstay to prevent such complications. Treatment selection is primarily guided by the presenting complications, ranging from simple endoscopic replacement to surgical laparotomy.

  12. Responses of buried corrugated metal pipes to earthquakes

    SciTech Connect

    Davis, C.A.; Bardet, J.P.

    2000-01-01

    This study describes the results of field investigations and analyses carried out on 61 corrugated metal pipes (CMP) that were shaken by the 1994 Northridge earthquake. These CMPs, which include 29 small-diameter (below 107 cm) CMPs and 32 large-diameter (above 107 cm) CMPs, are located within a 10 km{sup 2} area encompassing the Van Normal Complex in the Northern San Fernando Valley, in Los Angeles, California. During the Northridge earthquake, ground movements were extensively recorded within the study area. Twenty-eight of the small-diameter CMPs performed well while the 32 large-diameter CMPs underwent performances ranging from no damage to complete collapse. The main cause of damage to the large-diameter CMPs was found to be the large ground strains. Based on this unprecedented data set, the factors controlling the seismic performance of the 32 large-diameter CMPs were identified and framed into a pseudostatic analysis method for evaluating the response of large diameter flexible underground pipes subjected to ground strain. The proposed analysis, which is applicable to transient and permanent strains, is capable of describing the observed performance of large-diameter CMPs during the 1994 Northridge earthquake. It indicates that peak ground velocity is a more reliable parameter for analyzing pipe damage than is peak ground acceleration. Results of this field investigation and analysis are useful for the seismic design and strengthening of flexible buried conduits.

  13. Climate-mediated cooperation promotes niche expansion in burying beetles.

    PubMed

    Sun, Syuan-Jyun; Rubenstein, Dustin R; Chen, Bo-Fei; Chan, Shih-Fan; Liu, Jian-Nan; Liu, Mark; Hwang, Wenbe; Yang, Ping-Shih; Shen, Sheng-Feng

    2014-05-13

    The ability to form cooperative societies may explain why humans and social insects have come to dominate the earth. Here we examine the ecological consequences of cooperation by quantifying the fitness of cooperative (large groups) and non-cooperative (small groups) phenotypes in burying beetles (Nicrophorus nepalensis) along an elevational and temperature gradient. We experimentally created large and small groups along the gradient and manipulated interspecific competition with flies by heating carcasses. We show that cooperative groups performed as thermal generalists with similarly high breeding success at all temperatures and elevations, whereas non-cooperative groups performed as thermal specialists with higher breeding success only at intermediate temperatures and elevations. Studying the ecological consequences of cooperation may not only help us to understand why so many species of social insects have conquered the earth, but also to determine how climate change will affect the success of these and other social species, including our own.DOI: http://dx.doi.org/10.7554/eLife.02440.001.

  14. A Denoising Method for Detecting Reflected Waves from Buried Objects by Ground-penetrating Radar

    NASA Astrophysics Data System (ADS)

    Kobayashi, Makoto; Nakano, Kazushi

    Ground-penetrating radar is a tool for imaging the subsurfaces with radar pulses. Since a variety of media including buried objects give different dielectric constants, the positions of the buried objects can be detected on the basis of variations in the reflected return signals. This paper presents a denoising method based on the 2D-Gabor wavelet transform method to solve the pending problems in extracting the signals reflected from buried objects. The validity of our method is demonstrated by comparing it with the f-k filtering method.

  15. The study of buried drift aquifers in Minnesota by seismic geophysical methods

    USGS Publications Warehouse

    Woodward, D. G.

    1984-01-01

    Buried-drift aquifers are stratified sand and (or) gravel aquifers in glacial deposits that cannot be seen or inferred at the land surface. During the Pleistocene Epoch, four continental glaciations advanced and retreated across Minnesota, blanketing the bedrock surface with drift as much as 700 feet thick (fig. 1). Most of the drift consists of till, an unsorted, un-stratified mixture of clay silt, sand, and gravel that usually is not considered to be an aquifer. Permeable, stratified sand and gravel, deposited as outwash, alluvium, and (or) ice-contact deposits usually during an earlier glacial episode and subsequently covered (buried) with till, form the buried-drift aquifers.

  16. Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy

    SciTech Connect

    Oberbeck, Lars; Reusch, Thilo C. G.; Hallam, Toby; Simmons, Michelle Y. E-mail: michelle.simmons@unsw.edu.au; Schofield, Steven R.; Curson, Neil J. E-mail: michelle.simmons@unsw.edu.au

    2014-06-23

    We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The buried dopant nanostructures have been fabricated in a bottom-up approach using scanning tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy is suited to locate and image buried nanostructures at room temperature and with residual surface roughness present. From these studies, we can place an upper limit on the lateral diffusion during encapsulation with low-temperature Si molecular beam epitaxy.

  17. Amorphous-crystalline transition in thermoelectric NbO2

    NASA Astrophysics Data System (ADS)

    Music, Denis; Chen, Yen-Ting; Bliem, Pascal; Geyer, Richard W.

    2015-06-01

    Density functional theory was employed to design enhanced amorphous NbO2 thermoelectrics. The covalent-ionic nature of Nb-O bonding is identical in amorphous NbO2 and its crystalline counterpart. However, the Anderson localisation occurs in amorphous NbO2, which may affect the transport properties. We calculate a multifold increase in the absolute Seebeck coefficient for the amorphous state. These predictions were critically appraised by measuring the Seebeck coefficient of sputtered amorphous and crystalline NbO2 thin films with the identical short-range order. The first-order phase transition occurs at approximately 550 °C, but amorphous NbO2 possesses enhanced transport properties at all temperatures. Amorphous NbO2, reaching  -173 μV K-1, exhibits up to a 29% larger absolute Seebeck coefficient value, thereby validating the predictions.

  18. The Structure and Properties of Amorphous Indium Oxide

    PubMed Central

    2015-01-01

    A series of In2O3 thin films, ranging from X-ray diffraction amorphous to highly crystalline, were grown on amorphous silica substrates using pulsed laser deposition by varying the film growth temperature. The amorphous-to-crystalline transition and the structure of amorphous In2O3 were investigated by grazing angle X-ray diffraction (GIXRD), Hall transport measurement, high resolution transmission electron microscopy (HRTEM), electron diffraction, extended X-ray absorption fine structure (EXAFS), and ab initio molecular dynamics (MD) liquid-quench simulation. On the basis of excellent agreement between the EXAFS and MD results, a model of the amorphous oxide structure as a network of InOx polyhedra was constructed. Mechanisms for the transport properties observed in the crystalline, amorphous-to-crystalline, and amorphous deposition regions are presented, highlighting a unique structure–property relationship. PMID:25678743

  19. Atomic-scale disproportionation in amorphous silicon monoxide

    PubMed Central

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material. PMID:27172815

  20. Atomic-scale disproportionation in amorphous silicon monoxide.

    PubMed

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-05-13

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material.

  1. Disappearance and Creation of Constrained Amorphous Phase

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Lu, Sharon X.

    1997-03-01

    We report observation of the disappearance and recreation of rigid, or constrained, amorphous phase by sequential thermal annealing. Tempera- ture modulated differential scanning calorimetry (MDSC) is used to study the glass transition and lower melting endotherm after annealing. Cold crystallization of poly(phenylene sulfide), PPS, at a temperature just above Tg creates an initial large fraction of rigid amorphous phase (RAP). Brief, rapid annealing to a higher temperature causes RAP almost to disappear completely. Subsequent reannealing at the original lower temperature restores RAP to its original value. At the same time that RAP is being removed, Tg decreases; when RAP is restored, Tg also returns to its initial value. The crystal fraction remains unaffected by the annealing sequence.

  2. Annealing behavior of high permeability amorphous alloys

    SciTech Connect

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co/sub 71/ /sub 4/Fe/sub 4/ /sub 6/Si/sub 9/ /sub 6/B/sub 14/ /sub 4/ were investigated. Annealing this alloy below 400/sup 0/C results in magnetic hardening; annealing above 400/sup 0/C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation.

  3. Wear Resistant Amorphous and Nanocomposite Coatings

    SciTech Connect

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  4. Structural characterization of stable amorphous silicon films

    NASA Astrophysics Data System (ADS)

    Zhang, Shibin; Kong, Guanglin; Wang, Yongqian; Sheng, Shuran; Liao, Xianbo

    2002-05-01

    A kind of hydrogenated diphasic silicon films has been prepared by a new regime of plasma enhanced chemical vapor deposition (PECVD) in the region adjacent to the phase transition from amorphous to crystalline state. The photoelectronic and microstructural properties of the films have been investigated by the constant photocurrent method (CPM), Raman scattering and nuclear magnetic resonance (NMR). Our experimental results and corresponding analyses showed that the diphasic films, incorporated with a subtle boron compensation, could gain both the fine photosensitivity and high stability, provided the crystalline fraction ( f) was controlled in the range of 0< f<0.3. When compared with the conventional hydrogenated amorphous silicon (a-Si:H), the diphasic films are more ordered and robust in the microstructure, and have a less clustered phase in the Si-H bond configurations.

  5. Germanium detector passivated with hydrogenated amorphous germanium

    DOEpatents

    Hansen, William L.; Haller, Eugene E.

    1986-01-01

    Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.

  6. Reversibility and criticality in amorphous solids

    DOE PAGES

    Regev, Ido; Weber, John; Reichhardt, Charles; ...

    2015-11-13

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a ‘front depinning’ transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaoticmore » behaviour and why chaotic motion is not possible in pinned systems. As a result, these findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched.« less

  7. Breakdown of elasticity in amorphous solids

    NASA Astrophysics Data System (ADS)

    Biroli, Giulio; Urbani, Pierfrancesco

    2016-12-01

    What characterizes a solid is the way that it responds to external stresses. Ordered solids, such as crystals, exhibit an elastic regime followed by a plastic regime, both understood microscopically in terms of lattice distortion and dislocations. For amorphous solids the situation is instead less clear, and the microscopic understanding of the response to deformation and stress is a very active research topic. Several studies have revealed that even in the elastic regime the response is very jerky at low temperature, resembling very much the response of disordered magnetic materials. Here we show that in a very large class of amorphous solids this behaviour emerges upon decreasing temperature, as a phase transition, where standard elastic behaviour breaks down. At the transition all nonlinear elastic moduli diverge and standard elasticity theory no longer holds. Below the transition, the response to deformation becomes history- and time-dependent.

  8. Reversibility and criticality in amorphous solids

    SciTech Connect

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A.; Lookman, Turab

    2015-11-13

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a ‘front depinning’ transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaotic behaviour and why chaotic motion is not possible in pinned systems. As a result, these findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched.

  9. Characterization of Amorphous Zinc Tin Oxide Semiconductors

    SciTech Connect

    Rajachidambaram, Jaana Saranya; Sanghavi, Shail P.; Nachimuthu, Ponnusamy; Shutthanandan, V.; Varga, Tamas; Flynn, Brendan T.; Thevuthasan, Suntharampillai; Herman, Gregory S.

    2012-06-12

    Amorphous zinc tin oxide (ZTO) was investigated to determine the effect of deposition and post annealing conditions on film structure, composition, surface contamination, and thin film transistor (TFT) device performance. X-ray diffraction results indicated that the ZTO films remain amorphous even after annealing to 600 °C. We found that the bulk Zn:Sn ratio of the sputter deposited films were slightly tin rich compared to the composition of the ceramic sputter target, and there was a significant depletion of zinc at the surface. X-ray photoelectron spectroscopy also indicated that residual surface contamination depended strongly on the sample post-annealing conditions where water, carbonate and hydroxyl species were absorbed to the surface. Electrical characterization of ZTO films, using TFT test structures, indicated that mobilities as high as 17 cm2/Vs could be obtained for depletion mode devices.

  10. Application of amorphous brush-plated

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Zhu, Y.; Zheng, Z.

    1994-02-01

    The results obtained during industrial trials have shown that the service life of hot work dies can be increased by 33 to 180% using the brush plating technique to prepare amorphous coatings. The coatings possess a much higher hardness, lower friction coefficient at room and elevated temperatures, good scale resistance in addition to higher surface finish, compared to uncoated dies, and thus improve the tribological performance of the dies. In this work, a study of the crystallization process, its kinetics, and the hardness variations of the coatings has been made. According to the data obtained, it can be considered that the main reason for the success of amorphous brush-plated coatings is that, during the operation, crystallization and precipitation takes place instantaneously, which results in a strong secondary hardening effect, thus leading to an increase in the red hardness of the surface layers of dies, therefore ensuring higher thermal wear resistance of the dies.

  11. Study of an amorphous alloy core transformer

    NASA Astrophysics Data System (ADS)

    Nafalski, A.; Frost, D. C.

    1994-05-01

    Amorphous core transformers (ACT) have become a technological and commercial reality and there are an estimated 400,000 units installed worldwide [1]. Their applications reflect changes in buying practices, where the efficiency evaluation is an important factor in the purchasing decision for distribution transformers. Use of the total ownership cost (TOC) concept facilities the selection of a transformer on the basis of its performance. This concept is used in this paper to investigate the feasibility of applying a distribution ACT in Western Australian (WA). A 10 kVA ACT, evaluated by the TOC method, was compared with a traditional silicon iron core transformer of the same rating. The cost of amorphous metal (relative to alternative materials), the distribution load profile, and the values of capitalised loss costs are factors which affect the cost effectiveness of ACTs.

  12. Computer models for amorphous silicon hydrides

    NASA Astrophysics Data System (ADS)

    Mousseau, Normand; Lewis, Laurent J.

    1990-02-01

    A procedure for generating fully coordinated model structures appropriate to hydrogenated amorphous semiconductors is described. The hydrogen is incorporated into an amorphous matrix using a bond-switching process similar to that proposed by Wooten, Winer, and Weaire, which ensures that fourfold coordination is preserved. After each inclusion of hydrogen, the structure is relaxed using a finite-temperature Monte Carlo algorithm. The method is applied to a-Si:H at various hydrogen concentrations. The resulting model structures are found to be in excellent agreement with recent neutron-scattering measurements on a sample with 12 at. % H. Our prescription, which is essentially nonlocal, allows great flexibility and can easily be extended to related systems.

  13. New transformations between crystalline and amorphous ice

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Chen, L. C.; Mao, H. K.

    1989-01-01

    High-pressure optical and spectroscopic techniques were used to obtain directly the ice I(h) - hda-ice transformation in a diamond-anvil cell, and the stability of the amorphous form is examined as functions of pressure and temperature. It is demonstrated that hda-ice transforms abruptly at 4 GPa and 77 K to a crystalline phase close in structure to orientationally disordered ice-VII and to a more highly ordered, ice-VIII-like structure at higher temperatures. This is the first time that an amorphous solid is observed to convert to a crystalline solid at low temperatures by compression alone. Phase transitions of this type may be relevant on icy planetary satellites, and there may also be implications for the high-pressure behavior of silica.

  14. Amorphous Magnetic Insulators for Microwave Device Applications

    DTIC Science & Technology

    1992-01-01

    magnetic characterization of amorphous BiFeO 3 films substituted with nonmagnetic perovskites, zinc ferrite, copper ferrite and calcium ferrite...G) Hu (Oe) AH (Oe) Tc (OC) (1-x) BiFeO 3 - x ABO3 AB = BaTi 200-1600 - -- 380-440 PbTi 100-450 - - 360-450 PbZr 400-3800 - - 440-490 (1-2x) BiFeO3 - x...II.B. BiFeO - ABO3 COMPOUNDS: Our studies show a ferrimagnetic character in the amorphous (a-) system (1-x) BiFeO3 - x ABO3 for x = 0.1 - 0.9. Here, AB0

  15. Phonon stop bands in amorphous superlattices

    NASA Astrophysics Data System (ADS)

    Koblinger, O.; Mebert, J.; Dittrich, E.; Döttinger, S.; Eisenmenger, W.; Santos, P. V.; Ley, L.

    1987-06-01

    In periodically layered media the phonon-dispersion relation shows energy ranges in which phonon propagation is not possible. The existence of such phonon stop bands in crystalline superlattices has been observed in work by V. Narayanamurti, H. L. Störmer, M. A. Chin, A. C. Gossard, and W. Wiegman [Phys. Rev. Lett. 43, 2012 (1979)]. In this Communication we report the observation of phonon stop bands in amorphous superlattices. The filter characteristic of these amorphous superlattices is much sharper than in the case of the crystalline superlattices studied earlier. The investigated superlattices have been prepared by alternating evaporation of Si and SiO2 layers as well as by plasma-enhanced chemical vapor deposition of a-Si:H/a-SiNx:H films in a glow-discharge reactor.

  16. Thermoluminescence characteristics of hydrogenated amorphous zirconia

    NASA Astrophysics Data System (ADS)

    Montalvo, T. R.; Tenorio, L. O.; Nieto, J. A.; Salgado, M. B.; Estrada, A. M. S.; Furetta, C.

    2005-05-01

    This paper reports the experimental results concerning the thermoluminescent (TL) characteristics of hydrogenated amorphous zirconium oxide (a-Zr:H) powder prepared by the sol-gel method. The advantages of this method are the homogeneity and the purity of the gels associated with a relatively low sintering temperature. Hydrogenated amorphous powder was characterized by thermal analysis and X-ray diffraction. The main TL characteristics investigated were the TL response as a function of the absorbed dose, the reproducibility of the TL readings and the fading. The undoped a-Zr:H powder presents a TL glow curve with two peaks centered at 150 and 260 degrees C, respectively, after beta irradiation. The TL response a-Zr:H as a function of the absorbed dose showed a linear behavior over a wide range. The results presented open the possibility to use this material as a good TL dosimeter.

  17. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, Robert C.

    1986-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  18. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, Robert C.

    1988-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  19. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, R.C.

    1985-02-11

    Disclosed are: amorphous metallic precipitates having the formula (M/sub 1/)/sub a/(M/sub 2/)/sub b/ wherein M/sub 1/ is at least one transition metal, M/sub 2/ is at least one main group metal and the integers ''a'' and ''b'' provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  20. Ultrathin amorphous coatings on lunar dust grains.

    PubMed

    Bibring, J P; Duraud, J P; Durrieu, L; Jouret, C; Maurette, M; Meunier, R

    1972-02-18

    UItrathin amorphous coatings have been observed by high-voltage electron microscopy on micrometer-sized dust grains from the Apollo 11, Apollo 12, Apollo 14, and Luna 16 missions. Calibration experiments show that these coatings result from an "ancient" implantation of solar wind ions in the grains. This phenomenon has interdisciplinary applications concerning the past activity of the sun, the lunar albedo, the ancient lunar atmosphere and magnetic field, the carbon content of lunar soils, and lunar dynamic processes.

  1. Magnetic and magnetoelastic properties of amorphous ribbons

    SciTech Connect

    Chiriac, H.; Ciobotaru, I.; Mohorianu, S.

    1994-03-01

    A phenomenological model for the magnetic and magnetoelastic behavior of the field-annealed magnetostrictive ribbon is proposed. The basic hypothesis is that the magnetic domain coupling energy due to the inhomogeneity inherent to amorphous state is dependent on the reduced magnetization. The model takes into account the anisotropy energy, Zeeman energy, magnetoelastic energy and magnetic domain coupling energy. The magnetization, engineering magnetostriction and Young`s modulus are derived as continuous functions of the applied magnetic field and stress.

  2. Design Requirements for Amorphous Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Ounaies, Z.; Young, J. A.; Harrison, J. S.

    1999-01-01

    An overview of the piezoelectric activity in amorphous piezoelectric polymers is presented. The criteria required to render a polymer piezoelectric are discussed. Although piezoelectricity is a coupling between mechanical and electrical properties, most research has concentrated on the electrical properties of potentially piezoelectric polymers. In this work, we present comparative mechanical data as a function of temperature and offer a summary of polarization and electromechanical properties for each of the polymers considered.

  3. Multiple cell photoresponsive amorphous alloys and devices

    SciTech Connect

    Ovshinsky, S.R.; Adler, D.

    1990-01-02

    This patent describes an improved photoresponsive tandem multiple solar cell device. The device comprising: at least a first and second superimposed cell of various materials. The first cell being formed of a silicon alloy material. The second cell including an amorphous silicon alloy semiconductor cell body having an active photoresponsive region in which radiation can impinge to produce charge carriers, the amorphous cell body including at least one density of states reducing element. The element being fluorine. The amorphous cell body further including a band gap adjusting element therein at least in the photoresponsive region to enhance the radiation absorption thereof, the adjusting element being germanium: the second cell being a multi-layer body having deposited semiconductor layers of opposite (p and n) conductivity type; and the first cell being formed with the second cell in substantially direct Junction contact therebetween. The first and second cells designed to generate substantially matched currents from each cell from a light source directed through the first cell and into the second cell.

  4. Newtonian Flow in Bulk Amorphous Alloys

    SciTech Connect

    Wadsworth, J.; Nieh, T.G.

    2000-09-27

    Bulk amorphous alloys have many unique properties, e.g., superior strength and hardness, excellent corrosion resistance, reduced sliding friction and improved wear resistance, and easy formability in a viscous state. These properties, and particularly easy formability, are expected to lead to applications in the fields of near-net-shape fabrication of structural components. Whereas large tensile ductility has generally been observed in the supercooled liquid region in metallic glasses, the exact deformation mechanism, and in particular whether such alloys deform by Newtonian viscous flow, remains a controversial issue. In this paper, existing data are analyzed and an interpretation for the apparent controversy is offered. In addition, new results obtained from an amorphous alloy (composition: Zr-10Al-5TI-17.9Cu-14.6Ni, in at. %) are presented. Structural evolution during plastic deformation is particularly characterized. It is suggested that the appearance of non-Newtonian behavior is a result of the concurrent crystallization of the amorphous structure during deformation.

  5. Amorphous molybdenum silicon superconducting thin films

    SciTech Connect

    Bosworth, D. Sahonta, S.-L.; Barber, Z. H.; Hadfield, R. H.

    2015-08-15

    Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using W{sub x}Si{sub 1−x}, though other amorphous superconductors such as molybdenum silicide (Mo{sub x}Si{sub 1−x}) offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc) reaches a maximum of 7.6 K at a composition of Mo{sub 83}Si{sub 17}. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz), there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  6. Flocculated amorphous nanoparticles for highly supersaturated solutions.

    PubMed

    Matteucci, Michal E; Paguio, Joseph C; Miller, Maria A; Williams Iii, Robert O; Johnston, Keith P

    2008-11-01

    To recover polymer-stabilized amorphous nanoparticles from aqueous dispersions efficiently by salt flocculation and to show that the particles redisperse and dissolve rapidly to produce highly supersaturated solutions. Nanoparticle dispersions of itraconazole stabilized by nonionic polymers were formed by antisolvent precipitation and immediately flocculated with sodium sulfate, filtered and dried. The size after redispersion in water, crystallinity, and morphology were compared with those for particles produced by spray drying and rapid freezing. Particle drug loading increased to approximately 90% after salt flocculation and removal of excess polymer with the filtrate. The formation of the flocs at constant particle volume fraction led to low fractal dimensions (open flocs), which facilitated redispersion in water to the original primary particle size of approximately 300 nm. Amorphous particles, which were preserved throughout the flocculation-filtration-drying process, dissolved to supersaturation levels of up to 14 in pH 6.8 media. In contrast, both spray dried and rapidly frozen nanoparticle dispersions crystallized and did not produce submicron particle dispersions upon addition to water, nor high supersaturation values. Salt flocculation produces large yields of high surface area amorphous nanoparticle powders that de-aggregate and dissolve rapidly upon redispersion in pH 6.8 media, for supersaturation levels up to 14.

  7. Shock induced crystallization of amorphous Nickel powders

    NASA Astrophysics Data System (ADS)

    Cherukara, Mathew; Strachan, Alejandro

    2015-06-01

    Recent experimental work has shown the efficacy of amorphous Ni/crystalline Al composites as energetic materials, with flame velocities twice that of a comparable crystalline Ni/crystalline Al system. Of further interest is the recrystallization mechanisms in the pure amorphous Ni powders, both thermally induced and mechanically induced. We present large-scale molecular dynamics simulations of shock-induced recrystallization in loosely packed amorphous Nickel powders. We study the time dependent nucleation and growth processes by holding the shocked samples at the induced pressures and temperatures for extended periods following the passage of the shock (up to 6 ns). We find that the nanostructure of the recrystallized Ni and time scales of recrystallization are dependent on the piston velocity. At low piston velocities, nucleation events are rare, leading to long incubation times and a relatively coarse nanostructure. At higher piston velocities, local variations in temperature due to jetting phenomena and void collapse, give rise to multiple nucleation events on time scales comparable to the passage of the shock wave, leading to the formation of a fine-grained nanostructure. Interestingly, we observe that the nucleation and growth process occurs in two steps, with the first nuclei crystallizing into the BCC structure, before evolving over time into the expected FCC structure. U.S. Defense Threat Reduction Agency, HDTRA1-10-1-0119 (Program Manager Suhithi Peiris).

  8. Phase transitions in biogenic amorphous calcium carbonate

    NASA Astrophysics Data System (ADS)

    Gong, Yutao

    Geological calcium carbonate exists in both crystalline phases and amorphous phases. Compared with crystalline calcium carbonate, such as calcite, aragonite and vaterite, the amorphous calcium carbonate (ACC) is unstable. Unlike geological calcium carbonate crystals, crystalline sea urchin spicules (99.9 wt % calcium carbonate and 0.1 wt % proteins) do not present facets. To explain this property, crystal formation via amorphous precursors was proposed in theory. And previous research reported experimental evidence of ACC on the surface of forming sea urchin spicules. By using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), we studied cross-sections of fresh sea urchin spicules at different stages (36h, 48h and 72h after fertilization) and observed the transition sequence of three mineral phases: hydrated ACC → dehydrated ACC → biogenic calcite. In addition, we unexpectedly found hydrated ACC nanoparticles that are surrounded by biogenic calcite. This observation indicates the dehydration from hydrated ACC to dehydrated ACC is inhibited, resulting in stabilization of hydrated ACC nanoparticles. We thought that the dehydration was inhibited by protein matrix components occluded within the biomineral, and we designed an in vitro assay to test the hypothesis. By utilizing XANES-PEEM, we found that SM50, the most abundant occluded matrix protein in sea urchin spicules, has the function to stabilize hydrated ACC in vitro.

  9. Interactions of hydrogen with amorphous hafnium oxide

    NASA Astrophysics Data System (ADS)

    Kaviani, Moloud; Afanas'ev, Valeri V.; Shluger, Alexander L.

    2017-02-01

    We used density functional theory (DFT) calculations to study the interaction of hydrogen with amorphous hafnia (a -HfO2 ) using a hybrid exchange-correlation functional. Injection of atomic hydrogen, its diffusion towards electrodes, and ionization can be seen as key processes underlying charge instability of high-permittivity amorphous hafnia layers in many applications. Hydrogen in many wide band gap crystalline oxides exhibits negative-U behavior (+1 and -1 charged states are thermodynamically more stable than the neutral state) . Our results show that in a -HfO2 hydrogen is also negative-U, with charged states being the most thermodynamically stable at all Fermi level positions. However, metastable atomic hydrogen can share an electron with intrinsic electron trapping precursor sites [Phys. Rev. B 94, 020103 (2016)., 10.1103/PhysRevB.94.020103] forming a [etr -+O -H ] center, which is lower in energy on average by about 0.2 eV. These electron trapping sites can affect both the dynamics and thermodynamics of the interaction of hydrogen with a -HfO2 and the electrical behavior of amorphous hafnia films in CMOS devices.

  10. Computer model of tetrahedral amorphous diamond

    NASA Astrophysics Data System (ADS)

    Djordjević, B. R.; Thorpe, M. F.; Wooten, F.

    1995-08-01

    We computer generate a model of amorphous diamond using the Wooten-Weaire method, with fourfold coordination everywhere. We investigate two models: one where four-membered rings are allowed and the other where the four-membered rings are forbidden; each model consisting of 4096 atoms. Starting from the perfect diamond crystalline structure, we first randomize the structure by introducing disorder through random bond switches at a sufficiently high temperature. Subsequently, the temperature is reduced in stages, and the topological and geometrical relaxation of the structure takes place using the Keating potential. After a long annealing process, a random network of comparatively low energy is obtained. We calculate the pair distribution function, mean bond angle, rms angular deviation, rms bond length, rms bond-length deviation, and ring statistics for the final relaxed structures. We minimize the total strain energy by adjusting the density of the sample. We compare our results with similar computer-generated models for amorphous silicon, and with experimental measurement of the structure factor for (predominantly tetrahedral) amorphous carbon.

  11. Formation of iron disilicide on amorphous silicon

    NASA Astrophysics Data System (ADS)

    Erlesand, U.; Östling, M.; Bodén, K.

    1991-11-01

    Thin films of iron disilicide, β-FeSi 2 were formed on both amorphous silicon and on crystalline silicon. The β-phase is reported to be semiconducting with a direct band-gap of about 0.85-0.89 eV. This phase is known to form via a nucleation-controlled growth process on crystalline silicon and as a consequence a rather rough silicon/silicide interface is usually formed. In order to improve the interface a bilayer structure of amorphous silicon and iron was sequentially deposited on Czochralski <111> silicon in an e-gun evaporation system. Secondary ion mass spectrometry profiling (SIMS) and scanning electron micrographs revealed an improvement of the interface sharpness. Rutherford backscattering spectrometry (RBS) and X-ray diffractiometry showed β-FeSi 2 formation already at 525°C. It was also observed that the silicide growth was diffusion-controlled, similar to what has been reported for example in the formation of NiSi 2 for the reaction of nickel on amorphous silicon. The kinetics of the FeSi 2 formation in the temperature range 525-625°C was studied by RBS and the activation energy was found to be 1.5 ± 0.1 eV.

  12. Crystalline-amorphous transition in silicate perovskites

    SciTech Connect

    Hemmati, M.; Chizmeshya, A. |; Wolf, G.H.; Poole, P.H.; Shao, J.; Angell, C.A.

    1995-06-01

    CaSiO{sub 3} and MgSiO{sub 3} perovskites are known to undergo solid-state crystal to amorphous transitions near ambient pressure when decompressed from their high-pressure stability fields. In order to elucidate the mechanistic aspects of this transition we have performed detailed molecular-dynamics simulations and lattice-dynamical calculations on model silicate perovskite systems using empirical rigid-ion pair potentials. In the simulations at low temperatures, the model perovskite systems transform under tension to a low-density glass composed of corner shared chains of tetrahedral silicon. The amorphization is initiated by a thermally activated step involving a soft polar optic mode in the perovskite phase at the Brillouin zone center. Progression of the system along this reaction coordinate triggers, in succession, multiple barrierless modes of instability ultimately producing a catastrophic decohesion of the lattice. An important intermediary along the reaction path is a crystalline phase where silicon is in a five-coordinate site and the alkaline-earth metal atom is in eightfold coordination. At the onset pressure, this transitory phase is itself dynamically unstable to a number of additional vibrational modes, the most relevant being those which result in transformation to a variety of tetrahedral chain silicate motifs. These results support the conjecture that stress-induced amorphization arises from the near simultaneous accessibility of multiple modes of instability in the highly metastable parent crystalline phase.

  13. A new partial SOI power device structure with P-type buried layer

    NASA Astrophysics Data System (ADS)

    Duan, Baoxing; Zhang, Bo; Li, Zhaoji

    2005-12-01

    A new BPSOI (buried layer partial SOI) structure is developed, in which the P-type buried layer is implanted into the P - substrate by silicon window underneath the source of the conventional PSOI. The mechanism of breakdown is that the additional electric field produced by P-type buried layer charges modulates surface electric field, which decreases drastically the electric field peaks near the drain and source junctions. Moreover, the on-resistance of BPSOI is decreased as a result of increasing drift region doping due to neutralism of P-type buried layer. The results indicate that the breakdown voltage of BPSOI is increased by 52-58% and the on-resistance is decreased by 45-48% in comparison to conventional PSOI in virtue of 2-D numerical simulations using MEDICI.

  14. Building America Top Innovations 2013 Profile – Buried and Encapsulated Ducts

    SciTech Connect

    none,

    2013-09-01

    In this innovation profile, CARB research shows HVAC ducts that are encapsulated in closed-cell spray foam and buried in blown insulation in a vented attic meet the code requirements for ducts in conditioned space.

  15. Near-field synthetic aperture imaging of buried objects and fluids

    NASA Astrophysics Data System (ADS)

    Nilles, James T.; Tricoles, Gus P.; Vance, Gary L.

    1995-06-01

    This paper describes imaging of buried objects and fluids. The motivations are to locate pipe leakage and unexploded ordnance. The method is to radiate and receive continuous, discrete frequency radio waves with antennas near the ground, to synthesize sampled area arrays of reflectance data, and to process the data into images with an algorithm based on angular spectrum diffraction theory. Experimental results are presented for three setups. An initial, laboratory setup had a single, spatially scanned antenna; it was used to image buried mud. The second with an array of five antennas on a vehicle, images a buried creosote pit. The third, with a vehicular array of seven antennas, imaged buried metallic objects and depressions in the soil surface.

  16. View northeast, timber groin mostly buried in sand U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northeast, timber groin mostly buried in sand - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  17. Solid-state amorphization of rebamipide and investigation on solubility and stability of the amorphous form.

    PubMed

    Xiong, Xinnuo; Xu, Kailin; Li, Shanshan; Tang, Peixiao; Xiao, Ying; Li, Hui

    2017-02-01

    Solid-state amorphization of crystalline rebamipide (RBM) was realized by ball milling and spray drying. The amorphous content of samples milled for various time was quantified using X-ray powder diffraction. Crystalline RBM and three amorphous RBM obtained by milling and spray drying were characterized by morphological analysis, X-ray diffraction, thermal analysis and vibrational spectroscopy. The crystal structure of RBM was first determined by single-crystal X-ray diffraction. In addition, the solubility and dissolution rate of the RBM samples were investigated in different media. Results indicated that the solubility and the dissolution rates of spray-dried RBM-PVP in different media were highly improved compared with crystalline RBM. The physical stabilities of the three amorphous RBM were systematically investigated, and the stability orders under different storage temperatures and levels of relative humidity (RH) were both as follows: spray dried RBM < milled RBM < spray dried RBM-PVP. A direct glass-to-crystal transformation was induced under high RH, and the transformation rate rose with increasing RH. However, amorphous RBM could stay stable at RH levels lower than 57.6% (25 °C).

  18. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying.

    PubMed

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Laitinen, Riikka

    2015-12-03

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a "spring and parachute" effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  19. Buried bumper syndrome: A complication of percutaneous endoscopic gastrostomy.

    PubMed

    Cyrany, Jiri; Rejchrt, Stanislav; Kopacova, Marcela; Bures, Jan

    2016-01-14

    Percutaneous endoscopic gastrostomy (PEG) is a widely used method of nutrition delivery for patients with long-term insufficiency of oral intake. The PEG complication rate varies from 0.4% to 22.5% of cases, with minor complications being three times more frequent. Buried bumper syndrome (BBS) is a severe complication of this method, in which the internal fixation device migrates alongside the tract of the stoma outside the stomach. Excessive compression of tissue between the external and internal fixation device of the gastrostomy tube is considered the main etiological factor leading to BBS. Incidence of BBS is estimated at around 1% (0.3%-2.4%). Inability to insert, loss of patency and leakage around the PEG tube are considered to be a typical symptomatic triad. Gastroscopy is indicated in all cases in which BBS is suspected. The depth of disc migration in relation to the lamina muscularis propria of the stomach is critical for further therapy and can be estimated by endoscopic or transabdominal ultrasound. BBS can be complicated by gastrointestinal bleeding, perforation, peritonitis, intra-abdominal and abdominal wall abscesses, or phlegmon, and these complications can lead to fatal outcomes. The most important preventive measure is adequate positioning of the external bolster. A conservative approach should be applied only in patients with high operative risk and dismal prognosis. Choice of the method of release is based on the type of the PEG set and depth of disc migration. A disc retained inside the stomach and completely covered by the overgrowing tissue can be released using some type of endoscopic dissection technique (needle knife, argon plasma coagulation, or papillotome through the cannula). Proper patient selection and dissection of the overgrowing tissue are the major determinants for successful endoscopic therapy. A disc localized out of the stomach (lamina muscularis propria) should be treated by a surgeon.

  20. Diagenesis of shallowly buried cratonic sandstones, southwest Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Salem, Alaa M. K.; Abdel-Wahab, Antar; McBride, Earle F.

    1998-08-01

    In spite of their age, quartzose and feldspathic Lower Carboniferous sandstones deposited on the Arabian shield in western Sinai remain friable and porous (average of 19%, maximum of 25%) except for strongly cemented ferricretes and silcretes. These fluvial and shallow-marine sandstones were not buried more than 1.5 km until Late Cretaceous and younger time, when the deepest rocks reached 2.5 km. Owing to shallow burial depths and episodic exposure, meteoric water dominated the pore system for most of geologic time: iron oxides had multiple diagenetic stages and yield Carboniferous and Late Cretaceous paleomagnetic signatures, and oxygen isotopic data for authigenic quartz, sparry calcite, and kaolinite yield meteoric signatures. The most significant diagenetic changes were: (1) cementation by iron oxide that locally reaches 40% in groundwater ferricretes; (2) reduction in porosity to 19% from an assumed original porosity 45% (19% porosity was lost by compaction and 7% by cementation); (3) generation of diagenetic quartzarenites by the loss of 7% detrital feldspar by kaolinization and dissolution; and (4) development of three thin mature silcretes apparently by thermal groundwaters. Some outcrop samples have halite and gypsum cements of young but uncertain origin: recycled from topographically higher younger rocks or from aerosols? Mature silcretes are strongly cemented by microcrystalline quartz, multiply zoned syntaxial quartz, and, originally, minor opal. Quartz overgrowths in most sandstones average only 2.2%, but display a variety of textures and in places overprint isopachous opal (now dissolved) grain coats. These features have more in common with incipient silcrete cement than normal burial quartz cement. Most silica was imported in groundwater.

  1. [Buried bumper syndrome: A new classification and therapy algorithm].

    PubMed

    Richter-Schrag, H-J; Fischer, A

    2015-10-01

    Buried bumper syndrome (BBS) is a severe complication of percutaneous endoscopic gastrostomy (PEG) based on the overgrowth of gastric mucosa over the inner bumper of a PEG and migration into the gastric or abdominal wall and with a highly variable incidence ranging between 0.9 and > 8 %. However, no classification has yet been described setting the extent of migration of the inner bumper in relation to therapy and the related risk, especially of perforation. In the past 12 years 38 patients presented with BBS. Initially, an attempt was made to treat all BBS patients endoscopically. A structured BBS classification into four types for estimation of the therapy risk was developed. BBS classification: IA: inner bumper partially extrakorporeal or subcutaneous with and without fistula; IB: inner bumper completely extrakorporeal, full thickness focal defect; II: partially visible inner bumper inside the stomach, good degree of mobility; IV: deep type., inner bumper not visible, mucosa without mobility. Up to August 2014, examiners with different degrees of experience classified and treated 17 BBS patients according to the algorithm described above (type IA n = 2, type IB n = 2, type II n = 3, type III n = 4 and type IV n = 6). Problem-free endoscopic therapy was possible in all of the patients in whom good mucosa mobilization with or without partial identification of the inner PEG bumper could be previously induced. The classification serves as an aid and takes both the therapist's experience and patient safety into consideration. In estimating the risk, it considers the following prevailing circumstances: More stringent obligation for patient information under the Patient Rights Act, with presentation of possibly necessary expansion of therapy; the obligation to cite relative alternative treatments; prior check of the resources available (specialist/surgery available yes/no).

  2. Nondestructive imaging of atomically thin nanostructures buried in silicon

    PubMed Central

    Gramse, Georg; Kölker, Alexander; Lim, Tingbin; Stock, Taylor J. Z.; Solanki, Hari; Schofield, Steven R.; Brinciotti, Enrico; Aeppli, Gabriel; Kienberger, Ferry; Curson, Neil J.

    2017-01-01

    It is now possible to create atomically thin regions of dopant atoms in silicon patterned with lateral dimensions ranging from the atomic scale (angstroms) to micrometers. These structures are building blocks of quantum devices for physics research and they are likely also to serve as key components of devices for next-generation classical and quantum information processing. Until now, the characteristics of buried dopant nanostructures could only be inferred from destructive techniques and/or the performance of the final electronic device; this severely limits engineering and manufacture of real-world devices based on atomic-scale lithography. Here, we use scanning microwave microscopy (SMM) to image and electronically characterize three-dimensional phosphorus nanostructures fabricated via scanning tunneling microscope–based lithography. The SMM measurements, which are completely nondestructive and sensitive to as few as 1900 to 4200 densely packed P atoms 4 to 15 nm below a silicon surface, yield electrical and geometric properties in agreement with those obtained from electrical transport and secondary ion mass spectroscopy for unpatterned phosphorus δ layers containing ~1013 P atoms. The imaging resolution was 37 ± 1 nm in lateral and 4 ± 1 nm in vertical directions, both values depending on SMM tip size and depth of dopant layers. In addition, finite element modeling indicates that resolution can be substantially improved using further optimized tips and microwave gradient detection. Our results on three-dimensional dopant structures reveal reduced carrier mobility for shallow dopant layers and suggest that SMM could aid the development of fabrication processes for surface code quantum computers. PMID:28782006

  3. Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste

    SciTech Connect

    Turick, C; Berry, C.

    2012-10-15

    Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial

  4. Effects of buried penis on the structure and function of corpus cavernosum in a rat model.

    PubMed

    Cheng, Fan; Yu, Wei-Min; Xia, Yue; Zhang, Xiao-Bin; Yang, Si-Xing; Ge, Ming-Huan

    2010-07-01

    While the abnormal appearance of the concealed penis has been well recognized, the effect of buried penis on the structure and function of corpus cavernosum has not been well studied. To explore this issue, we established a rat model and evaluated the effect of buried penis on cavernosum weight, contents and ultrastructure of tissue, and nitric oxide synthase (NOS) activity. Two hundred and ten rats were randomly divided into 3 equal cohorts for 2, 4 and 6 months study (groups A, B and C). Each group was randomly divided into buried group (n = 40), control group (n = 15), and normal group (n = 15), respectively. Intra-purse-string suture of the root of the penis was used to establish the model. Macroscopic development was judged by measuring the weight of the corpus cavernosum. Masson's trichrome staining was performed for observing microstructure while a transmission electron microscope was used for observing ultrastructure. The NOS activity was detected by a NOS activity assay kit. Buried penis had no significant influence on the appearance and weight of the corpus cavernosum. Buried penis resulted in decreased smooth muscle content (P > 0.05 in group A, and P < 0.05 in groups B and C) and increased fibrous connective tissue content (P > 0.05 in groups A and B, and P < 0.05 in group C) compared with the normal and control groups. Ultrastructural abnormalities of corpus cavernosum were observed in the 6-month buried group. Moreover, there was decrease of NOS activity in groups B and C (P < 0.05 in group B and P < 0.01 in group C) when compared with the normal and control groups. Buried penis affects the structure and function of corpus cavernosum in rats and the effect is positively correlated with the buried time, but there is no significant effect on the macroscopic development.

  5. Seismic fragility analysis of buried steel piping at P, L, and K reactors

    SciTech Connect

    Wingo, H.E.

    1989-10-01

    Analysis of seismic strength of buried cooling water piping in reactor areas is necessary to evaluate the risk of reactor operation because seismic events could damage these buried pipes and cause loss of coolant accidents. This report documents analysis of the ability of this piping to withstand the combined effects of the propagation of seismic waves, the possibility that the piping may not behave in a completely ductile fashion, and the distortions caused by relative displacements of structures connected to the piping.

  6. Monolithic integration of a GaAlAs buried-heterostructure laser and a bipolar phototransistor

    NASA Technical Reports Server (NTRS)

    Bar-Chaim, N.; Harder, CH.; Margalit, S.; Yariv, A.; Katz, J.; Ury, I.

    1982-01-01

    A GaAlAs buried-heterostructure laser has been monolithically integrated with a bipolar phototransistor. The heterojunction transistor was formed by the regrowth of the burying layers of the laser. Typical threshold current values for the lasers were 30 mA. Common-emitter current gains for the phototransistor of 100-400 and light responsitivity of 75 A/W (for wavelengths of 0.82 micron) at collector current levels of 15 mA were obtained.

  7. FOREWORD: Special section on electromagnetic characterization of buried obstacles

    NASA Astrophysics Data System (ADS)

    Lesselier, Dominique; Chew, Weng Cho

    2004-12-01

    This Inverse Problems special section on electromagnetic characterization of buried obstacles contains a selection of 14 invited papers, involving 41 authors and 19 research groups worldwide. (Though this section consists of invited papers, the standard refereeing procedures of Inverse Problems have been rigorously observed.) We do not claim to have reached all the high-level researchers in the field, but we believe that we have made a fair attempt. As illustrated by the variety of contributions included, the aim of this special section is to address theoretical and practical inversion problems (and the solutions thereof) that arise in the field of electromagnetic characterization of obstacles (artificial or natural) buried on the Earth or in planetary subsoil. Civil and military engineering, archaeological and environmental issues are typically among those within the scope of the investigation. An example is the characterization of a single (or multiple) obstacle(s) located near the interface or at shallow depths via electromagnetic means operating within relevant frequency bands. However, we also welcomed novel and thought-provoking investigations, even though their direct application to the real world, or even to laboratory-controlled settings, may still be far off. Within this general mathematical and applied framework, the submitted papers focused on a combination of theoretical, computational and experimental developments. They either reviewed the most recent advances in a particular area of research or were an original and specialized contribution. Let us now take the opportunity to remind the readers that this special section harks back (in addition to sharing some common contributors) to two special sections already published in the journal which possessed the same flavour of wave-field inversion and its many applications. They were `Electromagnetic imaging and inversion of the Earth's subsurface', which was published in October 2000 (volume 16, issue 5

  8. Characterizing Amorphous Silicates in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, A.; Krawczynski, M. J.

    2015-12-01

    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the

  9. Cannabidiol reverses the mCPP-induced increase in marble-burying behavior.

    PubMed

    Nardo, Mirella; Casarotto, Plinio C; Gomes, Felipe V; Guimarães, Francisco S

    2014-10-01

    Cannabidiol (CBD), one of the main components of Cannabis sp., presents clinical and preclinical anxiolytic properties. Recent results using the marble-burying test (MBT) suggest that CBD can also induce anticompulsive-like effects. Meta-chloro-phenyl-piperazine (mCPP) is a nonspecific serotonergic agonist (acting mainly at 5HT1A, 5HT2C and 5HT1D receptors) reported to increase symptoms in OCD patients and block the anticompulsive-like effect of serotonin reuptake inhibitors (SRIs) in animal models. The aim of this study was to investigate the interference of CBD on mCPP effects in repetitive burying. Administration of mCPP showed dual effects in the MBT, increasing the number of buried marbles at lower (0.1 mg/kg) while decreasing it at higher doses (1 mg/kg), an effect not related to a general increase in anxiety-like behavior. As found previously, CBD (30 mg/kg) and the positive control fluoxetine (FLX; 10 mg/kg) decreased burying behavior without changing general exploratory activity. A similar effect was found when subeffective doses of CBD (15 mg/kg) and FLX (3 mg/kg) were administered together. These subeffective doses alone were also able to block mCPP-induced repetitive burying. The results, in addition to reinforcing a possible anticompulsive effect of CBD, also suggest that mCPP-induced repetitive burying could be a useful test for the screening of compounds with presumed anticompulsive properties.

  10. Experimental Studies about Transient Characteristics of a Deeply Buried Grounding Electrode and a Grounding Mesh

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuo; Yanagawa, Shunichi; Sekioka, Shozo

    When lightning strikes the tower of a cellular phone base station or other such facilities, power and communication equipments in the vicinity of the tower may suffer extensive damages due to the lightning current flowing backward from the grounding system of the tower. The use of a deeply buried grounding electrode has been proposed recently to suppress such back flow current and a potential rise in the vicinity of the tower. The deeply buried grounding electrode is a bare conductor buried deep in the ground that is connected to a lightning rod on the ground by an insulated wire. When lightning strikes the lightning rod, the lightning current is directed to the electrode from which it diffuses to the ground. The deeply buried grounding electrodes have been installed in cellular phone base stations and other such facilities to solve such problems caused by the back flow current and the potential rise. A grounding mesh is usually laid around such base stations as a grounding system for the facilities on the ground. Therefore, it is important to understand the interactions between the deeply buried grounding electrode and the grounding mesh. In this study, experiments on the interactions between a grounding mesh and a deeply buried grounding electrode have been carried out. Additionally, the transient characteristics of the mesh grounding have researched.

  11. Differentiating Mild Papilledema and Buried Optic Nerve Head Drusen Using Spectral Domain Optical Coherence Tomography

    PubMed Central

    Kulkarni, Kaushal M.; Pasol, Joshua; Rosa, Potyra R.; Lam, Byron L.

    2013-01-01

    Purpose To evaluate the clinical utility of spectral domain optical coherence tomography (SD-OCT) in differentiating mild papilledema from buried optic nerve head drusen (ONHD). Design Comparative case series. Participants 16 eyes of 9 patients with ultrasound-proven buried ONHD, 12 eyes of 6 patients with less than or equal to Frisén grade 2 papilledema due to idiopathic intracranial hypertension. 2 normal fellow eyes of patients with buried ONHD were included. Methods A raster scan on the optic nerve and retinal nerve fiber layer (RNFL) thickness analysis was performed on each eye using SD-OCT. Eight eyes underwent enhanced depth imaging SD-OCT. Images were assessed qualitatively and quantitatively to identify differentiating features between buried ONHD and papilledema. Five clinicians trained with a tutorial and masked to the underlying diagnosis reviewed the SD-OCT images of each eye independently to determine the diagnosis. Main outcome measures Differences in RNFL thickness in each quadrant between the two groups, and diagnostic accuracy of five independent clinicians based on the SD-OCT images alone. Results We found no statistically significant difference in RNFL thickness between buried ONHD and papilledema in any of the four quadrants. Diagnostic accuracy among the readers was low and ranged from 50–64%. The kappa coefficient of agreement among the readers was 0.35 (95% Confidence interval: 0.19, 0.54). Conclusions SD-OCT is not clinically reliable in differentiating buried ONHD and mild papilledema. PMID:24321144

  12. A process for ensuring regulatory compliance at the INEL`s buried waste integrated demonstrations

    SciTech Connect

    Cannon, P.G.; Watson, L.R.; Blacker, P.B.

    1993-03-01

    The Buried Waste Integrated Demonstration Program is funded by the Department of Energy Office of Technology Development. The mission of this Integrated Demonstration is to identify, evaluate, and demonstrate a suite of innovative technologies for the remediation of radioactive and hazardous waste buried throughout the DOE complex between 1950 and 1970. The program approach to development of a long-range strategy for improving buried waste remediation capabilities is to combine systems analysis with already identified remediation needs for DOE complex buried waste. The systems analysis effort has produced several configuration options (a top-level block diagram of a cradle-to-grave remediation system) capable of remediating the transuranic-contaminated waste pits and trenches at the Idaho National Engineering Laboratory. Technologies for demonstration are selected using three criteria: (a) the ability to satisfy a specific buried waste need, (b) the ability to satisfy functional and operational requirements defined for functional sub-elements in a configuration option, and (c) performance against Comprehensive Environmental Restoration and Compensation Liability Act selection criteria, such as effectiveness, implementability, and cost. Early demonstrations experienced problems with missed requirements, prompting the Buried Waste Integrated Demonstration Program Office to organize a Corrective Action Team to identify the cause and recommend corrective actions. The result of this team effort is the focus of this paper.

  13. Distinct microbial communities associated with buried soils in the Siberian tundra

    NASA Astrophysics Data System (ADS)

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Mikutta, Robert; Owens, Sarah; Gilbert, Jack; Schnecker, Jörg; Wild, Birgit; Hannisdal, Bjarte; Maerz, Joeran; Lashchinskiy, Nikolay; Čapek, Petr; Šantrůčková, Hana; Gentsch, Norman; Shibistova, Olga; Guggenberger, Georg; Richter, Andreas; Torsvik, Vigdis; Schleper, Christa; Urich, Tim

    2014-05-01

    Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze-thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes.

  14. Distinct microbial communities associated with buried soils in the Siberian tundra.

    PubMed

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Mikutta, Robert; Owens, Sarah; Gilbert, Jack; Schnecker, Jörg; Wild, Birgit; Hannisdal, Bjarte; Maerz, Joeran; Lashchinskiy, Nikolay; Capek, Petr; Santrůčková, Hana; Gentsch, Norman; Shibistova, Olga; Guggenberger, Georg; Richter, Andreas; Torsvik, Vigdis L; Schleper, Christa; Urich, Tim

    2014-04-01

    Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze-thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes.

  15. InP-based long-wavelength vertical-cavity surface-emitting lasers with buried tunnel junction

    NASA Astrophysics Data System (ADS)

    Lauer, Christian; Ortsiefer, Markus; Shau, Robert; Rosskopf, Jürgen; Böhm, Gerhard; Meyer, Ralf; Amann, Markus-Christian

    2004-07-01

    In this paper we present a device concept for long-wavelength vertical-cavity surface-emitting lasers (VCSELs) in the InGaAlAs/InP material system incorporating a buried tunnel junction (BTJ). A major issue of long-wavelength VCSELs is the dissipation of heat because of the low thermal conductivity of ternary and quaternary alloys. With the BTJ-VCSEL, a significant reduction of the thermal resistance is achieved by the use of a hybrid backside mirror made of a stack of amorphous dielectrics with Au-coating and the monolithic integration of a heat sink. These provide improved heat sinking capability compared to a conventional epitaxial semiconductor DBR. In addition, the tunnel junction facilitates a substitution of most of the p-doped layers by n-doped material, reducing heat generation due to ohmic losses. These features significantly improve the VCSEL characteristics. At 1.55 m wavelength, we demonstrated single-mode cw-output powers of 1.7mW at room temperature [1], multi-mode cw-output powers of 7mW [2], laser operation up to heat sink temperatures of 110 °C [2], and optical data transmission with 10 Gbit/s and low bit error rates [3]. These are record values to the best knowledge of the authors.Using strained quantum wells, the emission wavelength can be tailored to any value in the range between 1.3 m and 2.0 m [4], sample results are presented for the telecommunication wavelengths 1.3 m and 1.55 m, 1.8 m, and the currently upper limit of 2.0 μm. The slight wavelength tuning with driving current is brought about by the tiny volume of the devices and makes VCSELs ideal components for tunable diode laser absorption spectroscopy (TDLAS) [5, 6]. The maximum detuning typically reaches 4 nm (500 GHz).

  16. Infrared emission from hydrogenated amorphous carbon and amorphous carbon grains in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Duley, W. W.; Jones, A. P.; Taylor, S. D.; Williams, D. A.

    1993-01-01

    The correlations deduced by Boulanger et al. (1990) from IRAS maps of the Chamaeleon, Taurus and Ursa Major molecular cloud complexes are interpreted in terms of the evolutionary hydrogenated amorphous carbon model of interstellar dust. In particular, regions of relatively strong 12-micron emission may be regions where recently accreted carbon is being converted by ambient UV to small PAHs in situ. Regions of weak 12-micron emission are probably quiescent regions where carbon has been annealed to amorphous carbon. Observational consequences of these inferences are briefly described.

  17. Formation of amorphous silicon by light ion damage

    SciTech Connect

    Shih, Y.C.

    1985-12-01

    Amorphization by implantation of boron ions (which is the lightest element generally used in I.C. fabrication processes) has been systematically studied for various temperatures, various voltages and various dose rates. Based on theoretical considerations and experimental results, a new amorphization model for light and intermediate mass ion damage is proposed consisting of two stages. The role of interstitial type point defects or clusters in amorphization is emphasized. Due to the higher mobility of interstitials out-diffusion to the surface particularly during amorphization with low energy can be significant. From a review of the idealized amorphous structure, diinterstitial-divacancy pairs are suggested to be the embryos of amorphous zones formed during room temperature implantation. The stacking fault loops found in specimens implanted with boron at room temperature are considered to be the origin of secondary defects formed during annealing.

  18. Crystallization inhibition of an amorphous sucrose system using raffinose.

    PubMed

    Leinen, K M; Labuza, T P

    2006-02-01

    The shelf life of pure amorphous sucrose systems, such as cotton candy, can be very short. Previous studies have shown that amorphous sucrose systems held above the glass transition temperature will collapse and crystallize. One study, however, showed that adding a small percent of another type of sugar, such as trehalose, to sucrose can extend the shelf life of the amorphous system by slowing crystallization. This study explores the hypothesis that raffinose increases the stability of an amorphous sucrose system. Cotton candy at 5 wt% raffinose and 95 wt% sucrose was made and stored at room temperature and three different relative humidities (%RH) 11%RH, 33%RH, and 43%RH. XRD patterns, and glass transition temperatures were obtained to determine the stability as a function of %RH. The data collected showed that raffinose slows sucrose crystallization in a low moisture amorphous state above the glass transition temperature and therefore improves the stability of amorphous sucrose systems.

  19. Crystallization inhibition of an amorphous sucrose system using raffinose*

    PubMed Central

    Leinen, K.M.; Labuza, T.P.

    2006-01-01

    The shelf life of pure amorphous sucrose systems, such as cotton candy, can be very short. Previous studies have shown that amorphous sucrose systems held above the glass transition temperature will collapse and crystallize. One study, however, showed that adding a small percent of another type of sugar, such as trehalose, to sucrose can extend the shelf life of the amorphous system by slowing crystallization. This study explores the hypothesis that raffinose increases the stability of an amorphous sucrose system. Cotton candy at 5 wt% raffinose and 95 wt% sucrose was made and stored at room temperature and three different relative humidities (%RH) 11%RH, 33%RH, and 43%RH. XRD patterns, and glass transition temperatures were obtained to determine the stability as a function of %RH. The data collected showed that raffinose slows sucrose crystallization in a low moisture amorphous state above the glass transition temperature and therefore improves the stability of amorphous sucrose systems. PMID:16421962

  20. Reconstruction of buried objects embedded in circular opaque structures

    NASA Astrophysics Data System (ADS)

    Persico, Raffaele; Gennarelli, Gianluca; Soldovieri, Francesco

    2014-05-01

    This contribution deals with the ground penetrating radar imaging of targets embedded in a visually opaque circular structure. The problem has practical relevance in civil engineering and archeological prospections, where structures of interest such as columns or pillars may have to be inspected in non-invasive way in order to detect the possible presence of anomalies (e.g. cracks, water infiltrations, and so on). In this framework, we investigate the possibility to inspect the circular region of interest thanks to a radar system composed by two antennas that are in contact with the structure and rotate simultaneously around it in order to illuminate and measure the field scattered by buried objects from multiple directions. Two different measurement strategies are examined. The first one is the multimonostatic configuration where the backscattered signal is collected by the transmitting antenna itself, as it moves along the circular observation line. The second acquisition strategy is the multibistatic one, with the transmitting and receiving antennas shifted by a constant angular offset of ninety degrees as they move around the column. From the mathematical viewpoint, the imaging problem is formulated as a linear inverse scattering one holding under Born approximation [1]. Furthermore, the Green's function of a homogeneous medium [2] is used to simplify the evaluation of the kernel of the integral equation. The inverse problem is then solved via the Truncated Singular Value Decomposition algorithm [3] in order to obtain a regularized solution. Tomographic reconstructions based on full-wave synthetic data generated by the Finite Difference Time Domain code GPRmax2D [4] are shown to assess the effectiveness of the reconstruction process. REFERENCES [1] W. C. Chew, Waves and fields in inhomogeneous media, IEEE Press, 1995. [2] R. F. Harrington, Time harmonic electromagnetic waves, McGraw-Hill, New York, USA, 1961. [3] M. Bertero and P. Boccacci, Introduction to