Science.gov

Sample records for ascidian ciona edwardsii

  1. Delineating metamorphic pathways in the ascidian Ciona intestinalis.

    PubMed

    Nakayama-Ishimura, Akie; Chambon, Jean-phillippe; Horie, Takeo; Satoh, Nori; Sasakura, Yasunori

    2009-02-15

    In most ascidians, metamorphosis of tadpole-like swimming larvae is accompanied by dynamic changes in their shape to form sessile adults. The mechanisms underlying ascidian metamorphosis have been debated for a long time. Although recent molecular studies have revealed the presence of various molecules involving in this process, the basic mechanism of the metamorphic events is still unclear. For example, it has not been solved whether all metamorphic events are organized by the same single pathway or by multiple, independent pathways. In the present study, we approached this question using the ascidian Ciona intestinalis. When the papillae and preoral lobes of the larvae were cut off, the papillae-cut larvae initiated certain trunk metamorphic events such as the formation of an ampulla, body axis rotation and adult organ growth without other metamorphic events. This observation indicates that metamorphic events can be divided into at least two groups, events initiated in the papillae-cut larva and events not initiated in this larva. In addition to this observation, we have isolated a novel mutant, tail regression failed (trf), which shows similar phenotypes to those of papillae-cut larvae. The phenotypes of trf mutants are basically different from those of swimming juvenile mutants (Sasakura, Y., Nakashima, K., Awazu, S., Matsuoka, T., Nakayama, A., Azuma, J., Satoh, N., 2005. Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthase in the ascidian Ciona intestinalis. Proc. Natl. Acad. Sci. U. S. A. 102, 15134-15139.), which also show abnormal metamorphosis. These findings suggest a model by which ascidian metamorphic events can be classified into four groups initiated by different pathways.

  2. Toll-like Receptors of the Ascidian Ciona intestinalis

    PubMed Central

    Sasaki, Naoko; Ogasawara, Michio; Sekiguchi, Toshio; Kusumoto, Shoichi; Satake, Honoo

    2009-01-01

    Key transmembrane proteins in the innate immune system, Toll-like receptors (TLRs), have been suggested to occur in the genome of non-mammalian organisms including invertebrates. However, authentic invertebrate TLRs have been neither structurally nor functionally investigated. In this paper, we originally present the structures, localization, ligand recognition, activities, and inflammatory cytokine production of all TLRs of the ascidian Ciona intestinalis, designated as Ci-TLR1 and Ci-TLR2. The amino acid sequence of Ci-TLR1 and Ci-TLR2 were found to possess unique structural organization with moderate sequence similarity to functionally characterized vertebrate TLRs. ci-tlr1 and ci-tlr2 genes were expressed predominantly in the stomach and intestine as well as in hemocytes. Ci-TLR1 and Ci-TLR2 expressed in HEK293 cells, unlike vertebrate TLRs, were localized to both the plasma membrane and endosomes. Intriguingly, both Ci-TLR1 and Ci-TLR2 stimulate NF-κB induction in response to multiple pathogenic ligands such as double-stranded RNA, and bacterial cell wall components that are differentially recognized by respective vertebrate TLRs, revealing that Ci-TLRs recognize broader pathogen-associated molecular patterns than vertebrate TLRs. The Ci-TLR-stimulating pathogenic ligands also induced the expression of Ci-TNFα in the intestine and stomach where Ci-TLRs are expressed. These results provide evidence that the TLR-triggered innate immune systems are essentially conserved in ascidians, and that Ci-TLRs possess “hybrid” biological and immunological functions, compared with vertebrate TLRs. Moreover, it is presumed that chordate TLR ancestors also acquired the Ci-TLR-like multiple cellular localization and pathogen-associated molecular pattern recognition. PMID:19651780

  3. Construction of a cDNA microarray derived from the ascidian Ciona intestinalis.

    PubMed

    Azumi, Kaoru; Takahashi, Hiroki; Miki, Yasufumi; Fujie, Manabu; Usami, Takeshi; Ishikawa, Hisayoshi; Kitayama, Atsusi; Satou, Yutaka; Ueno, Naoto; Satoh, Nori

    2003-10-01

    A cDNA microarray was constructed from a basal chordate, the ascidian Ciona intestinalis. The draft genome of Ciona has been read and inferred to contain approximately 16,000 protein-coding genes, and cDNAs for transcripts of 13,464 genes have been characterized and compiled as the "Ciona intestinalis Gene Collection Release I". In the present study, we constructed a cDNA microarray of these 13,464 Ciona genes. A preliminary experiment with Cy3- and Cy5-labeled probes showed extensive differential gene expression between fertilized eggs and larvae. In addition, there was a good correlation between results obtained by the present microarray analysis and those from previous EST analyses. This first microarray of a large collection of Ciona intestinalis cDNA clones should facilitate the analysis of global gene expression and gene networks during the embryogenesis of basal chordates.

  4. Huntingtin gene evolution in Chordata and its peculiar features in the ascidian Ciona genus

    PubMed Central

    Gissi, Carmela; Pesole, Graziano; Cattaneo, Elena; Tartari, Marzia

    2006-01-01

    Background To gain insight into the evolutionary features of the huntingtin (htt) gene in Chordata, we have sequenced and characterized the full-length htt mRNA in the ascidian Ciona intestinalis, a basal chordate emerging as new invertebrate model organism. Moreover, taking advantage of the availability of genomic and EST sequences, the htt gene structure of a number of chordate species, including the cogeneric ascidian Ciona savignyi, and the vertebrates Xenopus and Gallus was reconstructed. Results The C. intestinalis htt transcript exhibits some peculiar features, such as spliced leader trans-splicing in the 98 nt-long 5' untranslated region (UTR), an alternative splicing in the coding region, eight alternative polyadenylation sites, and no similarities of both 5' and 3'UTRs compared to homologs of the cogeneric C. savignyi. The predicted protein is 2946 amino acids long, shorter than its vertebrate homologs, and lacks the polyQ and the polyP stretches found in the the N-terminal regions of mammalian homologs. The exon-intron organization of the htt gene is almost identical among vertebrates, and significantly conserved between Ciona and vertebrates, allowing us to hypothesize an ancestral chordate gene consisting of at least 40 coding exons. Conclusion During chordate diversification, events of gain/loss, sliding, phase changes, and expansion of introns occurred in both vertebrate and ascidian lineages predominantly in the 5'-half of the htt gene, where there is also evidence of lineage-specific evolutionary dynamics in vertebrates. On the contrary, the 3'-half of the gene is highly conserved in all chordates at the level of both gene structure and protein sequence. Between the two Ciona species, a fast evolutionary rate and/or an early divergence time is suggested by the absence of significant similarity between UTRs, protein divergence comparable to that observed between mammals and fishes, and different distribution of repetitive elements. PMID:17092333

  5. Time course for tail regression during metamorphosis of the ascidian Ciona intestinalis.

    PubMed

    Matsunobu, Shohei; Sasakura, Yasunori

    2015-09-01

    In most ascidians, the tadpole-like swimming larvae dramatically change their body-plans during metamorphosis and develop into sessile adults. The mechanisms of ascidian metamorphosis have been researched and debated for many years. Until now information on the detailed time course of the initiation and completion of each metamorphic event has not been described. One dramatic and important event in ascidian metamorphosis is tail regression, in which ascidian larvae lose their tails to adjust themselves to sessile life. In the present study, we measured the time associated with tail regression in the ascidian Ciona intestinalis. Larvae are thought to acquire competency for each metamorphic event in certain developmental periods. We show that the timing with which the competence for tail regression is acquired is determined by the time since hatching, and this timing is not affected by the timing of post-hatching events such as adhesion. Because larvae need to adhere to substrates with their papillae to induce tail regression, we measured the duration for which larvae need to remain adhered in order to initiate tail regression and the time needed for the tail to regress. Larvae acquire the ability to adhere to substrates before they acquire tail regression competence. We found that when larvae adhered before they acquired tail regression competence, they were able to remember the experience of adhesion until they acquired the ability to undergo tail regression. The time course of the events associated with tail regression provides a valuable reference, upon which the cellular and molecular mechanisms of ascidian metamorphosis can be elucidated.

  6. Siphon regeneration capacity is compromised during aging in the ascidian Ciona intestinalis.

    PubMed

    Jeffery, William R

    2012-01-01

    The ascidian Ciona intestinalis has a short life span and powerful regeneration capacities. The regeneration of the oral siphon (OS) involves wound healing, blastema formation, cell proliferation, and replacement of 8 oral pigment organs (OPO), the latter via differentiation and migration of stem/precursor cells from localized niches in the siphon. The restoration of OPO pattern during OS regeneration occurs with a high degree of accuracy through three successive cycles of amputation. It is shown here that oral siphons of the largest and oldest members of a wild Ciona population do not completely regenerate their siphons after amputation. The loss of regeneration capacity was accompanied by reduced cell proliferation. In contrast to arrested OS outgrowth, the stem/precursor cells responsible for OPO replacement "over-differentiate" after OS amputation in the oldest animals, the typical number of OPO is increased from 8 to 12-16, and malformed OPO are produced. Also in contrast to younger animals, the oldest animals of the population show arrested OPO development after two consecutive cycles of amputation and regeneration. We conclude that there is a size and age threshold in Ciona after which the regenerative capacity of the OS is compromised due to effects of aging on cell proliferation.

  7. Spermiotoxicity of nickel nanoparticles in the marine invertebrate Ciona intestinalis (ascidians).

    PubMed

    Gallo, Alessandra; Boni, Raffaele; Buttino, Isabella; Tosti, Elisabetta

    2016-10-01

    Nickel nanoparticles (Ni NPs) are increasingly used in modern industries as catalysts, sensors, and in electronic applications. Due to this large use, their inputs into marine environment have significantly increased; however, the potential ecotoxicological effects in marine environment have so far received little attention. In particular, little is known on the impact of NPs on gamete quality of marine organisms and on the consequences on fertility potential. The present study examines, for the first time, the impact of Ni NPs exposure on sperm quality of the marine invertebrate Ciona intestinalis (ascidian). Several parameters related with sperm status such as plasma membrane lipid peroxidation, mitochondrial membrane potential (MMP), intracellular pH, DNA integrity, and fertilizing ability were assessed as toxicity end points after exposure to different Ni NPs concentrations. Ni NPs generate oxidative stress that in turn induces lipid peroxidation and DNA fragmentation, and alters MMP and sperm morphology. Furthermore, sperm exposure to Ni NPs affects their fertilizing ability and causes developmental anomalies in the offspring. All together, these results reveal a spermiotoxicity of Ni NPs in ascidians suggesting that the application of these NPs should be carefully assessed as to their potential toxic effects on the health of marine organisms that, in turn, may influence the ecological system. This study shows that ascidian sperm represent a suitable and sensitive tool for the investigation of the toxicity of NPs entered into marine environment, for defining the mechanisms of toxic action and for the environmental monitoring purpose.

  8. Spermiotoxicity of nickel nanoparticles in the marine invertebrate Ciona intestinalis (ascidians)

    PubMed Central

    Gallo, Alessandra; Boni, Raffaele; Buttino, Isabella; Tosti, Elisabetta

    2016-01-01

    Abstract Nickel nanoparticles (Ni NPs) are increasingly used in modern industries as catalysts, sensors, and in electronic applications. Due to this large use, their inputs into marine environment have significantly increased; however, the potential ecotoxicological effects in marine environment have so far received little attention. In particular, little is known on the impact of NPs on gamete quality of marine organisms and on the consequences on fertility potential. The present study examines, for the first time, the impact of Ni NPs exposure on sperm quality of the marine invertebrate Ciona intestinalis (ascidian). Several parameters related with sperm status such as plasma membrane lipid peroxidation, mitochondrial membrane potential (MMP), intracellular pH, DNA integrity, and fertilizing ability were assessed as toxicity end points after exposure to different Ni NPs concentrations. Ni NPs generate oxidative stress that in turn induces lipid peroxidation and DNA fragmentation, and alters MMP and sperm morphology. Furthermore, sperm exposure to Ni NPs affects their fertilizing ability and causes developmental anomalies in the offspring. All together, these results reveal a spermiotoxicity of Ni NPs in ascidians suggesting that the application of these NPs should be carefully assessed as to their potential toxic effects on the health of marine organisms that, in turn, may influence the ecological system. This study shows that ascidian sperm represent a suitable and sensitive tool for the investigation of the toxicity of NPs entered into marine environment, for defining the mechanisms of toxic action and for the environmental monitoring purpose. PMID:27080039

  9. Spermiotoxicity of nickel nanoparticles in the marine invertebrate Ciona intestinalis (ascidians).

    PubMed

    Gallo, Alessandra; Boni, Raffaele; Buttino, Isabella; Tosti, Elisabetta

    2016-10-01

    Nickel nanoparticles (Ni NPs) are increasingly used in modern industries as catalysts, sensors, and in electronic applications. Due to this large use, their inputs into marine environment have significantly increased; however, the potential ecotoxicological effects in marine environment have so far received little attention. In particular, little is known on the impact of NPs on gamete quality of marine organisms and on the consequences on fertility potential. The present study examines, for the first time, the impact of Ni NPs exposure on sperm quality of the marine invertebrate Ciona intestinalis (ascidian). Several parameters related with sperm status such as plasma membrane lipid peroxidation, mitochondrial membrane potential (MMP), intracellular pH, DNA integrity, and fertilizing ability were assessed as toxicity end points after exposure to different Ni NPs concentrations. Ni NPs generate oxidative stress that in turn induces lipid peroxidation and DNA fragmentation, and alters MMP and sperm morphology. Furthermore, sperm exposure to Ni NPs affects their fertilizing ability and causes developmental anomalies in the offspring. All together, these results reveal a spermiotoxicity of Ni NPs in ascidians suggesting that the application of these NPs should be carefully assessed as to their potential toxic effects on the health of marine organisms that, in turn, may influence the ecological system. This study shows that ascidian sperm represent a suitable and sensitive tool for the investigation of the toxicity of NPs entered into marine environment, for defining the mechanisms of toxic action and for the environmental monitoring purpose. PMID:27080039

  10. Regeneration of oral siphon pigment organs in the ascidian Ciona intestinalis.

    PubMed

    Auger, Hélène; Sasakura, Yasunori; Joly, Jean-Stéphane; Jeffery, William R

    2010-03-15

    Ascidians have powerful capacities for regeneration but the underlying mechanisms are poorly understood. Here we examine oral siphon regeneration in the solitary ascidian Ciona intestinalis. Following amputation, the oral siphon rapidly reforms oral pigment organs (OPO) at its distal margin prior to slower regeneration of proximal siphon parts. The early stages of oral siphon reformation include cell proliferation and re-growth of the siphon nerves, although the neural complex (adult brain and associated organs) is not required for regeneration. Young animals reform OPO more rapidly after amputation than old animals indicating that regeneration is age dependent. UV irradiation, microcautery, and cultured siphon explant experiments indicate that OPOs are replaced as independent units based on local differentiation of progenitor cells within the siphon, rather than by cell migration from a distant source in the body. The typical pattern of eight OPOs and siphon lobes is restored with fidelity after distal amputation of the oral siphon, but as many as 16 OPOs and lobes can be reformed following proximal amputation near the siphon base. Thus, the pattern of OPO regeneration is determined by cues positioned along the proximal distal axis of the oral siphon. A model is presented in which columns of siphon tissue along the proximal-distal axis below pre-existing OPO are responsible for reproducing the normal OPO pattern during regeneration. This study reveals previously unknown principles of oral siphon and OPO regeneration that will be important for developing Ciona as a regeneration model in urochordates, which may be the closest living relatives of vertebrates.

  11. Closing the wounds: one hundred and twenty five years of regenerative biology in the ascidian Ciona intestinalis.

    PubMed

    Jeffery, William R

    2015-01-01

    This year marks the 125th anniversary of the beginning of regeneration research in the ascidian Ciona intestinalis. A brief note was published in 1891, reporting the regeneration of the Ciona neural complex and siphons. This launched an active period of Ciona regeneration research culminating in the demonstration of partial body regeneration: the ability of proximal body parts to regenerate distal ones, but not vice versa. In a process resembling regeneration, wounds in the siphon tube were discovered to result in the formation of an ectopic siphon. Ciona regeneration research then lapsed into a period of relative inactivity after the purported demonstration of the inheritance of acquired characters using siphon regeneration as a model. Around the turn of the present century, Ciona regeneration research experienced a new blossoming. The current studies established the morphological and physiological integrity of the regeneration process and its resemblance to ontogeny. They also determined some of the cell types responsible for tissue and organ replacement and their sources in the body. Finally, they showed that regenerative capacity is reduced with age. Many other aspects of regeneration now can be studied at the mechanistic level because of the extensive molecular tools available in Ciona.

  12. A one-dimensional model of PCP signaling: polarized cell behavior in the notochord of the ascidian Ciona

    PubMed Central

    Kourakis, Matthew J.; Reeves, Wendy; Newman-Smith, Erin; Maury, Benoit; Abdul-Wajid, Sarah; Smith, William C.

    2014-01-01

    Despite its importance in development and physiology the planar cell polarity (PCP) pathway remains one of the most enigmatic signaling mechanisms. The notochord of the ascidian Ciona provides a unique model for investigating the PCP pathway. Interestingly, the notochord appears to be the only embryonic structure in Ciona activating the PCP pathway. Moreover, the Ciona notochord as a single-file array of forty polarized cells is a uniquely tractable system for the study of polarization dynamics and the transmission of the PCP pathway. Here, we test models for propagation of a polarizing signal, interrogating temporal, spatial and signaling requirements. A simple cell-cell relay cascading through the entire length of the notochord is not supported; instead a more complex mechanism is revealed, with interactions influencing polarity between neighboring cells, but not distant ones. Mechanisms coordinating notochord-wide polarity remain elusive, but appear to entrain general (i.e., global) polarity even while local interactions remain important. However, this global polarizer does not appear to act as a localized, spatially-restricted determinant. Coordination of polarity along the long axis of the notochord requires the PCP pathway, a role we demonstrate is temporally distinct from this pathway’s earlier role in convergent extension and intercalation. We also reveal polarity in the notochord to be dynamic: a cell’s polarity state can be changed and then restored, underscoring the Ciona notochord’s amenability for in vivo studies of PCP. PMID:25173874

  13. Metamorphosis of the invasive ascidian Ciona savignyi: environmental variables and chemical exposure.

    PubMed

    Cahill, Patrick L; Atalah, Javier; Selwood, Andrew I; Kuhajek, Jeanne M

    2016-01-01

    In this study, the effects of environmental variables on larval metamorphosis of the solitary ascidian Ciona savignyi were investigated in a laboratory setting. The progression of metamorphic changes were tracked under various temperature, photoperiod, substrate, larval density, and vessel size regimes. Metamorphosis was maximised at 18 °C, 12:12 h subdued light:dark, smooth polystyrene substrate, and 10 larvae mL(-1) in a twelve-well tissue culture plate. Eliminating the air-water interface by filling culture vessels to capacity further increased the proportion of metamorphosed larvae; 87 ± 5% of larvae completed metamorphosis within 5 days compared to 45 ± 5% in control wells. The effects of the reference antifouling compounds polygodial, portimine, oroidin, chlorothalonil, and tolylfluanid on C. savignyi were subsequently determined, highlighting (1) the sensitivity of C. savignyi metamorphosis to chemical exposure and (2) the potential to use C. savignyi larvae to screen for bioactivity in an optimised laboratory setting. The compounds were bioactive in the low ng mL(-1) to high µg mL(-1) range. Polygodial was chosen for additional investigations, where it was shown that mean reductions in the proportions of larvae reaching stage E were highly repeatable both within (repeatability = 14 ± 9%) and between (intermediate precision = 17 ± 3%) independent experiments. An environmental extract had no effect on the larvae but exposing larvae to both the extract and polygodial reduced potency relative to polygodial alone. This change in potency stresses the need for caution when working with complex samples, as is routinely implemented when isolating natural compounds from their biological source. Overall, the outcomes of this study highlight the sensitivity of C. savignyi metamorphosis to environmental variations and chemical exposure.

  14. Metamorphosis of the invasive ascidian Ciona savignyi: environmental variables and chemical exposure

    PubMed Central

    Atalah, Javier; Selwood, Andrew I.; Kuhajek, Jeanne M.

    2016-01-01

    In this study, the effects of environmental variables on larval metamorphosis of the solitary ascidian Ciona savignyi were investigated in a laboratory setting. The progression of metamorphic changes were tracked under various temperature, photoperiod, substrate, larval density, and vessel size regimes. Metamorphosis was maximised at 18 °C, 12:12 h subdued light:dark, smooth polystyrene substrate, and 10 larvae mL−1 in a twelve-well tissue culture plate. Eliminating the air-water interface by filling culture vessels to capacity further increased the proportion of metamorphosed larvae; 87 ± 5% of larvae completed metamorphosis within 5 days compared to 45 ± 5% in control wells. The effects of the reference antifouling compounds polygodial, portimine, oroidin, chlorothalonil, and tolylfluanid on C. savignyi were subsequently determined, highlighting (1) the sensitivity of C. savignyi metamorphosis to chemical exposure and (2) the potential to use C. savignyi larvae to screen for bioactivity in an optimised laboratory setting. The compounds were bioactive in the low ng mL−1 to high µg mL−1 range. Polygodial was chosen for additional investigations, where it was shown that mean reductions in the proportions of larvae reaching stage E were highly repeatable both within (repeatability = 14 ± 9%) and between (intermediate precision = 17 ± 3%) independent experiments. An environmental extract had no effect on the larvae but exposing larvae to both the extract and polygodial reduced potency relative to polygodial alone. This change in potency stresses the need for caution when working with complex samples, as is routinely implemented when isolating natural compounds from their biological source. Overall, the outcomes of this study highlight the sensitivity of C. savignyi metamorphosis to environmental variations and chemical exposure. PMID:26966668

  15. Ciona Genetics

    PubMed Central

    Veeman, Michael T.; Chiba, Shota; Smith, William C.

    2010-01-01

    Ascidians, such as Ciona, are invertebrate chordates with simple embryonic body plans and small, relatively non-redundant genomes. Ciona genetics is in its infancy compared to many other model systems, but it provides a powerful method for studying this important vertebrate outgroup. Here we give basic methods for genetic analysis of Ciona, including protocols for controlled crosses both by natural spawning and by the surgical isolation of gametes; the identification and propagation of mutant lines; and strategies for positional cloning. PMID:21805273

  16. Distal regeneration involves the age dependent activity of branchial sac stem cells in the ascidian Ciona intestinalis

    PubMed Central

    2014-01-01

    Abstract Tunicates have high capacities for regeneration but the underlying mechanisms and their relationship to life cycle progression are not well understood. Here we investigate the regeneration of distal structures in the ascidian tunicate Ciona intestinalis. Analysis of regenerative potential along the proximal−distal body axis indicated that distal organs, such as the siphons, their pigmented sensory organs, and the neural complex, could only be replaced from body fragments containing the branchial sac. Distal regeneration involves the formation of a blastema composed of cells that undergo cell proliferation prior to differentiation and cells that differentiate without cell proliferation. Both cell types originate in the branchial sac and appear in the blastema at different times after distal injury. Whereas the branchial sac stem cells are present in young animals, they are depleted in old animals that have lost their regeneration capacity. Thus Ciona adults contain a population of age‐related stem cells located in the branchial sac that are a source of precursors for distal body regeneration. PMID:25893097

  17. Toxicity assessment of the antifouling compound zinc pyrithione using early developmental stages of the ascidian Ciona intestinalis.

    PubMed

    Bellas, Juan

    2005-01-01

    This study investigated the toxicity of zinc pyrithione (Zpt) on the early stages of development of the ascidian Ciona intestinalis. Larval morphological abnormalities were studied after the exposure of C. intestinalis embryos at different stages of development. The median effective concentrations (EC50) ranged from 226-590 nM. The larval settlement stage was the most sensitive to Zpt. Toxic effects of Zpt on larval settlement were detected at 9 nM (EC10). The inhibition of C. intestinalis embryonic development was also used to study the loss of toxicity in Zpt solutions exposed to direct sunlight and laboratory UV light. The results showed that the toxicity of Zpt solutions decreased but did not disappear after 4 h exposure to direct sunlight (EC50 = 484 nM) or UV light (EC50 = 453 nM), compared to control Zpt solutions prepared in dark conditions. On the basis of the present data, predicted no effect concentrations of Zpt to C. intestinalis larvae are lower than predicted environmental concentrations of Zpt in certain polluted areas and therefore, may pose a risk to C. intestinalis populations. PMID:16522542

  18. Complete mtDNA of Ciona intestinalis reveals extensive gene rearrangement and the presence of an atp8 and an extra trnM gene in ascidians.

    PubMed

    Gissi, Carmela; Iannelli, Fabio; Pesole, Graziano

    2004-04-01

    The complete mitochondrial genome (mtDNA) of the model organism Ciona intestinalis (Urochordata, Ascidiacea) has been amplified by long-PCR using specific primers designed on putative mitochondrial transcripts identified from publicly available mitochondrial-like expressed sequence tags. The C. intestinalis mtDNA encodes 39 genes: 2 rRNAs, 13 subunits of the respiratory complexes, including ATPase subunit 8 ( atp8), and 24 tRNAs, including 2 tRNA-Met with anticodons 5'-UAU-3'and 5'-CAU-3', respectively. All genes are transcribed from the same strand. This gene content seems to be a common feature of ascidian mtDNAs, as we have verified the presence of a previously undetected atp8 and of two trnM genes in the two other sequenced ascidian mtDNAs. Extensive gene rearrangement has been found in C. intestinalis with respect not only to the common Vertebrata/Cephalochordata/Hemichordata gene organization but also to other ascidian mtDNAs, including the cogeneric Ciona savignyi. Other features such as the absence of long noncoding regions, the shortness of rRNA genes, the low GC content (21.4%), and the absence of asymmetric base distribution between the two strands suggest that this genome is more similar to those of some protostomes than to deuterostomes. PMID:15114417

  19. Complete mtDNA of Ciona intestinalis reveals extensive gene rearrangement and the presence of an atp8 and an extra trnM gene in ascidians.

    PubMed

    Gissi, Carmela; Iannelli, Fabio; Pesole, Graziano

    2004-04-01

    The complete mitochondrial genome (mtDNA) of the model organism Ciona intestinalis (Urochordata, Ascidiacea) has been amplified by long-PCR using specific primers designed on putative mitochondrial transcripts identified from publicly available mitochondrial-like expressed sequence tags. The C. intestinalis mtDNA encodes 39 genes: 2 rRNAs, 13 subunits of the respiratory complexes, including ATPase subunit 8 ( atp8), and 24 tRNAs, including 2 tRNA-Met with anticodons 5'-UAU-3'and 5'-CAU-3', respectively. All genes are transcribed from the same strand. This gene content seems to be a common feature of ascidian mtDNAs, as we have verified the presence of a previously undetected atp8 and of two trnM genes in the two other sequenced ascidian mtDNAs. Extensive gene rearrangement has been found in C. intestinalis with respect not only to the common Vertebrata/Cephalochordata/Hemichordata gene organization but also to other ascidian mtDNAs, including the cogeneric Ciona savignyi. Other features such as the absence of long noncoding regions, the shortness of rRNA genes, the low GC content (21.4%), and the absence of asymmetric base distribution between the two strands suggest that this genome is more similar to those of some protostomes than to deuterostomes.

  20. Genomewide gene-associated microsatellite markers for the model invasive ascidian, Ciona intestinalis species complex.

    PubMed

    Lin, Yaping; Chen, Yiyong; Xiong, Wei; Zhan, Aibin

    2016-05-01

    The vase tunicate, Ciona intestinalis species complex, has become a good model for ecological and evolutionary studies, especially those focusing on microevolution associated with rapidly changing environments. However, genomewide genetic markers are still lacking. Here, we characterized a large set of genomewide gene-associated microsatellite markers for C. intestinalis spA (=C. robusta). Bioinformatic analysis identified 4654 microsatellites from expressed sequence tags (ESTs), 2126 of which successfully assigned to chromosomes were selected for further analysis. Based on the distribution evenness on chromosomes, function annotation and suitability for primer design, we chose 545 candidate microsatellites for further characterization. After amplification validation and variation assessment, 218 loci were polymorphic in at least one of the two populations collected from the coast of Arenys de Mar, Spain (N = 24-48), and Cape Town, South Africa (N = 24-33). The number of alleles, observed heterozygosity and expected heterozygosity ranged from 2 to 11, 0 to 0.833 and 0.021 to 0.818, and from 2 to 10, 0 to 0.879 and 0.031 to 0.845 for the Spanish and African populations, respectively. When all microsatellites were tested for cross-species utility, only 60 loci (25.8%) could be successfully amplified and all loci were polymorphic in C. intestinalis spB. A high level of genomewide polymorphism is likely responsible for the low transferability. The large set of microsatellite markers characterized here is expected to provide a useful genomewide resource for ecological and evolutionary studies using C. intestinalis as a model. PMID:26505988

  1. Nitric Oxide Affects ERK Signaling through Down-Regulation of MAP Kinase Phosphatase Levels during Larval Development of the Ascidian Ciona intestinalis

    PubMed Central

    Palumbo, Anna

    2014-01-01

    In the ascidian Ciona intestinalis larval development and metamorphosis require a complex interplay of events, including nitric oxide (NO) production, MAP kinases (ERK, JNK) and caspase-3 activation. We have previously shown that NO levels affect the rate of metamorphosis, regulate caspase activity and promote an oxidative stress pathway, resulting in protein nitration. Here, we report that NO down-regulates MAP kinase phosphatases (mkps) expression affecting positively ERK signaling. By pharmacological approach, we observed that the reduction of endogenous NO levels caused a decrease of ERK phosphorylation, whereas increasing levels of NO induced ERK activation. We have also identified the ERK gene network affected by NO, including mpk1, mpk3 and some key developmental genes by quantitative gene expression analysis. We demonstrate that NO induces an ERK-independent down-regulation of mkp1 and mkp3, responsible for maintaining the ERK phosphorylation levels necessary for transcription of key metamorphic genes, such as the hormone receptor rev-erb and the van willebrand protein vwa1c. These results add new insights into the role played by NO during larval development and metamorphosis in Ciona, highlighting the cross-talk between different signaling pathways. PMID:25058405

  2. The diatom-derived aldehyde decadienal affects life cycle transition in the ascidian Ciona intestinalis through nitric oxide/ERK signalling

    PubMed Central

    Castellano, Immacolata; Ercolesi, Elena; Romano, Giovanna; Ianora, Adrianna; Palumbo, Anna

    2015-01-01

    Polyunsaturated aldehydes (PUAs) are fatty-acid-derived metabolites produced by some microalgae, including different diatom species. PUAs are mainly produced as a wound-activated defence mechanism against microalgal predators or released from senescent cells at the end of a bloom. PUAs, including 2,4-trans-decadienal (DD), induce deleterious effects on embryonic and larval development of several planktonic and benthic organisms. Here, we report on the effects of DD on larval development and metamorphosis of the ascidian Ciona intestinalis. Ciona larval development is regulated by the cross-talking of different molecular events, including nitric oxide (NO) production, ERK activation and caspase 3-dependent apoptosis. We report that treatment with DD at the competence larval stage results in a delay in metamorphosis. DD affects redox balance by reducing total glutathione and NO levels. By biochemical and quantitative gene expression analysis, we identify the NO-signalling network affected by DD, including the upregulation of ERK phosphatase mkp1 and consequent reduction of ERK phosphorylation, with final changes in the expression of downstream ERK target genes. Overall, these results give new insights into the molecular pathways induced in marine organisms after exposure to PUAs during larval development, demonstrating that this aldehyde affects key checkpoints of larval transition from the vegetative to the reproductive life stage. PMID:25788553

  3. A pipeline for the systematic identification of non-redundant full-ORF cDNAs for polymorphic and evolutionary divergent genomes: Application to the ascidian Ciona intestinalis

    PubMed Central

    Gilchrist, Michael J.; Sobral, Daniel; Khoueiry, Pierre; Daian, Fabrice; Laporte, Batiste; Patrushev, Ilya; Matsumoto, Jun; Dewar, Ken; Hastings, Kenneth E.M.; Satou, Yutaka; Lemaire, Patrick; Rothbächer, Ute

    2015-01-01

    Genome-wide resources, such as collections of cDNA clones encoding for complete proteins (full-ORF clones), are crucial tools for studying the evolution of gene function and genetic interactions. Non-model organisms, in particular marine organisms, provide a rich source of functional diversity. Marine organism genomes are, however, frequently highly polymorphic and encode proteins that diverge significantly from those of well-annotated model genomes. The construction of full-ORF clone collections from non-model organisms is hindered by the difficulty of predicting accurately the N-terminal ends of proteins, and distinguishing recent paralogs from highly polymorphic alleles. We report a computational strategy that overcomes these difficulties, and allows for accurate gene level clustering of transcript data followed by the automated identification of full-ORFs with correct 5′- and 3′-ends. It is robust to polymorphism, includes paralog calling and does not require evolutionary proximity to well annotated model organisms. We developed this pipeline for the ascidian Ciona intestinalis, a highly polymorphic member of the divergent sister group of the vertebrates, emerging as a powerful model organism to study chordate gene function, Gene Regulatory Networks and molecular mechanisms underlying human pathologies. Using this pipeline we have generated the first full-ORF collection for a highly polymorphic marine invertebrate. It contains 19,163 full-ORF cDNA clones covering 60% of Ciona coding genes, and full-ORF orthologs for approximately half of curated human disease-associated genes. PMID:26025923

  4. Evolution of the chordate regeneration blastema: Differential gene expression and conserved role of notch signaling during siphon regeneration in the ascidian Ciona.

    PubMed

    Hamada, Mayuko; Goricki, Spela; Byerly, Mardi S; Satoh, Noriyuki; Jeffery, William R

    2015-09-15

    The regeneration of the oral siphon (OS) and other distal structures in the ascidian Ciona intestinalis occurs by epimorphosis involving the formation of a blastema of proliferating cells. Despite the longstanding use of Ciona as a model in molecular developmental biology, regeneration in this system has not been previously explored by molecular analysis. Here we have employed microarray analysis and quantitative real time RT-PCR to identify genes with differential expression profiles during OS regeneration. The majority of differentially expressed genes were downregulated during OS regeneration, suggesting roles in normal growth and homeostasis. However, a subset of differentially expressed genes was upregulated in the regenerating OS, suggesting functional roles during regeneration. Among the upregulated genes were key members of the Notch signaling pathway, including those encoding the delta and jagged ligands, two fringe modulators, and to a lesser extent the notch receptor. In situ hybridization showed a complementary pattern of delta1 and notch gene expression in the blastema of the regenerating OS. Chemical inhibition of the Notch signaling pathway reduced the levels of cell proliferation in the branchial sac, a stem cell niche that contributes progenitor cells to the regenerating OS, and in the OS regeneration blastema, where siphon muscle fibers eventually re-differentiate. Chemical inhibition also prevented the replacement of oral siphon pigment organs, sensory receptors rimming the entrance of the OS, and siphon muscle fibers, but had no effects on the formation of the wound epidermis. Since Notch signaling is involved in the maintenance of proliferative activity in both the Ciona and vertebrate regeneration blastema, the results suggest a conserved evolutionary role of this signaling pathway in chordate regeneration. The genes identified in this investigation provide the foundation for future molecular analysis of OS regeneration.

  5. Ci-Rga, a gene encoding an MtN3/saliva family transmembrane protein, is essential for tissue differentiation during embryogenesis of the ascidian Ciona intestinalis.

    PubMed

    Hamada, Mayuko; Wada, Shuichi; Kobayashi, Kenji; Satoh, Nori

    2005-09-01

    A novel gene (Ci-Rga) essential for tissue differentiation during embryogenesis of the ascidian Ciona intestinalis is reported here. This gene was identified through functional screening of Ciona genes required for development by translational inhibition experiments with morpholino antisense oligonucleotides. The deduced protein of Ci-Rga contains two copies of a domain with unknown function called the MtN3/saliva domain. Phylogenetic analysis showed that Ci-Rga belongs to the MtN3/saliva family of genes conserved among metazoans and plants, and is an ortholog of mouse Rga (Recombination-activating gene 1 gene activation). During Ciona embryogenesis, both maternal and zygotic transcripts of Ci-Rga were expressed. Translational inhibition of Ci-Rga with specific morpholino resulted in abnormal embryos in which the cleavage pattern became atypical and expression of marker genes for each of the six major tissues, namely the endoderm, muscle, mesenchyme, notochord, neural tissue, and epidermis, was lost or suppressed at the tailbud stage. Although differentiation of all the six major tissues was affected by Ci-Rga knock-down, the degree of abnormalities and the timing of appearance of abnormalities were different among tissues. Expression analysis of developmentally important genes involved in the fate specification, such as Ci-Bra, Ci-Twist-like1a, Ci-Otx, Ci-Fgf9/16/20, Ci-Lhx3, Ci-FoxD, and Ci-Tbx6b, showed that an initial step of the fate specification of notochord, mesenchyme, and neural tissue, but not of endoderm or muscle, is impaired in the knock-down embryo. These results showed that Ci-Rga is a multifunctional gene essential for tissue differentiation during embryogenesis, and is primarily required for the fate specification of notochord, mesenchyme, and neural tissue, and provide some insights into the function of this little-known group of genes.

  6. Evolution of the chordate regeneration blastema: Differential gene expression and conserved role of notch signaling during siphon regeneration in the ascidian Ciona.

    PubMed

    Hamada, Mayuko; Goricki, Spela; Byerly, Mardi S; Satoh, Noriyuki; Jeffery, William R

    2015-09-15

    The regeneration of the oral siphon (OS) and other distal structures in the ascidian Ciona intestinalis occurs by epimorphosis involving the formation of a blastema of proliferating cells. Despite the longstanding use of Ciona as a model in molecular developmental biology, regeneration in this system has not been previously explored by molecular analysis. Here we have employed microarray analysis and quantitative real time RT-PCR to identify genes with differential expression profiles during OS regeneration. The majority of differentially expressed genes were downregulated during OS regeneration, suggesting roles in normal growth and homeostasis. However, a subset of differentially expressed genes was upregulated in the regenerating OS, suggesting functional roles during regeneration. Among the upregulated genes were key members of the Notch signaling pathway, including those encoding the delta and jagged ligands, two fringe modulators, and to a lesser extent the notch receptor. In situ hybridization showed a complementary pattern of delta1 and notch gene expression in the blastema of the regenerating OS. Chemical inhibition of the Notch signaling pathway reduced the levels of cell proliferation in the branchial sac, a stem cell niche that contributes progenitor cells to the regenerating OS, and in the OS regeneration blastema, where siphon muscle fibers eventually re-differentiate. Chemical inhibition also prevented the replacement of oral siphon pigment organs, sensory receptors rimming the entrance of the OS, and siphon muscle fibers, but had no effects on the formation of the wound epidermis. Since Notch signaling is involved in the maintenance of proliferative activity in both the Ciona and vertebrate regeneration blastema, the results suggest a conserved evolutionary role of this signaling pathway in chordate regeneration. The genes identified in this investigation provide the foundation for future molecular analysis of OS regeneration. PMID:26206613

  7. Effects of the azole fungicide Imazalil on the development of the ascidian Ciona intestinalis (Chordata, Tunicata): morphological and molecular characterization of the induced phenotype.

    PubMed

    Zega, Giuliana; De Bernardi, Fiorenza; Groppelli, Silvia; Pennati, Roberta

    2009-02-19

    Imazalil (IMA) is a fungicide that is used extensively in fruit plantations and post-harvest treatments, but has teratogenic effects on vertebrate development, possibly due to the perturbation of retinoic acid (RA) levels in the embryo. Ascidians are sessile marine invertebrate chordates that develop through a tadpole larva, with a body plan that shares basic homologies with vertebrates. In this work, we tested the effects of IMA on the development of the solitary ascidian Ciona intestinalis by treating two-cell stage embryos with a range of concentrations (0.1, 0.5, 1, 2.5, 5, 10, 20 and 50microThe fungicide significantly altered ascidian development even at low concentrations and its effects were dose-dependent. Probit analysis revealed that the median lethal concentration, LC(50), was 4.87microM and the median teratogenic concentration, TC(50), was 0.73microM. Larvae developing from embryos exposed to IMA showed malformations of the anterior structures, which became more severe as IMA concentration increased. In particular, the anterior nervous system and the sensory vesicle were reduced, and the pigmented organs (the ocellus and the otolith) progressively lost their pigmentation. The larval phenotype induced by 5microM IMA exposure was further characterized by means of molecular analysis, through whole mount in situ hybridization with probes for genes related to the nervous system: Ci-Otp, Ci-GAD, Ci-POU IV, which are markers of the anterior neuro-ectoderm, the central nervous system and the peripheral nervous system respectively, and Ci-Hox-1, a gene specifically activated by RA, and Ci-Aldh2, a gene for aldehyde dehydrogenase, which is involved in RA synthesis. The altered expression of Ci-Otp, Ci-GAD, Ci-POU IV in 5microM IMA-exposed larvae compared to control larvae showed that this fungicide could affect the differentiation of the anterior nervous system, particularly of the sensory vesicle neurons. Recent studies suggest a similarity between IMA- and RA

  8. Reference gene selection for quantitative gene expression studies during biological invasions: A test on multiple genes and tissues in a model ascidian Ciona savignyi.

    PubMed

    Huang, Xuena; Gao, Yangchun; Jiang, Bei; Zhou, Zunchun; Zhan, Aibin

    2016-01-15

    As invasive species have successfully colonized a wide range of dramatically different local environments, they offer a good opportunity to study interactions between species and rapidly changing environments. Gene expression represents one of the primary and crucial mechanisms for rapid adaptation to local environments. Here, we aim to select reference genes for quantitative gene expression analysis based on quantitative Real-Time PCR (qRT-PCR) for a model invasive ascidian, Ciona savignyi. We analyzed the stability of ten candidate reference genes in three tissues (siphon, pharynx and intestine) under two key environmental stresses (temperature and salinity) in the marine realm based on three programs (geNorm, NormFinder and delta Ct method). Our results demonstrated only minor difference for stability rankings among the three methods. The use of different single reference gene might influence the data interpretation, while multiple reference genes could minimize possible errors. Therefore, reference gene combinations were recommended for different tissues - the optimal reference gene combination for siphon was RPS15 and RPL17 under temperature stress, and RPL17, UBQ and TubA under salinity treatment; for pharynx, TubB, TubA and RPL17 were the most stable genes under temperature stress, while TubB, TubA and UBQ were the best under salinity stress; for intestine, UBQ, RPS15 and RPL17 were the most reliable reference genes under both treatments. Our results suggest that the necessity of selection and test of reference genes for different tissues under varying environmental stresses. The results obtained here are expected to reveal mechanisms of gene expression-mediated invasion success using C. savignyi as a model species. PMID:26428313

  9. Reference gene selection for quantitative gene expression studies during biological invasions: A test on multiple genes and tissues in a model ascidian Ciona savignyi.

    PubMed

    Huang, Xuena; Gao, Yangchun; Jiang, Bei; Zhou, Zunchun; Zhan, Aibin

    2016-01-15

    As invasive species have successfully colonized a wide range of dramatically different local environments, they offer a good opportunity to study interactions between species and rapidly changing environments. Gene expression represents one of the primary and crucial mechanisms for rapid adaptation to local environments. Here, we aim to select reference genes for quantitative gene expression analysis based on quantitative Real-Time PCR (qRT-PCR) for a model invasive ascidian, Ciona savignyi. We analyzed the stability of ten candidate reference genes in three tissues (siphon, pharynx and intestine) under two key environmental stresses (temperature and salinity) in the marine realm based on three programs (geNorm, NormFinder and delta Ct method). Our results demonstrated only minor difference for stability rankings among the three methods. The use of different single reference gene might influence the data interpretation, while multiple reference genes could minimize possible errors. Therefore, reference gene combinations were recommended for different tissues - the optimal reference gene combination for siphon was RPS15 and RPL17 under temperature stress, and RPL17, UBQ and TubA under salinity treatment; for pharynx, TubB, TubA and RPL17 were the most stable genes under temperature stress, while TubB, TubA and UBQ were the best under salinity stress; for intestine, UBQ, RPS15 and RPL17 were the most reliable reference genes under both treatments. Our results suggest that the necessity of selection and test of reference genes for different tissues under varying environmental stresses. The results obtained here are expected to reveal mechanisms of gene expression-mediated invasion success using C. savignyi as a model species.

  10. Ascidian bioresources: common and variant chemical compositions and exploitation strategy - examples of Halocynthia roretzi, Styela plicata, Ascidia sp. and Ciona intestinalis.

    PubMed

    Zhao, Yadong; Li, Jiebing

    2016-01-01

    To explore abundant marine ascidian bioresources, four species from two orders have been compared in their chemical compositions. After a universal separation of the animal body into two fractions, all tunics have been found rich in carbohydrate contents, while all inner body tissues are richer in proteins. Cellulose is present almost exclusively in the tunics and more in the order Stolidobranchia, while more sulfated polysaccharides are present in Phlebobranchia species. Almost all proteins are collagens with a high essential amino acid index and high delicious amino acid (DAA) content. All fractions also have high contents of good-quality fatty acids and trace minerals but low toxic element contents, with different sterols and glycosaminoglycans. There are species-specific characteristics observed for vanadium accumulation and sterol structures which are also meaningful for ascidian chemotaxonomy and resource exploitation. It is suggested that in addition to the present utilizations of tunics for cellulose production and of some species' inner body tissues as human food, one should explore all species' inner body tissues as human foods and all tunics as food or animal feed with the contained cellulose as dietary fiber. Collagens, sulfated polysaccharides, glycosaminoglycans, sterols and trace elements could be explored as byproducts for, e.g. pharmaceutical and chemical industries. PMID:27049617

  11. Application of the cis-regulatory region of a heat-shock protein 70 gene to heat-inducible gene expression in the ascidian Ciona intestinalis.

    PubMed

    Kawaguchi, Akane; Utsumi, Nanami; Morita, Maki; Ohya, Aya; Wada, Shuichi

    2015-01-01

    Temporally controlled induction of gene expression is a useful technique for analyzing gene function. To make such a technique possible in Ciona intestinalis embryos, we employed the cis-regulatory region of the heat-shock protein 70 (HSP70) gene Ci-HSPA1/6/7-like for heat-inducible gene expression in C. intestinalis embryos. We showed that Ci-HSPA1/6/7-like becomes heat shock-inducible by the 32-cell stage during embryogenesis. The 5'-upstream region of Ci-HSPA1/6/7-like, which contains heat-shock elements indispensable for heat-inducible gene expression, induces the heat shock-dependent expression of a reporter gene in the whole embryo from the 32-cell to the middle gastrula stages and in progressively restricted areas of embryos in subsequent stages. We assessed the effects of heat-shock treatments in different conditions on the normality of embryos and induction of transgene expression. We evaluated the usefulness of this technique through overexpression experiments on the well-characterized, developmentally relevant gene, Ci-Bra, and showed that this technique is applicable for inferring the gene function in C. intestinalis.

  12. Fluorescent in situ hybridization to ascidian chromosomes.

    PubMed

    Shoguchi, Eiichi; Ikuta, Tetsuro; Yoshizaki, Fumiko; Satou, Yutaka; Satoh, Nori; Asano, Katsutoshi; Saiga, Hidetoshi; Nishikata, Takahito

    2004-02-01

    The draft genome of the ascidian Ciona intestinalis has been sequenced. Mapping of the genome sequence to the Ciona 14 haploid chromosomes is essential for future studies of the genome-wide control of gene expression in this basal chordate. Here we describe an efficient protocol for fluorescent in situ hybridization for mapping genes to the Ciona chromosomes. We demonstrate how the locations of two BAC clones can be mapped relative to each other. We also show that this method is efficient for coupling two so-far independent scaffolds into one longer scaffold when two BAC clones represent sequences located at either end of the two scaffolds.

  13. Transcriptional enhancers in ascidian development.

    PubMed

    Wang, Wei; Christiaen, Lionel

    2012-01-01

    The study of cis-regulatory DNAs that control developmental gene expression is integral to the modeling of comprehensive genomic regulatory networks for embryogenesis. Ascidian embryos provide a unique opportunity for the analysis of cis-regulatory DNAs with cellular resolution in the context of a simple but typical chordate body plan. Here, we review landmark studies that have laid the foundations for the study of transcriptional enhancers, among other cis-regulatory DNAs, and their roles in ascidian development. The studies using ascidians of the Ciona genus have capitalized on a unique electroporation technique that permits the simultaneous transfection of hundreds of fertilized eggs, which develop rapidly and express transgenes with little mosaicism. Current studies using the ascidian embryo benefit from extensively annotated genomic resources to characterize transcript models in silico. The search for functional noncoding sequences can be guided by bioinformatic analyses combining evolutionary conservation, gene coexpression, and combinations of overrepresented short-sequence motifs. The power of the transient transfection assays has allowed thorough dissection of numerous cis-regulatory modules, which provided insights into the functional constraints that shape enhancer architecture and diversification. Future studies will benefit from pioneering stable transgenic lines and the analysis of chromatin states. Whole genome expression, functional and DNA binding data are being integrated into comprehensive genomic regulatory network models of early ascidian cell specification with a single-cell resolution that is unique among chordate model systems.

  14. Development and evolution of the ascidian cardiogenic mesoderm.

    PubMed

    Tolkin, Theadora; Christiaen, Lionel

    2012-01-01

    The heart and other blood pumping organs are close to being universally essential in the animal kingdom. These organs present a large anatomical, morphological, and cellular diversity, which is thought to have arisen by building developmental modules on a conserved core of ancestral heart regulatory units. In this context, studies using the ascidian model system Ciona intestinalis offer a distinctive set of theoretical and experimental advantages, which we herein discuss in details. Development of the heart and related muscles in Ciona has been analyzed with a cellular to subcellular resolution unprecedented in Chordate model systems. Unique derived developmental characters of the cardiogenic mesoderm appear to be shared between Ciona and vertebrates. Notably, accumulating evidence point to an early Chordate origin of the cardiopharyngeal population of mesoderm cells that may have provided the foundation for the emergence of the second heart field in higher vertebrates.

  15. Ascidians as a vertebrate-like model organism for physiological studies of Rho GTPase signaling.

    PubMed

    Philips, Alexandre; Blein, Marion; Robert, Agnès; Chambon, Jean-Philippe; Baghdiguian, Stephen; Weill, Mylène; Fort, Philippe

    2003-07-01

    GTPases of the Rho family are evolutionarily conserved proteins that control cell shape dynamics during physiological processes as diverse as cell migration and polarity, axon outgrowth and guidance, apoptosis and phagocytosis. In mammals, 18 Rho proteins are distributed in 7 subfamilies. Rho, Rac and Cdc42 are the best-characterized ones, benefiting from the use of worm and drosophila, which only express these 3 subfamilies. An additional model would therefore help understand the physiological role of other mammalian subfamilies. We identified in genome databases the complete Rho family of two ascidians, Ciona intestinalis and Ciona savignyi, and showed that these families contain single ancestors of most mammalian Rho subfamilies. In Ciona intestinalis, all Rho genes are expressed and display specific developmental variations of mRNA expression during tadpole formation. Although C. intestinalis expresses five additional Rac compared to the closely related Ciona savignyi, only two appeared fully active in functional assays. Last, we identified in Ciona intestinalis database more than 50 Rho regulators (RhoGEFs and RhoGAPs) and 20 effector targets, whose analysis further supports the notion that Rho signaling components are of comparable complexity in mammals and ascidians. Since the tadpole of ascidians combines vertebrate-like developmental features with reduced cell number, particularly adapted to evolutionary and developmental biology studies, our data advocate this model for physiological studies of Rho signaling pathways.

  16. Ciona intestinalis and Oxycomanthus japonicus, representatives of marine invertebrates.

    PubMed

    Sasakura, Yasunori; Inaba, Kazuo; Satoh, Nori; Kondo, Mariko; Akasaka, Koji

    2009-10-01

    The study of marine invertebrates is useful in various biological research fields. However, genetic analyses of these animals are limited, mainly due to difficulties in culturing them, and the genetic resources of marine invertebrates have not been organized. Recently, advances have been made in the study of two deuterostomes, an ascidian Ciona intestinalis and a feather star Oxycomanthus japonicus. The draft genome sequence of Ciona intestinalis has been determined, and its compact genome, which has less redundancy of genes compared with vertebrates, provides us with a useful experimental system for analyzing the functions of genes during development. The life cycle of Ciona intestinalis is approximately 2-3 months, and the genetic techniques including a perfect inland culture system, germline transformation with a transposon Minos, enhancer detection and insertional mutagenesis, have been established. The feather star Oxycomanthus japonicus conserves the characteristics of the basic echinoderm body plan with a segmented mesoderm, which is a fascinating characteristic for understanding the evolution of echinoderms. Oxycomanthus japonicus shows strong regeneration ability and is a suitable subject for analysis of the mechanisms of regeneration. In consideration of these features, the National BioResource Project (NBRP) has started to support the supply of wild-types, transgenic lines and inbred lines of Ciona intestinalis and Oxycomanthus japonicus. PMID:19897929

  17. Gene expression profiles of FABP genes in protochordates, Ciona intestinalis and Branchiostoma belcheri.

    PubMed

    Orito, Wataru; Ohhira, Fuyuko; Ogasawara, Michio

    2015-11-01

    Fatty-acid-binding proteins (FABPs) are small intracellular proteins associated with the transportation of fatty acids. Members of the FABPs share similar amino acid sequences and tertiary structures and form, together with a member of the cellular retinol-binding proteins (CRBPs), the intracellular-lipid-binding protein (iLBP) family. In vertebrates, several types of FABP have been isolated and classified into three subfamilies: 2-4. In invertebrates, several FABP-related proteins have been reported in protostomes and amphioxus; however, little is known about the relationship between their phylogenetic positions and expression patterns. We have performed a genome-wide survey of FABP-related genes in protochordates: amphioxus Branchiostoma belcheri and the ascidian Ciona intestinalis. Comprehensive BLAST searches in NCBI and the Ciona Ghost Database by using amino acid sequences of all FABPs have revealed that the ascidian C. intestinalis and amphioxus B. belcheri contain six and seven FABP-related genes in their haploid genomes, respectively. Expression pattern analyses by whole-mount in situ hybridization in Ciona transparent juveniles and serial-section in situ hybridizations in adult amphioxus have revealed that all genes are mainly expressed in the postpharyngeal digestive tract. In particular, the expression of FABP-related genes of subfamily-2 (liver/ileum type) and subfamily-3 (intestinal type) in the ascidian pyloric gland and amphioxus hepatic cecum provides insight into the evolution of hepatic-related structures of chordates and FABP-related genes.

  18. Gene expression profiles of FABP genes in protochordates, Ciona intestinalis and Branchiostoma belcheri.

    PubMed

    Orito, Wataru; Ohhira, Fuyuko; Ogasawara, Michio

    2015-11-01

    Fatty-acid-binding proteins (FABPs) are small intracellular proteins associated with the transportation of fatty acids. Members of the FABPs share similar amino acid sequences and tertiary structures and form, together with a member of the cellular retinol-binding proteins (CRBPs), the intracellular-lipid-binding protein (iLBP) family. In vertebrates, several types of FABP have been isolated and classified into three subfamilies: 2-4. In invertebrates, several FABP-related proteins have been reported in protostomes and amphioxus; however, little is known about the relationship between their phylogenetic positions and expression patterns. We have performed a genome-wide survey of FABP-related genes in protochordates: amphioxus Branchiostoma belcheri and the ascidian Ciona intestinalis. Comprehensive BLAST searches in NCBI and the Ciona Ghost Database by using amino acid sequences of all FABPs have revealed that the ascidian C. intestinalis and amphioxus B. belcheri contain six and seven FABP-related genes in their haploid genomes, respectively. Expression pattern analyses by whole-mount in situ hybridization in Ciona transparent juveniles and serial-section in situ hybridizations in adult amphioxus have revealed that all genes are mainly expressed in the postpharyngeal digestive tract. In particular, the expression of FABP-related genes of subfamily-2 (liver/ileum type) and subfamily-3 (intestinal type) in the ascidian pyloric gland and amphioxus hepatic cecum provides insight into the evolution of hepatic-related structures of chordates and FABP-related genes. PMID:25957647

  19. Ciona as a Simple Chordate Model for Heart Development and Regeneration

    PubMed Central

    Anderson, Heather Evans; Christiaen, Lionel

    2016-01-01

    Cardiac cell specification and the genetic determinants that govern this process are highly conserved among Chordates. Recent studies have established the importance of evolutionarily-conserved mechanisms in the study of congenital heart defects and disease, as well as cardiac regeneration. As a basal Chordate, the Ciona model system presents a simple scaffold that recapitulates the basic blueprint of cardiac development in Chordates. Here we will focus on the development and cellular structure of the heart of the ascidian Ciona as compared to other Chordates, principally vertebrates. Comparison of the Ciona model system to heart development in other Chordates presents great potential for dissecting the genetic mechanisms that underlie congenital heart defects and disease at the cellular level and might provide additional insight into potential pathways for therapeutic cardiac regeneration.

  20. Ciona as a Simple Chordate Model for Heart Development and Regeneration

    PubMed Central

    Anderson, Heather Evans; Christiaen, Lionel

    2016-01-01

    Cardiac cell specification and the genetic determinants that govern this process are highly conserved among Chordates. Recent studies have established the importance of evolutionarily-conserved mechanisms in the study of congenital heart defects and disease, as well as cardiac regeneration. As a basal Chordate, the Ciona model system presents a simple scaffold that recapitulates the basic blueprint of cardiac development in Chordates. Here we will focus on the development and cellular structure of the heart of the ascidian Ciona as compared to other Chordates, principally vertebrates. Comparison of the Ciona model system to heart development in other Chordates presents great potential for dissecting the genetic mechanisms that underlie congenital heart defects and disease at the cellular level and might provide additional insight into potential pathways for therapeutic cardiac regeneration. PMID:27642586

  1. The influence of substrate material on ascidian larval settlement.

    PubMed

    Chase, Anna L; Dijkstra, Jennifer A; Harris, Larry G

    2016-05-15

    Submerged man-made structures present novel habitat for marine organisms and often host communities that differ from those on natural substrates. Although many factors are known to contribute to these differences, few studies have directly examined the influence of substrate material on organism settlement. We quantified larval substrate preferences of two species of ascidians, Ciona intestinalis (cryptogenic, formerly C. intestinalis type B) and Botrylloides violaceus (non-native), on commonly occurring natural (granite) and man-made (concrete, high-density polyethylene, PVC) marine materials in laboratory trials. Larvae exhibited species-specific settlement preferences, but generally settled more often than expected by chance on concrete and HDPE. Variation in settlement between materials may reflect preferences for rougher substrates, or may result from the influence of leached chemicals on ascidian settlement. These findings indicate that an experimental plate material can influence larval behavior and may help us understand how substrate features may contribute to differences in settlement in the field. PMID:27039957

  2. The influence of substrate material on ascidian larval settlement.

    PubMed

    Chase, Anna L; Dijkstra, Jennifer A; Harris, Larry G

    2016-05-15

    Submerged man-made structures present novel habitat for marine organisms and often host communities that differ from those on natural substrates. Although many factors are known to contribute to these differences, few studies have directly examined the influence of substrate material on organism settlement. We quantified larval substrate preferences of two species of ascidians, Ciona intestinalis (cryptogenic, formerly C. intestinalis type B) and Botrylloides violaceus (non-native), on commonly occurring natural (granite) and man-made (concrete, high-density polyethylene, PVC) marine materials in laboratory trials. Larvae exhibited species-specific settlement preferences, but generally settled more often than expected by chance on concrete and HDPE. Variation in settlement between materials may reflect preferences for rougher substrates, or may result from the influence of leached chemicals on ascidian settlement. These findings indicate that an experimental plate material can influence larval behavior and may help us understand how substrate features may contribute to differences in settlement in the field.

  3. Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians

    PubMed Central

    Stolfi, Alberto; Lowe, Elijah K; Racioppi, Claudia; Ristoratore, Filomena; Brown, C Titus; Swalla, Billie J; Christiaen, Lionel

    2014-01-01

    Ascidians present a striking dichotomy between conserved phenotypes and divergent genomes: embryonic cell lineages and gene expression patterns are conserved between distantly related species. Much research has focused on Ciona or Halocynthia spp. but development in other ascidians remains poorly characterized. In this study, we surveyed the multipotent myogenic B7.5 lineage in Molgula spp. Comparisons to the homologous lineage in Ciona revealed identical cell division and fate specification events that result in segregation of larval, cardiac, and pharyngeal muscle progenitors. Moreover, the expression patterns of key regulators are conserved, but cross-species transgenic assays uncovered incompatibility, or ‘unintelligibility’, of orthologous cis-regulatory sequences between Molgula and Ciona. These sequences drive identical expression patterns that are not recapitulated in cross-species assays. We show that this unintelligibility is likely due to changes in both cis- and trans-acting elements, hinting at widespread and frequent turnover of regulatory mechanisms underlying otherwise conserved aspects of ascidian embryogenesis. DOI: http://dx.doi.org/10.7554/eLife.03728.001 PMID:25209999

  4. Ascidian notochord morphogenesis

    PubMed Central

    Jiang, Di; Smith, William C.

    2010-01-01

    The development of the notochord involves a complex set of cellular behaviors. While these morphogenic behaviors are common to all chordates, the ascidian provides a particularly attractive experimental model because of its relative simplicity. In particular, all notochord morphogenesis in ascidians takes place with only 40 cells, as opposed to the hundreds of cells in vertebrate models systems. Initial steps in ascidian notochord development convert a monolayer of epithelial-like cells in the pre-gastrula embryo to a cylindrical rod of single-cell diameter. Convergent extension is responsible for the intercalation of notochord cells and some degree of notochord elongation, while a second phase of elongation is observed as the notochord narrows medially and increases in volume. The mechanism by which the volume of the notochord increases differs between ascidian species. Some ascidian species produce extracellular pockets that will eventually coalesce to form a lumen running the length of the notochord, while others appear to make intercellular vacuoles. By either mechanism, the resulting notochord serves as a hydrostatic skeleton allowing for the locomotion of the swimming larva. Several basic cell behaviors, such as cell shape changes, cell rearrangement, establishment of cell polarity, and alteration of extracellular environment, are displayed in the process of notochord morphogenesis. Modern analysis of ascidian notochord morphogenesis promises to contribute to our understanding of these fundamental biological processes. PMID:17497687

  5. Metamorphosis in solitary ascidians.

    PubMed

    Karaiskou, Anthi; Swalla, Billie J; Sasakura, Yasunori; Chambon, Jean-Philippe

    2015-01-01

    Embryonic and postembryonic development in ascidians have been studied for over a century, but it is only in the last 10 years that the complex molecular network involved in coordinating postlarval development and metamorphosis has started to emerge. In most ascidians, the transition from the larval to the sessile juvenile/adult stage, or metamorphosis, requires a combination of environmental and endogenous signals and is characterized by coordinated global morphogenetic changes that are initiated by the adhesion of the larvae. Cloney was the first to describe cellular events of ascidians' metamorphosis in 1978 and only recently elements of the molecular regulation of this crucial developmental step have been revealed. This review aims to present a thorough view of this crucial developmental step by combining recent molecular data to the already established cellular events.

  6. Diverse ETS transcription factors mediate FGF signaling in the Ciona anterior neural plate.

    PubMed

    Gainous, T Blair; Wagner, Eileen; Levine, Michael

    2015-03-15

    The ascidian Ciona intestinalis is a marine invertebrate belonging to the sister group of the vertebrates, the tunicates. Its compact genome and simple, experimentally tractable embryos make Ciona well-suited for the study of cell-fate specification in chordates. Tunicate larvae possess a characteristic chordate body plan, and many developmental pathways are conserved between tunicates and vertebrates. Previous studies have shown that FGF signals are essential for neural induction and patterning at sequential steps of Ciona embryogenesis. Here we show that two different ETS family transcription factors, Ets1/2 and Elk1/3/4, have partially redundant activities in the anterior neural plate of gastrulating embryos. Whereas Ets1/2 promotes pigment cell formation in lateral lineages, both Ets1/2 and Elk1/3/4 are involved in the activation of Myt1L in medial lineages and the restriction of Six3/6 expression to the anterior-most regions of the neural tube. We also provide evidence that photoreceptor cells arise from posterior regions of the presumptive sensory vesicle, and do not depend on FGF signaling. Cells previously identified as photoreceptor progenitors instead form ependymal cells and neurons of the larval brain. Our results extend recent findings on FGF-dependent patterning of anterior-posterior compartments in the Ciona central nervous system.

  7. Anterior-posterior regionalized gene expression in the Ciona notochord

    PubMed Central

    Veeman, Michael

    2014-01-01

    Background In the simple ascidian chordate Ciona the signaling pathways and gene regulatory networks giving rise to initial notochord induction are largely understood and the mechanisms of notochord morphogenesis are being systematically elucidated. The notochord has generally been thought of as a non-compartmentalized or regionalized organ that is not finely patterned at the level of gene expression. Quantitative imaging methods have recently shown, however, that notochord cell size, shape and behavior vary consistently along the anterior-posterior (AP) axis. Results Here we screen candidate genes by whole mount in situ hybridization for potential AP asymmetry. We identify 4 genes that show non-uniform expression in the notochord. Ezrin/radixin/moesin (ERM) is expressed more strongly in the secondary notochord lineage than the primary. CTGF is expressed stochastically in a subset of notochord cells. A novel calmodulin-like gene (BCamL) is expressed more strongly at both the anterior and posterior tips of the notochord. A TGF-β ortholog is expressed in a gradient from posterior to anterior. The asymmetries in ERM, BCamL and TGF-β expression are evident even before the notochord cells have intercalated into a single-file column. Conclusions We conclude that the Ciona notochord is not a homogeneous tissue but instead shows distinct patterns of regionalized gene expression. PMID:24288133

  8. Natural Variation of Model Mutant Phenotypes in Ciona intestinalis

    PubMed Central

    Brown, Euan R.; Leccia, Nicola I.; Squarzoni, Paola; Tarallo, Raffaella; Alfano, Christian; Caputi, Luigi; D'Ambrosio, Palmira; Daniele, Paola; D'Aniello, Enrico; D'Aniello, Salvatore; Maiella, Sylvie; Miraglia, Valentina; Russo, Monia Teresa; Sorrenti, Gerarda; Branno, Margherita; Cariello, Lucio; Cirino, Paola; Locascio, Annamaria; Spagnuolo, Antonietta; Zanetti, Laura; Ristoratore, Filomena

    2008-01-01

    Background The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. Methodology/Principal Findings Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. Conclusions/Significance Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity. PMID:18523552

  9. ANISEED 2015: a digital framework for the comparative developmental biology of ascidians

    PubMed Central

    Brozovic, Matija; Martin, Cyril; Dantec, Christelle; Dauga, Delphine; Mendez, Mickaël; Simion, Paul; Percher, Madeline; Laporte, Baptiste; Scornavacca, Céline; Di Gregorio, Anna; Fujiwara, Shigeki; Gineste, Mathieu; Lowe, Elijah K.; Piette, Jacques; Racioppi, Claudia; Ristoratore, Filomena; Sasakura, Yasunori; Takatori, Naohito; Brown, Titus C.; Delsuc, Frédéric; Douzery, Emmanuel; Gissi, Carmela; McDougall, Alex; Nishida, Hiroki; Sawada, Hitoshi; Swalla, Billie J.; Yasuo, Hitoyoshi; Lemaire, Patrick

    2016-01-01

    Ascidians belong to the tunicates, the sister group of vertebrates and are recognized model organisms in the field of embryonic development, regeneration and stem cells. ANISEED is the main information system in the field of ascidian developmental biology. This article reports the development of the system since its initial publication in 2010. Over the past five years, we refactored the system from an initial custom schema to an extended version of the Chado schema and redesigned all user and back end interfaces. This new architecture was used to improve and enrich the description of Ciona intestinalis embryonic development, based on an improved genome assembly and gene model set, refined functional gene annotation, and anatomical ontologies, and a new collection of full ORF cDNAs. The genomes of nine ascidian species have been sequenced since the release of the C. intestinalis genome. In ANISEED 2015, all nine new ascidian species can be explored via dedicated genome browsers, and searched by Blast. In addition, ANISEED provides full functional gene annotation, anatomical ontologies and some gene expression data for the six species with highest quality genomes. ANISEED is publicly available at: http://www.aniseed.cnrs.fr. PMID:26420834

  10. ANISEED 2015: a digital framework for the comparative developmental biology of ascidians.

    PubMed

    Brozovic, Matija; Martin, Cyril; Dantec, Christelle; Dauga, Delphine; Mendez, Mickaël; Simion, Paul; Percher, Madeline; Laporte, Baptiste; Scornavacca, Céline; Di Gregorio, Anna; Fujiwara, Shigeki; Gineste, Mathieu; Lowe, Elijah K; Piette, Jacques; Racioppi, Claudia; Ristoratore, Filomena; Sasakura, Yasunori; Takatori, Naohito; Brown, Titus C; Delsuc, Frédéric; Douzery, Emmanuel; Gissi, Carmela; McDougall, Alex; Nishida, Hiroki; Sawada, Hitoshi; Swalla, Billie J; Yasuo, Hitoyoshi; Lemaire, Patrick

    2016-01-01

    Ascidians belong to the tunicates, the sister group of vertebrates and are recognized model organisms in the field of embryonic development, regeneration and stem cells. ANISEED is the main information system in the field of ascidian developmental biology. This article reports the development of the system since its initial publication in 2010. Over the past five years, we refactored the system from an initial custom schema to an extended version of the Chado schema and redesigned all user and back end interfaces. This new architecture was used to improve and enrich the description of Ciona intestinalis embryonic development, based on an improved genome assembly and gene model set, refined functional gene annotation, and anatomical ontologies, and a new collection of full ORF cDNAs. The genomes of nine ascidian species have been sequenced since the release of the C. intestinalis genome. In ANISEED 2015, all nine new ascidian species can be explored via dedicated genome browsers, and searched by Blast. In addition, ANISEED provides full functional gene annotation, anatomical ontologies and some gene expression data for the six species with highest quality genomes. ANISEED is publicly available at: http://www.aniseed.cnrs.fr. PMID:26420834

  11. ANISEED 2015: a digital framework for the comparative developmental biology of ascidians.

    PubMed

    Brozovic, Matija; Martin, Cyril; Dantec, Christelle; Dauga, Delphine; Mendez, Mickaël; Simion, Paul; Percher, Madeline; Laporte, Baptiste; Scornavacca, Céline; Di Gregorio, Anna; Fujiwara, Shigeki; Gineste, Mathieu; Lowe, Elijah K; Piette, Jacques; Racioppi, Claudia; Ristoratore, Filomena; Sasakura, Yasunori; Takatori, Naohito; Brown, Titus C; Delsuc, Frédéric; Douzery, Emmanuel; Gissi, Carmela; McDougall, Alex; Nishida, Hiroki; Sawada, Hitoshi; Swalla, Billie J; Yasuo, Hitoyoshi; Lemaire, Patrick

    2016-01-01

    Ascidians belong to the tunicates, the sister group of vertebrates and are recognized model organisms in the field of embryonic development, regeneration and stem cells. ANISEED is the main information system in the field of ascidian developmental biology. This article reports the development of the system since its initial publication in 2010. Over the past five years, we refactored the system from an initial custom schema to an extended version of the Chado schema and redesigned all user and back end interfaces. This new architecture was used to improve and enrich the description of Ciona intestinalis embryonic development, based on an improved genome assembly and gene model set, refined functional gene annotation, and anatomical ontologies, and a new collection of full ORF cDNAs. The genomes of nine ascidian species have been sequenced since the release of the C. intestinalis genome. In ANISEED 2015, all nine new ascidian species can be explored via dedicated genome browsers, and searched by Blast. In addition, ANISEED provides full functional gene annotation, anatomical ontologies and some gene expression data for the six species with highest quality genomes. ANISEED is publicly available at: http://www.aniseed.cnrs.fr.

  12. Evolutionary origins of the vertebrate heart: Specification of the cardiac lineage in Ciona intestinalis

    PubMed Central

    Davidson, Brad; Levine, Michael

    2003-01-01

    Here we exploit the extensive cell lineage information and streamlined genome of the ascidian, Ciona intestinalis, to investigate heart development in a basal chordate. Several cardiac genes were analyzed, including the sole Ciona ortholog of the Drosophila tinman gene, and tissue-specific enhancers were isolated for some of the genes. Conserved sequence motifs within these enhancers facilitated the isolation of a heart enhancer for the Ciona Hand-like gene. Altogether, these studies provide a regulatory framework for the differentiation of the cardiac mesoderm, beginning at the 110-cell stage, and extending through the fusion of cardiac progenitors during tail elongation. The cardiac lineage shares a common origin with the germ line, and zygotic transcription is first detected in the heart progenitors only after its separation from the germ line at the 64-cell stage. We propose that germ-line determinants influence the specification of the cardiac mesoderm, both by inhibiting inductive signals required for the development of noncardiac mesoderm lineages, and by providing a localized source of Wnt-5 and other signals required for heart development. We discuss the possibility that the germ line also influences the specification of the vertebrate heart. PMID:14500781

  13. Screening of ovarian steroidogenic pathway in Ciona intestinalis and its modulation after tributyltin exposure

    SciTech Connect

    Cangialosi, Maria Vittoria; Puccia, Egidio; Mazzola, Antonio; Mansueto, Valentina; Arukwe, Augustine

    2010-05-15

    In this study, we have identified several ovarian steroids in Ciona with high similarity to vertebrate steroids and showed that cholesterol, corticosterone, dehydroepiandrosterone, estrone, estradiol-17beta, testosterone, pregnenolone, progesterone, have identical molecular spectra with vertebrate steroids. In addition, we have studied the effects of an endocrine disruptor (tributyltin: TBT) on these sex hormones and their precursors, ovarian morphology, and gene expression of some key enzymes in steroidogenic pathway in the ovary of Ciona. Ovarian specimens were cultured in vitro using different concentrations of TBT (10{sup -5}, 10{sup -4} and 10{sup -3} M). Ethanol was used as solvent control. Gene expression analysis was performed for adrenodoxin (ADREN) and adrenodoxin reductase (ADOX) (mediators of acute steroidogenesis) and 17beta-hydroxysteroid dehydrogenase (17beta-HSD). These transcripts were detected and measured by quantitative (real-time) polymerase chain reaction (qPCR). Sex steroids and their precursors were identified and quantified by a gas chromatography-mass spectroscopy (GC-MS) method. Exposure of Ciona ovaries to TBT produced modulations (either increased or decreased) of sterols and sex steroid levels, whereas no significant differences in ADREN, ADOX or 17beta-HSD mRNA expression patterns were observed. Histological analysis shows that TBT produced several modifications on Ciona ovarian morphology that includes irregular outline of nuclear membrane, less compacted cytoplasm, in addition to test and granulosa cells that were detached from the oocyte membrane. Given that the ascidians represent very simple experimental models for the study of endocrine disruption by environmental contaminants, our findings provide excellent models for multiple identification and quantification of sex steroid and their precursors in biological samples exposed to endocrine-disrupting chemicals and for direct extrapolation of such effects across taxonomic groups

  14. The Ciona intestinalis genome: when the constraints are off

    NASA Technical Reports Server (NTRS)

    Holland, Linda Z.; Gibson-Brown, Jeremy J.

    2003-01-01

    The recent genome sequencing of a non-vertebrate deuterostome, the ascidian tunicate Ciona intestinalis, makes a substantial contribution to the fields of evolutionary and developmental biology.1 Tunicates have some of the smallest bilaterian genomes, embryos with relatively few cells, fixed lineages and early determination of cell fates. Initial analyses of the C. intestinalis genome indicate that it has been evolving rapidly. Comparisons with other bilaterians show that C. intestinalis has lost a number of genes, and that many genes linked together in most other bilaterians have become uncoupled. In addition, a number of independent, lineage-specific gene duplications have been detected. These new results, although interesting in themselves, will take on a deeper significance once the genomes of additional invertebrate deuterostomes (e.g. echinoderms, hemichordates and amphioxus) have been sequenced. With such a broadened database, comparative genomics can begin to ask pointed questions about the relationship between the evolution of genomes and the evolution of body plans. Copyright 2003 Wiley Periodicals, Inc.

  15. THALIACEANS, THE NEGLECTED PELAGIC RELATIVES OF ASCIDIANS: A DEVELOPMENTAL AND EVOLUTIONARY ENIGMA.

    PubMed

    Piette, Jacques; Lemaire, Patrick

    2015-06-01

    Most developmental biologists equate tunicates to the sessile ascidians, including Ciona intestinalis, and the pelagic appendicularians, in particular Oikopleura dioica. However, there exists a third group of tunicates with a pelagic lifestyle, the thaliaceans, which include salps, pyrosomes, and doliolids. Although thaliaceans have raised the curiosity offamous zoologists since the 18th century, the difficulty of observing and experimentally manipulating them has led to many controversies and speculations about their life cycles and developmental strategies, the phylogenetic relationship within the group and with other tunicates, and the drivers of speciation in these widely distributed animals living in a seemingly uniform environment. Here, we take a historical perspective to summarize 250 years of work on this intriguing group of animals, and explore how modern genomics and imaging approaches are starting to solve fascinating evolutionary and developmental riddles. Recent molecular analyses support previous morphological evidence that ascidians are not monophyletic and that thaliaceans evolved from a sessile ascidian-like ancestor. In parallel, preliminary live-imaging and gene-expression data offer exciting entry points to understand how the adoption of a pelagic lifestyle led to drastic modifications in the morphology, embryology, and life cycle of these tunicates, compared to their sessile ancestor. PMID:26285352

  16. Further EST analysis of endocrine genes that are preferentially expressed in the neural complex of Ciona intestinalis: receptor and enzyme genes associated with endocrine system in the neural complex.

    PubMed

    Sekiguchi, Toshio; Kawashima, Takeshi; Satou, Yutaka; Satoh, Nori

    2007-01-15

    Identification of orthologs of vertebrate neuropeptides and hypothalamic hormones in the neural complex of ascidians suggests integral roles of the ascidian neural complex in the endocrine system. In the present study, we investigated endocrine-related genes expressed in the neural complex of Ciona intestinalis. Comprehensive analyses of 3'-end sequences of the neural complex cDNAs placed 10,029 clones into 4051 independent clusters or genes, 1524 of them being expressed preferentially in this organ. Comparison of the 1524 genes with the human proteome databank demonstrated that 476 matched previously identified human proteins with distinct functions. Further analyses of sequence similarity of the 476 genes demonstrated that 21 genes are candidates for those involved in the endocrine system. Although we cannot detect hormone or peptide candidates, we found 21 genes such as receptors for peptide ligands, receptor-modulating proteins, and processing enzymes. We then characterized the Ciona prohormone convertase 2 (Ci-PC2) and carboxypeptidase E (Ci-CPE), which are associated with endoproteolytic processing of peptide hormone precursors. Furthermore, genes encoding these transcripts are expressed specifically in the neural complex of young adult ascidians. These data provide the molecular basis for further functional studies of the endocrine role of the neural complex of ascidians.

  17. 3D-Printed Microwell Arrays for Ciona Microinjection and Timelapse Imaging

    PubMed Central

    Gregory, Clint; Veeman, Michael

    2013-01-01

    Ascidians such as Ciona are close chordate relatives of the vertebrates with small, simple embryonic body plans and small, simple genomes. The tractable size of the embryo offers considerable advantages for in toto imaging and quantitative analysis of morphogenesis. For functional studies, Ciona eggs are considerably more challenging to microinject than the much larger eggs of other model organisms such as zebrafish and Xenopus. One of the key difficulties is in restraining the eggs so that the microinjection needle can be easily introduced and withdrawn. Here we develop and test a device to cast wells in agarose that are each sized to hold a single egg. This injection mold is fabricated by micro-resolution stereolithography with a grid of egg-sized posts that cast corresponding wells in agarose. This 3D printing technology allows the rapid and inexpensive testing of iteratively refined prototypes. In addition to their utility in microinjection, these grids of embryo-sized wells are also valuable for timelapse imaging of multiple embryos. PMID:24324769

  18. A standardisation of Ciona intestinalis (Chordata, Ascidiacea) embryo-larval bioassay for ecotoxicological studies.

    PubMed

    Bellas, Juan; Beiras, Ricardo; Vázquez, Elsa

    2003-11-01

    A standardisation of the ascidian Ciona intestinalis embryo-larval bioassay for marine pollution assessment has been developed. The minimum percentage of embryogenesis success was established to assess the quality of the biological material used; minimum sample size and number of replicates per treatment were also estimated. The suitability of artificial and natural seawater for the incubation of ascidian embryos and larvae was compared, and the optimum conditions of temperature, salinity, pH, density of embryos in the vials and the sperm/egg ratio were investigated. On the basis of the 10th percentile of the distribution of larval abnormalities, we proposed a threshold of 50% normal larvae in the control in order to consider the test of acceptable biological quality. According to our results n=5 is a sufficiently high replication to detect 5% differences among treatment means with a power of P=90% and alpha=0.05, and a sampling size >/=222 allows a 95% confidence in the estimate with an error of 0.05. Egg density did not affect larval development within the range 1-20 eggs/ml, and the optimum sperm/egg ratio which fertilise 100% of the eggs was 3000-30,000 sperm/egg (i.e. 10(8)-10(7) sperm/ml). There were not significant differences between the two water types tested, and the optimum tolerance ranges were 18-23 degrees C temperature, 34-42 ppt salinity (42 ppt was the highest salinity tested), and 7.4-8.8 pH. The median effective concentration (EC(50)) of copper (Cu) causing a 50% reduction of normal hatched larvae was 54.2 microg/l (0.85 microM), which shows a sensitivity of this species similar to the commonly used bivalve and sea-urchin tests. The ascidian embryo-larval bioassay is an accurate, reliable, simple and rapid method that can be used in ecotoxicological studies.

  19. A standardisation of Ciona intestinalis (Chordata, Ascidiacea) embryo-larval bioassay for ecotoxicological studies.

    PubMed

    Bellas, Juan; Beiras, Ricardo; Vázquez, Elsa

    2003-11-01

    A standardisation of the ascidian Ciona intestinalis embryo-larval bioassay for marine pollution assessment has been developed. The minimum percentage of embryogenesis success was established to assess the quality of the biological material used; minimum sample size and number of replicates per treatment were also estimated. The suitability of artificial and natural seawater for the incubation of ascidian embryos and larvae was compared, and the optimum conditions of temperature, salinity, pH, density of embryos in the vials and the sperm/egg ratio were investigated. On the basis of the 10th percentile of the distribution of larval abnormalities, we proposed a threshold of 50% normal larvae in the control in order to consider the test of acceptable biological quality. According to our results n=5 is a sufficiently high replication to detect 5% differences among treatment means with a power of P=90% and alpha=0.05, and a sampling size >/=222 allows a 95% confidence in the estimate with an error of 0.05. Egg density did not affect larval development within the range 1-20 eggs/ml, and the optimum sperm/egg ratio which fertilise 100% of the eggs was 3000-30,000 sperm/egg (i.e. 10(8)-10(7) sperm/ml). There were not significant differences between the two water types tested, and the optimum tolerance ranges were 18-23 degrees C temperature, 34-42 ppt salinity (42 ppt was the highest salinity tested), and 7.4-8.8 pH. The median effective concentration (EC(50)) of copper (Cu) causing a 50% reduction of normal hatched larvae was 54.2 microg/l (0.85 microM), which shows a sensitivity of this species similar to the commonly used bivalve and sea-urchin tests. The ascidian embryo-larval bioassay is an accurate, reliable, simple and rapid method that can be used in ecotoxicological studies. PMID:14568047

  20. Ascidian Mitogenomics: Comparison of Evolutionary Rates in Closely Related Taxa Provides Evidence of Ongoing Speciation Events

    PubMed Central

    Griggio, Francesca; Voskoboynik, Ayelet; Iannelli, Fabio; Justy, Fabienne; Tilak, Marie-Ka; Xavier, Turon; Pesole, Graziano; Douzery, Emmanuel J.P.; Mastrototaro, Francesco; Gissi, Carmela

    2014-01-01

    Ascidians are a fascinating group of filter-feeding marine chordates characterized by rapid evolution of both sequences and structure of their nuclear and mitochondrial genomes. Moreover, they include several model organisms used to investigate complex biological processes in chordates. To study the evolutionary dynamics of ascidians at short phylogenetic distances, we sequenced 13 new mitogenomes and analyzed them, together with 15 other available mitogenomes, using a novel approach involving detailed whole-mitogenome comparisons of conspecific and congeneric pairs. The evolutionary rate was quite homogeneous at both intraspecific and congeneric level, and the lowest congeneric rates were found in cryptic (morphologically undistinguishable) and in morphologically very similar species pairs. Moreover, congeneric nonsynonymous rates (dN) were up to two orders of magnitude higher than in intraspecies pairs. Overall, a clear-cut gap sets apart conspecific from congeneric pairs. These evolutionary peculiarities allowed easily identifying an extraordinary intraspecific variability in the model ascidian Botryllus schlosseri, where most pairs show a dN value between that observed at intraspecies and congeneric level, yet consistently lower than that of the Ciona intestinalis cryptic species pair. These data suggest ongoing speciation events producing genetically distinct B. schlosseri entities. Remarkably, these ongoing speciation events were undetectable by the cox1 barcode fragment, demonstrating that, at low phylogenetic distances, the whole mitogenome has a higher resolving power than cox1. Our study shows that whole-mitogenome comparative analyses, performed on a suitable sample of congeneric and intraspecies pairs, may allow detecting not only cryptic species but also ongoing speciation events. PMID:24572017

  1. The identification of transcription factors expressed in the notochord of Ciona intestinalis adds new potential players to the Brachyury gene regulatory network

    PubMed Central

    José-Edwards, Diana S.; Kerner, Pierre; Kugler, Jamie E.; Deng, Wei; Jiang, Di; Di Gregorio, Anna

    2013-01-01

    The notochord is the distinctive characteristic of chordates; however, the knowledge of the complement of transcription factors governing the development of this structure is still incomplete. Here we present the expression patterns of seven transcription factor genes detected in the notochord of the ascidian Ciona intestinalis at various stages of embryonic development. Four of these transcription factors, Fos-a, NFAT5, AFF and Klf15, have not been directly associated with the notochord in previous studies, while the others, including Spalt-like-a, Lmx-like and STAT5/6-b, display evolutionarily conserved expression in this structure as well as in other domains. We examined the hierarchical relationships between these genes and the transcription factor Brachyury, which is necessary for notochord development in all chordates. We found that Ciona Brachyury regulates the expression of most, although not all, of these genes. These results shed light on the genetic regulatory program underlying notochord formation in Ciona and possibly other chordates. PMID:21594950

  2. Intraspecific Variation of Centruroides Edwardsii Venom from Two Regions of Colombia

    PubMed Central

    Estrada-Gómez, Sebastián; Cupitra, Nelson Ivan; Arango, Walter Murillo; Vargas Muñoz, Leidy Johana

    2014-01-01

    We report the first description studies, partial characterization, and intraspecific difference of Centruroides edwardsii, Gervais 1843, venom. C. edwardsii from two Colombian regions (Antioquia and Tolima) were evaluated. Both venoms showed hemolytic activity, possibly dependent of enzymatic active phospholipases, and neither coagulant nor proteolytic activities were observed. Venom electrophoretic profile showed significant differences between C. edwardsii venom from both regions. A high concentration of proteins with molecular masses between 31 kDa and 97.4 kDa, and an important concentration close or below 14.4 kDa were detected. RP-HPLC retention times between 38.2 min and 42.1 min, showed bands close to 14.4 kDa, which may correspond to phospholipases. RP-HPLC venom profile showed a well conserved region in both venoms between 7 and 17 min, after this, significant differences were detected. From Tolima region venom, 50 well-defined peaks were detected, while in the Antioquia region venom, 55 well-defined peaks were detected. Larvicidal activity was only detected in the C. edwardsii venom from Antioquia. No antimicrobial activity was observed using complete venom or RP-HPLC collected fractions of both venoms. Lethally activity (carried out on female albino swiss mice) was detected at doses over 19.2 mg/kg of crude venom. Toxic effects included distress, excitability, eye irritation and secretions, hyperventilation, ataxia, paralysis, and salivation. PMID:25025710

  3. Enhancer of zeste acts as a major developmental regulator of Ciona intestinalis embryogenesis

    PubMed Central

    Le Goff, Emilie; Martinand-Mari, Camille; Martin, Marianne; Feuillard, Jérôme; Boublik, Yvan; Godefroy, Nelly; Mangeat, Paul; Baghdiguian, Stephen; Cavalli, Giacomo

    2015-01-01

    ABSTRACT The paradigm of developmental regulation by Polycomb group (PcG) proteins posits that they maintain silencing outside the spatial expression domains of their target genes, particularly of Hox genes, starting from mid embryogenesis. The Enhancer of zeste [E(z)] PcG protein is the catalytic subunit of the PRC2 complex, which silences its targets via deposition of the H3K27me3 mark. Here, we studied the ascidian Ciona intestinalis counterpart of E(z). Ci-E(z) is detected by immunohistochemistry as soon as the 2- and 4-cell stages as a cytoplasmic form and becomes exclusively nuclear thereafter, whereas the H3K27me3 mark is detected starting from the gastrula stage and later. Morpholino invalidation of Ci-E(z) leads to the total disappearance of both Ci-E(z) protein and its H3K27me3 mark. Ci-E(z) morphants display a severe phenotype. Strikingly, the earliest defects occur at the 4-cell stage with the dysregulation of cell positioning and mitotic impairment. At later stages, Ci-E(z)-deficient embryos are affected by terminal differentiation defects of neural, epidermal and muscle tissues, by the failure to form a notochord and by the absence of caudal nerve. These major phenotypic defects are specifically rescued by injection of a morpholino-resistant Ci-E(z) mRNA, which restores expression of Ci-E(z) protein and re-deposition of the H3K27me3 mark. As observed by qPCR analyses, Ci-E(z) invalidation leads to the early derepression of tissue-specific developmental genes, whereas late-acting developmental genes are generally down-regulated. Altogether, our results suggest that Ci-E(z) plays a major role during embryonic development in Ciona intestinalis by silencing early-acting developmental genes in a Hox-independent manner. PMID:26276097

  4. Functional Brachyury Binding Sites Establish a Temporal Read-out of Gene Expression in the Ciona Notochord

    PubMed Central

    Passamaneck, Yale J.; Gazdoiu, Stefan; José-Edwards, Diana S.; Kugler, Jamie E.; Oda-Ishii, Izumi; Imai, Janice H.; Nibu, Yutaka; Di Gregorio, Anna

    2013-01-01

    The appearance of the notochord represented a milestone in Deuterostome evolution. The notochord is necessary for the development of the chordate body plan and for the formation of the vertebral column and numerous organs. It is known that the transcription factor Brachyury is required for notochord formation in all chordates, and that it controls transcription of a large number of target genes. However, studies of the structure of the cis-regulatory modules (CRMs) through which this control is exerted are complicated in vertebrates by the genomic complexity and the pan-mesodermal expression territory of Brachyury. We used the ascidian Ciona, in which the single-copy Brachyury is notochord-specific and CRMs are easily identifiable, to carry out a systematic characterization of Brachyury-downstream notochord CRMs. We found that Ciona Brachyury (Ci-Bra) controls most of its targets directly, through non-palindromic binding sites that function either synergistically or individually to activate early- and middle-onset genes, respectively, while late-onset target CRMs are controlled indirectly, via transcriptional intermediaries. These results illustrate how a transcriptional regulator can efficiently shape a shallow gene regulatory network into a multi-tiered transcriptional output, and provide insights into the mechanisms that establish temporal read-outs of gene expression in a fast-developing chordate embryo. PMID:24204212

  5. Ascidian tail formation requires caudal function.

    PubMed

    Katsuyama, Y; Sato, Y; Wada, S; Saiga, H

    1999-09-15

    Although the tail is one of the major characteristics of animals of the phylum Chordata, evolutionary aspects of the molecular mechanisms involved in its formation are not clear. To obtain insights into these issues, we have isolated and investigated the caudal gene of an ascidian, one of the lower animal groups among chordates. Ascidian caudal is expressed from the midgastrula stage onward in the lateral walls of the posterior neural tube cell lineage and also in the posterior epidermal cells from the neurula stage. Thus, ascidian caudal expression is restricted to the ectoderm of a tail-forming region throughout embryogenesis. Suppression of caudal function by an antisense oligonucleotide or a dominant negative construct caused inhibition of the cell movement required for tail formation. Overexpression of wild-type caudal mRNA in an ascidian animal cap, an animal half explant prepared at the eight-cell stage, caused elongation of the cap. Furthermore, Xenopus embryos injected with dominant negative ascidian caudal exhibited defects in elongation, suggesting a conserved caudal function among chordates. These results indicate that caudal function is required for chordate tail formation and may play a key role in its evolution. PMID:10479446

  6. Developmental toxicity of benzotriazole in the protochordate Ciona intestinalis (Chordata, Ascidiae).

    PubMed

    Kadar, Eniko; Dashfield, Sarah; Hutchinson, Thomas H

    2010-01-01

    Benzotriazoles (BT) are applied as anticorrosive and de-icing agents and have been detected in a variety of aquatic ecosystems and municipal wastewater effluents. We have assessed the developmental effects of benzotriazole (CAS number 95-14-7) to the marine invertebrate Ciona intestinalis (Chordata, Ascidiae). At 15 +/- 1 degrees C, the 24 h No-Observed Effect Concentration (NOEC) and Lowest Observed Effect Concentration (LOEC) values based on embryo morphological development were 100 and >100 mg L(-1), respectively (nominal concentration under static conditions). After 48 h, the NOEC and LOEC values were 10 and 32 mg L(-1), respectively. Light and electron microscopy studies on benzotriazole-exposed larva indicated that the primary target cells were the extra-embryonic test cells, which are known to play a significant apoptotic role during ascidian metamorphosis. The visible decline of test cells in benzotriazole-exposed larvae raises the possibility that the compound interferes with the regulation of embryo development in protochordates such as C. intestinalis. Further research is warranted to assess the potential longer term sublethal impacts of benzotriazole in aquatic organisms.

  7. Distinctive expression patterns of Hedgehog pathway genes in the Ciona intestinalis larva: implications for a role of Hedgehog signaling in postembryonic development and chordate evolution.

    PubMed

    Islam, A F M Tariqul; Moly, Pricila Khan; Miyamoto, Yuki; Kusakabe, Takehiro G

    2010-02-01

    Members of the Hedgehog (Hh) family are soluble ligands that orchestrate a wide spectrum of developmental processes ranging from left-right axis determination of the embryo to tissue patterning and organogenesis. Tunicates, including ascidians, are the closest relatives of vertebrates, and elucidation of Hh signaling in ascidians should provide an important clue towards better understanding the role of this pathway in development. In previous studies, expression patterns of genes encoding Hh and its downstream factor Gli have been examined up to the tailbud stage in the ascidian embryo, but their expression in the larva has not been reported. Here we show the spatial expression patterns of hedgehog (Ci-hh1, Ci-hh2), patched (Ci-ptc), smoothened (Ci-smo), and Gli (Ci-Gli) orthologs in larvae of the ascidian Ciona intestinalis. The expression patterns of Ci-hh2 and Ci-Gli dramatically change during the period between the late tailbud embryo and the swimming larva. At the larval stage, expression of Ci-Gli was found in a central part of the endoderm and in the visceral ganglion, while Ci-hh2 was expressed in two discrete endodermal regions, anteriorly and posteriorly adjacent to the cells expressing Gli. The expression patterns of these genes suggest that the Hh ligand controls postembryonic development of the endoderm and the central nervous system. Expression of a gene encoding Hh in the anterior and/or pharyngeal endoderm is probably an ancient chordate character; diversification of regulation and targets of the Hh signaling in this region may have played a major role in the evolution of chordate body structures.

  8. Reprotoxicity of the Antifoulant Chlorothalonil in Ascidians: An Ecological Risk Assessment

    PubMed Central

    Gallo, Alessandra; Tosti, Elisabetta

    2015-01-01

    Chlorothalonil is a widely used biocide in antifouling paint formulation that replaces tin-based compounds after their definitive ban. Although chlorothalonil inputs into the marine environment have significantly increased in recent years, little is known about its effect on marine animals and in particular on their reproductive processes. In this line, the aim of the present study was to investigate the effects of chlorothalonil exposure on the gamete physiology, fertilization rate and transmissible damage to offspring in the marine invertebrate Ciona intestinalis (ascidians). To identify a possible mechanism of action of chlorothalonil, electrophysiological techniques were used to study the impact on oocyte membrane excitability and on the electrical events occurring at fertilization. The pre-exposure of spermatozoa and oocytes to chlorothalonil did not affect the fertilization rate but caused damage to the offspring by inducing larval malformation. The highest toxicity was observed when fertilization was performed in chlorothalonil solutions with the lowest EC50 value. In particular, it was observed that low chlorothalonil concentrations interfered with embryo development and led to abnormal larvae, whereas high concentrations arrested embryo formation. In mature oocytes, a decrease in the amplitudes of the sodium and fertilization currents was observed, suggesting an involvement of plasma membrane ion currents in the teratogenic mechanism of chlorothalonil action. The risk estimation confirmed that the predicted no-effect concentration (PNEC) exceeded the predicted effect concentration (PEC), thus indicating that chlorothalonil may pose a risk to aquatic species. PMID:25875759

  9. Transmission and Scanning Electron Microscopy of the Accessory Cells and Chorion During Development of Ciona intestinalis Type B Embryos and the Impact of Their Removal on Cell Morphology.

    PubMed

    Thompson, Helen; Shimeld, Sebastian M

    2015-06-01

    Spawned ascidian oocytes are surrounded by a membrane called the chorion (or vitelline coat) and associated with two populations of maternally-supplied cells. Outside the chorion are follicle cells, which may affect the buoyancy of eggs. Inside the chorion are test cells, which during oogenesis provision the egg and which after fertilisation contribute to the larval tunic. The structure of maternal cells may vary between species. The model ascidian Ciona intestinalis has been recently split into two species, currently named type A and type B. The ultrastructure of extraembryonic cells and structures from type A embryos has been reported. Here we describe the ultrastructure of follicle and test cells from C. intestinalis type B embryos. Test cells are about 5 µm in diameter and line the inside of the chorion of developing embryos in a dense sheet. Follicle cells are large (> 100 µm long) and spike-shaped, with many large vesicles. Terminal electron dense granules are found towards the tips of spikes, adjacent to cytoplasm containing numerous small electron dense bodies connected by filaments. These are probably vesicles containing material for the terminal granules. Removal of maternal structures and cells just after fertilisation, as commonly used in many experiments manipulating C. intestinalis development, has been reported to affect embryonic patterning. We examined the impact of this on embryonic ectoderm cells by scanning electron microscopy. Cells of embryos that developed without maternal structures still developed cilia, but had indistinct cell boundaries and a more flattened appearance than those that developed within the chorion.

  10. Asexual propagation and regeneration in colonial ascidians.

    PubMed

    Kürn, Ulrich; Rendulic, Snjezana; Tiozzo, Stefano; Lauzon, Robert J

    2011-08-01

    Regeneration is widely distributed among the metazoans. However, clear differences exist as to the degree of regenerative capacity: some phyla can only replace missing body parts, whereas others can generate entirely new individuals. Ascidians are animals that possess a remarkable regenerative plasticity and exhibit a great diversity of mechanisms for asexual propagation and survival. They are marine invertebrate members of the subphylum Tunicata and represent modern-day descendants of the chordate ancestor; in their tadpole stage they exhibit a chordate body plan that is resorbed during metamorphosis. Solitary species grow into an adult that can reach several centimeters in length, whereas colonial species grow by asexual propagation, creating a colony of genetically identical individuals. In this review, we present an overview of the biology of colonial ascidians as a paradigm for study in stem cell and regenerative biology. Focusing on botryllid ascidians, we introduce the potential roles played by multipotent epithelia and multipotent/pluripotent stem cells as source of asexual propagation and regenerative plasticity in the different budding mechanisms, and consider the putative mechanism of body repatterning in a non-embryonic scenario. We also discuss the involvement of intra-colony homeostatic processes in regulating budding potential, and the functional link between allorecognition, chimerism, and regenerative potential.

  11. Agonistic behaviour in juvenile southern rock lobster, Jasus edwardsii (Decapoda, Palinuridae): implications for developing aquaculture

    PubMed Central

    Carter, Chris G.; Westbury, Heath; Crear, Bradley; Simon, Cedric; Thomas, Craig

    2014-01-01

    Abstract The Southern rock lobster, Jasus edwardsii, is a temperate species of spiny lobster with established well managed fisheries in Australia and New Zealand. It has also been under consideration as a species with aquaculture potential. Agonistic behaviour has important consequences under aquaculture conditions that encompass direct effects, such as damage or death of protagonists, and indirect effects on growth that relate to resource access, principally food and refuge. This study aimed to identify and characterize behaviours and to make a preliminary investigation of their occurrence under tank culture. Juvenile Jasus edwardsii were examined in a flow-through seawater system using a remote video camera system. Twenty-nine behaviours were divided into three sub-groups: aggressive (11), avoidance (6) and others (12). Aggressive behaviours included attacks, pushing, lifting, clasping and carrying an opponent. Avoidance behaviours included moving away in a backwards-, forwards- or side-stepping motion as well as with more vigorous tail flips. These behaviours were components of twelve behavioural groups that described contact, attack and displacement between individuals. Activity was crepuscular with two clear peaks, one in the morning and the other in the evening. The occurrence of behavioural groups was not different between the morning and evening. The frequency of aggressive behaviours was not affected by changes made to stocking density or access to food. The implications of agonistic behaviours are discussed further in relation to developing aquaculture. PMID:25561845

  12. Species specificity of symbiosis and secondary metabolism in ascidians

    PubMed Central

    Tianero, Ma Diarey B; Kwan, Jason C; Wyche, Thomas P; Presson, Angela P; Koch, Michael; Barrows, Louis R; Bugni, Tim S; Schmidt, Eric W

    2015-01-01

    Ascidians contain abundant, diverse secondary metabolites, which are thought to serve a defensive role and which have been applied to drug discovery. It is known that bacteria in symbiosis with ascidians produce several of these metabolites, but very little is known about factors governing these ‘chemical symbioses'. To examine this phenomenon across a wide geographical and species scale, we performed bacterial and chemical analyses of 32 different ascidians, mostly from the didemnid family from Florida, Southern California and a broad expanse of the tropical Pacific Ocean. Bacterial diversity analysis showed that ascidian microbiomes are highly diverse, and this diversity does not correlate with geographical location or latitude. Within a subset of species, ascidian microbiomes are also stable over time (R=−0.037, P-value=0.499). Ascidian microbiomes and metabolomes contain species-specific and location-specific components. Location-specific bacteria are found in low abundance in the ascidians and mostly represent strains that are widespread. Location-specific metabolites consist largely of lipids, which may reflect differences in water temperature. By contrast, species-specific bacteria are mostly abundant sequenced components of the microbiomes and include secondary metabolite producers as major components. Species-specific chemicals are dominated by secondary metabolites. Together with previous analyses that focused on single ascidian species or symbiont type, these results reveal fundamental properties of secondary metabolic symbiosis. Different ascidian species have established associations with many different bacterial symbionts, including those known to produce toxic chemicals. This implies a strong selection for this property and the independent origin of secondary metabolite-based associations in different ascidian species. The analysis here streamlines the connection of secondary metabolite to producing bacterium, enabling further biological and

  13. Species specificity of symbiosis and secondary metabolism in ascidians.

    PubMed

    Tianero, Ma Diarey B; Kwan, Jason C; Wyche, Thomas P; Presson, Angela P; Koch, Michael; Barrows, Louis R; Bugni, Tim S; Schmidt, Eric W

    2015-03-01

    Ascidians contain abundant, diverse secondary metabolites, which are thought to serve a defensive role and which have been applied to drug discovery. It is known that bacteria in symbiosis with ascidians produce several of these metabolites, but very little is known about factors governing these 'chemical symbioses'. To examine this phenomenon across a wide geographical and species scale, we performed bacterial and chemical analyses of 32 different ascidians, mostly from the didemnid family from Florida, Southern California and a broad expanse of the tropical Pacific Ocean. Bacterial diversity analysis showed that ascidian microbiomes are highly diverse, and this diversity does not correlate with geographical location or latitude. Within a subset of species, ascidian microbiomes are also stable over time (R=-0.037, P-value=0.499). Ascidian microbiomes and metabolomes contain species-specific and location-specific components. Location-specific bacteria are found in low abundance in the ascidians and mostly represent strains that are widespread. Location-specific metabolites consist largely of lipids, which may reflect differences in water temperature. By contrast, species-specific bacteria are mostly abundant sequenced components of the microbiomes and include secondary metabolite producers as major components. Species-specific chemicals are dominated by secondary metabolites. Together with previous analyses that focused on single ascidian species or symbiont type, these results reveal fundamental properties of secondary metabolic symbiosis. Different ascidian species have established associations with many different bacterial symbionts, including those known to produce toxic chemicals. This implies a strong selection for this property and the independent origin of secondary metabolite-based associations in different ascidian species. The analysis here streamlines the connection of secondary metabolite to producing bacterium, enabling further biological and

  14. Transforming growth factor β (CiTGF-β) gene expression is induced in the inflammatory reaction of Ciona intestinalis.

    PubMed

    Vizzini, Aiti; Di Falco, Felicia; Parrinello, Daniela; Sanfratello, Maria Antonietta; Cammarata, Matteo

    2016-02-01

    Transforming growth factor (TGF-β) is a well-known component of a regulatory cytokines superfamily that has pleiotropic functions in a broad range of cell types and is involved, in vertebrates, in numerous physiological and pathological processes. In the current study, we report on Ciona intestinalis molecular characterisation and expression of a transforming growth factor β homologue (CiTGF-β). The gene organisation, phylogenetic tree and modelling supported the close relationship with the mammalian TGF suggesting that the C. intestinalis TGF-β gene shares a common ancestor in the chordate lineages. Functionally, real-time PCR analysis showed that CiTGF-β was transcriptionally upregulated in the inflammatory process induced by LPS inoculation, suggesting that is involved in the first phase and significant in the secondary phase of the inflammatory response in which cell differentiation occurs. In situ hybridisation assays revealed that the genes transcription was upregulated in the pharynx, the main organ of the ascidian immune system, and expressed by cluster of hemocytes inside the pharynx vessels. These data supported the view that CiTGF-β is a potential molecule in immune defence systems against bacterial infection. PMID:26493014

  15. Ephrin-mediated restriction of ERK1/2 activity delimits the number of pigment cells in the Ciona CNS.

    PubMed

    Haupaix, Nicolas; Abitua, Philip B; Sirour, Cathy; Yasuo, Hitoyoshi; Levine, Michael; Hudson, Clare

    2014-10-01

    Recent evidence suggests that ascidian pigment cells are related to neural crest-derived melanocytes of vertebrates. Using live-imaging, we determine a revised cell lineage of the pigment cells in Ciona intestinalis embryos. The neural precursors undergo successive rounds of anterior-posterior (A-P) oriented cell divisions, starting at the blastula 64-cell stage. A previously unrecognized fourth A-P oriented cell division in the pigment cell lineage leads to the generation of the post-mitotic pigment cell precursors. We provide evidence that MEK/ERK signals are required for pigment cell specification until approximately 30min after the final cell division has taken place. Following each of the four A-P oriented cell divisions, ERK1/2 is differentially activated in the posterior sister cells, into which the pigment cell lineage segregates. Eph/ephrin signals are critical during the third A-P oriented cell division to spatially restrict ERK1/2 activation to the posterior daughter cell. Targeted inhibition of Eph/ephrin signals results in, at neurula stages, anterior expansion of both ERK1/2 activation and a pigment cell lineage marker and subsequently, at larval stages, supernumerary pigment cells. We discuss the implications of these findings with respect to the evolution of the vertebrate neural crest.

  16. In vitro Antibacterial Activity of Combretum edwardsii, Combretum krausii, and Maytenus nemorosa and Their Synergistic Effects in Combination with Antibiotics.

    PubMed

    Chukwujekwu, Jude C; van Staden, Johannes

    2016-01-01

    The study investigated the antibacterial activity of crude extracts of C. edwardsii, Combretum krausii, and Maytenus nemorosa as well as their interactions with selected antibiotics against drug resistant bacterial strains. Using the rapid p-iodonitrotetrazolium chloride colorimetric assay, minimum inhibitory concentration values of plant extracts and antibiotics were determined. The interactions of plant extracts and antibiotics were studied using a checkerboard method. The MICs of the plant extracts and antibiotics were in the range of 0.037-6.25 and 0.001-2.5 mg/ml, respectively. The plant fractions tested in the present study displayed varying levels of antibacterial activity depending on the bacterial strains. Generally, Staphylococcus aureus was the most susceptible of the three strains of bacteria while the other two beta-lactamase producing Gram-negative bacteria were the most resistant. The hexane leaf extract of M. nemorosa was the most active (MIC = 37 μg/ml) against S. aureus. Ethyl acetate leaf extract of C. krausii was the most active against Klebsiella pneumoniae and ethyl acetate leaf extract of C. edwardsii was the most active against Escherichia coli. Synergistic interactions were detected in 13% of the combinations against E. coli, 27% of the combinations against K. pneumoniae and 80% of the combinations against S. aureus. The few synergistic interactions observed in the present study suggest that the crude extracts of the leaves of M. nemorosa, C. edwardsii, and C. krausii could be potential sources of broad spectrum antibiotic resistance modifying compounds. PMID:27471466

  17. The central nervous system of ascidian larvae.

    PubMed

    Hudson, Clare

    2016-09-01

    Ascidians are marine invertebrate chordates. Their tadpole larvae contain a dorsal tubular nervous system, resulting from the rolling up of a neural plate. Along the anterior-posterior (A-P) axis, the central nervous system (CNS) is organized into a sensory vesicle, neck, trunk ganglion, and tail nerve cord and consists of approximately only 330 cells, of which around 100 are thought to be neurons. The organization of distinct neuronal cell types and neurotransmitter gene expression within the CNS has been described. The unique developmental mode of ascidians, with a small number of cells and a fixed cell division pattern, allows individual cells to be traced throughout development. This feature has led to the complete documentation of the cell lineages of certain cell types in the CNS. Thus, a step-by-step understanding of nervous system development from the initial stages of neural induction to the neurogenesis of individual neurons is a feasible goal. The genetic control of neural fate induction and early neural plate patterning are now well understood. The molecular mechanisms specifying the cholinergic neurons of the trunk ganglion as well as the pigment cells of the sensory organs are also well elucidated. In addition, studies have begun on the morphogenetic processes of neurulation. Remaining challenges include building an embryonic atlas integrating gene expression patterns, cell lineage, and neuronal cell types as well as developing the gene regulatory networks of cell fate specification and integrating them with the genetic control of morphogenesis. WIREs Dev Biol 2016, 5:538-561. doi: 10.1002/wdev.239 For further resources related to this article, please visit the WIREs website. PMID:27328318

  18. Morphological Differences between Larvae of the Ciona intestinalis Species Complex: Hints for a Valid Taxonomic Definition of Distinct Species.

    PubMed

    Pennati, Roberta; Ficetola, Gentile Francesco; Brunetti, Riccardo; Caicci, Federico; Gasparini, Fabio; Griggio, Francesca; Sato, Atsuko; Stach, Thomas; Kaul-Strehlow, Sabrina; Gissi, Carmela; Manni, Lucia

    2015-01-01

    The cosmopolitan ascidian Ciona intestinalis is the most common model species of Tunicata, the sister-group of Vertebrata, and widely used in developmental biology, genomics and evolutionary studies. Recently, molecular studies suggested the presence of cryptic species hidden within the C. intestinalis species, namely C. intestinalis type A and type B. So far, no substantial morphological differences have been identified between individuals belonging to the two types. Here we present morphometric, immunohistochemical, and histological analyses, as well as 3-D reconstructions, of late larvae obtained by cross-fertilization experiments of molecularly determined type A and type B adults, sampled in different seasons and in four different localities. Our data point to quantitative and qualitative differences in the trunk shape of larvae belonging to the two types. In particular, type B larvae exhibit a longer pre-oral lobe, longer and relatively narrower total body length, and a shorter ocellus-tail distance than type A larvae. All these differences were found to be statistically significant in a Discriminant Analysis. Depending on the number of analyzed parameters, the obtained discriminant function was able to correctly classify > 93% of the larvae, with the remaining misclassified larvae attributable to the existence of intra-type seasonal variability. No larval differences were observed at the level of histology and immunohistochemical localization of peripheral sensory neurons. We conclude that type A and type B are two distinct species that can be distinguished on the basis of larval morphology and molecular data. Since the identified larval differences appear to be valid diagnostic characters, we suggest to raise both types to the rank of species and to assign them distinct names.

  19. Centrosomes and spindles in ascidian embryos and eggs.

    PubMed

    McDougall, Alex; Chenevert, Janet; Pruliere, Gerard; Costache, Vlad; Hebras, Celine; Salez, Gregory; Dumollard, Remi

    2015-01-01

    During embryonic development and maternal meiotic maturation, positioning of the mitotic/meiotic spindle is subject to control mechanisms that meet the needs of the particular cell type. Here we review the methods, molecular tools, and the ascidian model we use to study three different ways in which centrosomes or spindles are positioned in three different cellular contexts. First, we review unequal cleavage in the ascidian germ lineage. In the germ cell precursors, a large macromolecular structure termed the centrosome-attracting body causes three successive rounds of unequal cleavage from the 8- to the 64-cell stage. Next, we discuss spindle positioning underlying the invariant cleavage pattern. Ascidian embryos display an invariant cleavage pattern whereby the mitotic spindle aligns in a predetermined orientation in every blastomere up to the gastrula stage (composed of 112 cells). Finally, we review methods and approaches to study meiotic spindle positioning in eggs. PMID:26175446

  20. In vitro Antibacterial Activity of Combretum edwardsii, Combretum krausii, and Maytenus nemorosa and Their Synergistic Effects in Combination with Antibiotics

    PubMed Central

    Chukwujekwu, Jude C.; van Staden, Johannes

    2016-01-01

    The study investigated the antibacterial activity of crude extracts of C. edwardsii, Combretum krausii, and Maytenus nemorosa as well as their interactions with selected antibiotics against drug resistant bacterial strains. Using the rapid p-iodonitrotetrazolium chloride colorimetric assay, minimum inhibitory concentration values of plant extracts and antibiotics were determined. The interactions of plant extracts and antibiotics were studied using a checkerboard method. The MICs of the plant extracts and antibiotics were in the range of 0.037–6.25 and 0.001–2.5 mg/ml, respectively. The plant fractions tested in the present study displayed varying levels of antibacterial activity depending on the bacterial strains. Generally, Staphylococcus aureus was the most susceptible of the three strains of bacteria while the other two beta-lactamase producing Gram-negative bacteria were the most resistant. The hexane leaf extract of M. nemorosa was the most active (MIC = 37 μg/ml) against S. aureus. Ethyl acetate leaf extract of C. krausii was the most active against Klebsiella pneumoniae and ethyl acetate leaf extract of C. edwardsii was the most active against Escherichia coli. Synergistic interactions were detected in 13% of the combinations against E. coli, 27% of the combinations against K. pneumoniae and 80% of the combinations against S. aureus. The few synergistic interactions observed in the present study suggest that the crude extracts of the leaves of M. nemorosa, C. edwardsii, and C. krausii could be potential sources of broad spectrum antibiotic resistance modifying compounds. PMID:27471466

  1. Toxicity of Hg, Cu, Cd, and Cr on early developmental stages of Ciona intestinalis (Chordata, Ascidiacea) with potential application in marine water quality assessment.

    PubMed

    Bellas, J; Vázquez, E; Beiras, R

    2001-08-01

    The toxicity of mercury, copper, cadmium and chromium on sperm viability, fertilisation, embryogenesis and larval attachment of Ciona intestinalis was examined. Fertilisation rate (FR) showed a small decrease even at the highest metal concentration tested. The median effective concentrations (EC50) reducing rates of embryogenesis and larval attachment by 50% were 54 microg Hg/l (0.27 microM), 46 microg Cu/l (0.72 microM), 838 microg Cd/l (7.46 microM), 10,318 microg Cr/l (198 microM), and 35 microg Hg/l (0.18 microM), 34 microg Cu/l (0.54 microM) and 11,755 microg Cr/l (226 microM), respectively. Therefore, Hg is three times more toxic than Cu (on a molar basis), ca. 30 times more toxic than Cd and ca. 1000 times more toxic than Cr to early stages of C. intestinalis. Rates of larval attachment and embryogenesis were the most sensitive endpoints, although the latter is more advisable for routine assessment of seawater quality because of its greater simplicity. In addition to bivalves and sea-urchins, ascidian embryos can provide biological criteria for seawater quality standards taking into account the sensitivity of a chordate and contributing to the detection of harmful chemicals with no marked effect on the species currently in use in seawater quality bioassays.

  2. LPS injection reprograms the expression and the 3' UTR of a CAP gene by alternative polyadenylation and the formation of a GAIT element in Ciona intestinalis.

    PubMed

    Vizzini, Aiti; Bonura, Angela; Longo, Valeria; Sanfratello, Maria Antonietta; Parrinello, Daniela; Cammarata, Matteo; Colombo, Paolo

    2016-09-01

    The diversification of cellular functions is one of the major characteristics of multicellular organisms which allow cells to modulate their gene expression, leading to the formation of transcripts and proteins with different functions and concentrations in response to different stimuli. CAP genes represent a widespread family of proteins belonging to the cysteine-rich secretory protein, antigen 5 and pathogenesis-related 1 superfamily which, it has been proposed, play key roles in the infection process and the modulation of immune responses in host animals. The ascidian Ciona intestinalis represents a group of proto-chordates with an exclusively innate immune system that has been widely studied in the field of comparative and developmental immunology. Using this biological system, we describe the identification of a novel APA mechanism by which an intronic polyadenylation signal is activated by LPS injection, leading to the formation of a shorter CAP mRNA capable of expressing the first CAP exon plus 19 amino acid residues whose sequence is contained within the first intron of the annotated gene. Furthermore, such an APA event causes the expression of a translational controlling cis-acting GAIT element which is not present in the previously isolated CAP isoform and identified in the 3'-UTR of other immune-related genes, suggesting an intriguing scenario in which both transcriptional and post-transcriptional control mechanisms are involved in the activation of the CAP gene during inflammatory response in C. intestinalis. PMID:27514009

  3. LPS injection reprograms the expression and the 3' UTR of a CAP gene by alternative polyadenylation and the formation of a GAIT element in Ciona intestinalis.

    PubMed

    Vizzini, Aiti; Bonura, Angela; Longo, Valeria; Sanfratello, Maria Antonietta; Parrinello, Daniela; Cammarata, Matteo; Colombo, Paolo

    2016-09-01

    The diversification of cellular functions is one of the major characteristics of multicellular organisms which allow cells to modulate their gene expression, leading to the formation of transcripts and proteins with different functions and concentrations in response to different stimuli. CAP genes represent a widespread family of proteins belonging to the cysteine-rich secretory protein, antigen 5 and pathogenesis-related 1 superfamily which, it has been proposed, play key roles in the infection process and the modulation of immune responses in host animals. The ascidian Ciona intestinalis represents a group of proto-chordates with an exclusively innate immune system that has been widely studied in the field of comparative and developmental immunology. Using this biological system, we describe the identification of a novel APA mechanism by which an intronic polyadenylation signal is activated by LPS injection, leading to the formation of a shorter CAP mRNA capable of expressing the first CAP exon plus 19 amino acid residues whose sequence is contained within the first intron of the annotated gene. Furthermore, such an APA event causes the expression of a translational controlling cis-acting GAIT element which is not present in the previously isolated CAP isoform and identified in the 3'-UTR of other immune-related genes, suggesting an intriguing scenario in which both transcriptional and post-transcriptional control mechanisms are involved in the activation of the CAP gene during inflammatory response in C. intestinalis.

  4. Cross-validated methods for promoter/transcription start site mapping in SL trans-spliced genes, established using the Ciona intestinalis troponin I gene

    PubMed Central

    Khare, Parul; Mortimer, Sandra I.; Cleto, Cynthia L.; Okamura, Kohji; Suzuki, Yutaka; Kusakabe, Takehiro; Nakai, Kenta; Meedel, Thomas H.; Hastings, Kenneth E. M.

    2011-01-01

    In conventionally-expressed eukaryotic genes, transcription start sites (TSSs) can be identified by mapping the mature mRNA 5′-terminal sequence onto the genome. However, this approach is not applicable to genes that undergo pre-mRNA 5′-leader trans-splicing (SL trans-splicing) because the original 5′-segment of the primary transcript is replaced by the spliced leader sequence during the trans-splicing reaction and is discarded. Thus TSS mapping for trans-spliced genes requires different approaches. We describe two such approaches and show that they generate precisely agreeing results for an SL trans-spliced gene encoding the muscle protein troponin I in the ascidian tunicate chordate Ciona intestinalis. One method is based on experimental deletion of trans-splice acceptor sites and the other is based on high-throughput mRNA 5′-RACE sequence analysis of natural RNA populations in order to detect minor transcripts containing the pre-mRNA’s original 5′-end. Both methods identified a single major troponin I TSS located ∼460 nt upstream of the trans-splice acceptor site. Further experimental analysis identified a functionally important TATA element 31 nt upstream of the start site. The two methods employed have complementary strengths and are broadly applicable to mapping promoters/TSSs for trans-spliced genes in tunicates and in trans-splicing organisms from other phyla. PMID:21109525

  5. Interrogating the Venom of the Viperid Snake Sistrurus catenatus edwardsii by a Combined Approach of Electrospray and MALDI Mass Spectrometry

    PubMed Central

    Chapeaurouge, Alex; Reza, Md Abu; Mackessy, Stephen P.; Carvalho, Paulo C.; Valente, Richard H.; Teixeira-Ferreira, André; Perales, Jonas; Lin, Qingsong; Kini, R. Manjunatha

    2015-01-01

    The complete sequence characterization of snake venom proteins by mass spectrometry is rather challenging due to the presence of multiple isoforms from different protein families. In the present study, we investigated the tryptic digest of the venom of the viperid snake Sistrurus catenatus edwardsii by a combined approach of liquid chromatography coupled to either electrospray (online) or MALDI (offline) mass spectrometry. These different ionization techniques proved to be complementary allowing the identification a great variety of isoforms of diverse snake venom protein families, as evidenced by the detection of the corresponding unique peptides. For example, ten out of eleven predicted isoforms of serine proteinases of the venom of S. c. edwardsii were distinguished using this approach. Moreover, snake venom protein families not encountered in a previous transcriptome study of the venom gland of this snake were identified. In essence, our results support the notion that complementary ionization techniques of mass spectrometry allow for the detection of even subtle sequence differences of snake venom proteins, which is fundamental for future structure-function relationship and possible drug design studies. PMID:25955844

  6. Investigation of Genetic Structure between Deep and Shallow Populations of the Southern Rock Lobster, Jasus edwardsii in Tasmania, Australia

    PubMed Central

    Morgan, Erin M. J.; Green, Bridget S.; Murphy, Nicholas P.; Strugnell, Jan M.

    2013-01-01

    The southern rock lobster, Jasus edwardsii, shows clear phenotypic differences between shallow water (red coloured) and deeper water (pale coloured) individuals. Translocations of individuals from deeper water to shallower waters are currently being trialled as a management strategy to facilitate a phenotypic change from lower value pale colouration, common in deeper waters, to the higher value red colouration found in shallow waters. Although panmixia across the J. edwardsii range has been long assumed, it is critical to assess the genetic variability of the species to ensure that the level of population connectivity is appropriately understood and translocations do not have unintended consequences. Eight microsatellite loci were used to investigate genetic differentiation between six sites (three shallow, three deep) across southern Tasmania, Australia, and one from New Zealand. Based on analyses the assumption of panmixia was rejected, revealing small levels of genetic differentiation across southern Tasmania, significant levels of differentiation between Tasmania and New Zealand, and high levels of asymmetric gene flow in an easterly direction from Tasmania into New Zealand. These results suggest that translocation among Tasmanian populations are not likely to be problematic, however, a re-consideration of panmictic stock structure for this species is necessary. PMID:24250747

  7. *Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt) , yielding mono-, di-, and trimethylated arsenicals. A comparative genomic approach focused on Ciona intestinaJis, an invertebrate chordate, was u...

  8. Latitudinal patterns in the life-history traits of three isolated Atlantic populations of the deep-water shrimp Plesionika edwardsii (Decapoda, Pandalidae)

    NASA Astrophysics Data System (ADS)

    González, José A.; Pajuelo, José G.; Triay-Portella, Raül; Ruiz-Díaz, Raquel; Delgado, João; Góis, Ana R.; Martins, Albertino

    2016-11-01

    Patterns in the life-history traits of the pandalid shrimp Plesionika edwardsii are studied for the first time in three isolated Atlantic populations (Madeira, Canaries and Cape Verde Islands) to gain an understanding of their latitudinal variations. The maximum carapace size of the populations studied, as well as the maximum weight, showed clear latitudinal patterns. The patterns observed may be a consequence of the temperature experienced by shrimps during development, 1.37 ° C higher in the Canaries and 5.96 ° C higher in the Cape Verde Islands than in Madeira. These temperature differences among populations may have induced phenotypic plasticity because the observed final body size decreased as the temperature increased. A latitudinal north-south pattern was also observed in the maximum size of ovigerous females, with larger sizes found in the Madeira area and lower sizes observed in the Cape Verde Islands. A similar pattern was observed in the brood size and maximum egg size. Females of P. edwardsii produced smaller eggs in the Cape Verde Islands than did those at the higher latitude in Madeira. P. edwardsii was larger at sexual maturity in Madeira than in the Cape Verde Islands. The relative size at sexual maturity is not affected by latitude or environmental factors and is the same in the three areas studied, varying slightly between 0.568 and 0.585. P. edwardsii had a long reproductive season with ovigerous females observed all year round, although latitudinal variations were observed. Seasonally, there were more ovigerous females in spring and summer in Madeira and from winter to summer in the Cape Verde Islands. P. edwardsii showed a latitudinal pattern in size, with asymptotic size and growth rate showing a latitudinal compensation gradient as a result of an increased growth performance in the Madeira population compared to that of the Cape Verde Islands.

  9. The secret to a successful relationship: lasting chemistry between ascidians and their symbiotic bacteria

    PubMed Central

    Schmidt, Eric W.

    2014-01-01

    Bioactive secondary metabolites are common components of marine animals. In many cases, symbiotic bacteria, and not the animals themselves, synthesize the compounds. Among marine animals, ascidians are good models for understanding these symbioses. Ascidians often contain potently bioactive secondary metabolites as their major extractable components. Strong evidence shows that ~8% of the known secondary metabolites from ascidians are made by symbiotic bacteria, and indirect evidence implicates bacteria in the synthesis of many more. Far from being “secondary” to the animals, secondary metabolites are essential components of the interaction between host animals and their symbiotic bacteria. These interactions have complex underlying biology, but the chemistry is clearly ascidian-species specific. The chemical interactions are ancient in at least some cases, and they are widespread among ascidians. Ascidians maintain secondary metabolic symbioses with bacteria that are phylogenetically diverse, indicating a convergent solution to obtaining secondary metabolites and reinforcing the importance of secondary metabolism in animal survival. PMID:25937788

  10. Telomerase deficiency in a colonial ascidian after prolonged asexual propagation.

    PubMed

    Sköld, Helen Nilsson; Asplund, Maria E; Wood, Christine A; Bishop, John D D

    2011-06-15

    In organisms that propagate by agametic cloning, the parental body is the reproductive unit and fitness increases with clonal size, so that colonial metazoans, despite lack of experimental data, have been considered potentially immortal. Using asexual propagation rate as a measure of somatic performance, and telomerase activity and relative telomere length as molecular markers of senescence, old (7-12 years) asexual strains of a colonial ascidian, Diplosoma listerianum, were compared with their recent sexually produced progeny. We report for the first time evidence for long-term molecular senescence in asexual lineages of a metazoan, and that only passage between sexual generations provides total rejuvenation permitting indefinite propagation and growth. Thus, this colonial ascidian has not fully escaped ageing. The possibility of somatic replicative senescence also potentially helps to explain why metazoans, with the capacity for asexual propagation through agametic cloning, commonly undergo cycles of sexual reproduction in the wild.

  11. Chemical defense against fouling in the solitary ascidian Phallusia nigra.

    PubMed

    Mayzel, Boaz; Haber, Markus; Ilan, Micha

    2014-12-01

    The solitary ascidian Phallusia nigra is rarely fouled by epibionts. Here, we tested the antifouling activity of its crude extracts in laboratory and field assays. P. nigra extracts inhibited the growth of all eight tested environmental bacteria and two of four laboratory bacteria. Extracts of the sympatric, but fouled solitary ascidian Herdmania momus inhibited only one test bacterium. Scanning electron microscopy confirmed that the tunic surface of P. nigra is largely bacteria-free. Both ascidian extracts significantly inhibited the larval metamorphosis of the bryozoan Bugula neritina at the tested concentration range of 0.05-2 mg ml(-1). Both crude extracts were toxic to larvae of the brine shrimp Artemia salina at natural volumetric whole-tissue concentrations, but only P. nigra showed activity at 2 mg ml(-1) and below (LC50 = 1.11 mg ml(-1)). P. nigra crude extracts also significantly reduced the settlement of barnacles, polychaetes, and algae in Mediterranean field assays and barnacle settlement in Red Sea trials. Comparisons between control experiments and pH values monitored in all experiments indicate that the observed effects were not due to acidity of the organic extracts. Our results show that P. nigra secondary metabolites have antifouling activities, which may act in synergy with previously proposed physiological antifouling mechanisms. PMID:25572211

  12. Temporal stability of bacterial symbionts in a temperate ascidian

    PubMed Central

    López-Legentil, Susanna; Turon, Xavier; Espluga, Roger; Erwin, Patrick M.

    2015-01-01

    In temperate seas, both bacterioplankton communities and invertebrate lifecycles follow a seasonal pattern. To investigate whether the bacterial community associated with the Mediterranean ascidian Didemnum fulgens exhibited similar variations, we monitored its bacterial community structure monthly for over a year using terminal restriction fragment length polymorphism and clone library analyses based on a nearly full length fragment of the 16S rRNA gene. D. fulgens harbored a bacterial consortium typical of ascidians, including numerous members of the phylum Proteobacteria, and a few members of the phyla Cyanobacteria and Acidobacteria. The overall bacterial community in D. fulgens had a distinct signature from the surrounding seawater and was stable over time and across seasonal fluctuations in temperature. Bacterial symbionts were also observed around animal cells in the tunic of adult individuals and in the inner tunic of D. fulgens larvae by transmission electron microscopy. Our results suggest that, as seen for sponges and corals, some species of ascidians host stable and unique bacterial communities that are at least partially inherited by their progeny by vertical transmission. PMID:26441944

  13. Exploiting the extraordinary genetic polymorphism of ciona for developmental genetics with whole genome sequencing.

    PubMed

    Abdul-Wajid, Sarah; Veeman, Michael T; Chiba, Shota; Turner, Thomas L; Smith, William C

    2014-05-01

    Studies in tunicates such as Ciona have revealed new insights into the evolutionary origins of chordate development. Ciona populations are characterized by high levels of natural genetic variation, between 1 and 5%. This variation has provided abundant material for forward genetic studies. In the current study, we make use of deep sequencing and homozygosity mapping to map spontaneous mutations in outbred populations. With this method we have mapped two spontaneous developmental mutants. In Ciona intestinalis we mapped a short-tail mutation with strong phenotypic similarity to a previously identified mutant in the related species Ciona savignyi. Our bioinformatic approach mapped the mutation to a narrow interval containing a single mutated gene, α-laminin3,4,5, which is the gene previously implicated in C. savignyi. In addition, we mapped a novel genetic mutation disrupting neural tube closure in C. savignyi to a T-type Ca(2+) channel gene. The high efficiency and unprecedented mapping resolution of our study is a powerful advantage for developmental genetics in Ciona, and may find application in other outbred species.

  14. Commensal Leucothoidae (Crustacea, Amphipoda) of the Ryukyu Archipelago, Japan. Part I: ascidian-dwellers

    PubMed Central

    White, Kristine N.; Reimer, James Davis

    2012-01-01

    Abstract Commensal leucothoid amphipods have been collected from the branchial chambers of their ascidian hosts throughout the Ryukyu Archipelago, Japan. Seven new species are described in two genera with valuable location data and host records. An identification key to ascidian-dwelling Leucothoidae of the Ryukyu Archipelago is provided. PMID:22303128

  15. New distributional data on ascidian fauna (Tunicata: Ascidiacea) from Mandapam coast, Gulf of Mannar, India

    PubMed Central

    Akram, Soban A; Arshan, Kaleem ML

    2016-01-01

    Abstract Background Ascidians play a key role in the ecology and biodiversity of marine ecosystem. Ascidians can be transported in ship ballast water and while attached to ship and boat hulls. Heavy traffic by domestic and international ships as well as cargo vessels between the major and minor ports warrants continuous monitoring for new introductions of ascidians. The Mandapam coast is situated in the Gulf of Mannar, India, a marine hot spot area in the Indian Ocean which provides an environment suitable for the settlement of ascidians. New information A total of 30 species of ascidians were reported from Mandapam coastal waters, of which 26 species were new to the study area and five species: Ecteinascidia turbinata, Eudistoma carnosum, Trididemnum caelatum, T. vermiforme and Didemnum spadix, were new to India. PMID:27099557

  16. Sensing charges of the Ciona intestinalis voltage-sensing phosphatase

    PubMed Central

    Frezza, Ludivine; Sandtner, Walter

    2013-01-01

    Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing. PMID:24127524

  17. Prochloron-ascidian symbioses: Photosynthetic potential and productivity

    NASA Technical Reports Server (NTRS)

    Lewin, R. A.; Cheng, L.; Alberte, R. S.

    1983-01-01

    The chlorophyll content of didemnid asidians with symbiotic algae (Prochloron) from oligotropic tropical marine waters around Palau, Western Carolin Islands is discussed. Several species contain as much chlorophyll per unit dry weight as many herbaceous crop plants and more than do other symbiotic associations such as lichens, green Hydra, etc. Their chlorphyllA/B ratios (3-9) were generally much lighter than those of angiosperms (2-4). Where they abound, Prochloron - ascidian symbiosis could make a major contribution to the productivity, especially in localized areas of tropical marine waters characterized by low nutrient levels and high irradiance.

  18. Photosymbiotic ascidians from Pari Island (Thousand Islands, Indonesia).

    PubMed

    Hirose, Euichi; Iskandar, Budhi Hascaryo; Wardiatno, Yusli

    2014-01-01

    Photosymbiotic ascidian fauna were surveyed in the subtidal zone off Pari Island in the Thousand Islands (Java Sea, Indonesia). Nine species were recorded: Didemnum molle, Trididemnum miniatum, Lissoclinum patella, L. punctatum, L. timorense, Diplosoma gumavirens, D. simile, D. simileguwa, and D. virens. All of these species have been previously recorded in the Ryukyu Archipelago, Japan. Diplosoma gumavirens and D. simileguwa were originally described from the Ryukyu Archipelago in 2009 and 2005, respectively, and all of the observed species are potentially widely distributed in Indo-West Pacific coral reefs. PMID:25061385

  19. Ascidians as excellent models for studying cellular events in the chordate body plan.

    PubMed

    Ogura, Yosuke; Sasakura, Yasunori

    2013-08-01

    The larvae of non-vertebrate chordate ascidians consist of countable numbers of cells. With this feature, ascidians provide us with excellent models for studying cellular events in the construction of the chordate body. This review discusses the recent observations of morphogenetic movements and cell cycles and divisions along with tissue specifications during ascidian embryogenesis. Unequal cleavages take place at the posterior blastomeres during the early cleavage stages of ascidians, and the structure named the centrosome-attracting body restricts the position of the nuclei near the posterior pole to achieve the unequal cleavages. The most-posterior cells differentiate into the primordial germ cells. The gastrulation of ascidians starts as early as the 110-cell stage. During gastrulation, the endodermal cells show two-step changes in cell shape that are crucial for gastrulation. The ascidian notochord is composed of only 40 cells. The 40 cells align to form a single row by an event named the convergent extension, and then the notochord cells undergo vacuolation to transform the notochord into a single hollowed tube. The strictly restricted number of notochord cells is achieved by the regulated number of cell divisions coupled with the differentiation of the cells conducted by a key transcription factor, Brachyury. The dorsally located neural tube is a characteristic of chordates. During the closure of the ascidian neural tube, the epidermis surrounding the neural plate moves toward the midline to close the neural fold. This morphogenetic movement is allowed by an elongation of interphase in the epidermal cell cycles.

  20. Disinfection of fertilized eggs of the edible ascidian Halocynthia roretzi for prevention of soft tunic syndrome.

    PubMed

    Kumagai, Akira; Tanabe, Toru; Nawata, Akatsuki; Suto, Atsushi

    2016-02-25

    Azumiobodo hoyamushi, the causative agent of soft tunic syndrome, was likely introduced to farming sites of the edible ascidian Halocynthia roretzi via ascidian spat. The source of infection is thought to be cysts of A. hoyamushi that reside in the substrates on which the ascidian spat are attached, but not the spat themselves. Thus, there is a need to develop methods to prevent contamination of the substrates with A. hoyamushi during seed production of the ascidian. We evaluated the protozoacidal effects of sodium hypochlorite and povidone-iodine against the flagellate and temporary cyst forms of A. hoyamushi. Additionally, we evaluated the effects of these disinfectants on the development of fertilized ascidian eggs. The flagellate form of A. hoyamushi was completely inactivated by povidone-iodine (5 ppm, 1 min) and sodium hypochlorite (1 ppm, 1 min). The temporary cysts of A. hoyamushi were completely inactivated by both disinfectants (5 ppm, 1 min). Disinfection with 50 ppm povidone-iodine for 15 min or 5 ppm sodium hypochlorite for 15 min had no effect on ascidian embryogenesis. Thus, horizontal transmission of A. hoyamushi via the substrates can be efficiently prevented by disinfecting ascidian eggs or tools used for spawning with povidone-iodine baths ranging from 5 ppm for 1 min to 50 ppm for 15 min without any side effects. PMID:26912045

  1. Reef Sound as an Orientation Cue for Shoreward Migration by Pueruli of the Rock Lobster, Jasus edwardsii.

    PubMed

    Hinojosa, Ivan A; Green, Bridget S; Gardner, Caleb; Hesse, Jan; Stanley, Jenni A; Jeffs, Andrew G

    2016-01-01

    The post-larval or puerulus stage of spiny, or rock, lobsters (Palinuridae) swim many kilometres from open oceans into coastal waters where they subsequently settle. The orientation cues used by the puerulus for this migration are unclear, but are presumed to be critical to finding a place to settle. Understanding this process may help explain the biological processes of dispersal and settlement, and be useful for developing realistic dispersal models. In this study, we examined the use of reef sound as an orientation cue by the puerulus stage of the southern rock lobster, Jasus edwardsii. Experiments were conducted using in situ binary choice chambers together with replayed recording of underwater reef sound. The experiment was conducted in a sandy lagoon under varying wind conditions. A significant proportion of puerulus (69%) swam towards the reef sound in calm wind conditions. However, in windy conditions (>25 m s-1) the orientation behaviour appeared to be less consistent with the inclusion of these results, reducing the overall proportion of pueruli that swam towards the reef sound (59.3%). These results resolve previous speculation that underwater reef sound is used as an orientation cue in the shoreward migration of the puerulus of spiny lobsters, and suggest that sea surface winds may moderate the ability of migrating pueruli to use this cue to locate coastal reef habitat to settle. Underwater sound may increase the chance of successful settlement and survival of this valuable species.

  2. Metabolic characteristics of muscles in the spiny lobster, Jasus edwardsii, and responses to emersion during simulated live transport.

    PubMed

    Speed, S R; Baldwin, J; Wong, R J; Wells, R M

    2001-03-01

    The metabolic characteristics of five muscle groups in the spiny lobster Jasus edwardsii were examined in order to compare their anaerobic and oxidative capacities. Enzyme activities of phosphorylase, phosphofructokinase, pyruvate kinase, and lactate dehydrogenase were highest in abdominal muscles supporting anaerobic burst activity. Hexokinase, citrate synthase, and HOAD activities in the leg and antennal muscles indicated higher aerobic potential. Arginine kinase activities were high in all muscle groups indicating that muscle phosphagens are an important energy reserve. Arginine phosphate concentrations in 4th periopod and abdominal flexor muscle from lobsters sampled in the field were higher than any values from captive animals, and approximately five times those for ATP. Muscle lactates were high in captive animals. Responses to emersion during simulated live transport appear to exploit the capacity for functional anaerobiosis and further differentiated the muscle groups. Abdominal muscles were especially sensitive and after 24 h showed significant increases in lactate, glucose, ADP, and AMP. ATP levels appeared to be maintained by muscle phosphagens and raised doubts about the efficacy of the adenylate energy charge in evaluating the emersion response. Haemolymph glucose, lactic acid, and ammonia peaked after 24 h emersion and were largely restored following re-immersion. We propose that arginine phosphate concentrations in the 4th periopod are an appropriate index of metabolic stress, and could lead to improved commercial handling protocols.

  3. Reef Sound as an Orientation Cue for Shoreward Migration by Pueruli of the Rock Lobster, Jasus edwardsii

    PubMed Central

    Green, Bridget S.; Gardner, Caleb; Hesse, Jan; Stanley, Jenni A.

    2016-01-01

    The post-larval or puerulus stage of spiny, or rock, lobsters (Palinuridae) swim many kilometres from open oceans into coastal waters where they subsequently settle. The orientation cues used by the puerulus for this migration are unclear, but are presumed to be critical to finding a place to settle. Understanding this process may help explain the biological processes of dispersal and settlement, and be useful for developing realistic dispersal models. In this study, we examined the use of reef sound as an orientation cue by the puerulus stage of the southern rock lobster, Jasus edwardsii. Experiments were conducted using in situ binary choice chambers together with replayed recording of underwater reef sound. The experiment was conducted in a sandy lagoon under varying wind conditions. A significant proportion of puerulus (69%) swam towards the reef sound in calm wind conditions. However, in windy conditions (>25 m s-1) the orientation behaviour appeared to be less consistent with the inclusion of these results, reducing the overall proportion of pueruli that swam towards the reef sound (59.3%). These results resolve previous speculation that underwater reef sound is used as an orientation cue in the shoreward migration of the puerulus of spiny lobsters, and suggest that sea surface winds may moderate the ability of migrating pueruli to use this cue to locate coastal reef habitat to settle. Underwater sound may increase the chance of successful settlement and survival of this valuable species. PMID:27310676

  4. Reef Sound as an Orientation Cue for Shoreward Migration by Pueruli of the Rock Lobster, Jasus edwardsii.

    PubMed

    Hinojosa, Ivan A; Green, Bridget S; Gardner, Caleb; Hesse, Jan; Stanley, Jenni A; Jeffs, Andrew G

    2016-01-01

    The post-larval or puerulus stage of spiny, or rock, lobsters (Palinuridae) swim many kilometres from open oceans into coastal waters where they subsequently settle. The orientation cues used by the puerulus for this migration are unclear, but are presumed to be critical to finding a place to settle. Understanding this process may help explain the biological processes of dispersal and settlement, and be useful for developing realistic dispersal models. In this study, we examined the use of reef sound as an orientation cue by the puerulus stage of the southern rock lobster, Jasus edwardsii. Experiments were conducted using in situ binary choice chambers together with replayed recording of underwater reef sound. The experiment was conducted in a sandy lagoon under varying wind conditions. A significant proportion of puerulus (69%) swam towards the reef sound in calm wind conditions. However, in windy conditions (>25 m s-1) the orientation behaviour appeared to be less consistent with the inclusion of these results, reducing the overall proportion of pueruli that swam towards the reef sound (59.3%). These results resolve previous speculation that underwater reef sound is used as an orientation cue in the shoreward migration of the puerulus of spiny lobsters, and suggest that sea surface winds may moderate the ability of migrating pueruli to use this cue to locate coastal reef habitat to settle. Underwater sound may increase the chance of successful settlement and survival of this valuable species. PMID:27310676

  5. Heterogeneity of spine density in pyramidal neurons of isocortex of mongoose, Herpestes edwardsii (É. Geoffroy Saint-Hilaire 1818).

    PubMed

    Srivastava, U C; Singh, Sippy; Chauhan, Prashant

    2013-08-01

    The characteristics of pyramidal neurons within six layers of Indian gray mongoose (Herpestes edwardsii) isocortex have been investigated using Golgi and Cresyl-Violet methods. Pyramidal neurons and the cytoarchitecture of isocortex of mongoose were photographed with the help of computer aided Nikon eclipse 80i microscope whereas the lucida drawings were made by simple light microscope equipped with camera lucida. The cortical neurons exhibit marked regional differences in phenotype. The differences occur in morphology and distribution of spines within the cortical neurons not only among different species but also within an animal's brain. The present investigation aims at studying the features of pyramidal neurons and to find out the differences if any in distribution of spines in different layers (II-VI) as well as regions (Frontal, Temporal, Parietal, and Occipital) of isocortex of mongoose, which will provide information regarding importance of different layer and region. This piece of work embarks the findings that spine density shows inter-regional as well as interlaminar variations within isocortex of mongoose indicating that pyramidal cells present in varied layer and region are not equally functional and there do exists differences in activity among layers and regions. Among regions, the Temporal region possessing highest spine density contributes more toward functioning of mongoose isocortex and might play significant role in predatory nature of mongoose because this region in mammals is associated with auditory, visual perception, and object recognition. PMID:23733533

  6. Autonomy of ascidian fork head/HNF-3 gene expression.

    PubMed

    Shimauchi, Y; Yasuo, H; Satoh, N

    1997-12-01

    We have characterized the expression pattern of a class I fork head/HNF-3 gene (HrHNF3-1) of the ascidian Halocynthia roretzi. Zygotic HrHNF3-1 expression was detectable as early as the 16-cell stage, and the transcript was evident in blastomeres of the endoderm, notochord and mesenchyme lineages of the early embryos. After the late gastrula stage, HrHNF3-1 was also expressed in the presumptive spinal cord cells and some brain cells. The spinal cord of the ascidian tadpole consists of four layers of cells; the dorsal layer, two lateral layers and the ventral layer, the latter of which simply lies on the notochord. Cross-sections of in situ hybridized specimens showed that HrHNF3-1 was expressed in cells of the ventral layer, reminiscent of the floor plate of vertebrate embryos. In addition, we found autonomy in the initiation of early HrHNF3-1 expression, because the gene was expressed in blastomeres continuously dissociated from the first cleavage until the 16-cell stage.

  7. Bioadhesion in ascidians: a developmental and functional genomics perspective

    PubMed Central

    Pennati, Roberta; Rothbächer, Ute

    2015-01-01

    The development of bioadhesives inspired from marine animals is a promising approach to generate new tissue-compatible medical components. A number of marine species, through their adhesive properties, also represent significant foulers that become increasingly problematic to aquaculture, shipping or local biodiversity. In order to develop more sophisticated man-made glues and/or efficient fouling resistant surfaces, it is important to understand the mechanical, structural and molecular properties of adhesive organs in selected species. Ascidians are marine invertebrates with larvae that opportunistically attach to almost any type of submerged surface to undergo metamorphosis into permanently sessile adults. Not only do they represent a globally important fouling organism, but they are becoming increasingly popular as model organisms for developmental biology. The latter is due to their phylogenetic position as the sister group to the vertebrates and their cellular and molecular accessibility for experimentation. In this paper, we review the mechanisms of larval adhesion in ascidians and draw conclusions from comparative analyses of selected species. We further discuss how knowledge from a developmental and functional genomics point of view can advance our understanding of cellular and molecular signatures and their hierarchical usage in animal adhesive organs. PMID:25657840

  8. The Comparative Organismal Approach in Evolutionary Developmental Biology: Insights from Ascidians and Cavefish.

    PubMed

    Jeffery, William R

    2016-01-01

    Important contributions to evolutionary developmental biology have been made using the comparative organismal approach. As examples, I describe insights obtained from studies of Molgula ascidians and Astyanax cavefish. PMID:26970636

  9. Ascidian depth zonation on sublittoral hard substrates off deer island, New Brunswick, Canada

    NASA Astrophysics Data System (ADS)

    Hatfield, C.; Logan, A.; Thomas, M. L. H.

    1992-02-01

    The upper surfaces of sublittoral hard substrates in the Deer Island region of the Bay of Fundy, New Brunswick, support diverse, depth-zoned epibenthic communities of which ascidians form a minor part. Their population density was quantitatively studied from photo-transects taken between mean low water (MLW) and 30 m depth at four sites off the Deer Island coast and from 30-140 m depth along two photo-transects in Head Harbour Passage. All photo-analyses were aided by collections from transect survey sites, wharf pilings and salmon cage floats, to yield a total of 15 ascidian species encountered. Ascidians were found at all depths at the four shallow sites. Halocynthia pyriformis and Boltenia ovifera are most common at depths of less than 20 m, while Aplidium pallidum, Didemnum albidum and other species exhibit a marked increase in abundance below this depth. Cluster analysis of ascidians shows an association between B. echinata and B. ovifera, which may reflect resource partitioning, and between A. pallidum-D. albidum and Molgula sp.— A. stellatum, the ecological significance of which are as yet unknown. The community in Head Harbour Passage is animal-dominated and in its deeper sections often shows three-dimensional bottom relief from horse mussel shells. D. albidum, the commonest ascidian, shows a close association with Modiolus modiolus, to which it is normally attached, suggesting that mussel beds may minimize the possibility of dislodgement and even confer a feeding advantage on this ascidian.

  10. The challenges of trafficking hydrolysis prone metals and ascidians as an archetype.

    PubMed

    Gaffney, Jean P; Valentine, Ann M

    2011-06-14

    Some of the metal ions that are required, exploited, or simply managed in biological systems are susceptible to hydrolysis and to hydrolytic precipitation in the aqueous, aerobic environment of much of biology. Organisms have evolved exquisite mechanisms for handling these metal ions, offering striking examples of biological control over inorganic coordination chemistry. This year marks the one hundredth anniversary of the discovery of remarkably high vanadium concentrations in the blood cells of the ascidian. In the ensuing years, these marine invertebrates were established as masters of the biological chemistry of very hydrolysis-prone metals, with various ascidian species accumulating high concentrations of iron, vanadium, and titanium, among others. These three metals have very different histories of biological relevance, and many questions remain about how, and ultimately why, these organisms sequester them. This Perspective addresses the aqueous coordination chemistry that organisms like ascidians must control if they are to manipulate hydrolysis-prone metal ions, and describes some of the ascidian biomolecules that have been implicated in this phenomenon. The recently available genome sequence for one ascidian species offers a glimpse into its metal-management arsenal. It offers the opportunity to map the relatively well-studied paradigm of iron management onto the genome of an organism that is intermediate in evolution between invertebrates and vertebrates. The ascidians have much to teach us about how to manage metals like iron, titanium, and vanadium and how that ability evolved.

  11. Predicting transport survival of brindle and red rock lobsters Jasus edwardsii using haemolymph biochemistry and behaviour traits.

    PubMed

    Simon, Cedric J; Mendo, Tania C; Green, Bridget S; Gardner, Caleb

    2016-11-01

    Mortality events during live transport of Jasus edwardsii rock lobsters are common around the time of season openings in Tasmania, with lobsters from deeper fishing areas with pale shell colouration (brindle) being perceived as more susceptible than shallow-water, red-coloured (red) lobsters. The aims of this study were to assess and predict the vulnerability of brindle and red lobsters to extended emersion exposure using pre- and post-emersion data which included 28 haemolymph biochemical parameters and 5 behaviour traits. No effect of lobster shell colour on haemolymph biochemistry, behaviour traits and their vulnerability to emersion was found. A combined survival of 97% after 40h and 57% after 64h in a first experiment, and 37% after 64h in a second experiment, was observed. Behaviour traits (i.e., righting response, tail flips and three reflex behaviours) were poor indicator of survival. Haemolymph parameters were either unaffected by emersion (e.g., Brix index, protein and lipids), affected by emersion but not associated with mortality (e.g., total haemocyte counts, calcium, magnesium, bicarbonate, glucose and uric acid), or associated with mortality following a recovery period (e.g., pH, the sodium to potassium ratio, urea, and the activity of amylase). A build-up of anaerobic end-products and nitrogenous waste most likely resulted in the mortality. A model based on lobster size and the pre-emersion concentration of haemolymph bicarbonate and haemocyanin was found to be a useful indicator of future survival. This study provides promising leads towards the development of a blood based vulnerability test for live crustacean prior transport. PMID:27395444

  12. Contrasting global genetic patterns in two biologically similar, widespread and invasive Ciona species (Tunicata, Ascidiacea)

    PubMed Central

    Bouchemousse, Sarah; Bishop, John D. D.; Viard, Frédérique

    2016-01-01

    Human-mediated dispersal interplays with natural processes and complicates understanding of the biogeographical history of species. This is exemplified by two invasive tunicates, Ciona robusta (formerly Ciona intestinalis type A) and C. intestinalis (formerly Ciona intestinalis type B), globally distributed and sympatric in Europe. By gathering new mitochondrial sequences that were merged with published datasets, we analysed genetic patterns in different regions, with a focus on 1) their sympatric range and 2) allopatric populations in N and S America and southern Europe. In the sympatric range, the two species display contrasting genetic diversity patterns, with low polymorphism in C. robusta supporting the prevalent view of its recent introduction. In the E Pacific, several genetic traits support the non-native status of C. robusta. However, in the NE Pacific, this appraisal requires a complex scenario of introduction and should be further examined supported by extensive sampling efforts in the NW Pacific (putative native range). For C. intestinalis, Bayesian analysis suggested a natural amphi-North Atlantic distribution, casting doubt on its non-native status in the NW Atlantic. This study shows that both natural and human-mediated dispersal have influenced genetic patterns at broad scales; this interaction lessens our ability to confidently ascertain native vs. non-native status of populations, particularly of those species that are globally distributed. PMID:27137892

  13. Sunlight Damage To The Solitary Ascidian Chelyosoma productum

    NASA Astrophysics Data System (ADS)

    Flores, E.

    2004-12-01

    Chelyosoma productum (Stimpson) is a temperate solitary ascidian commonly found in Puget Sound and the San Juan Archipelago, Washington, USA. Adult populations are restricted to deeper subtidal regions or shaded shallow-water habitats, such as docks in shaded marinas. C. productum adults have a thin translucent outer tunic that may provide very little if any protection from solar damage. I hypothesized that sunlight may be setting limits on the distribution of this species. Since adult ascidians are sessile and rely on earlier life stages for their distribution, all life stages of Chelyosoma productum were tested. In this study, I examined the effects of sunlight exposure in embryos, larvae, juveniles and adults of Chelyosoma productum. I isolated the PAR, UVA and UVB portions of the spectrum and exposed all life stages using natural sunlight. I also sampled shallow-water dock habitats to see how adult distributions were related to light exposure. The embryonic development in C. productum was negatively affected by any solar exposure. Most embryos exposed to UV light failed to develop normally and those that did could not subsequently settle. This species produces embryos of different colors; two (purple and brown) were observed in my experiments. Damage from light exposure differed between the color morphs. Overall, the brown morph was more tolerant of light exposure than was the purple morph across all life stages. The only exception to this general pattern was that purple embryos were remarkably resistant to light damage. The distribution of C. productum is restricted to areas with no direct solar exposure. However, even within shaded environments where they were abundant, subpopulations related to the color dimorphism were observed. The significance of the brown and purple pigments in embryos and larvae remains largely unknown. However, adults with brown eggs were found to be more prevalent in edge environments where there was higher light exposure. Purple

  14. Microbial community associated with the colonial ascidian Cystodytes dellechiajei.

    PubMed

    Martínez-García, Manuel; Díaz-Valdés, Marta; Wanner, Gerhard; Ramos-Esplá, Alfonso; Antón, Josefa

    2007-02-01

    The ascidian Cystodytes dellechiajei (Della Valle, 1877) (phylum Chordata, class Ascidiacea, family Polycitoridae) is a colonial tunicate that inhabits benthic rock environments in the Atlantic, Pacific and Indian Oceans, as well as the Mediterranean Sea. Its life cycle has two phases, the adult sessile colony and the free-living larva. Both adult zooids and larvae are surrounded by a protective tunic that contains several eukaryotic cell lines, is composed mainly of acidic mucopolysacharides associated with collagen and elastin-like proteins, and is covered by a thin cuticle. The microbiota associated with the tunic tissues of adult colonies and larva of C. dellechiajei has been examined by optical, confocal and electron microscopy and by fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), and 16S rRNA gene clone library analysis. Microscopy analyses indicated the presence inside the tunic, both for the adult and the larva, of a dense community of Bacteria while only the external surface of colony cuticle was colonized by diatoms, rodophyte algae and prokaryotic-like epiphytes. Transmission electron microscopy showed tunic eukaryotic cells that were engulfing and lysing bacteria. 16S rRNA gene analyses (DGGE and clone libraries) and FISH indicated that the community inside the tunic tissues of the adults and larvae was dominated by Alphaproteobacteria. Bacteria belonging to the phyla Gammaproteobacteria and Bacteroidetes were also detected in the adults. Many of the 16S rRNA gene sequences in the tunic tissues were related to known aerobic anoxygenic phototrophs (AAP), like Roseobacter sp. and Erythrobacter sp. In order to check whether the gene pufM, coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis, was being expressed inside the ascidian tissues, two libraries, one for an adult colony and one for larva, of cDNA from the expressed pufM gene were also constructed. The sequences most

  15. Sexual and asexual reproduction in the colonial ascidian Botryllus schlosseri.

    PubMed

    Gasparini, Fabio; Manni, Lucia; Cima, Francesca; Zaniolo, Giovanna; Burighel, Paolo; Caicci, Federico; Franchi, Nicola; Schiavon, Filippo; Rigon, Francesca; Campagna, Davide; Ballarin, Loriano

    2015-01-01

    The colonial tunicate Botryllus schlosseri is a widespread filter-feeding ascidian that lives in shallow waters and is easily reared in aquaria. Its peculiar blastogenetic cycle, characterized by the presence of three blastogenetic generations (filtering adults, buds, and budlets) and by recurrent generation changes, has resulted in over 60 years of studies aimed at understanding how sexual and asexual reproduction are coordinated and regulated in the colony. The possibility of using different methodological approaches, from classical genetics to cell transplantation, contributed to the development of this species as a valuable model organism for the study of a variety of biological processes. Here, we review the main studies detailing rearing, staging methods, reproduction and colony growth of this species, emphasizing the asymmetry in sexual and asexual reproduction potential, sexual reproduction in the field and the laboratory, and self- and cross-fertilization. These data, opportunely matched with recent tanscriptomic and genomic outcomes, can give a valuable help to the elucidation of some important steps in chordate evolution.

  16. Down under the tunic: bacterial biodiversity hotspots and widespread ammonia-oxidizing archaea in coral reef ascidians.

    PubMed

    Erwin, Patrick M; Pineda, Mari Carmen; Webster, Nicole; Turon, Xavier; López-Legentil, Susanna

    2014-03-01

    Ascidians are ecologically important components of marine ecosystems yet the ascidian microbiota remains largely unexplored beyond a few model species. We used 16S rRNA gene tag pyrosequencing to provide a comprehensive characterization of microbial symbionts in the tunic of 42 Great Barrier Reef ascidian samples representing 25 species. Results revealed high bacterial biodiversity (3 217 unique operational taxonomic units (OTU0.03) from 19 described and 14 candidate phyla) and the widespread occurrence of ammonia-oxidizing Thaumarchaeota in coral reef ascidians (24 of 25 host species). The ascidian microbiota was clearly differentiated from seawater microbial communities and included symbiont lineages shared with other invertebrate hosts as well as unique, ascidian-specific phylotypes. Several rare seawater microbes were markedly enriched (200-700 fold) in the ascidian tunic, suggesting that the rare biosphere of seawater may act as a conduit for horizontal symbiont transfer. However, most OTUs (71%) were rare and specific to single hosts and a significant correlation between host relatedness and symbiont community similarity was detected, indicating a high degree of host-specificity and potential role of vertical transmission in structuring these communities. We hypothesize that the complex ascidian microbiota revealed herein is maintained by the dynamic microenvironments within the ascidian tunic, offering optimal conditions for different metabolic pathways such as ample chemical substrate (ammonia-rich host waste) and physical habitat (high oxygen, low irradiance) for nitrification. Thus, ascidian hosts provide unique and fertile niches for diverse microorganisms and may represent an important and previously unrecognized habitat for nitrite/nitrate regeneration in coral reef ecosystems.

  17. Genetic pathways for differentiation of the peripheral nervous system in ascidians.

    PubMed

    Waki, Kana; Imai, Kaoru S; Satou, Yutaka

    2015-01-01

    Ascidians belong to tunicates, the sister group of vertebrates. Peripheral nervous systems (PNSs) including epidermal sensory neurons (ESNs) in the trunk and dorsal tail regions of ascidian larvae are derived from cells adjacent to the neural plate, as in vertebrates. On the other hand, peripheral ESNs in the ventral tail region are derived from the ventral ectoderm under the control of BMP signalling, reminiscent of sensory neurons of amphioxus and protostomes. In this study, we show that two distinct mechanisms activate a common gene circuit consisting of Msx, Ascl.b, Tox, Delta.b and Pou4 in the dorsal and ventral regions to differentiate ESNs. Our results suggest that ventral ESNs of the ascidian larva are not directly homologous to vertebrate PNSs. The dorsal ESNs might have arisen via co-option of the original PNS gene circuit to the neural plate border in an ancestral chordate. PMID:26515371

  18. The Mediterranean non-indigenous ascidian Polyandrocarpa zorritensis: Microbiological accumulation capability and environmental implications.

    PubMed

    Stabili, Loredana; Licciano, Margherita; Longo, Caterina; Lezzi, Marco; Giangrande, Adriana

    2015-12-15

    We investigated the bacterial accumulation and digestion capability of Polyandrocarpa zorritensis, a non-indigenous colonial ascidian originally described in Peru and later found in the Mediterranean. Microbiological analyses were carried out on homogenates from "unstarved" and "starved" ascidians and seawater from the same sampling site (Adriatic Sea, Italy). Culturable heterotrophic bacteria (22 °C), total culturable bacteria (37 °C) and vibrios abundances were determined on Marine Agar 2216, Plate Count Agar and TCBS Agar, respectively. Microbial pollution indicators were measured by the most probable number method. All the examined microbiological groups were accumulated by ascidians but differently digested. An interesting outcome is the capability of P. zorritensis to digest allochthonous microorganisms such as coliforms as well as culturable bacteria at 37 °C, counteracting the effects of microbial pollution. Thus, the potential exploitation of these filter feeders to restore polluted seawater should be taken into consideration in the management of this alien species. PMID:26561443

  19. Ascidians as excellent chordate models for studying the development of the nervous system during embryogenesis and metamorphosis.

    PubMed

    Sasakura, Yasunori; Mita, Kaoru; Ogura, Yosuke; Horie, Takeo

    2012-04-01

    The swimming larvae of the chordate ascidians possess a dorsal hollowed central nervous system (CNS), which is homologous to that of vertebrates. Despite the homology, the ascidian CNS consists of a countable number of cells. The simple nervous system of ascidians provides an excellent experimental system to study the developmental mechanisms of the chordate nervous system. The neural fate of the cells consisting of the ascidian CNS is determined in both autonomous and non-autonomous fashion during the cleavage stage. The ascidian neural plate performs the morphogenetic movement of neural tube closure that resembles that in vertebrate neural tube formation. Following neurulation, the CNS is separated into five distinct regions, whose homology with the regions of vertebrate CNS has been discussed. Following their larval stage, ascidians undergo a metamorphosis and become sessile adults. The metamorphosis is completed quickly, and therefore the metamorphosis of ascidians is a good experimental system to observe the reorganization of the CNS during metamorphosis. A recent study has shown that the major parts of the larval CNS remain after the metamorphosis to form the adult CNS. In contrast to such a conserved manner of CNS reorganization, most larval neurons disappear during metamorphosis. The larval glial cells in the CNS are the major source for the formation of the adult CNS, and some of the glial cells produce adult neurons.

  20. Dissection of a Ciona regulatory element reveals complexity of cross-species enhancer activity.

    PubMed

    Chen, Wei-Chung; Pauls, Stefan; Bacha, Jamil; Elgar, Greg; Loose, Matthew; Shimeld, Sebastian M

    2014-06-15

    Vertebrate genomes share numerous conserved non-coding elements, many of which function as enhancer elements and are hypothesised to be under evolutionary constraint due to a need to be bound by combinations of sequence-specific transcription factors. In contrast, few such conserved elements can be detected between vertebrates and their closest invertebrate relatives. Despite this lack of sequence identity, cross-species transgenesis has identified some cases where non-coding DNA from invertebrates drives reporter gene expression in transgenic vertebrates in patterns reminiscent of the expression of vertebrate orthologues. Such instances are presumed to reflect the presence of conserved suites of binding sites in the regulatory regions of invertebrate and vertebrate orthologues, such that both regulatory elements can correctly interpret the trans-activating environment. Shuffling of binding sites has been suggested to lie behind loss of sequence conservation; however this has not been experimentally tested. Here we examine the underlying basis of enhancer activity for the Ciona intestinalis βγ-crystallin gene, which drives expression in the lens of transgenic vertebrates despite the Ciona lineage predating the evolution of the lens. We construct an interactive gene regulatory network (GRN) for vertebrate lens development, allowing network interactions to be robustly catalogued and conserved network components and features to be identified. We show that a small number of binding motifs are necessary for Ciona βγ-crystallin expression, and narrow down the likely factors that bind to these motifs. Several of these overlap with the conserved core of the vertebrate lens GRN, implicating these sites in cross species function. However when we test these motifs in a transgenic vertebrate they prove to be dispensable for reporter expression in the lens. These results show that current models depicting cross species enhancer function as dependent on conserved binding

  1. Ascidian (Chordata-Tunicata) glycosaminoglycans: extraction, purification, biochemical, and spectroscopic analysis.

    PubMed

    Pavão, Mauro S G

    2015-01-01

    Sulfated polysaccharides with unique structures of the chondroitin/dermatan and heparin/heparan families of sulfated glycosaminoglycans have been described in several species of ascidians (Chordata-Tunicata). These unique sulfated glycans have been isolated from-ascidians and characterized by biochemical and spectroscopic methods. The ascidian glycans can be extracted by different tissues or cells by proteolytic digestion followed by cetylpyridinium chloride/ethanol precipitation. The total glycans are then fractionated by ion-exchange chromatography on DEAE-cellulose and/or Mono Q (HR 5/5) columns. Alternatively, precipitation with different ethanol concentrations can be employed. An initial analysis of the purified ascidian glycans is carried out by agarose gel electrophoresis on diaminopropane/acetate buffer, before or after digestion with specific glycosaminoglycan lyases or deaminative cleavage with nitrous acid. The disaccharides formed by exhaustive degradation of the glycans is purified by gel-filtration chromatography on a Superdex-peptide column and analyzed by HPLC on a strong ion exchange Sax-Spherisorb column. 1H or 13C nuclear magnetic resonance spectroscopy in one or two dimensions is used to confirm the structure of the intact glycans.

  2. Natural Products from Antarctic Colonial Ascidians of the Genera Aplidium and Synoicum: Variability and Defensive Role

    PubMed Central

    Núñez-Pons, Laura; Carbone, Marianna; Vázquez, Jennifer; Rodríguez, Jaime; Nieto, Rosa María; Varela, María Mercedes; Gavagnin, Margherita; Avila, Conxita

    2012-01-01

    Ascidians have developed multiple defensive strategies mostly related to physical, nutritional or chemical properties of the tunic. One of such is chemical defense based on secondary metabolites. We analyzed a series of colonial Antarctic ascidians from deep-water collections belonging to the genera Aplidium and Synoicum to evaluate the incidence of organic deterrents and their variability. The ether fractions from 15 samples including specimens of the species A. falklandicum, A. fuegiense, A. meridianum, A. millari and S. adareanum were subjected to feeding assays towards two relevant sympatric predators: the starfish Odontaster validus, and the amphipod Cheirimedon femoratus. All samples revealed repellency. Nonetheless, some colonies concentrated defensive chemicals in internal body-regions rather than in the tunic. Four ascidian-derived meroterpenoids, rossinones B and the three derivatives 2,3-epoxy-rossinone B, 3-epi-rossinone B, 5,6-epoxy-rossinone B, and the indole alkaloids meridianins A–G, along with other minoritary meridianin compounds were isolated from several samples. Some purified metabolites were tested in feeding assays exhibiting potent unpalatabilities, thus revealing their role in predation avoidance. Ascidian extracts and purified compound-fractions were further assessed in antibacterial tests against a marine Antarctic bacterium. Only the meridianins showed inhibition activity, demonstrating a multifunctional defensive role. According to their occurrence in nature and within our colonial specimens, the possible origin of both types of metabolites is discussed. PMID:23015772

  3. Microenvironment and phylogenetic diversity of Prochloron inhabiting the surface of crustose didemnid ascidians.

    PubMed

    Nielsen, Daniel A; Pernice, Mathieu; Schliep, Martin; Sablok, Gaurav; Jeffries, Thomas C; Kühl, Michael; Wangpraseurt, Daniel; Ralph, Peter J; Larkum, Anthony W D

    2015-10-01

    The cyanobacterium Prochloron didemni is primarily found in symbiotic relationships with various marine hosts such as ascidians and sponges. Prochloron remains to be successfully cultivated outside of its host, which reflects a lack of knowledge of its unique ecophysiological requirements. We investigated the microenvironment and diversity of Prochloron inhabiting the upper, exposed surface of didemnid ascidians, providing the first insights into this microhabitat. The pH and O2 concentration in this Prochloron biofilm changes dynamically with irradiance, where photosynthetic activity measurements showed low light adaptation (Ek ∼ 80 ± 7 μmol photons m(-2) s(-1)) but high light tolerance. Surface Prochloron cells exhibited a different fine structure to Prochloron cells from cloacal cavities in other ascidians, the principle difference being a central area of many vacuoles dissected by single thylakoids in the surface Prochloron. Cyanobacterial 16S rDNA pyro-sequencing of the biofilm community on four ascidians resulted in 433 operational taxonomic units (OTUs) where on average -85% (65-99%) of all sequence reads, represented by 136 OTUs, were identified as Prochloron via blast search. All of the major Prochloron-OTUs clustered into independent, highly supported phylotypes separate from sequences reported for internal Prochloron, suggesting a hitherto unexplored genetic variability among Prochloron colonizing the outer surface of didemnids. PMID:26176189

  4. THE EFFECT OF EXPOSURE PERIOD AND TEMPERATURE ON THE PHOTOSENSORY PROCESS IN CIONA.

    PubMed

    Hecht, S

    1926-01-01

    1. Experiments are presented which show that the latent period in the photosensory response of Ciona is inversely proportional to the duration of the exposure period to light. From this it is found that the velocity of the chemical reaction which determines the latent period is directly proportional to the concentration of photochemical products formed during the exposure period. This is interpreted as showing that the two processes form a coupled photochemical reaction, of which the secondary reaction proceeds only in the presence of products from the primary reaction. This coupling may be a catalysis or a direct chemical relation. 2. Further experiments show that the relation between temperature and the latent period is accurately described by the Arrhenius equation in which micro = 16,200. The precise numerical value of micro tentatively identifies the latent period process as an oxidation reaction which is catalyzed by iron. 3. The photocatalytic properties of certain iron compounds are used as a model for the coupled photochemical reaction suggested for the photosensory mechanism of Ciona and Mya.

  5. Matrix adhesion polarizes heart progenitor induction in the invertebrate chordate Ciona intestinalis.

    PubMed

    Norton, Jennifer; Cooley, James; Islam, A F M Tariqul; Cota, Christina D; Davidson, Brad

    2013-03-01

    Cell-matrix adhesion strongly influences developmental signaling. Resulting impacts on cell migration and tissue morphogenesis are well characterized. However, the in vivo impact of adhesion on fate induction remains ambiguous. Here, we employ the invertebrate chordate Ciona intestinalis to delineate an essential in vivo role for matrix adhesion in heart progenitor induction. In Ciona pre-cardiac founder cells, invasion of the underlying epidermis promotes localized induction of the heart progenitor lineage. We found that these epidermal invasions are associated with matrix adhesion along the pre-cardiac cell/epidermal boundary. Through targeted manipulations of RAP GTPase activity, we were able to manipulate pre-cardiac cell-matrix adhesion. Targeted disruption of pre-cardiac cell-matrix adhesion blocked heart progenitor induction. Conversely, increased matrix adhesion generated expanded induction. We were also able to selectively restore cell-matrix adhesion and heart progenitor induction through targeted expression of Ci-Integrin β2. These results indicate that matrix adhesion functions as a necessary and sufficient extrinsic cue for regional heart progenitor induction. Furthermore, time-lapse imaging suggests that cytokinesis acts as an intrinsic temporal regulator of heart progenitor adhesion and induction. Our findings highlight a potentially conserved role for matrix adhesion in early steps of vertebrate heart progenitor specification.

  6. Immune competence of the Ciona intestinalis pharynx: complement system-mediated activity.

    PubMed

    Giacomelli, Stefano; Melillo, Daniela; Lambris, John D; Pinto, Maria Rosaria

    2012-10-01

    In the tunicate Ciona intestinalis, the ciliated pharynx, which connects the external environment to a highly developed and compartmentalized gastrointestinal system, represents the natural portal of entry for a vast and diverse, potentially pathogenic microbial community. To address the role of the pharynx in immune surveillance in Ciona, we asked whether C3, the key component of the complement system, was expressed in this organ and whether the encoded protein was functionally active. We found by real-time PCR that C3, constitutively expressed in the pharynx, is up-regulated by LPS injection. Using two specific anti-CiC3 and anti-CiC3a polyclonal antibodies in immunohistochemical staining of pharynx sections, we found that the gene product was localized to hemocytes of the pharyngeal bars (identified as granular amoebocytes) and in stigmata ciliated cells. Use of the same antibodies in Western blot analysis indicated that CiC3 and its activation products CiC3b and CiC3a are present in pharynx homogenates. Our observation that the amount of the bioactive fragment CiC3a increased in the pharynx of LPS-treated animals provides the first molecular and functional evidence for complement-mediated immunological activity in the tunicate pharynx.

  7. Seismic air gun exposure during early-stage embryonic development does not negatively affect spiny lobster Jasus edwardsii larvae (Decapoda:Palinuridae)

    PubMed Central

    Day, Ryan D.; McCauley, Robert D.; Fitzgibbon, Quinn P.; Semmens, Jayson M.

    2016-01-01

    Marine seismic surveys are used to explore for sub-seafloor oil and gas deposits. These surveys are conducted using air guns, which release compressed air to create intense sound impulses, which are repeated around every 8–12 seconds and can travel large distances in the water column. Considering the ubiquitous worldwide distribution of seismic surveys, the potential impact of exposure on marine invertebrates is poorly understood. In this study, egg-bearing female spiny lobsters (Jasus edwardsii) were exposed to signals from three air gun configurations, all of which exceeded sound exposure levels (SEL) of 185 dB re 1 μPa2·s. Lobsters were maintained until their eggs hatched and the larvae were then counted for fecundity, assessed for abnormal morphology using measurements of larval length and width, tested for larval competency using an established activity test and measured for energy content. Overall there were no differences in the quantity or quality of hatched larvae, indicating that the condition and development of spiny lobster embryos were not adversely affected by air gun exposure. These results suggest that embryonic spiny lobster are resilient to air gun signals and highlight the caution necessary in extrapolating results from the laboratory to real world scenarios or across life history stages. PMID:26947006

  8. Seismic air gun exposure during early-stage embryonic development does not negatively affect spiny lobster Jasus edwardsii larvae (Decapoda: Palinuridae).

    PubMed

    Day, Ryan D; McCauley, Robert D; Fitzgibbon, Quinn P; Semmens, Jayson M

    2016-03-07

    Marine seismic surveys are used to explore for sub-seafloor oil and gas deposits. These surveys are conducted using air guns, which release compressed air to create intense sound impulses, which are repeated around every 8-12 seconds and can travel large distances in the water column. Considering the ubiquitous worldwide distribution of seismic surveys, the potential impact of exposure on marine invertebrates is poorly understood. In this study, egg-bearing female spiny lobsters (Jasus edwardsii) were exposed to signals from three air gun configurations, all of which exceeded sound exposure levels (SEL) of 185 dB re 1 μPa(2) · s. Lobsters were maintained until their eggs hatched and the larvae were then counted for fecundity, assessed for abnormal morphology using measurements of larval length and width, tested for larval competency using an established activity test and measured for energy content. Overall there were no differences in the quantity or quality of hatched larvae, indicating that the condition and development of spiny lobster embryos were not adversely affected by air gun exposure. These results suggest that embryonic spiny lobster are resilient to air gun signals and highlight the caution necessary in extrapolating results from the laboratory to real world scenarios or across life history stages.

  9. Identification and characterization of androgenic gland specific insulin-like peptide-encoding transcripts in two spiny lobster species: Sagmariasus verreauxi and Jasus edwardsii.

    PubMed

    Ventura, Tomer; Fitzgibbon, Quinn; Battaglene, Stephen; Sagi, Amir; Elizur, Abigail

    2015-04-01

    In this study we describe, for the first time in spiny lobsters, the androgenic gland and its putative hormone. The androgenic gland in crustaceans is the key regulator of crustacean masculinity. The transcript encoding the insulin-like androgenic gland specific factor has recently been identified and characterized in a number of decapod crustacean species including commercially important crabs, crayfish, prawns and shrimps. This insulin-like factor has proven to be the androgenic gland masculinizing hormone, and is absent in females. While the androgenic gland and its putative hormone have been identified in all other commercially valuable groups, none had been identified in lobsters. We identified and characterized the androgenic glands of two spiny lobster species (Sagmariasus verreauxi and Jasus edwardsii) and conducted a transcriptomic analysis of the S. verreauxi androgenic gland. Bioinformatics analysis led to the discovery and characterization of the insulin-like androgenic gland specific factors in both species studied. Changes in androgenic gland cell size and quantity between sub-adult and sexually mature males were evident. The transcriptomic database established for the S. verreauxi androgenic gland might enable to elucidate the mechanisms through which the insulin-like factor is secreted, transported to the target cells and how it triggers the physiological effects of sexual differentiation towards maleness and maintenance of the male gonad.

  10. Identification and characterization of androgenic gland specific insulin-like peptide-encoding transcripts in two spiny lobster species: Sagmariasus verreauxi and Jasus edwardsii.

    PubMed

    Ventura, Tomer; Fitzgibbon, Quinn; Battaglene, Stephen; Sagi, Amir; Elizur, Abigail

    2015-04-01

    In this study we describe, for the first time in spiny lobsters, the androgenic gland and its putative hormone. The androgenic gland in crustaceans is the key regulator of crustacean masculinity. The transcript encoding the insulin-like androgenic gland specific factor has recently been identified and characterized in a number of decapod crustacean species including commercially important crabs, crayfish, prawns and shrimps. This insulin-like factor has proven to be the androgenic gland masculinizing hormone, and is absent in females. While the androgenic gland and its putative hormone have been identified in all other commercially valuable groups, none had been identified in lobsters. We identified and characterized the androgenic glands of two spiny lobster species (Sagmariasus verreauxi and Jasus edwardsii) and conducted a transcriptomic analysis of the S. verreauxi androgenic gland. Bioinformatics analysis led to the discovery and characterization of the insulin-like androgenic gland specific factors in both species studied. Changes in androgenic gland cell size and quantity between sub-adult and sexually mature males were evident. The transcriptomic database established for the S. verreauxi androgenic gland might enable to elucidate the mechanisms through which the insulin-like factor is secreted, transported to the target cells and how it triggers the physiological effects of sexual differentiation towards maleness and maintenance of the male gonad. PMID:24997416

  11. Seismic air gun exposure during early-stage embryonic development does not negatively affect spiny lobster Jasus edwardsii larvae (Decapoda: Palinuridae).

    PubMed

    Day, Ryan D; McCauley, Robert D; Fitzgibbon, Quinn P; Semmens, Jayson M

    2016-01-01

    Marine seismic surveys are used to explore for sub-seafloor oil and gas deposits. These surveys are conducted using air guns, which release compressed air to create intense sound impulses, which are repeated around every 8-12 seconds and can travel large distances in the water column. Considering the ubiquitous worldwide distribution of seismic surveys, the potential impact of exposure on marine invertebrates is poorly understood. In this study, egg-bearing female spiny lobsters (Jasus edwardsii) were exposed to signals from three air gun configurations, all of which exceeded sound exposure levels (SEL) of 185 dB re 1 μPa(2) · s. Lobsters were maintained until their eggs hatched and the larvae were then counted for fecundity, assessed for abnormal morphology using measurements of larval length and width, tested for larval competency using an established activity test and measured for energy content. Overall there were no differences in the quantity or quality of hatched larvae, indicating that the condition and development of spiny lobster embryos were not adversely affected by air gun exposure. These results suggest that embryonic spiny lobster are resilient to air gun signals and highlight the caution necessary in extrapolating results from the laboratory to real world scenarios or across life history stages. PMID:26947006

  12. Dynamics of cell polarity in tissue morphogenesis: a comparative view from Drosophila and Ciona.

    PubMed

    Veeman, Michael T; McDonald, Jocelyn A

    2016-01-01

    Tissues in developing embryos exhibit complex and dynamic rearrangements that shape forming organs, limbs, and body axes. Directed migration, mediolateral intercalation, lumen formation, and other rearrangements influence the topology and topography of developing tissues. These collective cell behaviors are distinct phenomena but all involve the fine-grained control of cell polarity. Here we review recent findings in the dynamics of polarized cell behavior in both the Drosophila ovarian border cells and the Ciona notochord. These studies reveal the remarkable reorganization of cell polarity during organ formation and underscore conserved mechanisms of developmental cell polarity including the Par/atypical protein kinase C (aPKC) and planar cell polarity pathways. These two very different model systems demonstrate important commonalities but also key differences in how cell polarity is controlled in tissue morphogenesis. Together, these systems raise important, broader questions on how the developmental control of cell polarity contributes to morphogenesis of diverse tissues across the metazoa.

  13. Dynamics of cell polarity in tissue morphogenesis: a comparative view from Drosophila and Ciona

    PubMed Central

    Veeman, Michael T.; McDonald, Jocelyn A.

    2016-01-01

    Tissues in developing embryos exhibit complex and dynamic rearrangements that shape forming organs, limbs, and body axes. Directed migration, mediolateral intercalation, lumen formation, and other rearrangements influence the topology and topography of developing tissues. These collective cell behaviors are distinct phenomena but all involve the fine-grained control of cell polarity. Here we review recent findings in the dynamics of polarized cell behavior in both the Drosophila ovarian border cells and the Ciona notochord. These studies reveal the remarkable reorganization of cell polarity during organ formation and underscore conserved mechanisms of developmental cell polarity including the Par/atypical protein kinase C (aPKC) and planar cell polarity pathways. These two very different model systems demonstrate important commonalities but also key differences in how cell polarity is controlled in tissue morphogenesis. Together, these systems raise important, broader questions on how the developmental control of cell polarity contributes to morphogenesis of diverse tissues across the metazoa. PMID:27303647

  14. A saturation screen for cis-acting regulatory DNA in the Hox genes of Ciona intestinalis

    SciTech Connect

    Keys, David N.; Lee, Byung-in; Di Gregorio, Anna; Harafuji, Naoe; Detter, Chris; Wang, Mei; Kahsai, Orsalem; Ahn, Sylvia; Arellano, Andre; Zhang, Quin; Trong, Stephan; Doyle, Sharon A.; Satoh, Noriyuki; Satou, Yutaka; Saiga, Hidetoshi; Christian, Allen; Rokhsar, Dan; Hawkins, Trevor L.; Levine, Mike; Richardson, Paul

    2005-01-05

    A screen for the systematic identification of cis-regulatory elements within large (>100 kb) genomic domains containing Hox genes was performed by using the basal chordate Ciona intestinalis. Randomly generated DNA fragments from bacterial artificial chromosomes containing two clusters of Hox genes were inserted into a vector upstream of a minimal promoter and lacZ reporter gene. A total of 222 resultant fusion genes were separately electroporated into fertilized eggs, and their regulatory activities were monitored in larvae. In sum, 21 separable cis-regulatory elements were found. These include eight Hox linked domains that drive expression in nested anterior-posterior domains of ectodermally derived tissues. In addition to vertebrate-like CNS regulation, the discovery of cis-regulatory domains that drive epidermal transcription suggests that C. intestinalis has arthropod-like Hox patterning in the epidermis.

  15. Optimization of a method for chromatin immunoprecipitation assays in the marine invertebrate chordate Ciona

    PubMed Central

    Aihara, Hitoshi; Katikala, Lavanya; Zeller, Robert W.; Di Gregorio, Anna; Nibu, Yutaka

    2013-01-01

    Chromatin immunoprecipitation (ChIP) assays allow the efficient characterization of the in vivo occupancy of genomic regions by DNA-binding proteins, and thus facilitate the prediction of cis-regulatory sequences in silico and guide their validation in vivo. For these reasons, these assays and their permutations (e.g., ChIP-on-chip, ChIP-Sequencing) are currently being extended to several non-mainstream model organisms, as the availability of specific antibodies increases. Here we describe the development of a polyclonal antibody against the Brachyury protein of the marine invertebrate chordate Ciona intestinalis and provide a detailed ChIP protocol that should be easily adaptable to other marine organisms. PMID:23592257

  16. Distribution and Localised Effects of the Invasive Ascidian Didemnum perlucidum (Monniot 1983) in an Urban Estuary.

    PubMed

    Simpson, Tiffany Schenk; Wernberg, Thomas; McDonald, Justin I

    2016-01-01

    Didemnid ascidians are notorious marine invaders, fouling infrastructure in many ecosystems globally. However, there have been few reports of direct interactions with native species in their natural environment. The invasive colonial ascidian Didemnum perlucidum was discovered in the Swan River estuary (Western Australia) growing on the native seagrass Halophila ovalis. Given the known effects of other related Didemnum species it was expected that D. perlucidum could adversely affect the seagrass, with possible flow on effects to the rest of the ecosystem. This study aimed to document the distribution and abundance of D. perlucidum in the estuary, and to determine whether this species had a negative impact on H. ovalis or associated flora and fauna. D. perlucidum was largely present near areas of infrastructure, particularly mooring buoys, suggesting these were the source of D. perlucidum recruits on the seagrasses. It showed a clear seasonal pattern in abundance, with highly variable cover and colony size. D. perlucidum had a measurable effect on H. ovalis, with colonies enveloping all plant tissue, likely restricting the photosynthetic ability of individual leaves and total plant biomass. There were also significantly less seagrass-associated mud snails (Batillaria australis) where D. perlucidum cover was high. These results demonstrate the ability of invasive ascidians to colonise and affect native seagrasses and associated biota. Seagrasses are pivotal to the ecological function of many urban estuaries world-wide. Biodiversity in these systems is already vulnerable to multiple stressors from human activities but the potential stress of fouling ascidians may pose an additional and increasing threat in the future. PMID:27144600

  17. Prunolides A, B, and C: Novel Tetraphenolic Bis-Spiroketals from the Australian Ascidian Synoicum prunum.

    PubMed

    Carroll, Anthony R.; Healy, Peter C.; Quinn, Ronald J.; Tranter, Carolyn J.

    1999-04-16

    Three novel tetraphenolic bis-spiroketals, prunolides A-C (1, 3, and 4) have been isolated from the Australian ascidian Synoicum prunum. The structures were determined from NMR spectroscopic data and from an X-ray analysis of prunolide A. The prunolides contain a unique 1,6,8-trioxadispiro[4.1.4.2]trideca-3,10,12-triene-2,9-dione carbon skeleton. The known compound rubrolide A (5) was also isolated.

  18. Distribution and Localised Effects of the Invasive Ascidian Didemnum perlucidum (Monniot 1983) in an Urban Estuary.

    PubMed

    Simpson, Tiffany Schenk; Wernberg, Thomas; McDonald, Justin I

    2016-01-01

    Didemnid ascidians are notorious marine invaders, fouling infrastructure in many ecosystems globally. However, there have been few reports of direct interactions with native species in their natural environment. The invasive colonial ascidian Didemnum perlucidum was discovered in the Swan River estuary (Western Australia) growing on the native seagrass Halophila ovalis. Given the known effects of other related Didemnum species it was expected that D. perlucidum could adversely affect the seagrass, with possible flow on effects to the rest of the ecosystem. This study aimed to document the distribution and abundance of D. perlucidum in the estuary, and to determine whether this species had a negative impact on H. ovalis or associated flora and fauna. D. perlucidum was largely present near areas of infrastructure, particularly mooring buoys, suggesting these were the source of D. perlucidum recruits on the seagrasses. It showed a clear seasonal pattern in abundance, with highly variable cover and colony size. D. perlucidum had a measurable effect on H. ovalis, with colonies enveloping all plant tissue, likely restricting the photosynthetic ability of individual leaves and total plant biomass. There were also significantly less seagrass-associated mud snails (Batillaria australis) where D. perlucidum cover was high. These results demonstrate the ability of invasive ascidians to colonise and affect native seagrasses and associated biota. Seagrasses are pivotal to the ecological function of many urban estuaries world-wide. Biodiversity in these systems is already vulnerable to multiple stressors from human activities but the potential stress of fouling ascidians may pose an additional and increasing threat in the future.

  19. When shape matters: strategies of different Antarctic ascidians morphotypes to deal with sedimentation.

    PubMed

    Torre, Luciana; Abele, Doris; Lagger, Cristian; Momo, Fernando; Sahade, Ricardo

    2014-08-01

    Climate change leads to increased melting of tidewater glaciers in the Western Antarctic Peninsula region and sediment bearing glacial melt waters negatively affects filter feeding species as solitary ascidians. In previous work the erect-forms Molgula pedunculata and Cnemidocarpa verrucosa (Order Stolidobranchiata) appeared more sensitive than the flat form Ascidia challengeri (Order Phlebobranchiata). Sedimentation exposure is expected to induce up-regulation of anaerobic metabolism by obstructing the organs of gas exchange (environmental hypoxia) or causes enhanced squirting activity (functional hypoxia). In this study we evaluated the possible relationship between ascidian morphotype and their physiological response to sedimentation. Together with some behavioural observations, we analysed the response of anaerobic metabolic parameters (lactate formation and glycogen consumption) in different tissues of three Antarctic ascidians, exposed to high sediment concentrations (200 mgL(-1)). The results were compared to experimental hypoxia (10% pO2) and exercise (induced muscular contraction) effects, in order to discriminate the effect of sediment on each species and morpho-type (erect vs. flat forms). Our results suggest that the styled (erect) C. verrucosa increases muscular squirting activity in order to expulse excessive material, while the flat-form A. challengeri reacts more passively by down-regulating its aerobic metabolism under sediment exposure. Contrary, the erect ascidian M. pedunculata did not show any measurable response to the treatments, indicating that filtration and ingestion activities were not reduced or altered even under high sedimentation (low energetic material) which could be disadvantageous on the long-term and could explain why M. pedunculata densities decline in the study area.

  20. Distribution and Localised Effects of the Invasive Ascidian Didemnum perlucidum (Monniot 1983) in an Urban Estuary

    PubMed Central

    Wernberg, Thomas; McDonald, Justin I.

    2016-01-01

    Didemnid ascidians are notorious marine invaders, fouling infrastructure in many ecosystems globally. However, there have been few reports of direct interactions with native species in their natural environment. The invasive colonial ascidian Didemnum perlucidum was discovered in the Swan River estuary (Western Australia) growing on the native seagrass Halophila ovalis. Given the known effects of other related Didemnum species it was expected that D. perlucidum could adversely affect the seagrass, with possible flow on effects to the rest of the ecosystem. This study aimed to document the distribution and abundance of D. perlucidum in the estuary, and to determine whether this species had a negative impact on H. ovalis or associated flora and fauna. D. perlucidum was largely present near areas of infrastructure, particularly mooring buoys, suggesting these were the source of D. perlucidum recruits on the seagrasses. It showed a clear seasonal pattern in abundance, with highly variable cover and colony size. D. perlucidum had a measurable effect on H. ovalis, with colonies enveloping all plant tissue, likely restricting the photosynthetic ability of individual leaves and total plant biomass. There were also significantly less seagrass-associated mud snails (Batillaria australis) where D. perlucidum cover was high. These results demonstrate the ability of invasive ascidians to colonise and affect native seagrasses and associated biota. Seagrasses are pivotal to the ecological function of many urban estuaries world-wide. Biodiversity in these systems is already vulnerable to multiple stressors from human activities but the potential stress of fouling ascidians may pose an additional and increasing threat in the future. PMID:27144600

  1. Passive flow through an unstalked intertidal ascidian: orientation and morphology enhance suspension feeding in Pyura stolonifera.

    PubMed

    Knott, N A; Davis, A R; Buttemer, W A

    2004-12-01

    Passive flow is believed to increase the gains and reduce the costs of active suspension feeding. We used a mixture of field and laboratory experiments to evaluate whether the unstalked intertidal ascidian Pyura stolonifera exploits passive flow. We predicted that its orientation to prevailing currents and the arrangement of its siphons would induce passive flow due to dynamic pressure at the inhalant siphon, as well as by the Bernoulli effect or viscous entrainment associated with different fluid velocities at each siphon, or by both mechanisms. The orientation of P. stolonifera at several locations along the Sydney-Illawarra coast (Australia) covering a wide range of wave exposures was nonrandom and revealed that the ascidians were consistently oriented with their inhalant siphons directed into the waves or backwash. Flume experiments using wax models demonstrated that the arrangement of the siphons could induce passive flow and that passive flow was greatest when the inhalant siphon was oriented into the flow. Field experiments using transplanted animals confirmed that such an orientation resulted in ascidians gaining food at greater rates, as measured by fecal production, than when oriented perpendicular to the wave direction. We conclude that P. stolonifera enhances suspension feeding by inducing passive flow and is, therefore, a facultatively active suspension feeder. Furthermore, we argue that it is likely that many other active suspension feeders utilize passive flow and, therefore, measurements of their clearance rates should be made under appropriate conditions of flow to gain ecologically relevant results. PMID:15616352

  2. PSP toxins profile in ascidian Microcosmus vulgaris (Heller, 1877) after human poisoning in Croatia (Adriatic Sea).

    PubMed

    Roje-Busatto, Romana; Ujević, Ivana

    2014-03-01

    Toxins known to cause Paralytic Shellfish Poisoning (PSP) syndrome in humans that can have serious economic consequences for aquaculture were determined in ascidians of the genus Microcosmus. Significant concentrations of toxins were confirmed in all tested samples collected from the western coast of Istria Peninsula (Adriatic Sea, Croatia) when six people were poisoned following the consumption of fresh ascidians. Several species of bivalves that were under continuous monitoring had not accumulated PSP toxins although they were exposed to the same environmental conditions over the survey period. In the present study, HPLC-FLD with pre-column oxidation of PSP toxins has been carried out to provide evidence for the first human intoxication due to consumption of PSP toxic ascidians (Microcosmus vulgaris, Heller, 1877) harvested from the Adriatic Sea. Qualitative analysis established the presence of six PSP toxins: saxitoxin (STX), decarbamoylsaxitoxin (dcSTX), gonyautoxins 2 and 3 (GTX2,3), decarbamoylgonyautoxins 2 and 3 (dcGTX2,3), gonyautoxin 5 (GTX5) and N-sulfocarbamoylgonyautoxins 1 and 2 (C1,2), while quantitative analysis suggested STX and GTX2,3 as dominant toxin types and the ones that contribute the most to the overall toxicity of these samples with concentrations near the regulatory limit.

  3. Encystment and excystment of kinetoplastid Azumiobodo hoyamushi, causal agent of soft tunic syndrome in ascidian aquaculture.

    PubMed

    Nawata, Akatsuki; Hirose, Euichi; Kitamura, Shin-Ichi; Kumagai, Akira

    2015-08-20

    Soft tunic syndrome in the edible ascidian Halocynthia roretzi is caused by the kinetoplastid flagellate Azumiobodo hoyamushi, which was found to assume a fusiform cell form with 2 flagella in axenic, pure culture. When the flagellate form was incubated in sterilized artificial seawater (pH 8.4), some of the cells became cyst-like and adhered to the bottom of the culture plate. The cyst-like forms were spherical or cuboidal, and each had 2 flagella encapsulated in its cytoplasm. Encystment was also induced in culture medium alkalified to the pH of seawater (8.4) but not in unmodified (pH 7.2) or acidified media (pH 6.4). More than 95% of the cyst-like cells converted to the flagellate form within 1 d following transfer to seawater containing ascidian tunic extracts from host ascidians. The cyst-like cells were able to survive in seawater with no added nutrients for up to 2 wk at 20°C and for a few months at 5 to 15°C. The survival period in seawater depended on temperature: some cyst-like cells survived 3 mo at 10°C, and ca. 95% of these converted to flagellate forms in seawater containing tunic extracts. Thus, A. hoyamushi is able to persist under adverse conditions in a cyst-like form able to adhere to organic and inorganic substrata for protracted periods of time. PMID:26290510

  4. Encystment and excystment of kinetoplastid Azumiobodo hoyamushi, causal agent of soft tunic syndrome in ascidian aquaculture.

    PubMed

    Nawata, Akatsuki; Hirose, Euichi; Kitamura, Shin-Ichi; Kumagai, Akira

    2015-08-20

    Soft tunic syndrome in the edible ascidian Halocynthia roretzi is caused by the kinetoplastid flagellate Azumiobodo hoyamushi, which was found to assume a fusiform cell form with 2 flagella in axenic, pure culture. When the flagellate form was incubated in sterilized artificial seawater (pH 8.4), some of the cells became cyst-like and adhered to the bottom of the culture plate. The cyst-like forms were spherical or cuboidal, and each had 2 flagella encapsulated in its cytoplasm. Encystment was also induced in culture medium alkalified to the pH of seawater (8.4) but not in unmodified (pH 7.2) or acidified media (pH 6.4). More than 95% of the cyst-like cells converted to the flagellate form within 1 d following transfer to seawater containing ascidian tunic extracts from host ascidians. The cyst-like cells were able to survive in seawater with no added nutrients for up to 2 wk at 20°C and for a few months at 5 to 15°C. The survival period in seawater depended on temperature: some cyst-like cells survived 3 mo at 10°C, and ca. 95% of these converted to flagellate forms in seawater containing tunic extracts. Thus, A. hoyamushi is able to persist under adverse conditions in a cyst-like form able to adhere to organic and inorganic substrata for protracted periods of time.

  5. Genome-wide identification and characterization of transcription start sites and promoters in the tunicate Ciona intestinalis.

    PubMed

    Yokomori, Rui; Shimai, Kotaro; Nishitsuji, Koki; Suzuki, Yutaka; Kusakabe, Takehiro G; Nakai, Kenta

    2016-01-01

    The tunicate Ciona intestinalis, an invertebrate chordate, has recently emerged as a powerful model organism for gene regulation analysis. However, few studies have been conducted to identify and characterize its transcription start sites (TSSs) and promoters at the genome-wide level. Here, using TSS-seq, we identified TSSs at the genome-wide scale and characterized promoters in C. intestinalis. Specifically, we identified TSS clusters (TSCs), high-density regions of TSS-seq tags, each of which appears to originate from an identical promoter. TSCs were found not only at known TSSs but also in other regions, suggesting the existence of many unknown transcription units in the genome. We also identified candidate promoters of 79 ribosomal protein (RP) genes, each of which had the major TSS in a polypyrimidine tract and showed a sharp TSS distribution like human RP gene promoters. Ciona RP gene promoters, however, did not appear to have typical TATA boxes, unlike human RP gene promoters. In Ciona non-RP promoters, two pyrimidine-purine dinucleotides, CA and TA, were frequently used as TSSs. Despite the absence of CpG islands, Ciona TATA-less promoters showed low expression specificity like CpG-associated human TATA-less promoters. By using TSS-seq, we also predicted trans-spliced gene TSSs and found that their downstream regions had higher G+T content than those of non-trans-spliced gene TSSs. Furthermore, we identified many putative alternative promoters, some of which were regulated in a tissue-specific manner. Our results provide valuable information about TSSs and promoter characteristics in C. intestinalis and will be helpful in future analysis of transcriptional regulation in chordates. PMID:26668163

  6. Significant Enrichment of Polyunsaturated Fatty Acids (PUFAs) in the Lipids Extracted by Supercritical CO2 from the Livers of Australian Rock Lobsters (Jasus edwardsii).

    PubMed

    Nguyen, Trung T; Zhang, Wei; Barber, Andrew R; Su, Peng; He, Shan

    2015-05-13

    Australian rock lobster (Jasus edwardsii) liver contains approximately 24.3% (w/w) lipids, which can contain a high amount of polyunsaturated fatty acids (PUFAs). However, this material has been found to be contaminated with arsenic (240 mg/kg) and cadmium (8 mg/kg). The high level of contaminants in the raw material and the large amount of PUFAs in the lipids prove a significant challenge in the extraction of high-quality lipids from this byproduct by conventional methods. Supercritical carbon dioxide (SC-CO2) extraction is a highly promising technology for lipid extraction with advantages including low contamination and low oxidation. The technique was optimized to achieve nearly 94% extraction of lipids relative to conventional Soxhlet extraction in Australian rock lobster liver at conditions of 35 MPa and 50 °C for 4 h. The extracted lipids are significantly enriched in PUFAs at 31.3% of total lipids, 4 times higher than those in the lipids recovered by Soxhlet extraction (7.8%). Specifically, the concentrations of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in SC-CO2 extraction are 7 times higher than those obtained by Soxhlet extraction. Moreover, very small amounts of toxic heavy metals such as lead (Pb), arsenic (As), mercury (Hg), and cadmium (Cd) were detected in the SC-CO2-extracted lipids, 0.5-27 times lower than those in the Soxhlet-extracted lipids, which are 40-200 times lower than the regulatory limit maximum values. The low levels of contaminants and the high proportion of PUFAs (dominated by DHA and EPA) found in the SC-CO2-extracted lipids from Australian rock lobster liver suggest that the material could potentially be used as a valuable source of essential fatty acids for human consumption. PMID:25905456

  7. Nitric Oxide Acts as a Positive Regulator to Induce Metamorphosis of the Ascidian Herdmania momus

    PubMed Central

    Ueda, Nobuo; Degnan, Sandie M.

    2013-01-01

    Marine invertebrates commonly have a biphasic life cycle in which the metamorphic transition from a pelagic larva to a benthic post-larva is mediated by the nitric oxide signalling pathway. Nitric oxide (NO) is synthesised by nitric oxide synthase (NOS), which is a client protein of the molecular chaperon heat shock protein 90 (HSP90). It is notable, then, that both NO and HSP90 have been implicated in regulating metamorphosis in marine invertebrates as diverse as urochordates, echinoderms, molluscs, annelids, and crustaceans. Specifically, the suppression of NOS activity by the application of either NOS- or HSP90-inhibiting pharmacological agents has been shown consistently to induce the initiation of metamorphosis, leading to the hypothesis that a negative regulatory role of NO is widely conserved in biphasic life cycles. Further, the induction of metamorphosis by heat-shock has been demonstrated for multiple species. Here, we investigate the regulatory role of NO in induction of metamorphosis of the solitary tropical ascidian, Herdmania momus. By coupling pharmacological treatments with analysis of HmNOS and HmHSP90 gene expression, we present compelling evidence of a positive regulatory role for NO in metamorphosis of this species, in contrast to all existing ascidian data that supports the hypothesis of NO as a conserved negative regulator of metamorphosis. The exposure of competent H. momus larvae to a NOS inhibitor or an NO donor results in an up-regulation of NOS and HSP90 genes. Heat shock of competent larvae induces metamorphosis in a temperature dependent manner, up to a thermal tolerance that approaches 35°C. Both larval/post-larval survival and the appearance of abnormal morphologies in H. momus post-larvae reflect the magnitude of up-regulation of the HSP90 gene in response to heat-shock. The demonstrated role of NO as a positive metamorphic regulator in H. momus suggests the existence of inter-specific adaptations of NO regulation in ascidian

  8. Nitric oxide acts as a positive regulator to induce metamorphosis of the ascidian Herdmania momus.

    PubMed

    Ueda, Nobuo; Degnan, Sandie M

    2013-01-01

    Marine invertebrates commonly have a biphasic life cycle in which the metamorphic transition from a pelagic larva to a benthic post-larva is mediated by the nitric oxide signalling pathway. Nitric oxide (NO) is synthesised by nitric oxide synthase (NOS), which is a client protein of the molecular chaperon heat shock protein 90 (HSP90). It is notable, then, that both NO and HSP90 have been implicated in regulating metamorphosis in marine invertebrates as diverse as urochordates, echinoderms, molluscs, annelids, and crustaceans. Specifically, the suppression of NOS activity by the application of either NOS- or HSP90-inhibiting pharmacological agents has been shown consistently to induce the initiation of metamorphosis, leading to the hypothesis that a negative regulatory role of NO is widely conserved in biphasic life cycles. Further, the induction of metamorphosis by heat-shock has been demonstrated for multiple species. Here, we investigate the regulatory role of NO in induction of metamorphosis of the solitary tropical ascidian, Herdmania momus. By coupling pharmacological treatments with analysis of HmNOS and HmHSP90 gene expression, we present compelling evidence of a positive regulatory role for NO in metamorphosis of this species, in contrast to all existing ascidian data that supports the hypothesis of NO as a conserved negative regulator of metamorphosis. The exposure of competent H. momus larvae to a NOS inhibitor or an NO donor results in an up-regulation of NOS and HSP90 genes. Heat shock of competent larvae induces metamorphosis in a temperature dependent manner, up to a thermal tolerance that approaches 35°C. Both larval/post-larval survival and the appearance of abnormal morphologies in H. momus post-larvae reflect the magnitude of up-regulation of the HSP90 gene in response to heat-shock. The demonstrated role of NO as a positive metamorphic regulator in H. momus suggests the existence of inter-specific adaptations of NO regulation in ascidian

  9. Microbial diversity of biofilm communities in microniches associated with the didemnid ascidian Lissoclinum patella

    PubMed Central

    Behrendt, Lars; Larkum, Anthony W D; Trampe, Erik; Norman, Anders; Sørensen, Søren J; Kühl, Michael

    2012-01-01

    We assessed the microbial diversity and microenvironmental niche characteristics in the didemnid ascidian Lissoclinum patella using 16S rRNA gene sequencing, microsensor and imaging techniques. L. patella harbors three distinct microbial communities spatially separated by few millimeters of tunic tissue: (i) a biofilm on its upper surface exposed to high irradiance and O2 levels, (ii) a cloacal cavity dominated by the prochlorophyte Prochloron spp. characterized by strong depletion of visible light and a dynamic chemical microenvironment ranging from hyperoxia in light to anoxia in darkness and (iii) a biofilm covering the underside of the animal, where light is depleted of visible wavelengths and enriched in near-infrared radiation (NIR). Variable chlorophyll fluorescence imaging demonstrated photosynthetic activity, and hyperspectral imaging revealed a diversity of photopigments in all microhabitats. Amplicon sequencing revealed the dominance of cyanobacteria in all three layers. Sequences representing the chlorophyll d containing cyanobacterium Acaryochloris marina and anoxygenic phototrophs were abundant on the underside of the ascidian in shallow waters but declined in deeper waters. This depth dependency was supported by a negative correlation between A. marina abundance and collection depth, explained by the increased attenuation of NIR as a function of water depth. The combination of microenvironmental analysis and fine-scale sampling techniques used in this investigation gives valuable first insights into the distribution, abundance and diversity of bacterial communities associated with tropical ascidians. In particular, we show that microenvironments and microbial diversity can vary significantly over scales of a few millimeters in such habitats; which is information easily lost by bulk sampling. PMID:22134643

  10. Anti-inflammatory and antimalarial meroterpenoids from the New Zealand ascidian Aplidium scabellum.

    PubMed

    Chan, Susanna T S; Pearce, A Norrie; Januario, Ana H; Page, Michael J; Kaiser, Marcel; McLaughlin, Rene J; Harper, Jacquie L; Webb, Victoria L; Barker, David; Copp, Brent R

    2011-11-01

    Bioassay-directed fractionation of an extract of the New Zealand ascidian Aplidium scabellum has afforded the anti-inflammatory secondary metabolite 2-geranyl-6-methoxy-1,4-hydroquinone-4-sulfate (1) and a family of pseudodimeric meroterpenoids scabellones A (2)-D (5). The benzo[c]chromene-7,10-dione scaffold contained within scabellones A-D is particularly rare among natural products. The structures were elucidated by interpretation of NMR data. Scabellone B was also identified as a moderately potent, nontoxic inhibitor of Plasmodium falciparum.

  11. Rubrolide R: a new furanone metabolite from the ascidian Synoicum of the Indian Ocean.

    PubMed

    Smitha, Desaraju; Kumar, Muthyala Murali Krishna; Ramana, Hechhu; Rao, Desaraju Venkata

    2014-01-01

    A new furanone metabolite of the rubrolide family, rubrolide R as diacetate (1), was isolated from a new species of the ascidian Synoicum, besides the known compounds rubrolide A (as diacetate), cadiolide B and prunolide A. The structure of the new rubrolide was elucidated by a study of spectral data. The crude extract and isolated compounds (prunolide A and cadiolide B) showed antiviral activity against the Japanese encephalitis virus. Prunolide A showed cytotoxic activity against breast cancer cell lines at a concentration of < 1 μM.

  12. Sagitol D, a New Thiazole Containing Pyridoacridine Alkaloid from a Vietnamese Ascidian.

    PubMed

    Utkina, Natalia K

    2015-09-01

    A new thiazole containing pyridoacridine alkaloid, named sagitol D (1), and five known alkaloids kuanoniaminesA (2), C (3), D (4), E (5), and F (6), have been isolated from an unidentified Vietnamese ascidian. The structure of the new compound was established from NMR spectroscopic data. Kuanoniamines C, D, E, and F showed moderate antioxidant activity in the DPPH (IC50 36 µM) and ABTS assays (TE = 0.5), while sagitol D showed weak activity (IC50 92 M;TE = 0.10), and kuanoniamine A was inactive. PMID:26594755

  13. The alien ascidian Styela clava now invading the Sea of Marmara (Tunicata: Ascidiacea)

    PubMed Central

    Çinar, Melih Ertan

    2016-01-01

    Abstract During the implementation of a large project aimed to investigate the benthic community structures of the Sea of Marmara, specimens of the invasive ascidian species Styela clava were collected on natural substrata (rocks) at 10 m depth at one locality (Karamürsel) in İzmit Bay. The specimens were mature, containing gametes, indicating that the species had become established in the area. The Sea of Marmara seems to provide suitable conditions for this species to survive and form proliferating populations. PMID:27047235

  14. Raman Spectroscopic Imaging of the Whole Ciona intestinalis Embryo during Development

    PubMed Central

    Nakamura, Mitsuru J.; Hotta, Kohji; Oka, Kotaro

    2013-01-01

    Intracellular composition and the distribution of bio-molecules play central roles in the specification of cell fates and morphogenesis during embryogenesis. Consequently, investigation of changes in the expression and distribution of bio-molecules, especially mRNAs and proteins, is an important challenge in developmental biology. Raman spectroscopic imaging, a non-invasive and label-free technique, allows simultaneous imaging of the intracellular composition and distribution of multiple bio-molecules. In this study, we explored the application of Raman spectroscopic imaging in the whole Ciona intestinalis embryo during development. Analysis of Raman spectra scattered from C. intestinalis embryos revealed a number of localized patterns of high Raman intensity within the embryo. Based on the observed distribution of bio-molecules, we succeeded in identifying the location and structure of differentiated muscle and endoderm within the whole embryo, up to the tailbud stage, in a label-free manner. Furthermore, during cell differentiation, we detected significant differences in cell state between muscle/endoderm daughter cells and daughter cells with other fates that had divided from the same mother cells; this was achieved by focusing on the Raman intensity of single Raman bands at 1002 or 1526 cm−1, respectively. This study reports the first application of Raman spectroscopic imaging to the study of identifying and characterizing differentiating tissues in a whole chordate embryo. Our results suggest that Raman spectroscopic imaging is a feasible label-free technique for investigating the developmental process of the whole embryo of C. intestinalis. PMID:23977129

  15. Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation.

    PubMed

    Fernandez-Ayala, Daniel J M; Sanz, Alberto; Vartiainen, Suvi; Kemppainen, Kia K; Babusiak, Marek; Mustalahti, Eero; Costa, Rodolfo; Tuomela, Tea; Zeviani, Massimo; Chung, Jongkyeong; O'Dell, Kevin M C; Rustin, Pierre; Jacobs, Howard T

    2009-05-01

    Defects in mitochondrial OXPHOS are associated with diverse and mostly intractable human disorders. The single-subunit alternative oxidase (AOX) found in many eukaryotes, but not in arthropods or vertebrates, offers a potential bypass of the OXPHOS cytochrome chain under conditions of pathological OXPHOS inhibition. We have engineered Ciona intestinalis AOX for conditional expression in Drosophila melanogaster. Ubiquitous AOX expression produced no detrimental phenotype in wild-type flies. However, mitochondrial suspensions from AOX-expressing flies exhibited a significant cyanide-resistant substrate oxidation, and the flies were partially resistant to both cyanide and antimycin. AOX expression was able to complement the semilethality of partial knockdown of both cyclope (COXVIc) and the complex IV assembly factor Surf1. It also rescued the locomotor defect and excess mitochondrial ROS production of flies mutated in dj-1beta, a Drosophila homolog of the human Parkinson's disease gene DJ1. AOX appears to offer promise as a wide-spectrum therapeutic tool in OXPHOS disorders. PMID:19416715

  16. Regeneration, Stem Cells, and Aging in the Tunicate Ciona: Insights from the Oral Siphon.

    PubMed

    Jeffery, William R

    2015-01-01

    Regeneration studies in the tunicate Ciona intestinalis have recently been focused on the potential of adult stem cells to replace injured tissues and organs during the adult life cycle using the oral siphon (OS) as a model. The OS has oral siphon pigment organs (OPOs) along its rim and an underlying network of muscle fibers in its tube. Different regeneration processes are triggered by OS amputation at the tip, along the tube, or at the base. One process involves the replacement of OPOs without new cell division by direct differentiation of locally deployed stem cells or stem cells that migrate from the branchial sac. Another process involves blastema formation by the migration of progenitor cells produced from branchial sac stem cells. The capacity for complete and accurate OS regeneration declines continuously during the adult life cycle. Finally, after an age threshold is reached, OS regeneration ceases in old animals. The loss of regeneration capacity in old animals involves the depletion of stem cells in the branchial sac, the inability of branchial sac progenitor cells to migrate to the sites of regeneration, and defective oral pigment organ replacement. The significance of the OS model for studying regeneration, stem cells, and aging will be enhanced by the application of molecular methods.

  17. Isolation of a novel LPS-induced component of the ML superfamily in Ciona intestinalis.

    PubMed

    Vizzini, Aiti; Bonura, Angela; Longo, Valeria; Sanfratello, Maria Antonietta; Parrinello, Daniela; Cammarata, Matteo; Colombo, Paolo

    2015-11-01

    ML superfamily represents a group of proteins playing important roles in lipid metabolism and innate immune response. In this study, we report the identification of the first component of the ML superfamily in the invertebrate Ciona intestinalis by means of a subtractive hybridization strategy. Sequence homology and phylogenetic analysis showed that this protein forms a specific clade with vertebrate components of the Niemann-Pick type C2 protein and, for this reason, it has been named Ci-NPC2. The putative Ci-NPC2 is a 150 amino acids long protein with a short signal peptide, seven cysteine residues, three putative lipid binding site and a three-dimensional model showing a characteristic β-strand structure. Gene expression analysis demonstrated that the Ci-NPC2 protein is positively upregulated after LPS inoculum with a peak of expression 1 h after challenge. Finally, in-situ hybridization demonstrated that the Ci-NPC2 protein is preferentially expressed in hemocytes inside the vessel lumen. PMID:26159403

  18. Preparation and Antitumor Activity of CS5931, A Novel Polypeptide from Sea Squirt Ciona Savignyi

    PubMed Central

    Chen, Xiaoshuang; Xu, Huanli; Li, Bo; Wang, Feng; Chen, Xiaoliang; Kong, Dexin; Lin, Xiukun

    2016-01-01

    CS5931 is a novel anticancer agent isolated from the sea squirt Ciona savignyi. However, its content in the species is very low, and developing a novel approach for production of the polypeptide is promising. In the present study, we expressed and purified the polypeptide from E. coli, and the fermentation conditions were studied using response surface methodology. The yield of CS5931 was increased from 2.0 to 7.5 mg/L. The denaturing and renaturation conditions were also studied. Using the optimized renaturation condition, the anticancer activity of refolding CS5931 was increased significantly; the value of IC50 was decreased from 23.2 to 11.6 μM. In vivo study using xenograft nude mice bearing HCT116 cancer cells revealed that CS5931 was able to inhibit the growth of tumor significantly. The study provides a useful approach for obtaining enough amount of CS5931 for further study. This study is also important for developing the polypeptide as a novel anticancer agent. PMID:27007382

  19. Regeneration, Stem Cells, and Aging in the Tunicate Ciona: Insights from the Oral Siphon.

    PubMed

    Jeffery, William R

    2015-01-01

    Regeneration studies in the tunicate Ciona intestinalis have recently been focused on the potential of adult stem cells to replace injured tissues and organs during the adult life cycle using the oral siphon (OS) as a model. The OS has oral siphon pigment organs (OPOs) along its rim and an underlying network of muscle fibers in its tube. Different regeneration processes are triggered by OS amputation at the tip, along the tube, or at the base. One process involves the replacement of OPOs without new cell division by direct differentiation of locally deployed stem cells or stem cells that migrate from the branchial sac. Another process involves blastema formation by the migration of progenitor cells produced from branchial sac stem cells. The capacity for complete and accurate OS regeneration declines continuously during the adult life cycle. Finally, after an age threshold is reached, OS regeneration ceases in old animals. The loss of regeneration capacity in old animals involves the depletion of stem cells in the branchial sac, the inability of branchial sac progenitor cells to migrate to the sites of regeneration, and defective oral pigment organ replacement. The significance of the OS model for studying regeneration, stem cells, and aging will be enhanced by the application of molecular methods. PMID:26404471

  20. The recently-described ascidian species Molgula tectiformis is a direct developer.

    PubMed

    Tagawa, K; Jeffery, W R; Satoh, N

    1997-04-01

    Molgula tectiformis is a new ascidian species recently described by Nishikawa (1991). In Otsuchi Bay, Iwate, Japan, they are easily obtainable from cages for culturing scallops. We report here that M. tectiformis is another example of a direct developer: their embryonic development is lacking the tadpole larva. The fertilized egg is orange and about 150 microns in diameter. At 18 degrees C, the egg cleaves at about 20 min intervals and gastrulation occurs about 5 hr after fertilization. In contrast to conventionally-developing ascidians, M. tectiformis does not form a tadpole larva. Immediately before hatching, three stolons or ampullae begin to extend from the tailless embryo. After hatching the stolons mediate the attachment of the juvenile body to the substratum. Histochemistry for tissue-specific enzyme activity did not detect muscle-specific acetyl-cholinesterase, endoderm-specific alkaline phosphatase, and pigment cell-specific tyrosinase. In addition, in situ hybridization could not prove the presence of muscle actin gene transcripts in the embryo. These results suggest that these larval tissues do not differentiate in M. tectiformis embryos. Because M. tectiformis is common and gravid year-around in Otsuchi Bay, this direct developer provides the opportunity for further analysis of molecular changes during evolution that cause an alternative mode of development.

  1. Distinct modes of mitotic spindle orientation align cells in the dorsal midline of ascidian embryos.

    PubMed

    Negishi, Takefumi; Yasuo, Hitoyoshi

    2015-12-01

    The orientation of cell division can have important consequences on the choice of cell fates adopted by each daughter cell as well as on the architecture of the tissue within which the dividing cell resides. We have studied in detail the oriented cell divisions that take place in the dorsal midline of the ascidian embryo. The dorsal midline cells of the ascidian embryo emerge following an asymmetric cell division oriented along the animal-vegetal (A-V) axis. This division generates the NN (Notochord-Neural) cell at the margin and the E (Endoderm) cell more vegetally. Deviating from the default mode of cell division, these sister cells divide again along the A-V axis to generate a column of four cells. We describe these cell divisions in detail. We show that the NN cell mitotic spindle rotates 90° to align along the A-V axis while the E cell spindle forms directly along the axis following the asymmetric migration of its centrosomes. We combine live imaging, embryo manipulations and pharmacological modulation of cytoskeletal elements to address the mechanisms underlying these distinct subcellular behaviours. Our evidence suggests that, in E cells, aster asymmetry together with the E cell shape contribute to the asymmetric centrosome migration. In NN cells, an intrinsic cytoplasmic polarisation of the cell results in the accumulation of dynein to the animal pole side. Our data support a model in which a dynein-dependent directional cytoplasmic pulling force may be responsible for the NN cell spindle rotation. PMID:26452428

  2. Analysis of the Henze precipitate from the blood cells of the ascidian Phallusia mammillata

    NASA Astrophysics Data System (ADS)

    Ciancio, Aurelio; Scippa, Silvia; Nette, Geoffrey; De Vincentiis, Mario

    The Henze precipitate, a peculiar blue-green microparticulate obtained by lysis of the blood cells of the ascidian Phallusia mammillata (Protochordata), was investigated with atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray microanalysis. The precipitate was collected from the Henze solution, an unstable red-brown product obtained by treating blood with distilled water, whose degradation yields a characteristic blue-green product. The microparticulates measured 50-100 µm in diameter and appeared irregular in shape. SEM examination showed smooth, roughly round boundaries. The microparticulate surface examined with AFM appeared as an irregular matrix formed by 70-320-nm-wide mammillate composites, including and embedding small (500-800 nm wide) crystal-like multilayered formations. X- ray analysis showed that the elements present in these same precipitates were mainly C, Si, Al and O. The microparticulate composition appeared close to those of natural waxes or lacquers, embedding amorphous silicates and/or other Si-Al components. The unusual occurrence of Si in ascidian blood and its role are discussed.

  3. Distinct modes of mitotic spindle orientation align cells in the dorsal midline of ascidian embryos.

    PubMed

    Negishi, Takefumi; Yasuo, Hitoyoshi

    2015-12-01

    The orientation of cell division can have important consequences on the choice of cell fates adopted by each daughter cell as well as on the architecture of the tissue within which the dividing cell resides. We have studied in detail the oriented cell divisions that take place in the dorsal midline of the ascidian embryo. The dorsal midline cells of the ascidian embryo emerge following an asymmetric cell division oriented along the animal-vegetal (A-V) axis. This division generates the NN (Notochord-Neural) cell at the margin and the E (Endoderm) cell more vegetally. Deviating from the default mode of cell division, these sister cells divide again along the A-V axis to generate a column of four cells. We describe these cell divisions in detail. We show that the NN cell mitotic spindle rotates 90° to align along the A-V axis while the E cell spindle forms directly along the axis following the asymmetric migration of its centrosomes. We combine live imaging, embryo manipulations and pharmacological modulation of cytoskeletal elements to address the mechanisms underlying these distinct subcellular behaviours. Our evidence suggests that, in E cells, aster asymmetry together with the E cell shape contribute to the asymmetric centrosome migration. In NN cells, an intrinsic cytoplasmic polarisation of the cell results in the accumulation of dynein to the animal pole side. Our data support a model in which a dynein-dependent directional cytoplasmic pulling force may be responsible for the NN cell spindle rotation.

  4. Expression and function of myc during asexual reproduction of the budding ascidian Polyandrocarpa misakiensis.

    PubMed

    Fujiwara, Shigeki; Isozaki, Takaomi; Mori, Kyoko; Kawamura, Kazuo

    2011-12-01

    The budding ascidian Polyandrocarpa misakiensis proliferates asexually by budding. The atrial epithelium is a multipotent but differentiated tissue, which transdifferentiates into various tissues and organs after the bud separates from the parental body. We isolated cDNA clones homologous to the myc proto-oncogene from P. misakiensis. The cDNA, named Pm-myc, encoded a polypeptide of 639 amino acid residues, containing Myc-specific functional motifs, Myc box I and Myc box II, and the basic helix-loop-helix domain. Expression of Pm-myc was observed in the atrial epithelium in the organ-forming region of the developing bud, where the epithelial cells dedifferentiate and re-enter the cell cycle. The expression was also observed in fibroblast-like cells, which are known to participate in the organogenesis together with the epithelial cells. Unexpectedly, the atrial epithelium expressed Pm-myc more than one day before the dedifferentiation. The organogenesis was disturbed by Pm-myc-specific double-stranded RNA. In situ hybridization revealed that Pm-myc-positive fibroblast-like cells disappeared around the organ primordium of the dsRNA-treated bud. The results suggest that the mesenchymal-epithelial transition of fibroblast-like cells is important for the organogenesis in this budding ascidian species.

  5. Selective Detection and Phylogenetic Diversity of Acaryochloris spp. That Exist in Association with Didemnid Ascidians and Sponge

    PubMed Central

    Ohkubo, Satoshi; Miyashita, Hideaki

    2012-01-01

    Acaryochloris spp. are unique cyanobacteria which contain chlorophyll d as the predominant pigment. The phylogenetic diversity of Acaryochloris spp. associated with 7 Prochloron- or Synechocystis-containing didemnid ascidians and 1 Synechococcus-containing sponge obtained from the coast of the Republic of Palau was analyzed; we established a PCR primer set designed to selectively amplify the partial 16S rRNA gene of Acaryochloris spp. even in DNA samples containing a large amount of other cyanobacterial and algal DNAs. Polymerase chain reaction-denaturing gradient gel electrophoresis with this primer set enabled detection of the phyogenetic diversity of Acaryochloris spp. All the ascidian and sponge samples contained Acaryochloris spp. Fourteen phylotypes that were highly homologous (98–100%) with A. marina MBIC11017 were detected, while only 2 phylotypes were detected with our previously developed method for detecting cyanobacteria. The results also revealed that many uncultured phylotypes of Acaryochloris spp. were associated with those didemnid ascidians, since a clonal culture of only 1 phylotype has been established thus far. No specific relationship was found among the Acaryochloris phylotypes and the genera of the ascidians even when sample localities were identical; therefore, these invertebrates may provide a favorable habitat for Acaryochloris spp. rather than hosts showing any specific symbiotic relationships. PMID:22353766

  6. E/Z-rubrolide O, an anti-inflammatory halogenated furanone from the New Zealand ascidian Synoicum n. sp.

    PubMed

    Pearce, A Norrie; Chia, Elizabeth W; Berridge, Michael V; Maas, Elizabeth W; Page, Michael J; Webb, Victoria L; Harper, Jacquie L; Copp, Brent R

    2007-01-01

    Bioassay-directed fractionation of extracts of a Synoicum n. sp. ascidian from New Zealand led to the isolation of the principal anti-inflammatory component, which was identified by spectroscopic methods as a new member of the rubrolide family, rubrolide O (1), existing as a mixture of E/Z isomers.

  7. Structure and Configuration of Phosphoeleganin, a Protein Tyrosine Phosphatase 1B Inhibitor from the Mediterranean Ascidian Sidnyum elegans.

    PubMed

    Imperatore, Concetta; Luciano, Paolo; Aiello, Anna; Vitalone, Rocco; Irace, Carlo; Santamaria, Rita; Li, Jia; Guo, Yue-W; Menna, Marialuisa

    2016-04-22

    A new phosphorylated polyketide, phosphoeleganin (1), has been isolated from the Mediterranean ascidian Sidnyum elegans. Its structure and configuration have been determined by extensive use of 2D NMR and microscale chemical degradation and/or derivatization. Phosphoeleganin (1) inhibited the protein tyrosine phosphatase 1B (PTP1B) activity. PMID:27064611

  8. Diiron centre mutations in Ciona intestinalis alternative oxidase abolish enzymatic activity and prevent rescue of cytochrome oxidase deficiency in flies

    PubMed Central

    Andjelković, Ana; Oliveira, Marcos T.; Cannino, Giuseppe; Yalgin, Cagri; Dhandapani, Praveen K.; Dufour, Eric; Rustin, Pierre; Szibor, Marten; Jacobs, Howard T.

    2015-01-01

    The mitochondrial alternative oxidase, AOX, carries out the non proton-motive re-oxidation of ubiquinol by oxygen in lower eukaryotes, plants and some animals. Here we created a modified version of AOX from Ciona instestinalis, carrying mutations at conserved residues predicted to be required for chelation of the diiron prosthetic group. The modified protein was stably expressed in mammalian cells or flies, but lacked enzymatic activity and was unable to rescue the phenotypes of flies knocked down for a subunit of cytochrome oxidase. The mutated AOX transgene is thus a potentially useful tool in studies of the physiological effects of AOX expression. PMID:26672986

  9. 3-acetylpyridine-induced degeneration in the adult ascidian neural complex: Reactive and regenerative changes in glia and blood cells.

    PubMed

    Medina, Bianca N S P; Santos de Abreu, Isadora; Cavalcante, Leny A; Silva, Wagner A B; da Fonseca, Rodrigo N; Allodi, Silvana; de Barros, Cintia M

    2015-08-01

    Ascidians are interesting neurobiological models because of their evolutionary position as a sister-group of vertebrates and the high regenerative capacity of their central nervous system (CNS). We investigated the degeneration and regeneration of the cerebral ganglion complex of the ascidian Styela plicata following injection of the niacinamide antagonist 3-acetylpyridine (3AP), described as targeting the CNS of several vertebrates. For the analysis and establishment of a new model in ascidians, the ganglion complex was dissected and prepared for transmission electron microscopy (TEM), routine light microscopy (LM), immunohistochemistry and Western blotting, 1 or 10 days after injection of 3AP. The siphon stimulation test (SST) was used to quantify the functional response. One day after the injection of 3AP, CNS degeneration and recruitment of a non-neural cell type to the site of injury was observed by both TEM and LM. Furthermore, weaker immunohistochemical reactions for astrocytic glial fibrillary acidic protein (GFAP) and neuronal βIII-tubulin were observed. In contrast, the expression of caspase-3, a protein involved in the apoptotic pathway, and the glycoprotein CD34, a marker for hematopoietic stem cells, increased. Ten days after the injection of 3AP, the expression of markers tended toward the original condition. The SST revealed attenuation and subsequent recovery of the reflexes from 1 to 10 days after 3AP. Therefore, we have developed a new method to study ascidian neural degeneration and regeneration, and identified the decreased expression of GFAP and recruitment of blood stem cells to the damaged ganglion as reasons for the success of neuroregeneration in ascidians.

  10. The Simple Chordate Ciona intestinalis Has a Reduced Complement of Genes Associated with Fanconi Anemia.

    PubMed

    Stanley, Edward C; Azzinaro, Paul A; Vierra, David A; Howlett, Niall G; Irvine, Steven Q

    2016-01-01

    Fanconi anemia (FA) is a human genetic disease characterized by congenital defects, bone marrow failure, and increased cancer risk. FA is associated with mutation in one of 24 genes. The protein products of these genes function cooperatively in the FA pathway to orchestrate the repair of DNA interstrand cross-links. Few model organisms exist for the study of FA. Seeking a model organism with a simpler version of the FA pathway, we searched the genome of the simple chordate Ciona intestinalis for homologs of the human FA-associated proteins. BLAST searches, sequence alignments, hydropathy comparisons, maximum likelihood phylogenetic analysis, and structural modeling were used to infer the likelihood of homology between C. intestinalis and human FA proteins. Our analysis indicates that C. intestinalis indeed has a simpler and potentially functional FA pathway. The C. intestinalis genome was searched for candidates for homology to 24 human FA and FA-associated proteins. Support was found for the existence of homologs for 13 of these 24 human genes in C. intestinalis. Members of each of the three commonly recognized FA gene functional groups were found. In group I, we identified homologs of FANCE, FANCL, FANCM, and UBE2T/FANCT. Both members of group II, FANCD2 and FANCI, have homologs in C. intestinalis. In group III, we found evidence for homologs of FANCJ, FANCO, FANCQ/ERCC4, FANCR/RAD51, and FANCS/BRCA1, as well as the FA-associated proteins ERCC1 and FAN1. Evidence was very weak for the existence of homologs in C. intestinalis for any other recognized FA genes. This work supports the notion that C. intestinalis, as a close relative of vertebrates, but having a much reduced complement of FA genes, offers a means of studying the function of certain FA proteins in a simpler pathway than that of vertebrate cells. PMID:27279728

  11. Identical sets of methylated and nonmethylated genes in Ciona intestinalis sperm and muscle cells

    PubMed Central

    2013-01-01

    Background The discovery of gene body methylation, which refers to DNA methylation within gene coding region, suggests an as yet unknown role of DNA methylation at actively transcribed genes. In invertebrates, gene bodies are the primary targets of DNA methylation, and only a subset of expressed genes is modified. Results Here we investigate the tissue variability of both the global levels and distribution of 5-methylcytosine (5mC) in the sea squirt Ciona intestinalis. We find that global 5mC content of early developmental embryos is high, but is strikingly reduced in body wall tissues. We chose sperm and adult muscle cells, with high and reduced levels of global 5mC respectively, for genome-wide analysis of 5mC targets. By means of CXXC-affinity purification followed by deep sequencing (CAP-seq), and genome-wide bisulfite sequencing (BS-seq), we designated body-methylated and unmethylated genes in each tissue. Surprisingly, body-methylated and unmethylated gene groups are identical in the sperm and muscle cells. Our analysis of microarray expression data shows that gene body methylation is associated with broad expression throughout development. Moreover, transgenic analysis reveals contrasting gene body methylation at an identical gene-promoter combination when integrated at different genomic sites. Conclusions We conclude that gene body methylation is not a direct regulator of tissue specific gene expression in C. intestinalis. Our findings reveal constant targeting of gene body methylation irrespective of cell type, and they emphasize a correlation between gene body methylation and ubiquitously expressed genes. Our transgenic experiments suggest that the promoter does not determine the methylation status of the associated gene body. PMID:24279449

  12. The Simple Chordate Ciona intestinalis Has a Reduced Complement of Genes Associated with Fanconi Anemia

    PubMed Central

    Stanley, Edward C.; Azzinaro, Paul A.; Vierra, David A.; Howlett, Niall G.; Irvine, Steven Q.

    2016-01-01

    Fanconi anemia (FA) is a human genetic disease characterized by congenital defects, bone marrow failure, and increased cancer risk. FA is associated with mutation in one of 24 genes. The protein products of these genes function cooperatively in the FA pathway to orchestrate the repair of DNA interstrand cross-links. Few model organisms exist for the study of FA. Seeking a model organism with a simpler version of the FA pathway, we searched the genome of the simple chordate Ciona intestinalis for homologs of the human FA-associated proteins. BLAST searches, sequence alignments, hydropathy comparisons, maximum likelihood phylogenetic analysis, and structural modeling were used to infer the likelihood of homology between C. intestinalis and human FA proteins. Our analysis indicates that C. intestinalis indeed has a simpler and potentially functional FA pathway. The C. intestinalis genome was searched for candidates for homology to 24 human FA and FA-associated proteins. Support was found for the existence of homologs for 13 of these 24 human genes in C. intestinalis. Members of each of the three commonly recognized FA gene functional groups were found. In group I, we identified homologs of FANCE, FANCL, FANCM, and UBE2T/FANCT. Both members of group II, FANCD2 and FANCI, have homologs in C. intestinalis. In group III, we found evidence for homologs of FANCJ, FANCO, FANCQ/ERCC4, FANCR/RAD51, and FANCS/BRCA1, as well as the FA-associated proteins ERCC1 and FAN1. Evidence was very weak for the existence of homologs in C. intestinalis for any other recognized FA genes. This work supports the notion that C. intestinalis, as a close relative of vertebrates, but having a much reduced complement of FA genes, offers a means of studying the function of certain FA proteins in a simpler pathway than that of vertebrate cells. PMID:27279728

  13. Ciona intestinalis as a Marine Model System to Study Some Key Developmental Genes Targeted by the Diatom-Derived Aldehyde Decadienal

    PubMed Central

    Lettieri, Anna; Esposito, Rosaria; Ianora, Adrianna; Spagnuolo, Antonietta

    2015-01-01

    The anti-proliferative effects of diatoms, described for the first time in copepods, have also been demonstrated in benthic invertebrates such as polychaetes, sea urchins and tunicates. In these organisms PUAs (polyunsaturated aldehydes) induce the disruption of gametogenesis, gamete functionality, fertilization, embryonic mitosis, and larval fitness and competence. These inhibitory effects are due to the PUAs, produced by diatoms in response to physical damage as occurs during copepod grazing. The cell targets of these compounds remain largely unknown. Here we identify some of the genes targeted by the diatom PUA 2-trans-4-trans-decadienal (DD) using the tunicate Ciona intestinalis. The tools, techniques and genomic resources available for Ciona, as well as the suitability of Ciona embryos for medium-to high-throughput strategies, are key to their employment as model organisms in different fields, including the investigation of toxic agents that could interfere with developmental processes. We demonstrate that DD can induce developmental aberrations in Ciona larvae in a dose-dependent manner. Moreover, through a preliminary analysis, DD is shown to affect the expression level of genes involved in stress response and developmental processes. PMID:25789602

  14. Urochordate Ascidians Possess a Single Isoform of Aurora Kinase That Localizes to the Midbody via TPX2 in Eggs and Cleavage Stage Embryos

    PubMed Central

    Hebras, Celine; McDougall, Alex

    2012-01-01

    Aurora kinases are key proteins found throughout the eukaryotes that control mitotic progression. Vertebrate Aurora-A and B kinases are thought to have evolved from a single Aurora-kinase isoform closest to that found in present day urochordates. In urochordate ascidians Aurora binds both TPX2 (a vertebrate AURKA partner) and INCENP (a vertebrate AURKB partner) and localizes to centrosomes and spindle microtubules as well as chromosomes and midbody during both meiosis and mitosis. Ascidian Aurora also displays this localization pattern during mitosis in echinoderms, strengthening the idea that non-vertebrate deuterostomes such as the urochordates and echinoderms possess a single form of Aurora kinase that has properties of vertebrate Aurora-kinase A and B. In the ascidian, TPX2 localizes to the centrosome and the spindle poles also as in vertebrates. However, we were surprised to find that TPX2 also localized strongly to the midbody in ascidian eggs and embryos. We thus examined more closely Aurora localization to the midbody by creating two separate point mutations of ascidian Aurora predicted to perturb binding to TPX2. Both forms of mutated Aurora behaved as predicted: neither localized to spindle poles where TPX2 is enriched. Interestingly, neither form of mutated Aurora localized to the midbody where TPX2 is also enriched, suggesting that ascidian Aurora midbody localization required TPX2 binding in ascidians. Functional analysis revealed that inhibition of Aurora kinase with a pharmacological inhibitor or with a dominant negative kinase dead form of Aurora caused cytokinesis failure and perturbed midbody formation during polar body extrusion. Our data support the view that vertebrate Aurora-A and B kinases evolved from a single non-vertebrate deuterostome ancestor. Moreover, since TPX2 localizes to the midbody in ascidian eggs and cleavage stage embryos it may be worthwhile re-assessing whether Aurora A kinase or TPX2 localize to the midbody in eggs and

  15. Cytotoxicity of the Ascidian Cystodytes dellechiajei Against Tumor Cells and Study of the Involvement of Associated Microbiota in the Production of Cytotoxic Compounds

    PubMed Central

    Martinez-García, Manuel; Diaz-Valdés, Marta; Ramos-Esplá, Alfonso; Salvador, Nélida; Lopez, Patricia; Larriba, Eduardo; Antón, Josefa

    2007-01-01

    Many cytotoxic compounds of therapeutic interest have been isolated from marine invertebrates, and some of them have been reported to be of microbial origin. Pyridoacridine alkaloids are the main compounds extracted from the ascidian Cystodytes dellechiajei. Here we describe the in vitro antiproliferative activity against different tumor cell lines of the ascidian extracts and provide some insights on the role of the microbial community associated with the tunicate in the production of these compounds. C. dellechiajei extracts showed remarkably high antiproliferative activity (IC50 ≤5 μg/mL) in human lung carcinoma A-549, colon adenocarcinoma H-116, pancreatic adenocarcinoma PSN-1 and breast carcinoma SKBR3 cell lines. Moreover, we found that the maximum activity was located in the tunic tissue of the colony, which harbours a microbial community. In order to ascertain the involvement of this community in the synthesis of the bioactive compounds different approachs that included culture and culture independent methods were carried out. We undertook a screening for antiproliferative activities of the bacterial isolates from the ascidian, as well as a comprative analysis of the cytotoxic activities and the microbial communities from two color morphs of the ascidian, green and blue. In addition, the changes of the antiproliferative activities and the composition of the microbial communities were studied from ascidians kept in aquaria and treated with antibiotics for one month. Our data obtained from the different experiments did not point out to bacteria as the source of the cytotoxic compounds, suggesting thus an ascidian origin. PMID:18463720

  16. Ultrastructures and classification of circulating hemocytes in 9 botryllid ascidians (chordata: ascidiacea).

    PubMed

    Hirose, Euichi; Shirae, Maki; Saito, Yasunori

    2003-05-01

    Ultrastructures of circulating hemocytes were studied in 9 botryllid ascidians. The hemocytes are classified into five types: hemoblasts, phagocytes, granulocytes, morula cells, and pigment cells. These five types are always found in the 9 species. They should represent the major hemocyte types of the circulating cells in the blood. Hemoblasts are small hemocytes having a high nucleus/cytoplasm ratio. There are few granular or vacuolar inclusions in the cytoplasm. Phagocytes have phagocytic activity and their shape is variable depending on the amount of engulfed materials. In granulocytes, shape and size of granules are different among the species. Morula cells are characterized by several vacuoles filled with electron dense materials. In pigment cells, the bulk of the cytoplasm is occupied by one or a few vacuoles containing pigment granules. We also described some other hemocyte types found in particular species. Furthermore, we encountered free oocytes circulating in the blood in two species, Botryllus primigenus and Botrylloides lentus.

  17. Azumiobodo hoyamushi, the kinetoplastid causing soft tunic syndrome in ascidians, may invade through the siphon wall.

    PubMed

    Hirose, Euichi; Kumagai, Akira; Nawata, Akatsuki; Kitamura, Shin-Ichi

    2014-07-01

    The infectious kinetoplastid Azumiobodo hoyamushi causes 'soft tunic syndrome', a serious problem in aquaculture of the edible ascidian Halocynthia roretzi. Infection tests using diseased tunics demonstrated that juvenile (0.8 yr old) individuals never developed soft tunic syndrome, but all individuals in the other age groups (1.8, 2.8, and 3.8 yr old) showed the disease symptoms. In the infection tests, tunic softening was first observed at the tunic around siphons. Based on ultrastructural observation of the inner wall of the branchial siphon, the tunic lining the inner wall in juveniles (0.5 yr old) was completely covered with cuticle, which had a dense structure to prevent bacterial and protist invasion. In contrast, the tunic was often partly damaged and not covered with cuticle in healthy adults (≥2.5 yr old). The damaged tunic in the siphon wall could be an entrance for A. hoyamushi into the tunic of adult hosts.

  18. [Distribution and abundance of the ascidian Ecteinascidia turbinata (Ascidiacea: Perophoridae) in Cuba].

    PubMed

    Hernández-Zanuy, Aida; Carballo, José Luis; García-Cagide, Alida; Naranjo, Santiago; Esquivel, Macario

    2007-03-01

    Permanently submerged mangrove roots (Rhizophora mangle) are the main habitat of the ascidian Ecteinascidia turbinata in Cuba. It was occasionally found on black coral (Antiphates caribeana) between 22 and 38 meters deep. This species exhibits a wide distribution in all the mangrove keys surrounding the Island of Cuba but does not occur in riparian or fringing mangroves. Populations of this species are abundant in Cuba: in 75% of the 58 localities sampled the species was present and in 57% more than 50% of the roots held at least one colony. The highest colony densities were found in the northern coast of Pinar del Rio province with values near one colony per lineal meter of mangrove root. We found the highest density (1.46 col/m) and greatest biomass at Jutías Key, with values between 25 and 660 g/m. The average of wet biomass in the studied mangroves was 73.63 g/m. PMID:18457133

  19. 3-bromohomofascaplysin A, a fascaplysin analogue from a Fijian Didemnum sp. ascidian.

    PubMed

    Lu, Zhenyu; Ding, Yuanqing; Li, Xing-Cong; Djigbenou, Daignon R; Grimberg, Brian T; Ferreira, Daneel; Ireland, Chris M; Van Wagoner, Ryan M

    2011-11-15

    A new fascaplysin analogue, 3-bromohomofascaplysin A (1), along with two known analogues, homofascaplysin A (2) and fascaplysin (3), were isolated from a Fijian Didemnum sp. ascidian. The absolute configurations of 3-bromohomofascaplysin A (1) and homofascaplysin A (2) were determined via experimental and theoretically calculated ECD spectra. The differential activities of 1-3 against different blood-borne life stages of the malaria pathogen Plasmodium falciparum were assessed. Homofascaplysin A (2) displayed an IC(50) of 0.55±0.11 nM against ring stage parasites and 105±38 nM against all live parasites. Given the stronger resistance of ring stage parasites against most current antimalarials relative to the other blood stages, homofascaplysin A (2) represents a promising agent for treatment of drug resistant malaria.

  20. 3-Bromohomofascaplysin A, a fascaplysin analogue from a Fijian Didemnum sp. ascidian

    PubMed Central

    Lu, Zhenyu; Ding, Yuanqing; Li, Xing-Cong; Djigbenou, Daignon R.; Grimberg, Brian T.; Ferreira, Daneel; Ireland, Chris M.; Van Wagoner, Ryan M.

    2011-01-01

    A new fascaplysin analogue, 3-bromohomofascaplysin A (1), along with two known analogues, homofascaplysin A (2) and fascaplysin (3), were isolated from a Fijian Didemnum sp. ascidian. The absolute configurations of 3-bromohomofascaplysin A (1) and homofascaplysin A (2) were determined via experimental and theoretically calculated ECD spectra. The differential activities of 1–3 against different blood-borne life stages of the malaria pathogen Plasmodium falciparum were assessed. Homofascaplysin A (2) displayed an IC50 of 0.55 ± 0.11 nM against ring stage parasites and 105 ± 38 nM against all live parasites. Given the stronger resistance of ring stage parasites against most current antimalarials relative to the other blood stages, homofascaplysin A (2) represents a promising agent for treatment of drug resistant malaria. PMID:21696970

  1. New GlcNAc/GalNAc-specific lectin from the ascidian Didemnum ternatanum.

    PubMed

    Molchanova, Valentina; Chikalovets, Irina; Li, Wei; Kobelev, Stanislav; Kozyrevskaya, Svetlana; Bogdanovich, Raisa; Howard, Eric; Belogortseva, Natalia

    2005-05-25

    Previously we isolated GlcNAc-specific lectin (DTL) from the ascidian Didemnum ternatanum by affinity chromatography on cross-linked ovalbumin. Here we report the purification and characterization of new D-GlcNAc/D-GalNAc-specific lectin DTL-A from the same ascidian. This lectin was isolated from non-bound cross-linked ovalbumin fraction and further was purified by gel filtration on Sepharose CL-4B, affinity chromatography on GlcNAc-agarose and gel filtration on Superdex 200. SDS-polyacrylamide gel electrophoresis and gel filtration of purified lectin on Sepharose CL-4B indicates that it exists as large aggregates in the native state. Investigations of the carbohydrate specificity of DTL-A by enzyme-linked lectin assay suggest the multi-specificity of this lectin. DTL-A binds BSM, asialo-BSM as well as heparin and dextran sulfate. The binding of DTL-A to BSM was inhibited by monosaccharides D-GlcNAc and D-GalNAc, their alpha- but not beta-anomers. Among polysaccharides and glycoconjugates, DTL-A binding to BSM was effectively inhibited by BSM, asialo-BSM, pronase-treated BSM and synthetic alpha-D-GalNAc-PAA. Fetuin and asialofetuin showed a much lower inhibitory potency, heparin and dextran sulfate were noninhibitory. On the other hand, DTL-A binding to heparin was effectively inhibited by dextran sulfate, fucoidan, whereas BSM showed insignificantly inhibitory effect. DTL-A binding to heparin was not inhibited by D-GlcNAc and D-GalNAc.

  2. Microenvironmental Ecology of the Chlorophyll b-Containing Symbiotic Cyanobacterium Prochloron in the Didemnid Ascidian Lissoclinum patella

    PubMed Central

    Kühl, Michael; Behrendt, Lars; Trampe, Erik; Qvortrup, Klaus; Schreiber, Ulrich; Borisov, Sergey M.; Klimant, Ingo; Larkum, Anthony W. D.

    2012-01-01

    The discovery of the cyanobacterium Prochloron was the first finding of a bacterial oxyphototroph with chlorophyll (Chl) b, in addition to Chl a. It was first described as Prochloron didemni but a number of clades have since been described. Prochloron is a conspicuously large (7–25 μm) unicellular cyanobacterium living in a symbiotic relationship, primarily with (sub-) tropical didemnid ascidians; it has resisted numerous cultivation attempts and appears truly obligatory symbiotic. Recently, a Prochloron draft genome was published, revealing no lack of metabolic genes that could explain the apparent inability to reproduce and sustain photosynthesis in a free-living stage. Possibly, the unsuccessful cultivation is partly due to a lack of knowledge about the microenvironmental conditions and ecophysiology of Prochloron in its natural habitat. We used microsensors, variable chlorophyll fluorescence imaging and imaging of O2 and pH to obtain a detailed insight to the microenvironmental ecology and photobiology of Prochloron in hospite in the didemnid ascidian Lissoclinum patella. The microenvironment within ascidians is characterized by steep gradients of light and chemical parameters that change rapidly with varying irradiances. The interior zone of the ascidians harboring Prochloron thus became anoxic and acidic within a few minutes of darkness, while the same zone exhibited O2 super-saturation and strongly alkaline pH after a few minutes of illumination. Photosynthesis showed lack of photoinhibition even at high irradiances equivalent to full sunlight, and photosynthesis recovered rapidly after periods of anoxia. We discuss these new insights on the ecological niche of Prochloron and possible interactions with its host and other microbes in light of its recently published genome and a recent study of the overall microbial diversity and metagenome of L. patella. PMID:23226144

  3. Screening for negative effects of candidate ascidian antifoulant compounds on a target aquaculture species, Perna canaliculus Gmelin.

    PubMed

    Cahill, Patrick Louis; Heasman, Kevin; Hickey, Anthony; Mountfort, Douglas; Jeffs, Andrew; Kuhajek, Jeannie

    2013-01-01

    The natural chemical compounds radicicol, polygodial and ubiquinone-10 (Q10) have previously been identified as inhibitors of metamorphosis in ascidian larvae. Accordingly, they have potential as a specific remedy for the costly problem of fouling ascidians in bivalve aquaculture. In this study, these compounds were screened for their effects on the physiological health of an aquaculture species, the green-lipped mussel, Perna canaliculus Gmelin, at or above the 99% effective dose (IC(99)) in ascidians. Three physiological biomarkers of mussel health were screened: growth (increases in shell height and wet weight), condition (condition index) and mitochondrial respirational function (Complex I-mediated respiration, Complex II-mediated respiration, maximum uncoupled respiration, leak respiration, respiratory control ratios and phosphorylation system control ratios). While polygodial and Q10 had no effect on mussel growth or the condition index, radicicol retarded growth and decreased the condition index. Mitochondrial respirational function was unaffected by radicicol and polygodial. Conversely, Q10 enhanced Complex I-mediated respiration, highlighting the fundamental role of this compound in the electron transport system. The present study suggests that polygodial and Q10 do not negatively affect the physiological health of P. canaliculus at the IC(99) in ascidians, while radicicol is toxic. Moreover, Q10 is of benefit in biomedical settings as a cellular antioxidant and therefore may also benefit P. canaliculus. Accordingly, polygodial and Q10 should be progressed to the next stage of testing where possible negative effects on bivalves will be further explored, followed by development of application techniques and testing in a laboratory and aquaculture setting.

  4. Screening for negative effects of candidate ascidian antifoulant compounds on a target aquaculture species, Perna canaliculus Gmelin.

    PubMed

    Cahill, Patrick Louis; Heasman, Kevin; Hickey, Anthony; Mountfort, Douglas; Jeffs, Andrew; Kuhajek, Jeannie

    2013-01-01

    The natural chemical compounds radicicol, polygodial and ubiquinone-10 (Q10) have previously been identified as inhibitors of metamorphosis in ascidian larvae. Accordingly, they have potential as a specific remedy for the costly problem of fouling ascidians in bivalve aquaculture. In this study, these compounds were screened for their effects on the physiological health of an aquaculture species, the green-lipped mussel, Perna canaliculus Gmelin, at or above the 99% effective dose (IC(99)) in ascidians. Three physiological biomarkers of mussel health were screened: growth (increases in shell height and wet weight), condition (condition index) and mitochondrial respirational function (Complex I-mediated respiration, Complex II-mediated respiration, maximum uncoupled respiration, leak respiration, respiratory control ratios and phosphorylation system control ratios). While polygodial and Q10 had no effect on mussel growth or the condition index, radicicol retarded growth and decreased the condition index. Mitochondrial respirational function was unaffected by radicicol and polygodial. Conversely, Q10 enhanced Complex I-mediated respiration, highlighting the fundamental role of this compound in the electron transport system. The present study suggests that polygodial and Q10 do not negatively affect the physiological health of P. canaliculus at the IC(99) in ascidians, while radicicol is toxic. Moreover, Q10 is of benefit in biomedical settings as a cellular antioxidant and therefore may also benefit P. canaliculus. Accordingly, polygodial and Q10 should be progressed to the next stage of testing where possible negative effects on bivalves will be further explored, followed by development of application techniques and testing in a laboratory and aquaculture setting. PMID:23194394

  5. Programmed cell death in vegetative development: apoptosis during the colonial life cycle of the ascidian Botryllus schlosseri.

    PubMed

    Tiozzo, S; Ballarin, L; Burighel, P; Zaniolo, G

    2006-06-01

    Programmed cell death (PCD) by apoptosis is a physiological mechanism by which cells are eliminated during embryonic and post-embryonic stages of animal life cycle. During asexual reproduction, the zooids of colonial ascidians originate from an assorted cell population instead of a single zygote, so that we assume that regulation of the equilibrium among proliferation, differentiation and cell death may follow different pathways in comparison to the embryonic development. Here we investigate the presence of apoptotic events throughout the blastogenetic life cycle of the colonial ascidian Botryllus schlosseri, by means of terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL) coupled with histochemical and electron microscopy techniques. The occurrence of low levels of morphogenetic cell death suggests that, in contrast to what happens during sexual development (embryogenesis and metamorphosis), apoptosis does not play a pivotal role during asexual propagation in botryllid ascidian. Nevertheless, PCD emerges as a key force to regulate homeostasis in adult zooids and to shape and modulate the growth of the whole colony.

  6. Studies on the seasonal variations in the proximate composition of ascidians from the Palk Bay, Southeast coast of India

    PubMed Central

    Ananthan, G; Karthikeyan, MM; Selva, Prabhu A; Raghunathan, C

    2012-01-01

    Objective To investigate the seasonal fluctuations of the proximate composition of the ascidians muscle. Methods The moisture content was estimated by drying 1 g of fresh tissue at a constant temperature at 105 °C for 24 h.The loss of weight was taken as moisture content. The total protein was estimated using the Biuret method. The total carbohydrate in dried sample was estimated spectrophotometrically following the phenol- sulphuric acid method. The lipid in the dried sample tissue was gravimetrically estimated following the chloroform-methanol mixture method. Ash content was determined gravimetrically by incinerating 1 g dried sample in muffle furnace at about 550 °C for 6 h and results are expressed in percentage. Results It was found very difficult to compare the monthly variations, as all the ten species, exhibited wide fluctuations in their proximate compositions. For the sake of convenience, average seasonal values were calculated by summing the monthly values. Conclusions The proximate composition of the 10 commonly available ascidians showed high nutritive value and hence these groups especially solitary ascidians can be recommended for human consumption in terms of pickles, soup, curry and others after ensuring the safety of consumers. PMID:23569849

  7. Cellulose is not degraded in the tunic of the edible ascidian Halocynthia roretzi contracting soft tunic syndrome.

    PubMed

    Kimura, Satoshi; Nakayama, Kei; Wada, Masahisa; Kim, Ung-Jin; Azumi, Kaoru; Ojima, Takao; Nozawa, Akino; Kitamura, Shin-Ichi; Hirose, Euichi

    2015-10-16

    Soft tunic syndrome is a fatal disease in the edible ascidian Halocynthia roretzi, causing serious damage to ascidian aquaculture in Korea and Japan. In diseased individuals, the tunic, an integumentary extracellular matrix of ascidians, softens and eventually tears. This is an infectious disease caused by the kinetoplastid flagellate Azumiobodo hoyamushi. However, the mechanism of tunic softening remains unknown. Because cellulose fibrils are the main component of the tunic, we compared the contents and structures of cellulose in healthy and diseased tunics by means of biochemical quantification and X-ray diffractometry. Unexpectedly, the cellulose contents and structures of cellulose microfibrils were almost the same regardless of the presence or absence of the disease. Therefore, it is unlikely that thinning of the microfibrils occurred in the softened tunic, because digestion should have resulted in decreases in crystallinity index and crystallite size. Moreover, cellulase was not detected in pure cultures of A. hoyamushi in biochemical and expressed sequence tag analyses. These results indicate that cellulose degradation does not occur in the softened tunic. PMID:26480917

  8. Molecular basis of canalization in an ascidian species complex adapted to different thermal conditions

    PubMed Central

    Sato, Atsuko; Kawashima, Takeshi; Fujie, Manabu; Hughes, Samantha; Satoh, Noriyuki; Shimeld, Sebastian M.

    2015-01-01

    Canalization is a result of intrinsic developmental buffering that ensures phenotypic robustness under genetic variation and environmental perturbation. As a consequence, animal phenotypes are remarkably consistent within a species under a wide range of conditions, a property that seems contradictory to evolutionary change. Study of laboratory model species has uncovered several possible canalization mechanisms, however, we still do not understand how the level of buffering is controlled in natural populations. We exploit wild populations of the marine chordate Ciona intestinalis to show that levels of buffering are maternally inherited. Comparative transcriptomics show expression levels of genes encoding canonical chaperones such as Hsp70 and Hsp90 do not correlate with buffering. However the expression of genes encoding endoplasmic reticulum (ER) chaperones does correlate. We also show that ER chaperone genes are widely conserved amongst animals. Contrary to previous beliefs that expression level of Heat Shock Proteins (HSPs) can be used as a measurement of buffering levels, we propose that ER associated chaperones comprise a cellular basis for canalization. ER chaperones have been neglected by the fields of development, evolution and ecology, but their study will enhance understanding of both our evolutionary past and the impact of global environmental change. PMID:26577490

  9. A Maternal System Initiating the Zygotic Developmental Program through Combinatorial Repression in the Ascidian Embryo

    PubMed Central

    Oda-Ishii, Izumi; Kubo, Atsushi; Kari, Willi; Suzuki, Nobuhiro; Rothbächer, Ute

    2016-01-01

    Maternal factors initiate the zygotic developmental program in animal embryos. In embryos of the chordate, Ciona intestinalis, three maternal factors—Gata.a, β-catenin, and Zic-r.a—are required to establish three domains of gene expression at the 16-cell stage; the animal hemisphere, vegetal hemisphere, and posterior vegetal domains. Here, we show how the maternal factors establish these domains. First, only β-catenin and its effector transcription factor, Tcf7, are required to establish the vegetal hemisphere domain. Second, genes specifically expressed in the posterior vegetal domain have additional repressive cis-elements that antagonize the activity of β-catenin/Tcf7. This antagonizing activity is suppressed by Zic-r.a, which is specifically localized in the posterior vegetal domain and binds to DNA indirectly through the interaction with Tcf7. Third, Gata.a directs specific gene expression in the animal hemisphere domain, because β-catenin/Tcf7 weakens the Gata.a-binding activity for target sites through a physical interaction in the vegetal cells. Thus, repressive regulation through protein-protein interactions among the maternal transcription factors is essential to establish the first distinct domains of gene expression in the chordate embryo. PMID:27152625

  10. Molecular basis of canalization in an ascidian species complex adapted to different thermal conditions.

    PubMed

    Sato, Atsuko; Kawashima, Takeshi; Fujie, Manabu; Hughes, Samantha; Satoh, Noriyuki; Shimeld, Sebastian M

    2015-01-01

    Canalization is a result of intrinsic developmental buffering that ensures phenotypic robustness under genetic variation and environmental perturbation. As a consequence, animal phenotypes are remarkably consistent within a species under a wide range of conditions, a property that seems contradictory to evolutionary change. Study of laboratory model species has uncovered several possible canalization mechanisms, however, we still do not understand how the level of buffering is controlled in natural populations. We exploit wild populations of the marine chordate Ciona intestinalis to show that levels of buffering are maternally inherited. Comparative transcriptomics show expression levels of genes encoding canonical chaperones such as Hsp70 and Hsp90 do not correlate with buffering. However the expression of genes encoding endoplasmic reticulum (ER) chaperones does correlate. We also show that ER chaperone genes are widely conserved amongst animals. Contrary to previous beliefs that expression level of Heat Shock Proteins (HSPs) can be used as a measurement of buffering levels, we propose that ER associated chaperones comprise a cellular basis for canalization. ER chaperones have been neglected by the fields of development, evolution and ecology, but their study will enhance understanding of both our evolutionary past and the impact of global environmental change. PMID:26577490

  11. Ecological observations on the colonial ascidian Didemnum sp. in a New England tide pool habitat

    USGS Publications Warehouse

    Valentine, P.C.; Carman, M.R.; Blackwood, D.S.; Heffron, E.J.

    2007-01-01

    The colonial ascidian Didemnum sp. has colonized northwestern Atlantic coastal habitats from southern Long Island, New York, to Eastport, Maine. It is also present in offshore habitats of the Georges Bank fishing grounds. It threatens to alter fisheries habitats and shellfish aquacultures. Observations in a tide pool at Sandwich, MA from December 2003 to February 2006 show that Didemnum sp. tolerates water temperatures ranging from ≤ 1 to > 24 °C, with daily changes of up to 11 °C. It attaches to pebbles, cobbles, and boulders, and it overgrows other tunicates, seaweeds, sponges, and bivalves. From May to mid July, colonies appear as small patches on the bottoms of rocks. Colonies grow rapidly from July to September, with some growth into December, and they range in color from pink to pale yellow to pale orange. Colony health declines from October through April, presumably in response to changes in water temperatures, and this degenerative process is manifested by color changes, by the appearance of small dark brown spots that represent clumps of fecal pellets in the colony, by scavenging by periwinkles, and by a peeling-away of colonies from the sides of cobbles and boulders. At Sandwich, colonies died that were exposed to air at low tide. The species does not exhibit this seasonal cycle of growth and decline in subtidal habitats (40–65 m) on the Georges Bank fishing grounds where the daily climate is relatively stable and annual water temperatures range from 4 to 15 °C. Experiments in the tide pool with small colony fragments (5 to 9 cm2) show they re-attach and grow rapidly by asexual budding, increasing in size 6- to 11-fold in the first 15 days. Didemnum sp. at Sandwich has no known predators except for common periwinkles (Littorina littorea) that graze on degenerating colonies in the October to April time period and whenever colonies are stressed by desiccation. The tendencies of the ascidian (1) to attach to firm substrates, (2) to rapidly overgrow

  12. Localization of CiCBR in the invertebrate chordate Ciona intestinalis: evidence of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling.

    PubMed

    Egertová, Michaela; Elphick, Maurice R

    2007-06-01

    CiCBR is a G-protein-coupled receptor in the sea-squirt Ciona intestinalis and the first ortholog of vertebrate CB(1) and CB(2) cannabinoid receptors to be identified in an invertebrate (Elphick et al. [2003] Gene 302:95-101). Here we have used Western blotting and immunocytochemistry to examine expression of CiCBR in adult Ciona, employing novel antibodies to the C-terminal tail of CiCBR. Consistent with the expected mass for CiCBR, a approximately 47-kDa band was detected in Ciona membranes, and immunocytochemical analysis of serial sections of Ciona revealed intense immunoreactivity in the cerebral ganglion localised in a dense meshwork of fibers in the neuropile. Accordingly, Western blot analysis of neural complex homogenates revealed the presence of a approximately 47-kDa band. CiCBR immunoreactivity was also observed in axons exiting the ganglion in the anterior and posterior nerves, and analysis of whole-mount preparations revealed that these axons project over the interior surface of the oral and atrial siphons. Isolated CiCBR-immunoreactive axons not associated with the anterior and posterior nerves were observed projecting through the cortical layer of the cerebral ganglion. Central and peripheral CiCBR-immunoreactive fibers were studded with intensely stained varicosities, indicative of a role for CiCBR in regulation of axonal release of neurotransmitters, neuromodulators, or neurohormones. Collectively, our data suggest that the well-established role that the CB(1) receptor has as an axonal regulator of neurotransmitter release in mammals may have originated with ancestral-type cannabinoid receptors in invertebrate chordates before the emergence of CB(1)- and CB(2)-type receptors in vertebrates. PMID:17428001

  13. Chemotactic response with a constant delay-time mechanism in Ciona spermatozoa revealed by a high time resolution analysis of flagellar motility.

    PubMed

    Miyashiro, Daisuke; Shiba, Kogiku; Miyashita, Tahahiro; Baba, Shoji A; Yoshida, Manabu; Kamimura, Shinji

    2015-01-01

    During their chemotactic swimming toward eggs, sperm cells detect their species-specific chemoattractant and sense concentration gradients by unknown mechanisms. After sensing the attractant, sperm cells commonly demonstrate a series of responses involving different swimming patterns by changing flagellar beats, gradually approaching a swimming path toward the eggs, which is the source of chemoattractants. Shiba et al. observed a rapid increase in intracellular Ca(2+) concentrations in Ciona spermatozoa after sensing chemoattractants; however, the biochemical processes occurring inside the sperm cells are unclear. In the present study, we focused on the timing and sensing mechanism of chemical signal detection in Ciona. One of the most crucial problems to be solved is defining the initial epoch of chemotactic responses. We adopted a high rate of video recording (600 Hz) for detailed analysis of sperm motion and a novel method for detecting subtle signs of beat forms and moving paths of sperm heads. From these analyses, we estimated a virtual sensing point of the attractant before initiation of motility responses and found that the time delay from sensing to motility responses was almost constant. To evaluate the efficiency of this constant delay model, we performed computer simulation of chemotactic behaviors of Ciona spermatozoa. PMID:25572419

  14. Complete DNA sequence of the mitochondrial genome of the ascidian Halocynthia roretzi (Chordata, Urochordata).

    PubMed

    Yokobori, S i; Ueda, T; Feldmaier-Fuchs, G; Pääbo, S; Ueshima, R; Kondow, A; Nishikawa, K; Watanabe, K

    1999-12-01

    The complete nucleotide sequence of the 14,771-bp-long mitochondrial (mt) DNA of a urochordate (Chordata)-the ascidian Halocynthia roretzi-was determined. All the Halocynthia mt-genes were found to be located on a single strand, which is rich in T and G rather than in A and C. Like nematode and Mytilus edulis mtDNAs, that of Halocynthia encodes no ATP synthetase subunit 8 gene. However, it does encode an additional tRNA gene for glycine (anticodon TCT) that enables Halocynthia mitochondria to use AGA and AGG codons for glycine. The mtDNA carries an unusual tRNA(Met) gene with a TAT anticodon instead of the usual tRNA(Met)(CAT) gene. As in other metazoan mtDNAs, there is not any long noncoding region. The gene order of Halocynthia mtDNA is completely different from that of vertebrate mtDNAs except for tRNA(His)-tRNA(Ser)(GCU), suggesting that evolutionary change in the mt-gene structure is much accelerated in the urochordate line compared with that in vertebrates. The amino acid sequences of Halocynthia mt-proteins deduced from their gene sequences are quite different from those in other metazoans, indicating that the substitution rate in Halocynthia mt-protein genes is also accelerated.

  15. Evidence of a Native Northwest Atlantic COI Haplotype Clade in the Cryptogenic Colonial Ascidian Botryllus schlosseri.

    PubMed

    Yund, Philip O; Collins, Catherine; Johnson, Sheri L

    2015-06-01

    The colonial ascidian Botryllus schlosseri should be considered cryptogenic (i.e., not definitively classified as either native or introduced) in the Northwest Atlantic. Although all the evidence is quite circumstantial, over the last 15 years most research groups have accepted the scenario of human-mediated dispersal and classified B. schlosseri as introduced; others have continued to consider it native or cryptogenic. We address the invasion status of this species by adding 174 sequences to the growing worldwide database for the mitochondrial gene cytochrome c oxidase subunit I (COI) and analyzing 1077 sequences to compare genetic diversity of one clade of haplotypes in the Northwest Atlantic with two hypothesized source regions (the Northeast Atlantic and Mediterranean). Our results lead us to reject the prevailing view of the directionality of transport across the Atlantic. We argue that the genetic diversity patterns at COI are far more consistent with the existence of at least one haplotype clade in the Northwest Atlantic (and possibly a second) that substantially pre-dates human colonization from Europe, with this native North American clade subsequently introduced to three sites in Northeast Atlantic and Mediterranean waters. However, we agree with past researchers that some sites in the Northwest Atlantic have more recently been invaded by alien haplotypes, so that some populations are currently composed of a mixture of native and invader haplotypes. PMID:26124447

  16. Recurrent phagocytosis-induced apoptosis in the cyclical generation change of the compound ascidian Botryllus schlosseri.

    PubMed

    Franchi, Nicola; Ballin, Francesca; Manni, Lucia; Schiavon, Filippo; Basso, Giuseppe; Ballarin, Loriano

    2016-09-01

    Colonies of the marine, filter-feeding ascidian Botryllus schlosseri undergo cyclical generation changes or takeovers. These events are characterised by the progressive resorption of adult zooids and their replacement by their buds that grow to adult size, open their siphons and start filtering. During the take-over, tissues of adult zooids undergo extensive apoptosis; circulating, spreading phagocytes enter the effete tissues, ingest dying cells acquiring a giant size and a round morphology. Then, phagocytes re-enter the circulation where they represent a considerable fraction (more than 20%) of circulating haemocytes. In this study, we evidence that most of these circulating phagocytes show morphological and biochemical signs of apoptosis. Accordingly, these phagocytes express transcripts of orthologues of the apoptosis-related genes Bax, AIF1 and PARP1. Electron microscopy shows that giant phagocytes contain apoptotic phagocytes inside their own phagocytic vacuole. The transcript of the orthologues of the anti-apoptotic gene IAP7 was detected only in spreading phagocytes, mostly abundant in phases far from the take-over. Therefore, the presented data suggest that, at take-over, phagocytes undergo phagocytosis-induced apoptosis (PIA). In mammals, PIA is assumed to be a process assuring the killing and the complete elimination of microbes, by promoting the disposal of terminally differentiated phagocytes and the resolution of infection. In B. schlosseri, PIA assumes a so far undescribed role, being required for the control of asexual development and colony homeostasis.

  17. Immunotoxicity in ascidians: antifouling compounds alternative to organotins-IV. The case of zinc pyrithione.

    PubMed

    Cima, Francesca; Ballarin, Loriano

    2015-03-01

    New biocides such as the organometallic compound zinc pyrithione (ZnP) have been massively introduced by many countries in formulations of antifouling paints following the ban on tributyltin (TBT). The effects of sublethal concentrations (LC50=82.5 μM, i.e., 26.2 mg/l) on cultured haemocytes of the ascidian Botryllus schlosseri have been investigated and compared with TBT. The percentage of haemocytes with amoeboid morphology and containing phagocytised yeast cells were significantly (p<0.05) reduced after exposure to 0.1 (31.7 μg/l) and 0.5 μM (158 μg/l), respectively. An antagonistic interaction in inducing cytoskeletal alterations was observed when ZnP and TBT were co-present in the exposure medium. ZnP affected only the actin component. As caused by TBT, ZnP induced apoptosis and inhibited both oxidative phosphorylation and lysosomal activities. In contrast to the case of TBT, a decrement in Ca(2+)-ATPase activity and a decrease in cytosolic Ca(2+) were detected after incubation at the highest concentration (1 μM, i.e., 317.7 μg/l) used. In comparison with other antifouling compounds, ZnP shows as much toxicity as TBT to cultured haemocytes at extremely low concentrations interfering with fundamental cell activities. PMID:25576186

  18. Multilocus genetic analyses differentiate between widespread and spatially restricted cryptic species in a model ascidian

    PubMed Central

    Bock, Dan G.; MacIsaac, Hugh J.; Cristescu, Melania E.

    2012-01-01

    Elucidating the factors that shape species distributions has long been a fundamental goal in ecology and evolutionary biology. In spite of significant theoretical advancements, empirical studies of range limits have lagged behind. Specifically, little is known about how the attributes that allow species to expand their ranges and become widespread vary across phylogenies. Here, we studied the ascidian Botryllus schlosseri, a worldwide invasive species that is also characterized by marked genetic subdivision. Our study includes phylogenetic and population genetic data based on mitochondrial and nuclear genes, as well as polymorphic microsatellites for B. schlosseri colonies sampled from the southern and northern coasts of Europe and the eastern and western coasts of North America. We demonstrate that this well-known model organism comprises three highly divergent and probably reproductively isolated cryptic species (A, D and E), with two more (B and C) being suggested by data retrieved from GenBank. Among these, species A, recovered in all of the surveyed regions, is by far the most common and widespread. By contrast, species B–E, occurring mostly in sites from northern Europe, are considerably more geographically restricted. These findings, along with inferences made on transport opportunity, suggest that divergent evolutionary histories promoted differences in invasive potential between B. schlosseri sibling species, indicating that attributes that facilitate dramatic shifts in range limits can evolve more easily and frequently than previously thought. We propose environmental disturbance as a selective force that could have shaped the evolution of invasiveness in the B. schlosseri complex. PMID:22319123

  19. Transcriptional activity and expression of liver X receptor in the ascidian Halocynthia roretzi.

    PubMed

    Raslan, Ahmed Ahmed; Lee, Jung Hwan; Shin, Jihye; Shin, Yun Kyung; Sohn, Young Chang

    2013-09-01

    Liver X receptors, LXRs, are ligand-activated transcription factors that belong to the group H nuclear receptor (NR) superfamily. In this study, an LXR (HrLXR) cDNA was cloned from the ascidian Halocynthia roretzi hepatopancreas and characterized to examine the functional conservation of ancestral LXRs in chordates. A phylogenetic analysis of HrLXR showed that it belongs to the tunicate (urochordate) LXR subgroup, which is distinct from vertebrate LXRs. Quantitative real-time PCR analysis revealed that HrLXR mRNA was expressed predominantly in the gills, and highly expressed in unfertilized eggs followed by decrease at later embryonic and larval stages. Unexpectedly, HrLXR was not activated by GW3965, whereas a synthetic ligand for a farnesoid X receptor, GW4064, activated HrLXR. This activation was abolished by the deletion of 51 amino acids from the N-terminus. In a mammalian two-hybrid system, HrLXR interacted with HrRXR in the presence of GW4064 or 9-cis retinoic acid. The injection of GW3965 and GW4064 in vivo increased the ATPbinding cassette sub-family G member 4 and HrLXR mRNA levels in the hepatopancreas and gills. These results suggest that the mRNA expression and transcriptional properties of HrLXR are different from those of vertebrate LXRs, although HrLXR is likely responsive to the related NR ligand, GW4064.

  20. Global Phylogeography of the Widely Introduced North West Pacific Ascidian Styela clava

    PubMed Central

    Goldstien, Sharyn J.; Dupont, Lise; Viard, Frédérique; Hallas, Paul J.; Nishikawa, Teruaki; Schiel, David R.; Gemmell, Neil J.; Bishop, John D. D.

    2011-01-01

    The solitary ascidian Styela clava Herdman, 1882 is considered to be native to Japan, Korea, northern China and the Russian Federation in the NW Pacific, but it has spread globally over the last 80 years and is now established as an introduced species on the east and west coasts of North America, Europe, Australia and New Zealand. In eastern Canada it reaches sufficient density to be a serious pest to aquaculture concerns. We sequenced a fragment of the cytochrome oxidase subunit I mitochondrial gene (COI) from a total of 554 individuals to examine the genetic relationships of 20 S. clava populations sampled throughout the introduced and native ranges, in order to investigate invasive population characteristics. The data presented here show a moderate level of genetic diversity throughout the northern hemisphere. The southern hemisphere (particularly New Zealand) displays a greater amount of haplotype and nucleotide diversity in comparison. This species, like many other invasive species, shows a range of genetic diversities among introduced populations independent of the age of incursion. The successful establishment of this species appears to be associated with multiple incursions in many locations, while other locations appear to have experienced rapid expansion from a potentially small population with reduced genetic diversity. These contrasting patterns create difficulties when attempting to manage and mitigate a species that continues to spread among ports and marinas around the world. PMID:21364988

  1. The Whereabouts of an Ancient Wanderer: Global Phylogeography of the Solitary Ascidian Styela plicata

    PubMed Central

    Pineda, Mari Carmen; López-Legentil, Susanna; Turon, Xavier

    2011-01-01

    Genetic tools have greatly aided in tracing the sources and colonization history of introduced species. However, recurrent introductions and repeated shuffling of populations may have blurred some of the genetic signals left by ancient introductions. Styela plicata is a solitary ascidian distributed worldwide. Although its origin remains unclear, this species is believed to have spread worldwide by travelling on ship's hulls. The goals of this study were to infer the genetic structure and global phylogeography of S. plicata and to look for present-day and historical genetic patterns. Two genetic markers were used: a fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) and a fragment of the nuclear gene Adenine Nucleotide Transporter/ADP-ATP Translocase (ANT). A total of 368 individuals for COI and 315 for ANT were sequenced from 17 locations worldwide. The levels of gene diversity were moderate for COI to high for ANT. The Mediterranean populations showed the least diversity and allelic richness for both markers, while the Indian, Atlantic and Pacific Oceans had the highest gene and nucleotide diversities. Network and phylogenetic analyses with COI and ANT revealed two groups of alleles separated by 15 and 4 mutational steps, respectively. The existence of different lineages suggested an ancient population split. However, the geographic distributions of these groups did not show any consistent pattern, indicating different phylogeographic histories for each gene. Genetic divergence was significant for many population-pairs irrespective of the geographic distance among them. Stochastic introduction events are reflected in the uneven distribution of COI and ANT allele frequencies and groups among many populations. Our results confirmed that S. plicata has been present in all studied oceans for a long time, and that recurrent colonization events and occasional shuffling among populations have determined the actual genetic structure of this species

  2. The activation wave of calcium in the ascidian egg and its role in ooplasmic segregation

    PubMed Central

    1990-01-01

    We have studied egg activation and ooplasmic segregation in the ascidian Phallusia mammillata using an imaging system that let us simultaneously monitor egg morphology and calcium-dependent aequorin luminescence. After insemination, a wave of highly elevated free calcium crosses the egg with a peak velocity of 8-9 microns/s. A similar wave is seen in egg fertilized in the absence of external calcium. Artificial activation via incubation with WGA also results in a calcium wave, albeit with different temporal and spatial characteristics than in sperm-activated eggs. In eggs in which movement of the sperm nucleus after entry is blocked with cytochalasin D, the sperm aster is formed at the site where the calcium wave had previously started. This indicates that the calcium wave starts where the sperm enters. In 70% of the eggs, the calcium wave starts in the animal hemisphere, which confirms previous observations that there is a preference for sperm to enter this part of the egg (Speksnijder, J. E., L. F. Jaffe, and C. Sardet. 1989. Dev. Biol. 133:180-184). About 30-40 s after the calcium wave starts, a slower (1.4 microns/s) wave of cortical contraction starts near the animal pole. It carries the subcortical cytoplasm to a contraction pole, which forms away from the side of sperm entry and up to 50 degrees away from the vegetal pole. We propose that the point of sperm entry may affect the direction of ooplasmic segregation by causing it to tilt away from the vegetal pole, presumably via some action of the calcium wave. PMID:2335565

  3. The activation wave of calcium in the ascidian egg and its role in ooplasmic segregation.

    PubMed

    Speksnijder, J E; Sardet, C; Jaffe, L F

    1990-05-01

    We have studied egg activation and ooplasmic segregation in the ascidian Phallusia mammillata using an imaging system that let us simultaneously monitor egg morphology and calcium-dependent aequorin luminescence. After insemination, a wave of highly elevated free calcium crosses the egg with a peak velocity of 8-9 microns/s. A similar wave is seen in egg fertilized in the absence of external calcium. Artificial activation via incubation with WGA also results in a calcium wave, albeit with different temporal and spatial characteristics than in sperm-activated eggs. In eggs in which movement of the sperm nucleus after entry is blocked with cytochalasin D, the sperm aster is formed at the site where the calcium wave had previously started. This indicates that the calcium wave starts where the sperm enters. In 70% of the eggs, the calcium wave starts in the animal hemisphere, which confirms previous observations that there is a preference for sperm to enter this part of the egg (Speksnijder, J. E., L. F. Jaffe, and C. Sardet. 1989. Dev. Biol. 133:180-184). About 30-40 s after the calcium wave starts, a slower (1.4 microns/s) wave of cortical contraction starts near the animal pole. It carries the subcortical cytoplasm to a contraction pole, which forms away from the side of sperm entry and up to 50 degrees away from the vegetal pole. We propose that the point of sperm entry may affect the direction of ooplasmic segregation by causing it to tilt away from the vegetal pole, presumably via some action of the calcium wave.

  4. Biology of the invasive ascidian Ascidiella aspersa in its native habitat: Reproductive patterns and parasite load

    NASA Astrophysics Data System (ADS)

    Lynch, Sharon A.; Darmody, Grainne; O'Dwyer, Katie; Gallagher, Mary Catherine; Nolan, Sinead; McAllen, Rob; Culloty, Sarah C.

    2016-11-01

    The European sea squirt Ascidiella aspersa is a solitary tunicate native to the northeastern Atlantic, commonly found in shallow and sheltered marine ecosystems where it is capable of forming large clumps and outcompeting other invertebrate fauna at settlement. To date, there have been relatively few studies looking at the reproductive biology and health status of this invasive species. Between 2006 and 2010 sampling of a native population took place to investigate gametogenesis and reproductive cycle and to determine the impact of settlement depth on reproduction. In addition, parasite diversity and impact was assessed. A staging system to assess reproductive development was determined. The study highlighted that from year to year the tunicate could change its reproductive strategy from single sex to hermaphrodite, with spawning possible throughout the year. Depth did not impact on sex determination, however, gonad maturation and spawning occurred earlier in individuals in deeper waters compared to shallow depth and it also occurred later in A. aspersa at sites further away from the open sea. Four significant parasite groups including eugregarines, ciliates, trematodes and turbellarians were detected and prevalence of parasite infections increased in A. aspersa at sites with a reduced water flow rate. This study demonstrates the high biotic potential of this ascidian bioinvader to have a negative impact on native fauna in an introduced ecosystem, due to its highly efficient reproductive and resource allocation strategies. Artificial structures such as mooring lines can harbour large aggregations of A. aspersa, however, these manmade habitats may facilitate the colonisation and establishment of this invasive species in the benthos. Additionally, the parasite communities that A. aspersa harbour may also exacerbate its negative impact, both ecologically and economically, in an introduced area by possibly leading to the emergence of new disease in native species i

  5. A methodical microarray design enables surveying of expression of a broader range of genes in Ciona intestinalis.

    PubMed

    Matsumae, Hiromi; Hamada, Mayuko; Fujie, Manabu; Niimura, Yoshihito; Tanaka, Hiroshi; Kawashima, Takeshi

    2013-04-25

    We provide a new oligo-microarray for Ciona intestinalis, based on the NimbleGen 12-plex×135k format. The array represents 106,285 probes, which is more than double the probe number of the currently available 44k microarray. These probes cover 99.2% of the transcripts in the KyotoHoya (KH) models, published in 2008, and they contain 81.1% of the entries in the UniGene database that are not included in the KH models. In this paper, we show that gene expression levels measured by this new 135k microarray are highly correlated with those obtained by the existing 44k microarray for genes common to both arrays. We also investigated gene expression using samples obtained from the ovary and the neural complex of adult C. intestinalis, showing that the expression of tissue-specific genes is consistent with previous reports. Approximately half of the highly expressed genes identified in the 135k microarray are not included in the previous microarray. The high coverage of gene models by this microarray made it possible to identify splicing variants for a given transcript. The 135k microarray is useful in investigating the functions of genes that are not yet well characterized. Detailed information about this 135k microarray is accessible at no charge from supplemental materials, NCBI Gene Expression Omnibus (GEO), and http://marinegenomics.oist.jp.

  6. Transmission of cyanobacterial symbionts during embryogenesis in the coral reef ascidians Trididemnum nubilum and T. clinides (Didemnidae, Ascidiacea, Chordata).

    PubMed

    Kojima, Aoi; Hirose, Euichi

    2012-02-01

    Vertical transmission of cyanobacterial symbionts occurs in didemnid ascidians harboring Prochloron as an obligate symbiont; the photosymbionts are transferred from the parental ascidian colony to the offspring in various ways depending on host species. Although several didemnids harbor non-Prochloron cyanobacteria in their tunics, few studies have reported the processes of vertical transmission in these didemnids. Here we describe the histological processes of the transmission of cyanobacteria in two didemnids, Trididemnum nubilum harboring Synechocystis and T. clinides harboring three cyanobacterial species. In both species, the photosymbionts in the tunic of the parent colony were apparently captured by the tunic cells of the host and transferred to the embryos brooded in the tunic. The symbiont cells were then incorporated into the inner tunic of the embryo. This mode of transmission is essentially the same as that of T. miniatum harboring Prochloron in the tunic, although there are some differences among species in the timing of the release of the symbionts from the tunic cells. We suggest that the similar modes of vertical transmission are an example of convergent evolution caused by constraints in the distribution patterns of symbiont cells in the host colony.

  7. Deep sequencing of mixed total DNA without barcodes allows efficient assembly of highly plastic ascidian mitochondrial genomes.

    PubMed

    Rubinstein, Nimrod D; Feldstein, Tamar; Shenkar, Noa; Botero-Castro, Fidel; Griggio, Francesca; Mastrototaro, Francesco; Delsuc, Frédéric; Douzery, Emmanuel J P; Gissi, Carmela; Huchon, Dorothée

    2013-01-01

    Ascidians or sea squirts form a diverse group within chordates, which includes a few thousand members of marine sessile filter-feeding animals. Their mitochondrial genomes are characterized by particularly high evolutionary rates and rampant gene rearrangements. This extreme variability complicates standard polymerase chain reaction (PCR) based techniques for molecular characterization studies, and consequently only a few complete Ascidian mitochondrial genome sequences are available. Using the standard PCR and Sanger sequencing approach, we produced the mitochondrial genome of Ascidiella aspersa only after a great effort. In contrast, we produced five additional mitogenomes (Botrylloides aff. leachii, Halocynthia spinosa, Polycarpa mytiligera, Pyura gangelion, and Rhodosoma turcicum) with a novel strategy, consisting in sequencing the pooled total DNA samples of these five species using one Illumina HiSeq 2000 flow cell lane. Each mitogenome was efficiently assembled in a single contig using de novo transcriptome assembly, as de novo genome assembly generally performed poorly for this task. Each of the new six mitogenomes presents a different and novel gene order, showing that no syntenic block has been conserved at the ordinal level (in Stolidobranchia and in Phlebobranchia). Phylogenetic analyses support the paraphyly of both Ascidiacea and Phlebobranchia, with Thaliacea nested inside Phlebobranchia, although the deepest nodes of the Phlebobranchia-Thaliacea clade are not well resolved. The strategy described here thus provides a cost-effective approach to obtain complete mitogenomes characterized by a highly plastic gene order and a fast nucleotide/amino acid substitution rate.

  8. Fatty Acid and Lipid Profiles with Emphasis on n-3 Fatty Acids and Phospholipids from Ciona intestinalis.

    PubMed

    Zhao, Yadong; Wang, Miao; Lindström, Mikael E; Li, Jiebing

    2015-10-01

    In order to establish Ciona intestinalis as a new bioresource for n-3 fatty acids-rich marine lipids, the animal was fractionated into tunic and inner body tissues prior to lipid extraction. The lipids obtained were further classified into neutral lipids (NL), glycolipids (GL) and phospholipids (PL) followed by qualitative and quantitative analysis using GC-FID, GC-MS, (1)H NMR, 2D NMR, MALDI-TOF-MS and LC-ESI-MS methods. It was found that the tunic and inner body tissues contained 3.42-4.08% and 15.9-23.4% of lipids respectively. PL was the dominant lipid class (42-60%) irrespective of the anatomic fractions. From all lipid fractions and classes, the major fatty acids were 16:0, 18:1n-9, C20:1n-9, C20:5n-3 (EPA) and C22:6n-3 (DHA). The highest amounts of long chain n-3 fatty acids, mainly EPA and DHA, were located in PL from both body fractions. Cholestanol and cholesterol were the dominant sterols together with noticeable amounts of stellasterol, 22 (Z)-dehydrocholesterol and lathosterol. Several other identified and two yet unidentified sterols were observed for the first time from C. intestinalis. Different molecular species of phosphatidylcholine (34 species), sphingomyelin (2 species), phosphatidylethanolamine (2 species), phosphatidylserine (10 species), phosphatidylglycerol (9 species), ceramide (38 species) and lysophospholipid (5 species) were identified, representing the most systematic PL profiling knowledge so far for the animal. It could be concluded that C. intestinalis lipids should be a good alternative for fish oil with high contents of n-3 fatty acids. The lipids would be more bioavailable due to the presence of the fatty acids being mainly in the form of PL. PMID:26233815

  9. Toxic effects of two pesticides, Imazalil and Triadimefon, on the early development of the ascidian Phallusia mammillata (Chordata, Ascidiacea).

    PubMed

    Pennati, Roberta; Groppelli, Silvia; Zega, Giuliana; Biggiogero, Maira; De Bernardi, Fiorenza; Sotgia, Cristina

    2006-09-12

    Azole compounds are fungicides used in agriculture and in clinical area and are suspected to produce craniofacial malformations in vertebrates. Toxicity tests on sperm viability, fertilization and embryogenesis of the solitary ascidian Phallusia mammillata were performed to evaluate the effects of two azole derivatives, Imazalil and Triadimefon. Ascidian (Chordata, Ascidiacea) embryos and larvae could provide biological criteria for seawater quality standards because the larvae are lecitotrophic and have a short pelagic period, allowing to run the larval toxicity tests over a short period of time. Imazalil and Triadimefon proved to have strong consequences on P. mammillata. They could influence the reproductive rate of the animal exerting their effects at different levels: acting as spermiotoxic agents, inhibiting fertilization and impairing embryological development. Fertilization rate significantly decreased after 30min exposure of sperm to 25microM Imazalil (P<0.0001) and after exposure of both gametes to 50microM Imazalil (P<0.05) and 1mM Triadimefon (P<0.0001) as compared to controls. Malformations caused by exposure of embryos to both substances were dose dependent. Imazalil median teratogenic concentration (TC50 concentration, the concentration that resulted in 50% malformed larvae) value was 0.67microM and median lethal concentration (LC50, the concentration that resulted in 50% embryos dead before completing the development) value was 10.23microM while for Triadimefon TC50 value was 29.56 and LC50 value was 173.7microM. Larvae developed from embryos treated with Imazalil and Triadimefon showed alterations of the anterior structures of the trunk: papillary nerves and the anterior central nervous system failed to correctly differentiate, as showed by immunostaining with anti-beta-tubulin antibody. Comparing the anomalies caused by retinoic acid, reported in a previous study, it was possible to hypothesize that malformations induced by Imazalil and

  10. An exceptional salt-tolerant antimicrobial peptide derived from a novel gene family of haemocytes of the marine invertebrate Ciona intestinalis.

    PubMed

    Fedders, Henning; Michalek, Matthias; Grötzinger, Joachim; Leippe, Matthias

    2008-11-15

    A novel gene family coding for putative antimicrobial peptides was identified in the EST (expressed sequence tag) database of the sea squirt Ciona intestinalis, and one of these genes was molecularly cloned from the Northern European Ciona subspecies. In situ hybridization and immunocytochemical analysis revealed that the natural peptide is synthesized and stored in a distinct haemocyte type, the univacuolar non-refractile granulocytes. By semiquantitative RT-PCR (reverse transcription-PCR) analysis, it was shown that the expression of the gene is markedly up-regulated in haemocytes after immune challenge. To evaluate the antimicrobial potency of the putative defence protein, we synthesized a peptide corresponding to its cationic core region. The peptide was highly effective against Gram-negative and Gram-positive bacteria including several human and marine pathogens as well as the yeast Candida albicans. Notably, the antibacterial activity of the peptide was retained at salt concentrations of up to 450 mM NaCl. Using two different methods we demonstrated that the peptide kills Gram-negative and Gram-positive bacteria by permeabilizing their cytoplasmic membranes. CD spectroscopy revealed that, in the presence of liposomes composed of negatively charged phospholipids, the peptide undergoes a conformational change and adopts an alpha-helical structure. Moreover, the peptide was virtually non-cytolytic for mammalian erythrocytes. Hence, the designed salt-tolerant antimicrobial peptide may represent a valuable template for the development of novel antibiotics.

  11. Verruculides A and B, two new protein tyrosine phosphatase 1B inhibitors from an Indonesian ascidian-derived Penicillium verruculosum.

    PubMed

    Yamazaki, Hiroyuki; Nakayama, Wataru; Takahashi, Ohgi; Kirikoshi, Ryota; Izumikawa, Yuta; Iwasaki, Kohei; Toraiwa, Kengo; Ukai, Kazuyo; Rotinsulu, Henki; Wewengkang, Defny S; Sumilat, Deiske A; Mangindaan, Remy E P; Namikoshi, Michio

    2015-08-15

    Two new merosesquiterpenes, verruculides A (1) and B (2), were isolated from a culture broth of the Indonesian ascidian-derived Penicillium verruculosum TPU1311, together with three known congeners, chrodrimanins A (3), B (4), and H (5). The structures of 1 and 2 were assigned on the basis of their spectroscopic data (1D and 2D NMR, HRMS, UV, CD, and IR). Compound 2 had a linear sesquiterpene moiety and was considered to be the derivative of the biosynthetic precursor for 1 and 3-5. Compounds 1, 3, and 5 inhibited the activity of protein tyrosine phosphatase 1B (PTP1B) with IC50 values of 8.4, 8.5, and 14.9 μM, respectively. Compound 2 showed 40% inhibition at 23.1 μM, while 4 was not active at 20.7 μM. PMID:26115570

  12. Verruculides A and B, two new protein tyrosine phosphatase 1B inhibitors from an Indonesian ascidian-derived Penicillium verruculosum.

    PubMed

    Yamazaki, Hiroyuki; Nakayama, Wataru; Takahashi, Ohgi; Kirikoshi, Ryota; Izumikawa, Yuta; Iwasaki, Kohei; Toraiwa, Kengo; Ukai, Kazuyo; Rotinsulu, Henki; Wewengkang, Defny S; Sumilat, Deiske A; Mangindaan, Remy E P; Namikoshi, Michio

    2015-08-15

    Two new merosesquiterpenes, verruculides A (1) and B (2), were isolated from a culture broth of the Indonesian ascidian-derived Penicillium verruculosum TPU1311, together with three known congeners, chrodrimanins A (3), B (4), and H (5). The structures of 1 and 2 were assigned on the basis of their spectroscopic data (1D and 2D NMR, HRMS, UV, CD, and IR). Compound 2 had a linear sesquiterpene moiety and was considered to be the derivative of the biosynthetic precursor for 1 and 3-5. Compounds 1, 3, and 5 inhibited the activity of protein tyrosine phosphatase 1B (PTP1B) with IC50 values of 8.4, 8.5, and 14.9 μM, respectively. Compound 2 showed 40% inhibition at 23.1 μM, while 4 was not active at 20.7 μM.

  13. A new genus of Asterocheridae (Copepoda: Siphonostomatoida) ectoassociate of the ascidian Eudistoma vannamei Millar, 1977 (Polycitoridae) from Brazil.

    PubMed

    Johnsson, Rodrigo; Bahia, Cristiano; Neves, Elizabeth

    2016-01-01

    Asterocheres Boeck, 1860 is the largest genus of the siphonostomatoid copepod family Asterocheridae, containing 63 valid species. The genus is known for its symbiotic relationships with many marine invertebrate taxa, especially sponges, cnidarians, bryozoans, and echinoderms. Recent studies have restricted the diagnosis of this genus. Consequently, many species are now considered as species inquirendae. The present paper describes a new species living externally on the tunic of Eudistoma vannamei Millar, 1977, an endemic ascidian from Brazil. As the new species does not fit Asterocheres in the strict sense, a new genus is erected to accommodate it. Setacheres gen. nov. is characterized by its possession of two distal setae on the third endopodal segment of P3, thus differing from the distal seta and spine pattern that is deemed as diagnostic of Asterocheres. A revision and comparison of Asterocheres´ species inquirendae revealed eight species sharing the same generic characteristics and were thus reallocated as members of the new genus.

  14. [APPLICATION OF FLOW CYTOMETRY FOR THE ANALYSIS OF CIRCULATING HEMOCYTE POPULATIONS IN THE ASCIDIAN HALOCYNTHIA AURANTIUM (PALLAS, 1787)].

    PubMed

    Sukhachev, A N; Dyachkov, I S; Kudryavtsev, I V; Kumeiko, V V; Tsybulskiy, A V; Polevshchikov, A V

    2015-01-01

    This study addresses the potentialities of flow cytometry in analyzing the composition of circulating hemocyte populations in the ascidian Halocynthia aurantium (Pallas, 1787) both using monoclonal antibodies (mAbs) against some human leukocyte conservative adhesion molecules and without mAbs. Flow cytometry, based on the assessment of forward and side scattering revealed five hemocyte populations. From the wide panel of antibodies against human leukocyte adhesion molecules (CD15, CD29, CD34, CD54, CD62L, CD62P, CD90, CD94, CD117, CD 166), only two mAbs (against CD54, CD90) displayed cross-reactivity with the H. aurantium hemocyte surface antigens. Distribution patterns of these antigens across the hemocyte populations have been analyzed. PMID:26281224

  15. A new genus of Asterocheridae (Copepoda: Siphonostomatoida) ectoassociate of the ascidian Eudistoma vannamei Millar, 1977 (Polycitoridae) from Brazil.

    PubMed

    Johnsson, Rodrigo; Bahia, Cristiano; Neves, Elizabeth

    2016-01-01

    Asterocheres Boeck, 1860 is the largest genus of the siphonostomatoid copepod family Asterocheridae, containing 63 valid species. The genus is known for its symbiotic relationships with many marine invertebrate taxa, especially sponges, cnidarians, bryozoans, and echinoderms. Recent studies have restricted the diagnosis of this genus. Consequently, many species are now considered as species inquirendae. The present paper describes a new species living externally on the tunic of Eudistoma vannamei Millar, 1977, an endemic ascidian from Brazil. As the new species does not fit Asterocheres in the strict sense, a new genus is erected to accommodate it. Setacheres gen. nov. is characterized by its possession of two distal setae on the third endopodal segment of P3, thus differing from the distal seta and spine pattern that is deemed as diagnostic of Asterocheres. A revision and comparison of Asterocheres´ species inquirendae revealed eight species sharing the same generic characteristics and were thus reallocated as members of the new genus. PMID:27395122

  16. Anticancer effects of brominated indole alkaloid Eudistomin H from marine ascidian Eudistoma viride against cervical cancer cells (HeLa).

    PubMed

    Rajesh, Rajaian Pushpabai; Annappan, Murugan

    2015-01-01

    Marine invertebrates called ascidians are prolific producers of bioactive substances. The ascidian Eudistoma viride, distributed along the Southeast coast of India, was investigated for its in vitro cytotoxic activity against human cervical carcinoma (HeLa) cells by the MTT assay. The crude methanolic extract of E. viride, with an IC50 of 53 μg/ml, was dose-dependently cytotoxic. It was more potent at 100 μg/ml than cyclohexamide (1 μg/ml), reducing cell viability to 9.2%. Among nine fractions separated by chromatography, ECF-8 exhibited prominent cytoxic activity at 10 μg/ml. The HPLC fraction EHF-21 of ECF-8 was remarkably dose- and time-dependently cytotoxic, with 39.8% viable cells at 1 μg/ml compared to 51% in cyclohexamide-treated cells at the same concentration; the IC50 was 0.49 μg/ml. Hoechst staining of HeLa cells treated with EHF-21 at 0.5 μg/ml revealed apoptotic events such an cell shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies. Cell size and granularity study showed changes in light scatter, indicating the characteristic feature of cells dying by apoptosis. The cell-cycle analysis of HeLa cells treated with fraction EHF-21 at 1 μg/ml showed the marked arrest of cells in G0/G1, S and G2/M phases and an increase in the sub G0/G1 population indicated an increase in the apoptotic cell population. The statistical analysis of the sub-G1 region showed a dose-dependent induction of apoptosis. DNA fragmentation was also observed in HeLa cells treated with EHF-21. The active EHF-21 fraction, a brominated indole alkaloid Eudistomin H, led to apoptotic death of HeLa cells.

  17. Ascidian eggs block polyspermy by two independent mechanisms: one at the egg plasma membrane, the other involving the follicle cells.

    PubMed

    Lambert, C; Goudeau, H; Franchet, C; Lambert, G; Goudeau, M

    1997-09-01

    Many ascidians live in clumps and usually release sperm before the eggs. Consequently, eggs are often spawned into dense clouds of sperm. Because fertilization by more than a single sperm is lethal, ascidians have evolved at least two successive blocks to polyspermy: the rapid release of a glycosidase that inhibits sperm binding to the vitelline coat (VC) and a subsequent change in membrane potential that prevents supernumerary sperm-egg fusion. This paper shows that (1) these two blocks can be uncoupled by the use of suramin, and (2) most of the glycosidase appears to be from the follicle cells, which are accessory cells on the outside of the egg VC. Phallusia mammillata eggs initially bind numerous sperm but, after the glycosidase is released, only a few additional sperm bind. Intact eggs in 20 microM suramin release glycosidase, but the electrical response is inhibited; sperm swim actively and bind to the VC but fail to penetrate. Suramin treatment is completely reversible; intact eggs exhibit the electrical response an average of 11 minutes after the drug is washed out. Sperm must contact the follicle cells before passing through the VC; eggs with the VC removed and fertilized in the presence of 20 microM suramin show the electrical response 35% of the time, thus VC removal enhances sperm entry. Like the intact eggs, 100% of the naked eggs respond electrically to fertilization after the drug is washed out. Follicle cells that are isolated by calcium magnesium free seawater and then returned to complete seawater release N-acetylglucosaminidase activity in response to sperm. Thus, these eggs have two blocks to polyspermy that operate in sequence: an early first block resulting from enzymatic modification of the VC by N-acetylglucosaminidase released primarily from follicle cells and a second electrical block operating at the egg plasma membrane level and requiring sperm-egg fusion. PMID:9266770

  18. Ascidian eggs block polyspermy by two independent mechanisms: one at the egg plasma membrane, the other involving the follicle cells.

    PubMed

    Lambert, C; Goudeau, H; Franchet, C; Lambert, G; Goudeau, M

    1997-09-01

    Many ascidians live in clumps and usually release sperm before the eggs. Consequently, eggs are often spawned into dense clouds of sperm. Because fertilization by more than a single sperm is lethal, ascidians have evolved at least two successive blocks to polyspermy: the rapid release of a glycosidase that inhibits sperm binding to the vitelline coat (VC) and a subsequent change in membrane potential that prevents supernumerary sperm-egg fusion. This paper shows that (1) these two blocks can be uncoupled by the use of suramin, and (2) most of the glycosidase appears to be from the follicle cells, which are accessory cells on the outside of the egg VC. Phallusia mammillata eggs initially bind numerous sperm but, after the glycosidase is released, only a few additional sperm bind. Intact eggs in 20 microM suramin release glycosidase, but the electrical response is inhibited; sperm swim actively and bind to the VC but fail to penetrate. Suramin treatment is completely reversible; intact eggs exhibit the electrical response an average of 11 minutes after the drug is washed out. Sperm must contact the follicle cells before passing through the VC; eggs with the VC removed and fertilized in the presence of 20 microM suramin show the electrical response 35% of the time, thus VC removal enhances sperm entry. Like the intact eggs, 100% of the naked eggs respond electrically to fertilization after the drug is washed out. Follicle cells that are isolated by calcium magnesium free seawater and then returned to complete seawater release N-acetylglucosaminidase activity in response to sperm. Thus, these eggs have two blocks to polyspermy that operate in sequence: an early first block resulting from enzymatic modification of the VC by N-acetylglucosaminidase released primarily from follicle cells and a second electrical block operating at the egg plasma membrane level and requiring sperm-egg fusion.

  19. Anticancer effects of brominated indole alkaloid Eudistomin H from marine ascidian Eudistoma viride against cervical cancer cells (HeLa).

    PubMed

    Rajesh, Rajaian Pushpabai; Annappan, Murugan

    2015-01-01

    Marine invertebrates called ascidians are prolific producers of bioactive substances. The ascidian Eudistoma viride, distributed along the Southeast coast of India, was investigated for its in vitro cytotoxic activity against human cervical carcinoma (HeLa) cells by the MTT assay. The crude methanolic extract of E. viride, with an IC50 of 53 μg/ml, was dose-dependently cytotoxic. It was more potent at 100 μg/ml than cyclohexamide (1 μg/ml), reducing cell viability to 9.2%. Among nine fractions separated by chromatography, ECF-8 exhibited prominent cytoxic activity at 10 μg/ml. The HPLC fraction EHF-21 of ECF-8 was remarkably dose- and time-dependently cytotoxic, with 39.8% viable cells at 1 μg/ml compared to 51% in cyclohexamide-treated cells at the same concentration; the IC50 was 0.49 μg/ml. Hoechst staining of HeLa cells treated with EHF-21 at 0.5 μg/ml revealed apoptotic events such an cell shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies. Cell size and granularity study showed changes in light scatter, indicating the characteristic feature of cells dying by apoptosis. The cell-cycle analysis of HeLa cells treated with fraction EHF-21 at 1 μg/ml showed the marked arrest of cells in G0/G1, S and G2/M phases and an increase in the sub G0/G1 population indicated an increase in the apoptotic cell population. The statistical analysis of the sub-G1 region showed a dose-dependent induction of apoptosis. DNA fragmentation was also observed in HeLa cells treated with EHF-21. The active EHF-21 fraction, a brominated indole alkaloid Eudistomin H, led to apoptotic death of HeLa cells. PMID:25550562

  20. Neural induction suppresses early expression of the inward-rectifier K+ channel in the ascidian blastomere.

    PubMed Central

    Okamura, Y; Takahashi, K

    1993-01-01

    1. Early expression of ion channels following neural induction was examined in isolated, cleavage-arrested blastomeres from the ascidian embryo using a two-electrode voltage clamp. Currents were recorded from the isolated, cleavage-arrested blastomere, a4-2, after treatment with serine protease, subtilisin, which induces neural differentiation as consistently as cell contact. 2. The inward-rectifier K+ current increased at the late gastrula stage shortly after the sensitive period for neural induction both in the induced (protease-treated) and uninduced cells. Ca2+ channels, characteristic of epidermal-type differentiation, and delayed-rectifier K+ channels and differentiated-type Na+ channels, characteristic of neural-type differentiation appeared much later than the inward-rectifier K+ channels, at a time corresponding to the tail bud stage of the intact embryo. 3. When cells were treated with subtilisin during the critical period for neural induction, the increase in the inward-rectifier K+ current from the late gastrula stage to the neurula stage was about three times smaller (3.67 +/- 1.74 nA, mean +/- S.D., n = 14) than in untreated cells (11.25 +/- 3.10 nA, n = 26). The same changes in the inward-rectifier K+ channel were also observed in a4 2 blastomeres which were induced by cell contact with an A4-1 blastomere. However, when cells were treated with subtilisin after the critical period for neural induction, the amplitude of the inward-rectifier K+ current was the same as in untreated cells. Thus the expressed level of the inward-rectifier K+ channel was linked to the determination of neural or epidermal cell types. 4. There was no significant difference in the input capacitance of induced and uninduced cells, indicating that the difference in the amplitude of the inward-rectifier K+ currents derived from a difference in the channel density rather than a difference in cell surface area. 5. The expression of the inward-rectifier K+ channel at the late

  1. Ascidian and amphioxus Adh genes correlate functional and molecular features of the ADH family expansion during vertebrate evolution.

    PubMed

    Cañestro, Cristian; Albalat, Ricard; Hjelmqvist, Lars; Godoy, Laura; Jörnvall, Hans; Gonzàlez-Duarte, Roser

    2002-01-01

    The alcohol dehydrogenase (ADH) family has evolved into at least eight ADH classes during vertebrate evolution. We have characterized three prevertebrate forms of the parent enzyme of this family, including one from an urochordate (Ciona intestinalis) and two from cephalochordates (Branchiostoma floridae and Branchiostoma lanceolatum). An evolutionary analysis of the family was performed gathering data from protein and gene structures, exon-intron distribution, and functional features through chordate lines. Our data strongly support that the ADH family expansion occurred 500 million years ago, after the cephalochordate/vertebrate split, probably in the gnathostome subphylum line of the vertebrates. Evolutionary rates differ between the ancestral, ADH3 (glutathione-dependent formaldehyde dehydrogenase), and the emerging forms, including the classical alcohol dehydrogenase, ADH1, which has an evolutionary rate 3.6-fold that of the ADH3 form. Phylogenetic analysis and chromosomal mapping of the vertebrate Adh gene cluster suggest that family expansion took place by tandem duplications, probably concurrent with the extensive isoform burst observed before the fish/tetrapode split, rather than through the large-scale genome duplications also postulated in early vertebrate evolution. The absence of multifunctionality in lower chordate ADHs and the structures compared argue in favor of the acquisition of new functions in vertebrate ADH classes. Finally, comparison between B. floridae and B. lanceolatum Adhs provides the first estimate for a cephalochordate speciation, 190 million years ago, probably concomitant with the beginning of the drifting of major land masses from the Pangea.

  2. A forkhead gene related to HNF-3beta is required for gastrulation and axis formation in the ascidian embryo.

    PubMed

    Olsen, C L; Jeffery, W R

    1997-09-01

    We have isolated a member of the HNF-3/forkhead gene family in ascidians as a means to determine the role of winged-helix genes in chordate development. The MocuFH1 gene, isolated from a Molgula oculata cDNA library, exhibits a forkhead DNA-binding domain most similar to zebrafish axial and rodent HNF-3beta. MocuFH1 is a single copy gene but there is at least one other related forkhead gene in the M. oculata genome. The MocuFH1 gene is expressed in the presumptive endoderm, mesenchyme and notochord cells beginning during the late cleavage stages. During gastrulation, MocuFH1 expression occurs in the prospective endoderm cells, which invaginate at the vegetal pole, and in the presumptive notochord and mesenchyme cells, which involute over the anterior and lateral lips of the blastopore, respectively. However, this gene is not expressed in the presumptive muscle cells, which involute over the posterior lip of the blastopore. MocuFH1 expression continues in the same cell lineages during neurulation and axis formation, however, during the tailbud stage, MocuFH1 is also expressed in ventral cells of the brain and spinal cord. The functional role of the MocuFH1 gene was studied using antisense oligodeoxynucleotides (ODNs), which transiently reduce MocuFH1 transcript levels during gastrulation. Embryos treated with antisense ODNs cleave normally and initiate gastrulation. However, gastrulation is incomplete, some of the endoderm and notochord cells do not enter the embryo and undergo subsequent movements, and axis formation is abnormal. In contrast, the prospective muscle cells, which do not express MocuFH1, undergo involution and later express muscle actin and acetylcholinesterase, markers of muscle cell differentiation. The results suggest that MocuFH1 is required for morphogenetic movements of the endoderm and notochord precursor cells during gastrulation and axis formation. The effects of inhibiting MocuFH1 expression on embryonic axis formation in ascidians are

  3. A voltage-gated chloride channel in ascidian embryos modulated by both the cell cycle clock and cell volume.

    PubMed Central

    Villaz, M; Cinniger, J C; Moody, W J

    1995-01-01

    1. Eggs of the ascidian Boltenia villosa have an inwardly rectifying Cl- current whose amplitude varies by more than 10-fold during each cell cycle, the largest amplitude being at exit from M-phase. We examined whether this current was also sensitive to changes in cell volume. 2. Cell swelling, produced by direct inflation through a whole-cell recording pipette, greatly increased the amplitude of the Cl- current at all stages of the cell cycle in activated eggs. Swelling was much less effective in unfertilized eggs. 3. The increase in Cl- current amplitude continued for 10-20 min after an increase in diameter that was complete in 10 s, suggesting the involvement of a second messenger system in the response. 4. Treatment of unfertilized eggs with 6-dimethylaminopurine (DMAP), an inhibitor of cell cycle-dependent protein kinases, increased the amplitude of the Cl- current and its sensitivity to swelling to levels characteristic of fertilized eggs. 5. Osmotically produced swelling also increased Cl- current amplitude in unfertilized eggs. 6. We propose that dephosphorylation renders the Cl- channel functional, and that swelling or activation of the egg increases the sensitivity of the channel to dephosphorylation, perhaps by disrupting its links to the cytoskeleton. PMID:8576858

  4. Photoadaptation and protection against active forms of oxygen in the symbiotic procaryote Prochloron sp. and its ascidian host

    SciTech Connect

    Lesser, M.P.; Stochaj, W.R. )

    1990-06-01

    Superoxide dismutase, ascorbate, peroxidase, and catalase activities were studied in the symbiotic photosynthetic procaryote Prochloron sp. and its ascidian host Lissoclinum patella. The protein-specific activities of these antioxidant enzymes in the Prochloron sp. and L. patella collected at different depths from the Great Barrier Reef, Australia, were directly proportional to irradiance, whereas the pigment concentrations in the Prochloron sp. were inversely proportional to irradiance. The presence of a cyanide-sensitive superoxide dismutase, presumably a Cu-An metalloprotein, in the Prochloron sp. extends the possible phylogenetic distribution of this protein. The concentration of UV-absorbing mycosporine-like amino acids in inversely proportional to irradiance in both the host and symbiont, suggesting that these compounds may not provide sufficient protection against UV radiation in high-irradiance environments. The significant differences in the specific activities of these antioxidant enzymes, cellular photosynthetic pigment concentrations, and UV-absorbing compounds from high- and low-irradiance habitats constitute an adaptive response to different photic environments. These photoadaptive responses are essential to prevent inhibition of photosynthesis by high fluxes of visible and UV radiation.

  5. Msxb is a core component of the genetic circuitry specifying the dorsal and ventral neurogenic midlines in the ascidian embryo.

    PubMed

    Roure, Agnès; Darras, Sébastien

    2016-01-01

    The tail ascidian larval peripheral nervous system is made up of epidermal sensory neurons distributed more or less regularly in ventral and dorsal midlines. Their formation occurs in two-steps: the ventral and dorsal midlines are induced as neurogenic territories by Fgf9/16/20 and Admp respectively. The Delta2/Notch interaction then controls the number of neurons that form. The genetic machinery acting between the inductive processes taking place before gastrulation and neuron specification at tailbud stages are largely unknown. The analysis of seven transcription factors expressed in the forming midlines revealed an unexpected complexity and dynamic of gene expression. Their systematic overexpression confirmed that these genes do not interact following a linear cascade of activation. However, the integration of our data revealed the distinct key roles of the two upstream factors Msxb and Nkx-C that are the earliest expressed genes and the only ones able to induce neurogenic midline and ESN formation. Our data suggest that Msxb would be the primary midline gene integrating inputs from the ventral and dorsal inducers and launching a pan-midline transcriptional program. Nkx-C would be involved in tail tip specification, in maintenance of the pan-midline network and in a posterior to anterior wave controlling differentiation. PMID:26592100

  6. The Hemolymph of the ascidian Styela plicata (Chordata-Tunicata) contains heparin inside basophil-like cells and a unique sulfated galactoglucan in the plasma.

    PubMed

    de Barros, Cintia M; Andrade, Leonardo R; Allodi, Silvana; Viskov, Christian; Mourier, Pierre A; Cavalcante, Moisés C M; Straus, Anita H; Takahashi, Helio K; Pomin, Vitor H; Carvalho, Vinicius F; Martins, Marco A; Pavão, Mauro S G

    2007-01-19

    The hemolymph of ascidians (Chordata-Tunicata) contains different types of hemocytes embedded in a liquid plasma. In the present study, heparin and a sulfated heteropolysaccharide were purified from the hemolymph of the ascidian Styela plicata. The heteropolysaccharide occurs free in the plasma, is composed of glucose ( approximately 60%) and galactose ( approximately 40%), and is highly sulfated. Heparin, on the other hand, occurs in the hemocytes, and high performance liquid chromatography of the products formed by degradation with specific lyases revealed that it is composed mainly by the disaccharides DeltaUA(2SO(4))-1-->4-beta-d-GlcN(SO(4)) (39.7%) and DeltaUA(2SO(4))-1-->4-beta-d-GlcN(SO(4))(6SO(4)) (38.2%). Small amounts of the 3-O-sulfated disaccharides DeltaUA(2SO(4))-1-->4-beta-d-GlcN(SO(4))(3SO(4)) (9.8%) and DeltaUA(2SO(4))-1-->4-beta-d-GlcN(SO(4))(3SO(4))(6SO(4)) (3.8%) were also detected. These 3-O-sulfated disaccharides were demonstrated to be essential for the binding of the hemocyte heparin to antithrombin III. Electron microscopy techniques were used to characterize the ultrastructure of the hemocytes and to localize heparin and histamine in these cells. At least five cell types were recognized and classified as univacuolated and multivacuolated cells, amebocytes, hemoblasts, and granulocytes. Immunocytochemistry showed that heparin and histamine co-localize in intracellular granules of only one type of hemocyte, the granulocyte. These results show for the first time that in ascidians, a sulfated galactoglucan circulates free in the plasma, and heparin occurs as an intracellular product of a circulating basophil-like cell.

  7. In vitro and in vivo efficacy of drugs against the protozoan parasite Azumiobodo hoyamushi that causes soft tunic syndrome in the edible ascidian Halocynthia roretzi (Drasche).

    PubMed

    Park, K H; Zeon, S-R; Lee, J-G; Choi, S-H; Shin, Y K; Park, K-I

    2014-04-01

    It was discovered recently that infection by a protozoan parasite, Azumiobodo hoyamushi, is the most probable cause for soft tunic syndrome in an edible ascidian, Halocynthia roretzi (Drasche). In an attempt to develop measures to eradicate the causative parasite, various drugs were tested for efficacy in vitro and in vivo. Of the 20 antiprotozoal drugs having different action mechanisms, five were found potent (24-h EC50  < 10 mg L(-1) ) in their parasite-killing effects: formalin, H2 O2 , bithionol, ClO2 and bronopol. Moderately potent drugs (10 < 24-h EC50  < 100 mg L(-1) ) were quinine, fumagillin, amphotericin B, ketoconazole, povidone-iodine, chloramine-T and benzalkonium chloride. Seven compounds, metronidazole, albendazole, paromomycin, nalidixic acid, sulfamonomethoxine, KMnO4 , potassium monopersulphate and citric acid, exhibited EC50  > 100 mg L(-1) . When ascidians were artificially infected with A. hoyamushi, treated using 40 mg L(-1) formalin, bronopol, ClO2 , or H2 O2 for 1 h and then monitored for 24 h, very low mortality was observed. However, the number of surviving parasite cells in the ascidian tunic tissues was significantly reduced by treating with 40 mg L(-1) formalin or ClO2 for 1 h. The data suggest that we might be able to develop a disinfection measure using a treatment regimen involving commonly available drugs.

  8. Biologically Active Acetylenic Amino Alcohol and N-Hydroxylated 1,2,3,4-Tetrahydro-β-carboline Constituents of the New Zealand Ascidian Pseudodistoma opacum.

    PubMed

    Wang, Jiayi; Pearce, A Norrie; Chan, Susanna T S; Taylor, Richard B; Page, Michael J; Valentin, Alexis; Bourguet-Kondracki, Marie-Lise; Dalton, James P; Wiles, Siouxsie; Copp, Brent R

    2016-03-25

    The first occurrence of an acetylenic 1-amino-2-alcohol, distaminolyne A (1), isolated from the New Zealand ascidian Pseudodistoma opacum, is reported. The isolation and structure elucidation of 1 and assignment of absolute configuration using the exciton coupled circular dichroism technique are described. In addition, a new N-9 hydroxy analogue (2) of the known P. opacum metabolite 7-bromohomotrypargine is also reported. Antimicrobial screening identified modest activity of 1 toward Escherichia coli, Staphylococcus aureus, and Mycobacterim tuberculosis, while 2 exhibited a moderate antimalarial activity (IC50 3.82 μM) toward a chloroquine-resistant strain (FcB1) of Plasmodium falciparum. PMID:26670413

  9. Increased Inter-Colony Fusion Rates Are Associated with Reduced COI Haplotype Diversity in an Invasive Colonial Ascidian Didemnum vexillum

    PubMed Central

    Smith, Kirsty F.; Stefaniak, Lauren; Saito, Yasunori; Gemmill, Chrissen E. C.; Cary, S. Craig; Fidler, Andrew E.

    2012-01-01

    Considerable progress in our understanding of the population genetic changes associated with biological invasions has been made over the past decade. Using selectively neutral loci, it has been established that reductions in genetic diversity, reflecting founder effects, have occurred during the establishment of some invasive populations. However, some colonial organisms may actually gain an ecological advantage from reduced genetic diversity because of the associated reduction in inter-colony conflict. Here we report population genetic analyses, along with colony fusion experiments, for a highly invasive colonial ascidian, Didemnum vexillum. Analyses based on mitochondrial cytochrome oxidase I (COI) partial coding sequences revealed two distinct D. vexillum clades. One COI clade appears to be restricted to the probable native region (i.e., north-west Pacific Ocean), while the other clade is present in widely dispersed temperate coastal waters around the world. This clade structure was supported by 18S ribosomal DNA (rDNA) sequence data, which revealed a one base-pair difference between the two clades. Recently established populations of D. vexillum in New Zealand displayed greatly reduced COI genetic diversity when compared with D. vexillum in Japan. In association with this reduction in genetic diversity was a significantly higher inter-colony fusion rate between randomly paired New Zealand D. vexillum colonies (80%, standard deviation ±18%) when compared with colonies found in Japan (27%, standard deviation ±15%). The results of this study add to growing evidence that for colonial organisms reductions in population level genetic diversity may alter colony interaction dynamics and enhance the invasive potential of newly colonizing species. PMID:22303442

  10. Cardiovascular effects of lepadiformine, an alkaloid isolated from the ascidians Clavelina lepadiformis (Müller) and C. moluccensis (Sluiter).

    PubMed

    Jugé, M; Grimaud, N; Biard, J F; Sauviat, M P; Nabil, M; Verbist, J F; Petit, J Y

    2001-08-01

    The effects of lepadiformine, a natural marine alkaloid isolated from the ascidians Clavelina lepadiformis (Müller) and C. moluccensis (Sluiter), were studied in vivo by arterial blood pressure (aBP) recordings and electrocardiograms (ECG) in anaesthetised rats and in situ by peripheral vascular pressure recordings on perfused rabbit ear. Transmembrane resting (RP) and action (AP) potentials were also recorded by intracellular microelectrodes on electrically stimulated left ventricular papillary muscle and spontaneously beating atrium isolated from rat and frog hearts, respectively. Intravenous injection of lepadiformine (6mg/kg) produced marked bradycardia and a lengthening of ECG intervals as well as a transient decrease of aBP, which rapidly returned to normal. The decrease of aBP may have been related to a vasoconstrictor effect observed in the perfused ear experiment. Lepadiformine did not alter RP, but significantly lengthened the repolarising phase of AP in rat papillary muscle and frog atrium. Lepadiformine also mimicked the effect of Ba(2+) (0.2mM) on the rat AP repolarising phase. Moreover, the lengthening of the AP in frog atrium induced by lepadiformine still developed after the delayed outward K(+) current (I(K)) was blocked by tetraethylammonium (10mM). These observations suggest that lepadiformine-induced lengthening of AP duration was not due to a decrease of I(K), but may reasonably be attributed to a reduction of the inward rectifying K(+) current (I(K1)). This blockade of I(K1) could account for the cardiovascular effects of lepadiformine in vivo and in vitro and suggests that lepadiformine has antiarrhythmic properties.

  11. Action potential waveform voltage clamp shows significance of different Ca2+ channel types in developing ascidian muscle

    PubMed Central

    Dallman, Julia E; Dorman, Jennie B; Moody, William J

    2000-01-01

    Early in development, ascidian muscle cells generate spontaneous, long-duration action potentials that are mediated by a high-threshold, inactivating Ca2+ current. This spontaneous activity is required for appropriate physiological development.Mature muscle cells generate brief action potentials only in response to motor neuron input. The mature action potential is mediated by a high-threshold sustained Ca2+ current.Action potentials recorded from these two stages were imposed as voltage-clamp commands on cells of the same and different stages from which they were recorded. This strategy allowed us to study how immature and mature Ca2+ currents are optimized to their particular functions.Total Ca2+ entry during an action potential did not change during development. The developmental increase in Ca2+ current density exactly compensated for decreased spike duration. This compensation was a function purely of Ca2+ current density, not of the transition from immature to mature Ca2+ current types.In immature cells, Ca2+ entry was spread out over the entire waveform of spontaneous activity, including the interspike voltage trajectory. This almost continuous Ca2+ entry may be important in triggering Ca2+-dependent developmental programmes, and is a function of the slightly more negative voltage dependence of the immature Ca2+ current.In contrast, Ca2+ entry in mature cells was confined to the action potential itself, because of the slightly more positive voltage dependence of the mature Ca2+ current. This may be important in permitting rapid contraction-relaxation cycles during larval swimming.The inactivation of the immature Ca2+ current serves to limit the frequency and burst duration of spontaneous activity. The sustained kinetics of the mature Ca2+ current permit high-frequency firing during larval swimming. PMID:10766919

  12. Stochasticity in space, persistence in time: genetic heterogeneity in harbour populations of the introduced ascidian Styela plicata

    PubMed Central

    Pineda, Mari-Carmen; Lorente, Beatriz; López-Legentil, Susanna; Palacín, Creu

    2016-01-01

    Spatio-temporal changes in genetic structure among populations provide crucial information on the dynamics of secondary spread for introduced marine species. However, temporal components have rarely been taken into consideration when studying the population genetics of non-indigenous species. This study analysed the genetic structure of Styela plicata, a solitary ascidian introduced in harbours and marinas of tropical and temperate waters, across spatial and temporal scales. A fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) was sequenced from 395 individuals collected at 9 harbours along the NW Mediterranean coast and adjacent Atlantic waters (> 1,200 km range) at two time points 5 years apart (2009 and 2014). The levels of gene diversity were relatively low for all 9 locations in both years. Analyses of genetic differentiation and distribution of molecular variance revealed strong genetic structure, with significant differences among many populations, but no significant differences among years. A weak and marginally significant correlation between geographic distance and gene differentiation was found. Our results revealed spatial structure and temporal genetic homogeneity in S. plicata, suggesting a limited role of recurrent, vessel-mediated transport of organisms among small to medium-size harbours. Our study area is representative of many highly urbanized coasts with dense harbours. In these environments, the episodic chance arrival of colonisers appears to determine the genetic structure of harbour populations and the genetic composition of these early colonising individuals persists in the respective harbours, at least over moderate time frames (five years) that encompass ca. 20 generations of S. plicata. PMID:27366653

  13. Stochasticity in space, persistence in time: genetic heterogeneity in harbour populations of the introduced ascidian Styela plicata.

    PubMed

    Pineda, Mari-Carmen; Lorente, Beatriz; López-Legentil, Susanna; Palacín, Creu; Turon, Xavier

    2016-01-01

    Spatio-temporal changes in genetic structure among populations provide crucial information on the dynamics of secondary spread for introduced marine species. However, temporal components have rarely been taken into consideration when studying the population genetics of non-indigenous species. This study analysed the genetic structure of Styela plicata, a solitary ascidian introduced in harbours and marinas of tropical and temperate waters, across spatial and temporal scales. A fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) was sequenced from 395 individuals collected at 9 harbours along the NW Mediterranean coast and adjacent Atlantic waters (> 1,200 km range) at two time points 5 years apart (2009 and 2014). The levels of gene diversity were relatively low for all 9 locations in both years. Analyses of genetic differentiation and distribution of molecular variance revealed strong genetic structure, with significant differences among many populations, but no significant differences among years. A weak and marginally significant correlation between geographic distance and gene differentiation was found. Our results revealed spatial structure and temporal genetic homogeneity in S. plicata, suggesting a limited role of recurrent, vessel-mediated transport of organisms among small to medium-size harbours. Our study area is representative of many highly urbanized coasts with dense harbours. In these environments, the episodic chance arrival of colonisers appears to determine the genetic structure of harbour populations and the genetic composition of these early colonising individuals persists in the respective harbours, at least over moderate time frames (five years) that encompass ca. 20 generations of S. plicata. PMID:27366653

  14. Co-expression of Foxa.a, Foxd and Fgf9/16/20 defines a transient mesendoderm regulatory state in ascidian embryos

    PubMed Central

    Hudson, Clare; Sirour, Cathy; Yasuo, Hitoyoshi

    2016-01-01

    In many bilaterian embryos, nuclear β-catenin (nβ-catenin) promotes mesendoderm over ectoderm lineages. Although this is likely to represent an evolutionary ancient developmental process, the regulatory architecture of nβ-catenin-induced mesendoderm remains elusive in the majority of animals. Here, we show that, in ascidian embryos, three nβ-catenin transcriptional targets, Foxa.a, Foxd and Fgf9/16/20, are each required for the correct initiation of both the mesoderm and endoderm gene regulatory networks. Conversely, these three factors are sufficient, in combination, to produce a mesendoderm ground state that can be further programmed into mesoderm or endoderm lineages. Importantly, we show that the combinatorial activity of these three factors is sufficient to reprogramme developing ectoderm cells to mesendoderm. We conclude that in ascidian embryos, the transient mesendoderm regulatory state is defined by co-expression of Foxa.a, Foxd and Fgf9/16/20. DOI: http://dx.doi.org/10.7554/eLife.14692.001 PMID:27351101

  15. Characterization of the teneurin C-terminal associated peptide (TCAP) in the vase tunicate, Ciona intestinalis: A novel peptide system associated with energy metabolism and reproduction.

    PubMed

    Colacci, Michael; De Almeida, Reuben; Chand, Dhan; Lovejoy, Sabine R; Sephton, Dawn; Vercaemer, Benedikte; Lovejoy, David A

    2015-05-15

    The vase tunicate, Ciona intestinalis, is a protochordate and is considered a sister lineage to the chordates. The recent sequencing of its genome has made this species a particularly important model to understand the genetic basis of vertebrate evolution. However, C. intestinalis is also a highly invasive species along the Atlantic coast of North America and other regions of the world which have caused considerable economic stress due to its biofouling actions and, in particular, negative impacts on the mussel- and oyster-based aquaculture industry. Despite this background, little is known about C. intestinalis physiology. The teneurin C-terminal associated peptides (TCAP) are a family of highly conserved peptide hormones found in most metazoans. Moreover, these peptides have been implicated in the inhibition of stress and stimulation of feeding-based metabolism. We have, therefore, identified this peptide using an in silico approach and characterized its immunological expression in tissues using a mouse polyclonal antiserum. These data indicate that its primary structure is more similar to invertebrate TCAPs relative to vertebrate TCAPs. Immunological expression indicates that it is highly expressed in the digestive tract and gonads consistent with findings in vertebrates. Synthetic mouse TCAP-1 administered into the brachial basket significantly increases the incidence of non-stress contractile behaviors. These findings support the hypothesis that TCAP is a bioactive peptide in C. intestinalis. Thus, C. intestinalis and tunicates in general may offer a simple model to investigate peptide interaction while providing information on how to control this invasive species.

  16. Structural investigations of the p53/p73 homologs from the tunicate species Ciona intestinalis reveal the sequence requirements for the formation of a tetramerization domain.

    PubMed

    Heering, Jan; Jonker, Hendrik R A; Löhr, Frank; Schwalbe, Harald; Dötsch, Volker

    2016-02-01

    Most members of the p53 family of transcription factors form tetramers. Responsible for determining the oligomeric state is a short oligomerization domain consisting of one β-strand and one α-helix. With the exception of human p53 all other family members investigated so far contain a second α-helix as part of their tetramerization domain. Here we have used nuclear magnetic resonance spectroscopy to characterize the oligomerization domains of the two p53-like proteins from the tunicate Ciona intestinalis, representing the closest living relative of vertebrates. Structure determination reveals for one of the two proteins a new type of packing of this second α-helix on the core domain that was not predicted based on the sequence, while the other protein does not form a second helix despite the presence of crucial residues that are conserved in all other family members that form a second helix. By mutational analysis, we identify a proline as well as large hydrophobic residues in the hinge region between both helices as the crucial determinant for the formation of a second helix. PMID:26473758

  17. Characterization of the teneurin C-terminal associated peptide (TCAP) in the vase tunicate, Ciona intestinalis: A novel peptide system associated with energy metabolism and reproduction.

    PubMed

    Colacci, Michael; De Almeida, Reuben; Chand, Dhan; Lovejoy, Sabine R; Sephton, Dawn; Vercaemer, Benedikte; Lovejoy, David A

    2015-05-15

    The vase tunicate, Ciona intestinalis, is a protochordate and is considered a sister lineage to the chordates. The recent sequencing of its genome has made this species a particularly important model to understand the genetic basis of vertebrate evolution. However, C. intestinalis is also a highly invasive species along the Atlantic coast of North America and other regions of the world which have caused considerable economic stress due to its biofouling actions and, in particular, negative impacts on the mussel- and oyster-based aquaculture industry. Despite this background, little is known about C. intestinalis physiology. The teneurin C-terminal associated peptides (TCAP) are a family of highly conserved peptide hormones found in most metazoans. Moreover, these peptides have been implicated in the inhibition of stress and stimulation of feeding-based metabolism. We have, therefore, identified this peptide using an in silico approach and characterized its immunological expression in tissues using a mouse polyclonal antiserum. These data indicate that its primary structure is more similar to invertebrate TCAPs relative to vertebrate TCAPs. Immunological expression indicates that it is highly expressed in the digestive tract and gonads consistent with findings in vertebrates. Synthetic mouse TCAP-1 administered into the brachial basket significantly increases the incidence of non-stress contractile behaviors. These findings support the hypothesis that TCAP is a bioactive peptide in C. intestinalis. Thus, C. intestinalis and tunicates in general may offer a simple model to investigate peptide interaction while providing information on how to control this invasive species. PMID:25687741

  18. The Sexual and Mating System of the Shrimp Odontonia katoi (Palaemonidae, Pontoniinae), a Symbiotic Guest of the Ascidian Polycarpa aurata in the Coral Triangle

    PubMed Central

    Baeza, J. Antonio; Hemphill, Carrie A.; Ritson-Williams, Raphael

    2015-01-01

    Theory predicts that monogamy is adaptive in symbiotic crustaceans inhabiting relatively small and morphologically simple hosts in tropical environments where predation risk away from hosts is high. We tested this prediction in the shrimp Odontonia katoi, which inhabits the atrial chamber of the ascidian Polycarpa aurata in the Coral Triangle. Preliminary observations in O. katoi indicated that males were smaller than females, which is suggestive of sex change (protandry) in some symbiotic organisms. Thus, we first investigated the sexual system of O. katoi to determine if this shrimp was sequentially hermaphroditic. Morphological identification and size frequency distributions indicated that the population comprised males that, on average, were smaller than females. Gonad dissections demonstrated the absence of transitional individuals. Thus, O. katoi is a gonochoric species with reverse sexual dimorphism. The population distribution of O. katoi in its ascidian host did not differ significantly from a random distribution and shrimps inhabiting the same host individual as pairs were found with a frequency similar to that expected by chance alone. This is in contrast to that reported for other socially monogamous crustaceans in which pairs of heterosexual conspecifics are found in host individuals more frequently than expected by chance alone. Thus, the available information argues against monogamy in O. katoi. Furthermore, that a high frequency of solitary females were found brooding embryos and that the sex ratio was skewed toward females suggests that males might be roaming among hosts in search of receptive females in O. katoi. Symbiotic crustaceans can be used as a model system to understand the adaptive value of sexual and mating systems in marine invertebrates. PMID:25799577

  19. An ultraviolet-sensitive maternal mRNA encoding a cytoskeletal protein may be involved in axis formation in the ascidian embryo

    SciTech Connect

    Jeffery, W.R. )

    1990-09-01

    Ultraviolet (uv) irradiation of the vegetal hemisphere of fertilized eggs during ooplasmic segregation inhibits subsequent gastrulation and axis formation in ascidian embryos. The molecular basis of this phenomenon was investigated in by comparing in vivo protein synthesis and in vitro mRNA translation in normal and uv-irradiated embryos of the ascidian Styela clava. Analysis of protein synthesis by (35S)methionine incorporation, two-dimensional (2D) gel electrophoresis, and autoradiography showed that only 21 of 433 labeled polypeptides were missing or decreased in labeling intensity in uv-irradiated embryos. The most prominent of these was a 30,000 molecular weight (pI 6.0) polypeptide (p30). Extraction of gastrulae with the nonionic detergent Triton X-100 showed that p30 is retained in the detergent insoluble residue, suggesting that it is associated with the cytoskeleton. Several lines of evidence suggest that p30 may be involved in axis formation. First, p30 labeling peaks during gastrulation, when the embryonic axis is being established. Second, axis formation and p30 labeling are abolished by the same threshold uv dose, which is distinct from that required to inactivate muscle cell development. Third, the uv sensitivity period for abolishing p30 labeling and axis formation are both restricted to ooplasmic segregation. In vitro translation of egg RNA followed by 2D gel electrophoresis and autoradiography of the protein products showed that p30 is encoded by a maternal mRNA. The translation of p30 mRNA was abolished by uv irradiation of fertilized eggs during ooplasmic segregation suggesting that this message is a uv-sensitive target. The results are consistent with the hypothesis that uv irradiation blocks gastrulation and axis formation by inhibiting the translation of maternal mRNA localized in the vegetal hemisphere of the fertilized egg.

  20. The sexual and mating system of the shrimp Odontonia katoi (Palaemonidae, Pontoniinae), a symbiotic guest of the ascidian Polycarpa aurata in the Coral Triangle.

    PubMed

    Baeza, J Antonio; Hemphill, Carrie A; Ritson-Williams, Raphael

    2015-01-01

    Theory predicts that monogamy is adaptive in symbiotic crustaceans inhabiting relatively small and morphologically simple hosts in tropical environments where predation risk away from hosts is high. We tested this prediction in the shrimp Odontonia katoi, which inhabits the atrial chamber of the ascidian Polycarpa aurata in the Coral Triangle. Preliminary observations in O. katoi indicated that males were smaller than females, which is suggestive of sex change (protandry) in some symbiotic organisms. Thus, we first investigated the sexual system of O. katoi to determine if this shrimp was sequentially hermaphroditic. Morphological identification and size frequency distributions indicated that the population comprised males that, on average, were smaller than females. Gonad dissections demonstrated the absence of transitional individuals. Thus, O. katoi is a gonochoric species with reverse sexual dimorphism. The population distribution of O. katoi in its ascidian host did not differ significantly from a random distribution and shrimps inhabiting the same host individual as pairs were found with a frequency similar to that expected by chance alone. This is in contrast to that reported for other socially monogamous crustaceans in which pairs of heterosexual conspecifics are found in host individuals more frequently than expected by chance alone. Thus, the available information argues against monogamy in O. katoi. Furthermore, that a high frequency of solitary females were found brooding embryos and that the sex ratio was skewed toward females suggests that males might be roaming among hosts in search of receptive females in O. katoi. Symbiotic crustaceans can be used as a model system to understand the adaptive value of sexual and mating systems in marine invertebrates. PMID:25799577

  1. Combining environmental suitability and population abundances to evaluate the invasive potential of the tunicate Ciona intestinalis along the temperate South American coast

    PubMed Central

    Estay, Sergio A.; Labra, Fabio A.; Lima, Mauricio

    2015-01-01

    The tunicate Ciona intestinalis is an opportunistic invader with high potential for causing economic losses in aquaculture centers. Recent phylogenetic and population genetic analysis support the existence of a genetic complex described as C. intestinalis with two main dominant species (sp A and B) occurring worldwide. In Chile, the species has been observed around 30°S of latitude, but no official reports exist for the presence of C. intestinalis in southern regions (above 40°S), where most of the mollusk aquaculture centers are located. Here, we used occurrences from multiple invaded regions and extensive field sampling to model and validate the environmental conditions that allow the species to persist and to find the geographic areas with the most suitable environmental conditions for the spread of C. intestinalis in the Chilean coast. By studying the potential expansion of C. intestinalis southward in the Chilean Coast, we aimed to provide valuable information that might help the development of control plans before the species becomes a significant problem, especially above 40°S. Our results highlight that, by using portions of the habitat that are apparently distinguishable, the species seem to be not only genetically distinct, but ecologically distinct as well. The two regional models fitted for sp A and for sp B showed disagreement on which sections of Chilean coastline are considered more suitable for these species. While the model for sp A identifies moderately to highly suitable areas between 30° and 40°S, the model for sp B classifies the areas around 45°S as the most appropriate. Data from field sampling show a positive linear relationship between density of C. intestinalis and the index of suitability for sp A in aquaculture centers. Understanding the relation of the distinct species with the surrounding environment provided valuable insights about probable routes of dispersion in Chile, especially into those areas considered suitable for

  2. Combining environmental suitability and population abundances to evaluate the invasive potential of the tunicate Ciona intestinalis along the temperate South American coast.

    PubMed

    Januario, Stella M; Estay, Sergio A; Labra, Fabio A; Lima, Mauricio

    2015-01-01

    The tunicate Ciona intestinalis is an opportunistic invader with high potential for causing economic losses in aquaculture centers. Recent phylogenetic and population genetic analysis support the existence of a genetic complex described as C. intestinalis with two main dominant species (sp A and B) occurring worldwide. In Chile, the species has been observed around 30°S of latitude, but no official reports exist for the presence of C. intestinalis in southern regions (above 40°S), where most of the mollusk aquaculture centers are located. Here, we used occurrences from multiple invaded regions and extensive field sampling to model and validate the environmental conditions that allow the species to persist and to find the geographic areas with the most suitable environmental conditions for the spread of C. intestinalis in the Chilean coast. By studying the potential expansion of C. intestinalis southward in the Chilean Coast, we aimed to provide valuable information that might help the development of control plans before the species becomes a significant problem, especially above 40°S. Our results highlight that, by using portions of the habitat that are apparently distinguishable, the species seem to be not only genetically distinct, but ecologically distinct as well. The two regional models fitted for sp A and for sp B showed disagreement on which sections of Chilean coastline are considered more suitable for these species. While the model for sp A identifies moderately to highly suitable areas between 30° and 40°S, the model for sp B classifies the areas around 45°S as the most appropriate. Data from field sampling show a positive linear relationship between density of C. intestinalis and the index of suitability for sp A in aquaculture centers. Understanding the relation of the distinct species with the surrounding environment provided valuable insights about probable routes of dispersion in Chile, especially into those areas considered suitable for

  3. Combining environmental suitability and population abundances to evaluate the invasive potential of the tunicate Ciona intestinalis along the temperate South American coast.

    PubMed

    Januario, Stella M; Estay, Sergio A; Labra, Fabio A; Lima, Mauricio

    2015-01-01

    The tunicate Ciona intestinalis is an opportunistic invader with high potential for causing economic losses in aquaculture centers. Recent phylogenetic and population genetic analysis support the existence of a genetic complex described as C. intestinalis with two main dominant species (sp A and B) occurring worldwide. In Chile, the species has been observed around 30°S of latitude, but no official reports exist for the presence of C. intestinalis in southern regions (above 40°S), where most of the mollusk aquaculture centers are located. Here, we used occurrences from multiple invaded regions and extensive field sampling to model and validate the environmental conditions that allow the species to persist and to find the geographic areas with the most suitable environmental conditions for the spread of C. intestinalis in the Chilean coast. By studying the potential expansion of C. intestinalis southward in the Chilean Coast, we aimed to provide valuable information that might help the development of control plans before the species becomes a significant problem, especially above 40°S. Our results highlight that, by using portions of the habitat that are apparently distinguishable, the species seem to be not only genetically distinct, but ecologically distinct as well. The two regional models fitted for sp A and for sp B showed disagreement on which sections of Chilean coastline are considered more suitable for these species. While the model for sp A identifies moderately to highly suitable areas between 30° and 40°S, the model for sp B classifies the areas around 45°S as the most appropriate. Data from field sampling show a positive linear relationship between density of C. intestinalis and the index of suitability for sp A in aquaculture centers. Understanding the relation of the distinct species with the surrounding environment provided valuable insights about probable routes of dispersion in Chile, especially into those areas considered suitable for

  4. A Boolean Function for Neural Induction Reveals a Critical Role of Direct Intercellular Interactions in Patterning the Ectoderm of the Ascidian Embryo.

    PubMed

    Ohta, Naoyuki; Waki, Kana; Mochizuki, Atsushi; Satou, Yutaka

    2015-12-01

    A complex system of multiple signaling molecules often produce differential gene expression patterns in animal embryos. In the ascidian embryo, four signaling ligands, Ephrin-A.d (Efna.d), Fgf9/16/20, Admp, and Gdf1/3-r, coordinately induce Otx expression in the neural lineage at the 32-cell stage. However, it has not been determined whether differential inputs of all of these signaling pathways are really necessary. It is possible that differential activation of one of these signaling pathways is sufficient and the remaining signaling pathways are activated in all cells at similar levels. To address this question, we developed a parameter-free method for determining a Boolean function for Otx expression in the present study. We treated activities of signaling pathways as Boolean values, and we also took all possible patterns of signaling gradients into consideration. We successfully determined a Boolean function that explains Otx expression in the animal hemisphere of wild-type and morphant embryos at the 32-cell stage. This Boolean function was not inconsistent with three sensing patterns, which represented whether or not individual cells received sufficient amounts of the signaling molecules. These sensing patterns all indicated that differential expression of Otx in the neural lineage is primarily determined by Efna.d, but not by differential inputs of Fgf9/16/20, Admp, and Gdf1/3-r signaling. To confirm this hypothesis experimentally, we simultaneously knocked-down Admp, Gdf1/3-r, and Fgf9/16/20, and treated this triple morphant with recombinant bFGF and BMP4 proteins, which mimic Fgf9/16/20 and Admp/Gdf1/3-r activity, respectively. Although no differential inputs of Admp, Gdf1/3-r and Fgf9/16/20 signaling were expected under this experimental condition, Otx was expressed specifically in the neural lineage. Thus, direct cell-cell interactions through Efna.d play a critical role in patterning the ectoderm of the early ascidian embryo. PMID:26714026

  5. A Boolean Function for Neural Induction Reveals a Critical Role of Direct Intercellular Interactions in Patterning the Ectoderm of the Ascidian Embryo.

    PubMed

    Ohta, Naoyuki; Waki, Kana; Mochizuki, Atsushi; Satou, Yutaka

    2015-12-01

    A complex system of multiple signaling molecules often produce differential gene expression patterns in animal embryos. In the ascidian embryo, four signaling ligands, Ephrin-A.d (Efna.d), Fgf9/16/20, Admp, and Gdf1/3-r, coordinately induce Otx expression in the neural lineage at the 32-cell stage. However, it has not been determined whether differential inputs of all of these signaling pathways are really necessary. It is possible that differential activation of one of these signaling pathways is sufficient and the remaining signaling pathways are activated in all cells at similar levels. To address this question, we developed a parameter-free method for determining a Boolean function for Otx expression in the present study. We treated activities of signaling pathways as Boolean values, and we also took all possible patterns of signaling gradients into consideration. We successfully determined a Boolean function that explains Otx expression in the animal hemisphere of wild-type and morphant embryos at the 32-cell stage. This Boolean function was not inconsistent with three sensing patterns, which represented whether or not individual cells received sufficient amounts of the signaling molecules. These sensing patterns all indicated that differential expression of Otx in the neural lineage is primarily determined by Efna.d, but not by differential inputs of Fgf9/16/20, Admp, and Gdf1/3-r signaling. To confirm this hypothesis experimentally, we simultaneously knocked-down Admp, Gdf1/3-r, and Fgf9/16/20, and treated this triple morphant with recombinant bFGF and BMP4 proteins, which mimic Fgf9/16/20 and Admp/Gdf1/3-r activity, respectively. Although no differential inputs of Admp, Gdf1/3-r and Fgf9/16/20 signaling were expected under this experimental condition, Otx was expressed specifically in the neural lineage. Thus, direct cell-cell interactions through Efna.d play a critical role in patterning the ectoderm of the early ascidian embryo.

  6. Evaluation of Cancer Preventive Activity and Structure-Activity Relationships of 3-Demethylubiquinone Q2, Isolated from the Ascidian Aplidium glabrum, and its Synthetic Analogues

    PubMed Central

    Fedorov, Sergey N.; Radchenko, Oleg S.; Shubina, Larisa K.; Balaneva, Nadezhda N.; Bode, Ann M.; Stonik, Valentin A.; Dong, Zigang

    2006-01-01

    Purpose 3-Demethylubiquinone Q2 (1) was isolated from the ascidian Aplidium glabrum. The cancer preventive properties and the structure-activity relationship for 3-demethylubiquinone Q2 (1) and 12 of its synthetic analogues (3–14) are reported. Methods Compounds 3–14, having one or several di- or triprenyl substitutions and quinone moieties with methoxyls in different positions, were synthesized. The cancer preventive properties of compounds 1 and 3–14 were tested in JB6 Cl41 mouse skin cells, using a variety of assessments, including the MTS assay, flow cytometry, and soft agar assay. Statistical nonparametric methods were used to confirm statistical significance. Results All quinones tested were shown to inhibit JB6 Cl41 cell transformation, to induce apoptosis, AP-1 and NF-κB activity, and to inhibit p53 activity. The most promising effects were indicated for compounds containing two isoprene units in a side chain and a methoxyl group at the para-position to a polyprenyl substitution. Conclusions Quinones 1 and 3–14 demonstrated cancer preventive activity in JB6 Cl41 cells, which may be attributed to the induction of p53-independent apoptosis. These activities depended on the length of side chains and on the positions of the methoxyl groups in the quinone part of the molecule. PMID:16320003

  7. The occurrence of the colonial ascidian Didemnum sp. on Georges Bank gravel habitat: ecological observations and potential effects on groundfish and scallop fisheries

    USGS Publications Warehouse

    Valentine, P.C.; Collie, J.S.; Reid, R.N.; Asch, R.G.; Guida, V.G.; Blackwood, D.S.

    2007-01-01

    The colonial ascidian Didemnum sp. is present on the Georges Bank fishing grounds in a gravel habitat where the benthic invertebrate fauna has been monitored annually since 1994. The species was not noted before 2002 when large colonies were first observed; and by 2003 and 2004 it covered large areas of the seabed at some locations. The latest survey in 2005 documented the tunicate's presence in two gravel areas that total more than 67 nm2 (230 km2). The affected area is located on the Northern Edge of the bank in United States waters near the U.S./Canada boundary ( Fig. 1). This is the first documented offshore occurrence of a species that has colonized eastern U.S. coastal waters from New York to Maine during the past 15–20 years ( U.S. Geological Survey, 2006). Video imagery shows colonies coalescing to form large mats that cover more than 50% of the seabed along some video/photo transects. The affected area is an immobile pebble and cobble pavement that lies at water depths of 40 to 65 m where strong semidiurnal tidal currents reach speeds of 1 to 2 kt (50–100 cm/s). The water column is mixed year round, ensuring a constant supply of nutrients to the seabed. Annual temperatures range from 4 to 15 °C ( Mountain and Holzwarth, 1989). The gravel areas are bounded by sand ridges whose mobile surfaces are moved daily by the strong tidal currents. Studies commenced here in 1994 to characterize the gravel habitat and to document the effects of fishing disturbance on it ( Collie et al., 2005).

  8. The colonial ascidian Didemnum sp. A: current distribution, basic biology and potential threat to marine communities of the northeast and west coasts of North America

    USGS Publications Warehouse

    Bullard, S.G.; Lambert, G.; Carman, M.R.; Byrnes, J.; Whitlatch, R.B.; Ruiz, G.; Miller, R.J.; Harris, L.; Valentine, P.C.; Collie, J.S.; Pederson, J.; McNaught, D.C.; Cohen, A.N.; Asch, R.G.; Dijkstra, J.; Heinonen, K.

    2007-01-01

    Didemnum sp. A is a colonial ascidian with rapidly expanding populations on the east and west coasts of North America. The origin of Didemum sp. A is unknown. Populations were first observed on the northeast coast of the U.S. in the late 1980s and on the west coast during the 1990s. It is currently undergoing a massive population explosion and is now a dominant member of many subtidal communities on both coasts. To determine Didemnum sp. A's current distribution, we conducted surveys from Maine to Virginia on the east coast and from British Columbia to southern California on the west coast of the U.S. between 1998 and 2005. In nearshore locations Didemnum sp. A currently ranges from Eastport, Maine to Shinnecock Bay, New York on the east coast. On the west coast it has been recorded from Humboldt Bay to Port San Luis in California, several sites in Puget Sound, Washington, including a heavily fouled mussel culture facility, and several sites in southwestern British Columbia on and adjacent to oyster and mussel farms. The species also occurs at deeper subtidal sites (up to 81 m) off New England, including Georges, Stellwagen and Tillies Banks. On Georges Bank numerous sites within a 230 km2 area are 50–90% covered by Didemnum sp. A; large colonies cement the pebble gravel into nearly solid mats that may smother infaunal organisms. These observations suggest that Didemnum sp. A has the potential to alter marine communities and affect economically important activities such as fishing and aquaculture.

  9. Variation in the composition of corals, fishes, sponges, echinoderms, ascidians, molluscs, foraminifera and macroalgae across a pronounced in-to-offshore environmental gradient in the Jakarta Bay-Thousand Islands coral reef complex.

    PubMed

    Cleary, D F R; Polónia, A R M; Renema, W; Hoeksema, B W; Rachello-Dolmen, P G; Moolenbeek, R G; Budiyanto, A; Yahmantoro; Tuti, Y; Giyanto; Draisma, S G A; Prud'homme van Reine, W F; Hariyanto, R; Gittenberger, A; Rikoh, M S; de Voogd, N J

    2016-09-30

    Substrate cover, water quality parameters and assemblages of corals, fishes, sponges, echinoderms, ascidians, molluscs, benthic foraminifera and macroalgae were sampled across a pronounced environmental gradient in the Jakarta Bay-Thousand Islands reef complex. Inshore sites mainly consisted of sand, rubble and turf algae with elevated temperature, dissolved oxygen, pH and chlorophyll concentrations and depauperate assemblages of all taxa. Live coral cover was very low inshore and mainly consisted of sparse massive coral heads and a few encrusting species. Faunal assemblages were more speciose and compositionally distinct mid- and offshore compared to inshore. There were, however, small-scale differences among taxa. Certain midshore sites, for example, housed assemblages resembling those typical of the inshore environment but this differed depending on the taxon. Substrate, water quality and spatial variables together explained from 31% (molluscs) to 72% (foraminifera) of the variation in composition. In general, satellite-derived parameters outperformed locally measured parameters.

  10. Preliminary study on the occurrence of brominated organic compounds in Dutch marine organisms.

    PubMed

    Kotterman, Michiel; van der Veen, Ike; van Hesselingen, Judith; Leonards, Pim; Osinga, Ronald; de Boer, Jacob

    2003-07-01

    The extracts of three marine organisms; the ascidian Ciona intestinalis, the brown seaweed Sargassum muticum and the sponge Halichondria panicea, all elicited a number of brominated compounds, some of which were tentatively identified. Tribromophenol was observed in all species. This compound, also industrially produced as flame retardant and fungicide, was likely due to endogenous production. PMID:12919829

  11. Endozoicomonas Are Specific, Facultative Symbionts of Sea Squirts.

    PubMed

    Schreiber, Lars; Kjeldsen, Kasper U; Funch, Peter; Jensen, Jeppe; Obst, Matthias; López-Legentil, Susanna; Schramm, Andreas

    2016-01-01

    Ascidians are marine filter feeders and harbor diverse microbiota that can exhibit a high degree of host-specificity. Pharyngeal samples of Scandinavian and Mediterranean ascidians were screened for consistently associated bacteria by culture-dependent and -independent approaches. Representatives of the Endozoicomonas (Gammaproteobacteria, Hahellaceae) clade were detected in the ascidian species Ascidiella aspersa, Ascidiella scabra, Botryllus schlosseri, Ciona intestinalis, Styela clava, and multiple Ascidia/Ascidiella spp. In total, Endozoicomonas was detected in more than half of all specimens screened, and in 25-100% of the specimens for each species. The retrieved Endozoicomonas 16S rRNA gene sequences formed an ascidian-specific subclade, whose members were detected by fluorescence in situ hybridization (FISH) as extracellular microcolonies in the pharynx. Two strains of the ascidian-specific Endozoicomonas subclade were isolated in pure culture and characterized. Both strains are chemoorganoheterotrophs and grow on mucin (a mucus glycoprotein). The strains tested negative for cytotoxic or antibacterial activity. Based on these observations, we propose ascidian-associated Endozoicomonas to be commensals, living off the mucus continuously secreted into the pharynx. Members of the ascidian-specific Endozoicomonas subclade were also detected in seawater from the Scandinavian sampling site, which suggests acquisition of the symbionts by horizontal transmission. The combined results indicate a host-specific, yet facultative symbiosis between ascidians and Endozoicomonas. PMID:27462299

  12. Endozoicomonas Are Specific, Facultative Symbionts of Sea Squirts

    PubMed Central

    Schreiber, Lars; Kjeldsen, Kasper U.; Funch, Peter; Jensen, Jeppe; Obst, Matthias; López-Legentil, Susanna; Schramm, Andreas

    2016-01-01

    Ascidians are marine filter feeders and harbor diverse microbiota that can exhibit a high degree of host-specificity. Pharyngeal samples of Scandinavian and Mediterranean ascidians were screened for consistently associated bacteria by culture-dependent and -independent approaches. Representatives of the Endozoicomonas (Gammaproteobacteria, Hahellaceae) clade were detected in the ascidian species Ascidiella aspersa, Ascidiella scabra, Botryllus schlosseri, Ciona intestinalis, Styela clava, and multiple Ascidia/Ascidiella spp. In total, Endozoicomonas was detected in more than half of all specimens screened, and in 25–100% of the specimens for each species. The retrieved Endozoicomonas 16S rRNA gene sequences formed an ascidian-specific subclade, whose members were detected by fluorescence in situ hybridization (FISH) as extracellular microcolonies in the pharynx. Two strains of the ascidian-specific Endozoicomonas subclade were isolated in pure culture and characterized. Both strains are chemoorganoheterotrophs and grow on mucin (a mucus glycoprotein). The strains tested negative for cytotoxic or antibacterial activity. Based on these observations, we propose ascidian-associated Endozoicomonas to be commensals, living off the mucus continuously secreted into the pharynx. Members of the ascidian-specific Endozoicomonas subclade were also detected in seawater from the Scandinavian sampling site, which suggests acquisition of the symbionts by horizontal transmission. The combined results indicate a host-specific, yet facultative symbiosis between ascidians and Endozoicomonas. PMID:27462299

  13. Tubular Heart Pumping Mechanisms in Ciona Intestinalis

    NASA Astrophysics Data System (ADS)

    Battista, Nicholas; Miller, Laura

    2015-11-01

    In vertebrate embryogenesis, the first organ to form is the heart, beginning as a primitive heart tube. However, many invertebrates have tubular hearts from infancy through adulthood. Heart tubes have been described as peristaltic and impedance pumps. Impedance pumping assumes a single actuation point of contraction, while traditional peristalsis assumes a traveling wave of actuation. In addition to differences in flow, this inherently implies differences in the conduction system. It is possible to transition from pumping mechanism to the other with a change in the diffusivity of the action potential. In this work we consider the coupling between the fluid dynamics and electrophysiology of both mechanisms, within a basal chordate, the tunicate. Using CFD with a neuro-mechanical model of tubular pumping, we discuss implications of the both mechanisms. Furthermore, we discuss the implications of the pumping mechanism on evolution and development.

  14. ACAM, a novel member of the neural IgCAM family, mediates anterior neural tube closure in a primitive chordate.

    PubMed

    Morales Diaz, Heidi; Mejares, Emil; Newman-Smith, Erin; Smith, William C

    2016-01-01

    The neural IgCAM family of cell adhesion molecules, which includes NCAM and related molecules, has evolved via gene duplication and alternative splicing to allow for a wide range of isoforms with distinct functions and homophilic binding properties. A search for neural IgCAMs in ascidians (Ciona intestinalis, Ciona savignyi, and Phallusia mammillata) has identified a novel set of truncated family members that, unlike the known members, lack fibronectin III domains and consist of only repeated Ig domains. Within the tunicates this form appears to be unique to the ascidians, and it was designated ACAM, for Ascidian Cell Adhesion Molecule. In C. intestinalis ACAM is expressed in the developing neural plate and neural tube, with strongest expression in the anterior sensory vesicle precursor. Unlike the two other conventional neural IgCAMs in C. intestinalis, which are expressed maternally and throughout the morula and blastula stages, ACAM expression initiates at the gastrula stage. Moreover, C. intestinalis ACAM is a target of the homeodomain transcription factor OTX, which plays an essential role in the development of the anterior central nervous system. Morpholino (MO) knockdown shows that ACAM is required for neural tube closure. In MO-injected embryos neural tube closure was normal caudally, but the anterior neuropore remained open. A similar phenotype was seen with overexpression of a secreted version of ACAM. The presence of ACAM in ascidians highlights the diversity of this gene family in morphogenesis and neurodevelopment. PMID:26542009

  15. Chimeras and histocompatibility in the colonial ascidian Botryllus schlosseri.

    PubMed

    Sabbadin, A; Astorri, C

    1988-01-01

    Chimeras of B. schlosseri were prepared by pairwise combination of colonies sharing one allele at the fusibility gene locus (AD = AC chimeras). A frequent resorption of one of the partners was observed and the resorption time was shown to be significantly correlated with the relative size, the resorbing partner being usually the larger. Both in the whole chimeras, AD = AC, and in the separated partners, (AD)AC, the fusibility of AC was frequently altered. In AD = AC the fusion did not prevent entirely AC fusion with BC. The fusion frequency with BC was significantly higher than with BD and significantly higher in (AD)AC than in AD = AC. Repeated rejections with BC or both BC and BD, repeated fusions with BD, simultaneous or successive fusions and rejections especially with BD, over a period of several months, indicated a long lasting competitive interaction of AD and AC in (AD)AC chimeras. The persistence in these chimeras of the AD cell population was also confirmed by the chimeric electrophoretic pattern of PGI in most of them.

  16. β-catenin-driven binary cell fate decisions in animal development.

    PubMed

    Bertrand, Vincent

    2016-01-01

    The Wnt/β-catenin pathway plays key roles during animal development. In several species, β-catenin is used in a reiterative manner to regulate cell fate diversification between daughter cells following division. This binary cell fate specification mechanism has been observed in animals that belong to very diverse phyla: the nematode Caenorhabditis elegans, the annelid Platynereis, and the ascidian Ciona. It may also play a role in the regulation of several stem cell lineages in vertebrates. While the molecular mechanism behind this binary cell fate switch is not fully understood, it appears that both secreted Wnt ligands and asymmetric cortical factors contribute to the generation of the difference in nuclear β-catenin levels between daughter cells. β-Catenin then cooperates with lineage specific transcription factors to induce the expression of novel sets of transcription factors at each round of divisions, thereby diversifying cell fate. For further resources related to this article, please visit the WIREs website. PMID:26952169

  17. An organismal perspective on C. intestinalis development, origins and diversification

    PubMed Central

    Kourakis, Matthew J; Smith, William C

    2015-01-01

    The ascidian Ciona intestinalis, commonly known as a ‘sea squirt’, has become an important model for embryological studies, offering a simple blueprint for chordate development. As a model organism, it offers the following: a small, compact genome; a free swimming larva with only about 2600 cells; and an embryogenesis that unfolds according to a predictable program of cell division. Moreover, recent phylogenies reveal that C. intestinalis occupies a privileged branch in the tree of life: it is our nearest invertebrate relative. Here, we provide an organismal perspective of C. intestinalis, highlighting aspects of its life history and habitat—from its brief journey as a larva to its radical metamorphosis into adult form—and relate these features to its utility as a laboratory model. DOI: http://dx.doi.org/10.7554/eLife.06024.001 PMID:25807088

  18. Vessel generator noise as a settlement cue for marine biofouling species.

    PubMed

    McDonald, J I; Wilkens, S L; Stanley, J A; Jeffs, A G

    2014-01-01

    Underwater noise is increasing globally, largely due to increased vessel numbers and international ocean trade. Vessels are also a major vector for translocation of non-indigenous marine species which can have serious implications for biosecurity. The possibility that underwater noise from fishing vessels may promote settlement of biofouling on hulls was investigated for the ascidian Ciona intestinalis. Spatial differences in biofouling appear to be correlated with spatial differences in the intensity and frequency of the noise emitted by the vessel's generator. This correlation was confirmed in laboratory experiments where C. intestinalis larvae showed significantly faster settlement and metamorphosis when exposed to the underwater noise produced by the vessel generator. Larval survival rates were also significantly higher in treatments exposed to vessel generator noise. Enhanced settlement attributable to vessel generator noise may indicate that vessels not only provide a suitable fouling substratum, but vessels running generators may be attracting larvae and enhancing their survival and growth.

  19. Functional specialization of cellulose synthase genes of prokaryotic origin in chordate larvaceans.

    PubMed

    Sagane, Yoshimasa; Zech, Karin; Bouquet, Jean-Marie; Schmid, Martina; Bal, Ugur; Thompson, Eric M

    2010-05-01

    Extracellular matrices play important, but poorly investigated, roles in morphogenesis. Extracellular cellulose is central to regulation of pattern formation in plants, but among metazoans only tunicates are capable of cellulose biosynthesis. Cellulose synthase (CesA) gene products are present in filter-feeding structures of all tunicates and also regulate metamorphosis in the ascidian Ciona. Ciona CesA is proposed to have been acquired by lateral gene transfer from a prokaryote. We identified two CesA genes in the sister-class larvacean Oikopleura dioica. Each has a mosaic structure of a glycoslyltransferase 2 domain upstream of a glycosyl hydrolase family 6 cellulase-like domain, a signature thus far unique to tunicates. Spatial-temporal expression analysis revealed that Od-CesA1 produces long cellulose fibrils along the larval tail, whereas Od-CesA2 is responsible for the cellulose scaffold of the post-metamorphic filter-feeding house. Knockdown of Od-CesA1 inhibited cellulose production in the extracellular matrix of the larval tail. Notochord cells either failed to align or were misaligned, the tail did not elongate properly and tailbud embryos also exhibited a failure to hatch. Knockdown of Od-CesA2 did not elicit any of these phenotypes and instead caused a mild delay in pre-house formation. Phylogenetic analyses including Od-CesAs indicate that a single lateral gene transfer event from a prokaryote at the base of the lineage conferred biosynthetic capacity in all tunicates. Ascidians possess one CesA gene, whereas duplicated larvacean genes have evolved distinct temporal and functional specializations. Extracellular cellulose microfibrils produced by the pre-metamorphic Od-CesA1 duplicate have a role in notochord and tail morphogenesis.

  20. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt), yielding mono- , di- , and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation,...

  1. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    The biotransformation of inorganic arsenic (iAs) involves methylation by an arsenic (+3 oxidation state) methyltransferase (AS3MT), yielding methyl arsenic (MA), dimethyl arsenic (DMA), and trimethylarsenic (TMA). To identify molecular mechanisms that coordinate arsenic biotra...

  2. The role of the pericardium in the valveless, tubular heart of the tunicate Ciona savignyi.

    PubMed

    Waldrop, Lindsay D; Miller, Laura A

    2015-09-01

    Tunicates, small invertebrates within the phylum Chordata, possess a robust tubular heart which pumps blood through their open circulatory systems without the use of valves. This heart consists of two major components: the tubular myocardium, a flexible layer of myocardial cells that actively contracts to drive fluid down the length of the tube; and the pericardium, a stiff, outer layer of cells that surrounds the myocardium and creates a fluid-filled space between the myocardium and the pericardium. We investigated the role of the pericardium through in vivo manipulations on tunicate hearts and computational simulations of the myocardium and pericardium using the immersed boundary method. Experimental manipulations reveal that damage to the pericardium results in aneurysm-like bulging of the myocardium and major reductions in the net blood flow and percentage closure of the heart's lumen during contraction. In addition, varying the pericardium-to-myocardium (PM) diameter ratio by increasing damage severity was positively correlated with peak dye flow in the heart. Computational simulations mirror the results of varying the PM ratio experimentally. Reducing the stiffness of the myocardium in the simulations reduced mean blood flow only for simulations without a pericardium. These results indicate that the pericardium has the ability to functionally increase the stiffness of the myocardium and limit myocardial aneurysms. The pericardium's function is likely to enhance flow through the highly resistive circulatory system by acting as a support structure in the absence of connective tissue within the myocardium. PMID:26142414

  3. Desiccation as a mitigation tool to manage biofouling risks: trials on temperate taxa to elucidate factors influencing mortality rates.

    PubMed

    Hopkins, Grant A; Prince, Madeleine; Cahill, Patrick L; Fletcher, Lauren M; Atalah, Javier

    2016-01-01

    The desiccation tolerance of biofouling taxa (adults and early life-stages) was determined under both controlled and 'realistic' field conditions. Adults of the ascidian Ciona spp. died within 24 h. Mortality in the adult blue mussel Mytilus galloprovincialis occurred within 11 d under controlled conditions, compared with 7 d when held outside. The Pacific oyster Crassostrea gigas was the most desiccation-tolerant taxon tested (up to 34 d under controlled conditions). Biofouling orientated to direct sunlight showed faster mortality rates for all the taxa tested. Mortality in Mytilus juveniles took up to 24 h, compared with 8 h for Ciona, with greater survival at the higher temperature (18.5°C) and humidity (~95% RH) treatment combination. This study demonstrated that desiccation can be an effective mitigation method for a broad range of fouling taxa, especially their early life-stages. Further work is necessary to assess risks from other high-risk species such as algae and cyst forming species. PMID:26691450

  4. Calcium sensors of ciliary outer arm dynein: functions and phylogenetic considerations for eukaryotic evolution.

    PubMed

    Inaba, Kazuo

    2015-01-01

    The motility of eukaryotic cilia and flagella is modulated in response to several extracellular stimuli. Ca(2+) is the most critical intracellular factor for these changes in motility, directly acting on the axonemes and altering flagellar asymmetry. Calaxin is an opisthokont-specific neuronal calcium sensor protein first described in the sperm of the ascidian Ciona intestinalis. It binds to a heavy chain of two-headed outer arm dynein in a Ca(2+)-dependent manner and regulates 'asymmetric' wave propagation at high concentrations of Ca(2+). A Ca(2+)-binding subunit of outer arm dynein in Chlamydomonas reinhardtii, the light chain 4 (LC4), which is a Ca(2+)-sensor phylogenetically different from calaxin, shows Ca(2+)-dependent binding to a heavy chain of three-headed outer arm dynein. However, LC4 appears to participate in 'symmetric' wave propagation at high concentrations of Ca(2+). LC4-type dynein light chain is present in bikonts, except for some subclasses of the Excavata. Thus, flagellar asymmetry-symmetry conversion in response to Ca(2+) concentration represents a 'mirror image' relationship between Ciona and Chlamydomonas. Phylogenetic analyses indicate the duplication, divergence, and loss of heavy chain and Ca(2+)-sensors of outer arm dynein among excavate species. These features imply a divergence point with respect to Ca(2+)-dependent regulation of outer arm dynein in cilia and flagella during the evolution of eukaryotic supergroups.

  5. Desiccation as a mitigation tool to manage biofouling risks: trials on temperate taxa to elucidate factors influencing mortality rates.

    PubMed

    Hopkins, Grant A; Prince, Madeleine; Cahill, Patrick L; Fletcher, Lauren M; Atalah, Javier

    2016-01-01

    The desiccation tolerance of biofouling taxa (adults and early life-stages) was determined under both controlled and 'realistic' field conditions. Adults of the ascidian Ciona spp. died within 24 h. Mortality in the adult blue mussel Mytilus galloprovincialis occurred within 11 d under controlled conditions, compared with 7 d when held outside. The Pacific oyster Crassostrea gigas was the most desiccation-tolerant taxon tested (up to 34 d under controlled conditions). Biofouling orientated to direct sunlight showed faster mortality rates for all the taxa tested. Mortality in Mytilus juveniles took up to 24 h, compared with 8 h for Ciona, with greater survival at the higher temperature (18.5°C) and humidity (~95% RH) treatment combination. This study demonstrated that desiccation can be an effective mitigation method for a broad range of fouling taxa, especially their early life-stages. Further work is necessary to assess risks from other high-risk species such as algae and cyst forming species.

  6. Laboratory assessment of the antifouling potential of a soluble-matrix paint laced with the natural compound polygodial.

    PubMed

    Cahill, Patrick Louis; Heasman, Kevin; Jeffs, Andrew; Kuhajek, Jeanne

    2013-09-01

    Polygodial is a potent and selective inhibitor of ascidian metamorphosis that shows promise for controlling fouling by ascidians in bivalve aquaculture. The current study examined the potency of, and associated effects of seawater exposure on, a rosin-based soluble-matrix paint laced with 0.08-160 ng polygodial g(-1) wet paint matrix. Paint-coated surfaces were soaked in seawater for 0, 2, 4 or 12 weeks prior to screening for antifouling activity using a bioassay based on the nuisance ascidian Ciona savignyi Herdman. Mortality was greater (mean 50% lethal concentration: 5 ± 2 ng g(-1); mean 75% lethal concentration: 17 ± 4 ng g(-1)) and metamorphosis was inhibited (mean 50% anti-metamorphic concentration: 2 ± 0.4 ng g(-1); mean 75% anti-metamorphic concentration: 15 ± 10 ng g(-1)) in C. savignyi larvae exposed to polygodial-laced soluble-matrix paints, relative to control paints without polygodial. Soaking in seawater prior to testing reduced the efficacy of the formulation up to nearly 12-fold, but even after soaking for 12 weeks paints laced with polygodial at 160 ng g(-1) wet paint matrix prevented ⩾90% of the larvae of C. savignyi from completing metamorphosis. The outcome of this experiment provides a positive first step in evaluating the suitability of polygodial-laced soluble-matrix paints for use in aquaculture.

  7. Step-economical synthesis of the marine ascidian antibiotics cadiolide A, B, and D.

    PubMed

    Boukouvalas, John; Thibault, Charles

    2015-01-01

    A concise, modular and efficient synthesis of the title natural products is reported. Prominent steps include (i) one-pot assembly of a key β-aryl-α-benzoylbutenolide building block by regiocontrolled "click-unclick" oxazole-ynone Diels-Alder cycloaddition/cycloreversion and ensuing 2-alkoxyfuran hydrolysis and (ii) a protecting group-free vinylogous Knoevenagel condensation enabling rapid access to cadiolides A, B, and D from a common precursor.

  8. Induced neural-type differentiation in the cleavage-arrested blastomere isolated from early ascidian embryos.

    PubMed Central

    Okado, H; Takahashi, K

    1990-01-01

    1. Isolated blastomeres and pairs of blastomeres from 8-cell embryos of Halocynthia roretzi and Halocynthia aurantium were cleavage-arrested with cytochalasin B and cultured. Their differentiation was examined in terms of membrane excitability, immunoreactivity to an epidermis-specific monoclonal antibody (2C5), and the presence of acetylcholinesterase. 2. The blastomeres that showed epidermal-type differentiation had Ca2(+)-dependent action potentials and membrane currents, and immunoreactivity to 2C5. The blastomeres that showed neural-type differentiation had Na(+)-, Ca2(+)- and TEA-sensitive delayed K+ channels, and lacked immunoreactivity to 2C5. 3. Cleavage-arrested anterior-animal blastomeres, a4-2, when cultured in isolation from an 8-cell embryo, differentiated exclusively into epidermal-type cells. However, when cultured in contact with anterior-vegetal blastomeres, A4-1, they mostly showed neural-type differentiation (seventeen out of twenty-four cells in H. roretzi). 4. Reduction of the cytochalasin B concentration enhanced neural-type development of a4-2 blastomeres in contact with A4-1 blastomeres in H. aurantium, possibly by tightening the physical contact between the blastomeres. 5. When a cleavage-arrested and isolated a4-2 blastomere was treated with 2% pronase at 10 degrees C for 15 min at the time when sister control embryos reached the 32-cell stage, the blastomere underwent neural-type differentiation in a manner identical to that of a4-2 blastomeres contacted by A4-1 cells. 6. The period during which neural-type differentiation of a4-2 blastomeres could be induced by treatment with pronase was from the 8-cell to the 110-cell stage. At the late gastrula stage neural-type differentiation of a4-2 blastomeres was not induced by pronase. The effective period for neural-type differentiation of a4-2 blastomeres in contact with A4-1 cells was between the 64-cell stage and late gastrula stage. Competence of the a4-2 blastomere to undergo neural-type differentiation decreased during gastrula stages, while the inducing ability of the A4-1 blastomere lasted longer. 7. In a few cases the posterior-animal blastomere, b4-2, could also be induced to undergo neural-type differentiation after contact with A4-1 cells or after pronase treatment. 8. The appearance of Na+ spikes in a4-2 blastomeres in contact with A4-1 cells was considered a manifestation of neural induction, similar in principle to the induction of ectoderm by the chorda-mesoderm in higher vertebrates. Images Fig. 3 PMID:2213609

  9. A glycine receptor is involved in the organization of swimming movements in an invertebrate chordate

    PubMed Central

    2010-01-01

    Background Rhythmic motor patterns for locomotion in vertebrates are generated in spinal cord neural networks known as spinal Central Pattern Generators (CPGs). A key element in pattern generation is the role of glycinergic synaptic transmission by interneurons that cross the cord midline and inhibit contralaterally-located excitatory neurons. The glycinergic inhibitory drive permits alternating and precisely timed motor output during locomotion such as walking or swimming. To understand better the evolution of this system we examined the physiology of the neural network controlling swimming in an invertebrate chordate relative of vertebrates, the ascidian larva Ciona intestinalis. Results A reduced preparation of the larva consisting of nerve cord and motor ganglion generates alternating swimming movements. Pharmacological and genetic manipulation of glycine receptors shows that they are implicated in the control of these locomotory movements. Morphological molecular techniques and heterologous expression experiments revealed that glycine receptors are inhibitory and are present on both motoneurones and locomotory muscle while putative glycinergic interneurons were identified in the nerve cord by labeling with an anti-glycine antibody. Conclusions In Ciona intestinalis, glycine receptors, glycinergic transmission and putative glycinergic interneurons, have a key role in coordinating swimming movements through a simple CPG that is present in the motor ganglion and nerve cord. Thus, the strong association between glycine receptors and vertebrate locomotory networks may now be extended to include the phylum chordata. The results suggest that the basic network for 'spinal-like' locomotion is likely to have existed in the common ancestor of extant chordates some 650 M years ago. PMID:20085645

  10. An Expanded Notch-Delta Model Exhibiting Long-Range Patterning and Incorporating MicroRNA Regulation

    PubMed Central

    Chen, Jerry S.; Gumbayan, Abygail M.; Zeller, Robert W.; Mahaffy, Joseph M.

    2014-01-01

    Notch-Delta signaling is a fundamental cell-cell communication mechanism that governs the differentiation of many cell types. Most existing mathematical models of Notch-Delta signaling are based on a feedback loop between Notch and Delta leading to lateral inhibition of neighboring cells. These models result in a checkerboard spatial pattern whereby adjacent cells express opposing levels of Notch and Delta, leading to alternate cell fates. However, a growing body of biological evidence suggests that Notch-Delta signaling produces other patterns that are not checkerboard, and therefore a new model is needed. Here, we present an expanded Notch-Delta model that builds upon previous models, adding a local Notch activity gradient, which affects long-range patterning, and the activity of a regulatory microRNA. This model is motivated by our experiments in the ascidian Ciona intestinalis showing that the peripheral sensory neurons, whose specification is in part regulated by the coordinate activity of Notch-Delta signaling and the microRNA miR-124, exhibit a sparse spatial pattern whereby consecutive neurons may be spaced over a dozen cells apart. We perform rigorous stability and bifurcation analyses, and demonstrate that our model is able to accurately explain and reproduce the neuronal pattern in Ciona. Using Monte Carlo simulations of our model along with miR-124 transgene over-expression assays, we demonstrate that the activity of miR-124 can be incorporated into the Notch decay rate parameter of our model. Finally, we motivate the general applicability of our model to Notch-Delta signaling in other animals by providing evidence that microRNAs regulate Notch-Delta signaling in analogous cell types in other organisms, and by discussing evidence in other organisms of sparse spatial patterns in tissues where Notch-Delta signaling is active. PMID:24945987

  11. The retinoid X receptor in a marine invertebrate chordate: evolutionary insights from urochordates.

    PubMed

    Maeng, Sejung; Lee, Jung Hwan; Choi, Sung-Chang; Kim, Mi Ae; Shin, Yun Kyung; Sohn, Young Chang

    2012-09-01

    Retinoid X receptors (RXRs) are highly conserved members of the nuclear hormone receptor family that mediate various physiological processes in vertebrates and invertebrates. We examined the expression patterns of RXR in the ascidian Halocynthia roretzi across a wide range of tissues and stages of embryo development, as well as the regulation of gene transcription by the ascidian RXR. H. roretzi RXR cDNA (HrRXR) was cloned from 64-cell stage embryos. The overall amino acid sequence of HrRXR showed high sequence identity with a urochordate Ciona intestinalis RXR (58%), but the ligand-binding domain of HrRXR was more similar to vertebrate orthologs than to those of invertebrate RXRs. Based on a phylogenetic analysis, HrRXR belongs to a group of urochordates that are separate from vertebrate RXRs, showing a clear evolutionary history. Real-time quantitative polymerase chain reaction and whole-mount in situ hybridization analyses revealed that the HrRXR mRNA is of maternal origin during embryogenesis, and in the examined adult tissues it is expressed in the muscles, gills, gonads, and the hepatopancreas. Immunofluorescence and immunohistochemical staining demonstrated that HrRXR is localized to the nucleus and highly expressed in the gills and hepatopancreas. Unlike human RXRα, HrRXR did not show 9-cis retinoic acid- and bexarotene (LGD1069)-dependent transactivation. While a synthetic ligand for farnesoid X receptor (FXR), GW4064, did not increase the transcriptional activation in HrRXR- or HrRXR/HrFXR-transfected HEK-293 cells, the ligand showed weak but significant activity for a single amino acid mutant of HrRXR ((Phe)231(Cys)) and HrFXR cotransfected cells. The present study suggests that the marine invertebrate chordate RXR may possess endogenous ligands that are different than vertebrate RXR ligands and which function during early embryonic stages.

  12. The genetic covariance between life cycle stages separated by metamorphosis

    PubMed Central

    Aguirre, J. David; Blows, Mark W.; Marshall, Dustin J.

    2014-01-01

    Metamorphosis is common in animals, yet the genetic associations between life cycle stages are poorly understood. Given the radical changes that occur at metamorphosis, selection may differ before and after metamorphosis, and the extent that genetic associations between pre- and post-metamorphic traits constrain evolutionary change is a subject of considerable interest. In some instances, metamorphosis may allow the genetic decoupling of life cycle stages, whereas in others, metamorphosis could allow complementary responses to selection across the life cycle. Using a diallel breeding design, we measured viability at four ontogenetic stages (embryo, larval, juvenile and adult viability), in the ascidian Ciona intestinalis and examined the orientation of additive genetic variation with respect to the metamorphic boundary. We found support for one eigenvector of G (gobsmax), which contrasted larval viability against embryo viability and juvenile viability. Target matrix rotation confirmed that while gobsmax shows genetic associations can extend beyond metamorphosis, there is still considerable scope for decoupled phenotypic evolution. Therefore, although genetic associations across metamorphosis could limit that range of phenotypes that are attainable, traits on either side of the metamorphic boundary are capable of some independent evolutionary change in response to the divergent conditions encountered during each life cycle stage. PMID:24966319

  13. β‐catenin‐driven binary cell fate decisions in animal development

    PubMed Central

    2016-01-01

    The Wnt/β‐catenin pathway plays key roles during animal development. In several species, β‐catenin is used in a reiterative manner to regulate cell fate diversification between daughter cells following division. This binary cell fate specification mechanism has been observed in animals that belong to very diverse phyla: the nematode Caenorhabditis elegans, the annelid Platynereis, and the ascidian Ciona. It may also play a role in the regulation of several stem cell lineages in vertebrates. While the molecular mechanism behind this binary cell fate switch is not fully understood, it appears that both secreted Wnt ligands and asymmetric cortical factors contribute to the generation of the difference in nuclear β‐catenin levels between daughter cells. β‐Catenin then cooperates with lineage specific transcription factors to induce the expression of novel sets of transcription factors at each round of divisions, thereby diversifying cell fate. WIREs Dev Biol 2016, 5:377–388. doi: 10.1002/wdev.228 For further resources related to this article, please visit the WIREs website. PMID:26952169

  14. The genetic covariance between life cycle stages separated by metamorphosis.

    PubMed

    Aguirre, J David; Blows, Mark W; Marshall, Dustin J

    2014-08-01

    Metamorphosis is common in animals, yet the genetic associations between life cycle stages are poorly understood. Given the radical changes that occur at metamorphosis, selection may differ before and after metamorphosis, and the extent that genetic associations between pre- and post-metamorphic traits constrain evolutionary change is a subject of considerable interest. In some instances, metamorphosis may allow the genetic decoupling of life cycle stages, whereas in others, metamorphosis could allow complementary responses to selection across the life cycle. Using a diallel breeding design, we measured viability at four ontogenetic stages (embryo, larval, juvenile and adult viability), in the ascidian Ciona intestinalis and examined the orientation of additive genetic variation with respect to the metamorphic boundary. We found support for one eigenvector of G: (gobsmax ), which contrasted larval viability against embryo viability and juvenile viability. Target matrix rotation confirmed that while gobsmax shows genetic associations can extend beyond metamorphosis, there is still considerable scope for decoupled phenotypic evolution. Therefore, although genetic associations across metamorphosis could limit that range of phenotypes that are attainable, traits on either side of the metamorphic boundary are capable of some independent evolutionary change in response to the divergent conditions encountered during each life cycle stage.

  15. Effects of egg size on the development time of non-feeding larvae.

    PubMed

    Marshall, Dustin J; Bolton, Toby F

    2007-02-01

    The evolution of egg size in marine invertebrates remains a topic of central importance for life-history biologists, and the pioneering work of Vance has strongly influenced our current views. Vance's model and most models developed since have assumed that increases in egg size result in an increase in the prefeeding period of marine invertebrate larvae. For lecithotrophic species, this means that the entire development period should be correlated with egg size. Despite the importance of this assumption, it has not been tested at the appropriate scale-within species. We investigated the effects of egg size on development time for three lecithotrophic species from two phyla: the ascidians Phallusia obesa and Ciona intestinalis, and the echinoid Heliocidaris erythrogramma. We found that within individual broods of eggs, larger eggs took longer than smaller eggs to develop or become metamorphically competent larvae. It has long been recognized that producing larger eggs decreases fecundity, but our results show that increasing egg size also carries the extra cost of an extended planktonic period during which mortality can occur. The substantial variation in egg sizes observed within broods may represent a bet-hedging strategy by which offspring with variable dispersal potentials are produced. PMID:17301326

  16. The Non-Proliferative Nature of Ascidian Folliculogenesis as a Model of Highly Ordered Cellular Topology Distinct from Proliferative Epithelia

    PubMed Central

    Azzag, Karim; Chelin, Yoann; Rousset, François; Le Goff, Emilie; Martinand-Mari, Camille; Martinez, Anne-Marie; Maurin, Bernard; Daujat-Chavanieu, Martine; Godefroy, Nelly; Averseng, Julien; Mangeat, Paul; Baghdiguian, Stephen

    2015-01-01

    Previous studies have addressed why and how mono‐stratified epithelia adopt a polygonal topology. One major additional, and yet unanswered question is how the frequency of different cell shapes is achieved and whether the same distribution applies between non-proliferative and proliferative epithelia. We compared different proliferative and non-proliferative epithelia from a range of organisms as well as Drosophila melanogaster mutants, deficient for apoptosis or hyperproliferative. We show that the distribution of cell shapes in non‐proliferative epithelia (follicular cells of five species of tunicates) is distinctly, and more stringently organized than proliferative ones (cultured epithelial cells and Drosophila melanogaster imaginal discs). The discrepancy is not supported by geometrical constraints (spherical versus flat monolayers), number of cells, or apoptosis events. We have developed a theoretical model of epithelial morphogenesis, based on the physics of divided media, that takes into account biological parameters such as cell‐cell contact adhesions and tensions, cell and tissue growth, and which reproduces the effects of proliferation by increasing the topological heterogeneity observed experimentally. We therefore present a model for the morphogenesis of epithelia where, in a proliferative context, an extended distribution of cell shapes (range of 4 to 10 neighbors per cell) contrasts with the narrower range of 5-7 neighbors per cell that characterizes non proliferative epithelia. PMID:26000769

  17. Nimbus (BgI): An active non-LTR retrotransposon of the Schistosoma mansoni snail host Biomphalaria glabrata✰

    PubMed Central

    Raghavan, Nithya; Tettelin, Hervé; Miller, André; Hostetler, Jessica; Tallon, Luke; Knight, Matty

    2009-01-01

    The freshwater snail Biomphalaria glabrata is closely associated with the transmission of human schistosomiasis. An ecologically sound method has been proposed to control schistosomiasis using genetically modified snails to displace endemic, susceptible ones. To assess the viability of this form of biological control, studies towards understanding the molecular makeup of the snail relative to the presence of endogenous mobile genetic elements are being undertaken since they can be exploited for genetic transformation studies. We previously cloned a 1.95 Kb BamHI fragment in B. glabrata (BGR2) with sequence similarity to the human long interspersed nuclear element (LINE or L1). A contiguous, full-length sequence corresponding to BGR2, hereafter-named nimbus (BgI), has been identified from a B. glabrata bacterial artificial chromosome (BAC) library. Sequence analysis of the 65,764 bp BAC insert contained one full-length, complete nimbus (BgI) element (element I), two full-length elements (elements II and III) containing deletions and flanked by target site duplications and 10 truncated copies. The intact nimbus (BgI) contained two open reading frames (ORFs 1 and 2) encoding the characteristic hallmark domains found in non-long terminal repeat retrotransposons belonging to the I clade; a nucleic acid binding protein in ORF1 and an apurinic/apyrimidinic endonuclease, reverse transcriptase and RNase H in ORF2. Phylogenetic analysis revealed that nimbus (BgI) is closely related to Drosophila (I factor), mosquito Aedes aegypti (MosquI) and chordate ascidian Ciona intestinalis (CiI) retrotransposons. Nimbus (BgI) represents the first complete mobile element characterized from a mollusk that appears to be transcriptionally active and is widely distributed in snails of the neotropics and the Old World. PMID:17521654

  18. The ascidian natural product eusynstyelamide B is a novel topoisomerase II poison that induces DNA damage and growth arrest in prostate and breast cancer cells.

    PubMed

    Liberio, Michelle S; Sadowski, Martin C; Davis, Rohan A; Rockstroh, Anja; Vasireddy, Raj; Lehman, Melanie L; Nelson, Colleen C

    2015-12-22

    As part of an anti-cancer natural product drug discovery program, we recently identified eusynstyelamide B (EB), which displayed cytotoxicity against MDA-MB-231 breast cancer cells (IC50 = 5 μM) and induced apoptosis. Here, we investigated the mechanism of action of EB in cancer cell lines of the prostate (LNCaP) and breast (MDA-MB-231). EB inhibited cell growth (IC50 = 5 μM) and induced a G2 cell cycle arrest, as shown by a significant increase in the G2/M cell population in the absence of elevated levels of the mitotic marker phospho-histone H3. In contrast to MDA-MB-231 cells, EB did not induce cell death in LNCaP cells when treated for up to 10 days. Transcript profiling and Ingenuity Pathway Analysis suggested that EB activated DNA damage pathways in LNCaP cells. Consistent with this, CHK2 phosphorylation was increased, p21CIP1/WAF1 was up-regulated and CDC2 expression strongly reduced by EB. Importantly, EB caused DNA double-strand breaks, yet did not directly interact with DNA. Analysis of topoisomerase II-mediated decatenation discovered that EB is a novel topoisomerase II poison.

  19. Reproductive protein evolution in two cryptic species of marine chordate

    PubMed Central

    2011-01-01

    Background Reproductive character displacement (RCD) is a common and taxonomically widespread pattern. In marine broadcast spawning organisms, behavioral and mechanical isolation are absent and prezygotic barriers between species often operate only during the fertilization process. Such barriers are usually a consequence of differences in the way in which sperm and egg proteins interact, so RCD can be manifest as faster evolution of these proteins between species in sympatry than allopatry. Rapid evolution of these proteins often appears to be a consequence of positive (directional) selection. Here, we identify a set of candidate gamete recognition proteins (GRPs) in the ascidian Ciona intestinalis and showed that these GRPs evolve more rapidly than control proteins (those not involved in gamete recognition). Choosing a subset of these gamete recognition proteins that show evidence of positive selection (CIPRO37.40.1, CIPRO60.5.1, CIPRO100.7.1), we then directly test the RCD hypothesis by comparing divergence (omega) and polymorphism (McDonald-Kreitman, Tajima's D, Fu and Li's D and F, Fay and Wu's H) statistics in sympatric and allopatric populations of two distinct forms of C. intestinalis (Types A and B) between which there are strong post-zygotic barriers. Results Candidate gamete recognition proteins from two lineages of C. intestinalis (Type A and B) are evolving more rapidly than control proteins, consistent with patterns seen in insects and mammals. However, ω (dN/dS) is not significantly different between the sympatric and allopatric populations, and none of the polymorphism statistics show significant differences between sympatric and allopatric populations. Conclusions Enhanced prezygotic isolation in sympatry has become a well-known feature of gamete recognition proteins in marine broadcast spawners. But in most cases the evolutionary process or processes responsible for this pattern have not been identified. Although gamete recognition proteins in C

  20. Relationships between deep-sea tunicate populations west and east of the Straits of Gibraltar

    NASA Astrophysics Data System (ADS)

    Monniot, Claude; Monniot, Françoise

    Twenty-four species of tunicates were collected from deep bottoms on each side of the Gibraltar sill, in the adjacent Mediterranean Sea and Atlantic Ocean. In the Atlantic, stations bathed by Atlantic and Mediterranean waters were both sampled. No transport of ascidian taxa by the outflow of Mediterranean water into the Atlantic is apparent. The alternative hypothesis of an Atlantic origin of bathyal ascidian species in the Mediterranean Sea is proposed.

  1. Testing the consistency of connectivity patterns for a widely dispersing marine species

    PubMed Central

    Thomas, L; Bell, J J

    2013-01-01

    Connectivity is widely recognized as an important component in developing effective management and conservation strategies. Although managers are generally most interested in demographic, rather than genetic connectivity, new analytic approaches are able to provide estimates of both demographic and genetic connectivity measures from genetic data. Combining such genetic data with mathematical models represents a powerful approach for accurately determining patterns of population connectivity. Here, we use microsatellite markers to investigate the genetic population structure of the New Zealand Rock Lobster, Jasus edwardsii, which has one of the longest known larval durations of all marine species (>2 years), a very large geographic range (>5500 km), and has been the subject of extensive dispersal modeling. Despite earlier mitochondrial DNA studies finding homogeneous genetic structure, the mathematical model suggests that there are source-sink dynamics for this species. We found evidence of genetic structure in J. edwardsii populations with three distinct genetic groups across New Zealand and a further Australian group; these groups and patterns of gene flow were generally congruent with the earlier mathematical model. Of particular interest was the consistent identification of a self-recruiting population/region from both modeling and genetic approaches. Although there is the potential for selection and harvesting to influence the patterns we observed, we believe oceanographic processes are most likely responsible for the genetic structure observed in J. edwardsii. Our results, using a species at the extreme end of the dispersal spectrum, demonstrate that source-sink population dynamics may still exist for such species. PMID:23820580

  2. Testing the consistency of connectivity patterns for a widely dispersing marine species.

    PubMed

    Thomas, L; Bell, J J

    2013-10-01

    Connectivity is widely recognized as an important component in developing effective management and conservation strategies. Although managers are generally most interested in demographic, rather than genetic connectivity, new analytic approaches are able to provide estimates of both demographic and genetic connectivity measures from genetic data. Combining such genetic data with mathematical models represents a powerful approach for accurately determining patterns of population connectivity. Here, we use microsatellite markers to investigate the genetic population structure of the New Zealand Rock Lobster, Jasus edwardsii, which has one of the longest known larval durations of all marine species (>2 years), a very large geographic range (>5500 km), and has been the subject of extensive dispersal modeling. Despite earlier mitochondrial DNA studies finding homogeneous genetic structure, the mathematical model suggests that there are source-sink dynamics for this species. We found evidence of genetic structure in J. edwardsii populations with three distinct genetic groups across New Zealand and a further Australian group; these groups and patterns of gene flow were generally congruent with the earlier mathematical model. Of particular interest was the consistent identification of a self-recruiting population/region from both modeling and genetic approaches. Although there is the potential for selection and harvesting to influence the patterns we observed, we believe oceanographic processes are most likely responsible for the genetic structure observed in J. edwardsii. Our results, using a species at the extreme end of the dispersal spectrum, demonstrate that source-sink population dynamics may still exist for such species.

  3. Adhesive Enrichment and Membrane Turnover at the Heart of Cardiopharyngeal Induction.

    PubMed

    Kelly, Robert G

    2015-09-14

    Differential inductive signaling during asymmetric division of progenitor cells specifies the heart lineage in Ciona intestinalis. In this issue of Developmental Cell, Cota and Davidson (2015) show that differential induction is mediated by FGF receptor regionalization, resulting from asymmetric cell-matrix adhesion and reduced mitotic turnover of polarized Caveolin-rich membrane domains.

  4. Covert Prepatterning of a Cell Division Wave.

    PubMed

    Veeman, Michael

    2016-04-18

    A directional wave of mitosis, progressing posterior to anterior across the epidermis, is important for neural tube closure in the invertebrate chordate Ciona intestinalis. In this issue of Developmental Cell, Ogura and Sasakura (2016) show that the patterning of this wave unexpectedly has complex origins in the previous cell cycle. PMID:27093077

  5. Adhesive Enrichment and Membrane Turnover at the Heart of Cardiopharyngeal Induction.

    PubMed

    Kelly, Robert G

    2015-09-14

    Differential inductive signaling during asymmetric division of progenitor cells specifies the heart lineage in Ciona intestinalis. In this issue of Developmental Cell, Cota and Davidson (2015) show that differential induction is mediated by FGF receptor regionalization, resulting from asymmetric cell-matrix adhesion and reduced mitotic turnover of polarized Caveolin-rich membrane domains. PMID:26374763

  6. The pre-vertebrate origins of neurogenic placodes.

    PubMed

    Abitua, Philip Barron; Gainous, T Blair; Kaczmarczyk, Angela N; Winchell, Christopher J; Hudson, Clare; Kamata, Kaori; Nakagawa, Masashi; Tsuda, Motoyuki; Kusakabe, Takehiro G; Levine, Michael

    2015-08-27

    The sudden appearance of the neural crest and neurogenic placodes in early branching vertebrates has puzzled biologists for over a century. These embryonic tissues contribute to the development of the cranium and associated sensory organs, which were crucial for the evolution of the vertebrate "new head". A previous study suggests that rudimentary neural crest cells existed in ancestral chordates. However, the evolutionary origins of neurogenic placodes have remained obscure owing to a paucity of embryonic data from tunicates, the closest living relatives to those early vertebrates. Here we show that the tunicate Ciona intestinalis exhibits a proto-placodal ectoderm (PPE) that requires inhibition of bone morphogenetic protein (BMP) and expresses the key regulatory determinant Six1/2 and its co-factor Eya, a developmental process conserved across vertebrates. The Ciona PPE is shown to produce ciliated neurons that express genes for gonadotropin-releasing hormone (GnRH), a G-protein-coupled receptor for relaxin-3 (RXFP3) and a functional cyclic nucleotide-gated channel (CNGA), which suggests dual chemosensory and neurosecretory activities. These observations provide evidence that Ciona has a neurogenic proto-placode, which forms neurons that appear to be related to those derived from the olfactory placode and hypothalamic neurons of vertebrates. We discuss the possibility that the PPE-derived GnRH neurons of Ciona resemble an ancestral cell type, a progenitor to the complex neuronal circuit that integrates sensory information and neuroendocrine functions in vertebrates. PMID:26258298

  7. Development of the neuromuscular system during asexual propagation in an invertebrate chordate.

    PubMed

    Tiozzo, Stefano; Murray, Maureen; Degnan, Bernard M; De Tomaso, Anthony W; Croll, Roger P

    2009-08-01

    Botryllus schlosseri is a colonial ascidian, and the closest relative to vertebrates that can completely regenerate its entire body, including all somatic and germline tissues, using an asexual developmental pathway called blastogenesis. This regenerative potential exhibited by Botryllus and other colonial ascidians does not exist in any other chordate and makes B. schlosseri a promising model to investigate the cellular and molecular basis of regeneration. In this report, we describe postembryonic myogenesis and characterized the development of the neural system during blastogenic development. alpha-Tubulin immunoreactivity revealed a high correlation with previous studies on the motor nervous system. The pattern of the serotoninergic system in the adult reflects that observed in solitary ascidians, but in early blastogenesis suggests a morphogenic role of this monoamine. In summary, this study provides the morphological framework to dissect the mechanisms underlying the ability to regenerate entire organ systems as an adult in a chordate model.

  8. Origin and Variation of Tunicate Secondary Metabolites⊥

    PubMed Central

    Schmidt, Eric W.; Donia, Mohamed S.; McIntosh, John A.; Fricke, W. Florian; Ravel, Jacques

    2012-01-01

    Ascidians (tunicates) are rich sources of structurally elegant, pharmaceutically potent secondary metabolites and more recently, potential biofuels. It has been demonstrated that some of these compounds are made by symbiotic bacteria and not by the animals themselves, and for a few other compounds evidence exists supporting a symbiotic origin. In didemnid ascidians, compounds are highly variable even in apparently identical animals. Recently, we have explained this variation at the genomic and metagenomic levels and have applied the basic scientific findings to drug discovery and development. This review discusses what is currently known about the origin and variation of symbiotically derived metabolites in ascidians, focusing on Family Didemnidae, where most research has occurred. Applications of our basic studies are also described. PMID:22233390

  9. Field Assessment of the Predation Risk - Food Availability Trade-Off in Crab Megalopae Settlement

    PubMed Central

    Tapia-Lewin, Sebastián; Pardo, Luis Miguel

    2014-01-01

    Settlement is a key process for meroplanktonic organisms as it determines distribution of adult populations. Starvation and predation are two of the main mortality causes during this period; therefore, settlement tends to be optimized in microhabitats with high food availability and low predator density. Furthermore, brachyuran megalopae actively select favorable habitats for settlement, via chemical, visual and/or tactile cues. The main objective in this study was to assess the settlement of Metacarcinus edwardsii and Cancer plebejus under different combinations of food availability levels and predator presence. We determined, in the field, which factor is of greater relative importance when choosing a suitable microhabitat for settling. Passive larval collectors were deployed, crossing different scenarios of food availability and predator presence. We also explore if megalopae actively choose predator-free substrates in response to visual and/or chemical cues. We tested the response to combined visual and chemical cues and to each individually. Data was tested using a two-way factorial design ANOVA. In both species, food did not cause significant effect on settlement success, but predator presence did, therefore there was not trade-off in this case and megalopae respond strongly to predation risk by active aversion. Larvae of M. edwardsii responded to chemical and visual cues simultaneously, but there was no response to either cue by itself. Statistically, C. plebejus did not exhibit a differential response to cues, but reacted with a strong similar tendency as M. edwardsii. We concluded that crab megalopae actively select predator-free microhabitat, independently of food availability, using chemical and visual cues combined. The findings in this study highlight the great relevance of predation on the settlement process and recruitment of marine invertebrates with complex life cycles. PMID:24748151

  10. Recent N-Atom Containing Compounds from Indo-Pacific Invertebrates

    PubMed Central

    Kashman, Yoel; Bishara, Ashgan; Aknin, Maurice

    2010-01-01

    A large variety of unique N-atom containing compounds (alkaloids) without terrestrial counterparts, have been isolated from marine invertebrates, mainly sponges and ascidians. Many of these compounds display interesting biological activities. In this report we present studies on nitrogenous compounds, isolated by our group during the last few years, from Indo-Pacific sponges, one ascidian and one gorgonian. The major part of the review deals with metabolites from the Madagascar sponge Fascaplysinopsis sp., namely, four groups of secondary metabolites, the salarins, tulearins, taumycins and tausalarins. PMID:21139846

  11. Inducers of settlement and moulting in post-larval spiny lobster.

    PubMed

    Stanley, Jenni A; Hesse, Jan; Hinojosa, Iván A; Jeffs, Andrew G

    2015-07-01

    The rapid and often remote location of suitable habitats used by migrating organisms is often critical to their subsequent recruitment, fitness and survival, and this includes in the marine environment. However, for the non-feeding post-larval stage of spiny lobsters, effective settlement cues for habitat selection are critical to their success but are poorly described. Therefore, the current study examined whether acoustic and substrate cues have the potential to shorten the time to moulting and affect their subsequent nutritional condition in the pueruli of the southern spiny lobster, Jasus edwardsii. Individuals moulted to first instar juveniles up to 38% faster when exposed to the underwater sound from two types of typical settlement habitat (coastal kelp- and urchin-dominated reefs) compared to those with no underwater sound. The settlement delay in the post-larvae without underwater sound also resulted in juveniles in poorer survival and nutritional condition as measured by their protein and lipid contents. In a separate experiment, post-larvae presented with seaweed and rock substrates were found to complete settlement and moult to juvenile by as much as 20% faster compared to those on the sand and control treatments. Overall, the results are the first to demonstrate that the pueruli of J. edwardsii have the ability to detect and respond to underwater sound, as well as determining that both acoustic and substrate cues play a role in modulating physiological development during settlement.

  12. Inducers of settlement and moulting in post-larval spiny lobster.

    PubMed

    Stanley, Jenni A; Hesse, Jan; Hinojosa, Iván A; Jeffs, Andrew G

    2015-07-01

    The rapid and often remote location of suitable habitats used by migrating organisms is often critical to their subsequent recruitment, fitness and survival, and this includes in the marine environment. However, for the non-feeding post-larval stage of spiny lobsters, effective settlement cues for habitat selection are critical to their success but are poorly described. Therefore, the current study examined whether acoustic and substrate cues have the potential to shorten the time to moulting and affect their subsequent nutritional condition in the pueruli of the southern spiny lobster, Jasus edwardsii. Individuals moulted to first instar juveniles up to 38% faster when exposed to the underwater sound from two types of typical settlement habitat (coastal kelp- and urchin-dominated reefs) compared to those with no underwater sound. The settlement delay in the post-larvae without underwater sound also resulted in juveniles in poorer survival and nutritional condition as measured by their protein and lipid contents. In a separate experiment, post-larvae presented with seaweed and rock substrates were found to complete settlement and moult to juvenile by as much as 20% faster compared to those on the sand and control treatments. Overall, the results are the first to demonstrate that the pueruli of J. edwardsii have the ability to detect and respond to underwater sound, as well as determining that both acoustic and substrate cues play a role in modulating physiological development during settlement. PMID:25682060

  13. Screening for antioxidant and detoxification responses in Perna canaliculus Gmelin exposed to an antifouling bioactive intended for use in aquaculture.

    PubMed

    Cahill, Patrick Louis; Burritt, David; Heasman, Kevin; Jeffs, Andrew; Kuhajek, Jeanne

    2013-10-01

    Polygodial is a drimane sesquiterpene dialdehyde derived from certain terrestrial plant species that potently inhibits ascidian metamorphosis, and thus has potential for controlling fouling ascidians in bivalve aquaculture. The current study examined the effects of polygodial on a range of biochemical biomarkers of oxidative stress and detoxification effort in the gills of adult Perna canaliculus Gmelin. Despite high statistical power and the success of positive controls, the antioxidant enzymes glutathione reductase (GR), glutathione peroxidase (GPOX), catalase (CAT), and superoxide dismutase (SOD); thiol status, as measured by total glutathione (GSH-t), glutathione disulphide (GSSG), and GSH-t/GSSG ratio; end products of oxidative damage, lipid hydroperoxides (LHPO) and protein carbonyls; and detoxification pathways, represented by GSH-t and glutathione S-transferase (GST), were unaffected in the gills of adult P. canaliculus exposed to polygodial at 0.1 or 1 × the 99% effective dose in fouling ascidians (IC₉₉). Similarly, GR levels, thiol status, and detoxification activities were unaffected in mussels exposed to polygodial at 10 × the IC₉₉, although GPOX, CAT, and SOD activities increased. However, the increases were small relative to positive controls, no corresponding oxidative damage was detected, and this concentration greatly exceeds effective doses required to inhibit fouling ascidians in aquaculture. These findings compliment a previous study that established the insensitivity to polygodial of P. canaliculus growth, condition, and mitochondrial functioning, providing additional support for the suitability of polygodial for use as an antifouling agent in bivalve aquaculture.

  14. How the sea squirt nucleus tells mesoderm Not to be endoderm

    PubMed Central

    Parton, Richard M.; Davis, Ilan

    2011-01-01

    Sea squirts are simple invertebrate chordates. In this issue, Takatori et al show nuclear migration within ascidian mesendodermal cells enables polarized localization of Not mRNA, which encodes a homeobox protein that distinguishes mesoderm from endoderm fates. The link between nuclear migration and mRNA localization suggests exciting parallels with protostomes. PMID:20951340

  15. The habitat engineering tunicate Microcosmus sabatieri Roule, 1885 and its associated peracarid epifauna

    NASA Astrophysics Data System (ADS)

    Voultsiadou, Eleni; Pyrounaki, Maria-Myrto; Chintiroglou, Chariton

    2007-08-01

    The solitary ascidian Microcosmus sabatieri is a common ecosystem engineering species on hard bottom sublittoral communities in the Eastern Mediterranean. Peracarida are common inhabitants of biological substrata, such as algae, sponges and ascidians and have been proven to be very sensitive to changes in environmental conditions. The aim of this study was to present and analyse, for the first time, the structure of the peracarid epifaunal assemblage inhabiting this Mediterranean endemic, edible and commercially exploited species. During sampling in the North Aegean Sea, 41 specimens were collected and examined for their peracarid epifauna. Overall, 38 peracarid species were identified, a high number in comparison to those recorded in the few other relevant studies on ascidian epifauna. The great majority of the species were amphipods. By contrast, in terms of abundance, tanaidaceans was the dominant taxon, with Leptochelia savigni being by far the most dominant species. Tube-dwelling suspension-feeders dominated the peracarid epifauna of this tunicate. The suspension feeding mode of epifaunal peracarids is possibly favoured by the high filtration rate of M. sabatieri which is large sized and has an extensive branchial surface. It is suggested that the tube-dwelling habit of tanaidaceans and some amphipods offering extra protection, may further explain their dominance as elements of the epifauna, in contrast to other inquiline peracarids which prefer to search for shelter inside the canals of sponges or, in a few cases inside the mantle cavity of ascidians. Differences in peracarid abundance among the ascidian specimens were attributed to the reproductive and dispersal habits of the former. Species richness, abundance and diversity of the motile peracarid epifauna was dependent on the biomass of the ascidian, but most strongly on the biomass of the sessile epibiontic organisms, such as algae and sponges which, in some cases, had a higher biomass than the ascidian

  16. On some historical and theoretical foundations of the concept of chordates.

    PubMed

    Raineri, Margherita

    2009-03-01

    The concept of chordates arose from the alliance between embryology and evolution in the second half of the nineteenth century, as a result of a theoretical elaboration on Kowalevsky's discoveries about some fundamental similarities between the ontogeny of the lancelet, a putative primitive fish, and that of ascidians, then classified as molluscs. Carrying out his embryological studies in the light of Darwin's theory and von Baer's account of the germ layers, Kowalevsky was influenced by the German tradition of idealistic morphology that was concerned with transformations driven by laws of form, rather than with a gradual evolution occurring by means of variation, selection and adaptation. In agreement with this tradition, Kowalevsky interpreted the vertebrate-like structures of the ascidian larva according to von Kölliker's model of heterogeneous generation. Then, he asserted the homology of the germ layers and their derivatives in different types of animals and suggested a common descent of annelids and vertebrates, in agreement with Saint-Hilaire's hypothesis of the unity of composition of body plans, but in contrast with Haeckel's idea of the Chordonia (chordates). In The Descent of Man Darwin quoted Kowalevsky's discoveries, but accepted Haeckel's interpretation of the ascidian embryology within the frame of a monophyletic tree of life that was produced by the fundamental biogenetic law. Joining embryology to evolution in the light of idealistic morphology, the biogenetic law turned out to be instrumental in bringing forth different evolutionary hypotheses: it was used by Haeckel and Darwin to link vertebrates to invertebrates by means of the concept of chordates, and by Kowalevsky to corroborate the annelid theory of the origin of vertebrates. Yet, there was still another interpretation of Kowalevsky's discoveries. As an adherent to empiricism and to Cuvier's theory of types, von Baer asserted that these discoveries did not prove convincingly a dorsal

  17. Gut immunity in a protochordate involves a secreted immunoglobulin-type mediator binding host chitin and bacteria

    PubMed Central

    Dishaw, Larry J.; Leigh, Brittany; Cannon, John P.; Liberti, Assunta; Mueller, M. Gail; Skapura, Diana P.; Karrer, Charlotte R.; Pinto, Maria R.; De Santis, Rosaria; Litman, Gary W.

    2016-01-01

    Protochordate variable region-containing chitin-binding proteins (VCBPs) consist of immunoglobulin-type V domains and a chitin-binding domain (CBD). VCBP V domains facilitate phagocytosis of bacteria by granulocytic amoebocytes; the function of the CBD is not understood. Here we show that the gut mucosa of Ciona intestinalis contains an extensive matrix of chitin fibrils to which VCBPs bind early in gut development, before feeding. Later in development, VCBPs and bacteria colocalize to chitin-rich mucus along the intestinal wall. VCBP-C influences biofilm formation in vitro and, collectively, the findings of this study suggest that VCBP-C may influence the overall settlement and colonization of bacteria in the Ciona gut. Basic relationships between soluble immunoglobulin-type molecules, endogenous chitin and bacteria arose early in chordate evolution and are integral to the overall function of the gut barrier. PMID:26875669

  18. Immune-Directed Support of Rich Microbial Communities in the Gut Has Ancient Roots

    PubMed Central

    Dishaw, Larry J.; Cannon, John P.; Litman, Gary W.; Parker, William

    2014-01-01

    The animal gut serves as a primary location for the complex host-microbe interplay that is essential for homeostasis and may also reflect the types of ancient selective pressures that spawned the emergence of immunity in metazoans. In this review, we present a phylogenetic survey of gut host-microbe interactions and suggest that host defense systems arose not only to protect tissue directly from pathogenic attack but also to actively support growth of specific communities of mutualists. This functional dichotomy resulted in the evolution of immune systems much more tuned for harmonious existence with microbes than previously thought, existing as dynamic but primarily cooperative entities in the present day. We further present the protochordate Ciona intestinalis as a promising model for studying gut host-bacterial dialogue. The taxonomic position, gut physiology and experimental tractability of Ciona offer unique advantages in dissecting host-microbe interplay and can complement studies in other model systems. PMID:24984114

  19. Mitotic Membrane Turnover Coordinates Differential Induction of the Heart Progenitor Lineage.

    PubMed

    Cota, Christina D; Davidson, Brad

    2015-09-14

    In response to microenvironmental cues, embryonic cells form adhesive signaling compartments that influence survival and patterning. Dividing cells detach from the surrounding matrix and initiate extensive membrane remodeling, but the in vivo impact of mitosis on adhesion-dependent signaling remains poorly characterized. We investigate in vivo signaling dynamics using the invertebrate chordate, Ciona intestinalis. In Ciona, matrix adhesion polarizes fibroblast growth factor (FGF)-dependent heart progenitor induction. Here, we show that adhesion inhibits mitotic FGF receptor internalization, leading to receptor enrichment along adherent membranes. Targeted disruption of matrix adhesion promotes uniform FGF receptor internalization and degradation while enhanced adhesion suppresses degradation. Chimeric analysis indicates that integrin β chain-specific impacts on induction are dictated by distinct internalization motifs. We also found that matrix adhesion impacts receptor enrichment through Caveolin-rich membrane domains. These results redefine the relationship between cell division and adhesive signaling, revealing how mitotic membrane turnover orchestrates adhesion-dependent signal polarization. PMID:26300448

  20. Gut immunity in a protochordate involves a secreted immunoglobulin-type mediator binding host chitin and bacteria.

    PubMed

    Dishaw, Larry J; Leigh, Brittany; Cannon, John P; Liberti, Assunta; Mueller, M Gail; Skapura, Diana P; Karrer, Charlotte R; Pinto, Maria R; De Santis, Rosaria; Litman, Gary W

    2016-01-01

    Protochordate variable region-containing chitin-binding proteins (VCBPs) consist of immunoglobulin-type V domains and a chitin-binding domain (CBD). VCBP V domains facilitate phagocytosis of bacteria by granulocytic amoebocytes; the function of the CBD is not understood. Here we show that the gut mucosa of Ciona intestinalis contains an extensive matrix of chitin fibrils to which VCBPs bind early in gut development, before feeding. Later in development, VCBPs and bacteria colocalize to chitin-rich mucus along the intestinal wall. VCBP-C influences biofilm formation in vitro and, collectively, the findings of this study suggest that VCBP-C may influence the overall settlement and colonization of bacteria in the Ciona gut. Basic relationships between soluble immunoglobulin-type molecules, endogenous chitin and bacteria arose early in chordate evolution and are integral to the overall function of the gut barrier. PMID:26875669

  1. In silico identification of the sea squirt selenoproteome

    PubMed Central

    2010-01-01

    Background Computational methods for identifying selenoproteins have been developed rapidly in recent years. However, it is still difficult to identify the open reading frame (ORF) of eukaryotic selenoprotein gene, because the TGA codon for a selenocysteine (Sec) residue in the active centre of selenoprotein is traditionally a terminal signal of protein translation. Although the identification of selenoproteins from genomes through bioinformatics methods has been conducted in bacteria, unicellular eukaryotes, insects and several vertebrates, only a few results have been reported on the ancient chordate selenoproteins. Results A gene assembly algorithm SelGenAmic has been constructed and presented in this study for identifying selenoprotein genes from eukaryotic genomes. A method based on this algorithm was developed to build an optimal TGA-containing-ORF for each TGA in a genome, followed by protein similarity analysis through conserved sequence alignments to screen out selenoprotein genes form these ORFs. This method improved the sensitivity of detecting selenoproteins from a genome due to the design that all TGAs in the genome were investigated for its possibility of decoding as a Sec residue. Using this method, eighteen selenoprotein genes were identified from the genome of Ciona intestinalis, leading to its member of selenoproteome up to 19. Among them a selenoprotein W gene was found to have two SECIS elements in the 3'-untranslated region. Additionally, the disulfide bond formation protein A (DsbA) was firstly identified as a selenoprotein in the ancient chordates of Ciona intestinalis, Ciona savignyi and Branchiostoma floridae, while selenoprotein DsbAs had only been found in bacteria and green algae before. Conclusion The method based on SelGenAmic algorithm is capable of identifying eukaryotic selenoprotein genes from their genomes. Application of this method to Ciona intestinalis proves its successes in finding Sec-decoding TGA from large-scale eukaryotic

  2. Molecular signatures that are distinctive characteristics of the vertebrates and chordates and supporting a grouping of vertebrates with the tunicates.

    PubMed

    Gupta, Radhey S

    2016-01-01

    Members of the phylum Chordata and the subphylum Vertebrata are presently distinguished solely on the basis of morphological characteristics. The relationship of the vertebrates to the two non-vertebrate chordate subphyla is also a subject of debate. Analyses of protein sequences have identified multiple conserved signature indels (CSIs) that are specific for Chordata or for Vertebrata. Five CSIs in 4 important proteins are specific for the Vertebrata, whereas two other CSIs are uniquely found in all sequenced chordate species including Ciona intestinalis and Oikapleura dioica (Tunicates) as well as Branchiostoma floridae (Cephalochordates). The shared presence of these molecular signatures by all vertebrates/chordate species, but in no other animal taxa, strongly indicates that the genetic changes represented by the identified CSIs diagnose monophyletic groups. Two other discovered CSIs are uniquely shared by different vertebrate species and by either one (Ciona intestinalis) or both tunicate (Ciona and Oikapleura) species, but they are not found in Branchiostoma or other animal species. Specific presence of these CSIs in different vertebrates and either one or both tunicate species provides strong independent evidence that the vertebrate species are more closely related to the urochordates (tunicates) than to the cephalochordates. PMID:26419477

  3. Predation Risk within Fishing Gear and Implications for South Australian Rock Lobster Fisheries

    PubMed Central

    Briceño, Felipe; Linnane, Adrian Joseph; Quiroz, Juan Carlos; Gardner, Caleb; Pecl, Gretta Tatyana

    2015-01-01

    Depredation of southern rock lobster (Jasus edwardsii) within fishing gear by the Maori octopus (Pinnoctopus cordiformis) has economic and ecological impacts on valuable fisheries in South Australia. In addition, depredation rates can be highly variable resulting in uncertainties for the fishery. We examined how in-pot lobster predation was influenced by factors such as lobster size and sex, season, fishing zone, and catch rate. Using mixed modelling techniques, we found that in-pot predation risk increased with lobster size and was higher for male lobsters. In addition, the effect of catch rate of lobsters on predation risk by octopus differed among fishing zones. There was both a seasonal and a spatial component to octopus predation, with an increased risk within discrete fishing grounds in South Australia at certain times of the year. Information about predation within lobster gear can assist fishery management decision-making, potentially leading to significant reduction in economic losses to the fishery. PMID:26489035

  4. Predation Risk within Fishing Gear and Implications for South Australian Rock Lobster Fisheries.

    PubMed

    Briceño, Felipe; Linnane, Adrian Joseph; Quiroz, Juan Carlos; Gardner, Caleb; Pecl, Gretta Tatyana

    2015-01-01

    Depredation of southern rock lobster (Jasus edwardsii) within fishing gear by the Maori octopus (Pinnoctopus cordiformis) has economic and ecological impacts on valuable fisheries in South Australia. In addition, depredation rates can be highly variable resulting in uncertainties for the fishery. We examined how in-pot lobster predation was influenced by factors such as lobster size and sex, season, fishing zone, and catch rate. Using mixed modelling techniques, we found that in-pot predation risk increased with lobster size and was higher for male lobsters. In addition, the effect of catch rate of lobsters on predation risk by octopus differed among fishing zones. There was both a seasonal and a spatial component to octopus predation, with an increased risk within discrete fishing grounds in South Australia at certain times of the year. Information about predation within lobster gear can assist fishery management decision-making, potentially leading to significant reduction in economic losses to the fishery.

  5. Predation Risk within Fishing Gear and Implications for South Australian Rock Lobster Fisheries.

    PubMed

    Briceño, Felipe; Linnane, Adrian Joseph; Quiroz, Juan Carlos; Gardner, Caleb; Pecl, Gretta Tatyana

    2015-01-01

    Depredation of southern rock lobster (Jasus edwardsii) within fishing gear by the Maori octopus (Pinnoctopus cordiformis) has economic and ecological impacts on valuable fisheries in South Australia. In addition, depredation rates can be highly variable resulting in uncertainties for the fishery. We examined how in-pot lobster predation was influenced by factors such as lobster size and sex, season, fishing zone, and catch rate. Using mixed modelling techniques, we found that in-pot predation risk increased with lobster size and was higher for male lobsters. In addition, the effect of catch rate of lobsters on predation risk by octopus differed among fishing zones. There was both a seasonal and a spatial component to octopus predation, with an increased risk within discrete fishing grounds in South Australia at certain times of the year. Information about predation within lobster gear can assist fishery management decision-making, potentially leading to significant reduction in economic losses to the fishery. PMID:26489035

  6. Effects of simulated eutrophication and overfishing on algae and invertebrate settlement in a coral reef of Koh Phangan, Gulf of Thailand.

    PubMed

    Stuhldreier, Ines; Bastian, Pepe; Schönig, Eike; Wild, Christian

    2015-03-15

    Coral reefs in the Gulf of Thailand are highly under-investigated regarding responses to anthropogenic stressors. Thus, this study simulated overfishing and eutrophication using herbivore exclosure cages and slow-release fertilizer to study the in-situ effects on benthic algae and invertebrate settlement in a coral reef of Koh Phangan, Thailand. Settlement of organisms and the development of organic matter on light-exposed and shaded tiles were quantified weekly/biweekly over a study period of 12 weeks. Simulated eutrophication did not significantly influence response parameters, while simulated overfishing positively affected dry mass, turf algae height and fleshy macroalgae occurrence on light-exposed tiles. On shaded tiles, settlement of crustose coralline algae decreased, while abundances of ascidians increased compared to controls. An interactive effect of both stressors was not observed. These results hint to herbivory as actual key controlling factor on the benthic community, and fleshy macroalgae together with ascidians as potential bioindicators for local overfishing. PMID:25649838

  7. Coexistence of amorphous and crystalline calcium carbonate in skeletal tissues.

    PubMed

    Aizenberg, J; Weiner, S; Addadi, L

    2003-01-01

    We describe a new type of composite skeletal tissues in which calcite and stabilized amorphous calcium carbonate (ACC) coexist in well-defined domains. The organisms that form such structures are widely separated in the animal kingdom phylogenetic tree: calcareous sponges and ascidians. This paper compares the microstructures of their composite skeletal elements: The triradiate spicules from the sponge Clathrina are composed of a core of calcite embedded in a thick layer of ACC and covered by a thin calcitic envelope; the tunic spicules from the ascidian Pyura pachydermatina are composed of a core of ACC enveloped by an insoluble organic sheath and covered by a thick calcitic layer. We compare and contrast the macromolecules associated with different amorphous and crystalline phases and their ability to induce the formation of stabilized ACC in vitro.

  8. Glycosaminoglycans analogs from marine invertebrates: structure, biological effects, and potential as new therapeutics.

    PubMed

    Pavão, Mauro S G

    2014-01-01

    In this review, several glycosaminoglycan analogs obtained from different marine invertebrate are reported. The structure, biological activity and mechanism of action of these unique molecules are detailed reviewed and exemplified by experiments in vitro and in vivo. Among the glycans studied are low-sulfated heparin-like polymers from ascidians, containing significant anticoagulant activity and no bleeding effect; dermatan sulfates with significant neurite outgrowth promoting activity and anti-P-selectin from ascidians, and a unique fucosylated chondroitin sulfate from sea cucumbers, possessing anticoagulant activity after oral administration and high anti P- and L-selectin activities. The therapeutic value and safety of these invertebrate glycans have been extensively proved by several experimental animal models of diseases, including thrombosis, inflammation and metastasis. These invertebrate glycans can be obtained in high concentrations from marine organisms that have been used as a food source for decades, and usually obtained from marine farms in sufficient quantities to be used as starting material for new therapeutics.

  9. Contaminant cocktails: Interactive effects of fertiliser and copper paint on marine invertebrate recruitment and mortality.

    PubMed

    Lawes, Jasmin C; Clark, Graeme F; Johnston, Emma L

    2016-01-15

    Understanding interactive effects of contaminants is critical to predict how human activities change ecosystem structure and function. We examined independent and interactive effects of two contaminants (fertiliser and copper paint) on the recruitment, mortality, and total abundance of developing invertebrate communities in the field, 2, 4, 6, and 8 weeks after substrate submersion. Contaminants affected community structure differently, and produced an intermediate community in combination. Fertiliser increased recruitment and decreased mortality of active filter feeders (ascidians and barnacles), while copper paint decreased recruitment and increased mortality of some taxa. Contaminants applied together affected some taxa (e.g. Didemnid ascidians) antagonistically, as fertiliser mitigated adverse effects of copper paint. Recruitment of active filter feeders appears to be indicative of nutrient enrichment, and their increased abundance may reduce elevated nutrients in modified waterways. This study demonstrates the need to consider both independent and interactive effects of contaminants on marine communities in the field. PMID:26632524

  10. Effects of simulated eutrophication and overfishing on algae and invertebrate settlement in a coral reef of Koh Phangan, Gulf of Thailand.

    PubMed

    Stuhldreier, Ines; Bastian, Pepe; Schönig, Eike; Wild, Christian

    2015-03-15

    Coral reefs in the Gulf of Thailand are highly under-investigated regarding responses to anthropogenic stressors. Thus, this study simulated overfishing and eutrophication using herbivore exclosure cages and slow-release fertilizer to study the in-situ effects on benthic algae and invertebrate settlement in a coral reef of Koh Phangan, Thailand. Settlement of organisms and the development of organic matter on light-exposed and shaded tiles were quantified weekly/biweekly over a study period of 12 weeks. Simulated eutrophication did not significantly influence response parameters, while simulated overfishing positively affected dry mass, turf algae height and fleshy macroalgae occurrence on light-exposed tiles. On shaded tiles, settlement of crustose coralline algae decreased, while abundances of ascidians increased compared to controls. An interactive effect of both stressors was not observed. These results hint to herbivory as actual key controlling factor on the benthic community, and fleshy macroalgae together with ascidians as potential bioindicators for local overfishing.

  11. Contaminant cocktails: Interactive effects of fertiliser and copper paint on marine invertebrate recruitment and mortality.

    PubMed

    Lawes, Jasmin C; Clark, Graeme F; Johnston, Emma L

    2016-01-15

    Understanding interactive effects of contaminants is critical to predict how human activities change ecosystem structure and function. We examined independent and interactive effects of two contaminants (fertiliser and copper paint) on the recruitment, mortality, and total abundance of developing invertebrate communities in the field, 2, 4, 6, and 8 weeks after substrate submersion. Contaminants affected community structure differently, and produced an intermediate community in combination. Fertiliser increased recruitment and decreased mortality of active filter feeders (ascidians and barnacles), while copper paint decreased recruitment and increased mortality of some taxa. Contaminants applied together affected some taxa (e.g. Didemnid ascidians) antagonistically, as fertiliser mitigated adverse effects of copper paint. Recruitment of active filter feeders appears to be indicative of nutrient enrichment, and their increased abundance may reduce elevated nutrients in modified waterways. This study demonstrates the need to consider both independent and interactive effects of contaminants on marine communities in the field.

  12. Two new species of Distaplia (Tunicata: Ascidiacea) from the SW Atlantic, Argentina.

    PubMed

    Lagger, Cristian; Tatián, Marcos

    2013-01-01

    The ascidian fauna from the Southwestern Atlantic (Argentine Sea) have scarcely been studied and have rarely been sampled. The existing scanty ascidian records are from specimens collected by dredging many decades ago. During samplings in the San Matias Gulf (Río Negro, Patagonia), two new Distaplia species were found. Distaplia naufragii sp. nov. was collected in the subtidal zone attached to a shipwreck, while the other species, Distaplia fortuita sp. nov. was found released by the tides in the sandy intertidal zone. These two new species differ deeply from each other in the size and morphology of their zooids. They represent one third of the known species belonging to the family Holozoidae in the SW Atlantic. These results reinforce the importance of new studies in this extensive but little explored area that is, in addition, susceptible to invasion by non-native species. PMID:26120704

  13. Predicting the Distribution Pattern of Small Carnivores in Response to Environmental Factors in the Western Ghats

    PubMed Central

    Kalle, Riddhika; Ramesh, Tharmalingam; Qureshi, Qamar; Sankar, Kalyanasundaram

    2013-01-01

    Due to their secretive habits, predicting the pattern of spatial distribution of small carnivores has been typically challenging, yet for conservation management it is essential to understand the association between this group of animals and environmental factors. We applied maximum entropy modeling (MaxEnt) to build distribution models and identify environmental predictors including bioclimatic variables, forest and land cover type, topography, vegetation index and anthropogenic variables for six small carnivore species in Mudumalai Tiger Reserve. Species occurrence records were collated from camera-traps and vehicle transects during the years 2010 and 2011. We used the average training gain from forty model runs for each species to select the best set of predictors. The area under the curve (AUC) of the receiver operating characteristic plot (ROC) ranged from 0.81 to 0.93 for the training data and 0.72 to 0.87 for the test data. In habitat models for F. chaus, P. hermaphroditus, and H. smithii “distance to village” and precipitation of the warmest quarter emerged as some of the most important variables. “Distance to village” and aspect were important for V. indica while “distance to village” and precipitation of the coldest quarter were significant for H. vitticollis. “Distance to village”, precipitation of the warmest quarter and land cover were influential variables in the distribution of H. edwardsii. The map of predicted probabilities of occurrence showed potentially suitable habitats accounting for 46 km2 of the reserve for F. chaus, 62 km2 for V. indica, 30 km2 for P. hermaphroditus, 63 km2 for H. vitticollis, 45 km2 for H. smithii and 28 km2 for H. edwardsii. Habitat heterogeneity driven by the east-west climatic gradient was correlated with the spatial distribution of small carnivores. This study exemplifies the usefulness of modeling small carnivore distribution to prioritize and direct conservation planning for habitat specialists in

  14. Marine Natural Meroterpenes: Synthesis and Antiproliferative Activity

    PubMed Central

    Simon-Levert, Annabel; Menniti, Christophe; Soulère, Laurent; Genevière, Anne-Marie; Barthomeuf, Chantal; Banaigs, Bernard; Witczak, Anne

    2010-01-01

    Meroterpenes are compounds of mixed biogenesis, isolated from plants, microorganisms and marine invertebrates. We have previously isolated and determined the structure for a series of meroterpenes extracted from the ascidian Aplidium aff. densum. Here, we demonstrate the chemical synthesis of three of them and their derivatives, and evaluate their biological activity on two bacterial strains, on sea urchin eggs, and on cancerous and healthy human cells. PMID:20390109

  15. Acidification effects on biofouling communities: winners and losers.

    PubMed

    Peck, Lloyd S; Clark, Melody S; Power, Deborah; Reis, João; Batista, Frederico M; Harper, Elizabeth M

    2015-05-01

    How ocean acidification affects marine life is a major concern for science and society. However, its impacts on encrusting biofouling communities, that are both the initial colonizers of hard substrata and of great economic importance, are almost unknown. We showed that community composition changed significantly, from 92% spirorbids, 3% ascidians and 4% sponges initially to 47% spirorbids, 23% ascidians and 29% sponges after 100 days in acidified conditions (pH 7.7). In low pH, numbers of the spirorbid Neodexiospira pseudocorrugata were reduced ×5 compared to controls. The two ascidians present behaved differently with Aplidium sp. decreasing ×10 in pH 7.7, whereas Molgula sp. numbers were ×4 higher in low pH than controls. Calcareous sponge (Leucosolenia sp.) numbers increased ×2.5 in pH 7.7 over controls. The diatom and filamentous algal community was also more poorly developed in the low pH treatments compared to controls. Colonization of new surfaces likewise showed large decreases in spirorbid numbers, but numbers of sponges and Molgula sp. increased. Spirorbid losses appeared due to both recruitment failure and loss of existing tubes. Spirorbid tubes are comprised of a loose prismatic fabric of calcite crystals. Loss of tube materials appeared due to changes in the binding matrix and not crystal dissolution, as SEM analyses showed crystal surfaces were not pitted or dissolved in low pH conditions. Biofouling communities face dramatic future changes with reductions in groups with hard exposed exoskeletons and domination by soft-bodied ascidians and sponges.

  16. Biogeography of Phallusia nigra: is it really black and white?

    PubMed

    Vandepas, Lauren E; Oliveira, Livia M; Lee, Serina S C; Hirose, Euichi; Rocha, Rosana M; Swalla, Billie J

    2015-02-01

    Ascidians (Chordata, Tunicata) are an important group for the study of invasive species biology due to rapid generation times, potential for biofouling, and role as filter feeders in an ecosystem. Phallusia nigra is a putative cosmopolitan ascidian that has been described as introduced or invasive in a number of regions in the Indo-Pacific Ocean (India, Japan, and Hawaii) and in the Mediterranean. The taxonomic description of P. nigra includes a striking smooth, black tunic and large size. However, there are at least two similar Phallusia species-P. philippinensis and P. fumigata-which also have dark black tunics and can be difficult to discern from P. nigra. The distribution of P. nigra broadly overlaps with P. philippinensis in the Indo-Pacific and P. fumigata in the Mediterranean. A morphological comparison of P. nigra from Japan, the Caribbean coast of Panama, and Brazil found that Atlantic and Pacific samples were different species and led us to investigate the range of P. nigra using morphological and molecular analyses. We sequenced 18S rDNA and cytochrome oxidase B of individual ascidians from the Red Sea, Greece, Singapore, Japan, Caribbean Panama, Florida, and Brazil. Our results show that identification of the disparate darkly pigmented species has been difficult, and that several reports of P. nigra are likely either P. fumigata or P. philippinensis. Here we include detailed taxonomic descriptions of the distinguishing features of these three species and sequences for molecular barcoding in an effort to have ranges and potential invasions corrected in the ascidian literature. PMID:25745100

  17. Phallusiasterol C, A New Disulfated Steroid from the Mediterranean Tunicate Phallusia fumigata.

    PubMed

    Imperatore, Concetta; Senese, Maria; Aiello, Anna; Luciano, Paolo; Fiorucci, Stefano; D'Amore, Claudio; Carino, Adriana; Menna, Marialuisa

    2016-01-01

    A new sulfated sterol, phallusiasterol C (1), has been isolated from the Mediterranean ascidian Phallusia fumigata and its structure has been determined on the basis of extensive spectroscopic (mainly 2D NMR) analysis. The possible role in regulating the pregnane X receptor (PXR) activity of phallusiasterol C has been investigated; although the new sterol resulted inactive, this study adds more items to the knowledge of the structure-PXR regulating activity relationships in the case of sulfated steroids. PMID:27322293

  18. Phallusiasterol C, A New Disulfated Steroid from the Mediterranean Tunicate Phallusia fumigata

    PubMed Central

    Imperatore, Concetta; Senese, Maria; Aiello, Anna; Luciano, Paolo; Fiorucci, Stefano; D’Amore, Claudio; Carino, Adriana; Menna, Marialuisa

    2016-01-01

    A new sulfated sterol, phallusiasterol C (1), has been isolated from the Mediterranean ascidian Phallusia fumigata and its structure has been determined on the basis of extensive spectroscopic (mainly 2D NMR) analysis. The possible role in regulating the pregnane X receptor (PXR) activity of phallusiasterol C has been investigated; although the new sterol resulted inactive, this study adds more items to the knowledge of the structure-PXR regulating activity relationships in the case of sulfated steroids. PMID:27322293

  19. A global assembly line to cyanobactins

    PubMed Central

    Donia, Mohamed S.; Ravel, Jacques; Schmidt, Eric W.

    2009-01-01

    More than 100 cyclic peptides harboring heterocyclized residues are known from marine ascidians, sponges and different genera of cyanobacteria. Here, we report an assembly line responsible for the biosynthesis of these diverse peptides, now called cyanobactins, both in symbiotic and free-living cyanobacteria. By comparing five new cyanobactin biosynthetic clusters, we could produce the prenylated antitumor preclinical candidate, trunkamide, in E. coli culture using genetic engineering. PMID:18425112

  20. Phallusiasterol C, A New Disulfated Steroid from the Mediterranean Tunicate Phallusia fumigata.

    PubMed

    Imperatore, Concetta; Senese, Maria; Aiello, Anna; Luciano, Paolo; Fiorucci, Stefano; D'Amore, Claudio; Carino, Adriana; Menna, Marialuisa

    2016-01-01

    A new sulfated sterol, phallusiasterol C (1), has been isolated from the Mediterranean ascidian Phallusia fumigata and its structure has been determined on the basis of extensive spectroscopic (mainly 2D NMR) analysis. The possible role in regulating the pregnane X receptor (PXR) activity of phallusiasterol C has been investigated; although the new sterol resulted inactive, this study adds more items to the knowledge of the structure-PXR regulating activity relationships in the case of sulfated steroids.

  1. Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef.

    PubMed

    Luter, Heidi M; Duckworth, Alan R; Wolff, Carsten W; Evans-Illidge, Elizabeth; Whalan, Steve

    2016-01-01

    One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15-30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m-among tiles). Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs.

  2. Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef

    PubMed Central

    Luter, Heidi M.; Duckworth, Alan R.; Wolff, Carsten W.; Evans-Illidge, Elizabeth; Whalan, Steve

    2016-01-01

    One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15–30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m—among tiles). Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs. PMID:27049650

  3. Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef.

    PubMed

    Luter, Heidi M; Duckworth, Alan R; Wolff, Carsten W; Evans-Illidge, Elizabeth; Whalan, Steve

    2016-01-01

    One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15-30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m-among tiles). Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs. PMID:27049650

  4. Territoriality and Conflict Avoidance Explain Asociality (Solitariness) of the Endosymbiotic Pea Crab Tunicotheres moseri.

    PubMed

    Ambrosio, Louis J; Baeza, J Antonio

    2016-01-01

    Host monopolization theory predicts symbiotic organisms inhabiting morphologically simple, relatively small and scarce hosts to live solitarily as a result of territorial behaviors. We tested this prediction with Tunicotheres moseri, an endosymbiotic crab dwelling in the atrial chamber of the morphologically simple, small, and relatively scarce ascidian Styela plicata. As predicted, natural populations of T. moseri inhabit ascidian hosts solitarily with greater frequency than expected by chance alone. Furthermore, laboratory experiments demonstrated that intruder crabs take significantly longer to colonize previously infected compared to uninfected hosts, indicating as expected, that resident crabs exhibit monopolization behaviors. While territoriality does occur, agonistic behaviors employed by T. moseri do not mirror the overt behaviors commonly reported for other territorial crustaceans. Documented double and triple cohabitations in the field coupled with laboratory observations demonstrating the almost invariable success of intruder crabs colonizing occupied hosts, suggest that territoriality is ineffective in completely explaining the solitary social habit of this species. Additional experiments showed that T. moseri juveniles and adults, when searching for ascidians use chemical cues to avoid hosts occupied by conspecifics. This conspecific avoidance behavior reported herein is a novel strategy most likely employed to preemptively resolve costly territorial conflicts. In general, this study supports predictions central to host monopolization theory, but also implies that alternative behavioral strategies (i.e., conflict avoidance) may be more important than originally thought in explaining the host use pattern of symbiotic organisms.

  5. Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions.

    PubMed

    Stachowicz, John J; Terwin, Jeffrey R; Whitlatch, Robert B; Osman, Richard W

    2002-11-26

    The spread of exotic species and climate change are among the most serious global environmental threats. Each independently causes considerable ecological damage, yet few data are available to assess whether changing climate might facilitate invasions by favoring introduced over native species. Here, we compare our long-term record of weekly sessile marine invertebrate recruitment with interannual variation in water temperature to assess the likely effect of climate change on the success and spread of introduced species. For the three most abundant introduced species of ascidian (sea squirt), the timing of the initiation of recruitment was strongly negatively correlated with winter water temperature, indicating that invaders arrived earlier in the season in years with warmer winters. Total recruitment of introduced species during the following summer also was positively correlated with winter water temperature. In contrast, the magnitude of native ascidian recruitment was negatively correlated with winter temperature (more recruitment in colder years) and the timing of native recruitment was unaffected. In manipulative laboratory experiments, two introduced compound ascidians grew faster than a native species, but only at temperatures near the maximum observed in summer. These data suggest that the greatest effects of climate change on biotic communities may be due to changing maximum and minimum temperatures rather than annual means. By giving introduced species an earlier start, and increasing the magnitude of their growth and recruitment relative to natives, global warming may facilitate a shift to dominance by nonnative species, accelerating the homogenization of the global biota. PMID:12422019

  6. Seasonal variability in the recruitment of macrofouling community in Kudankulam waters, east coast of India

    NASA Astrophysics Data System (ADS)

    Satheesh, S.; Godwin Wesley, S.

    2008-09-01

    The seasonal variability in fouling community recruitment on submerged artificial substratum was studied in Kudankulam coastal water, Gulf of Mannar, East coast of India for a period of two years, from May 2003 to April 2005. The results indicated that the fouling community recruitment occurred throughout the year with varying intensities. Barnacles, ascidians, polychaetes, bivalves and seaweeds were the major fouling groups observed from the test panels. Maximum fouling biomass of 9.17 g dm -2 was observed during August 2004 and a minimum value of 0.233 g dm -2 in February 2004. The biomass build-up on test panels was relatively high during the premonsoon season and low during the postmonsoon months. The number of barnacles settled on the panels varied from 1 to 4460 no. dm -2. The maximum percentage of the ascidian coverage (72%) on test panels was observed during March 2005. In general, July-December was the period of intense recruitment for barnacles and March-May was the period for ascidians.

  7. Territoriality and Conflict Avoidance Explain Asociality (Solitariness) of the Endosymbiotic Pea Crab Tunicotheres moseri.

    PubMed

    Ambrosio, Louis J; Baeza, J Antonio

    2016-01-01

    Host monopolization theory predicts symbiotic organisms inhabiting morphologically simple, relatively small and scarce hosts to live solitarily as a result of territorial behaviors. We tested this prediction with Tunicotheres moseri, an endosymbiotic crab dwelling in the atrial chamber of the morphologically simple, small, and relatively scarce ascidian Styela plicata. As predicted, natural populations of T. moseri inhabit ascidian hosts solitarily with greater frequency than expected by chance alone. Furthermore, laboratory experiments demonstrated that intruder crabs take significantly longer to colonize previously infected compared to uninfected hosts, indicating as expected, that resident crabs exhibit monopolization behaviors. While territoriality does occur, agonistic behaviors employed by T. moseri do not mirror the overt behaviors commonly reported for other territorial crustaceans. Documented double and triple cohabitations in the field coupled with laboratory observations demonstrating the almost invariable success of intruder crabs colonizing occupied hosts, suggest that territoriality is ineffective in completely explaining the solitary social habit of this species. Additional experiments showed that T. moseri juveniles and adults, when searching for ascidians use chemical cues to avoid hosts occupied by conspecifics. This conspecific avoidance behavior reported herein is a novel strategy most likely employed to preemptively resolve costly territorial conflicts. In general, this study supports predictions central to host monopolization theory, but also implies that alternative behavioral strategies (i.e., conflict avoidance) may be more important than originally thought in explaining the host use pattern of symbiotic organisms. PMID:26910474

  8. Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions.

    PubMed

    Stachowicz, John J; Terwin, Jeffrey R; Whitlatch, Robert B; Osman, Richard W

    2002-11-26

    The spread of exotic species and climate change are among the most serious global environmental threats. Each independently causes considerable ecological damage, yet few data are available to assess whether changing climate might facilitate invasions by favoring introduced over native species. Here, we compare our long-term record of weekly sessile marine invertebrate recruitment with interannual variation in water temperature to assess the likely effect of climate change on the success and spread of introduced species. For the three most abundant introduced species of ascidian (sea squirt), the timing of the initiation of recruitment was strongly negatively correlated with winter water temperature, indicating that invaders arrived earlier in the season in years with warmer winters. Total recruitment of introduced species during the following summer also was positively correlated with winter water temperature. In contrast, the magnitude of native ascidian recruitment was negatively correlated with winter temperature (more recruitment in colder years) and the timing of native recruitment was unaffected. In manipulative laboratory experiments, two introduced compound ascidians grew faster than a native species, but only at temperatures near the maximum observed in summer. These data suggest that the greatest effects of climate change on biotic communities may be due to changing maximum and minimum temperatures rather than annual means. By giving introduced species an earlier start, and increasing the magnitude of their growth and recruitment relative to natives, global warming may facilitate a shift to dominance by nonnative species, accelerating the homogenization of the global biota.

  9. Territoriality and Conflict Avoidance Explain Asociality (Solitariness) of the Endosymbiotic Pea Crab Tunicotheres moseri

    PubMed Central

    Ambrosio, Louis J.; Baeza, J. Antonio

    2016-01-01

    Host monopolization theory predicts symbiotic organisms inhabiting morphologically simple, relatively small and scarce hosts to live solitarily as a result of territorial behaviors. We tested this prediction with Tunicotheres moseri, an endosymbiotic crab dwelling in the atrial chamber of the morphologically simple, small, and relatively scarce ascidian Styela plicata. As predicted, natural populations of T. moseri inhabit ascidian hosts solitarily with greater frequency than expected by chance alone. Furthermore, laboratory experiments demonstrated that intruder crabs take significantly longer to colonize previously infected compared to uninfected hosts, indicating as expected, that resident crabs exhibit monopolization behaviors. While territoriality does occur, agonistic behaviors employed by T. moseri do not mirror the overt behaviors commonly reported for other territorial crustaceans. Documented double and triple cohabitations in the field coupled with laboratory observations demonstrating the almost invariable success of intruder crabs colonizing occupied hosts, suggest that territoriality is ineffective in completely explaining the solitary social habit of this species. Additional experiments showed that T. moseri juveniles and adults, when searching for ascidians use chemical cues to avoid hosts occupied by conspecifics. This conspecific avoidance behavior reported herein is a novel strategy most likely employed to preemptively resolve costly territorial conflicts. In general, this study supports predictions central to host monopolization theory, but also implies that alternative behavioral strategies (i.e., conflict avoidance) may be more important than originally thought in explaining the host use pattern of symbiotic organisms. PMID:26910474

  10. Self/non-self recognition mechanisms in sexual reproduction: new insight into the self-incompatibility system shared by flowering plants and hermaphroditic animals.

    PubMed

    Sawada, Hitoshi; Morita, Masaya; Iwano, Megumi

    2014-08-01

    Sexual reproduction is an essential process for generating a genetic variety in the next generation. However, most flowering plants and hermaphroditic animals potentially allow self-fertilization. Approximately 60% of angiosperms possess a self-incompatibility (SI) system to avoid inbreeding. The SI system functions at a process of interaction between pollen (or pollen tube) and the pistil. These SI-responsible factors (S-determinants) in pollen and the pistil are encoded by highly polymorphic multiallelic genes in the S-locus, which are tightly linked making a single haplotype. Different taxonomic families utilize different types of S-determinant proteins. In contrast to the plant system, the mechanisms of SI in simultaneously hermaphroditic animals are largely unknown. Among them, promising candidates for SI in ascidians (primitive chordates) were recently identified. The SI system in the ascidian Cionaintestinalis was found to be very similar to those in flowering plants: The products of sperm- and egg-side multiallelic SI genes, which are tight linked and highly polymorphic, appear to be responsible for the SI system as revealed by genetic analysis. These findings led us to speculate that the SI systems in plants and animals evolved in a manner of convergent evolution. Here, we review the current understanding of the molecular mechanisms of the SI system in flowering plants, particularly Brassicacea, and in ascidians from the viewpoint of common mechanisms shared by plants and animals.

  11. An interview with Mike Levine.

    PubMed

    Levine, Mike; Vicente, Catarina

    2015-10-15

    Mike Levine, director of the Lewis-Sigler Institute for Integrative Genomics at Princeton University, is a developmental biologist who has dedicated his career to understanding how gene expression is regulated during development. Some of his most significant research, such as the co-discovery of the homeobox genes and his work on even skipped stripe 2, was performed in Drosophila, but he has since branched out to Ciona intestinalis, which he is using as a model to understand how vertebrate features have evolved. We had a lively chat with Mike at this year's Society for Developmental Biology (SDB) meeting, where he was awarded the Edwin Grant Conklin Medal.

  12. An interview with Mike Levine.

    PubMed

    Levine, Mike; Vicente, Catarina

    2015-10-15

    Mike Levine, director of the Lewis-Sigler Institute for Integrative Genomics at Princeton University, is a developmental biologist who has dedicated his career to understanding how gene expression is regulated during development. Some of his most significant research, such as the co-discovery of the homeobox genes and his work on even skipped stripe 2, was performed in Drosophila, but he has since branched out to Ciona intestinalis, which he is using as a model to understand how vertebrate features have evolved. We had a lively chat with Mike at this year's Society for Developmental Biology (SDB) meeting, where he was awarded the Edwin Grant Conklin Medal. PMID:26487776

  13. The C. savignyi genetic map and its integration with the reference sequence facilitates insights into chordate genome evolution.

    PubMed

    Hill, Matthew M; Broman, Karl W; Stupka, Elia; Smith, William C; Jiang, Di; Sidow, Arend

    2008-08-01

    The urochordate Ciona savignyi is an emerging model organism for the study of chordate evolution, development, and gene regulation. The extreme level of polymorphism in its population has inspired novel approaches in genome assembly, which we here continue to develop. Specifically, we present the reconstruction of all of C. savignyi's chromosomes via the development of a comprehensive genetic map, without a physical map intermediate. The resulting genetic map is complete, having one linkage group for each one of the 14 chromosomes. Eighty-three percent of the reference genome sequence is covered. The chromosomal reconstruction allowed us to investigate the evolution of genome structure in highly polymorphic species, by comparing the genome of C. savignyi to its divergent sister species, Ciona intestinalis. Both genomes have been extensively reshaped by intrachromosomal rearrangements. Interchromosomal changes have been extremely rare. This is in striking contrast to what has been observed in vertebrates, where interchromosomal events are commonplace. These results, when considered in light of the neutral theory, suggest fundamentally different modes of evolution of animal species with large versus small population sizes.

  14. Chemotactic behavior of the sperm of chitons (Mollusca: Polyplacophora).

    PubMed

    Miller, R L

    1977-11-01

    Observations of sperm behavior in the vicinity of gradients of egg-water or alcohol extracts of whole freshly-spawned eggs of several chitons reveal what appear to be directed movements of sperm up the gradient, resulting in the aggregation of motile sperm at the gradient source. Plots of the tracks of the sperm approaching the gradient source show that the cells increase the time during which they move toward the source and decrease the time spent moving away. Although this resembles the kinesis behavior shown by bacteria in a gradient, the path directions are markedly non-random. The reorientation behavior of thigmotactic sperm involves enlargement of the normal circular path diameter in the direction of the source and an alternation of tight loops and wide circular arcs, with the latter made in the direction of the source. The form of the path of attracted chiton sperm is like that observed during chemotaxis of the sperm of the hydroid Tubularia and the tunicate Ciona and resembles the behavior of Ciona sperm in that there is no increase in velocity as the cells move up the gradient. However, unlike the cnidarian and urochordate cases, the attracting substances extracted from chiton eggs do not act species-specifically.

  15. It's a wrap: encapsulation as a management tool for marine biofouling.

    PubMed

    Atalah, Javier; Brook, Rosemary; Cahill, Patrick; Fletcher, Lauren M; Hopkins, Grant A

    2016-01-01

    Encapsulation of fouled structures is an effective tool for countering incursions by non-indigenous biofoulers. However, guidelines for the implementation of encapsulation treatments are yet to be established. This study evaluated the effects of temperature, biomass, community composition, treatment duration and the biocide acetic acid on biofoulers. In laboratory trials using the model organisms Ciona spp. and Mytilus galloprovincialis, increasing the temperature or biomass speeded up the development of a toxic environment. Total mortality for Ciona spp. occurred within 72 and 24 h at 10 and 19°C, respectively. M. galloprovincialis survived up to 18 days, with high biomass increasing mortality at 10°C only. In a field study, three-month-old and four-year-old communities were encapsulated with and without acetic acid. Mortality took up to 10 days for communities encapsulated without acetic acid, compared to 48 h with acetic acid. The insights gained from this study will be useful in developing standardised encapsulation protocols.

  16. Intracellular coagulation inhibits the extraction of proteins from Prochloron

    NASA Technical Reports Server (NTRS)

    Fall, R.; Lewin, R. A.; Fall, L. R.

    1983-01-01

    Protein extraction from the prokaryotic alga Prochloron LP (isolated from the ascidian host Lissoclinum patella) was complicated by an irreversible loss of cell fragility in the isolated algae. Accompanying this phenomenon, which is termed intracellular coagulation, was a redistribution of thylakoids around the cell periphery, a loss of photosynthetic O2 production, and a drastic decrease in the extractability of cell proteins. Procedures are described for the successful preparation and transport of cell extracts yielding the enzymes glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase as well as other soluble proteins.

  17. Periclimenaeus denticulodigitus sp. nov. (Crustacea: Decapoda: Palaemonidae: Pontoniinae), from Heron Island, Queensland, Australia.

    PubMed

    Bruce, A J

    2014-01-01

    An unusual species of the genus Periclimenaeus Borradaile, 1915 (Crustacea: Decapoda: Palaemonidae Pontoniinae) from Heron Island, Queensland, Australia, collected by Dr Niel Bruce in 1979, is described and illustrated. Periclimenaeus denticulodigitus sp. nov., an ascidian associate was collected from coral reef at 7.0 m and presents some interesting new features. It increases to 17 the number of Periclimenaeus known from Heron Island, Queensland, and to 28 the number of species known from Australia. The new species has the second pereiopod fingers minutely denticulate and unique to the genus. PMID:24872280

  18. Genetic Regulatory Networks in Embryogenesis and Evolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The article introduces a series of papers that were originally presented at a workshop titled Genetic Regulatory Network in Embryogenesis and Evaluation. Contents include the following: evolution of cleavage programs in relationship to axial specification and body plan evolution, changes in cell lineage specification elucidate evolutionary relations in spiralia, axial patterning in the leech: developmental mechanisms and evolutionary implications, hox genes in arthropod development and evolution, heterochronic genes in development and evolution, a common theme for LIM homeobox gene function across phylogeny, and mechanisms of specification in ascidian embryos.

  19. Recent Advances on the Total Syntheses of Communesin Alkaloids and Perophoramidine.

    PubMed

    Trost, Barry M; Osipov, Maksim

    2015-11-01

    The communesin alkaloids are a diverse family of Penicillium-derived alkaloids. Their caged-polycyclic structure and intriguing biological profiles have made these natural products attractive targets for total synthesis. Similarly, the ascidian-derived alkaloid, perophoramidine, is structurally related to the communesins and has also become a popular target for total synthesis. This review serves to summarize the many elegant approaches that have been developed to access the communesin alkaloids and perophoramidine. Likewise, strategies to access the communesin ring system are reviewed.

  20. Recent Advances in Drug Discovery from South African Marine Invertebrates.

    PubMed

    Davies-Coleman, Michael T; Veale, Clinton G L

    2015-10-01

    Recent developments in marine drug discovery from three South African marine invertebrates, the tube worm Cephalodiscus gilchristi, the ascidian Lissoclinum sp. and the sponge Topsentia pachastrelloides, are presented. Recent reports of the bioactivity and synthesis of the anti-cancer secondary metabolites cephalostatin and mandelalides (from C. gilchristi and Lissoclinum sp., respectively) and various analogues are presented. The threat of drug-resistant pathogens, e.g., methicillin-resistant Staphylococcus aureus (MRSA), is assuming greater global significance, and medicinal chemistry strategies to exploit the potent MRSA PK inhibition, first revealed by two marine secondary metabolites, cis-3,4-dihydrohamacanthin B and bromodeoxytopsentin from T. pachastrelloides, are compared. PMID:26473891

  1. Recent Advances on the Total Syntheses of Communesin Alkaloids and Perophoramidine.

    PubMed

    Trost, Barry M; Osipov, Maksim

    2015-11-01

    The communesin alkaloids are a diverse family of Penicillium-derived alkaloids. Their caged-polycyclic structure and intriguing biological profiles have made these natural products attractive targets for total synthesis. Similarly, the ascidian-derived alkaloid, perophoramidine, is structurally related to the communesins and has also become a popular target for total synthesis. This review serves to summarize the many elegant approaches that have been developed to access the communesin alkaloids and perophoramidine. Likewise, strategies to access the communesin ring system are reviewed. PMID:26353936

  2. Zorrimidazolone, a Bioactive Alkaloid from the Non-Indigenous Mediterranean Stolidobranch Polyandrocarpa zorritensis

    PubMed Central

    Aiello, Anna; Fattorusso, Ernesto; Imperatore, Concetta; Irace, Carlo; Luciano, Paolo; Menna, Marialuisa; Santamaria, Rita; Vitalone, Rocco

    2011-01-01

    Chemical analysis of the Mediterranean ascidian Polyandrocarpa zorritensis (Van Name 1931) resulted in the isolation of a series of molecules including two monoindole alkaloids, 3-indolylglyoxylic acid (3) and its methyl ester (4), 4-hydroxy-3-methoxyphenylglyoxylic acid methyl ester (1) and a new alkaloid we named zorrimidazolone (2). The structure of the novel compound 2 has been elucidated by spectroscopic analysis and bioactivity of all compounds has been investigated. Zorrimidazolone (2) showed a modest cytotoxic activity against C6 rat glioma cell line. PMID:21747753

  3. Solwaric acids A and B, antibacterial aromatic acids from a marine Solwaraspora sp.

    PubMed

    Ellis, Gregory A; Wyche, Thomas P; Fry, Charles G; Braun, Doug R; Bugni, Tim S

    2014-02-14

    Two novel trialkyl-substituted aromatic acids, solwaric acids A and B, were isolated from a marine Solwaraspora sp. cultivated from the ascidian Trididemnum orbiculatum. Solwaric acids A and B were isotopically labeled with U-¹³C glucose, and analysis of a ¹³C-¹³C COSY allowed for unambiguous determination of the location of the phenyl methyl group. The two novel compounds demonstrated antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA).

  4. Recent Advances in Drug Discovery from South African Marine Invertebrates

    PubMed Central

    Davies-Coleman, Michael T.; Veale, Clinton G. L.

    2015-01-01

    Recent developments in marine drug discovery from three South African marine invertebrates, the tube worm Cephalodiscus gilchristi, the ascidian Lissoclinum sp. and the sponge Topsentia pachastrelloides, are presented. Recent reports of the bioactivity and synthesis of the anti-cancer secondary metabolites cephalostatin and mandelalides (from C. gilchristi and Lissoclinum sp., respectively) and various analogues are presented. The threat of drug-resistant pathogens, e.g., methicillin-resistant Staphylococcus aureus (MRSA), is assuming greater global significance, and medicinal chemistry strategies to exploit the potent MRSA PK inhibition, first revealed by two marine secondary metabolites, cis-3,4-dihydrohamacanthin B and bromodeoxytopsentin from T. pachastrelloides, are compared. PMID:26473891

  5. Diketopiperazines from marine organisms.

    PubMed

    Huang, Riming; Zhou, Xuefeng; Xu, Tunhai; Yang, Xianwen; Liu, Yonghong

    2010-12-01

    Diketopiperazines (DKPs), which are cyclic dipeptides, have been detected in a variety of natural resources. Recently, the interest in these compounds increased significantly because of their remarkable bioactivity. This review deals with the chemical structures, biosynthetic pathways, and biological activities of DKPs from marine microorganisms, sponges, sea stars, tunicates (ascidians), and red algae. The literature has been covered up to December 2008, and a total 124 DKPs from 104 publications have been discussed and reviewed. Some of these compounds have been found to possess various bioactivities including cytotoxicity, and antibacterial, antifungal, antifouling, plant-growth regulatory, and other activities.

  6. The Influence of Mark-Recapture Sampling Effort on Estimates of Rock Lobster Survival

    PubMed Central

    Kordjazi, Ziya; Frusher, Stewart; Buxton, Colin; Gardner, Caleb; Bird, Tomas

    2016-01-01

    Five annual capture-mark-recapture surveys on Jasus edwardsii were used to evaluate the effect of sample size and fishing effort on the precision of estimated survival probability. Datasets of different numbers of individual lobsters (ranging from 200 to 1,000 lobsters) were created by random subsampling from each annual survey. This process of random subsampling was also used to create 12 datasets of different levels of effort based on three levels of the number of traps (15, 30 and 50 traps per day) and four levels of the number of sampling-days (2, 4, 6 and 7 days). The most parsimonious Cormack-Jolly-Seber (CJS) model for estimating survival probability shifted from a constant model towards sex-dependent models with increasing sample size and effort. A sample of 500 lobsters or 50 traps used on four consecutive sampling-days was required for obtaining precise survival estimations for males and females, separately. Reduced sampling effort of 30 traps over four sampling days was sufficient if a survival estimate for both sexes combined was sufficient for management of the fishery. PMID:26990561

  7. A mongoose remain (Mammalia: Carnivora) from the Upper Irrawaddy sediments, Myanmar and its significance in evolutionary history of Asian herpestids

    NASA Astrophysics Data System (ADS)

    Egi, Naoko; Thaung-Htike; Zin-Maung-Maung-Thein; Maung-Maung; Nishioka, Yuichiro; Tsubamoto, Takehisa; Ogino, Shintaro; Takai, Masanaru

    2011-11-01

    A tooth of a mongoose (Mammalia: Carnivora: Herpestidae) was discovered from the Upper Irrawaddy sediments in central Myanmar. The age of the fauna is not older than the mid-Pliocene. It is identified as a right first upper molar of a small species of Urva (formally included in the genus Herpestes) based on its size and shape. The present specimen is the first carnivoran from the Upper Irrawaddy sediments and is the first record of mongooses in the Pliocene and early Pleistocene of Asia. It confirms that mongooses had already dispersed into Southeast Asia by the late Pliocene, being consistent with the previous molecular phylogenetic analyses. The fossil may belong to one of the extant species, but an assignment to a specific species is difficult due to the fragmentary nature of the specimen and the small interspecific differences in dental shape among the Asian mongooses. The size of the tooth suggests that the Irrawaddy specimen is within or close to the clade of Urva auropunctata + javanica + edwardsii, and this taxonomic assignment agrees with the geographical distribution.

  8. Pelagic seabird flight patterns are consistent with a reliance on olfactory maps for oceanic navigation

    PubMed Central

    Reynolds, Andrew M.; Cecere, Jacopo G.; Paiva, Vitor H.; Ramos, Jaime A.; Focardi, Stefano

    2015-01-01

    Homing studies have provided tantalizing evidence that the remarkable ability of shearwaters (Procellariiformes) to pinpoint their breeding colony after crossing vast expanses of featureless open ocean can be attributed to their assembling cognitive maps of wind-borne odours but crucially, it has not been tested whether olfactory cues are actually used as a system for navigation. Obtaining statistically important samples of wild birds for use in experimental approaches is, however, impossible because of invasive sensory manipulation. Using an innovative non-invasive approach, we provide strong evidence that shearwaters rely on olfactory cues for oceanic navigation. We tested for compliance with olfactory-cued navigation in the flight patterns of 210 shearwaters of three species (Cory's shearwaters, Calonectris borealis, North Atlantic Ocean, Scopoli's shearwaters, C. diomedea Mediterranean Sea, and Cape Verde shearwaters, C. edwardsii, Central Atlantic Ocean) tagged with high-resolution GPS loggers during both incubation and chick rearing. We found that most (69%) birds displayed exponentially truncated scale-free (Lévy-flight like) displacements, which we show are consistent with olfactory-cued navigation in the presence of atmospheric turbulence. Our analysis provides the strongest evidence yet for cognitive odour map navigation in wild birds. Thus, we may reconcile two highly disputed questions in movement ecology, by mechanistically connecting Lévy displacements and olfactory navigation. Our approach can be applied to any species which can be tracked at sufficient spatial resolution, using a GPS logger. PMID:26136443

  9. Spatial variation in the environmental control of crab larval settlement in a micro-tidal austral estuary

    NASA Astrophysics Data System (ADS)

    Pardo, Luis Miguel; Cardyn, Carlos Simón; Garcés-Vargas, José

    2012-09-01

    Settlement of benthic marine invertebrates is determined by the interaction between physical factors and biological processes, in which the tide, wind, and predation can play key roles, especially for species that recruit within estuaries. This complexity promotes high variability in recruitment and limited predictability of the size of annual cohorts. This study describes the settlement patterns of megalopae of the commercially important crab Cancer edwardsii at three locations (one in the center and two at the mouth of the estuary) within the Valdivia River estuary (~39.9°S), over three consecutive years (2006-2008). At each location, 12 passive benthic collectors with a natural substratum were deployed for 48 h at 7-day intervals, over a lunar cycle. Half of the collectors were covered with mesh to exclude predators. The main findings were as follows: (1) circulation changes due to upwelling relaxation or onshore winds controlled crab settlement at sites within the mouth of the estuary, (2) at the internal estuarine site, settlement was dominated by tidal effects, and (3) the effect of predation on settlement was negligible at all scales. The results show that the predominant physical factor controlling the return of competent crab larvae to estuarine environments varies spatially within the estuary. The lack of tidal influence on settlement at the mouth of the estuary can be explained by the overwhelming influence of the intense upwelling fronts and the micro-tidal regime in the study area.

  10. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift.

    PubMed

    Ling, S D; Johnson, C R; Frusher, S D; Ridgway, K R

    2009-12-29

    A key consideration in assessing impacts of climate change is the possibility of synergistic effects with other human-induced stressors. In the ocean realm, climate change and overfishing pose two of the greatest challenges to the structure and functioning of marine ecosystems. In eastern Tasmania, temperate coastal waters are warming at approximately four times the global ocean warming average, representing the fastest rate of warming in the Southern Hemisphere. This has driven range extension of the ecologically important long-spined sea urchin (Centrostephanus rodgersii), which has now commenced catastrophic overgrazing of productive Tasmanian kelp beds leading to loss of biodiversity and important rocky reef ecosystem services. Coincident with the overgrazing is heavy fishing of reef-based predators including the spiny lobster Jasus edwardsii. By conducting experiments inside and outside Marine Protected Areas we show that fishing, by removing large predatory lobsters, has reduced the resilience of kelp beds against the climate-driven threat of the sea urchin and thus increased risk of catastrophic shift to widespread sea urchin barrens. This shows that interactions between multiple human-induced stressors can exacerbate nonlinear responses of ecosystems to climate change and limit the adaptive capacity of these systems. Management actions focused on reducing the risk of catastrophic phase shift in ecosystems are particularly urgent in the face of ongoing warming and unprecedented levels of predator removal from the world's oceans. PMID:20018706

  11. The Influence of Mark-Recapture Sampling Effort on Estimates of Rock Lobster Survival.

    PubMed

    Kordjazi, Ziya; Frusher, Stewart; Buxton, Colin; Gardner, Caleb; Bird, Tomas

    2016-01-01

    Five annual capture-mark-recapture surveys on Jasus edwardsii were used to evaluate the effect of sample size and fishing effort on the precision of estimated survival probability. Datasets of different numbers of individual lobsters (ranging from 200 to 1,000 lobsters) were created by random subsampling from each annual survey. This process of random subsampling was also used to create 12 datasets of different levels of effort based on three levels of the number of traps (15, 30 and 50 traps per day) and four levels of the number of sampling-days (2, 4, 6 and 7 days). The most parsimonious Cormack-Jolly-Seber (CJS) model for estimating survival probability shifted from a constant model towards sex-dependent models with increasing sample size and effort. A sample of 500 lobsters or 50 traps used on four consecutive sampling-days was required for obtaining precise survival estimations for males and females, separately. Reduced sampling effort of 30 traps over four sampling days was sufficient if a survival estimate for both sexes combined was sufficient for management of the fishery.

  12. On the validity of habitat as a predictor of genetic structure in aquatic systems: a comparative study using California water beetles.

    PubMed

    Short, A E Z; Caterino, M S

    2009-02-01

    Among freshwater organisms, water flow is frequently considered to be one of the most important environmental variables affecting life-history traits such as dispersal abilities and therefore genetic structure. Recent studies have suggested that habitat type alone as defined by water flow is predictive of genetic population differentiation, while others have advocated against broad generalizations in favour of more conservative, species-specific conclusions. If aquatic habitat type is predictive of population differentiation, then one would expect sympatric taxa that occupy the same aquatic habitat to converge on a similar genetic structure. We tested this prediction by examining the haplotype diversity, phylogeographical concordance, population connectivity and population isolation of three lotic water beetle species in southern California: Anacaena signaticollis, Eubrianax edwardsii and Stictotarsus striatellus. In addition to coarse habitat and geography, we also controlled for the potentially confounding factors of range size, method of dispersal and clade independence. Together, the species spanned extremes of genetic and phylogeographical structure in all measures examined, suggesting that a coarse dichotomy of aquatic habitat type is not predictive of genetic structure. While there is little question that water flow plays a major role in shaping the life-history traits of freshwater organisms, it is perilous to confer predictive properties to an artificially simplistic dichotomy or use it as a surrogate for other unmeasured variables.

  13. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift

    PubMed Central

    Ling, S. D.; Johnson, C. R.; Frusher, S. D.; Ridgway, K. R.

    2009-01-01

    A key consideration in assessing impacts of climate change is the possibility of synergistic effects with other human-induced stressors. In the ocean realm, climate change and overfishing pose two of the greatest challenges to the structure and functioning of marine ecosystems. In eastern Tasmania, temperate coastal waters are warming at approximately four times the global ocean warming average, representing the fastest rate of warming in the Southern Hemisphere. This has driven range extension of the ecologically important long-spined sea urchin (Centrostephanus rodgersii), which has now commenced catastrophic overgrazing of productive Tasmanian kelp beds leading to loss of biodiversity and important rocky reef ecosystem services. Coincident with the overgrazing is heavy fishing of reef-based predators including the spiny lobster Jasus edwardsii. By conducting experiments inside and outside Marine Protected Areas we show that fishing, by removing large predatory lobsters, has reduced the resilience of kelp beds against the climate-driven threat of the sea urchin and thus increased risk of catastrophic shift to widespread sea urchin barrens. This shows that interactions between multiple human-induced stressors can exacerbate nonlinear responses of ecosystems to climate change and limit the adaptive capacity of these systems. Management actions focused on reducing the risk of catastrophic phase shift in ecosystems are particularly urgent in the face of ongoing warming and unprecedented levels of predator removal from the world's oceans. PMID:20018706

  14. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift.

    PubMed

    Ling, S D; Johnson, C R; Frusher, S D; Ridgway, K R

    2009-12-29

    A key consideration in assessing impacts of climate change is the possibility of synergistic effects with other human-induced stressors. In the ocean realm, climate change and overfishing pose two of the greatest challenges to the structure and functioning of marine ecosystems. In eastern Tasmania, temperate coastal waters are warming at approximately four times the global ocean warming average, representing the fastest rate of warming in the Southern Hemisphere. This has driven range extension of the ecologically important long-spined sea urchin (Centrostephanus rodgersii), which has now commenced catastrophic overgrazing of productive Tasmanian kelp beds leading to loss of biodiversity and important rocky reef ecosystem services. Coincident with the overgrazing is heavy fishing of reef-based predators including the spiny lobster Jasus edwardsii. By conducting experiments inside and outside Marine Protected Areas we show that fishing, by removing large predatory lobsters, has reduced the resilience of kelp beds against the climate-driven threat of the sea urchin and thus increased risk of catastrophic shift to widespread sea urchin barrens. This shows that interactions between multiple human-induced stressors can exacerbate nonlinear responses of ecosystems to climate change and limit the adaptive capacity of these systems. Management actions focused on reducing the risk of catastrophic phase shift in ecosystems are particularly urgent in the face of ongoing warming and unprecedented levels of predator removal from the world's oceans.

  15. Pelagic seabird flight patterns are consistent with a reliance on olfactory maps for oceanic navigation.

    PubMed

    Reynolds, Andrew M; Cecere, Jacopo G; Paiva, Vitor H; Ramos, Jaime A; Focardi, Stefano

    2015-07-22

    Homing studies have provided tantalizing evidence that the remarkable ability of shearwaters (Procellariiformes) to pinpoint their breeding colony after crossing vast expanses of featureless open ocean can be attributed to their assembling cognitive maps of wind-borne odours but crucially, it has not been tested whether olfactory cues are actually used as a system for navigation. Obtaining statistically important samples of wild birds for use in experimental approaches is, however, impossible because of invasive sensory manipulation. Using an innovative non-invasive approach, we provide strong evidence that shearwaters rely on olfactory cues for oceanic navigation. We tested for compliance with olfactory-cued navigation in the flight patterns of 210 shearwaters of three species (Cory's shearwaters, Calonectris borealis, North Atlantic Ocean, Scopoli's shearwaters, C. diomedea Mediterranean Sea, and Cape Verde shearwaters, C. edwardsii, Central Atlantic Ocean) tagged with high-resolution GPS loggers during both incubation and chick rearing.We found that most (69%) birds displayed exponentially truncated scale-free(Lévy-flight like) displacements, which we show are consistent with olfactory-cued navigation in the presence of atmospheric turbulence. Our analysis provides the strongest evidence yet for cognitive odour map navigation in wild birds. Thus, we may reconcile two highly disputed questions in movement ecology, by mechanistically connecting Lévy displacements and olfactory navigation. Our approach can be applied to any species which can be tracked at sufficient spatial resolution, using a GPS logger. PMID:26136443

  16. The Influence of Mark-Recapture Sampling Effort on Estimates of Rock Lobster Survival.

    PubMed

    Kordjazi, Ziya; Frusher, Stewart; Buxton, Colin; Gardner, Caleb; Bird, Tomas

    2016-01-01

    Five annual capture-mark-recapture surveys on Jasus edwardsii were used to evaluate the effect of sample size and fishing effort on the precision of estimated survival probability. Datasets of different numbers of individual lobsters (ranging from 200 to 1,000 lobsters) were created by random subsampling from each annual survey. This process of random subsampling was also used to create 12 datasets of different levels of effort based on three levels of the number of traps (15, 30 and 50 traps per day) and four levels of the number of sampling-days (2, 4, 6 and 7 days). The most parsimonious Cormack-Jolly-Seber (CJS) model for estimating survival probability shifted from a constant model towards sex-dependent models with increasing sample size and effort. A sample of 500 lobsters or 50 traps used on four consecutive sampling-days was required for obtaining precise survival estimations for males and females, separately. Reduced sampling effort of 30 traps over four sampling days was sufficient if a survival estimate for both sexes combined was sufficient for management of the fishery. PMID:26990561

  17. Colocalization of heparin and histamine in the intracellular granules of test cells from the invertebrate Styela plicata (Chordata-Tunicata).

    PubMed

    Cavalcante, Moisés C M; de Andrade, Leonardo R; Du Bocage Santos-Pinto, Claudia; Straus, Anita H; Takahashi, Hélio K; Allodi, Silvana; Pavão, Mauro S G

    2002-03-01

    In most ascidian species the oocytes are surrounded by two types of accessory cells called follicle cells and test cells. Test cells are located on the periphery of oocytes and remain in the perivitelline space during egg development until hatching. Heparin and histamine were previously described in the test cells of the ascidian Styela plicata. In the present study, electron microscopy techniques were used to characterize the ultrastructure of the S. plicata test cells and to localize heparin and histamine in these cells. Test cells contain several intracellular granules with unique ultrastructural features. They are formed by elongated filaments composed of serial globules with an electron-lucent circle, containing a central electron-dense spot. Immunocytochemistry showed that heparin and histamine colocalize at the border of granule filaments in the test cell. Compound 48/80, a potent secretagogue of heparin-containing mast cells, also induced degranulation of test cells. According to these results, we suggest that test cells represent ancient effector cells of the innate immunity in primitive chordates.

  18. Hair cells in non-vertebrate models: lower chordates and molluscs.

    PubMed

    Burighel, P; Caicci, F; Manni, L

    2011-03-01

    The study of hair cells in invertebrates is important, because it can shed light on the debated question about the evolutionary origin of vertebrate hair cells. Here, we review the morphology and significance of hair cells in two groups of invertebrates, the lower chordates (tunicates and cephalochordates) and the molluscs. These taxa possess complex mechanoreceptor organs based on both primary (sensory neurons) and/or secondary, axonless, sensory cells, bearing various apical specializations. Compared with vertebrates, these taxa show interesting examples of convergent evolution and possible homologies of sensory systems. For example, the "lateral line organ" of Octopoda and Decapoda, composed of primary sensory cells aligned on the arms and the head, is considered a classic example of convergent evolution to mechanoreception. Similarly, in ascidians, the cupular organ, formed of primary sensory cells embedded in a gelatinous cupula, is seen as an analog of neuromasts in vertebrates. However, the coronal organ of the oral siphon of ascidians, represented by a line of secondary sensory cells with a hair bundle also comprising graded stereovilli, is currently the best candidate for tracing the evolutionary origin of the vertebrate octavo-lateralis system. Several features, such as embryological origin, position, gene expression and morphology, support this hypothesis.

  19. Origin and evolution of the parasitic cyclopoid copepods.

    PubMed

    Ho, J S

    1994-12-01

    Six of the 10 recognised families of the order Cyclopoida are parasitic, with 4 of them occurring on marine invertebrates and the remaining 2 on freshwater gastropods and fishes, respectively. A cladistic analysis of the 10 families indicates that evolution of parasitism occurred twice in the history of the cyclopoids. The first attempt was made by the marine epibenthic ancestors seeking food and shelter in sessile tunicates--the ascidians. This event led to the evolution of 2 ascidicolous families: Archinotodelphyidae and Notodelphyidae. The descendant of this lineage had also invaded the mantle cavity of marine bivalve molluscs, eventually leading to the evolution of the Mantridae. The second attempt for the parasitic mode of life was launched by the ancestor which was the sister group of the ancestral cyclopoids--the most successful family of freshwater copepods. This ancestral stock, while living in the coastal zone, split into 2 groups: one group stayed behind in the ocean and colonised again the ascidians; the other groups invaded freshwater and evolved into the fish-parasitising Lernaeidae and the gastropod-parasitising Ozmanidae.

  20. The enigmatic life history of the symbiotic crab Tunicotheres moseri (Crustacea, Brachyura, Pinnotheridae): implications for its mating system and population structure.

    PubMed

    Hernández, J E; Bolaños, J A; Palazón, J L; Hernández, G; Lira, C; Baeza, J Antonio

    2012-12-01

    Resource-monopolization theory predicts the adoption of a solitary habit in species using scarce, discrete, and small refuges. Life-history theory suggests that temporarily stable parental dwellings favor extended parental care in species that brood embryos. We tested these two predictions with the symbiotic crab Tunicotheres moseri. This species exhibits abbreviated development and inhabits the atrial chamber of the scarce, structurally simple, long-lived, and relatively small ascidian Phalusia nigra in the Caribbean. These host characteristics should favor a solitary habit and extended parental care (EPC) in T. moseri. As predicted, males and females of T. moseri inhabited ascidians solitarily with greater frequency than expected by chance alone. The male-female association pattern and reverse sexual dimorphism (males < females) additionally suggests a promiscuous "pure-search" mating system in T. moseri. Also in agreement with theoretical considerations, T. moseri displays EPC; in addition to embryos, females naturally retain larval stages, megalopae, and juveniles within their brooding pouches. This is the first record of EPC in a symbiotic crab and the second confirmed record of EPC in a marine brachyuran crab. This study supports predictions central to resource-monopolization and life-history theories. PMID:23264474

  1. Influence of submersion season on the development of test panel biofouling communities in a tropical coast

    NASA Astrophysics Data System (ADS)

    Satheesh, S.; Wesley, S. G.

    2011-08-01

    The effect of test panel submersion season on the colonization of biofouling communities in a tropical coast revealed that the effects of panel submersion time should be taken into consideration for modelling fouling community recruitment dynamics in coastal systems or during the field trials of antifouling coatings. Wooden test panels fitted onto a raft were submerged during pre-monsoon, monsoon and post-monsoon seasons for the development of the biofouling community. Results showed considerable variation in the colonization of fouling communities on test panels submerged during different seasons. Barnacles, tubeworms, ascidians and seaweeds were the major fouling communities that colonized the test panels. The total biomass of the fouling communities that settled on the post-monsoon season panels varied from the initial value of 2.72 g dm -2 to a maximum of 44.5 g dm -2. On the panels submerged during monsoon season, the total biomass of fouling communities varied between 0.78 g dm -2 and 69.9 g dm -2. The total fouling biomass on the pre-monsoon season panels varied between 2.95 and 33.5 g dm -2. Barnacles were the initial colonizers on the panels submerged during pre-monsoon and post-monsoon seasons. Soft-bodied organisms such as ascidians dominated the monsoon season-initiated panel series during the initial period.

  2. The enigmatic life history of the symbiotic crab Tunicotheres moseri (Crustacea, Brachyura, Pinnotheridae): implications for its mating system and population structure.

    PubMed

    Hernández, J E; Bolaños, J A; Palazón, J L; Hernández, G; Lira, C; Baeza, J Antonio

    2012-12-01

    Resource-monopolization theory predicts the adoption of a solitary habit in species using scarce, discrete, and small refuges. Life-history theory suggests that temporarily stable parental dwellings favor extended parental care in species that brood embryos. We tested these two predictions with the symbiotic crab Tunicotheres moseri. This species exhibits abbreviated development and inhabits the atrial chamber of the scarce, structurally simple, long-lived, and relatively small ascidian Phalusia nigra in the Caribbean. These host characteristics should favor a solitary habit and extended parental care (EPC) in T. moseri. As predicted, males and females of T. moseri inhabited ascidians solitarily with greater frequency than expected by chance alone. The male-female association pattern and reverse sexual dimorphism (males < females) additionally suggests a promiscuous "pure-search" mating system in T. moseri. Also in agreement with theoretical considerations, T. moseri displays EPC; in addition to embryos, females naturally retain larval stages, megalopae, and juveniles within their brooding pouches. This is the first record of EPC in a symbiotic crab and the second confirmed record of EPC in a marine brachyuran crab. This study supports predictions central to resource-monopolization and life-history theories.

  3. Migration of germline progenitor cells is directed by sphingosine-1-phosphate signalling in a basal chordate.

    PubMed

    Kassmer, Susannah H; Rodriguez, Delany; Langenbacher, Adam D; Bui, Connor; De Tomaso, Anthony W

    2015-01-01

    The colonial ascidian Botryllus schlosseri continuously regenerates entire bodies in an asexual budding process. The germ line of the newly developing bodies is derived from migrating germ cell precursors, but the signals governing this homing process are unknown. Here we show that germ cell precursors can be prospectively isolated based on expression of aldehyde dehydrogenase and integrin alpha-6, and that these cells express germ cell markers such as vasa, pumilio and piwi, as well as sphingosine-1-phosphate receptor. In vitro, sphingosine-1-phosphate (S1P) stimulates migration of germ cells, which depends on integrin alpha-6 activity. In vivo, S1P signalling is essential for homing of germ cells to newly developing bodies. S1P is generated by sphingosine kinase in the developing germ cell niche and degraded by lipid phosphate phosphatase in somatic tissues. These results demonstrate a previously unknown role of the S1P signalling pathway in germ cell migration in the ascidian Botryllus schlosseri. PMID:26456232

  4. Cyanobacterial diversity and a new acaryochloris-like symbiont from Bahamian sea-squirts.

    PubMed

    López-Legentil, Susanna; Song, Bongkeun; Bosch, Manel; Pawlik, Joseph R; Turon, Xavier

    2011-01-01

    Symbiotic interactions between ascidians (sea-squirts) and microbes are poorly understood. Here we characterized the cyanobacteria in the tissues of 8 distinct didemnid taxa from shallow-water marine habitats in the Bahamas Islands by sequencing a fragment of the cyanobacterial 16S rRNA gene and the entire 16S-23S rRNA internal transcribed spacer region (ITS) and by examining symbiont morphology with transmission electron (TEM) and confocal microscopy (CM). As described previously for other species, Trididemnum spp. mostly contained symbionts associated with the Prochloron-Synechocystis group. However, sequence analysis of the symbionts in Lissoclinum revealed two unique clades. The first contained a novel cyanobacterial clade, while the second clade was closely associated with Acaryochloris marina. CM revealed the presence of chlorophyll d (chl d) and phycobiliproteins (PBPs) within these symbiont cells, as is characteristic of Acaryochloris species. The presence of symbionts was also observed by TEM inside the tunic of both the adult and larvae of L. fragile, indicating vertical transmission to progeny. Based on molecular phylogenetic and microscopic analyses, Candidatus Acaryochloris bahamiensis nov. sp. is proposed for this symbiotic cyanobacterium. Our results support the hypothesis that photosymbiont communities in ascidians are structured by host phylogeny, but in some cases, also by sampling location.

  5. Expression of pro-opiomelanocortin (POMC) in the cerebral ganglion and ovary of a protochordate.

    PubMed

    Masini, M A; Sturla, M; Gallinelli, A; Candiani, S; Facchinetti, F; Pestarino, M

    1998-01-01

    The distribution of neurones expressing POMC mRNA in the cerebral ganglion of the protochordate ascidian, Styela plicata, was investigated using a non-radioactive in situ hybridization technique. Nerve cell bodies of mono and bipolar types expressing POMC mRNA, were observed mainly in the outer layer of the ganglion. Discrete groups of neurones containing POMC mRNA were also localized in the inner portion of the ganglion, and few small monopolar perykaria expressing POMC mRNA were visible at the emergence of the main nerve trunks. POMC mRNA labeling was also found at level of the cytoplasm of previtellogenic and vitellogenic oocytes, and of follicular cells. Our results demonstrate the expression of one or more genes in the cerebral ganglion and ovary, that may be similar to one or more regions of the mammalian POMC gene. Therefore POMC-related molecules seem to be involved in neuromodulatory pathways and regulatory mechanisms of the oogenesis of ascidians.

  6. Origin and evolution of the parasitic cyclopoid copepods.

    PubMed

    Ho, J S

    1994-12-01

    Six of the 10 recognised families of the order Cyclopoida are parasitic, with 4 of them occurring on marine invertebrates and the remaining 2 on freshwater gastropods and fishes, respectively. A cladistic analysis of the 10 families indicates that evolution of parasitism occurred twice in the history of the cyclopoids. The first attempt was made by the marine epibenthic ancestors seeking food and shelter in sessile tunicates--the ascidians. This event led to the evolution of 2 ascidicolous families: Archinotodelphyidae and Notodelphyidae. The descendant of this lineage had also invaded the mantle cavity of marine bivalve molluscs, eventually leading to the evolution of the Mantridae. The second attempt for the parasitic mode of life was launched by the ancestor which was the sister group of the ancestral cyclopoids--the most successful family of freshwater copepods. This ancestral stock, while living in the coastal zone, split into 2 groups: one group stayed behind in the ocean and colonised again the ascidians; the other groups invaded freshwater and evolved into the fish-parasitising Lernaeidae and the gastropod-parasitising Ozmanidae. PMID:7729982

  7. Glycosaminoglycans analogs from marine invertebrates: structure, biological effects, and potential as new therapeutics

    PubMed Central

    Pavão, Mauro S. G.

    2014-01-01

    In this review, several glycosaminoglycan analogs obtained from different marine invertebrate are reported. The structure, biological activity and mechanism of action of these unique molecules are detailed reviewed and exemplified by experiments in vitro and in vivo. Among the glycans studied are low-sulfated heparin-like polymers from ascidians, containing significant anticoagulant activity and no bleeding effect; dermatan sulfates with significant neurite outgrowth promoting activity and anti-P-selectin from ascidians, and a unique fucosylated chondroitin sulfate from sea cucumbers, possessing anticoagulant activity after oral administration and high anti P- and L-selectin activities. The therapeutic value and safety of these invertebrate glycans have been extensively proved by several experimental animal models of diseases, including thrombosis, inflammation and metastasis. These invertebrate glycans can be obtained in high concentrations from marine organisms that have been used as a food source for decades, and usually obtained from marine farms in sufficient quantities to be used as starting material for new therapeutics. PMID:25309878

  8. Migration of germline progenitor cells is directed by sphingosine-1-phosphate signalling in a basal chordate

    PubMed Central

    Kassmer, Susannah H.; Rodriguez, Delany; Langenbacher, Adam D.; Bui, Connor; De Tomaso, Anthony W.

    2015-01-01

    The colonial ascidian Botryllus schlosseri continuously regenerates entire bodies in an asexual budding process. The germ line of the newly developing bodies is derived from migrating germ cell precursors, but the signals governing this homing process are unknown. Here we show that germ cell precursors can be prospectively isolated based on expression of aldehyde dehydrogenase and integrin alpha-6, and that these cells express germ cell markers such as vasa, pumilio and piwi, as well as sphingosine-1-phosphate receptor. In vitro, sphingosine-1-phosphate (S1P) stimulates migration of germ cells, which depends on integrin alpha-6 activity. In vivo, S1P signalling is essential for homing of germ cells to newly developing bodies. S1P is generated by sphingosine kinase in the developing germ cell niche and degraded by lipid phosphate phosphatase in somatic tissues. These results demonstrate a previously unknown role of the S1P signalling pathway in germ cell migration in the ascidian Botryllus schlosseri. PMID:26456232

  9. Ensembl 2007.

    PubMed

    Hubbard, T J P; Aken, B L; Beal, K; Ballester, B; Caccamo, M; Chen, Y; Clarke, L; Coates, G; Cunningham, F; Cutts, T; Down, T; Dyer, S C; Fitzgerald, S; Fernandez-Banet, J; Graf, S; Haider, S; Hammond, M; Herrero, J; Holland, R; Howe, K; Howe, K; Johnson, N; Kahari, A; Keefe, D; Kokocinski, F; Kulesha, E; Lawson, D; Longden, I; Melsopp, C; Megy, K; Meidl, P; Ouverdin, B; Parker, A; Prlic, A; Rice, S; Rios, D; Schuster, M; Sealy, I; Severin, J; Slater, G; Smedley, D; Spudich, G; Trevanion, S; Vilella, A; Vogel, J; White, S; Wood, M; Cox, T; Curwen, V; Durbin, R; Fernandez-Suarez, X M; Flicek, P; Kasprzyk, A; Proctor, G; Searle, S; Smith, J; Ureta-Vidal, A; Birney, E

    2007-01-01

    The Ensembl (http://www.ensembl.org/) project provides a comprehensive and integrated source of annotation of chordate genome sequences. Over the past year the number of genomes available from Ensembl has increased from 15 to 33, with the addition of sites for the mammalian genomes of elephant, rabbit, armadillo, tenrec, platypus, pig, cat, bush baby, common shrew, microbat and european hedgehog; the fish genomes of stickleback and medaka and the second example of the genomes of the sea squirt (Ciona savignyi) and the mosquito (Aedes aegypti). Some of the major features added during the year include the first complete gene sets for genomes with low-sequence coverage, the introduction of new strain variation data and the introduction of new orthology/paralog annotations based on gene trees.

  10. Strong cooperativity between subunits in voltage-gated proton channels

    PubMed Central

    Gonzalez, Carlos; Koch, Hans P.; Drum, Ben M.; Larsson, H. Peter

    2010-01-01

    Voltage-activated proton (HV) channels are essential components in the innate immune response. HV channels are dimeric proteins with one proton permeation pathway per subunit. It is not known how HV channels are activated by voltage and whether there is any cooperativity between subunits during voltage activation. Using cysteine accessibility measurements and voltage clamp fluorometry, we show data that are consistent with that the fourth transmembrane segment S4 functions as the voltage sensor in HV channels from Ciona intestinalis. Surprisingly, in a dimeric HV channel, S4 in both subunits have to move to activate the two proton permeation pathways. In contrast, if HV subunits are prevented from dimerizing, then the movement of a single S4 is sufficient to activate the proton permeation pathway in a subunit. These results suggest a strong cooperativity between subunits in dimeric HV channels. PMID:20023639

  11. Early detection of eukaryotic communities from marine biofilm using high-throughput sequencing: an assessment of different sampling devices.

    PubMed

    Pochon, Xavier; Zaiko, Anastasija; Hopkins, Grant A; Banks, Jonathan C; Wood, Susanna A

    2015-01-01

    Marine biofilms are precursors for colonization by larger fouling organisms, including non-indigenous species (NIS). In this study, high-throughput sequencing (HTS) of 18S rRNA metabarcodes was used to investigate four sampling methods (modified syringe, sterilized sponge, underwater tape and sterilized swab) for characterizing eukaryotic communities in marine biofilms. Perspex™ plates were sampled in and out of water. DNA collected with tape did not amplify. Otherwise, there were no statistical differences in communities among the remaining three sampling devices or between the two environments. Sterilized sponges are recommended for ease of use underwater. In-depth HTS analysis identified diverse eukaryotic communities, dominated by Metazoa and Chromoalveolata. Among the latter, diatoms (Bacillariophyceae) were particularly abundant (33% of reads assigned to Chromalveolata). The NIS Ciona savignyi was detected in all samples. The application of HTS in marine biofilm surveillance could facilitate early detection of NIS, improving the probability of successful eradication.

  12. An Immune Effector System in the Protochordate Gut Sheds Light on Fundamental Aspects of Vertebrate Immunity.

    PubMed

    Liberti, Assunta; Leigh, Brittany; De Santis, Rosaria; Pinto, Maria Rosaria; Cannon, John P; Dishaw, Larry J; Litman, Gary W

    2015-01-01

    A variety of germline and somatic immune mechanisms have evolved in vertebrate and invertebrate species to detect a wide array of pathogenic invaders. The gut is a particularly significant site in terms of distinguishing pathogens from potentially beneficial microbes. Ciona intestinalis, a filter-feeding marine protochordate that is ancestral to the vertebrate form, possesses variable region-containing chitin-binding proteins (VCBPs), a family of innate immune receptors, which recognize bacteria through an immunoglobulin-type variable region. The manner in which VCBPs mediate immune recognition appears to be related to the development and bacterial colonization of the gut, and it is likely that these molecules are critical elements in achieving overall immune and physiological homeostasis. PMID:26537381

  13. Suboptimization of developmental enhancers.

    PubMed

    Farley, Emma K; Olson, Katrina M; Zhang, Wei; Brandt, Alexander J; Rokhsar, Daniel S; Levine, Michael S

    2015-10-16

    Transcriptional enhancers direct precise on-off patterns of gene expression during development. To explore the basis for this precision, we conducted a high-throughput analysis of the Otx-a enhancer, which mediates expression in the neural plate of Ciona embryos in response to fibroblast growth factor (FGF) signaling and a localized GATA determinant. We provide evidence that enhancer specificity depends on submaximal recognition motifs having reduced binding affinities ("suboptimization"). Native GATA and ETS (FGF) binding sites contain imperfect matches to consensus motifs. Perfect matches mediate robust but ectopic patterns of gene expression. The native sites are not arranged at optimal intervals, and subtle changes in their spacing alter enhancer activity. Multiple tiers of enhancer suboptimization produce specific, but weak, patterns of expression, and we suggest that clusters of weak enhancers, including certain "superenhancers," circumvent this trade-off in specificity and activity. PMID:26472909

  14. Monitoring biofouling communities could reduce impacts to mussel aquaculture by allowing synchronisation of husbandry techniques with peaks in settlement.

    PubMed

    Sievers, Michael; Dempster, Tim; Fitridge, Isla; Keough, Michael J

    2014-02-01

    Fouling organisms in bivalve aquaculture cause significant economic losses for the industry. Managing biofouling is typically reactive, and involves time- and labour-intensive removal techniques. Mussel spat settlement and biofouling were documented over 20 months at three mussel farms within Port Phillip Bay (PPB), Australia to determine if knowledge of settlement patterns could assist farmers in avoiding biofouling. Mussel spat settlement was largely confined to a 2-month period at one farm. Of the problematic foulers, Ectopleura crocea settlement varied in space and time at all three farms, whilst Ciona intestinalis and Pomatoceros taeniata were present predominantly at one farm and exhibited more distinct settlement periods. Within PPB, complete avoidance of biofouling is impossible. However, diligent monitoring may help farmers avoid peaks in detrimental biofouling species and allow them to implement removal strategies such as manual cleaning, and postpone grading and re-socking practices, until after these peaks.

  15. Origin and Diversification of Meprin Proteases.

    PubMed

    Marín, Ignacio

    2015-01-01

    Meprins are astacin metalloproteases with a characteristic, easily recognizable structure, given that they are the only proteases with both MAM and MATH domains plus a transmembrane region. So far assumed to be vertebrate-specific, it is shown here, using a combination of evolutionary and genomic analyses, that meprins originated before the urochordates/vertebrates split. In particular, three genes encoding structurally typical meprin proteins are arranged in tandem in the genome of the urochordate Ciona intestinalis. Phylogenetic analyses showed that the protease and MATH domains present in the meprin-like proteins encoded by the Ciona genes are very similar in sequence to the domains found in vertebrate meprins, which supports them having a common origin. While many vertebrates have the two canonical meprin-encoding genes orthologous to human MEP1A and MEP1B (which respectively encode for the proteins known as meprin α and meprin β), a single gene has been found so far in the genome of the chondrichthyan fish Callorhinchus milii, and additional meprin-encoding genes are present in some species. Particularly, a group of bony fish species have genes encoding highly divergent meprins, here named meprin-F. Genes encoding meprin-F proteins, derived from MEP1B genes, are abundant in some species, as the Amazon molly, Poecilia formosa, which has 7 of them. Finally, it is confirmed that the MATH domains of meprins are very similar to the ones in TRAF ubiquitin ligases, which suggests that meprins originated when protease and TRAF E3-encoding sequences were combined. PMID:26288188

  16. Brachyury, Foxa2 and the cis-Regulatory Origins of the Notochord.

    PubMed

    José-Edwards, Diana S; Oda-Ishii, Izumi; Kugler, Jamie E; Passamaneck, Yale J; Katikala, Lavanya; Nibu, Yutaka; Di Gregorio, Anna

    2015-12-01

    A main challenge of modern biology is to understand how specific constellations of genes are activated to differentiate cells and give rise to distinct tissues. This study focuses on elucidating how gene expression is initiated in the notochord, an axial structure that provides support and patterning signals to embryos of humans and all other chordates. Although numerous notochord genes have been identified, the regulatory DNAs that orchestrate development and propel evolution of this structure by eliciting notochord gene expression remain mostly uncharted, and the information on their configuration and recurrence is still quite fragmentary. Here we used the simple chordate Ciona for a systematic analysis of notochord cis-regulatory modules (CRMs), and investigated their composition, architectural constraints, predictive ability and evolutionary conservation. We found that most Ciona notochord CRMs relied upon variable combinations of binding sites for the transcription factors Brachyury and/or Foxa2, which can act either synergistically or independently from one another. Notably, one of these CRMs contains a Brachyury binding site juxtaposed to an (AC) microsatellite, an unusual arrangement also found in Brachyury-bound regulatory regions in mouse. In contrast, different subsets of CRMs relied upon binding sites for transcription factors of widely diverse families. Surprisingly, we found that neither intra-genomic nor interspecific conservation of binding sites were reliably predictive hallmarks of notochord CRMs. We propose that rather than obeying a rigid sequence-based cis-regulatory code, most notochord CRMs are rather unique. Yet, this study uncovered essential elements recurrently used by divergent chordates as basic building blocks for notochord CRMs. PMID:26684323

  17. Brachyury, Foxa2 and the cis-Regulatory Origins of the Notochord

    PubMed Central

    José-Edwards, Diana S.; Oda-Ishii, Izumi; Kugler, Jamie E.; Passamaneck, Yale J.; Katikala, Lavanya; Nibu, Yutaka; Di Gregorio, Anna

    2015-01-01

    A main challenge of modern biology is to understand how specific constellations of genes are activated to differentiate cells and give rise to distinct tissues. This study focuses on elucidating how gene expression is initiated in the notochord, an axial structure that provides support and patterning signals to embryos of humans and all other chordates. Although numerous notochord genes have been identified, the regulatory DNAs that orchestrate development and propel evolution of this structure by eliciting notochord gene expression remain mostly uncharted, and the information on their configuration and recurrence is still quite fragmentary. Here we used the simple chordate Ciona for a systematic analysis of notochord cis-regulatory modules (CRMs), and investigated their composition, architectural constraints, predictive ability and evolutionary conservation. We found that most Ciona notochord CRMs relied upon variable combinations of binding sites for the transcription factors Brachyury and/or Foxa2, which can act either synergistically or independently from one another. Notably, one of these CRMs contains a Brachyury binding site juxtaposed to an (AC) microsatellite, an unusual arrangement also found in Brachyury-bound regulatory regions in mouse. In contrast, different subsets of CRMs relied upon binding sites for transcription factors of widely diverse families. Surprisingly, we found that neither intra-genomic nor interspecific conservation of binding sites were reliably predictive hallmarks of notochord CRMs. We propose that rather than obeying a rigid sequence-based cis-regulatory code, most notochord CRMs are rather unique. Yet, this study uncovered essential elements recurrently used by divergent chordates as basic building blocks for notochord CRMs. PMID:26684323

  18. Phylogenetic comparison of huntingtin homologues reveals the appearance of a primitive polyQ in sea urchin.

    PubMed

    Tartari, Marzia; Gissi, Carmela; Lo Sardo, Valentina; Zuccato, Chiara; Picardi, Ernesto; Pesole, Graziano; Cattaneo, Elena

    2008-02-01

    Huntingtin is a completely soluble 3,144 amino acid (aa) protein characterized by the presence of an amino-terminal polymorphic polyglutamine (polyQ) tract, whose aberrant expansion causes the progressively neurodegenerative Huntington's disease (HD). Biological evidence indicates that huntingtin (htt) is beneficial to cells (particularly to brain neurons) and that loss of its neuronal function may contribute to HD. The exact protein domains involved in its neuroprotective function are unknown. Evolutionary analyses of htt primary aa have so far been limited to a few species, but its thorough assessment may help to clarify the functions emerging during evolution. We made an extensive comparative analysis of the available htt protein homologues from different organisms along the metazoan phylogenetic tree and defined the presence of 3 different conservative blocks corresponding to human htt aa 1-386 (htt1), 683-1,586 (htt2), and 2,437-3,078 (htt3), in which HEAT (Huntingtin, Elongator factor3, the regulatory A subunit of protein phosphatase 2A, and TOR1) repeats are well conserved. We also describe the cloning and sequencing of sea urchin htt mRNA, the oldest deuterostome homologue so far available. Multiple alignment shows the first appearance of a primitive polyQ in sea urchin, which predates an ancestral polyQ sequence in a nonchordate environment and defines the polyQ characteristic as being typical of the deuterostome branch. The fact that glutamines have conserved positions in deuterostomes and the polyQ size increases during evolution suggests that the protein has a possibly Q-dependent role. Finally, we report an evident relaxing constraint of the N-terminal block in Ciona and drosophilids that correlates with the absence of polyQ and which may indicate that the N-terminal portion of htt has evolved different functions in Ciona and protostomes. PMID:18048403

  19. Evolution of pharmacologic specificity in the pregnane X receptor

    PubMed Central

    2008-01-01

    Background The pregnane X receptor (PXR) shows the highest degree of cross-species sequence diversity of any of the vertebrate nuclear hormone receptors. In this study, we determined the pharmacophores for activation of human, mouse, rat, rabbit, chicken, and zebrafish PXRs, using a common set of sixteen ligands. In addition, we compared in detail the selectivity of human and zebrafish PXRs for steroidal compounds and xenobiotics. The ligand activation properties of the Western clawed frog (Xenopus tropicalis) PXR and that of a putative vitamin D receptor (VDR)/PXR cloned in this study from the chordate invertebrate sea squirt (Ciona intestinalis) were also investigated. Results Using a common set of ligands, human, mouse, and rat PXRs share structurally similar pharmacophores consisting of hydrophobic features and widely spaced excluded volumes indicative of large binding pockets. Zebrafish PXR has the most sterically constrained pharmacophore of the PXRs analyzed, suggesting a smaller ligand-binding pocket than the other PXRs. Chicken PXR possesses a symmetrical pharmacophore with four hydrophobes, a hydrogen bond acceptor, as well as excluded volumes. Comparison of human and zebrafish PXRs for a wide range of possible activators revealed that zebrafish PXR is activated by a subset of human PXR agonists. The Ciona VDR/PXR showed low sequence identity to vertebrate VDRs and PXRs in the ligand-binding domain and was preferentially activated by planar xenobiotics including 6-formylindolo-[3,2-b]carbazole. Lastly, the Western clawed frog (Xenopus tropicalis) PXR was insensitive to vitamins and steroidal compounds and was activated only by benzoates. Conclusion In contrast to other nuclear hormone receptors, PXRs show significant differences in ligand specificity across species. By pharmacophore analysis, certain PXRs share similar features such as human, mouse, and rat PXRs, suggesting overlap of function and perhaps common evolutionary forces. The Western clawed

  20. Cyanobactins from Cyanobacteria: Current Genetic and Chemical State of Knowledge

    PubMed Central

    Martins, Joana; Vasconcelos, Vitor

    2015-01-01

    Cyanobacteria are considered to be one of the most promising sources of new, natural products. Apart from non-ribosomal peptides and polyketides, ribosomally synthesized and post-translationally modified peptides (RiPPs) are one of the leading groups of bioactive compounds produced by cyanobacteria. Among these, cyanobactins have sparked attention due to their interesting bioactivities and for their potential to be prospective candidates in the development of drugs. It is assumed that the primary source of cyanobactins is cyanobacteria, although these compounds have also been isolated from marine animals such as ascidians, sponges and mollusks. The aim of this review is to update the current knowledge of cyanobactins, recognized as being produced by cyanobacteria, and to emphasize their genetic clusters and chemical structures as well as their bioactivities, ecological roles and biotechnological potential. PMID:26580631

  1. Cyanobactins from Cyanobacteria: Current Genetic and Chemical State of Knowledge.

    PubMed

    Martins, Joana; Vasconcelos, Vitor

    2015-11-13

    Cyanobacteria are considered to be one of the most promising sources of new, natural products. Apart from non-ribosomal peptides and polyketides, ribosomally synthesized and post-translationally modified peptides (RiPPs) are one of the leading groups of bioactive compounds produced by cyanobacteria. Among these, cyanobactins have sparked attention due to their interesting bioactivities and for their potential to be prospective candidates in the development of drugs. It is assumed that the primary source of cyanobactins is cyanobacteria, although these compounds have also been isolated from marine animals such as ascidians, sponges and mollusks. The aim of this review is to update the current knowledge of cyanobactins, recognized as being produced by cyanobacteria, and to emphasize their genetic clusters and chemical structures as well as their bioactivities, ecological roles and biotechnological potential.

  2. Turning on the heat: ecological response to simulated warming in the sea.

    PubMed

    Smale, Dan A; Wernberg, Thomas; Peck, Lloyd S; Barnes, David K A

    2011-01-14

    Significant warming has been observed in every ocean, yet our ability to predict the consequences of oceanic warming on marine biodiversity remains poor. Experiments have been severely limited because, until now, it has not been possible to manipulate seawater temperature in a consistent manner across a range of marine habitats. We constructed a "hot-plate" system to directly examine ecological responses to elevated seawater temperature in a subtidal marine system. The substratum available for colonisation and overlying seawater boundary layer were warmed for 36 days, which resulted in greater biomass of marine organisms and a doubling of space coverage by a dominant colonial ascidian. The "hot-plate" system will facilitate complex manipulations of temperature and multiple stressors in the field to provide valuable information on the response of individuals, populations and communities to environmental change in any aquatic habitat.

  3. Cryptic speciation or global spread? The case of a cosmopolitan marine invertebrate with limited dispersal capabilities.

    PubMed

    R, Pérez-Portela; V, Arranz; M, Rius; X, Turon

    2013-01-01

    The existence of globally-distributed species with low dispersal capabilities is a paradox that has been explained as a result of human-mediated transport and by hidden diversity in the form of unrecognized cryptic species. Both factors are not mutually exclusive, but relatively few studies have demonstrated the presence of both. Here we analyse the genetic patterns of the colonial ascidian Diplosoma listerianum, a species nowadays distributed globally. The study of a fragment of a mitochondrial gene in localities worldwide revealed the existence of multiple cryptic species. In addition, we found a complex geographic structure and multiple clades occurred in sympatry. One of the species showed strong population structure irrespective of geographical distances, which is coherent with stochastic dispersal linked to human transport. The present study shows the complexity of discerning the role of cryptic diversity from human-driven range shifts worldwide, as well as disentangling the effects of natural and artificial dispersal.

  4. Data on four apoptosis-related genes in the colonial tunicate Botryllus schlosseri.

    PubMed

    Franchi, Nicola; Ballin, Francesca; Manni, Lucia; Schiavon, Filippo; Ballarin, Loriano

    2016-09-01

    The data described are related to the article entitled "Recurrent phagocytosis-induced apoptosis in the cyclical generation change of the compound ascidian Botryllus schlosseri" (Franchi et al., 2016) [1]. Four apoptosis-related genes, showing high similarity with mammalian Bax (a member of the Bcl-2 protein family), AIF1 (apoptosis-inducing factor-1), PARP1 (poly ADP ribose polymerase-1) and IAP7 (inhibitor of apoptosis-7) were identified from the analysis of the trascriptome of B. schlosseri. They were named BsBax, BsAIF1, BsPARP1 and BsIAP7. Here, their deduced amino acid sequence were compared with known sequences of orthologous genes from other deuterostome species together with a study of their identity/similarity. PMID:27294183

  5. Diversity of Nonribosomal Peptide Synthetase Genes in the Microbial Metagenomes of Marine Sponges

    PubMed Central

    Pimentel-Elardo, Sheila Marie; Grozdanov, Lubomir; Proksch, Sebastian; Hentschel, Ute

    2012-01-01

    Genomic mining revealed one major nonribosomal peptide synthetase (NRPS) phylogenetic cluster in 12 marine sponge species, one ascidian, an actinobacterial isolate and seawater. Phylogenetic analysis predicts its taxonomic affiliation to the actinomycetes and hydroxy-phenyl-glycine as a likely substrate. Additionally, a phylogenetically distinct NRPS gene cluster was discovered in the microbial metagenome of the sponge Aplysina aerophoba, which shows highest similarities to NRPS genes that were previously assigned, by ways of single cell genomics, to a Chloroflexi sponge symbiont. Genomic mining studies such as the one presented here for NRPS genes, contribute to on-going efforts to characterize the genomic potential of sponge-associated microbiota for secondary metabolite biosynthesis. PMID:22822366

  6. Pigment composition and adaptation in free-living and symbiotic strains of Acaryochloris marina.

    PubMed

    Chan, Yi-Wah; Nenninger, Anja; Clokie, Samuel J H; Mann, Nicholas H; Scanlan, David J; Whitworth, Anna L; Clokie, Martha R J

    2007-07-01

    Acaryochloris marina strains have been isolated from several varied locations and habitats worldwide demonstrating a diverse and dynamic ecology. In this study, the whole cell photophysiologies of strain MBIC11017, originally isolated from a colonial ascidian, and the free-living epilithic strain CCMEE5410 are analyzed by absorbance and fluorescence spectroscopy, laser scanning confocal microscopy, sodium dodecyl sulfate polyacrylamide gel electrophoresis and subsequent protein analysis. We demonstrate pigment adaptation in MBIC11017 and CCMEE5410 under different light regimes. We show that the higher the incident growth light intensity for both strains, the greater the decrease in their chlorophyll d content. However, the strain MBIC11017 loses its phycobiliproteins relative to its chlorophyll d content when grown at light intensities of 40 microE m(-2) s(-1) without shaking and 100 microE m(-2) s(-1) with shaking. We also conclude that phycobiliproteins are absent in the free-living strain CCMEE5410.

  7. Clinical Marine Toxicology: A European Perspective for Clinical Toxicologists and Poison Centers

    PubMed Central

    Schmitt, Corinne; de Haro, Luc

    2013-01-01

    Clinical marine toxicology is a rapidly changing area. Many of the new discoveries reported every year in Europe involve ecological disturbances—including global warming—that have induced modifications in the chorology, behavior, and toxicity of many species of venomous or poisonous aquatic life including algae, ascidians, fish and shellfish. These changes have raised a number of public issues associated, e.g., poisoning after ingestion of contaminated seafood, envenomation by fish stings, and exposure to harmful microorganism blooms. The purpose of this review of medical and scientific literature in marine toxicology is to highlight the growing challenges induced by ecological disturbances that confront clinical toxicologists during the everyday job in the European Poison Centers. PMID:23917333

  8. Developmental Control of Cell-Cycle Compensation Provides a Switch for Patterned Mitosis at the Onset of Chordate Neurulation.

    PubMed

    Ogura, Yosuke; Sasakura, Yasunori

    2016-04-18

    During neurulation of chordate ascidians, the 11th mitotic division within the epidermal layer shows a posterior-to-anterior wave that is precisely coordinated with the unidirectional progression of the morphogenetic movement. Here we show that the first sign of this patterned mitosis is an asynchronous anterior-to-posterior S-phase length and that mitotic synchrony is reestablished by a compensatory asynchronous G2-phase length. Live imaging combined with genetic experiments demonstrated that compensatory G2-phase regulation requires transcriptional activation of the G2/M regulator cdc25 by the patterning genes GATA and AP-2. The downregulation of GATA and AP-2 at the onset of neurulation leads to loss of compensatory G2-phase regulation and promotes the transition to patterned mitosis. We propose that such developmentally regulated cell-cycle compensation provides an abrupt switch to spatially patterned mitosis in order to achieve the coordination between mitotic timing and morphogenesis.

  9. Evaluation of the sea anemone Anthothoe albocincta as an augmentative biocontrol agent for biofouling on artificial structures.

    PubMed

    Atalah, Javier; Bennett, Holly; Hopkins, Grant A; Forrest, Barrie M

    2013-01-01

    Augmentative biocontrol, defined as the use of indigenous natural enemies to control pest populations, has not been explored extensively in marine systems. This study tested the potential of the anemone Anthothoe albocincta as a biocontrol agent for biofouling on submerged artificial structures. Biofouling biomass was negatively related to anemone cover. Treatments with high anemone cover (>35%) led to significant changes in biofouling assemblages compared to controls. Taxa that contributed to these changes differed among sites, but included reductions in cover of problematic fouling organisms, such as solitary ascidians and bryozoans. In laboratory trials, A. albocincta substantially prevented the settlement of larvae of the bryozoan Bugula neritina when exposed to three levels of larval dose, suggesting predation as an important biocontrol mechanism, in addition to space pre-emption. This study demonstrated that augmentative biocontrol using anemones has the potential to reduce biofouling on marine artificial structures, although considerable further work is required to refine this tool before its application.

  10. Physical association between a novel plasma-membrane structure and centrosome orients cell division.

    PubMed

    Negishi, Takefumi; Miyazaki, Naoyuki; Murata, Kazuyoshi; Yasuo, Hitoyoshi; Ueno, Naoto

    2016-01-01

    In the last mitotic division of the epidermal lineage in the ascidian embryo, the cells divide stereotypically along the anterior-posterior axis. During interphase, we found that a unique membrane structure invaginates from the posterior to the centre of the cell, in a microtubule-dependent manner. The invagination projects toward centrioles on the apical side of the nucleus and associates with one of them. Further, a cilium forms on the posterior side of the cell and its basal body remains associated with the invagination. A laser ablation experiment suggests that the invagination is under tensile force and promotes the posterior positioning of the centrosome. Finally, we showed that the orientation of the invaginations is coupled with the polarized dynamics of centrosome movements and the orientation of cell division. Based on these findings, we propose a model whereby this novel membrane structure orchestrates centrosome positioning and thus the orientation of cell division axis. PMID:27502556

  11. Diversity of bacterial communities associated with the Indian Ocean sponge Tsitsikamma favus that contains the bioactive pyrroloiminoquinones, tsitsikammamine A and B.

    PubMed

    Walmsley, Tara A; Matcher, Gwynneth F; Zhang, Fan; Hill, Russell T; Davies-Coleman, Michael T; Dorrington, Rosemary A

    2012-12-01

    Tsitsikamma favus is a latrunculid sponge endemic to the coast of South Africa that produces unique pyrroloiminoquinones known as tsitsikammamines. Wakayin and makaluvamine A are structurally similar to the tsitsikammamines and are the only pyrroloiminoquinones isolated from a source other than Porifera (namely a Fijian ascidian Clavelina sp. and a laboratory culture of the myxomycete Didymium bahiense, respectively). The source of the tsitsikammamines is hypothesised to be microbial, which could provide a means of overcoming the current supply problem. This study focuses on characterising the microbial diversity associated with T. favus. We have used denaturing gradient gel electrophoresis together with clonal and deep sequencing of microbial 16S rRNA gene amplicons to show that specimens of this sponge species contain a distinct and conserved microbial population, which is stable over time and is dominated by a unique Betaproteobacterium species.

  12. Novel aspects of glypican glycobiology.

    PubMed

    Fransson, L-A; Belting, M; Cheng, F; Jönsson, M; Mani, K; Sandgren, S

    2004-05-01

    Mutations in glypican genes cause dysmorphic and overgrowth syndromes in men and mice, abnormal development in flies and worms, and defective gastrulation in zebrafish and ascidians. All glypican core proteins share a characteristic pattern of 14 conserved cysteine residues. Upstream from the C-terminal membrane anchorage are 3-4 heparan sulfate attachment sites. Cysteines in glypican-1 can become nitrosylated by nitric oxide in a copper-dependent reaction. When glypican-1 is exposed to ascorbate, nitric oxide is released and participates in deaminative cleavage of heparan sulfate at sites where the glucosamines have a free amino group. This process takes place while glypican-1 recycles via a nonclassical, caveolin-1-associated route. Glypicans are involved in growth factor signalling and transport, e.g. of polyamines. Cargo can be unloaded from heparan sulfate by nitric oxide-dependent degradation. How glypican and its degradation products and the cargo exit from the recycling route is an enigma. PMID:15112050

  13. [Distribution of Ecteinascidia turbinata (Ascidiacea: Perophoridae) in mangroves of the Yucatán Peninsula, Mexico].

    PubMed

    Carballo, J L

    2000-01-01

    The ascidian Ecteinascidia turbinata synthesizes some of the most promising substances against solid-type tumors, but the only available source are the natural populations of this tunicate, which is reared or collected in different parts of the world. A total of 33 locations were sampled in the Gulf of Mexico and the Yucatan Peninsula. The tunicate was not found in Veracruz, Tabasco and Campeche, but it was well established on mangrove roots in the Yucatan Peninsula where we estimated densities more or less equal to one colony and an average production of 115 g of biomass per lineal meter of mangrove coastline in one location (Río Lagartos). Sustainable management appears to be possible.

  14. [Morphofunctional organization of reserve stem cells providing for asexual and sexual reproduction of invertebrates].

    PubMed

    Isaeva, V V; Akhmadieva, A V; Aleksandriova, Ia N; Shukaliuk, A I

    2009-01-01

    Published and original data indicating evolutionary conservation of the morphofunctional organization of reserve stem cells providing for asexual and sexual reproduction of invertebrates are reviewed. Stem cells were studied in representatives of five animal types: archeocytes in sponge Oscarella malakhovi (Porifera), large interstitial cells in colonial hydroid Obelia longissima (Cnidaria), neoblasts in an asexual race of planarian Girardia tigrina (Platyhelmintes), stem cells in colonial rhizocephalans Peltogasterella gracilis, Polyascus polygenea, and Thylacoplethus isaevae (Arthropoda), and colonial ascidian Botryllus tuberatus (Chordata). Stem cells in animals of such diverse taxa feature the presence of germinal granules, are positive for proliferating cell nuclear antigen, demonstrate alkaline phosphatase activity (at marker of embryonic stem cells and primary germ cells in vertebrates), and rhizocephalan stem cells express the vasa-like gene (such genes are expressed in germline cells of different metazoans). The self-renewing pool of stem cells is the cellular basis of the reproductive strategy including sexual and asexual reproduction.

  15. Physical association between a novel plasma-membrane structure and centrosome orients cell division.

    PubMed

    Negishi, Takefumi; Miyazaki, Naoyuki; Murata, Kazuyoshi; Yasuo, Hitoyoshi; Ueno, Naoto

    2016-08-09

    In the last mitotic division of the epidermal lineage in the ascidian embryo, the cells divide stereotypically along the anterior-posterior axis. During interphase, we found that a unique membrane structure invaginates from the posterior to the centre of the cell, in a microtubule-dependent manner. The invagination projects toward centrioles on the apical side of the nucleus and associates with one of them. Further, a cilium forms on the posterior side of the cell and its basal body remains associated with the invagination. A laser ablation experiment suggests that the invagination is under tensile force and promotes the posterior positioning of the centrosome. Finally, we showed that the orientation of the invaginations is coupled with the polarized dynamics of centrosome movements and the orientation of cell division. Based on these findings, we propose a model whereby this novel membrane structure orchestrates centrosome positioning and thus the orientation of cell division axis.

  16. Characterising the fate of nitrogenous waste from the sea-cage aquaculture of spiny lobsters using numerical modelling.

    PubMed

    Lee, Soxi; Hartstein, Neil D; Jeffs, Andrew

    2015-06-01

    Although the aquaculture of spiny lobsters has been expanding since the 1970s, very little is known about the potential environmental impacts on water quality of this activity. This study quantified the production of dissolved inorganic nitrogen (DIN) from Australasian red spiny lobsters, Jasus edwardsii, in the laboratory, and these data were then used in a numerical model to predict the dispersal pattern of DIN from a hypothetical commercial spiny lobster farm for a coastal site where such a farm would typically be located. Modelling scenarios were set up with combinations of two different stocking densities (3 and 5 kg m(-3)), two different diets (mussels and moist artificial diet) and three different feed conversion ratios (FCR = 3, 5 and 28). DIN excretion rate from unfed lobsters in the laboratory on average was 1.10 ± 0.12 μg N g(-1) h(-1) while feeding lobsters on mussels and artificial diet increased DIN excretion significantly by around eightfold and twofold, respectively. Ammonia was consistently the dominant contributor to measured DIN output from lobsters. Modelling results indicated that the mean elevated DIN from a hypothetical farm where the lobsters were fed with mussels ranged from 7 up to 20 μg N L(-1) with increasing stocking density and FCR and was 30-150 % higher than the mean elevated DIN resulting from lobsters fed with artificial diet. Overall, the results indicated that DIN output from the hypothetical spiny lobster sea-cage farming is unlikely to be problematic using the FCR, stocking density, and the number of cages modelled at the coastal site in this study. Furthermore, feeding lobsters with artificial diet can help maintain a lower DIN output than seafood, such as mussels or trash fish.

  17. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    PubMed

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators.

  18. Fishery induces sperm depletion and reduction in male reproductive potential for crab species under male-biased harvest strategy.

    PubMed

    Pardo, Luis Miguel; Rosas, Yenifer; Fuentes, Juan Pablo; Riveros, Marcela Paz; Chaparro, Oscar Roberto

    2015-01-01

    Sperm depletion in males can occur when polygynous species are intensively exploited under a male-biased management strategy. In fisheries involving crabs species, the effects of this type of management on the reproductive potential is far from being understood. This study tests whether male-biased management of the principal Chilean crab fishery is able to affect the potential capacity of Metacarcinus edwardsii males to transfer sperm to females. Five localities in southern Chile, recording contrasting crab fishery landing, were selected to assess the potential of sperm depletion triggered by fishery. Seasonally, male crabs from each locality were obtained. Dry weight and histological condition of vasa deferentia and the Vaso-Somatic Index (VSI) were determined in order to use them as proxies for sperm depletion and male reproductive condition. A manipulative experiment was performed in the laboratory to estimate vasa deferentia weight and VSI from just-mated males in order to obtain a reference point for the potential effects of the fishery on sperm reserves. Sperm storage capacity is significantly affected by fisheries; during the mating season vasa deferentia from localities with low fishery intensity were heavier than those from high intensity fisheries, and these differences were even more evident in large males. Histological section showed that this disparity in vasa deferentia weight was explained principally by differences in the quantity of spermatophores rather than other seminal material. VSI was always higher in males from localities with low fishery intensity. Males from localities with high fishery intensity showed little capacity to recover sperm reserves and the VSI of these males remained below the values of the just-mated males. Detriment in the capacity of males to transfer sperm is the first step to sperm limitation in an exploited population, thus detection of sperm depletion can be an alert to introduce changes in the current management of

  19. Fishery Induces Sperm Depletion and Reduction in Male Reproductive Potential for Crab Species under Male-Biased Harvest Strategy

    PubMed Central

    Pardo, Luis Miguel; Rosas, Yenifer; Fuentes, Juan Pablo; Riveros, Marcela Paz; Chaparro, Oscar Roberto

    2015-01-01

    Sperm depletion in males can occur when polygynous species are intensively exploited under a male-biased management strategy. In fisheries involving crabs species, the effects of this type of management on the reproductive potential is far from being understood. This study tests whether male-biased management of the principal Chilean crab fishery is able to affect the potential capacity of Metacarcinus edwardsii males to transfer sperm to females. Five localities in southern Chile, recording contrasting crab fishery landing, were selected to assess the potential of sperm depletion triggered by fishery. Seasonally, male crabs from each locality were obtained. Dry weight and histological condition of vasa deferentia and the Vaso-Somatic Index (VSI) were determined in order to use them as proxies for sperm depletion and male reproductive condition. A manipulative experiment was performed in the laboratory to estimate vasa deferentia weight and VSI from just-mated males in order to obtain a reference point for the potential effects of the fishery on sperm reserves. Sperm storage capacity is significantly affected by fisheries; during the mating season vasa deferentia from localities with low fishery intensity were heavier than those from high intensity fisheries, and these differences were even more evident in large males. Histological section showed that this disparity in vasa deferentia weight was explained principally by differences in the quantity of spermatophores rather than other seminal material. VSI was always higher in males from localities with low fishery intensity. Males from localities with high fishery intensity showed little capacity to recover sperm reserves and the VSI of these males remained below the values of the just-mated males. Detriment in the capacity of males to transfer sperm is the first step to sperm limitation in an exploited population, thus detection of sperm depletion can be an alert to introduce changes in the current management of

  20. A quantitative metric to identify critical elements within seafood supply networks.

    PubMed

    Plagányi, Éva E; van Putten, Ingrid; Thébaud, Olivier; Hobday, Alistair J; Innes, James; Lim-Camacho, Lilly; Norman-López, Ana; Bustamante, Rodrigo H; Farmery, Anna; Fleming, Aysha; Frusher, Stewart; Green, Bridget; Hoshino, Eriko; Jennings, Sarah; Pecl, Gretta; Pascoe, Sean; Schrobback, Peggy; Thomas, Linda

    2014-01-01

    A theoretical basis is required for comparing key features and critical elements in wild fisheries and aquaculture supply chains under a changing climate. Here we develop a new quantitative metric that is analogous to indices used to analyse food-webs and identify key species. The Supply Chain Index (SCI) identifies critical elements as those elements with large throughput rates, as well as greater connectivity. The sum of the scores for a supply chain provides a single metric that roughly captures both the resilience and connectedness of a supply chain. Standardised scores can facilitate cross-comparisons both under current conditions as well as under a changing climate. Identification of key elements along the supply chain may assist in informing adaptation strategies to reduce anticipated future risks posed by climate change. The SCI also provides information on the relative stability of different supply chains based on whether there is a fairly even spread in the individual scores of the top few key elements, compared with a more critical dependence on a few key individual supply chain elements. We use as a case study the Australian southern rock lobster Jasus edwardsii fishery, which is challenged by a number of climate change drivers such as impacts on recruitment and growth due to changes in large-scale and local oceanographic features. The SCI identifies airports, processors and Chinese consumers as the key elements in the lobster supply chain that merit attention to enhance stability and potentially enable growth. We also apply the index to an additional four real-world Australian commercial fishery and two aquaculture industry supply chains to highlight the utility of a systematic method for describing supply chains. Overall, our simple methodological approach to empirically-based supply chain research provides an objective method for comparing the resilience of supply chains and highlighting components that may be critical.

  1. Using molecular prey detection to quantify rock lobster predation on barrens-forming sea urchins.

    PubMed

    Redd, K S; Ling, S D; Frusher, S D; Jarman, S; Johnson, C R

    2014-08-01

    We apply qPCR molecular techniques to detect in situ rates of consumption of sea urchins (Centrostephanus rodgersii and Heliocidaris erythrogramma) by rock lobsters (Jasus edwardsii). A non-lethal method was used to source faecal samples from trap-caught lobsters over 2 years within two no-take research reserves. There was high variability in the proportion of lobsters with faeces positive for sea urchin DNA across years and seasons dependent on lobster size. Independent estimates of lobster predation rate on sea urchins (determined from observed declines in urchin abundances in the reserves relative to control sites) suggest that rates of molecular prey detection generally overestimated predation rates. Also, small lobsters known to be incapable of directly predating emergent sea urchins showed relatively high rates of positive tests. These results indicate that some lobsters ingest non-predatory sources of sea urchin DNA, which may include (i) ingestion of C. rodgersii DNA from the benthos (urchin DNA is detectable in sediments and some lobsters yield urchin DNA in faeces when fed urchin faeces or sediment); (ii) scavenging; and/or predation by rock lobsters on small pre-emergent urchins that live cryptically within the reef matrix (although this possibility could not be assessed). While the DNA-based approach and direct monitoring of urchin populations both indicate high predation rates of large lobsters on emergent urchins, the study shows that in some cases absolute predation rates and inferences of predator-prey interactions cannot be reliably estimated from molecular signals obtained from the faeces of benthic predators. At a broad semi-quantitative level, the approach is useful to identify relative magnitudes of predation and temporal and spatial variability in predation.

  2. A Quantitative Metric to Identify Critical Elements within Seafood Supply Networks

    PubMed Central

    Plagányi, Éva E.; van Putten, Ingrid; Thébaud, Olivier; Hobday, Alistair J.; Innes, James; Lim-Camacho, Lilly; Norman-López, Ana; Bustamante, Rodrigo H.; Farmery, Anna; Fleming, Aysha; Frusher, Stewart; Green, Bridget; Hoshino, Eriko; Jennings, Sarah; Pecl, Gretta; Pascoe, Sean; Schrobback, Peggy; Thomas, Linda

    2014-01-01

    A theoretical basis is required for comparing key features and critical elements in wild fisheries and aquaculture supply chains under a changing climate. Here we develop a new quantitative metric that is analogous to indices used to analyse food-webs and identify key species. The Supply Chain Index (SCI) identifies critical elements as those elements with large throughput rates, as well as greater connectivity. The sum of the scores for a supply chain provides a single metric that roughly captures both the resilience and connectedness of a supply chain. Standardised scores can facilitate cross-comparisons both under current conditions as well as under a changing climate. Identification of key elements along the supply chain may assist in informing adaptation strategies to reduce anticipated future risks posed by climate change. The SCI also provides information on the relative stability of different supply chains based on whether there is a fairly even spread in the individual scores of the top few key elements, compared with a more critical dependence on a few key individual supply chain elements. We use as a case study the Australian southern rock lobster Jasus edwardsii fishery, which is challenged by a number of climate change drivers such as impacts on recruitment and growth due to changes in large-scale and local oceanographic features. The SCI identifies airports, processors and Chinese consumers as the key elements in the lobster supply chain that merit attention to enhance stability and potentially enable growth. We also apply the index to an additional four real-world Australian commercial fishery and two aquaculture industry supply chains to highlight the utility of a systematic method for describing supply chains. Overall, our simple methodological approach to empirically-based supply chain research provides an objective method for comparing the resilience of supply chains and highlighting components that may be critical. PMID:24633147

  3. Characterising the fate of nitrogenous waste from the sea-cage aquaculture of spiny lobsters using numerical modelling.

    PubMed

    Lee, Soxi; Hartstein, Neil D; Jeffs, Andrew

    2015-06-01

    Although the aquaculture of spiny lobsters has been expanding since the 1970s, very little is known about the potential environmental impacts on water quality of this activity. This study quantified the production of dissolved inorganic nitrogen (DIN) from Australasian red spiny lobsters, Jasus edwardsii, in the laboratory, and these data were then used in a numerical model to predict the dispersal pattern of DIN from a hypothetical commercial spiny lobster farm for a coastal site where such a farm would typically be located. Modelling scenarios were set up with combinations of two different stocking densities (3 and 5 kg m(-3)), two different diets (mussels and moist artificial diet) and three different feed conversion ratios (FCR = 3, 5 and 28). DIN excretion rate from unfed lobsters in the laboratory on average was 1.10 ± 0.12 μg N g(-1) h(-1) while feeding lobsters on mussels and artificial diet increased DIN excretion significantly by around eightfold and twofold, respectively. Ammonia was consistently the dominant contributor to measured DIN output from lobsters. Modelling results indicated that the mean elevated DIN from a hypothetical farm where the lobsters were fed with mussels ranged from 7 up to 20 μg N L(-1) with increasing stocking density and FCR and was 30-150 % higher than the mean elevated DIN resulting from lobsters fed with artificial diet. Overall, the results indicated that DIN output from the hypothetical spiny lobster sea-cage farming is unlikely to be problematic using the FCR, stocking density, and the number of cages modelled at the coastal site in this study. Furthermore, feeding lobsters with artificial diet can help maintain a lower DIN output than seafood, such as mussels or trash fish. PMID:25601612

  4. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    PubMed

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators. PMID:25354555

  5. Redeployment of germ layers related TFs shows regionalized expression during two non-embryonic developments.

    PubMed

    Ricci, Lorenzo; Cabrera, Fabien; Lotito, Sonia; Tiozzo, Stefano

    2016-08-01

    In all non-vertebrate metazoan phyla, species that evolved non-embryonic developmental pathways as means of propagation or regeneration can be found. In this context, new bodies arise through asexual reproduction processes (such as budding) or whole body regeneration, that lack the familiar temporal and spatial cues classically associated with embryogenesis, like maternal determinants, or gastrulation. The molecular mechanisms underlying those non-embryonic developments (i.e., regeneration and asexual reproduction), and their relationship to those deployed during embryogenesis are poorly understood. We have addressed this question in the colonial ascidian Botryllus schlosseri, which undergoes an asexual reproductive process via palleal budding (PB), as well as a whole body regeneration by vascular budding (VB). We identified early regenerative structures during VB and then followed the fate of differentiating tissues during both non-embryonic developments (PB and VB) by monitoring the expression of genes known to play key functions in germ layer specification with well conserved expression patterns in solitary ascidian embryogenesis. The expression patterns of FoxA1, GATAa, GATAb, Otx, Bra, Gsc and Tbx2/3 were analysed during both PB and VB. We found that the majority of these transcription factors were expressed during both non-embryonic developmental processes, revealing a regionalization of the palleal and vascular buds. Knockdown of GATAa by siRNA in palleal buds confirmed that preventing the correct development of one of these regions blocks further tissue specification. Our results indicate that during both normal and injury-induced budding, a similar alternative developmental program operates via early commitment of epithelial regions.

  6. Redeployment of germ layers related TFs shows regionalized expression during two non-embryonic developments.

    PubMed

    Ricci, Lorenzo; Cabrera, Fabien; Lotito, Sonia; Tiozzo, Stefano

    2016-08-01

    In all non-vertebrate metazoan phyla, species that evolved non-embryonic developmental pathways as means of propagation or regeneration can be found. In this context, new bodies arise through asexual reproduction processes (such as budding) or whole body regeneration, that lack the familiar temporal and spatial cues classically associated with embryogenesis, like maternal determinants, or gastrulation. The molecular mechanisms underlying those non-embryonic developments (i.e., regeneration and asexual reproduction), and their relationship to those deployed during embryogenesis are poorly understood. We have addressed this question in the colonial ascidian Botryllus schlosseri, which undergoes an asexual reproductive process via palleal budding (PB), as well as a whole body regeneration by vascular budding (VB). We identified early regenerative structures during VB and then followed the fate of differentiating tissues during both non-embryonic developments (PB and VB) by monitoring the expression of genes known to play key functions in germ layer specification with well conserved expression patterns in solitary ascidian embryogenesis. The expression patterns of FoxA1, GATAa, GATAb, Otx, Bra, Gsc and Tbx2/3 were analysed during both PB and VB. We found that the majority of these transcription factors were expressed during both non-embryonic developmental processes, revealing a regionalization of the palleal and vascular buds. Knockdown of GATAa by siRNA in palleal buds confirmed that preventing the correct development of one of these regions blocks further tissue specification. Our results indicate that during both normal and injury-induced budding, a similar alternative developmental program operates via early commitment of epithelial regions. PMID:27208394

  7. Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny

    PubMed Central

    2009-01-01

    Background Tunicates represent a key metazoan group as the sister-group of vertebrates within chordates. The six complete mitochondrial genomes available so far for tunicates have revealed distinctive features. Extensive gene rearrangements and particularly high evolutionary rates have been evidenced with regard to other chordates. This peculiar evolutionary dynamics has hampered the reconstruction of tunicate phylogenetic relationships within chordates based on mitogenomic data. Results In order to further understand the atypical evolutionary dynamics of the mitochondrial genome of tunicates, we determined the complete sequence of the solitary ascidian Herdmania momus. This genome from a stolidobranch ascidian presents the typical tunicate gene content with 13 protein-coding genes, 2 rRNAs and 24 tRNAs which are all encoded on the same strand. However, it also presents a novel gene arrangement, highlighting the extreme plasticity of gene order observed in tunicate mitochondrial genomes. Probabilistic phylogenetic inferences were conducted on the concatenation of the 13 mitochondrial protein-coding genes from representatives of major metazoan phyla. We show that whereas standard homogeneous amino acid models support an artefactual sister position of tunicates relative to all other bilaterians, the CAT and CAT+BP site- and time-heterogeneous mixture models place tunicates as the sister-group of vertebrates within monophyletic chordates. Moreover, the reference phylogeny indicates that tunicate mitochondrial genomes have experienced a drastic acceleration in their evolutionary rate that equally affects protein-coding and ribosomal-RNA genes. Conclusion This is the first mitogenomic study supporting the new chordate phylogeny revealed by recent phylogenomic analyses. It illustrates the beneficial effects of an increased taxon sampling coupled with the use of more realistic amino acid substitution models for the reconstruction of animal phylogeny. PMID:19922605

  8. Sperm motility parameters and spermatozoa morphometric characterization in marine species: a study of swimmer and sessile species.

    PubMed

    Gallego, V; Pérez, L; Asturiano, J F; Yoshida, M

    2014-09-15

    The biodiversity of marine ecosystems is diverse and a high number of species coexist side by side. However, despite the fact that most of these species share a common fertilization strategy, a high variability in terms of the size, shape, and motion of spermatozoa can be found. In this study, we have analyzed both the sperm motion parameters and the spermatozoa morphometric features of two swimmer (pufferfish and European eel) and two sessile (sea urchin and ascidian) marine species. The most important differences in the sperm motion parameters were registered in the swimming period. Sessile species sperm displayed notably higher values than swimmer species sperm. In addition, the sperm motilities and velocities of the swimmer species decreased sharply once the sperm was activated, whereas the sessile species were able to maintain their initial values for a long time. These results are linked directly to the species-specific lifestyles. Although sessile organisms, which show limited or no movement, need sperm with a capacity to swim for long distances to find the oocytes, swimmer organisms can move toward the female and release gametes near it, and therefore the spermatozoa does not need to swim for such a long time. At the same time, sperm morphology is related to sperm motion parameters, and in this study an in-depth morphometric analysis of ascidian, sea urchin, and pufferfish spermatozoa, using computer-assisted sperm analysis software, has been carried out for the first time. A huge variability in shapes, sizes, and structures of the studied species was found using electron microscopy.

  9. Benthic faunal assemblages from the Holocene middle shelf of the South Evoikos Gulf, central Greece, and their palaeoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Asimina Louvari, Markella; Tsourou, Theodora; Drinia, Hara; Anastasakis, George

    2013-04-01

    intermediate percentages of organic matter in which at least some sand fraction is present. A strict interpretation based on the known modern distribution of A. beccarii would confine the species to upper shoreface environments (Hayward et al. 2004). The relatively high frequency values of B. marginata indicate a correlation with organic matter enrichment, with seasonal low oxygen content. This hypothesis is testified also by the increase of the opportunistic species V. bradyana. The temporal presence of V. bradyana assemblage indicates a strong influence of Asopos River run-off, with interplay of increasing food availability and low oxygen concentration Three main ostracod assemblages were distinguished from the bottom to the top of the sediment core: At the lower part of the core ostracod assemblage consists mainly of Costa edwardsii, Cytheridea neapolitana, Callistocythere spp., Pterygocythereis jonesii and Leptocythere spp. At the middle part, Costa edwardsii is the dominant species with relative abundances up to 80% of the total ostracod fauna. At the upper part Costa edwardsii is the most abundant species (20-40% of the total fauna) accompanied mainly by Loxoconcha spp., Xestoleberis spp. and Cyprideis torosa. Ostracod abundance and diversity decrease towards the upper unit of the studied core. These data, and AMS radiocarbon ages determined for foraminifera and ostracods, provide evidence of a change from oceanic influence to estuarine influence. This event is also contemporaneous with the period which is generally characterized by increased evaporation rate (initially at the tropic seas), retreat of glaciers and increased rainfalls (Fairbanks, 1989). Fairbanks, R.G., 1989. A 17,000 year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature, 342, 637-642. Hayward, B.W., Sabaa, A.T., Grenfell, H.R., 2004. Benthic foraminifera and the Late Quaternary (last 150 ka) palaeoceanographic and

  10. Allosteric substrate switching in a voltage sensing lipid phosphatase

    PubMed Central

    Grimm, Sasha S.; Isacoff, Ehud Y.

    2016-01-01

    Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We find the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), to have not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage sensing domain (VSD). Using fast FRET reporters of PIPs to monitor enzyme activity and voltage clamp fluorometry to monitor conformational changes in the VSD, we find that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This novel 2-step allosteric control over a dual specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility and endo/exocytosis. PMID:26878552

  11. Metaphylogeny of 82 gene families sheds a new light on chordate evolution.

    PubMed

    Vienne, Alexandre; Pontarotti, Pierre

    2006-01-01

    Achieving a better comprehension of the evolution of species has always been an important matter for evolutionary biologists. The deuterostome phylogeny has been described for many years, and three phyla are distinguishable: Echinodermata (including sea stars, sea urchins, etc...), Hemichordata (including acorn worms and pterobranchs), and Chordata (including urochordates, cephalochordates and extant vertebrates). Inside the Chordata phylum, the position of vertebrate species is quite unanimously accepted. Nonetheless, the position of urochordates in regard with vertebrates is still the subject of debate, and has even been suggested by some authors to be a separate phylum from cephalochordates and vertebrates. It was also the case for agnathans species -myxines and hagfish- for which phylogenetic evidence was recently given for a controversial monophyly. This raises the following question: which one of the cephalochordata or urochordata is the sister group of vertebrates and what are their relationships? In the present work, we analyzed 82 protein families presenting homologs between urochordata and other deuterostomes and focused on two points: 1) testing accurately the position of urochordata and cephalochordata phyla in regard with vertebrates as well as chordates monophyly, 2) performing an estimation of the rate of gene loss in the Ciona intestinalis genome. We showed that the urochordate phyla is the vertebrate sister group and that gene loss played a major role in structuring the urochordate genome. PMID:16733531

  12. The carboxylesterase/cholinesterase gene family in invertebrate deuterostomes.

    PubMed

    Johnson, Glynis; Moore, Samuel W

    2012-06-01

    Carboxylesterase/cholinesterase family members are responsible for controlling the nerve impulse, detoxification and various developmental functions, and are a major target of pesticides and chemical warfare agents. Comparative structural analysis of these enzymes is thus important. The invertebrate deuterostomes (phyla Echinodermata and Hemichordata and subphyla Urochordata and Cephalochordata) lie in the transition zone between invertebrates and vertebrates, and are thus of interest to the study of evolution. Here we have investigated the carboxylesterase/cholinesterase gene family in the sequenced genomes of Strongylocentrotus purpuratus (Echinodermata), Saccoglossus kowalevskii (Hemichordata), Ciona intestinalis (Urochordata) and Branchiostoma floridae (Cephalochordata), using sequence analysis of the catalytic apparatus and oligomerisation domains, and phylogenetic analysis. All four genomes show blurring of structural boundaries between cholinesterases and carboxylesterases, with many intermediate enzymes. Non-enzymatic proteins are well represented. The Saccoglossus and Branchiostoma genomes show evidence of extensive gene duplication and retention. There is also evidence of domain shuffling, resulting in multidomain proteins consisting either of multiple carboxylesterase domains, or of carboxylesterase/cholinesterase domains linked to other domains, including RING finger, chitin-binding, immunoglobulin, fibronectin type 3, CUB, cysteine-rich-Frizzled, caspase activation and 7tm-1, amongst others. Such gene duplication and domain shuffling in the carboxylesterase/cholinesterase family appears to be unique to the invertebrate deuterostomes, and we hypothesise that these factors may have contributed to the evolution of the morphological complexity, particularly of the nervous system and neural crest, of the vertebrates. PMID:22210164

  13. Metaphylogeny of 82 gene families sheds a new light on chordate evolution.

    PubMed

    Vienne, Alexandre; Pontarotti, Pierre

    2006-01-01

    Achieving a better comprehension of the evolution of species has always been an important matter for evolutionary biologists. The deuterostome phylogeny has been described for many years, and three phyla are distinguishable: Echinodermata (including sea stars, sea urchins, etc...), Hemichordata (including acorn worms and pterobranchs), and Chordata (including urochordates, cephalochordates and extant vertebrates). Inside the Chordata phylum, the position of vertebrate species is quite unanimously accepted. Nonetheless, the position of urochordates in regard with vertebrates is still the subject of debate, and has even been suggested by some authors to be a separate phylum from cephalochordates and vertebrates. It was also the case for agnathans species -myxines and hagfish- for which phylogenetic evidence was recently given for a controversial monophyly. This raises the following question: which one of the cephalochordata or urochordata is the sister group of vertebrates and what are their relationships? In the present work, we analyzed 82 protein families presenting homologs between urochordata and other deuterostomes and focused on two points: 1) testing accurately the position of urochordata and cephalochordata phyla in regard with vertebrates as well as chordates monophyly, 2) performing an estimation of the rate of gene loss in the Ciona intestinalis genome. We showed that the urochordate phyla is the vertebrate sister group and that gene loss played a major role in structuring the urochordate genome.

  14. Invertebrates as model organisms for research on aging biology

    PubMed Central

    Murthy, Mahadev; Ram, Jeffrey L.

    2015-01-01

    Invertebrate model systems, such as nematodes and fruit flies, have provided valuable information about the genetics and cellular biology involved in aging. However, limitations of these simple, genetically tractable organisms suggest the need for other model systems, some of them invertebrate, to facilitate further advances in the understanding of mechanisms of aging and longevity in mammals, including humans. This paper introduces 10 review articles about the use of invertebrate model systems for the study of aging by authors who participated in an ‘NIA-NIH symposium on aging in invertebrate model systems’ at the 2013 International Congress for Invertebrate Reproduction and Development. In contrast to the highly derived characteristics of nematodes and fruit flies as members of the superphylum Ecdysozoa, cnidarians, such as Hydra, are more ‘basal’ organisms that have a greater number of genetic orthologs in common with humans. Moreover, some other new model systems, such as the urochordate Botryllus schlosseri, the tunicate Ciona, and the sea urchins (Echinodermata) are members of the Deuterostomia, the same superphylum that includes all vertebrates, and thus have mechanisms that are likely to be more closely related to those occurring in humans. Additional characteristics of these new model systems, such as the recent development of new molecular and genetic tools and a more similar pattern to humans of regeneration and stem cell function suggest that these new model systems may have unique advantages for the study of mechanisms of aging and longevity. PMID:26241448

  15. A specialized molecular motion opens the Hv1 voltage-gated proton channel.

    PubMed

    Mony, Laetitia; Berger, Thomas K; Isacoff, Ehud Y

    2015-04-01

    The Hv1 proton channel is unique among voltage-gated channels for containing the pore and gate within its voltage-sensing domain. Pore opening has been proposed to include assembly of the selectivity filter between an arginine (R3) of segment S4 and an aspartate (D1) of segment S1. We determined whether gating involves motion of S1, using Ciona intestinalis Hv1. We found that channel opening is concomitant with solution access to the pore-lining face of S1, from the cytoplasm to deep inside the pore. Voltage- and patch-clamp fluorometry showed that this involves a motion of S1 relative to its surroundings. S1 motion and the S4 motion that precedes it are each influenced by residues on the other helix, thus suggesting a dynamic interaction between S1 and S4. Our findings suggest that the S1 of Hv1 has specialized to function as part of the channel's gate.

  16. Biofouling leads to reduced shell growth and flesh weight in the cultured mussel Mytilus galloprovincialis.

    PubMed

    Sievers, Michael; Fitridge, Isla; Dempster, Tim; Keough, Michael J

    2013-01-01

    Competitive interactions between cultured mussels and fouling organisms may result in growth and weight reductions in mussels, and compromised aquaculture productivity. Mussel ropes were inoculated with Ciona intestinalis, Ectopleura crocea or Styela clava, and growth parameters of fouled and unfouled Mytilus galloprovincialis were compared after two months. Small mussels (≈ 50 mm) fouled by C. intestinalis and E. crocea were 4.0 and 3.2% shorter in shell length and had 21 and 13% reduced flesh weight, respectively, compared to the controls. Large mussels (≈ 68 mm) fouled by S. clava, C. intestinalis and E. crocea were 4.4, 3.9 and 2.1% shorter than control mussels, respectively, but flesh weights were not significantly reduced. A series of competitive feeding experiments indicated that S. clava and C. intestinalis did not reduce mussels' food consumption, but that E. crocea, through interference competition, did. Fouling by these species at the densities used here reduced mussel growth and flesh weight, likely resulting in economic losses for the industry, and requires consideration when developing biofouling mitigation strategies.

  17. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions

    PubMed Central

    Sung, Uhna; Sepehri-Rad, Masoud; Piao, Hong Hua; Jin, Lei; Hughes, Thomas; Cohen, Lawrence B.; Baker, Bradley J.

    2015-01-01

    FRET (Förster Resonance Energy Transfer)-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP) voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different “Nabi1” constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms) and signal decay (~3 ms). We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP) and mRuby2 (acceptor FP) to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz. PMID:26587834

  18. Conservation of context-dependent splicing activity in distant Muscleblind homologs

    PubMed Central

    Oddo, Julia C.; Saxena, Tanvi; McConnell, Ona L.; Berglund, J. Andrew; Wang, Eric T.

    2016-01-01

    The Muscleblind (MBL) protein family is a deeply conserved family of RNA binding proteins that regulate alternative splicing, alternative polyadenylation, RNA stability and RNA localization. Their inactivation due to sequestration by expanded CUG repeats causes symptoms in the neuromuscular disease myotonic dystrophy. MBL zinc fingers are the most highly conserved portion of these proteins, and directly interact with RNA. We identified putative MBL homologs in Ciona intestinalis and Trichoplax adhaerens, and investigated their ability, as well as that of MBL homologs from human/mouse, fly and worm, to regulate alternative splicing. We found that all homologs can regulate alternative splicing in mouse cells, with some regulating over 100 events. The cis-elements through which each homolog exerts its splicing activities are likely to be highly similar to mammalian Muscleblind-like proteins (MBNLs), as suggested by motif analyses and the ability of expanded CUG repeats to inactivate homolog-mediated splicing. While regulation of specific target exons by MBL/MBNL has not been broadly conserved across these species, genes enriched for MBL/MBNL binding sites in their introns may play roles in cell adhesion, ion transport and axon guidance, among other biological pathways, suggesting a specific, conserved role for these proteins across a broad range of metazoan species. PMID:27557707

  19. Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria

    NASA Technical Reports Server (NTRS)

    Mazet, Francoise; Yu, Jr Kai; Liberles, David A.; Holland, Linda Z.; Shimeld, Sebastian M.

    2003-01-01

    The Forkhead or Fox gene family encodes putative transcription factors. There are at least four Fox genes in yeast, 16 in Drosophila melanogaster (Dm) and 42 in humans. Recently, vertebrate Fox genes have been classified into 17 groups named FoxA to FoxQ. Here, we extend this analysis to invertebrates, using available sequences from D. melanogaster, Anopheles gambiae (Ag), Caenorhabditis elegans (Ce), the sea squirt Ciona intestinalis (Ci) and amphioxus Branchiostoma floridae (Bf), from which we also cloned several Fox genes. Phylogenetic analyses lend support to the previous overall subclassification of vertebrate genes, but suggest that four subclasses (FoxJ, L, N and Q) could be further subdivided to reflect their relationships to invertebrate genes. We were unable to identify orthologs of Fox subclasses E, H, I, J, M and Q1 in D. melanogaster, A. gambiae or C. elegans, suggesting either considerable loss in ecdysozoans or the evolution of these subclasses in the deuterostome lineage. Our analyses suggest that the common ancestor of protostomes and deuterostomes had a minimum complement of 14 Fox genes.

  20. Assembly and positioning of actomyosin rings by contractility and planar cell polarity

    PubMed Central

    Sehring, Ivonne M; Recho, Pierre; Denker, Elsa; Kourakis, Matthew; Mathiesen, Birthe; Hannezo, Edouard; Dong, Bo; Jiang, Di

    2015-01-01

    The actomyosin cytoskeleton is a primary force-generating mechanism in morphogenesis, thus a robust spatial control of cytoskeletal positioning is essential. In this report, we demonstrate that actomyosin contractility and planar cell polarity (PCP) interact in post-mitotic Ciona notochord cells to self-assemble and reposition actomyosin rings, which play an essential role for cell elongation. Intriguingly, rings always form at the cells′ anterior edge before migrating towards the center as contractility increases, reflecting a novel dynamical property of the cortex. Our drug and genetic manipulations uncover a tug-of-war between contractility, which localizes cortical flows toward the equator and PCP, which tries to reposition them. We develop a simple model of the physical forces underlying this tug-of-war, which quantitatively reproduces our results. We thus propose a quantitative framework for dissecting the relative contribution of contractility and PCP to the self-assembly and repositioning of cytoskeletal structures, which should be applicable to other morphogenetic events. DOI: http://dx.doi.org/10.7554/eLife.09206.001 PMID:26486861

  1. Ligand-Bound GeneSwitch Causes Developmental Aberrations in Drosophila that Are Alleviated by the Alternative Oxidase

    PubMed Central

    Andjelković, Ana; Kemppainen, Kia K.; Jacobs, Howard T.

    2016-01-01

    Culture of Drosophila expressing the steroid-dependent GeneSwitch transcriptional activator under the control of the ubiquitous α-tubulin promoter was found to produce extensive pupal lethality, as well as a range of dysmorphic adult phenotypes, in the presence of high concentrations of the inducing drug RU486. Prominent among these was cleft thorax, seen previously in flies bearing mutant alleles of the nuclear receptor Ultraspiracle and many other mutants, as well as notched wings, leg malformations, and bristle abnormalities. Neither the α-tubulin-GeneSwitch driver nor the inducing drug on their own produced any of these effects. A second GeneSwitch driver, under the control of the daughterless promoter, which gave much lower and more tissue-restricted transgene expression, exhibited only mild bristle abnormalities in the presence of high levels of RU486. Coexpression of the alternative oxidase (AOX) from Ciona intestinalis produced a substantial shift in the developmental outcome toward a wild-type phenotype, which was dependent on the AOX expression level. Neither an enzymatically inactivated variant of AOX, nor GFP, or the alternative NADH dehydrogenase Ndi1 from yeast gave any such rescue. Users of the GeneSwitch system should be aware of the potential confounding effects of its application in developmental studies. PMID:27412986

  2. Microtubule sliding in swimming sperm flagella: direct and indirect measurements on sea urchin and tunicate spermatozoa [published erratum appears in J Cell Biol 1991 Nov;115(4):1204

    PubMed Central

    1991-01-01

    Direct measurements of microtubule sliding in the flagella of actively swimming, demembranated, spermatozoa have been made using submicron diameter gold beads as markers on the exposed outer doublet microtubules. With spermatozoa of the tunicate, Ciona, these measurements confirm values of sliding calculated indirectly by measuring angles relative to the axis of the sperm head. Both methods of measurement show a nonuniform amplitude of oscillatory sliding along the length of the flagellum, providing direct evidence that "oscillatory synchronous sliding" can be occurring in the flagellum, in addition to the metachronous sliding that is necessary to propagate a bending wave. Propagation of constant amplitude bends is not accomplished by propagation of a wave of oscillatory sliding of constant amplitude, and therefore appears to require a mechanism for monitoring and controlling the bend angle as bends propagate. With sea urchin spermatozoa, the direct measurements of sliding do not agree with the values calculated by measuring angles relative to the head axis. The oscillation in angular orientation of the sea urchin sperm head as it swims appears to be accommodated by flexure at the head- flagellum junction and does not correspond to oscillation in orientation of the basal end of the flagellum. Consequently, indirect calculations of sliding based on angles measured relative to the longitudinal axis of the sperm head can be seriously inaccurate in this species. PMID:1894694

  3. The Conserved Rieske Oxygenase DAF-36/Neverland Is a Novel Cholesterol-metabolizing Enzyme*

    PubMed Central

    Yoshiyama-Yanagawa, Takuji; Enya, Sora; Shimada-Niwa, Yuko; Yaguchi, Shunsuke; Haramoto, Yoshikazu; Matsuya, Takeshi; Shiomi, Kensuke; Sasakura, Yasunori; Takahashi, Shuji; Asashima, Makoto; Kataoka, Hiroshi; Niwa, Ryusuke

    2011-01-01

    Steroid hormones play essential roles in a wide variety of biological processes in multicellular organisms. The principal steroid hormones in nematodes and arthropods are dafachronic acids and ecdysteroids, respectively, both of which are synthesized from cholesterol as an indispensable precursor. The first critical catalytic step in the biosynthesis of these ecdysozoan steroids is the conversion of cholesterol to 7-dehydrocholesterol. However, the enzymes responsible for cholesterol 7,8-dehydrogenation remain unclear at the molecular level. Here we report that the Rieske oxygenase DAF-36/Neverland (Nvd) is a cholesterol 7,8-dehydrogenase. The daf-36/nvd genes are evolutionarily conserved, not only in nematodes and insects but also in deuterostome species that do not produce dafachronic acids or ecdysteroids, including the sea urchin Hemicentrotus pulcherrimus, the sea squirt Ciona intestinalis, the fish Danio rerio, and the frog Xenopus laevis. An in vitro enzymatic assay system reveals that all DAF-36/Nvd proteins cloned so far have the ability to convert cholesterol to 7-dehydrocholesterol. Moreover, the lethality of loss of nvd function in the fruit fly Drosophila melanogaster is rescued by the expression of daf-36/nvd genes from the nematode Caenorhabditis elegans, the insect Bombyx mori, or the vertebrates D. rerio and X. laevis. These data suggest that daf-36/nvd genes are functionally orthologous across the bilaterian phylogeny. We propose that the daf-36/nvd family of proteins is a novel conserved player in cholesterol metabolism across the animal phyla. PMID:21632547

  4. Syntax compensates for poor binding sites to encode tissue specificity of developmental enhancers.

    PubMed

    Farley, Emma K; Olson, Katrina M; Zhang, Wei; Rokhsar, Daniel S; Levine, Michael S

    2016-06-01

    Transcriptional enhancers are short segments of DNA that switch genes on and off in response to a variety of intrinsic and extrinsic signals. Despite the discovery of the first enhancer more than 30 y ago, the relationship between primary DNA sequence and enhancer activity remains obscure. In particular, the importance of "syntax" (the order, orientation, and spacing of binding sites) is unclear. A high-throughput screen identified synthetic notochord enhancers that are activated by the combination of ZicL and ETS transcription factors in Ciona embryos. Manipulation of these enhancers elucidated a "regulatory code" of sequence and syntax features for notochord-specific expression. This code enabled in silico discovery of bona fide notochord enhancers, including those containing low-affinity binding sites that would be excluded by standard motif identification methods. One of the newly identified enhancers maps upstream of the known enhancer that regulates Brachyury (Ci-Bra), a key determinant of notochord specification. This newly identified Ci-Bra shadow enhancer contains binding sites with very low affinity, but optimal syntax, and therefore mediates surprisingly strong expression in the notochord. Weak binding sites are compensated by optimal syntax, whereas enhancers containing high-affinity binding affinities possess suboptimal syntax. We suggest this balance has obscured the importance of regulatory syntax, as noncanonical binding motifs are typically disregarded by enhancer detection methods. As a result, enhancers with low binding affinities but optimal syntax may be a vastly underappreciated feature of the regulatory genome.

  5. Intra-species sequence comparisons for annotating genomes

    SciTech Connect

    Boffelli, Dario; Weer, Claire V.; Weng, Li; Lewis, Keith D.; Shoukry, Malak I.; Pachter, Lior; Keys, David N.; Rubin, Edward M.

    2004-07-15

    Analysis of sequence variation among members of a single species offers a potential approach to identify functional DNA elements responsible for biological features unique to that species. Due to its high rate of allelic polymorphism and ease of genetic manipulability, we chose the sea squirt, Ciona intestinalis, to explore intra-species sequence comparisons for genome annotation. A large number of C. intestinalis specimens were collected from four continents and a set of genomic intervals amplified, resequenced and analyzed to determine the mutation rates at each nucleotide in the sequence. We found that regions with low mutation rates efficiently demarcated functionally constrained sequences: these include a set of noncoding elements, which we showed in C intestinalis transgenic assays to act as tissue-specific enhancers, as well as the location of coding sequences. This illustrates that comparisons of multiple members of a species can be used for genome annotation, suggesting a path for the annotation of the sequenced genomes of organisms occupying uncharacterized phylogenetic branches of the animal kingdom and raises the possibility that the resequencing of a large number of Homo sapiens individuals might be used to annotate the human genome and identify sequences defining traits unique to our species. The sequence data from this study has been submitted to GenBank under accession nos. AY667278-AY667407.

  6. GASP/WFIKKN proteins: evolutionary aspects of their functions.

    PubMed

    Monestier, Olivier; Brun, Caroline; Cocquempot, Olivier; Petit, Daniel; Blanquet, Véronique

    2012-01-01

    Growth and differentiation factor Associated Serum Protein (GASP) 1 and 2 are proteins known to be involved in the control of myostatin activity at least in vitro. Most deuterostome GASPs share a modular organization including WAP, follistatin/kazal, IGc2, two kunitz, and NTR domains. Based on an exon shuffling model, we performed independent phylogenetic analyses on these modules and assessed that papilin is probably a sister sequence to GASP with a divergence date estimated from the last common ancestor to bilateria. The final organization was acquired by the addition of the FS domain in early deuterostomes. Our study revealed that Gasp genes diverged during the first round of genome duplication in early vertebrates. By evaluating the substitution rate at different sites on the proteins, we showed a better conservation of the follistatin/kazal domain of GASP1 than GASP2 in mammals, suggesting a stronger interaction with myostatin. We also observed a progressive increase in the conservation of follistatin and kunitz domains from the ancestor of Ciona to early vertebrates. In situ hybridization performed on mouse embryos showed a weak Gasp1 expression in the formed somites at 10.5 dpc and in limb buds from embryonic E10.0 to E12.5. Similar results were obtained for zebrafish embryos. We propose a synthetic view showing possible interactions between GASP1 and myostatin and highlighting the role of the second kunitz domain in preventing myostatin proteolysis. PMID:22937083

  7. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid

    PubMed Central

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-01-01

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112

  8. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites

    PubMed Central

    Naito, Yuki; Hino, Kimihiro; Bono, Hidemasa; Ui-Tei, Kumiko

    2015-01-01

    Summary: CRISPRdirect is a simple and functional web server for selecting rational CRISPR/Cas targets from an input sequence. The CRISPR/Cas system is a promising technique for genome engineering which allows target-specific cleavage of genomic DNA guided by Cas9 nuclease in complex with a guide RNA (gRNA), that complementarily binds to a ∼20 nt targeted sequence. The target sequence requirements are twofold. First, the 5′-NGG protospacer adjacent motif (PAM) sequence must be located adjacent to the target sequence. Second, the target sequence should be specific within the entire genome in order to avoid off-target editing. CRISPRdirect enables users to easily select rational target sequences with minimized off-target sites by performing exhaustive searches against genomic sequences. The server currently incorporates the genomic sequences of human, mouse, rat, marmoset, pig, chicken, frog, zebrafish, Ciona, fruit fly, silkworm, Caenorhabditis elegans, Arabidopsis, rice, Sorghum and budding yeast. Availability: Freely available at http://crispr.dbcls.jp/. Contact: y-naito@dbcls.rois.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25414360

  9. Allosteric substrate switching in a voltage-sensing lipid phosphatase.

    PubMed

    Grimm, Sasha S; Isacoff, Ehud Y

    2016-04-01

    Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We found that the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), has not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage-sensing domain (VSD). Using fast fluorescence resonance energy transfer (FRET) reporters of PIPs to monitor enzyme activity and voltage-clamp fluorometry to monitor conformational changes in the VSD, we found that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage-sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This two-step allosteric control over a dual-specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility, endocytosis and exocytosis. PMID:26878552

  10. Fouling-release and chemical activity effects of a siloxane-based material on tunicates.

    PubMed

    Filip, Natalia; Pustam, Amanda; Ells, Veronica; Grosicki, Kathleen M T; Yang, Jin; Oguejiofor, Ikenna; Bishop, Cory D; DeMont, M Edwin; Smith-Palmer, Truis; Wyeth, Russell C

    2016-05-01

    The antifouling performance of a siloxane-based elastomeric impression material (EIM) was compared to that of two silicone fouling-release coatings, Intersleek 757 and RTV-11. In field immersion trials, the EIM caused the greatest reduction in fouling by the solitary tunicate Ciona intestinalis and caused the longest delay in the progression of fouling by two species of colonial tunicate. However, in pseudobarnacle adhesion tests, the EIM had higher attachment strengths. Further laboratory analyses showed that the EIM leached alkylphenol ethoxylates (APEs) that were toxic to C. intestinalis larvae. The EIM thus showed the longest duration of chemical activity measured to date for a siloxane-based coating (4 months), supporting investigations of fouling-release coatings that release targeted biocides. However, due to potential widespread effects of APEs, the current EIM formulation should not be considered as an environmentally-safe antifoulant. Thus, the data also emphasize consideration of both immediate and long-term effects of potentially toxic constituents released from fouling-release coatings. PMID:26986763

  11. Assembly and positioning of actomyosin rings by contractility and planar cell polarity.

    PubMed

    Sehring, Ivonne M; Recho, Pierre; Denker, Elsa; Kourakis, Matthew; Mathiesen, Birthe; Hannezo, Edouard; Dong, Bo; Jiang, Di

    2015-01-01

    The actomyosin cytoskeleton is a primary force-generating mechanism in morphogenesis, thus a robust spatial control of cytoskeletal positioning is essential. In this report, we demonstrate that actomyosin contractility and planar cell polarity (PCP) interact in post-mitotic Ciona notochord cells to self-assemble and reposition actomyosin rings, which play an essential role for cell elongation. Intriguingly, rings always form at the cells' anterior edge before migrating towards the center as contractility increases, reflecting a novel dynamical property of the cortex. Our drug and genetic manipulations uncover a tug-of-war between contractility, which localizes cortical flows toward the equator and PCP, which tries to reposition them. We develop a simple model of the physical forces underlying this tug-of-war, which quantitatively reproduces our results. We thus propose a quantitative framework for dissecting the relative contribution of contractility and PCP to the self-assembly and repositioning of cytoskeletal structures, which should be applicable to other morphogenetic events. PMID:26486861

  12. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions.

    PubMed

    Sung, Uhna; Sepehri-Rad, Masoud; Piao, Hong Hua; Jin, Lei; Hughes, Thomas; Cohen, Lawrence B; Baker, Bradley J

    2015-01-01

    FRET (Förster Resonance Energy Transfer)-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP) voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different "Nabi1" constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms) and signal decay (~3 ms). We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP) and mRuby2 (acceptor FP) to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz. PMID:26587834

  13. Epibenthic colonization of concrete and steel pilings in a cold-temperate embayment: a field experiment

    NASA Astrophysics Data System (ADS)

    Andersson, Mathias H.; Berggren, Matz; Wilhelmsson, Dan; Öhman, Marcus C.

    2009-09-01

    With large-scale development of offshore wind farms, vertical structures are becoming more common in open water areas. To examine how vertical structures of different materials may be colonized by epibenthic organisms, an experiment was carried out using steel and concrete pilings constructed to resemble those commonly used in wind farm constructions as well as in bridges, jetties and oil platforms. The early recruitment and succession of the epibenthic communities were sampled once a month for the first 5 months and then again after 1 year. Further, the fish assemblages associated with the pillars were sampled and compared to natural areas. The main epibenthic species groups, in terms of coverage, differed between the two materials at five out of six sampling occasions. Dominant organisms on steel pillars were the barnacle Balanus improvisus, the calcareous tubeworm Pomatoceros triqueter and the tunicate Ciona intestinalis. On the concrete pillars, the hydroid Laomedea sp. and the tunicates Corella parallelogramma and Ascidiella spp. dominated. However, there was no different in coverage at different heights on the pillars or in biomass and species abundance at different directions (north-east or south-west) 5 months after submergence. Fish showed overall higher abundances and species numbers on the pillars (but no difference between steel and concrete) compared to the surrounding soft bottom habitats but not compared to natural vertical rock walls. Two species were attracted to the pillars, indicating a reef effect; Gobiusculus flavescens and Ctenolabrus rupestris. The bottom-dwelling gobies, Pomatoschistus spp., did not show such preferences.

  14. Quantifying Mosaic Development: Towards an Evo-Devo Postmodern Synthesis of the Evolution of Development via Differentiation Trees of Embryos.

    PubMed

    Alicea, Bradly; Gordon, Richard

    2016-01-01

    Embryonic development proceeds through a series of differentiation events. The mosaic version of this process (binary cell divisions) can be analyzed by comparing early development of Ciona intestinalis and Caenorhabditis elegans. To do this, we reorganize lineage trees into differentiation trees using the graph theory ordering of relative cell volume. Lineage and differentiation trees provide us with means to classify each cell using binary codes. Extracting data characterizing lineage tree position, cell volume, and nucleus position for each cell during early embryogenesis, we conduct several statistical analyses, both within and between taxa. We compare both cell volume distributions and cell volume across developmental time within and between single species and assess differences between lineage tree and differentiation tree orderings. This enhances our understanding of the differentiation events in a model of pure mosaic embryogenesis and its relationship to evolutionary conservation. We also contribute several new techniques for assessing both differences between lineage trees and differentiation trees, and differences between differentiation trees of different species. The results suggest that at the level of differentiation trees, there are broad similarities between distantly related mosaic embryos that might be essential to understanding evolutionary change and phylogeny reconstruction. Differentiation trees may therefore provide a basis for an Evo-Devo Postmodern Synthesis. PMID:27548240

  15. Syntax compensates for poor binding sites to encode tissue specificity of developmental enhancers.

    PubMed

    Farley, Emma K; Olson, Katrina M; Zhang, Wei; Rokhsar, Daniel S; Levine, Michael S

    2016-06-01

    Transcriptional enhancers are short segments of DNA that switch genes on and off in response to a variety of intrinsic and extrinsic signals. Despite the discovery of the first enhancer more than 30 y ago, the relationship between primary DNA sequence and enhancer activity remains obscure. In particular, the importance of "syntax" (the order, orientation, and spacing of binding sites) is unclear. A high-throughput screen identified synthetic notochord enhancers that are activated by the combination of ZicL and ETS transcription factors in Ciona embryos. Manipulation of these enhancers elucidated a "regulatory code" of sequence and syntax features for notochord-specific expression. This code enabled in silico discovery of bona fide notochord enhancers, including those containing low-affinity binding sites that would be excluded by standard motif identification methods. One of the newly identified enhancers maps upstream of the known enhancer that regulates Brachyury (Ci-Bra), a key determinant of notochord specification. This newly identified Ci-Bra shadow enhancer contains binding sites with very low affinity, but optimal syntax, and therefore mediates surprisingly strong expression in the notochord. Weak binding sites are compensated by optimal syntax, whereas enhancers containing high-affinity binding affinities possess suboptimal syntax. We suggest this balance has obscured the importance of regulatory syntax, as noncanonical binding motifs are typically disregarded by enhancer detection methods. As a result, enhancers with low binding affinities but optimal syntax may be a vastly underappreciated feature of the regulatory genome. PMID:27155014

  16. The evolution and comparative neurobiology of endocannabinoid signalling

    PubMed Central

    Elphick, Maurice R.

    2012-01-01

    CB1- and CB2-type cannabinoid receptors mediate effects of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide in mammals. In canonical endocannabinoid-mediated synaptic plasticity, 2-AG is generated postsynaptically by diacylglycerol lipase alpha and acts via presynaptic CB1-type cannabinoid receptors to inhibit neurotransmitter release. Electrophysiological studies on lampreys indicate that this retrograde signalling mechanism occurs throughout the vertebrates, whereas system-level studies point to conserved roles for endocannabinoid signalling in neural mechanisms of learning and control of locomotor activity and feeding. CB1/CB2-type receptors originated in a common ancestor of extant chordates, and in the sea squirt Ciona intestinalis a CB1/CB2-type receptor is targeted to axons, indicative of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. Although CB1/CB2-type receptors are unique to chordates, enzymes involved in biosynthesis/inactivation of endocannabinoids occur throughout the animal kingdom. Accordingly, non-CB1/CB2-mediated mechanisms of endocannabinoid signalling have been postulated. For example, there is evidence that 2-AG mediates retrograde signalling at synapses in the nervous system of the leech Hirudo medicinalis by activating presynaptic transient receptor potential vanilloid-type ion channels. Thus, postsynaptic synthesis of 2-AG or anandamide may be a phylogenetically widespread phenomenon, and a variety of proteins may have evolved as presynaptic (or postsynaptic) receptors for endocannabinoids. PMID:23108540

  17. Larval rearing, metamorphosis, growth and reproduction of the eolid nudibranch hermissenda crassicornis (eschscholtz, 1831) (gastropoda: opisthobranchia).

    PubMed

    Harrigan, J F; Alkon, D L

    1978-06-01

    1. Hermissenda crassicornis is a subannual nudibranch species that reproduces year-round. 2. There is a significant positive relationship between adult weight, diameter of the egg mass, estimated number of eggs per egg mass, and average number of eggs per capsule. 3. There is a planktonic veliger stage of 34 days minimum at 13 degrees -15 degrees C. 4. Larvae metamorphose on at least three species of hydroids. 5. To develop in reasonable numbers to a state competent to metamorphose veligers require a diet that includes phytoplankton of larger cell size (10-11 microm) than the commonly used Isochrysis and Monochrysis (5 microm). 6. Although Hermissenda feeds on a wide variety of sessile invertebrate species in the ocean, a diet of tunicate alone (Ciona intestinalis) promotes good growth and survival in the laboratory. 7. Egg mass deposition is initiated only after first copulation, except in the last month of life, and continues from about one-month post-metamorphosis to death, at about four months post-metamorphosis. Generation time (egg-to-egg) may be as short as 2.5 months. 8. A laboratory strain of Hermissenda is being established to provide animals of known history for research on the neural correlates of behavior. Animals, at least initially, are being selected for fast growth rate.

  18. Quantifying Mosaic Development: Towards an Evo-Devo Postmodern Synthesis of the Evolution of Development via Differentiation Trees of Embryos.

    PubMed

    Alicea, Bradly; Gordon, Richard

    2016-08-18

    Embryonic development proceeds through a series of differentiation events. The mosaic version of this process (binary cell divisions) can be analyzed by comparing early development of Ciona intestinalis and Caenorhabditis elegans. To do this, we reorganize lineage trees into differentiation trees using the graph theory ordering of relative cell volume. Lineage and differentiation trees provide us with means to classify each cell using binary codes. Extracting data characterizing lineage tree position, cell volume, and nucleus position for each cell during early embryogenesis, we conduct several statistical analyses, both within and between taxa. We compare both cell volume distributions and cell volume across developmental time within and between single species and assess differences between lineage tree and differentiation tree orderings. This enhances our understanding of the differentiation events in a model of pure mosaic embryogenesis and its relationship to evolutionary conservation. We also contribute several new techniques for assessing both differences between lineage trees and differentiation trees, and differences between differentiation trees of different species. The results suggest that at the level of differentiation trees, there are broad similarities between distantly related mosaic embryos that might be essential to understanding evolutionary change and phylogeny reconstruction. Differentiation trees may therefore provide a basis for an Evo-Devo Postmodern Synthesis.

  19. Branchial cilia and sperm flagella recruit distinct axonemal components.

    PubMed

    Konno, Alu; Shiba, Kogiku; Cai, Chunhua; Inaba, Kazuo

    2015-01-01

    Eukaryotic cilia and flagella have highly conserved 9 + 2 structures. They are functionally diverged to play cell-type-specific roles even in a multicellular organism. Although their structural components are therefore believed to be common, few studies have investigated the molecular diversity of the protein components of the cilia and flagella in a single organism. Here we carried out a proteomic analysis and compared protein components between branchial cilia and sperm flagella in a marine invertebrate chordate, Ciona intestinalis. Distinct feature of protein recruitment in branchial cilia and sperm flagella has been clarified; (1) Isoforms of α- and β-tubulins as well as those of actins are distinctly used in branchial cilia or sperm flagella. (2) Structural components, such as dynein docking complex, tektins and an outer dense fiber protein, are used differently by the cilia and flagella. (3) Sperm flagella are specialized for the cAMP- and Ca2+-dependent regulation of outer arm dynein and for energy metabolism by glycolytic enzymes. Our present study clearly demonstrates that flagellar or ciliary proteins are properly recruited according to their function and stability, despite their apparent structural resemblance and conservation.

  20. The carboxylesterase/cholinesterase gene family in invertebrate deuterostomes.

    PubMed

    Johnson, Glynis; Moore, Samuel W

    2012-06-01

    Carboxylesterase/cholinesterase family members are responsible for controlling the nerve impulse, detoxification and various developmental functions, and are a major target of pesticides and chemical warfare agents. Comparative structural analysis of these enzymes is thus important. The invertebrate deuterostomes (phyla Echinodermata and Hemichordata and subphyla Urochordata and Cephalochordata) lie in the transition zone between invertebrates and vertebrates, and are thus of interest to the study of evolution. Here we have investigated the carboxylesterase/cholinesterase gene family in the sequenced genomes of Strongylocentrotus purpuratus (Echinodermata), Saccoglossus kowalevskii (Hemichordata), Ciona intestinalis (Urochordata) and Branchiostoma floridae (Cephalochordata), using sequence analysis of the catalytic apparatus and oligomerisation domains, and phylogenetic analysis. All four genomes show blurring of structural boundaries between cholinesterases and carboxylesterases, with many intermediate enzymes. Non-enzymatic proteins are well represented. The Saccoglossus and Branchiostoma genomes show evidence of extensive gene duplication and retention. There is also evidence of domain shuffling, resulting in multidomain proteins consisting either of multiple carboxylesterase domains, or of carboxylesterase/cholinesterase domains linked to other domains, including RING finger, chitin-binding, immunoglobulin, fibronectin type 3, CUB, cysteine-rich-Frizzled, caspase activation and 7tm-1, amongst others. Such gene duplication and domain shuffling in the carboxylesterase/cholinesterase family appears to be unique to the invertebrate deuterostomes, and we hypothesise that these factors may have contributed to the evolution of the morphological complexity, particularly of the nervous system and neural crest, of the vertebrates.

  1. Probing α-3(10) transitions in a voltage-sensing S4 helix.

    PubMed

    Kubota, Tomoya; Lacroix, Jérôme J; Bezanilla, Francisco; Correa, Ana M

    2014-09-01

    The S4 helix of voltage sensor domains (VSDs) transfers its gating charges across the membrane electrical field in response to changes of the membrane potential. Recent studies suggest that this process may occur via the helical conversion of the entire S4 between α and 310 conformations. Here, using LRET and FRET, we tested this hypothesis by measuring dynamic changes in the transmembrane length of S4 from engineered VSDs expressed in Xenopus oocytes. Our results suggest that the native S4 from the Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP) does not exhibit extended and long-lived 310 conformations and remains mostly α-helical. Although the S4 of NavAb displays a fully extended 310 conformation in x-ray structures, its transplantation in the Ci-VSP VSD scaffold yielded similar results as the native Ci-VSP S4. Taken together, our study does not support the presence of long-lived extended α-to-310 helical conversions of the S4 in Ci-VSP associated with voltage activation.

  2. Anion translocation through an Slc26 transporter mediates lumen expansion during tubulogenesis

    PubMed Central

    Deng, Wei; Nies, Florian; Feuer, Anja; Bočina, Ivana; Oliver, Dominik; Jiang, Di

    2013-01-01

    Lumen formation is a critical event in biological tube formation, yet its molecular mechanisms remain poorly understood. Specifically, how lumen expansion is coordinated with other processes of tubulogenesis is not well known, and the role of membrane transporters in tubulogenesis during development has not been adequately addressed. Here we identify a solute carrier 26 (Slc26) family protein as an essential regulator of tubulogenesis using the notochord of the invertebrate chordate Ciona intestinalis as a model. Ci-Slc26aα is indispensable for lumen formation and expansion, but not for apical/luminal membrane formation and lumen connection. Ci-Slc26aα acts as an anion transporter, mediating the electrogenic exchange of sulfate or oxalate for chloride or bicarbonate and electroneutral chloride:bicarbonate exchange. Mutant rescue assays show that this transport activity is essential for Ci-Slc26aα’s in vivo function. Our work reveals the consequences and relationships of several key processes in lumen formation, and establishes an in vivo assay for studying the molecular basis of the transport properties of SLC26 family transporters and their related diseases. PMID:23980138

  3. Plant vegetative and animal cytoplasmic actins share functional competence for spatial development with protists.

    PubMed

    Kandasamy, Muthugapatti K; McKinney, Elizabeth C; Roy, Eileen; Meagher, Richard B

    2012-05-01

    Actin is an essential multifunctional protein encoded by two distinct ancient classes of genes in animals (cytoplasmic and muscle) and plants (vegetative and reproductive). The prevailing view is that each class of actin variants is functionally distinct. However, we propose that the vegetative plant and cytoplasmic animal variants have conserved functional competence for spatial development inherited from an ancestral protist actin sequence. To test this idea, we ectopically expressed animal and protist actins in Arabidopsis thaliana double vegetative actin mutants that are dramatically altered in cell and organ morphologies. We found that expression of cytoplasmic actins from humans and even a highly divergent invertebrate Ciona intestinalis qualitatively and quantitatively suppressed the root cell polarity and organ defects of act8 act7 mutants and moderately suppressed the root-hairless phenotype of act2 act8 mutants. By contrast, human muscle actins were unable to support prominently any aspect of plant development. Furthermore, actins from three protists representing Choanozoa, Archamoeba, and green algae efficiently suppressed all the phenotypes of both the plant mutants. Remarkably, these data imply that actin's competence to carry out a complex suite of processes essential for multicellular development was already fully developed in single-celled protists and evolved nonprogressively from protists to plants and animals.

  4. Ligand-Bound GeneSwitch Causes Developmental Aberrations in Drosophila that Are Alleviated by the Alternative Oxidase.

    PubMed

    Andjelković, Ana; Kemppainen, Kia K; Jacobs, Howard T

    2016-01-01

    Culture of Drosophila expressing the steroid-dependent GeneSwitch transcriptional activator under the control of the ubiquitous α-tubulin promoter was found to produce extensive pupal lethality, as well as a range of dysmorphic adult phenotypes, in the presence of high concentrations of the inducing drug RU486. Prominent among these was cleft thorax, seen previously in flies bearing mutant alleles of the nuclear receptor Ultraspiracle and many other mutants, as well as notched wings, leg malformations, and bristle abnormalities. Neither the α-tubulin-GeneSwitch driver nor the inducing drug on their own produced any of these effects. A second GeneSwitch driver, under the control of the daughterless promoter, which gave much lower and more tissue-restricted transgene expression, exhibited only mild bristle abnormalities in the presence of high levels of RU486. Coexpression of the alternative oxidase (AOX) from Ciona intestinalis produced a substantial shift in the developmental outcome toward a wild-type phenotype, which was dependent on the AOX expression level. Neither an enzymatically inactivated variant of AOX, nor GFP, or the alternative NADH dehydrogenase Ndi1 from yeast gave any such rescue. Users of the GeneSwitch system should be aware of the potential confounding effects of its application in developmental studies. PMID:27412986

  5. Quantifying Mosaic Development: Towards an Evo-Devo Postmodern Synthesis of the Evolution of Development via Differentiation Trees of Embryos

    PubMed Central

    Alicea, Bradly; Gordon, Richard

    2016-01-01

    Embryonic development proceeds through a series of differentiation events. The mosaic version of this process (binary cell divisions) can be analyzed by comparing early development of Ciona intestinalis and Caenorhabditis elegans. To do this, we reorganize lineage trees into differentiation trees using the graph theory ordering of relative cell volume. Lineage and differentiation trees provide us with means to classify each cell using binary codes. Extracting data characterizing lineage tree position, cell volume, and nucleus position for each cell during early embryogenesis, we conduct several statistical analyses, both within and between taxa. We compare both cell volume distributions and cell volume across developmental time within and between single species and assess differences between lineage tree and differentiation tree orderings. This enhances our understanding of the differentiation events in a model of pure mosaic embryogenesis and its relationship to evolutionary conservation. We also contribute several new techniques for assessing both differences between lineage trees and differentiation trees, and differences between differentiation trees of different species. The results suggest that at the level of differentiation trees, there are broad similarities between distantly related mosaic embryos that might be essential to understanding evolutionary change and phylogeny reconstruction. Differentiation trees may therefore provide a basis for an Evo-Devo Postmodern Synthesis. PMID:27548240

  6. Expression of the alternative oxidase mitigates beta-amyloid production and toxicity in model systems.

    PubMed

    El-Khoury, Riyad; Kaulio, Eveliina; Lassila, Katariina A; Crowther, Damian C; Jacobs, Howard T; Rustin, Pierre

    2016-07-01

    Mitochondrial dysfunction has been widely associated with the pathology of Alzheimer's disease, but there is no consensus on whether it is a cause or consequence of disease, nor on the precise mechanism(s). We addressed these issues by testing the effects of expressing the alternative oxidase AOX from Ciona intestinalis, in different models of AD pathology. AOX can restore respiratory electron flow when the cytochrome segment of the mitochondrial respiratory chain is inhibited, supporting ATP synthesis, maintaining cellular redox homeostasis and mitigating excess superoxide production at respiratory complexes I and III. In human HEK293-derived cells, AOX expression decreased the production of beta-amyloid peptide resulting from antimycin inhibition of respiratory complex III. Because hydrogen peroxide was neither a direct product nor substrate of AOX, the ability of AOX to mimic antioxidants in this assay must be indirect. In addition, AOX expression was able to partially alleviate the short lifespan of Drosophila models neuronally expressing human beta-amyloid peptides, whilst abrogating the induction of markers of oxidative stress. Our findings support the idea of respiratory chain dysfunction and excess ROS production as both an early step and as a pathologically meaningful target in Alzheimer's disease pathogenesis, supporting the concept of a mitochondrial vicious cycle underlying the disease.

  7. Evolution of the Cdk-activator Speedy/RINGO in vertebrates.

    PubMed

    Chauhan, Sangeeta; Zheng, Xinde; Tan, Yue Ying; Tay, Boon-Hui; Lim, Shuhui; Venkatesh, Byrappa; Kaldis, Philipp

    2012-11-01

    Successful completion of the cell cycle relies on the precise activation and inactivation of cyclin-dependent kinases (Cdks) whose activity is mainly regulated by binding to cyclins. Recently, a new family of Cdk regulators termed Speedy/RINGO has been discovered, which can bind and activate Cdks but shares no apparent amino acid sequence homology with cyclins. All Speedy proteins share a conserved domain of approximately 140 amino acids called "Speedy Box", which is essential for Cdk binding. Speedy/RINGO proteins display an important role in oocyte maturation in Xenopus. Interestingly, a common feature of all Speedy genes is their predominant expression in testis suggesting that meiotic functions may be the most important physiological feature of Speedy genes. Speedy homologs have been reported in mammals and can be traced back to the most primitive clade of chordates (Ciona intestinalis). Here, we investigated the evolution of the Speedy genes and have identified a number of new Speedy/RINGO proteins. Through extensive analysis of numerous species, we discovered diverse evolutionary histories: the number of Speedy genes varies considerably among species, with evidence of substantial gains and losses. Despite the interspecies variation, Speedy is conserved among most species examined. Our results provide a complete picture of the Speedy gene family and its evolution. PMID:22763696

  8. The evolution and comparative neurobiology of endocannabinoid signalling.

    PubMed

    Elphick, Maurice R

    2012-12-01

    CB(1)- and CB(2)-type cannabinoid receptors mediate effects of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide in mammals. In canonical endocannabinoid-mediated synaptic plasticity, 2-AG is generated postsynaptically by diacylglycerol lipase alpha and acts via presynaptic CB(1)-type cannabinoid receptors to inhibit neurotransmitter release. Electrophysiological studies on lampreys indicate that this retrograde signalling mechanism occurs throughout the vertebrates, whereas system-level studies point to conserved roles for endocannabinoid signalling in neural mechanisms of learning and control of locomotor activity and feeding. CB(1)/CB(2)-type receptors originated in a common ancestor of extant chordates, and in the sea squirt Ciona intestinalis a CB(1)/CB(2)-type receptor is targeted to axons, indicative of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. Although CB(1)/CB(2)-type receptors are unique to chordates, enzymes involved in biosynthesis/inactivation of endocannabinoids occur throughout the animal kingdom. Accordingly, non-CB(1)/CB(2)-mediated mechanisms of endocannabinoid signalling have been postulated. For example, there is evidence that 2-AG mediates retrograde signalling at synapses in the nervous system of the leech Hirudo medicinalis by activating presynaptic transient receptor potential vanilloid-type ion channels. Thus, postsynaptic synthesis of 2-AG or anandamide may be a phylogenetically widespread phenomenon, and a variety of proteins may have evolved as presynaptic (or postsynaptic) receptors for endocannabinoids.

  9. Molecular cloning, characterization and expression analysis of tumor necrosis factor receptor-associated factor 3 (TRAF3) from pearl oyster Pinctada fucata.

    PubMed

    Huang, Xian-De; Liu, Wen-Guang; Guan, Yun-Yan; Shi, Yu; Wang, Qi; Zhao, Mi; Wu, Shan-Zeng; He, Mao-Xian

    2012-09-01

    TRAF3 is a highly versatile regulator that negatively regulates JNK and alternative nuclear factor-κB signalling, but positively controls type I interferon production. To investigate TRAF3 function in innate immune responses among invertebrate especially mollusk, we characterized TRAF3 (PfTRAF3) from pearl oyster Pinctada fucata, one of the most important bivalve mollusks for seawater pearl production. PfTRAF3 cDNA is 2261 bp with an open reading frame of 1623 bp encoding a putative protein of 541 amino acids. The deduced PfTRAF3 contains a RING finger domain, two TRAF domains with zinc finger domains and a conserved C-terminal meprin and TRAF homology (MATH) domain. Comparison and phylogenetic analysis revealed that PfTRAF3 from mollusk shared a higher identity with Ciona intestinalis TRAF3 from urochordata, Branchiostoma belcheri TRAF3 from cephalochordate, and even TRAF3 from vertebrate than with insect homologues. Furthermore, gene expression analyses suggested that PfTRAF3 was involved in the immune response to Vibrio alginolyticus.

  10. Cascading effects of fishing can alter carbon flow through a temperate coastal ecosystem.

    PubMed

    Salomon, Anne K; Shears, Nick T; Langlois, Timothy J; Babcock, Russell C

    2008-12-01

    Mounting evidence suggests that fishing can trigger trophic cascades and alter food web dynamics, yet its effects on ecosystem function remain largely unknown. We used the large-scale experimental framework of four marine reserves, spanning an oceanographic gradient in northeastern New Zealand, to test the extent to which the exploitation of reef predators can alter kelp carbon flux and secondary production. We provide evidence that the reduction of predatory snapper (Pagrus auratus) and lobster (Jasus edwardsii) can lead to an increase in sea urchins (Evechinus chloroticus) and indirect declines in kelp biomass in some locations but not others. Stable carbon isotope ratios (delta13C) of oysters (Crassostrea gigas) and mussels (Perna canaliculus) transplanted in reserve and fished sites within four locations revealed that fishing indirectly reduced the proportion of kelp-derived organic carbon assimilated by filter feeders in two locations where densities of actively grazing sea urchins were 23.7 and 8.3 times higher and kelp biomass was an order of magnitude lower than in non-fished reserve sites. In contrast, in the two locations where fishing had no effect on urchin density or kelp biomass, we detected no effect of fishing on the carbon signature of filter feeders. We show that the effects of fishing on nearshore trophic structure and carbon flux are context-dependent and hinge on large-scale, regional oceanographic factors. Where cascading effects of fishing on kelp biomass were documented, enhanced assimilation of kelp carbon did not result in the magnification of secondary production. Instead, a strong regional gradient in filter feeder growth emerged, best predicted by chlorophyll a. Estimates of kelp contribution to the diet of transplanted consumers averaged 56.9% +/- 6.2% (mean +/- SE) for mussels and 33.8% +/- 7.3% for oysters, suggesting that organic carbon fixed by kelp is an important food source fueling northeastern New Zealand's nearshore food webs

  11. The Foraging Ecology of the Endangered Cape Verde Shearwater, a Sentinel Species for Marine Conservation off West Africa.

    PubMed

    Paiva, Vitor H; Geraldes, Pedro; Rodrigues, Isabel; Melo, Tommy; Melo, José; Ramos, Jaime A

    2015-01-01

    Large Marine Ecosystems such as the Canary Current system off West Africa sustains high abundance of small pelagic prey, which attracts marine predators. Seabirds are top predators often used as biodiversity surrogates and sentinel species of the marine ecosystem health, thus frequently informing marine conservation planning. This study presents the first data on the spatial (GPS-loggers) and trophic (stable isotope analysis) ecology of a tropical seabird-the endangered Cape Verde shearwater Calonectris edwardsii-during both the incubation and the chick-rearing periods of two consecutive years. This information was related with marine environmental predictors (species distribution models), existent areas of conservation concern for seabirds (i.e. marine Important Bird Areas; marine IBAs) and threats to the marine environment in the West African areas heavily used by the shearwaters. There was an apparent inter-annual consistency on the spatial, foraging and trophic ecology of Cape Verde shearwater, but a strong alteration on the foraging strategies of adult breeders among breeding phases (i.e. from incubation to chick-rearing). During incubation, birds mostly targeted a discrete region off West Africa, known by its enhanced productivity profile and thus also highly exploited by international industrial fishery fleets. When chick-rearing, adults exploited the comparatively less productive tropical environment within the islands of Cape Verde, at relatively close distance from their breeding colony. The species enlarged its trophic niche and increased the trophic level of their prey from incubation to chick-rearing, likely to provision their chicks with a more diversified and better quality diet. There was a high overlap between the Cape Verde shearwaters foraging areas with those of European shearwater species that overwinter in this area and known areas of megafauna bycatch off West Africa, but very little overlap with existing Marine Important Bird Areas. Further

  12. Cascading effects of fishing can alter carbon flow through a temperate coastal ecosystem.

    PubMed

    Salomon, Anne K; Shears, Nick T; Langlois, Timothy J; Babcock, Russell C

    2008-12-01

    Mounting evidence suggests that fishing can trigger trophic cascades and alter food web dynamics, yet its effects on ecosystem function remain largely unknown. We used the large-scale experimental framework of four marine reserves, spanning an oceanographic gradient in northeastern New Zealand, to test the extent to which the exploitation of reef predators can alter kelp carbon flux and secondary production. We provide evidence that the reduction of predatory snapper (Pagrus auratus) and lobster (Jasus edwardsii) can lead to an increase in sea urchins (Evechinus chloroticus) and indirect declines in kelp biomass in some locations but not others. Stable carbon isotope ratios (delta13C) of oysters (Crassostrea gigas) and mussels (Perna canaliculus) transplanted in reserve and fished sites within four locations revealed that fishing indirectly reduced the proportion of kelp-derived organic carbon assimilated by filter feeders in two locations where densities of actively grazing sea urchins were 23.7 and 8.3 times higher and kelp biomass was an order of magnitude lower than in non-fished reserve sites. In contrast, in the two locations where fishing had no effect on urchin density or kelp biomass, we detected no effect of fishing on the carbon signature of filter feeders. We show that the effects of fishing on nearshore trophic structure and carbon flux are context-dependent and hinge on large-scale, regional oceanographic factors. Where cascading effects of fishing on kelp biomass were documented, enhanced assimilation of kelp carbon did not result in the magnification of secondary production. Instead, a strong regional gradient in filter feeder growth emerged, best predicted by chlorophyll a. Estimates of kelp contribution to the diet of transplanted consumers averaged 56.9% +/- 6.2% (mean +/- SE) for mussels and 33.8% +/- 7.3% for oysters, suggesting that organic carbon fixed by kelp is an important food source fueling northeastern New Zealand's nearshore food webs

  13. The Foraging Ecology of the Endangered Cape Verde Shearwater, a Sentinel Species for Marine Conservation off West Africa.

    PubMed

    Paiva, Vitor H; Geraldes, Pedro; Rodrigues, Isabel; Melo, Tommy; Melo, José; Ramos, Jaime A

    2015-01-01

    Large Marine Ecosystems such as the Canary Current system off West Africa sustains high abundance of small pelagic prey, which attracts marine predators. Seabirds are top predators often used as biodiversity surrogates and sentinel species of the marine ecosystem health, thus frequently informing marine conservation planning. This study presents the first data on the spatial (GPS-loggers) and trophic (stable isotope analysis) ecology of a tropical seabird-the endangered Cape Verde shearwater Calonectris edwardsii-during both the incubation and the chick-rearing periods of two consecutive years. This information was related with marine environmental predictors (species distribution models), existent areas of conservation concern for seabirds (i.e. marine Important Bird Areas; marine IBAs) and threats to the marine environment in the West African areas heavily used by the shearwaters. There was an apparent inter-annual consistency on the spatial, foraging and trophic ecology of Cape Verde shearwater, but a strong alteration on the foraging strategies of adult breeders among breeding phases (i.e. from incubation to chick-rearing). During incubation, birds mostly targeted a discrete region off West Africa, known by its enhanced productivity profile and thus also highly exploited by international industrial fishery fleets. When chick-rearing, adults exploited the comparatively less productive tropical environment within the islands of Cape Verde, at relatively close distance from their breeding colony. The species enlarged its trophic niche and increased the trophic level of their prey from incubation to chick-rearing, likely to provision their chicks with a more diversified and better quality diet. There was a high overlap between the Cape Verde shearwaters foraging areas with those of European shearwater species that overwinter in this area and known areas of megafauna bycatch off West Africa, but very little overlap with existing Marine Important Bird Areas. Further

  14. Calcium at fertilization and in early development

    PubMed Central

    Whitaker, Michael

    2012-01-01

    Fertilization calcium waves are introduced and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypothesis put forward to explain the generation of the fertilization calcium wave are set out and it is concluded that initiation of the fertilization calcium wave can be most generally explained in inverterbrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signalling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signalling during resumption of meiosis. Changes to the calcium signalling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signalling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed

  15. Internal brooding favours pre-metamorphic chimerism in a non-colonial cnidarian, the sea anemone Urticina felina.

    PubMed

    Mercier, Annie; Sun, Zhao; Hamel, Jean-François

    2011-12-01

    The concept of intraorganismal genetic heterogeneity resulting from allogeneic fusion (i.e. chimerism) has almost exclusively been explored in modular organisms that have the capacity to reproduce asexually, such as colonial ascidians and corals. Apart from medical conditions in mammals, the natural development of chimeras across ontogenetic stages has not been investigated in any unitary organism incapable of asexual propagation. Furthermore, chimerism was mainly studied among gregarious settlers to show that clustering of genetically similar individuals upon settlement promotes the occurrence of multi-chimeras exhibiting greater fitness. The possible occurrence of chimeric embryos and larvae prior to settlement has not received any attention. Here we document for the first time the presence of natural chimeras in brooded embryos and larvae of a unitary cnidarian, the sea anemone Urticina felina. Rates of visible bi- and multi-chimerism of up to 3.13 per cent were measured in the broods of 16 females. Apart from these sectorial chimeras, monitored fusion events also yielded homogeneous chimeric entities (mega-larvae) suggesting that the actual rates of natural chimerism in U. felina are greater than predicted by visual assessment. In support of this assumption, the broods of certain individuals comprised a dominant proportion (to 90%) of inexplicably large embryos and larvae (relative to oocyte size). Findings of fusion and chimerism in a unitary organism add a novel dimension to the framework within which the mechanisms and evolutionary significance of genetic heterogeneity in animal taxa can be explored.

  16. Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages.

    PubMed

    Simmons, T Luke; Coates, R Cameron; Clark, Benjamin R; Engene, Niclas; Gonzalez, David; Esquenazi, Eduardo; Dorrestein, Pieter C; Gerwick, William H

    2008-03-25

    In all probability, natural selection began as ancient marine microorganisms were required to compete for limited resources. These pressures resulted in the evolution of diverse genetically encoded small molecules with a variety of ecological and metabolic roles. Remarkably, many of these same biologically active molecules have potential utility in modern medicine and biomedical research. The most promising of these natural products often derive from organisms richly populated by associated microorganisms (e.g., marine sponges and ascidians), and often there is great uncertainty about which organism in these assemblages is making these intriguing metabolites. To use the molecular machinery responsible for the biosynthesis of potential drug-lead natural products, new tools must be applied to delineate their genetic and enzymatic origins. The aim of this perspective is to highlight both traditional and emerging techniques for the localization of metabolic pathways within complex marine environments. Examples are given from the literature as well as recent proof-of-concept experiments from the authors' laboratories.

  17. Physical association between a novel plasma-membrane structure and centrosome orients cell division

    PubMed Central

    Negishi, Takefumi; Miyazaki, Naoyuki; Murata, Kazuyoshi; Yasuo, Hitoyoshi; Ueno, Naoto

    2016-01-01

    In the last mitotic division of the epidermal lineage in the ascidian embryo, the cells divide stereotypically along the anterior-posterior axis. During interphase, we found that a unique membrane structure invaginates from the posterior to the centre of the cell, in a microtubule-dependent manner. The invagination projects toward centrioles on the apical side of the nucleus and associates with one of them. Further, a cilium forms on the posterior side of the cell and its basal body remains associated with the invagination. A laser ablation experiment suggests that the invagination is under tensile force and promotes the posterior positioning of the centrosome. Finally, we showed that the orientation of the invaginations is coupled with the polarized dynamics of centrosome movements and the orientation of cell division. Based on these findings, we propose a model whereby this novel membrane structure orchestrates centrosome positioning and thus the orientation of cell division axis. DOI: http://dx.doi.org/10.7554/eLife.16550.001 PMID:27502556

  18. Forming a tough shell via an intracellular matrix and cellular junctions in the tail epidermis of Oikopleura dioica (Chordata: Tunicata: Appendicularia)

    NASA Astrophysics Data System (ADS)

    Nakashima, Keisuke; Nishino, Atsuo; Hirose, Euichi

    2011-08-01

    A postanal tail is a major synapomorphy of the phylum Chordata, which is composed of three subphyla: Vertebrata, Cephalochordata, and Tunicata (Urochordata). Among tunicates, appendicularians are the only group that retains the tail in the adult, and the adult tail functions in locomotion and feeding in combination with a cellulose-based house structure. Given the phylogenetic position of tunicates, the appendicularian adult tail may possess ancestral features of the chordate tail. We assess the ultrastructural development of the tail epidermis of the appendicularian Oikopleura dioica. The epidermis of the larval tail is enclosed by the larval envelope, which is a thin sheet similar to the outer tunic layer of ascidian larvae. The epidermis of the adult tail seems to bear no tunic-like cellulosic integuments, and the tail fin is a simple folding of the epidermis. Every epidermal cell, except for the triangular cells at the edge of the tail fin, has a conspicuous matrix layer of fibrous content in the apical cytoplasm without enclosing membranes. The epidermis of the larval tail does not have a fibrous matrix layer, suggesting the production of the layer during larval development and metamorphosis. Zonulae adhaerentes firmly bind the epidermal cells of the adult tail to one another, and the dense microfilaments lining the cell borders constitute a mechanical support for the cell membranes. The intracellular matrix, cell junctions, and cytoskeletons probably make the tail epidermis a tough, flexible shell supporting the active beating of the oikopleuran adult tail.

  19. Ancient deuterostome origins of vertebrate brain signalling centres.

    PubMed

    Pani, Ariel M; Mullarkey, Erin E; Aronowicz, Jochanan; Assimacopoulos, Stavroula; Grove, Elizabeth A; Lowe, Christopher J

    2012-03-14

    Neuroectodermal signalling centres induce and pattern many novel vertebrate brain structures but are absent, or divergent, in invertebrate chordates. This has led to the idea that signalling-centre genetic programs were first assembled in stem vertebrates and potentially drove morphological innovations of the brain. However, this scenario presumes that extant cephalochordates accurately represent ancestral chordate characters, which has not been tested using close chordate outgroups. Here we report that genetic programs homologous to three vertebrate signalling centres-the anterior neural ridge, zona limitans intrathalamica and isthmic organizer-are present in the hemichordate Saccoglossus kowalevskii. Fgf8/17/18 (a single gene homologous to vertebrate Fgf8, Fgf17 and Fgf18), sfrp1/5, hh and wnt1 are expressed in vertebrate-like arrangements in hemichordate ectoderm, and homologous genetic mechanisms regulate ectodermal patterning in both animals. We propose that these genetic programs were components of an unexpectedly complex, ancient genetic regulatory scaffold for deuterostome body patterning that degenerated in amphioxus and ascidians, but was retained to pattern divergent structures in hemichordates and vertebrates.

  20. On a possible evolutionary link of the stomochord of hemichordates to pharyngeal organs of chordates.

    PubMed

    Satoh, Noriyuki; Tagawa, Kunifumi; Lowe, Christopher J; Yu, Jr-Kai; Kawashima, Takeshi; Takahashi, Hiroki; Ogasawara, Michio; Kirschner, Marc; Hisata, Kanako; Su, Yi-Hsien; Gerhart, John

    2014-12-01

    As a group closely related to chordates, hemichordate acorn worms are in a key phylogenic position for addressing hypotheses of chordate origins. The stomochord of acorn worms is an anterior outgrowth of the pharynx endoderm into the proboscis. In 1886 Bateson proposed homology of this organ to the chordate notochord, crowning this animal group "hemichordates." Although this proposal has been debated for over a century, the question still remains unresolved. Here we review recent progress related to this question. First, the developmental mode of the stomochord completely differs from that of the notochord. Second, comparison of expression profiles of genes including Brachyury, a key regulator of notochord formation in chordates, does not support the stomochord/notochord homology. Third, FoxE that is expressed in the stomochord-forming region in acorn worm juveniles is expressed in the club-shaped gland and in the endostyle of amphioxus, in the endostyle of ascidians, and in the thyroid gland of vertebrates. Based on these findings, together with the anterior endodermal location of the stomochord, we propose that the stomochord has evolutionary relatedness to chordate organs deriving from the anterior pharynx rather than to the notochord.

  1. FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii.

    PubMed

    Green, Stephen A; Norris, Rachael P; Terasaki, Mark; Lowe, Christopher J

    2013-03-01

    FGFs act in vertebrate mesoderm induction and also play key roles in early mesoderm formation in ascidians and amphioxus. However, in sea urchins initial characterizations of FGF function do not support a role in early mesoderm induction, making the ancestral roles of FGF signaling and mechanisms of mesoderm specification in deuterostomes unclear. In order to better characterize the evolution of mesoderm formation, we have examined the role of FGF signaling during mesoderm development in Saccoglossus kowalevskii, an experimentally tractable representative of hemichordates. We report the expression of an FGF ligand, fgf8/17/18, in ectoderm overlying sites of mesoderm specification within the archenteron endomesoderm. Embryological experiments demonstrate that mesoderm induction in the archenteron requires contact with ectoderm, and loss-of-function experiments indicate that both FGF ligand and receptor are necessary for mesoderm specification. fgf8/17/18 gain-of-function experiments establish that FGF8/17/18 is sufficient to induce mesoderm in adjacent endomesoderm. These experiments suggest that FGF signaling is necessary from the earliest stages of mesoderm specification and is required for all mesoderm development. Furthermore, they suggest that the archenteron is competent to form mesoderm or endoderm, and that FGF signaling from the ectoderm defines the location and amount of mesoderm. When considered in a comparative context, these data support a phylogenetically broad requirement for FGF8/17/18 signaling in mesoderm specification and suggest that FGF signaling played an ancestral role in deuterostome mesoderm formation.

  2. Forming a tough shell via an intracellular matrix and cellular junctions in the tail epidermis of Oikopleura dioica (Chordata: Tunicata: Appendicularia).

    PubMed

    Nakashima, Keisuke; Nishino, Atsuo; Hirose, Euichi

    2011-08-01

    A postanal tail is a major synapomorphy of the phylum Chordata, which is composed of three subphyla: Vertebrata, Cephalochordata, and Tunicata (Urochordata). Among tunicates, appendicularians are the only group that retains the tail in the adult, and the adult tail functions in locomotion and feeding in combination with a cellulose-based house structure. Given the phylogenetic position of tunicates, the appendicularian adult tail may possess ancestral features of the chordate tail. We assess the ultrastructural development of the tail epidermis of the appendicularian Oikopleura dioica. The epidermis of the larval tail is enclosed by the larval envelope, which is a thin sheet similar to the outer tunic layer of ascidian larvae. The epidermis of the adult tail seems to bear no tunic-like cellulosic integuments, and the tail fin is a simple folding of the epidermis. Every epidermal cell, except for the triangular cells at the edge of the tail fin, has a conspicuous matrix layer of fibrous content in the apical cytoplasm without enclosing membranes. The epidermis of the larval tail does not have a fibrous matrix layer, suggesting the production of the layer during larval development and metamorphosis. Zonulae adhaerentes firmly bind the epidermal cells of the adult tail to one another, and the dense microfilaments lining the cell borders constitute a mechanical support for the cell membranes. The intracellular matrix, cell junctions, and cytoskeletons probably make the tail epidermis a tough, flexible shell supporting the active beating of the oikopleuran adult tail.

  3. Fouling-resistant surfaces of tropical sea stars.

    PubMed

    Guenther, Jana; Walker-Smith, Genefor; Warén, Anders; De Nys, Rocky

    2007-01-01

    Qualitative evidence suggests sea stars are free of fouling organisms; however the presence of fouling-resistant surfaces of sea stars has not previously been documented. Field surveys were conducted in northern Queensland, Australia, during the wet and dry seasons and several tropical sea star species were examined for surface-associated micro- and macro-organisms. Mean bacterial abundances on seven sea star species were approximately 10(4) to 10(5) cells cm(-2) during both seasons. There were no consistent trends in bacterial abundances with season, species and aboral positions on sea star arms. No common generalist fouling organisms, such as algae, barnacles, serpulid polychaetes, bryozoans and ascidians, were found on any specimens of 12 sea star species. However, low numbers of parasitic and commensal macro-organisms were found on six sea star species. The gastropods Parvioris fulvescens, Asterolamia hians, Thyca (Granulithyca) nardoafrianti and Thyca crystallina were found exclusively on the sea stars Archaster typicus, Astropecten indicus, Nardoa pauciforis and Linckia laevigata, respectively. The shrimp Periclimenes soror was only found on Acanthaster planci, and the polychaete Ophiodromus sp. on A. typicus. The copepods Stellicola illgi and Paramolgus sp. were only found on L. laevigata and Echinaster luzonicus, respectively. As no common generalist fouling organisms were discovered, sea stars offer an excellent model to investigate the mechanisms driving fouling-resistant surfaces and the selective settlement of specialist invertebrates.

  4. Megalodicopia hians in the Monterey submarine canyon: Distribution, larval development, and culture

    NASA Astrophysics Data System (ADS)

    Havenhand, Jon. N.; Matsumoto, George I.; Seidel, Ed

    2006-02-01

    The exclusively deep-sea ascidian family Octacnemidae comprises several genera in which the oral siphon has hypertrophied to form two large lips which create an "oral hood" capable of capturing motile prey. Megalodicopia hians is typical of this carnivorous family and has been reported to prey upon small epibenthic crustaceans. Distribution of M. hians in the Monterey Canyon system (36°45'N, 122°00'W) (California) was determined with remotely operated vehicles. M. hians was found sparsely to depths of at least 3800 m throughout the canyon; however, abundance was greatest within the oxygen-minimum zone (400-800 m). Eggs, sperm, and recently fertilized embryos were obtained repeatedly from adults returned to the laboratory in vivo, indicating that this species free-spawns routinely. Overall egg diameter (ovum plus chorion, plus follicle cells) was 175-190 μm—considerably smaller than previously reported for this species. Embryonic development at temperature and oxygen concentrations equivalent to the oxygen-minimum zone was 2-4 d and, embryos gave rise to typical phlebobranch "simple" tadpole larvae. Larval period was extremely variable, and settlement/metamorphosis occurred up to 3 months post-hatching. These results are discussed within the context of settlement-site selection and fertilization ecology of the species.

  5. Unique crystallographic pattern in the macro to atomic structure of Herdmania momus vateritic spicules.

    PubMed

    Kabalah-Amitai, Lee; Mayzel, Boaz; Zaslansky, Paul; Kauffmann, Yaron; Clotens, Peter; Pokroy, Boaz

    2013-08-01

    Biogenic vaterite is extremely rare. The only known example of a completely vateritic mineralized structure is the spicule of the solitary ascidian, Herdmania momus. In characterizing the structure of these spicules, using state-of-the-art techniques such as synchrotron X-ray diffraction and synchrotron micro- and nanotomography, we observed a continuous structural pattern from the macro down to the micro, nano, and atomic scales. We show that the spicules demonstrate a unique architecture composed of micron-sized, hexagonally faceted thorns organized in partial spirals along the cylinder-like polycrystalline body of the spicule, and tilted from it at an angle of about 26°. This morphological orientation coincides with the crystallographic orientation relationship between each thorn and the polycrystals within the spicule. Hence the entire spicule grows along the [011] direction of vaterite while the individual thorns grow along the [001] direction. This, together with the presence of both inter- and intra-crystalline organic phases, beautifully displays the organism's ability to achieve perfect control of mineralization biologically while employing an unstable polymorph of calcium carbonate: vaterite.

  6. Characterization of a hemichordate fork head/HNF-3 gene expression.

    PubMed

    Taguchi, S; Tagawa, K; Humphreys, T; Nishino, A; Satoh, N; Harada, Y

    2000-01-01

    Based on anatomical and developmental similarities, hemichordates are thought to be most closely related to chordates. However, so far very few developmental genes have been characterized from hemichordates. To gain molecular insight into the developmental mechanisms involved in the origin and evolution of chordates, we investigated the expression of a fork head/HNF-3 (PfHNF3) gene in the acorn worm embryo. Chordate fork head genes are implicated in the formation of endoderm, notochord and floor plate. We found that a PfHNF3 transcript was first detected at the early blastula stage; the signal of in situ hybridization was found in the vegetal plate cells, invaginating endoderm and then in the archenteron. By the late gastrula and into the early tornaria larva stages, an intense signal remained in the anterior region of the archenteron, while the expression in the other regions of archenteron decreased. The intense signal was retained in the pharynx of the tornaria larva. A comparison of the pattern of PfHNF3 with that of HNF-3 genes of sea urchin, ascidian, amphioxus and vertebrate suggests a possible acquisition of new functions of the gene during deuterostome evolution.

  7. Structure of a photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system

    PubMed Central

    Bibby, Thomas S.; Nield, Jon; Chen, Min; Larkum, Anthony W. D.; Barber, James

    2003-01-01

    Prochlorophytes are a class of cyanobacteria that do not use phycobiliproteins as light-harvesting systems, but contain chlorophyll (Chl) a/b-binding Pcb proteins. Recently it was shown that Pcb proteins form an 18-subunit light-harvesting antenna ring around the photosystem I (PSI) trimeric reaction center complex of the prochlorophyte Prochlorococcus marinus SS120. Here we have investigated whether the symbiotic prochlorophyte Prochloron didemni also contains the same supermolecular complex. Using cells isolated directly from its ascidian host, we found no evidence for the presence of the Pcb–PSI supercomplex. Instead we have identified and characterized a supercomplex composed of photosystem II (PSII) and Pcb proteins. We show that 10-Pcb subunits associate with the PSII dimeric reaction center core to form a giant complex having an estimated Mr of 1,500 kDa with dimensions of 210 × 290 Å. Five-Pcb subunits flank each long side of the dimer and assuming each binds 13 Chl molecules, increase the antenna size of PSII by ≈200%. Fluorescence emission studies indicate that energy transfer occurs efficiently from the Pcb antenna. Modeling using the x-ray structure of cyanobacterial PSII suggests that energy transfer to the PSII reaction center is via the Chls bound to the CP47 and CP43 proteins. PMID:12837938

  8. The cult of amphioxus in German Darwinism; or, our gelatinous ancestors in Naples' blue and balmy bay.

    PubMed

    Hopwood, Nick

    2015-01-01

    Biologists having rediscovered amphioxus, also known as the lancelet or Branchiostoma, it is time to reassess its place in early Darwinist debates over vertebrate origins. While the advent of the ascidian-amphioxus theory and challenges from various competitors have been, documented, this article offers a richer account of the public appeal of amphioxus as a primitive ancestor. The focus is on how the 'German Darwin' Ernst Haeckel persuaded general magazine and newspaper readers to revere this "flesh of our flesh and blood of our blood", and especially on Das neue Laienbrevier des Haeckelismus (The new lay breviary of Haeckelism) by Moritz Reymond with cartoons by Fritz Steub. From the late 1870s these successful little books of verse introduced the Neapolitan discoveries that made the animal's name and satirized Haeckel's rise as high priest of its cult. One song is reproduced and translated here, with a contemporary "imitation" by the Canadian palaeontologist Edward John Chapman, and extracts from others. Predating the American "It's a long way from amphioxus" by decades, these rhymes dramatize neglected 'species politics' of Darwinism and highlight the roles of humour in negotiating evolution.

  9. Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of retinoid-dependent axial patterning in metazoans.

    PubMed

    Sobreira, Tiago J P; Marlétaz, Ferdinand; Simões-Costa, Marcos; Schechtman, Deborah; Pereira, Alexandre C; Brunet, Frédéric; Sweeney, Sarah; Pani, Ariel; Aronowicz, Jochanan; Lowe, Christopher J; Davidson, Bradley; Laudet, Vincent; Bronner, Marianne; de Oliveira, Paulo S L; Schubert, Michael; Xavier-Neto, José

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification.

  10. First record of massive blooming of benthic diatoms and their association with megabenthic filter feeders on the shallow seafloor of an Antarctic Fjord: Does glacier melting fuel the bloom?

    NASA Astrophysics Data System (ADS)

    Ahn, In-Young; Moon, Hye-Won; Jeon, Misa; Kang, Sung-Ho

    2016-03-01

    We report a conspicuous benthic diatom bloom on an Antarctic fjord shallow seafloor, which has not been reported elsewhere in Antarctica. A thick and massive growth of benthic diatoms was covering or being entangled with a variety of common benthic megafauna such as stalked ascidians, sponges, tubedwelling polychaetes, gastropods, bryozoans, and others. This finding is an outcome of recent investigations on benthic communities in Marian Cove, King George Island, where glacier retreat has been proceeding quickly for the past several decades. Dominance of benthic diatoms during the austral summer has been frequently reported in shallow Antarctic nearshore waters, which in turn indicates their potential as a primary food item for secondary producers living in this harsh environment. However, previous blooming records of the benthic diatoms were primarily based on data from water column samples. We are the first to report observational evidence of shallow seafloor substrates, including the massive blooming of benthic diatoms and their associations with common benthic megafauna in an Antarctic fjord.

  11. Unusual symbiotic cyanobacteria association in the genetically diverse intertidal marine sponge Hymeniacidon perlevis (Demospongiae, Halichondrida).

    PubMed

    Alex, Anoop; Vasconcelos, Vitor; Tamagnini, Paula; Santos, Arlete; Antunes, Agostinho

    2012-01-01

    Cyanobacteria represent one of the most common members of the sponge-associated bacterial community and are abundant symbionts of coral reef ecosystems. In this study we used Transmission Electron Microscopy (TEM) and molecular techniques (16S rRNA gene marker) to characterize the spatial distribution of cyanobionts in the widely dispersed marine intertidal sponge Hymeniacidon perlevis along the coast of Portugal (Atlantic Ocean). We described new sponge associated cyanobacterial morphotypes (Xenococcus-like) and we further observed Acaryochloris sp. as a sponge symbiont, previously only reported in association with ascidians. Besides these two unique cyanobacteria, H. perlevis predominantly harbored Synechococcus sp. and uncultured marine cyanobacteria. Our study supports the hypothesis that the community of sponge cyanobionts varies irrespective of the geographical location and is likely influenced by seasonal fluctuations. The observed multiple cyanobacterial association among sponges of the same host species over a large distance may be attributed to horizontal transfer of symbionts. This may explain the absence of a co-evolutionary pattern between the sponge host and its symbionts. Finally, in spite of the short geographic sampling distance covered, we observed an unexpected high intra-specific genetic diversity in H. perlevis using the mitochondrial genes ATP6 (π = 0.00177), COI (π = 0.00241) and intergenic spacer SP1 (π = 0.00277) relative to the levels of genetic variation of marine sponges elsewhere. Our study suggests that genotypic variation among the sponge host H. perlevis and the associated symbiotic cyanobacteria diversity may be larger than previously recognized.

  12. Tunicates: exploring the sea shores and roaming the open ocean. A tribute to Thomas Huxley

    PubMed Central

    Lemaire, Patrick; Piette, Jacques

    2015-01-01

    This review is a tribute to the remarkable contributions of Thomas Huxley to the biology of tunicates, the likely sister group of vertebrates. In 1851, the great biologist and philosopher published two landmark papers on pelagic tunicates in the Philosophical Transactions of the Royal Society. They were dedicated to the description of the adult anatomy and life cycle of thaliaceans and appendicularians, the pelagic relatives of ascidians. In the first part of this review, we discuss the novel anatomical observations and evolutionary hypotheses made by Huxley, which would have a lasting influence on tunicate biology. We also briefly comment on the more philosophical reflections of Huxley on individuality. In the second part, we stress the originality and relevance of past and future studies of tunicates in the resolution of major biological issues. In particular, we focus on the complex relationship between genotype and phenotype and the phenomenon of developmental system drift. We propose that more than 150 years after Huxley's papers, tunicate embryos are still worth studying in their own right, independently of their evolutionary proximity to vertebrates, as they provide original and crucial insights into the process of animal evolution. Tunicates are still at the forefront of biological research. PMID:26085517

  13. Experimental Removal and Recovery of Subtidal Grazers Highlights the Importance of Functional Redundancy and Temporal Context

    PubMed Central

    Elahi, Robin; Sebens, Kenneth P.

    2013-01-01

    The extent to which different grazers are functionally redundant has strong implications for the maintenance of community structure and function. Grazing by red urchins (Strongylocentrotus franciscanus) on temperate rocky reefs can initiate a switch from invertebrate or macroalgal dominance to an algal crust state, but can also cause increases in the density of molluscan mesograzers. In this study, we tested the hypothesis that red urchins and lined chitons (Tonicella spp.) are redundant in the maintenance of available space, defined as encrusting algae and bare rock. In a factorial field experiment replicated at three sites, we reduced the densities of urchins and chitons on subtidal rock walls for nine months. The effects of grazers were interpreted in the context of natural temporal variation by monitoring the benthic community one year before, during, and after grazer removal. The removal of each grazer in isolation had no effect on the epilithic community, but the removal of both grazers caused an increase in sessile invertebrates. The increase was due primarily to clonal ascidians, which displayed a large (∼75%) relative increase in response to the removal of both grazers. However, the observed non-additive responses to grazer removal were temporary and smaller than seasonal fluctuations. Our data demonstrate that urchins and chitons can be redundant in the maintenance of available space, and highlight the value of drawing conclusions from experimental manipulations within an extended temporal context. PMID:24250819

  14. Immunohistochemical analysis of adhesive papillae of Clavelina lepadiformis (Müller, 1776) and Clavelina phlegraea (Salfi, 1929) (Tunicata, Ascidiacea).

    PubMed

    Pennati, Roberta; Groppelli, S; De Bernardi, F; Mastrototaro, F; Zega, G

    2009-01-01

    Almost all ascidian larvae bear three mucus secreting and sensory organs, the adhesive papillae, at the anterior end of the trunk, which play an important role during the settlement phase. The morphology and the cellular composition of these organs varies greatly in the different species. The larvae of the Clavelina genus bear simple bulbous papillae, which are considered to have only a secretory function. We analysed the adhesive papillae of two species belonging to this genus, C. lepadiformis and C. phlegraea, by histological sections and by immunolocalisation of b-tubulin and serotonin, in order to better clarify the cellular composition of these organs. We demonstrated that they contain at least two types of neurons: central neurons, bearing microvilli, and peripheral ciliated neurons. Peripheral neurons of C. lepadiformis contain serotonin. We suggest that these two neurons play different roles during settlement: the central ones may be chemo- or mechanoreceptors that sense the substratum, and the peripheral ones may be involved in the mechanism that triggers metamorphosis.

  15. Modelling distribution of marine benthos from hydroacoustics and underwater video

    NASA Astrophysics Data System (ADS)

    Holmes, K. W.; Van Niel, K. P.; Radford, B.; Kendrick, G. A.; Grove, S. L.

    2008-08-01

    Broad-scale mapping of marine benthos is required for marine resource management and conservation. This study combines textural derivatives based on bathymetry from multibeam hydroacoustics with underwater video observations to model and map sessile biota between 10- and 60-m water depth over 35 km 2 in Point Addis Marine National Park (MNP), Vic., Australia. Classification tree models and maps were developed for macroalgae (all types, mixed red algae, Ecklonia, and rhodoliths) and sessile invertebrates (all types, sponges, and ascidians). Model accuracy was tested on 25% of the video observation dataset reserved from modelling. Models fit well for most macroalgae categories (correct classification rates of 67-84%), but are not as good for sessile invertebrate classes (correct classification rates of 57-62%). The poor fit of the sessile invertebrate models may be the combined result of grouping organisms with different environmental requirements and the effect of false absences recorded during video interpretation due to poor image quality. Probability maps, binary single-class maps, and multi-class maps supply spatially explicit, detailed information on the distribution of sessile benthic biota within the MNP and provide information at a landscape-scale for ecological investigations and marine management.

  16. Investigating the widespread introduction of a tropical marine fouling species.

    PubMed

    Sheets, Elizabeth A; Cohen, C Sarah; Ruiz, Gregory M; da Rocha, Rosana M

    2016-04-01

    Little is known about the number and rate of introductions into terrestrial and marine tropical regions, and if introduction patterns and processes differ from temperate latitudes. Botryllid ascidians (marine invertebrate chordates) are an interesting group to study such introduction differences because several congeners have established populations across latitudes. While temperate botryllid invasions have been repeatedly highlighted, the global spread of tropical Botrylloides nigrum (Herdman, 1886) has been largely ignored. We sampled B. nigrum from 16 worldwide warm water locations, including around the Panama Canal, one of the largest shipping hubs in the world and a possible introduction corridor. Using mitochondrial (COI) and nuclear (ANT) markers, we discovered a single species with low genetic divergence and diversity that has established in the Atlantic, Pacific, Indo-Pacific, and Mediterranean Oceans. The Atlantic Ocean contained the highest diversity and multilocus theta estimates and may be a source for introductions to other regions. A high frequency of one mitochondrial haplotype was detected in Pacific populations that may represent a recent introduction in this region. In comparison to temperate relatives, B. nigrum displayed lower (but similar to temperate Botrylloides violaceus) genetic divergence and diversity at both loci that may represent a more recent global spread or differences in introduction pressures in tropical regions. Additionally, chimeras (genetically distinct individuals sharing a single body) were detected in three populations by the mitochondrial locus and validated using cloning, and these individuals contained new haplotype diversity not detected in any other colonies. PMID:27066231

  17. A Hypervariable Invertebrate Allodeterminant

    PubMed Central

    Nicotra, Matthew L.; Powell, Anahid E.; Rosengarten, Rafael D.; Moreno, Maria; Grimwood, Jane; Lakkis, Fadi G.; Dellaporta, Stephen L.; Buss, Leo W.

    2009-01-01

    Summary Colonial marine invertebrates, such as sponges, corals, bryozoans, and ascidians, often live in densely-populated communities where they encounter other members of their species as they grow over their substratum. Such encounters typically lead to a natural histocompatibility response in which colonies either fuse to become a single, chimeric colony or reject and aggressively compete for space. These allorecognition phenomena mediate intraspecific competition [1–3], support allotypic diversity [4], control the level at which selection acts [5–8], and resemble allogeneic interactions in pregnancy and transplantation [9–12]. Despite the ubiquity of allorecognition in colonial phyla, however, its molecular basis has not been identified beyond what is currently known about histocompatibility in vertebrates and protochordates. We positionally cloned an allorecognition gene using inbred strains of the cnidarian, Hydractinia symbiolongicarpus, which is a model system for the study of invertebrate allorecognition. The gene identified encodes a putative transmembrane receptor expressed in all tissues capable of allorecognition that is highly polymorphic and predicts allorecognition responses in laboratory and field-derived strains. This study reveals that a previously undescribed hypervariable molecule bearing three extracellular domains with greatest sequence similarity to the immunoglobulin superfamily is an allodeterminant in a lower metazoan. PMID:19303297

  18. Spherulization as a process for the exudation of chemical cues by the encrusting sponge C. crambe.

    PubMed

    Ternon, Eva; Zarate, Lina; Chenesseau, Sandrine; Croué, Julie; Dumollard, Rémi; Suzuki, Marcelino T; Thomas, Olivier P

    2016-07-06

    Ecological interactions in the marine environment are now recognized to be partly held by chemical cues produced by marine organisms. In particular, sponges are sessile animals thought to rely on the bioactive substances they synthesize to ensure their development and defense. However, the mechanisms leading the sponges to use their specialized metabolites as chemical cues remain unknown. Here we report the constant release of bioactive polycyclic guanidinic alkaloids by the Mediterranean sponge Crambe crambe into the dissolved and the particulate phases using a targeted metabolomics study. These compounds were proven to be stored into already described specialized (spherulous) sponge cells and dispersed into the water column after release through the sponge exhaling channels (oscula), leading to a chemical shield surrounding the sponge. Low concentrations of these compounds were demonstrated to have teratogenic effects on embryos of a common sea squirt (ascidian). This mechanism of action called spherulization may therefore contribute to the ecological success of encrusting sponges that need to extend their substrate cover to expand.

  19. Spherulization as a process for the exudation of chemical cues by the encrusting sponge C. crambe.

    PubMed

    Ternon, Eva; Zarate, Lina; Chenesseau, Sandrine; Croué, Julie; Dumollard, Rémi; Suzuki, Marcelino T; Thomas, Olivier P

    2016-01-01

    Ecological interactions in the marine environment are now recognized to be partly held by chemical cues produced by marine organisms. In particular, sponges are sessile animals thought to rely on the bioactive substances they synthesize to ensure their development and defense. However, the mechanisms leading the sponges to use their specialized metabolites as chemical cues remain unknown. Here we report the constant release of bioactive polycyclic guanidinic alkaloids by the Mediterranean sponge Crambe crambe into the dissolved and the particulate phases using a targeted metabolomics study. These compounds were proven to be stored into already described specialized (spherulous) sponge cells and dispersed into the water column after release through the sponge exhaling channels (oscula), leading to a chemical shield surrounding the sponge. Low concentrations of these compounds were demonstrated to have teratogenic effects on embryos of a common sea squirt (ascidian). This mechanism of action called spherulization may therefore contribute to the ecological success of encrusting sponges that need to extend their substrate cover to expand. PMID:27381941

  20. Pyridinoacridine alkaloids of marine origin: NMR and MS spectral data, synthesis, biosynthesis and biological activity

    PubMed Central

    Kuete, Victor; Biavatti, Maique W

    2015-01-01

    Summary This review focuses on pyridoacridine-related metabolites as one biologically interesting group of alkaloids identified from marine sources. They are produced by marine sponges, ascidians and tunicates, and they are structurally comprised of four to eight fused rings including heterocycles. Acridine, acridone, dihydroacridine, and quinolone cores are features regularly found in these alkaloid skeletons. The lack of hydrogen atoms next to quaternary carbon atoms for two or three rings makes the chemical shift assignment a difficult task. In this regard, one of the aims of this review is the compilation of previously reported, pyridoacridine 13C NMR data. Observations have been made on the delocalization of electrons and the presence of some functional groups that lead to changes in the chemical shift of some carbon resonances. The lack of mass spectra information for these alkaloids due to the compactness of their structures is further discussed. Moreover, the biosynthetic pathways of some of these metabolites have been shown since they could inspire biomimetic synthesis. The synthesis routes used to prepare members of these marine alkaloids (as well as their analogues), which are synthesized for biological purposes are also discussed. Pyridoacridines were found to have a large spectrum of bioactivity and this review highlights and compares the pharmacophores that are responsible for the observed bioactivity. PMID:26664587

  1. Acquisition of the dorsal structures in chordate amphioxus

    PubMed Central

    Morov, Arseniy R.; Ukizintambara, Tharcisse; Sabirov, Rushan M.

    2016-01-01

    Acquisition of dorsal structures, such as notochord and hollow nerve cord, is likely to have had a profound influence upon vertebrate evolution. Dorsal formation in chordate development thus has been intensively studied in vertebrates and ascidians. However, the present understanding does not explain how chordates acquired dorsal structures. Here we show that amphioxus retains a key clue to answer this question. In amphioxus embryos, maternal nodal mRNA distributes asymmetrically in accordance with the remodelling of the cortical cytoskeleton in the fertilized egg, and subsequently lefty is first expressed in a patch of blastomeres across the equator where wnt8 is expressed circularly and which will become the margin of the blastopore. The lefty domain co-expresses zygotic nodal by the initial gastrula stage on the one side of the blastopore margin and induces the expression of goosecoid, not-like, chordin and brachyury1 genes in this region, as in the oral ectoderm of sea urchin embryos, which provides a basis for the formation of the dorsal structures. The striking similarity in the gene regulations and their respective expression domains when comparing dorsal formation in amphioxus and the determination of the oral ectoderm in sea urchin embryos suggests that chordates derived from an ambulacrarian-type blastula with dorsoventral inversion. PMID:27307516

  2. Bioaccumulation of Vanadium by Vanadium-Resistant Bacteria Isolated from the Intestine of Ascidia sydneiensis samea.

    PubMed

    Romaidi; Ueki, Tatsuya

    2016-06-01

    Isolation of naturally occurring bacterial strains from metal-rich environments has gained popularity due to the growing need for bioremediation technologies. In this study, we found that the vanadium concentration in the intestine of the vanadium-rich ascidian Ascidia sydneiensis samea could reach 0.67 mM, and thus, we isolated vanadium-resistant bacteria from the intestinal contents and determined the ability of each bacterial strain to accumulate vanadium and other heavy metals. Nine strains of vanadium-resistant bacteria were successfully isolated, of which two strains, V-RA-4 and S-RA-6, accumulated vanadium at a higher rate than did the other strains. The maximum vanadium absorption by these bacteria was achieved at pH 3, and intracellular accumulation was the predominant mechanism. Each strain strongly accumulated copper and cobalt ions, but accumulation of nickel and molybdate ions was relatively low. These bacterial strains can be applied to protocols for bioremediation of vanadium and heavy metal toxicity. PMID:27177911

  3. Structure, biology, evolution, and medical importance of sulfated fucans and galactans.

    PubMed

    Pomin, Vitor H; Mourão, Paulo A S

    2008-12-01

    Sulfated fucans and galactans are strongly anionic polysaccharides found in marine organisms. Their structures vary among species, but their major features are conserved among phyla. Sulfated fucans are found in marine brown algae and echinoderms, whereas sulfated galactans occur in red and green algae, marine angiosperms, tunicates (ascidians), and sea urchins. Polysaccharides with 3-linked, beta-galactose units are highly conserved in some taxonomic groups of marine organisms and show a strong tendency toward 4-sulfation in algae and marine angiosperms, and 2-sulfation in invertebrates. Marine algae mainly express sulfated polysaccharides with complex, heterogeneous structures, whereas marine invertebrates synthesize sulfated fucans and sulfated galactans with regular repetitive structures. These polysaccharides are structural components of the extracellular matrix. Sulfated fucans and galactans are involved in sea urchin fertilization acting as species-specific inducers of the sperm acrosome reaction. Because of this function the structural evolution of sulfated fucans could be a component in the speciation process. The algal and invertebrate polysaccharides are also potent anticoagulant agents of mammalian blood and represent a potential source of compounds for antithrombotic therapies. PMID:18796647

  4. Structural and functional insights into sulfated galactans: a systematic review.

    PubMed

    Pomin, Vitor H

    2010-01-01

    Sulfated galactans (SGs) are highly anionic marine galactose-composed homopolysaccharides. Although their structures vary among species, their main features are conserved among phyla. Green algal SGs are quite heterogeneous, although preponderantly composed of 3-beta-D-Galp units. The red algal SGs (like agar and carrageen) are composed of repeating disaccharide units with different sulfation patterns which vary among species. The SGs from invertebrates such as sea urchins and ascidians (tunicates), and from the unique description of a sea-grass, are composed of well-defined repetitive units. Chains of 3-linked beta-galactoses are highly conserved in some marine taxonomic groups, with a strong tendency toward 4-sulfation in algae and marine angiosperm, and 2-sulfation in invertebrates. These carbohydrates are extracellular components of the cell wall in plants, of the body wall in tunicates, and of the jelly coat in sea urchin eggs. In sea urchins, the SGs are also responsible to induce the acrosome reaction. However, the wide range of potential pharmacological uses, especially as anticoagulants and antithrombotics, is the main reason for the increasing interest in these sugars. Both natural and clinical actions of SGs have a direct relation to their structural features, since the intermolecular complexes between SG and target proteins are much more stereospecific than only electric charge-dependent. This review will present an overview about the principle structural and functional information of SGs. Other important aspects concerning occurrence, biology, phylogeny, and future directions, will also be reported.

  5. Structure, biology, evolution, and medical importance of sulfated fucans and galactans.

    PubMed

    Pomin, Vitor H; Mourão, Paulo A S

    2008-12-01

    Sulfated fucans and galactans are strongly anionic polysaccharides found in marine organisms. Their structures vary among species, but their major features are conserved among phyla. Sulfated fucans are found in marine brown algae and echinoderms, whereas sulfated galactans occur in red and green algae, marine angiosperms, tunicates (ascidians), and sea urchins. Polysaccharides with 3-linked, beta-galactose units are highly conserved in some taxonomic groups of marine organisms and show a strong tendency toward 4-sulfation in algae and marine angiosperms, and 2-sulfation in invertebrates. Marine algae mainly express sulfated polysaccharides with complex, heterogeneous structures, whereas marine invertebrates synthesize sulfated fucans and sulfated galactans with regular repetitive structures. These polysaccharides are structural components of the extracellular matrix. Sulfated fucans and galactans are involved in sea urchin fertilization acting as species-specific inducers of the sperm acrosome reaction. Because of this function the structural evolution of sulfated fucans could be a component in the speciation process. The algal and invertebrate polysaccharides are also potent anticoagulant agents of mammalian blood and represent a potential source of compounds for antithrombotic therapies.

  6. Mos limits the number of meiotic divisions in urochordate eggs.

    PubMed

    Dumollard, Rémi; Levasseur, Mark; Hebras, Céline; Huitorel, Philippe; Carroll, Michael; Chambon, Jean-Philippe; McDougall, Alex

    2011-03-01

    Mos kinase is a universal mediator of oocyte meiotic maturation and is produced during oogenesis and destroyed after fertilization. The hallmark of maternal meiosis is that two successive M phases (meiosis I and II) drive two rounds of asymmetric cell division (ACD). However, how the egg limits the number of meioses to just two, thereby preventing gross aneuploidy, is poorly characterized. Here, in urochordate eggs, we show that loss of Mos/MAPK activity is necessary to prevent entry into meiosis III. Remarkably, maintaining the Mos/MAPK pathway active after fertilization at near physiological levels induces additional rounds of meiotic M phase (meiosis III, IV and V). During these additional rounds of meiosis, the spindle is positioned asymmetrically resulting in further rounds of ACD. In addition, inhibiting meiotic exit with Mos prevents pronuclear formation, cyclin A accumulation and maintains sperm-triggered Ca(2+) oscillations, all of which are hallmarks of the meiotic cell cycle in ascidians. It will be interesting to determine whether Mos availability in mammals can also control the number of meioses as it does in the urochordates. Our results demonstrate the power of urochordate eggs as a model to dissect the egg-to-embryo transition.

  7. Polarization of PI3K Activity Initiated by Ooplasmic Segregation Guides Nuclear Migration in the Mesendoderm.

    PubMed

    Takatori, Naohito; Oonuma, Kouhei; Nishida, Hiroki; Saiga, Hidetoshi

    2015-11-01

    Asymmetric localization of RNA is a widely observed mechanism of cell polarization. Using embryos of the ascidian, Halocynthia roretzi, we previously showed that mesoderm and endoderm fates are separated by localization of mRNA encoding a transcription factor, Not, to the future mesoderm-side cytoplasm of the mesendoderm cell through asymmetric positioning of the nucleus. Here, we investigated the mechanism that defines the direction of the nuclear migration. We show that localization of PtdIns(3,4,5)P3 to the future mesoderm region determines the direction of nuclear migration. Localization of PtdIns(3,4,5)P3 was dependent on the localization of PI3Kα to the future mesoderm region. PI3Kα was first localized at the 1-cell stage by the ooplasmic movement. Activity of localized PI3Kα at the 4-cell stage was required for the localization of PI3Kα up to the nuclear migration. Our results provide the scaffold for understanding the chain of causality leading to the separation of ger