Science.gov

Sample records for asdex upgrade enhancements

  1. The enhanced ASDEX Upgrade pellet centrifuge launcher

    NASA Astrophysics Data System (ADS)

    Plöckl, B.; Lang, P. T.

    2013-10-01

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  2. The enhanced ASDEX Upgrade pellet centrifuge launcher.

    PubMed

    Plöckl, B; Lang, P T

    2013-10-01

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  3. The enhanced ASDEX Upgrade pellet centrifuge launcher

    SciTech Connect

    Plöckl, B.; Lang, P. T.

    2013-10-15

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  4. Enhancement of the FIDA diagnostic at ASDEX Upgrade for velocity space tomography

    NASA Astrophysics Data System (ADS)

    Weiland, M.; Geiger, B.; Jacobsen, A. S.; Reich, M.; Salewski, M.; Odstrčil, T.; the ASDEX Upgrade Team

    2016-02-01

    Recent upgrades to the FIDA (fast-ion D-alpha) diagnostic at ASDEX Upgrade are discussed. The diagnostic has been extended from three to five line of sight arrays with different angles to the magnetic field, and a spectrometer redesign allows the simultaneous measurement of red- and blue-shifted parts of the Doppler spectrum. These improvements make it possible to reconstruct the 2D fast-ion velocity distribution f≤ft(E,{{v}\\parallel}/v\\right) from the FIDA measurements by tomographic inversion under a wide range of plasma parameters. Two applications of the tomography are presented: a comparison between the distributions resulting from 60 keV and 93 keV neutral beam injection and a velocity-space resolved study of fast-ion redistribution induced by a sawtooth crash inside and outside the sawtooth inversion radius.

  5. Overview of ASDEX Upgrade results

    NASA Astrophysics Data System (ADS)

    Gruber, O.; Bosch, H.-S.; Günter, S.; Herrmann, A.; Kallenbach, A.; Kaufmann, M.; Krieger, K.; Lackner, K.; Mertens, V.; Neu, R.; Ryter, F.; Schweinzer, J.; Stäbler, A.; Suttrop, W.; Wolf, R.; Asmussen, K.; Bard, A.; Becker, G.; Behler, K.; Behringer, K.; Bergmann, A.; Bessenrodt-Weberpals, M.; Borrass, K.; Braams, B.; Brambilla, M.; Brandenburg, R.; Braun, F.; Brinkschulte, H.; Brückner, R.; Brüsehaber, B.; Büchl, K.; Buhler, A.; Callaghan, H. P.; Carlson, A.; Coster, D. P.; Cupido, L.; de Peña Hempel, S.; Dorn, C.; Drube, R.; Dux, R.; Egorov, S.; Engelhardt, W.; Fahrbach, H.-U.; Fantz, U.; Feist, H.-U.; Franzen, P.; Fuchs, J. C.; Fussmann, G.; Gafert, J.; Gantenbein, G.; Gehre, O.; Geier, A.; Gernhardt, J.; Gubanka, E.; Gude, A.; Haas, G.; Hallatschek, K.; Hartmann, D.; Heinemann, B.; Herppich, G.; Herrmann, W.; Hofmeister, F.; Holzhauer, E.; Jacobi, D.; Kakoulidis, M.; Karakatsanis, N.; Kardaun, O.; Khutoretski, A.; Kollotzek, H.; Kötterl, S.; Kraus, W.; Kurzan, B.; Kyriakakis, G.; Lang, P. T.; Lang, R. S.; Laux, M.; Lengyel, L. L.; Leuterer, F.; Lorenz, A.; Maier, H.; Manso, M.; Maraschek, M.; Markoulaki, M.; Mast, K.-F.; McCarthy, P. J.; Meisel, D.; Meister, H.; Merkel, R.; Meskat, J. P.; Müller, H. W.; Münich, M.; Murmann, H.; Napiontek, B.; Neu, G.; Neuhauser, J.; Niethammer, M.; Noterdaeme, J.-M.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pinches, S.; Raupp, G.; Reinmüller, K.; Riedl, R.; Rohde, V.; Röhr, H.; Roth, J.; Salzmann, H.; Sandmann, W.; Schilling, H.-B.; Schlögl, D.; Schmidtmann, K.; Schneider, H.; Schneider, R.; Schneider, W.; Schramm, G.; Schweizer, S.; Schwörer, R. R.; Scott, B. D.; Seidel, U.; Serra, F.; Sesnic, S.; Sihler, C.; Silva, A.; Speth, E.; Steuer, K.-H.; Stober, J.; Streibl, B.; Thoma, A.; Treutterer, W.; Troppmann, M.; Tsois, N.; Ullrich, W.; Ulrich, M.; Varela, P.; Verbeek, H.; Vollmer, O.; Wedler, H.; Weinlich, M.; Wenzel, U.; Wesner, F.; Wunderlich, R.; Xantopoulos, N.; Yu, Q.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H.-P.; Zohm, H.; Zouhar, M.

    1999-09-01

    The closed ASDEX Upgrade Divertor II, `LYRA', is capable of handling heating powers of up to 20 MW or P/R of 12 MW/m, owing to a reduction of the maximum heat flux to the target plates by more than a factor of 2 compared with the open Divertor I. This reduction is caused by high radiative losses from carbon and hydrogen inside the divertor region and is in agreement with B2-EIRENE modelling predictions. At medium densities in the H mode, the type I ELM behaviour shows no dependence on the heating method (NBI, ICRH). ASDEX Upgrade-JET dimensionless identity experiments showed compatibility of the L-H transition with core physics constraints, while in the H mode confinement, inconsistencies with the invariance principle were established. At high densities close to the Greenwald density, the MHD limited edge pressures, the influence of divertor detachment on separatrix parameters and increasing edge transport lead to limited edge densities and finally to temperatures below the critical edge temperatures for H mode. This results in a drastic increase of the H mode threshold power and an upper H mode density limit with gas puff refuelling. The H mode confinement degradation approaching this density limit is caused by the ballooning mode limited edge pressures and `stiff' temperature profiles relating core and edge temperatures. Repetitive high field side pellet injection allows for H mode operation well above the Greenwald density; moreover, higher confinement than with gas fuelling is found up to the highest densities. Neoclassical tearing modes limit the achievable β depending on the collisionality at the resonant surface. In agreement with the polarization current model, the onset β is found to be proportional to the ion gyroradius in the collisionless regime, while higher collisionalities are stabilizing. The fractional energy loss connected with saturated modes at high pressures is about 25%. A reduction of neoclassical mode amplitude and an increase of β have

  6. Overview of ASDEX Upgrade results

    NASA Astrophysics Data System (ADS)

    Gruber, O.; Arslanbekov, R.; Atanasiu, C.; Bard, A.; Becker, G.; Becker, W.; Beckmann, M.; Behler, K.; Behringer, K.; Bergmann, A.; Bilato, R.; Bolshukin, D.; Borrass, K.; Bosch, H.-S.; Braams, B.; Brambilla, M.; Brandenburg, R.; Braun, F.; Brinkschulte, H.; Brückner, R.; Brüsehaber, B.; Büchl, K.; Buhler, A.; Bürbaumer, H.; Carlson, A.; Ciric, M.; Conway, G.; Coster, D. P.; Dorn, C.; Drube, R.; Dux, R.; Egorov, S.; Engelhardt, W.; Fahrbach, H.-U.; Fantz, U.; Faugel, H.; Foley, M.; Franzen, P.; Fu, P.; Fuchs, J. C.; Gafert, J.; Gantenbein, G.; Gehre, O.; Geier, A.; Gernhardt, J.; Gubanka, E.; Gude, A.; Günter, S.; Haas, G.; Hartmann, D.; Heinemann, B.; Herrmann, A.; Hobirk, J.; Hofmeister, F.; Hohenöcker, H.; Horton, L.; Hu, L.; Jacobi, D.; Jakobi, M.; Jenko, F.; Kallenbach, A.; Kardaun, O.; Kaufmann, M.; Kendl, A.; Kim, J.-W.; Kirov, K.; Kochergov, R.; Kollotzek, H.; Kraus, W.; Krieger, K.; Kurzan, B.; Kyriakakis, G.; Lackner, K.; Lang, P. T.; Lang, R. S.; Laux, M.; Lengyel, L.; Leuterer, F.; Lorenz, A.; Maier, H.; Mank, K.; Manso, M.-E.; Maraschek, M.; Mast, K.-F.; McCarthy, P. J.; Meisel, D.; Meister, H.; Meo, F.; Merkel, R.; Mertens, V.; Meskat, J. P.; Monk, R.; Müller, H. W.; Münich, M.; Murmann, H.; Neu, G.; Neu, R.; Neuhauser, J.; Noterdaeme, J.-M.; Nunes, I.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pinches, S.; Poli, E.; Pugno, R.; Raupp, G.; Ribeiro, T.; Riedl, R.; Riondato, S.; Rohde, V.; Röhr, H.; Roth, J.; Ryter, F.; Salzmann, H.; Sandmann, W.; Sarelma, S.; Schade, S.; Schilling, H.-B.; Schlögl, D.; Schmidtmann, K.; Schneider, R.; Schneider, W.; Schramm, G.; Schweinzer, J.; Schweizer, S.; Scott, B. D.; Seidel, U.; Serra, F.; Sesnic, S.; Sihler, C.; Silva, A.; Sips, A.; Speth, E.; Stäbler, A.; Steuer, K.-H.; Stober, J.; Streibl, B.; Strumberger, E.; Suttrop, W.; Tabasso, A.; Tanga, A.; Tardini, G.; Tichmann, C.; Treutterer, W.; Troppmann, M.; Tsois, N.; Ullrich, W.; Ulrich, M.; Varela, P.; Vollmer, O.; Wenzel, U.; Wesner, F.; Wolf, R.; Wolfrum, E.; Wunderlich, R.; Xantopoulos, N.; Yu, Q.; Zarrabian, M.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H.-P.; Zeiler, A.; Zohm, H.

    2001-10-01

    Ion and electron temperature profiles in conventional L and H mode on ASDEX Upgrade are generally stiff and limited by a critical temperature gradient length ∇T/T as given by ion temperature gradient (ITG) driven turbulence. ECRH experiments indicate that electron temperature (Te) profiles are also stiff, as predicted by electron temperature gradient turbulence with streamers. Accordingly, the core and edge temperatures are proportional to each other and the plasma energy is proportional to the pedestal pressure for fixed density profiles. Density profiles are not stiff, and confinement improves with density peaking. Medium triangularity shapes (δ<0.45) show strongly improved confinement up to the Greenwald density nGW and therefore higher βvalues, owing to increasing pedestal pressure, and H mode density operation extends above nGW. Density profile peaking at nGW was achieved with controlled gas puffing rates, and first results from a new high field side pellet launcher allowing higher pellet velocities are promising. At these high densities, small type II ELMs provide good confinement with low divertor power loading. In advanced scenarios the highest performance was achieved in the improved H mode with HL-89PβN approx 7.2 at δ = 0.3 for five confinement times, limited by neoclassical tearing modes (NTMs) at low central magnetic shear (qmin approx 1). The T profiles are still governed by ITG and trapped electron mode (TEM) turbulence, and confinement is improved by density peaking connected with low magnetic shear. Ion internal transport barrier (ITB) discharges - mostly with reversed shear (qmin>1) and L mode edge - achieved HL-89P <= 2.1 and are limited to βN <= 1.7 by internal and external ideal MHD modes. Turbulence driven transport is suppressed, in agreement with the E × B shear flow paradigm, and core transport coefficients are at the neoclassical ion transport level, where the latter was established by Monte Carlo simulations. Reactor relevant ion

  7. Overview of ASDEX Upgrade results

    NASA Astrophysics Data System (ADS)

    A. Kallenbachthe ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-10-01

    The ASDEX Upgrade (AUG) programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. Since 2015, AUG is equipped with a new pair of 3-strap ICRF antennas, which were designed for a reduction of tungsten release during ICRF operation. As predicted, a factor two reduction on the ICRF-induced W plasma content could be achieved by the reduction of the sheath voltage at the antenna limiters via the compensation of the image currents of the central and side straps in the antenna frame. There are two main operational scenario lines in AUG. Experiments with low collisionality, which comprise current drive, ELM mitigation/suppression and fast ion physics, are mainly done with freshly boronized walls to reduce the tungsten influx at these high edge temperature conditions. Full ELM suppression and non-inductive operation up to a plasma current of {{I}\\text{p}}=0.8 MA could be obtained at low plasma density. Plasma exhaust is studied under conditions of high neutral divertor pressure and separatrix electron density, where a fresh boronization is not required. Substantial progress could be achieved for the understanding of the confinement degradation by strong D puffing and the improvement with nitrogen or carbon seeding. Inward/outward shifts of the electron density profile relative to the temperature profile effect the edge stability via the pressure profile changes and lead to improved/decreased pedestal performance. Seeding and D gas puffing are found to effect the core fueling via changes in a region of high density on the high field side (HFSHD). The integration of all above mentioned operational scenarios will be feasible and naturally obtained in a large device where the edge is more opaque for neutrals and higher plasma temperatures provide a lower collisionality. The combination of exhaust control with pellet fueling has been successfully

  8. Overview of ASDEX Upgrade results

    NASA Astrophysics Data System (ADS)

    Stroth, U.; Adamek, J.; Aho-Mantila, L.; Äkäslompolo, S.; Amdor, C.; Angioni, C.; Balden, M.; Bardin, S.; Barrera Orte, L.; Behler, K.; Belonohy, E.; Bergmann, A.; Bernert, M.; Bilato, R.; Birkenmeier, G.; Bobkov, V.; Boom, J.; Bottereau, C.; Bottino, A.; Braun, F.; Brezinsek, S.; Brochard, T.; Brüdgam, M.; Buhler, A.; Burckhart, A.; Casson, F. J.; Chankin, A.; Chapman, I.; Clairet, F.; Classen, I. G. J.; Coenen, J. W.; Conway, G. D.; Coster, D. P.; Curran, D.; da Silva, F.; de Marné, P.; D'Inca, R.; Douai, D.; Drube, R.; Dunne, M.; Dux, R.; Eich, T.; Eixenberger, H.; Endstrasser, N.; Engelhardt, K.; Esposito, B.; Fable, E.; Fischer, R.; Fünfgelder, H.; Fuchs, J. C.; Gál, K.; García Muñoz, M.; Geiger, B.; Giannone, L.; Görler, T.; da Graca, S.; Greuner, H.; Gruber, O.; Gude, A.; Guimarais, L.; Günter, S.; Haas, G.; Hakola, A. H.; Hangan, D.; Happel, T.; Härtl, T.; Hauff, T.; Heinemann, B.; Herrmann, A.; Hobirk, J.; Höhnle, H.; Hölzl, M.; Hopf, C.; Houben, A.; Igochine, V.; Ionita, C.; Janzer, A.; Jenko, F.; Kantor, M.; Käsemann, C.-P.; Kallenbach, A.; Kálvin, S.; Kantor, M.; Kappatou, A.; Kardaun, O.; Kasparek, W.; Kaufmann, M.; Kirk, A.; Klingshirn, H.-J.; Kocan, M.; Kocsis, G.; Konz, C.; Koslowski, R.; Krieger, K.; Kubic, M.; Kurki-Suonio, T.; Kurzan, B.; Lackner, K.; Lang, P. T.; Lauber, P.; Laux, M.; Lazaros, A.; Leipold, F.; Leuterer, F.; Lindig, S.; Lisgo, S.; Lohs, A.; Lunt, T.; Maier, H.; Makkonen, T.; Mank, K.; Manso, M.-E.; Maraschek, M.; Mayer, M.; McCarthy, P. J.; McDermott, R.; Mehlmann, F.; Meister, H.; Menchero, L.; Meo, F.; Merkel, P.; Merkel, R.; Mertens, V.; Merz, F.; Mlynek, A.; Monaco, F.; Müller, S.; Müller, H. W.; Münich, M.; Neu, G.; Neu, R.; Neuwirth, D.; Nocente, M.; Nold, B.; Noterdaeme, J.-M.; Pautasso, G.; Pereverzev, G.; Plöckl, B.; Podoba, Y.; Pompon, F.; Poli, E.; Polozhiy, K.; Potzel, S.; Püschel, M. J.; Pütterich, T.; Rathgeber, S. K.; Raupp, G.; Reich, M.; Reimold, F.; Ribeiro, T.; Riedl, R.; Rohde, V.; Rooij, G. v.; Roth, J.; Rott, M.; Ryter, F.; Salewski, M.; Santos, J.; Sauter, P.; Scarabosio, A.; Schall, G.; Schmid, K.; Schneider, P. A.; Schneider, W.; Schrittwieser, R.; Schubert, M.; Schweinzer, J.; Scott, B.; Sempf, M.; Sertoli, M.; Siccinio, M.; Sieglin, B.; Sigalov, A.; Silva, A.; Sommer, F.; Stäbler, A.; Stober, J.; Streibl, B.; Strumberger, E.; Sugiyama, K.; Suttrop, W.; Tala, T.; Tardini, G.; Teschke, M.; Tichmann, C.; Told, D.; Treutterer, W.; Tsalas, M.; Van Zeeland, M. A.; Varela, P.; Veres, G.; Vicente, J.; Vianello, N.; Vierle, T.; Viezzer, E.; Viola, B.; Vorpahl, C.; Wachowski, M.; Wagner, D.; Wauters, T.; Weller, A.; Wenninger, R.; Wieland, B.; Willensdorfer, M.; Wischmeier, M.; Wolfrum, E.; Würsching, E.; Yu, Q.; Zammuto, I.; Zasche, D.; Zehetbauer, T.; Zhang, Y.; Zilker, M.; Zohm, H.

    2013-10-01

    The medium size divertor tokamak ASDEX Upgrade (major and minor radii 1.65 m and 0.5 m, respectively, magnetic-field strength 2.5 T) possesses flexible shaping and versatile heating and current drive systems. Recently the technical capabilities were extended by increasing the electron cyclotron resonance heating (ECRH) power, by installing 2 × 8 internal magnetic perturbation coils, and by improving the ion cyclotron range of frequency compatibility with the tungsten wall. With the perturbation coils, reliable suppression of large type-I edge localized modes (ELMs) could be demonstrated in a wide operational window, which opens up above a critical plasma pedestal density. The pellet fuelling efficiency was observed to increase which gives access to H-mode discharges with peaked density profiles at line densities clearly exceeding the empirical Greenwald limit. Owing to the increased ECRH power of 4 MW, H-mode discharges could be studied in regimes with dominant electron heating and low plasma rotation velocities, i.e. under conditions particularly relevant for ITER. The ion-pressure gradient and the neoclassical radial electric field emerge as key parameters for the transition. Using the total simultaneously available heating power of 23 MW, high performance discharges have been carried out where feed-back controlled radiative cooling in the core and the divertor allowed the divertor peak power loads to be maintained below 5 MW m-2. Under attached divertor conditions, a multi-device scaling expression for the power-decay length was obtained which is independent of major radius and decreases with magnetic field resulting in a decay length of 1 mm for ITER. At higher densities and under partially detached conditions, however, a broadening of the decay length is observed. In discharges with density ramps up to the density limit, the divertor plasma shows a complex behaviour with a localized high-density region in the inner divertor before the outer divertor detaches

  9. Chapter 3: Plasma Control in ASDEX Upgrade

    SciTech Connect

    Mertens, Vitus; Raupp, Gerhard; Treutterer, Wolfgang

    2003-11-15

    In modern tokamak machines, exploration and successful development of improved plasma regimes is impossible without adequate control systems. In ASDEX Upgrade, the control tasks are performed by two systems, the continuously operating machine control and the plasma control active as long as a plasma discharge lasts. Machine control based on programmable logic controllers operates on a relatively slow timescale of {tau} = 100 ms to configure and monitor the machine's technical systems. Real-time plasma controllers run on faster cycle times of a few milliseconds to feedback (FB) control plasma shape and performance quantities. During the burn of a discharge, a real-time supervisor monitors the full technical and physical system state ({tau} = 10 ms) and applies alternate discharge program segments to optimize discharge performance or react to failures. The supervisor is fully integrated with a layered machine protection system.Plasma position and shape control in ASDEX Upgrade is particularly difficult: Since the poloidal magnetic field (PF) coils are located reactor relevant outside the toroidal magnetic field coil system and distant from the plasma, each PF coil has a global effect on all shape quantities. This makes simultaneous control of shape parameters a multivariable problem. The feedback control algorithm is based on a matrix proportional-integral-derivative method, adapted to handle saturation of coil currents, excess of coil forces, or to balance loads among coils. Control cycle time is {approx}3 ms.In parallel, the plasma performance control (sometimes called kinetic control ) acts on particle fueling and auxiliary heating systems. It consists mainly of FB loops each controlling a single variable. These circuits can be freely combined to simultaneously control a number of different plasma quantities. A clear hierarchy in the control processes allows special real-time processes to override the programmed plasma discharge feedback action: The set of

  10. The tungsten experiment in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Neu, R.; Asmussen, K.; Deschka, S.; Thoma, A.; Bessenrodt-Weberpals, M.; Dux, R.; Engelhardt, W.; Fuchs, J. C.; Gaffert, J.; García-Rosales, C.; Herrmann, A.; Krieger, K.; Mast, F.; Roth, J.; Rohde, V.; Weinlich, M.; Wenzel, U.; ASDEX Upgrade Team; ASDEX NI-Team

    1997-02-01

    Tungsten coated tiles, manufactured by plasma spray on graphite, were mounted in the divertor of the ASDEX Upgrade tokamak and cover almost 90% of the surface facing the plasma in the strike zone. Over 500 plasma discharges, among which around 300 were heated with heating powers up to 10 MW, were performed up to now. The tungsten flux in the divertor was monitored by a WI line at 400.8 nm. In the plasma centre an array of spectral lines at 5 nm emitted by ionisation states around W XXX was monitored. Under normal discharge conditions W-concentrations of around 10 -5 or even lower were found. The influence on the main plasma parameters was negligible. In a few low power discharges accumulation of tungsten occurred and the temperature profile was flattened. The concentrations of the intrinsic impurities carbon and oxygen are comparable to the discharges with graphite divertor. Furthermore, the density-limits and the β-limits remained unchanged and no negative influence on the energy confinement as well as on the H-mode threshold was found.

  11. The tungsten divertor experiment at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Neu, R.; Asmussen, K.; Krieger, K.; Thoma, A.; Bosch, H.-S.; Deschka, S.; Dux, R.; Engelhardt, W.; García-Rosales, C.; Gruber, O.; Herrmann, A.; Kallenbach, A.; Kaufmann, M.; Mertens, V.; Ryter, F.; Rohde, V.; Roth, J.; Sokoll, M.; Stäbler, A.; Suttrop, W.; Weinlich, M.; Zohm, H.; Alexander, M.; Becker, G.; Behler, K.; Behringer, K.; Behrisch, R.; Bergmann, A.; Bessenrodt-Weberpals, M.; Brambilla, M.; Brinkschulte, H.; Büchl, K.; Carlson, A.; Chodura, R.; Coster, D.; Cupido, L.; de Blank, H. J.; de Peña Hempel, S.; Drube, R.; Fahrbach, H.-U.; Feist, J.-H.; Feneberg, W.; Fiedler, S.; Franzen, P.; Fuchs, J. C.; Fußmann, G.; Gafert, J.; Gehre, O.; Gernhardt, J.; Haas, G.; Herppich, G.; Herrmann, W.; Hirsch, S.; Hoek, M.; Hoenen, F.; Hofmeister, F.; Hohenöcker, H.; Jacobi, D.; Junker, W.; Kardaun, O.; Kass, T.; Kollotzek, H.; Köppendörfer, W.; Kurzan, B.; Lackner, K.; Lang, P. T.; Lang, R. S.; Laux, M.; Lengyel, L. L.; Leuterer, F.; Manso, M. E.; Maraschek, M.; Mast, K.-F.; McCarthy, P.; Meisel, D.; Merkel, R.; Müller, H. W.; Münich, M.; Murmann, H.; Napiontek, B.; Neu, G.; Neuhauser, J.; Niethammer, M.; Noterdaeme, J.-M.; Pasch, E.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pitcher, C. S.; Poschenrieder, W.; Raupp, G.; Reinmüller, K.; Riedl, R.; Röhr, H.; Salzmann, H.; Sandmann, W.; Schilling, H.-B.; Schlögl, D.; Schneider, H.; Schneider, R.; Schneider, W.; Schramm, G.; Schweinzer, J.; Scott, B. D.; Seidel, U.; Serra, F.; Speth, E.; Silva, A.; Steuer, K.-H.; Stober, J.; Streibl, B.; Treutterer, W.; Troppmann, M.; Tsois, N.; Ulrich, M.; Varela, P.; Verbeek, H.; Verplancke, Ph; Vollmer, O.; Wedler, H.; Wenzel, U.; Wesner, F.; Wolf, R.; Wunderlich, R.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H.-P.

    1996-12-01

    Tungsten-coated tiles, manufactured by plasma spray on graphite, were mounted in the divertor of the ASDEX Upgrade tokamak and cover almost 90% of the surface facing the plasma in the strike zone. Over 600 plasma discharges have been performed to date, around 300 of which were auxiliary heated with heating powers up to 10 MW. The production of tungsten in the divertor was monitored by a W I line at 400.8 nm. In the plasma centre an array of spectral lines at 5 nm emitted by ionization states around W XXX was measured. From the intensity of these lines the W content was derived. Under normal discharge conditions W-concentrations around 0741-3335/38/12A/013/img12 or even lower were found. The influence on the main plasma parameters was found to be negligible. The maximum concentrations observed decrease with increasing heating power. In several low power discharges accumulation of tungsten occurred and the temperature profile was flattened. The concentrations of the intrinsic impurities carbon and oxygen were comparable to the discharges with the graphite divertor. Furthermore, the density and the 0741-3335/38/12A/013/img13 limits remained unchanged and no negative influence on the energy confinement or on the H-mode threshold was found. Discharges with neon radiative cooling showed the same behaviour as in the graphite divertor case.

  12. The compact neutron spectrometer at ASDEX Upgrade

    SciTech Connect

    Giacomelli, L.; Zimbal, A.; Tittelmeier, K.; Schuhmacher, H.; Tardini, G.; Neu, R.; Collaboration: ASDEX Upgrade Team

    2011-12-15

    The first neutron spectrometer of ASDEX Upgrade (AUG) was installed in November 2008. It is a compact neutron spectrometer (CNS) based on a BC501A liquid scintillating detector, which can simultaneously measure 2.45-MeV and 14-MeV neutrons emitted from deuterium (D) plasmas and {gamma} radiation. The scintillating detector is coupled to a digital pulse shape discrimination data acquisition (DPSD) system capable of count rates up to 10{sup 6} s{sup -1}. The DPSD system can operate in acquisition and processing mode. With the latter n-{gamma} discrimination is performed off-line based on the two-gate method. The paper describes the tests of the CNS and its installation at AUG. The neutron emission from the D plasma measured during a discharge with high auxiliary heating power was used to validate the CNS performance. The study of the optimal settings for the DPSD data processing to maximize the n-{gamma} discrimination capability of the CNS is reported. The CNS measured both 2.45-MeV and 14-MeV neutrons emitted in AUG D plasmas with a maximum count rate of 5.4 x10{sup 5} s{sup -1} (>10 times higher than similar spectrometers previously achieved) with an efficiency of 9.3 x 10{sup -10} events per AUG neutron.

  13. Comparing magnetic triggering of ELMs in TCV and ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Cavinato, M. M.; Dokuka, V.; Ivanov, A. A.; Khayrutdinov, R. R.; Lang, P. T.; Lister, J. B.; Lukash, V. E.; Martin, Y. R.; Medvedev, S. Yu; Villard, L.

    2009-05-01

    Frequency locking of edge localized modes (ELMs) to the vertical plasma movements induced by magnetic perturbations first demonstrated in TCV was successfully repeated in ASDEX Upgrade. However, the ELMs were triggered in ASDEX Upgrade when the plasma was moving down towards the X-point with a consequent decrease in the plasma current density in the edge region, in contrast to the previous observation on TCV in which ELMs were triggered when the edge current was increased by an upward plasma movement. This opposite behaviour observed in the magnetic triggering of ELMs has been investigated by using a free-boundary tokamak simulator, DINA-CH. The passive stabilization loops (PSLs) located inside the vacuum vessel of ASDEX Upgrade produce similar external linking flux changes to those generated by the G-coil sets in TCV for opposite vertical plasma movements. Therefore, both plasmas experience similar local flux surface expansions near the upper G-coil set and PSL when the ELMs are triggered. In ASDEX Upgrade, however, the localized expansion of the plasma flux surfaces near the upper PSL is observed with the global shrinkage of the plasma column accompanied by the downward plasma movement.

  14. First results with 3-strap ICRF antennas in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, V.; Braun, F.; Dux, R.; Herrmann, A.; Faugel, H.; Fünfgelder, H.; Kallenbach, A.; Neu, R.; Noterdaeme, J.-M.; Ochoukov, R.; Pütterich, Th.; Tuccilo, A.; Tudisco, O.; Wang, Y.; Yang, Q.; ASDEX Upgrade Team

    2016-08-01

    The 3-strap antennas in ASDEX Upgrade allow ICRF operation with low tungsten (W) content in the confined plasma with W-coated antenna limiters. With the 3-strap antenna configuration, the local W impurity source at the antenna is drastically reduced and the core W concentration is similar to that of the boron coated 2-strap antenna at a given ICRF power. Operation of the 3-strap antennas with the power ratio between the central and the outer straps of 1.5:1 and 2:1 is adopted to minimize the ICRF-specific W release.

  15. Imaging motional Stark effect measurements at ASDEX Upgrade

    SciTech Connect

    Ford, O. P.; Burckhart, A.; McDermott, R.; Pütterich, T.; Wolf, R. C.

    2016-11-15

    This paper presents an overview of results from the Imaging Motional Stark Effect (IMSE) diagnostic obtained during its first measurement campaign at ASDEX Upgrade since installation as a permanent diagnostic. A brief overview of the IMSE technique is given, followed by measurements of a standard H-mode discharge, which are compared to equilibrium reconstructions showing good agreement where expected. The development of special discharges for the calibration of pitch angle is reported and safety factor profile changes during sawteeth crashes are shown, which can be resolved to a few percent due to the high sensitivity at good time resolution of the new IMSE system.

  16. H-mode studies with microwave reflectometry on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Manso, M.; Serra, F.; Kurzan, B.; Nunes, I.; Santos, J.; Silva, A.; Suttrop, W.; Varela, P.; Vergamota, S.

    1998-05-01

    The microwave reflectometry system on ASDEX Upgrade measures density profiles (in broadband swept operation) and plasma fluctuations (fixed-frequency operation) both at the high-field side (HFS) and low-field side (LFS). Densities up to 0741-3335/40/5/036/img12 can be probed. We analyse the evolution of turbulence at the L-H transition and during the ELMy phase of H-mode discharges. The detailed density profile evolution during type I ELMs is resolved and profile oscillations associated with ELM precursors are studied.

  17. Prediction and mitigation of disruptions in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Pautasso, G.; Egorov, S.; Tichmann, Ch; Fuchs, J. C.; Herrmann, A.; Maraschek, M.; Mast, F.; Mertens, V.; Perchermeier, I.; Windsor, C. G.; Zehetbauer, T.; ASDEX Upgrade Team

    2001-03-01

    Disruptions in tokamaks are instabilities events which can damage the machine components. The avoidance and mitigation of these events is desirable in present machines as well as in Next Step devices (such as ITER). A neural network has been developed to predict the occurrence of disruptions caused by edge cooling mechanisms in ASDEX Upgrade. The network works reliably and is able to predict the majority (85%) of the disruptions. The neural network has been trained to predict the time interval up to the disruption and this makes it suitable to be used on-line either to avoid disruptions (by means of auxiliary heating and reduction of gas puffing) or to mitigate the unavoidable ones. For this last purpose, a solid pellet injector has been developed and tested; the injected impurity pellets have been shown to reduce the vertical forces and the conductive fluxes to the divertor.

  18. Structure and dynamics of sawteeth crashes in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Igochine, V.; Boom, J.; Classen, I.; Dumbrajs, O.; Günter, S.; Lackner, K.; Pereverzev, G.; Zohm, H.; ASDEX Upgrade Team

    2010-12-01

    The crash phase of the sawteeth in ASDEX Upgrade tokamak [Herrmann et al., Fusion Sci. Technol. 44(3), 569 (2003)] is investigated in detail in this paper by means of soft x-ray (SXR) and electron cyclotron emission (ECE) diagnostics. Analysis of precursor and postcursor (1,1) modes shows that the crash does not affect the position of the resonant surface q =1. Our experimental results suggest that sawtooth crash models should contain two ingredients to be consistent with experimental observations: (1) the (1,1) mode structure should survive the crash and (2) the flux changes should be small to preserve the position of the q =1 surface close to its original location. Detailed structure of the reconnection point was investigated with ECE imaging diagnostic. It is shown that reconnection starts locally. The expelled core is hot which is consistent with SXR tomography results. The observed results can be explained in the framework of a stochastic model.

  19. Spectrally resolved motional Stark effect measurements on ASDEX Upgrade

    SciTech Connect

    Reimer, R.; Dinklage, A.; Wolf, R.; Fischer, R.; Hobirk, J.; Löbhard, T.; Mlynek, A.; Reich, M.; Sawyer, L.; Collaboration: ASDEX Upgrade

    2013-11-15

    A spectrally resolved Motional Stark Effect (MSE) diagnostic has been installed at ASDEX Upgrade. The MSE data have been fitted by a forward model providing access to information about the magnetic field in the plasma interior [R. Reimer, A. Dinklage, J. Geiger et al., Contrib. Plasma Phys. 50, 731–735 (2010)]. The forward model for the beam emission spectra comprises also the fast ion D{sub α} signal [W. W. Heidbrink and G. J. Sadler, Nucl. Fusion 34, 535–615 (1994)] and the smearing on the CCD-chip. The calculated magnetic field data as well as the revealed (dia)magnetic effects are consistent with the results from equilibrium reconstruction solver. Measurements of the direction of the magnetic field are affected by unknown and varying polarization effects in the observation.

  20. Real time capable infrared thermography for ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  1. Ammonia production in nitrogen seeded plasma discharges in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rohde, V.; Oberkofler, M.

    2015-08-01

    In present tokamaks nitrogen seeding is used to reduce the power load onto the divertor tiles. Some fraction of the seeded nitrogen reacts with hydrogen to form ammonia. The behaviour of ammonia in ASDEX Upgrade is studied by mass spectrometry. Injection without plasma shows strong absorption at the inner walls of the vessel and isotope exchange reactions. During nitrogen seeding in H-mode discharges the onset of a saturation of the nitrogen retention is observed. The residual gas consists of strongly deuterated methane and ammonia with almost equal amounts of deuterium and protium. This confirms the role of surface reactions in the ammonia formation. The results are consistent with findings in previous investigations. A numerical decomposition of mass spectra is under development and will be needed for quantitative evaluation of the results obtained.

  2. New Frequency Step-Tunable Ecrh System for Asdex Upgrade

    NASA Astrophysics Data System (ADS)

    Wagner, D.; Leuterer, F.; Manini, A.; Monaco, F.; Münich, M.; Ryter, F.; Schütz, H.; Zohm, H.; Franke, T.; Heidinger, R.; Thumm, M.; Kasparek, W.; Gantenbein, G.; Litvak, A. G.; Popov, L. G.; Nichiporenko, V. O.; Myasnikov, V. E.; Denisov, G. G.; Tai, E. M.; Solyanova, E. A.; Malygin, S. A.

    2006-02-01

    A new broadband ECRH (Electron Cyclotron Resonance Heating) system is currently under construction at the ASDEX Upgrade tokamak. This system will employ multi-frequency gyrotrons step-tunable in the range 105 140 GHz. In its final stage the system will consist of 4 gyrotrons with a total power of 4 MW and a pulse length of 10 s. It employs a fast steerable launcher for feedback controlled deposition that allows for poloidal steering of 10° within 100 ms. Transmission line elements, such as corrugated waveguides, polarizer mirrors and vacuum windows, are designed to cope for this frequency band.

  3. Analysis of ICRF-Accelerated Ions in ASDEX Upgrade

    SciTech Connect

    Mantsinen, M. J.; Eriksson, L.-G.; Noterdaeme, J.-M.

    2007-09-28

    MHD-induced losses of fast ions with energy in the MeV range have been observed during high-power ICRF heating of hydrogen minority ions in the ASDEX Upgrade tokamak (R{sub 0}{approx_equal}1.65 m, a{approx_equal}0.5 m). ICRF heating and ICRF-driven fast ions in discharges exhibiting fast ion losses due to toroidal Alfven eigenmodes and a new core-localised MHD instability are analysed. It is found that the lost ions are ICRF-accelerated trapped protons with energy in the range of 0.3-1.6 MeV, orbit widths of 20-35 cm, and turning points at r/a>0.5 and at major radii close to the cyclotron resonance {omega} = {omega}{sub cH}(R). The presence of such protons is consistent with ICRF modelling.

  4. Real time capable infrared thermography for ASDEX Upgrade

    SciTech Connect

    Sieglin, B. Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  5. Structure and dynamics of sawteeth crashes in ASDEX Upgrade

    SciTech Connect

    Igochine, V.; Guenter, S.; Lackner, K.; Pereverzev, G.; Zohm, H.; Boom, J.; Classen, I.; Dumbrajs, O.

    2010-12-15

    The crash phase of the sawteeth in ASDEX Upgrade tokamak [Herrmann et al., Fusion Sci. Technol. 44(3), 569 (2003)] is investigated in detail in this paper by means of soft x-ray (SXR) and electron cyclotron emission (ECE) diagnostics. Analysis of precursor and postcursor (1,1) modes shows that the crash does not affect the position of the resonant surface q=1. Our experimental results suggest that sawtooth crash models should contain two ingredients to be consistent with experimental observations: (1) the (1,1) mode structure should survive the crash and (2) the flux changes should be small to preserve the position of the q=1 surface close to its original location. Detailed structure of the reconnection point was investigated with ECE imaging diagnostic. It is shown that reconnection starts locally. The expelled core is hot which is consistent with SXR tomography results. The observed results can be explained in the framework of a stochastic model.

  6. Recent ASDEX Upgrade research in support of ITER and DEMO

    NASA Astrophysics Data System (ADS)

    H. Zohmthe ASDEX Upgrade Team; the EUROfusion MST1 Team

    2015-10-01

    Recent experiments on the ASDEX Upgrade tokamak aim at improving the physics base for ITER and DEMO to aid the machine design and prepare efficient operation. Type I edge localized mode (ELM) mitigation using resonant magnetic perturbations (RMPs) has been shown at low pedestal collisionality (νped\\ast <0.4) . In contrast to the previous high ν* regime, suppression only occurs in a narrow RMP spectral window, indicating a resonant process, and a concomitant confinement drop is observed due to a reduction of pedestal top density and electron temperature. Strong evidence is found for the ion heat flux to be the decisive element for the L-H power threshold. A physics based scaling of the density at which the minimum PLH occurs indicates that ITER could take advantage of it to initiate H-mode at lower density than that of the final Q = 10 operational point. Core density fluctuation measurements resolved in radius and wave number show that an increase of R/LTe introduced by off-axis electron cyclotron resonance heating (ECRH) mainly increases the large scale fluctuations. The radial variation of the fluctuation level is in agreement with simulations using the GENE code. Fast particles are shown to undergo classical slowing down in the absence of large scale magnetohydrodynamic (MHD) events and for low heating power, but show signs of anomalous radial redistribution at large heating power, consistent with a broadened off-axis neutral beam current drive current profile under these conditions. Neoclassical tearing mode (NTM) suppression experiments using electron cyclotron current drive (ECCD) with feedback controlled deposition have allowed to test several control strategies for ITER, including automated control of (3,2) and (2,1) NTMs during a single discharge. Disruption mitigation studies using massive gas injection (MGI) can show an increased fuelling efficiency with high field side injection, but a saturation of the fuelling efficiency is observed at high injected

  7. Progress in controlling ICRF-edge interactions in ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, Vl.; Jacquet, Ph.; Ochoukov, R.; Zhang, W.; Bilato, R.; Braun, F.; Carralero, D.; Colas, L.; Czarnecka, A.; Dux, R.; Faugel, H.; Fünfgelder, H.; Jacquot, J.; Křivská, A.; Lunt, T.; Milanesio, D.; Maggiora, R.; Meyer, O.; Monakhov, I.; Noterdaeme, J.-M.; Potzel, S.; Pütterich, Th.; Stepanov, I.

    2015-12-01

    RF measurements during variation of the strap voltage balance of the original 2-strap ICRF antenna in ASDEX Upgrade at constant power are consistent with electromagnetic calculations by HFSS and TOPICA, more so for the latter. RF image current compensation is observed at the antenna limiters in the experiment at a local strap voltage of about half of the value of the remote strap, albeit with a non-negligible uncertainty in phasing. The RF-specific tungsten (W) source at the broad-limiter 2-strap antenna correlates strongly with the RF voltage at the local strap at the locations not connected to opposite side of the antenna along magnetic field lines. The trends of the observed increase of the RF loading with injection of local gas are well described by a combined EMC3-Eirene - FELICE calculations, with the most efficient improvement confirmed for the outer-midplane valves, but underestimated by about 1/3. The corresponding deuterium density tailoring is also likely responsible for the decrease of local W sources observed in the experiment.

  8. The prototype imaging motional Stark effect diagnostic for ASDEX upgrade.

    PubMed

    Ford, O P; Howard, J; Wolf, R C

    2015-09-01

    This paper presents the development and testing of the prototype Imaging Motional Stark-Effect (IMSE) diagnostic, designed for ASDEX upgrade. A detailed description of the core hardware, theory of operation, and application to complex MSE spectra are presented and analytical evaluation methods suitable for the required accuracy are developed. The diagnostic is tested with a MSE-like polarised spectrum to assess the accuracy of different modulation modes suggested in previous works. Each is found to have small systematic errors due to non-ideal effects of the components, which must be carefully examined. In particular, the effect of intrinsic contrast that results from imperfect parallelism of the birefringent plates is found to have a strong effect. Methods to mitigate and correct for this are discussed. With the necessary corrections and calibrations, the accuracy of polarisation orientation is shown to be within ±0.2°. The effect of finite ellipticity is examined and the possibility to measure this to an accuracy of ±2.0° is demonstrated. The system is shown to be insensitive to broadband polarised background light, temperature variations, and critically to variations in the details of the MSE spectrum.

  9. Real-time diamagnetic flux measurements on ASDEX Upgrade.

    PubMed

    Giannone, L; Geiger, B; Bilato, R; Maraschek, M; Odstrčil, T; Fischer, R; Fuchs, J C; McCarthy, P J; Mertens, V; Schuhbeck, K H

    2016-05-01

    Real-time diamagnetic flux measurements are now available on ASDEX Upgrade. In contrast to the majority of diamagnetic flux measurements on other tokamaks, no analog summation of signals is necessary for measuring the change in toroidal flux or for removing contributions arising from unwanted coupling to the plasma and poloidal field coil currents. To achieve the highest possible sensitivity, the diamagnetic measurement and compensation coil integrators are triggered shortly before plasma initiation when the toroidal field coil current is close to its maximum. In this way, the integration time can be chosen to measure only the small changes in flux due to the presence of plasma. Two identical plasma discharges with positive and negative magnetic field have shown that the alignment error with respect to the plasma current is negligible. The measured diamagnetic flux is compared to that predicted by TRANSP simulations. The poloidal beta inferred from the diamagnetic flux measurement is compared to the values calculated from magnetic equilibrium reconstruction codes. The diamagnetic flux measurement and TRANSP simulation can be used together to estimate the coupled power in discharges with dominant ion cyclotron resonance heating.

  10. Application of AXUV diode detectors at ASDEX Upgrade

    SciTech Connect

    Bernert, M. Eich, T.; Burckhart, A.; Fuchs, J. C.; Giannone, L.; Kallenbach, A.; McDermott, R. M.; Sieglin, B.

    2014-03-15

    In the ASDEX Upgrade tokamak, a radiation measurement for a wide spectral range, based on semiconductor detectors, with 256 lines of sight and a time resolution of 5μs was recently installed. In combination with the foil based bolometry, it is now possible to estimate the absolutely calibrated radiated power of the plasma on fast timescales. This work introduces this diagnostic based on AXUV (Absolute eXtended UltraViolet) n-on-p diodes made by International Radiation Detectors, Inc. The measurement and the degradation of the diodes in a tokamak environment is shown. Even though the AXUV diodes are developed to have a constant sensitivity for all photon energies (1 eV-8 keV), degradation leads to a photon energy dependence of the sensitivity. The foil bolometry, which is restricted to a time resolution of less than 1 kHz, offers a basis for a time dependent calibration of the diodes. The measurements of the quasi-calibrated diodes are compared with the foil bolometry and found to be accurate on the kHz time scale. Therefore, it is assumed, that the corrected values are also valid for the highest time resolution (200 kHz). With this improved diagnostic setup, the radiation induced by edge localized modes is analyzed on fast timescales.

  11. Progress in controlling ICRF-edge interactions in ASDEX upgrade

    SciTech Connect

    Bobkov, Vl. Ochoukov, R.; Bilato, R.; Braun, F.; Carralero, D.; Dux, R.; Faugel, H.; Fünfgelder, H.; Jacquot, J.; Lunt, T.; Potzel, S.; Pütterich, Th.; Jacquet, Ph.; Monakhov, I.; Zhang, W.; Noterdaeme, J.-M.; Stepanov, I.; Colas, L.; Meyer, O.; Czarnecka, A.; and others

    2015-12-10

    RF measurements during variation of the strap voltage balance of the original 2-strap ICRF antenna in ASDEX Upgrade at constant power are consistent with electromagnetic calculations by HFSS and TOPICA, more so for the latter. RF image current compensation is observed at the antenna limiters in the experiment at a local strap voltage of about half of the value of the remote strap, albeit with a non-negligible uncertainty in phasing. The RF-specific tungsten (W) source at the broad-limiter 2-strap antenna correlates strongly with the RF voltage at the local strap at the locations not connected to opposite side of the antenna along magnetic field lines. The trends of the observed increase of the RF loading with injection of local gas are well described by a combined EMC3-Eirene – FELICE calculations, with the most efficient improvement confirmed for the outer-midplane valves, but underestimated by about 1/3. The corresponding deuterium density tailoring is also likely responsible for the decrease of local W sources observed in the experiment.

  12. ELM behavior in ASDEX Upgrade with and without nitrogen seeding

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Dunne, M. G.; Beurskens, M.; Wolfrum, E.; Bogomolov, A.; Carralero, D.; Cavedon, M.; Fischer, R.; Laggner, F. M.; McDermott, R. M.; Meyer, H.; Tardini, G.; Viezzer, E.; the EUROfusion MST1 Team; the ASDEX-Upgrade Team

    2017-02-01

    The Type I ELM behavior in ASDEX Upgrade with full W plasma facing components is studied in terms of time scales and energy losses for a large set of shots characterized by similar operational parameters but different nitrogen seeding rate and input power. ELMs with no nitrogen can have two typical behaviors, that can be classified depending on their duration, the long and the short ELMs. The work shows that both short and long ELMs have a similar first phase, but the long ELMs are characterized by a second phase with further energy losses. The second phase disappears when nitrogen is seeded with a flux rate above 1022 (e s-1). The phenomenon is compatible with a threshold effect. The presence of the second phase is related to a high divertor/scrape-off layer (SOL) temperature and/or to a low pedestal temperature. The ELM energy losses of the two phases are regulated by different mechanisms. The energy losses of the first phase increase with nitrogen which, in turn, produce the increase of the pedestal temperature. So the energy losses of the first phase are regulated by the pedestal top parameters and the increase with nitrogen is due to the decreasing pedestal collisionality. The energy losses of the second phase are related to the divertor/SOL conditions. The long ELMs energy losses increase with increasing divertor temperature and with the number of the expelled filaments. In terms of the power lost by the plasma, the nitrogen seeding increases the power losses of the short ELMs. The long ELMs have a first phase with power losses comparable to the short ELMs losses. Assuming no major difference in the wetted area, these results suggest that (i) the nitrogen might increase the divertor heat fluxes during the short ELMs and that (ii) the long ELMs, despite the longer time scale, are not beneficial in terms of divertor heat loads.

  13. Observation and modelling of fast ion loss in JET and ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Pinches, S. D.; Kiptily, V. G.; Sharapov, S. E.; Darrow, D. S.; Eriksson, L.-G.; Fahrbach, H.-U.; García-Muñoz, M.; Reich, M.; Strumberger, E.; Werner, A.; ASDEX Upgrade Team; Contributors, JET-EFDA

    2006-10-01

    The confinement of fast particles is of crucial importance for the success of future burning plasma experiments. On JET, the confinement of ion cyclotron resonant frequency (ICRF) accelerated fast hydrogen ions with energies exceeding 5 MeV has been measured using the characteristic γ-rays emitted through their inelastic scattering with carbon impurities, 12C(p,p'γ)12C. Recent experiments have shown a significant decrease in this γ-ray emission (by a factor of 2) during so-called tornado mode activity (core-localized toroidal Alfvén eigenmodes (TAEs) within the q = 1 surface) in sawtoothing plasmas. This is indicative of a significant loss or extensive re-distribution of these (>5 MeV) particles from the plasma core. In this paper, mechanisms responsible for the radial transport and loss of these fast ions are investigated and identified using the HAGIS code, which describes the interaction of the fast ions and the TAE observed. The calculations show that the overlap of wave-particle resonances in phase-space leads to an enhanced radial transport and loss. On both JET and ASDEX Upgrade, new fast ion loss detectors have been installed to further investigate the loss of such particles. On JET, fast ion loss detectors based around an array of Faraday cups and a scintillator probe have been installed as part of a suite of diagnostic enhancements. On ASDEX Upgrade, a new fast ion loss detector has been mounted on the mid-plane manipulator allowing high resolution measurements in pitch angle, energy and time. This has enabled the direct observation of fast ion losses during various magnetohydrodynamics (MHD) phenomena to be studied in detail. Edge localised mode (ELM) induced fast ion losses have been directly observed along with the enhancement of fast ion losses from specific areas of phase-space in the presence of neoclassical tearing modes (NTMs) and TAEs.

  14. X mode Doppler reflectometry k-spectral measurements in ASDEX Upgrade: experiments and simulations

    NASA Astrophysics Data System (ADS)

    Lechte, C.; Conway, G. D.; Görler, T.; Tröster-Schmid, C.; the ASDEX Upgrade Team

    2017-07-01

    The perpendicular density fluctuation spectrum in the tokamak ASDEX Upgrade was measured with Doppler reflectometry. In this paper, extensive plasma turbulence and microwave propagation simulations with the gene gyro-kinetic code and the ipf-fd3d full-wave code were undertaken to explain the observed spectral shape. It was shown that in this case the X-mode polarisation suffers both from a large nonlinear saturation effect at low-to-intermediate probed wavenumbers, and a super-linear enhancement effect at large wavenumbers. With these effects, we were able to explain the observed discrepancies between the gene perpendicular wavenumber spectra and the Doppler reflectometry derived wavenumber spectra. While the agreement is not perfect, the simulations give guidance on how to interpret X-mode Doppler reflectometry spectra.

  15. Quasilinear modelling of RMP interaction with a tokamak plasma: application to ASDEX Upgrade ELM mitigation experiments

    NASA Astrophysics Data System (ADS)

    Heyn, Martin F.; Ivanov, Ivan B.; Kasilov, Sergei V.; Kernbichler, Winfried; Leitner, Peter; Nemov, Viktor V.; Suttrop, Wolfgang; the ASDEX Upgrade Team

    2014-06-01

    First experiments on edge-localized mode (ELM) mitigation with the help of ITER-like coils on ASDEX Upgrade are analysed using linear and quasilinear kinetic models to describe the interaction of resonant magnetic field perturbations (RMP) with the plasma. The gyrokinetic derivation of RMP-driven transport coefficients is given in detail. The role of fluid resonances is studied, in particular the role of the resonance associated with the equilibrium electric field reversal point Er = 0. Like the electron fluid resonance associated with the zero of the total perpendicular electron fluid velocity, the Er = 0 resonance may lead to enhanced transport due to the reduction of RMP shielding in the pedestal region where the RMP field can even be amplified by this resonance. The conditions on the RMP coil spectrum resulting from the analysis are discussed.

  16. A compact lithium pellet injector for tokamak pedestal studies in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Arredondo Parra, R.; Moreno Quicios, R.; Ploeckl, B.; Birkenmeier, G.; Herrmann, A.; Kocsis, G.; Laggner, F. M.; Lang, P. T.; Lunt, T.; Macian-Juan, R.; Rohde, V.; Sellmair, G.; Szepesi, T.; Wolfrum, E.; Zeidner, W.; Neu, R.

    2016-02-01

    Experiments have been performed at ASDEX Upgrade, aiming to investigate the impact of lithium in an all-metal-wall tokamak and attempting to enhance the pedestal operational space. For this purpose, a lithium pellet injector has been developed, capable of injecting pellets carrying a particle content ranging from 1.82 × 1019 atoms (0.21 mg) to 1.64 × 1020 atoms (1.89 mg). The maximum repetition rate is about 2 Hz. Free flight launch from the torus outboard side without a guiding tube was realized. In such a configuration, angular dispersion and speed scatter are low, and a transfer efficiency exceeding 90% was achieved in the test bed. Pellets are accelerated in a gas gun; hence special care was taken to avoid deleterious effects by the propellant gas pulse. Therefore, the main plasma gas species was applied as propellant gas, leading to speeds ranging from 420 m/s to 700 m/s. In order to minimize the residual amount of gas to be introduced into the plasma vessel, a large expansion volume equipped with a cryopump was added into the flight path. In view of the experiments, an optimal propellant gas pressure of 50 bars was chosen for operation, since at this pressure maximum efficiency and low propellant gas flux coincide. This led to pellet speeds of 585 m/s ± 32 m/s. Lithium injection has been achieved at ASDEX Upgrade, showing deep pellet penetration into the plasma, though pedestal broadening has not been observed yet.

  17. A compact lithium pellet injector for tokamak pedestal studies in ASDEX Upgrade.

    PubMed

    Arredondo Parra, R; Moreno Quicios, R; Ploeckl, B; Birkenmeier, G; Herrmann, A; Kocsis, G; Laggner, F M; Lang, P T; Lunt, T; Macian-Juan, R; Rohde, V; Sellmair, G; Szepesi, T; Wolfrum, E; Zeidner, W; Neu, R

    2016-02-01

    Experiments have been performed at ASDEX Upgrade, aiming to investigate the impact of lithium in an all-metal-wall tokamak and attempting to enhance the pedestal operational space. For this purpose, a lithium pellet injector has been developed, capable of injecting pellets carrying a particle content ranging from 1.82 × 10(19) atoms (0.21 mg) to 1.64 × 10(20) atoms (1.89 mg). The maximum repetition rate is about 2 Hz. Free flight launch from the torus outboard side without a guiding tube was realized. In such a configuration, angular dispersion and speed scatter are low, and a transfer efficiency exceeding 90% was achieved in the test bed. Pellets are accelerated in a gas gun; hence special care was taken to avoid deleterious effects by the propellant gas pulse. Therefore, the main plasma gas species was applied as propellant gas, leading to speeds ranging from 420 m/s to 700 m/s. In order to minimize the residual amount of gas to be introduced into the plasma vessel, a large expansion volume equipped with a cryopump was added into the flight path. In view of the experiments, an optimal propellant gas pressure of 50 bars was chosen for operation, since at this pressure maximum efficiency and low propellant gas flux coincide. This led to pellet speeds of 585 m/s ± 32 m/s. Lithium injection has been achieved at ASDEX Upgrade, showing deep pellet penetration into the plasma, though pedestal broadening has not been observed yet.

  18. Stationary advanced scenarios with internal transport barrier on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Wolf, R. C.; Gruber, O.; Maraschek, M.; Dux, R.; Fuchs, C.; Günter, S.; Herrmann, A.; Kallenbach, A.; Lackner, K.; McCarthy, P. J.; Meister, H.; Pereverzev, G.; Schweinzer, J.; Seidel, U.; ASDEX Upgrade Team

    1999-12-01

    Steady-state discharges with improved core confinement and H-mode edge with edge localized modes (ELMs) are investigated. In plasmas with an upper triangularity icons/Journals/Common/delta" ALT="delta" ALIGN="TOP"/>top close to zero an H-factor of HITER89-P = 2.7 and icons/Journals/Common/beta" ALT="beta" ALIGN="TOP"/>N = 2.2 could be maintained for 1 s and HITER89-P = 2.4 and icons/Journals/Common/beta" ALT="beta" ALIGN="TOP"/>N = 2.0 for 6 s, the latter corresponding to 40 confinement times or 2 1/2 resistive time scales for current redistribution, only limited by the duration of the possible discharge length. At a line averaged density of 4 × 1019 m-3 the central temperatures reach values of Ti = 10 keV and Te = 6.5 keV. The stationarity of the current profile is explained by magnetic reconnection driven by strong (m = 1, n = 1) fishbones, which, in the absence of sawteeth, also expel energy and impurities. Further increasing the pressure, icons/Journals/Common/beta" ALT="beta" ALIGN="TOP"/> is limited by neoclassical tearing modes. Raising the density by edge gas fuelling and the simultaneous increase of the neutral beam power, HITER89-P remained unchanged up to icons/Journals/Common/overline" ALT="overline" ALIGN="TOP"/>ne = 5.5 × 1019 m-3, accompanied by a substantial reduction of Zeff. Increasing icons/Journals/Common/delta" ALT="delta" ALIGN="TOP"/>top to 0.2, both confinement and icons/Journals/Common/beta" ALT="beta" ALIGN="TOP"/>-limit improved reaching values of HITER89-P = 3.0 and icons/Journals/Common/beta" ALT="beta" ALIGN="TOP"/>N = 2.4 at densities above icons/Journals/Common/overline" ALT="overline" ALIGN="TOP"/>ne = 5 × 1019 m-3. This resulted in the highest fusion product of nD,0Ti,0icons/Journals/Common/tau" ALT="tau" ALIGN="TOP"/>E = 0.9 × 1020 keV s m-3 so far observed in ASDEX Upgrade.

  19. Upgrade to the control system of the reflectometry diagnostic of ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    Graça, S.; Santos, J.; Manso, M. E.

    2004-10-01

    The broadband frequency modulation-continuous wave microwave/millimeter wave reflectometer of ASDEX upgrade tokamak (Institut für Plasma Physik (IPP), Garching, Germany) developed by Centro de Fusão Nuclear (Lisboa, Portugal) with the collaboration of IPP, is a complex system with 13 channels (O and X modes) and two types of operation modes (swept and fixed frequency). The control system that ensures remote operation of the diagnostic incorporates VME and CAMAC bus based acquisition/timing systems. Microprocessor input/output boards are used to control and monitor the microwave circuitry and associated electronic devices. The implementation of the control system is based on an object-oriented client/server model: a centralized server manages the hardware and receives input from remote clients. Communication is handled through transmission control protocol/internet protocol sockets. Here we describe recent upgrades of the control system aiming to: (i) accommodate new channels; (ii) adapt to the heterogeneity of computing platforms and operating systems; and (iii) overcome remote access restrictions. Platform and operating system independence was achieved by redesigning the graphical user interface in JAVA. As secure shell is the standard remote access protocol adopted in major fusion laboratories, secure shell tunneling was implemented to allow remote operation of the diagnostic through the existing firewalls.

  20. Edge and core Thomson scattering systems and their calibration on the ASDEX Upgrade tokamak

    SciTech Connect

    Kurzan, B.; Murmann, H. D.

    2011-10-15

    A new 10 channel Thomson scattering (TS) system was installed on the ASDEX Upgrade tokamak to measure radial profiles of electron density and temperature at the plasma edge with high radial resolution. Together with the already existing TS system, which is now used for the core plasma, electron density and temperature profiles extending from the edge to the core are now obtained in a single discharge. The TS systems are relatively calibrated by an optical parametric oscillator.

  1. Experimental Characterization of the Electron Heat Transport in Low-Density ASDEX Upgrade Plasmas

    SciTech Connect

    Ryter, F.; Imbeaux, F.; Leuterer, F.; Fahrbach, H.-U.; Suttrop, W.; ASDEX Upgrade Team

    2001-06-11

    The electron heat transport is investigated in ASDEX Upgrade conventional L -mode plasmas with pure electron heating provided by electron-cyclotron heating (ECH) at low density. Under these conditions, steady-state and ECH modulation experiments indicate without ambiguity that electron heat transport exhibits a clear threshold in {nabla}T{sub e}/T{sub e} and also suggest that it has a gyro-Bohm character.

  2. A cross-tokamak neural network disruption predictor for the JET and ASDEX Upgrade tokamaks

    NASA Astrophysics Data System (ADS)

    Windsor, C. G.; Pautasso, G.; Tichmann, C.; Buttery, R. J.; Hender, T. C.; EFDA Contributors, JET; ASDEX Upgrade Team

    2005-05-01

    First results are reported on the prediction of disruptions in one tokamak, based on neural networks trained on another tokamak. The studies use data from the JET and ASDEX Upgrade devices, with a neural network trained on just seven normalized plasma parameters. In this way, a simple single layer perceptron network trained solely on JET correctly anticipated 67% of disruptions on ASDEX Upgrade in advance of 0.01 s before the disruption. The converse test led to a 69% success rate in advance of 0.04 s before the disruption in JET. Only one overall time scaling parameter is allowed between the devices, which can be introduced from theoretical arguments. Disruption prediction performance based on such networks trained and tested on the same device shows even higher success rates (JET, 86%; ASDEX Upgrade, 90%), despite the small number of inputs used and simplicity of the network. It is found that while performance for networks trained and tested on the same device can be improved with more complex networks and many adjustable weights, for cross-machine testing the best approach is a simple single layer perceptron. This offers the basis of a potentially useful technique for large future devices such as ITER, which with further development might help to reduce disruption frequency and minimize the need for a large disruption campaign to train disruption avoidance systems.

  3. Modelling plasma response to RMP fields in ASDEX Upgrade with varying edge safety factor and triangularity

    NASA Astrophysics Data System (ADS)

    Li, L.; Liu, Y. Q.; Kirk, A.; Wang, N.; Liang, Y.; Ryan, D.; Suttrop, W.; Dunne, M.; Fischer, R.; Fuchs, J. C.; Kurzan, B.; Piovesan, P.; Willensdorfer, M.; Zhong, F. C.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2016-12-01

    Toroidal computations are performed using the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681), in order to understand correlations between the plasma response and the observed mitigation of the edge localized modes (ELM) using resonant magnetic perturbation fields in ASDEX Upgrade. In particular, systematic numerical scans of the edge safety factor reveal that the amplitude of the resonant poloidal harmonic of the response radial magnetic field near the plasma edge, as well as the plasma radial displacement near the X-point, can serve as good indicators for predicting the optimal toroidal phasing between the upper and lower rows of coils in ASDEX Upgrade. The optimal coil phasing scales roughly linearly with the edge safety factor {{q}95} , for various choices of the toroidal mode number n  =  1-4 of the coil configuration. The optimal coil phasing is also predicted to vary with the upper triangularity of the plasma shape in ASDEX Upgrade. Furthermore, multiple resonance effects of the plasma response, with continuously varying {{q}95} , are computationally observed and investigated.

  4. Solid tungsten Divertor-III for ASDEX Upgrade and contributions to ITER

    NASA Astrophysics Data System (ADS)

    Herrmann, A.; Greuner, H.; Jaksic, N.; Balden, M.; Kallenbach, A.; Krieger, K.; de Marné, P.; Rohde, V.; Scarabosio, A.; Schall, G.; the ASDEX Upgrade Team

    2015-06-01

    ASDEX Upgrade became a full tungsten experiment in 2007 by coating its graphite plasma facing components with tungsten. In 2013 a redesigned solid tungsten divertor, Div-III, was installed and came into operation in 2014. The redesign of the outer divertor geometry provided the opportunity to increase the pumping efficiency in the lower divertor by increasing the gap between divertor and vessel. In parallel, a by-pass was installed into the cryo-pump in the divertor region allowing adapting of the pumping speed to the required edge density. Safe divertor operation and heat removal becomes more and more significant for future fusion devices. This requires developing ‘tools’ for divertor heat load control and to optimize the divertor design. The new divertor manipulator, DIM-II, allows retracting a relevant part of the outer divertor into a target exchange box without venting ASDEX Upgrade. Different front-ends can be installed and exposed to the plasma. At present, front-ends for probe exposition, gas puffing, electrical probes and actively cooled prototype targets are under construction. The installation of solid tungsten, the control of the pumping speed and the flexibility for testing divertor modifications on a weekly base is a unique feature of ASDEX Upgrade and offers together with the extended set of diagnostics the possibility to investigate dedicated questions for a future divertor design.

  5. Pedestal and E r profile evolution during an edge localized mode cycle at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Cavedon, M.; Pütterich, T.; Viezzer, E.; Laggner, F. M.; Burckhart, A.; Dunne, M.; Fischer, R.; Lebschy, A.; Mink, F.; Stroth, U.; Willensdorfer, M.; Wolfrum, E.; the ASDEX Upgrade Team

    2017-10-01

    The upgrade of the edge charge exchange recombination spectroscopy diagnostic at ASDEX Upgrade has enabled highly spatially resolved measurements of the impurity ion dynamics during an edge-localized mode cycle (ELM) with unprecedented temporal resolution, i.e. 65 μs. The increase of transport during an ELM induces a relaxation of the ion, electron edge gradients in impurity density and flows. Detailed characterization of the recovery of the edge temperature gradients reveals a difference in the ion and electron channel: the maximum ion temperature gradient {{\

  6. Dual array 3D electron cyclotron emission imaging at ASDEX Upgrade

    SciTech Connect

    Classen, I. G. J. Bogomolov, A. V.; Domier, C. W.; Luhmann, N. C.; Suttrop, W.; Boom, J. E.; Tobias, B. J.; Donné, A. J. H.

    2014-11-15

    In a major upgrade, the (2D) electron cyclotron emission imaging diagnostic (ECEI) at ASDEX Upgrade has been equipped with a second detector array, observing a different toroidal position in the plasma, to enable quasi-3D measurements of the electron temperature. The new system will measure a total of 288 channels, in two 2D arrays, toroidally separated by 40 cm. The two detector arrays observe the plasma through the same vacuum window, both under a slight toroidal angle. The majority of the field lines are observed by both arrays simultaneously, thereby enabling a direct measurement of the 3D properties of plasma instabilities like edge localized mode filaments.

  7. Impact of lithium pellets on plasma performance in the ASDEX Upgrade all-metal-wall tokamak

    NASA Astrophysics Data System (ADS)

    Lang, P. T.; Maingi, R.; Mansfield, D. K.; McDermott, R. M.; Neu, R.; Wolfrum, E.; Arredondo Parra, R.; Bernert, M.; Birkenmeier, G.; Diallo, A.; Dunne, M.; Fable, E.; Fischer, R.; Geiger, B.; Hakola, A.; Nikolaeva, V.; Kappatou, A.; Laggner, F.; Oberkofler, M.; Ploeckl, B.; Potzel, S.; Pütterich, T.; Sieglin, B.; Szepesi, T.; ASDEX Upgrade Team

    2017-01-01

    The impact of lithium (Li) on plasma performance was investigated at the ASDEX Upgrade tokamak, which features a full tungsten wall. Li pellets containing 1.6  ×  1020 Li atoms were launched with a speed of 600 m s-1 to achieve deep penetration into the plasma and minimize the impact on the first wall. Homogeneous transient Li concentrations in the plasma of up to 15% were established. The Li sustainment time in the plasma decreased with an increasing heating power from 150 to 40 ms. Due to the pellet rate being restricted to 2 Hz, no Li pile-up could take place. No significant positive impact on plasma properties, as reported from other tokamak devices, could be found; the Li pellets rather caused a small reduction in plasma energy, mainly due to enhanced radiation. Due to pellet injection, a short-lived Li layer was formed on the plasma-facing components, which lasted a few discharges and led to moderately beneficial effects during plasma start-up. Most pellets were found to trigger type-I ELMs, either by their direct local perturbation or indirectly by the altered edge conditions; however, reliability was less than 100%.

  8. Simulations of gas puff effects on edge density and ICRF coupling in ASDEX upgrade using EMC3-Eirene

    SciTech Connect

    Zhang, W.; Lunt, T.; Bobkov, V.; Coster, D.; Brida, D.; Noterdaeme, J.-M.; Jacquet, P.; Feng, Y.

    2015-12-10

    Simulations were carried out with the 3D plasma transport code EMC3-EIRENE, to study the deuterium gas (D{sub 2}) puff effects on edge density and the coupling of Ion Cyclotron Range of Frequency (ICRF) power in ASDEX Upgrade. Firstly we simulated an inter-ELM phase of an H-mode discharge with a moderate (1.2 × 10{sup 22} electrons/s) lower divertor gas puff. Then we changed the gas source positions to the mid-plane or top of machine while keeping other conditions the same. Cases with different mid-plane or top gas valves are investigated. Our simulations indicate that compared to lower divertor gas puffing, the mid-plane gas puff can enhance the local density in front of the antennas most effectively, while a rather global (toroidally uniform) but significantly smaller enhancement is found for top gas puffing. Our results show quantitative agreement with the experiments.

  9. Status, Operation, and Extension of the ECRH System at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Wagner, D.; Stober, J.; Leuterer, F.; Monaco, F.; Müller, S.; Münich, M.; Rapson, C. J.; Reich, M.; Schubert, M.; Schütz, H.; Treutterer, W.; Zohm, H.; Thumm, M.; Scherer, T.; Meier, A.; Gantenbein, G.; Jelonnek, J.; Kasparek, W.; Lechte, C.; Plaum, B.; Goodman, T.; Litvak, A. G.; Denisov, G. G.; Chirkov, A.; Zapevalov, V.; Malygin, V.; Popov, L. G.; Nichiporenko, V. O.; Myasnikov, V. E.; Tai, E. M.; Solyanova, E. A.; Malygin, S. A.

    2016-01-01

    The upgraded electron cyclotron resonance heating (ECRH) system at ASDEX Upgrade (AUG) has been routinely used with eight gyrotrons during the last experimental campaign. A further upgrade will replace the existing system of four short-pulse (140 GHz, 2 s, 500 kW) gyrotrons. The final goal is to have around 6.5-7 MW at 140 GHz (or 5.5 MW at 105 GHz) from eight units available in the plasma during the whole AUG discharge (10 s). The system operates at 140 and 105 GHz with X2, O2 and X3 schemes. For B > 3 T also an ITER-like O1-scenario can be run using the 105 GHz option. Four of the eight launching antennas are capable of fast poloidal movements necessary for real-time control of the location of power deposition.

  10. On-line prediction and mitigation of disruptions in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Pautasso, G.; Tichmann, C.; Egorov, S.; Zehetbauer, T.; Gruber, O.; Maraschek, M.; Mast, K.-F.; Mertens, V.; Perchermeier, I.; Raupp, G.; Treutterer, W.; Windsor, C. G.; ASDEX Upgrade Team

    2002-01-01

    An on-line predictor of the time to disruption has been installed on the ASDEX Upgrade tokamak. It is suitable either for avoidance of disruptions or for mitigation of those that are unavoidable. The prediction uses a neural network trained on eight plasma parameters and their time derivatives extracted from 99 disruptive discharges. The network was tested off-line over 500 discharges and was found to work reliably and to be able to predict the majority of the disruptions. The trained network was installed on-line, tested over 128 discharges and used to inject killer pellets to mitigate the disruption loads.

  11. ELM behaviour and linear MHD stability of edge ECRH heated ASDEX Upgrade plasmas

    NASA Astrophysics Data System (ADS)

    Burckhart, A.; Dunne, M.; Wolfrum, E.; Fischer, R.; McDermott, R.; Viezzer, E.; Willensdorfer, M.; the ASDEX Upgrade Team

    2016-05-01

    In order to test the peeling-ballooning ELM model, ECRH heating was applied to the edge of ASDEX Upgrade type-I ELMy H-mode plasmas to alter the pedestal pressure and current density profiles. The discharges were analysed with respect to ideal MHD stability. While the ELM frequency increased and the pedestal gradients relaxed with edge ECRH, the MHD stability boundary did not change. The results indicate that the peeling-ballooning model is insufficient to fully explain the triggering of ELM instabilities in the presence of edge ECRH heating.

  12. A multichannel reflectometer for edge density profile measurements at the ICRF antenna in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Tudisco, O.; Silva, A.; Ceccuzzi, S.; D'Arcangelo, O.; Rocchi, G.; Fuenfgelder, H.; Bobkov, V.; Cavazzana, R.; Conway, G. D.; Friesen, J.; Gonçalves, B.; Mancini, A.; Meneses, L.; Noterdaeme, J. M.; Siegl, G.; Simonetto, A.; Tsujii, N.; Tuccillo, A. A.; Vierle, T.; Zammuto, I.; ASDEX Upgrade Team, Ftu Team

    2014-02-01

    A multichannel reflectometer will be built for the new three-straps ICRF antenna of ASDEX Upgrade (AUG), to study the density behavior in front of it. Ten different accesses to the plasma are available for the three reflectometer channels that can be interchanged without breaking the machine vacuum. Frequency is scanned from 40 GHz to 68 GHz, in 10μs, which corresponds to a cut-off density ranging from 1018÷1019m-3 in the Right cut-off of the X-mode propagation, for standard toroidal magnetic field values of AUG.

  13. A fast feedback controlled magnetic drive for the ASDEX Upgrade fast-ion loss detectors

    NASA Astrophysics Data System (ADS)

    Ayllon-Guerola, J.; Gonzalez-Martin, J.; Garcia-Munoz, M.; Rivero-Rodriguez, J.; Herrmann, A.; Vorbrugg, S.; Leitenstern, P.; Zoletnik, S.; Galdon, J.; Garcia Lopez, J.; Rodriguez-Ramos, M.; Sanchis-Sanchez, L.; Dominguez, A. D.; Kocan, M.; Gunn, J. P.; Garcia-Vallejo, D.; Dominguez, J.

    2016-11-01

    A magnetically driven fast-ion loss detector system for the ASDEX Upgrade tokamak has been designed and will be presented here. The device is feedback controlled to adapt the detector head position to the heat load and physics requirements. Dynamic simulations have been performed taking into account effects such as friction, coil self-induction, and eddy currents. A real time positioning control algorithm to maximize the detector operational window has been developed. This algorithm considers dynamical behavior and mechanical resistance as well as measured and predicted thermal loads. The mechanical design and real time predictive algorithm presented here may be used for other reciprocating systems.

  14. A fast feedback controlled magnetic drive for the ASDEX Upgrade fast-ion loss detectors.

    PubMed

    Ayllon-Guerola, J; Gonzalez-Martin, J; Garcia-Munoz, M; Rivero-Rodriguez, J; Herrmann, A; Vorbrugg, S; Leitenstern, P; Zoletnik, S; Galdon, J; Garcia Lopez, J; Rodriguez-Ramos, M; Sanchis-Sanchez, L; Dominguez, A D; Kocan, M; Gunn, J P; Garcia-Vallejo, D; Dominguez, J

    2016-11-01

    A magnetically driven fast-ion loss detector system for the ASDEX Upgrade tokamak has been designed and will be presented here. The device is feedback controlled to adapt the detector head position to the heat load and physics requirements. Dynamic simulations have been performed taking into account effects such as friction, coil self-induction, and eddy currents. A real time positioning control algorithm to maximize the detector operational window has been developed. This algorithm considers dynamical behavior and mechanical resistance as well as measured and predicted thermal loads. The mechanical design and real time predictive algorithm presented here may be used for other reciprocating systems.

  15. Effect of 3D magnetic perturbations on the plasma rotation in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Martitsch, A. F.; Kasilov, S. V.; Kernbichler, W.; Kapper, G.; Albert, C. G.; Heyn, M. F.; Smith, H. M.; Strumberger, E.; Fietz, S.; Suttrop, W.; Landreman, M.; The ASDEX Upgrade Team; the EUROfusion MST1 Team

    2016-07-01

    The toroidal torque due to the non-resonant interaction with external magnetic perturbations (TF ripple and perturbations from ELM mitigation coils) in ASDEX Upgrade is modelled with help of the NEO-2 and SFINCS codes and compared to semi-analytical models. It is shown that almost all non-axisymmetric transport regimes contributing to neoclassical toroidal viscosity (NTV) are realized within a single discharge at different radial positions. The NTV torque is obtained to be roughly a quarter of the NBI torque. This indicates the presence of other important momentum sources. The role of these momentum sources and possible integral torque balance measurements are briefly discussed.

  16. Fringe jump analysis and implementation of polarimetry on the ASDEX Upgrade DCN interferometer

    SciTech Connect

    Mlynek, A. Casali, L.; Eixenberger, H.; Ford, O.

    2014-11-15

    The ASDEX Upgrade tokamak is equipped with a 5-channel DCN interferometer with a probing wavelength of 195 μm. Up to now, phase measurement and density calculation have been accomplished by hard-wired phase counting electronics. Meanwhile, a fast digitizer has been installed which acquires the raw signals. That way, the various causes of counting errors by integer multiples of 2π, so-called fringe jumps, can be analyzed, and phase reconstruction schemes based on digital signal processing can be developed. In addition, a prototype polarimeter setup has been installed on one channel and allows for measurement of the Faraday rotation experienced by the probing beam.

  17. Influence of gas injection location and magnetic perturbations on ICRF antenna performance in ASDEX Upgrade

    SciTech Connect

    Bobkov, V.; Bilato, R.; Dux, R.; Faugel, H.; Kallenbach, A.; Müller, H. W.; Potzel, S.; Pütterich, Th.; Suttrop, W.; Stepanov, I.; Noterdaeme, J.-M.; Jacquet, P.; Monakhov, I.; Czarnecka, A.; Collaboration: ASDEX Upgrade Team

    2014-02-12

    In ASDEX Upgrade H-modes with H{sub 98}≈0.95, similar effect of the ICRF antenna loading improvement by local gas injection was observed as previously in L-modes. The antenna loading resistance R{sub a} between and during ELMs can increase by more than 25% after a switch-over from a deuterium rate of 7.5⋅10{sup 21} D/s injected from a toroidally remote location to the same amount of deuterium injected close to an antenna. However, in contrast to L-mode, this effect is small in H-mode when the valve downstream w.r.t. parallel plasma flows is used. In L-mode, a non-linearity of R{sub a} at P{sub ICRP}<30 kW is observed when using the gas valve integrated in antenna. Application of magnetic perturbations (MPs) in H-mode discharges leads to an increase of R{sub a}>30% with no effect of spectrum and phase of MPs on R{sub a} found so far. In the case ELMs are fully mitigated, the antenna loading is higher and steadier. In the case ELMs are not fully mitigated, the value of R{sub a} between ELMs is increased. Looking at the W source modification for the improved loading, the local gas injection is accompanied by decreased values of tungsten (W) influx Γ{sub W} from the limiters and its effective sputtering yield Y{sub w}, with the exception of the locations directly at the antenna gas valve. Application of MPs leads to increase of Γ{sub W} and Y{sub w} for some of the MP phases. With nitrogen seeding in the divertor, ICRF is routinely used to avoid impurity accumulation and that despite enhanced Γ{sub W} and Y{sub W} at the antenna limiters.

  18. ECRH on ASDEX Upgrade - System Status, Feed-Back Control, Plasma Physics Results -

    NASA Astrophysics Data System (ADS)

    Stober, J.; Bock, A.; Höhnle, H.; Reich, M.; Sommer, F.; Treutterer, W.; Wagner, D.; Gianone, L.; Herrmann, A.; Leuterer, F.; Monaco, F.; Marascheck, M.; Mlynek, A.; Müller, S.; Münich, M.; Poli, E.; Schubert, M.; Schütz, H.; Zohm, H.; Kasparek, W.; Stroth, U.; Meier, A.; Scherer, Th.; Strauβ, D.; Vaccaro, A.; Flamm, J.; Thumm, M.; Litvak, A.; Denisov, G. G.; Chirkov, A. V.; Tai, E. M.; Popov, L. G.; Nichiporenko, V. O.; Myasnikov, V. E.; Soluyanova, E. A.; Malygin, S. A.

    2012-09-01

    The ASDEX Upgrade (AUG) ECRH system now delivers a total of 3.9 MW to the plasma at 140 GHz. Three new units are capable of 2-frequency operation and may heat the plasma alternatively with 2.1 MW at 105 GHz. The system is routinely used with X2, O2, and X3 schemes. For Bt = 3.2 T also an ITER-like O1-scheme can be run using 105 GHz. The new launchers are capable of fast poloidal movements necessary for real-time control of the location of power deposition. Here real-time control of NTMs is summarized, which requires a fast analysis of massive data streams (ECE and Mirnov correlation) and extensive calculations (equilibria, ray-tracing). These were implemented at AUG using a modular concept of standardized real-time diagnostics. The new realtime capabilities have also been used during O2 heating to keep the first reflection of the non-absorbed beam fraction on the holographic reflector tile which ensures a well defined second pass of the beam through the central plasma. Sensors for the beam position are fast thermocouples at the edge of the reflector tile. The enhanced ECRH power was used for several physics studies related to the unique feature of pure electron heating without fueling and without momentum input. As an example the effect of the variation of the heating mix in moderately heated H-modes is demonstrated using the three available heating systems, i.e. ECRH, ICRH and NBI. Keeping the total input power constant, strong effects are seen on the rotation, but none on the pedestal parameters. Also global quantities as the stored energy are hardly modified. Still it is found that the central ion temperature drops as the ECRH fraction exceeds a certain threshold.

  19. Modeling of pedestal and core radiation in nitrogen seeded H-modes at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Casali, Livia; Fable, Emiliano; Dux, Ralph; Bernert, Matthias; Ryter, Francois; ASDEX Upgrade Team

    2014-10-01

    This work presents the time dependent modeling of the radiation and impurities in the presence of ELMs using the ASTRA transport code coupled to the impurity and radiation code STRAHL. The modeling focuses on the nitrogen seeded discharges of ASDEX Upgrade which exploits the high radiation scenario necessary for next step devices. ASDEX Upgrade has a full tungsten wall and therefore the impurities considered in the model are N and W. The modeling results highlight the importance of non coronal effects induced by transport for low-Z impurities in the pedestal, while tungsten radiation is not affected by transport. Diffusive and convective ELM models are investigated and a comparison between the modeled and the measured radiation suggests a dominant diffusive contribution in the ELM crash. The different values of the neoclassical pinch for N and W result in different reactions to the ELM frequencies and explain the fact that a sufficiently high ELM frequency is required to prevent W accumulation in the confined region.

  20. Magnetic activity and radial electric field during I-phase in ASDEX Upgrade plasmas

    NASA Astrophysics Data System (ADS)

    Birkenmeier, Gregor; Cavedon, Marco; Conway, Garrard; Manz, Peter; Puetterich, Thomas; Stroth, Ulrich; ASDEX Upgrade Team Team

    2016-10-01

    At the transition from the low (L-mode) to the high (H-mode) confinement regime, so called limit-cycle oscillations (LCOs) can occur at the edge of a fusion plasma. During the LCO evolution, which is also called I-phase, the relative importance of background flows and turbulence-generated zonal flows can change, and it is still unclear whether a large contribution of zonal flows is a necessary condition for triggering the H-mode. At ASDEX Upgrade, I-phases have been studied in a wide range of parameters. The modulation of flows and gradients during I-phase is accompanied by a strong magnetic activity with a specific poloidal and toroidal structure. The magnetic activity increases during the development of an edge pedestal during I-phase, and is preceded by type-III ELM-like precursors. During all phases of the I-phase, the radial electric field Er is found to be close to the neoclassical prediction of the electric field Er , neo. These results suggest that zonal flows do not contribute significantly to the LCO dynamics, and the burst like behavior is reminiscent of a critical-gradient driven instability like edge localized modes. These observations on ASDEX Upgrade seem to be inconsistent with LCO models based on an interaction between zonal flows and turbulence.

  1. Perturbative Thermal Transport Studies on Alcator C-Mod and ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Creely, A. J.; White, A. E.; Edlund, E. M.; Howard, N. T.; Hubbard, A. E.; Ryter, F.

    2015-11-01

    Perturbative thermal diffusivity has been measured on Alcator C-Mod and ASDEX Upgrade via the extended-time-to-peak method with heat pulses generated by partial sawtooth crashes. Heat pulses generated by sawtooth crashes have been used extensively in the past to study perturbative diffusivity, but the details of the sawtooth event lead to non-diffusive ``ballistic'' transport, invalidating their use for measuring perturbative diffusivity. Partial sawteeth generate a heat pulse without the ballistic transport of full sawteeth [Fredrickson 2000]. Partial sawtooth analysis was applied to over 50 C-Mod shots containing both L- and I-Mode, as well as ASDEX Upgrade plasmas, though partial sawteeth were less common on AUG. Results indicate correlations between perturbative diffusivity and confinement regime (L- vs. I-mode), as well as correlations with local temperature, density, the associated gradients, and gradient scale lengths (a/LTe and a/Ln). Finally, diffusivities calculated from partial sawteeth were compared to perturbative diffusivities calculated with the GYRO gyrokinetic code, leading to quantitative agreement with multi-scale GYRO simulations. This work is supported by the US DOE under grants DE-SC0006419 and DE-FC02-99ER54512-CMOD.

  2. Avoidance of disruptions at high βN in ASDEX Upgrade with off-axis ECRH

    NASA Astrophysics Data System (ADS)

    Esposito, B.; Granucci, G.; Maraschek, M.; Nowak, S.; Gude, A.; Igochine, V.; Lazzaro, E.; McDermott, R.; Poli, E.; Stober, J.; Suttrop, W.; Treutterer, W.; Zohm, H.; Brunetti, D.; ASDEX Upgrade Team

    2011-08-01

    Experiments on disruption avoidance have been carried out in H-mode ASDEX Upgrade plasmas: the localized perpendicular injection of ECRH (1.5 MW ~ 0.2Ptot) onto the q = 2 resonant surface has led to the delay and/or complete avoidance of disruptions in a high βN scenario (Ip = 1 MA, Bt = 2.1 T, q95 ~ 3.6, with NBI ~7.5 MW). In these discharges (at low q95 and low density) neoclassical tearing modes (NTMs) are excited: the growth and locking of the m/n = 2/1 mode leads to the disruption. The scheme of the experiment is successfully applied in the same way as in previous disruption avoidance experiments in FTU and ASDEX Upgrade. As soon as the disruption precursor signal (the locked mode detector and/or the loop voltage) reaches the preset threshold, the ECRH power is triggered by real-time control. A poloidal scan in deposition location (ρdep) has been carried out by setting the poloidal launching mirrors at different angles in each discharge. The results depend on ρdep: complete disruption avoidance can be achieved when the power is injected close to or onto the 2/1 island. When ECRH is injected outside the island (either at radii inside or outside the q = 2 surface), the discharge is disrupted as in the reference case.

  3. Low-frequency Alfvén eigenmodes during the sawtooth cycle at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Curran, D.; Lauber, Ph; McCarthy, P. J.; da Graça, S.; Igochine, V.; the ASDEX Upgrade Team

    2012-05-01

    The confinement of fast particles, present in tokamak plasmas as nuclear fusion products and through external heating, will be essential for any future reactor. Fast particles can be expelled from the plasma through their interaction with Alfvén eigenmode (AE) instabilities. AEs can exist in gaps in the Alfvén continuum created by plasma equilibrium non-uniformities. In ASDEX Upgrade low-frequency modes in the Alfvén-acoustic frequency regime, including beta-induced Alfvén eigenmodes (BAEs) and lower frequency modes with mixed Alfvén and acoustic polarizations, have been observed. They exist in gaps in the Alfvén continuum opened up by geodesic curvature and finite plasma compressibility. In this paper a kinetic dispersion relation (Lauber et al 2009 Plasma Phys. Control. Fusion 51 124009) is solved numerically to investigate the influence of diamagnetic effects on the evolution of these low-frequency modes during the sawtooth cycle. Other distinct but potentially related modes which sweep significantly upwards in frequency towards the end of the sawtooth cycle are also considered. Using information gained from soft x-ray measurements (Igochine et al 2010 IPP Report 1/338) and electron temperature information from electron cyclotron emission to constrain the safety factor profiles, realistic equilibrium reconstructions for the analysis are obtained using the CLISTE code (Mc Carthy 2012 Plasma Phys. Control. Fusion 54 015010). The results for the mode frequency evolution are then compared with experimental results from ASDEX Upgrade.

  4. Research on DEMO Physics Issues at High Density on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Zohm, Hartmut

    2013-10-01

    Conceptual design studies of DEMO, the step that should bridge the gap between ITER and an FPP, heavily rely on the physics assumptions for its operational scenario. Usual DEMO designs exceed the parameters of the ITER Q = 10 baseline scenario in a number of points, such as βN, n /nGW and frad , core =Prad , core /Ptot . Research on present day devices cannot address these issues simultaneously at the high density and low collisionality that will occur in ITER or DEMO. In the last years, work on the ASDEX Upgrade tokamak has therefore mainly focused on the high density regime, consistent with the operational range set by the unique all-W wall of ASDEX Upgrade. In this contribution, we will report in particular on the following results: ELM mitigation with magnetic perturbation coils at high densities: ASDEX Upgrade has demonstrated reliable ELM mitigation using n = 1, n = 2 and n = 4 coil configurations at high density with no loss in confinement, in contrast to RMP ELM suppression at low density in DIII-D. We will discuss differences and commonalities. H-Mode operation at line averaged density well above the empirical Greenwald limit: small ELM regimes, lead to good pellet fuelling efficiency and have allowed achieving stationary H-modes at n /nGW = 1.5 with peaked density, the pedestal top density staying below nGW. These findings may open a route to operation of DEMO beyond the empirical Greenwald limit. Upper density limit for H-mode operation: recent studies reveal the coupling of an energy loss and the saturation of the density increase, which lead to the degeneration of the H-mode at high edge densities. Hence, also this limit can be viewed as an edge density limit. Exhaust at high Psep / R or high frad , core : both ITER and DEMO will have to operate with (semi)detached divertor at Psep / R >= 15 MW/m to stay in H-mode. We show stationary operation at 7 MW/m with average divertor heat flux below 5 MW/m2 and Te , div ~ 5 eV by simultaneous feedback control

  5. Making ICRF power compatible with a high-Z wall in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, V.; Aguiam, D.; Bilato, R.; Brezinsek, S.; Colas, L.; Faugel, H.; Fünfgelder, H.; Herrmann, A.; Jacquot, J.; Kallenbach, A.; Milanesio, D.; Maggiora, R.; Neu, R.; Noterdaeme, J.-M.; Ochoukov, R.; Potzel, S.; Pütterich, T.; Silva, A.; Tierens, W.; Tuccilo, A.; Tudisco, O.; Wang, Y.; Yang, Q.; Zhang, W.; ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-01-01

    A comparison of the ASDEX Upgrade 3-strap ICRF antenna data with the linear electro-magnetic TOPICA calculations is presented. The comparison substantiates a reduction of the local electric field at the radially protruding plasma-facing elements of the antenna as a relevant approach for minimizing tungsten (W) sputtering in conditions when the slow wave is strongly evanescent. The measured reaction of the time-averaged RF current at the antenna limiters to the antenna feeding variations is less sensitive than predicted by the calculations. This is likely to have been caused by temporal and spatial fluctuations in the 3D plasma density distribution affected by local non-linear interactions. The 3-strap antenna with the W-coated limiters produces drastically less W sputtering compared to the W-coated 2-strap antennas. This is consistent with the non-linear asymptotic SSWICH-SW calculations for RF sheaths.

  6. Fuzzy-neural approaches to the prediction of disruptions in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Morabito, F. C.; Versaci, M.; Pautasso, G.; Tichmann, C.; ASDEX Upgrade Team

    2001-11-01

    Disruption is a sudden loss of magnetic confinement that can cause damage to the machine walls and support structures. For this reason, it is of practical interest to be able to detect the onset of such an event early. A novel technique is presented of early prediction of plasma disruption in tokamak reactors which uses neural networks and `fuzzy' inference. The studies carried out in the work make use of an experimental database of disruptive shots made available by the ASDEX Upgrade Team. The main result of the work is that, in the limit of the available database, it is possible to predict the onset of the disruptive event sufficiently in advance in order to put the control system into action. The proposed system is a modular scheme that exploits a decomposition of the original database carried out in a proper way.

  7. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated electron cyclotron emission

    NASA Astrophysics Data System (ADS)

    Freethy, S. J.; Conway, G. D.; Classen, I.; Creely, A. J.; Happel, T.; Köhn, A.; Vanovac, B.; White, A. E.

    2016-11-01

    Turbulent temperature fluctuations are measured on the ASDEX Upgrade tokamak using pairs of closely spaced, narrow-band heterodyne radiometer channels and a standard correlation technique. The pre-detection spacing and bandwidth of the radiometer channel pairs is chosen such that they are physically separated less than a turbulent correlation length, but do not overlap. The radiometer has 4 fixed filter frequency channels and two tunable filter channels for added flexibility in the measurement position. Relative temperature fluctuation amplitudes are observed in a helium plasma to be δT/T = (0.76 ± 0.02)%, (0.67 ± 0.02)%, and (0.59 ± 0.03)% at normalised toroidal flux radius of ρtor = 0.82, 0.75, and 0.68, respectively.

  8. Type-I ELM substructure on the divertor target plates in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Eich, T.; Herrmann, A.; Neuhauser, J.; Dux, R.; Fuchs, J. C.; Günter, S.; Horton, L. D.; Kallenbach, A.; Lang, P. T.; Maggi, C. F.; Maraschek, M.; Rohde, V.; Schneider, W.; ASDEX Upgrade Team

    2005-06-01

    In the ASDEX Upgrade tokamak, the power deposition structures on the divertor target plates during type-I edge localized modes (ELMs) have been investigated by infrared thermography. In addition to the axisymmetric strike line, several poloidally displaced stripes are resolved, identifying an ELM as a composite of several subevents. This pattern is interpreted as being a signature of the helical perturbations in the low field side edge during the non-linear ELM evolution. Based on this observation, the ELM related magnetic perturbation in the midplane can be derived from the target load pattern. In the start phase of an ELM collapse, average toroidal mode numbers around n ap 3-5 are found evolving to values of n ap 12-14 during the ELM power deposition maximum. Further information about the non-linear evolution of the ELM mode structure is obtained from statistical analyses of the spatial distribution, heat flux amplitudes and number of single stripes.

  9. Electromagnetic simulations of the ASDEX Upgrade ICRF Antenna with the TOPICA code

    SciTech Connect

    Krivska, A.; Milanesio, D.; Bobkov, V.; Braun, F.; Noterdaeme, J.-M.

    2009-11-26

    Accurate and efficient simulation tools are necessary to optimize the ICRF antenna design for a set of operational conditions. The TOPICA code was developed for performance prediction and for the analysis of ICRF antenna systems in the presence of plasma, given realistic antenna geometries. Fully 3D antenna geometries can be adopted in TOPICA, just as in available commercial codes. But while those commercial codes cannot operate with a plasma loading, the TOPICA code correctly accounts for realistic plasma loading conditions, by means of the coupling with 1D FELICE code. This paper presents the evaluation of the electric current distribution on the structure, of the parallel electric field in the region between the straps and the plasma and the computation of sheaths driving RF potentials. Results of TOPICA simulations will help to optimize and re-design the ICRF ASDEX Upgrade antenna in order to reduce tungsten (W) sputtering attributed to the rectified sheath effect during ICRF operation.

  10. Investigation of fast ion pressure effects in ASDEX Upgrade by spectral MSE measurements

    NASA Astrophysics Data System (ADS)

    Reimer, René; Dinklage, Andreas; Wolf, Robert; Dunne, Mike; Geiger, Benedikt; Hobirk, Jörg; Reich, Matthias; ASDEX Upgrade Team; McCarthy, Patrick J.

    2017-04-01

    High precision measurements of fast ion effects on the magnetic equilibrium in the ASDEX Upgrade tokamak have been conducted in a high-power (10 MW) neutral-beam injection discharge. An improved analysis of the spectral motional Stark effect data based on forward-modeling, including the Zeeman effect, fine-structure and non-statistical sub-level distribution, revealed changes in the order of 1% in |B| . The results were found to be consistent with results from the equilibrium solver CLISTE. The measurements allowed us to derive the fast ion pressure fraction to be Δ {{p}\\text{FI}}/{{p}\\text{mhd}}≈ 10 % and variations of the fast ion pressure are consistent with calculations of the transport code TRANSP. The results advance the understanding of fast ion confinement and magneto-hydrodynamic stability in the presence of fast ions.

  11. Turbulence characteristics of the I-mode confinement regime in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Manz, P.; Happel, T.; Ryter, F.; Bernert, M.; Birkenmeier, G.; Conway, G. D.; Dunne, M.; Guimarais, L.; Hennequin, P.; Hetzenecker, A.; Honoré, C.; Lauber, P.; Maraschek, M.; Nikolaeva, V. E.; Prisiazhniuk, D.; Stroth, U.; Viezzer, E.; ASDEX Upgrade Team2, The

    2017-08-01

    Besides strong geodesic acoustic mode (GAM) activity, turbulence in the I-mode confinement regime of ASDEX Upgrade exhibits two prominent features, the weakly coherent mode (WCM) and strongly intermittent solitary density perturbations. The nonlinear interaction between these structures is studied in detail by means of a conditional averaged wavelet-bicoherence analysis. The wavelet analysis reveals that these density perturbations are at the WCM frequency. The GAM is coupled to all frequency scales of the velocity fluctuations via a modulational instability. The WCM shows coupling to higher frequencies prior to the bursts, indicating a process resembling wave-steepening. A possible mechanism for the generation of such solitary density perturbations by a Korteweg-de Vries-like nonlinearity is discussed.

  12. Disruption mitigation by injection of small quantities of noble gas in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Pautasso, G.; Bernert, M.; Dibon, M.; Duval, B.; Dux, R.; Fable, E.; Fuchs, J. C.; Conway, G. D.; Giannone, L.; Gude, A.; Herrmann, A.; Hoelzl, M.; McCarthy, P. J.; Mlynek, A.; Maraschek, M.; Nardon, E.; Papp, G.; Potzel, S.; Rapson, C.; Sieglin, B.; Suttrop, W.; Treutterer, W.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-01-01

    The most recent experiments of disruption mitigation by massive gas injection in ASDEX Upgrade have concentrated on small—relatively to the past—quantities of noble gas injected, and on the search for the minimum amount of gas necessary for the mitigation of the thermal loads on the divertor and for a significant reduction of the vertical force during the current quench. A scenario for the generation of a long-lived runaway electron beam has been established; this allows the study of runaway current dissipation by moderate quantities of argon injected. This paper presents these recent results and discusses them in the more general context of physical models and extrapolation, and of the open questions, relevant for the realization of the ITER disruption mitigation system.

  13. Interpretation of fast measurements of plasma potential, temperature and density in SOL of ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Horacek, J.; Adamek, J.; Müller, H. W.; Seidl, J.; Nielsen, A. H.; Rohde, V.; Mehlmann, F.; Ionita, C.; Havlíčková, E.; ASDEX Upgrade Team

    2010-10-01

    This paper focuses on interpretation of fast (1 µs) and local (2-4 mm) measurements of plasma density, potential and electron temperature in the edge plasma of tokamak ASDEX Upgrade. Steady-state radial profiles demonstrate the credibility of the ball-pen probe. We demonstrate that floating potential fluctuations measured by a Langmuir probe are dominated by plasma electron temperature rather than potential. Spatial and temporal scales are found consistent with expectations based on interchange-driven turbulence. Conditionally averaged signals found for both potential and density are also consistent; however, those for temperature show an unexpected ~4 mm wide decrease by 10% at the very centre of a blob. In the wall shadow, temperature measured by the swept Langmuir probe yields values ~10 eV, whilst the ball-pen temperature gradient is more steep and credible, dropping down to ~1 eV.

  14. Video analysis of dust events in full-tungsten ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Brochard, F.; Shalpegin, A.; Bardin, S.; Lunt, T.; Rohde, V.; Briançon, J. L.; Pautasso, G.; Vorpahl, C.; Neu, R.; The ASDEX Upgrade Team

    2017-03-01

    Fast video data recorded during seven consecutive operation campaigns (2008-2012) in full-tungsten ASDEX Upgrade have been analyzed with an algorithm developed to automatically detect and track dust particles. A total of 2425 discharges have been analyzed, corresponding to 12 204 s of plasma operation. The analysis aimed at precisely identifying and sorting the discharge conditions responsible of the dust generation or remobilization. Dust rates are found to be significantly lower than in tokamaks with carbon PFCs. Significant dust events occur mostly during off-normal plasma phases such as disruptions and particularly those preceded by vertical displacement events (VDEs). Dust rates are also increased but to a lower extent during type-I ELMy H-modes. The influences of disruption energy, heating scenario, vessel venting and vessel vibrations are also presented.

  15. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated electron cyclotron emission

    SciTech Connect

    Freethy, S. J.; Conway, G. D.; Happel, T.; Köhn, A.; Classen, I.; Vanovac, B.; Creely, A. J.; White, A. E.

    2016-11-15

    Turbulent temperature fluctuations are measured on the ASDEX Upgrade tokamak using pairs of closely spaced, narrow-band heterodyne radiometer channels and a standard correlation technique. The pre-detection spacing and bandwidth of the radiometer channel pairs is chosen such that they are physically separated less than a turbulent correlation length, but do not overlap. The radiometer has 4 fixed filter frequency channels and two tunable filter channels for added flexibility in the measurement position. Relative temperature fluctuation amplitudes are observed in a helium plasma to be δT/T = (0.76 ± 0.02)%, (0.67 ± 0.02)%, and (0.59 ± 0.03)% at normalised toroidal flux radius of ρ{sub tor} = 0.82, 0.75, and 0.68, respectively.

  16. Poloidal asymmetric flow and current relaxation of ballooned transport during I-phase in ASDEX Upgrade

    SciTech Connect

    Manz, P.; Birkenmeier, G.; Medvedeva, A.; Fuchert, G.; Cavedon, M.; Conway, G. D.; Maraschek, M.; Mink, F.; Scott, B. D.; Shao, L. M.; Stroth, U.

    2016-05-15

    Turbulence driven poloidal asymmetric parallel flow and current perturbations are studied for tokamak plasmas of circular geometry. Whereas zonal flows can lead to in-out asymmetry of parallel flows and currents via the Pfirsch–Schlüter mechanism, ballooned transport can result in an up-down asymmetry due to the Stringer spin-up mechanism. Measurements of up-down asymmetric parallel current fluctuations occurring during the I-phase in ASDEX Upgrade are not responses to the equilibrium by the Pfirsch–Schlüter current, but can be interpreted as a response to strongly ballooned plasma transport coupled with the Stringer spin-up mechanism. A good agreement of the experimental measured limit-cycle frequencies during I-phase with the Stringer spin-up relaxation frequency is found.

  17. Investigation of fast particle driven instabilities by 2D electron cyclotron emission imaging on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Classen, I. G. J.; Lauber, Ph; Curran, D.; Boom, J. E.; Tobias, B. J.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Garcia Munoz, M.; Geiger, B.; Maraschek, M.; Van Zeeland, M. A.; da Graça, S.; ASDEX Upgrade Team

    2011-12-01

    Detailed measurements of the 2D mode structure of Alfvén instabilities in the current ramp-up phase of neutral beam heated discharges were performed on ASDEX Upgrade, using the electron cyclotron emission imaging (ECEI) diagnostic. This paper focuses on the observation of reversed shear Alfvén eigenmodes (RSAEs) and bursting modes that, with the use of the information from ECEI, have been identified as beta-induced Alfvén eigenmodes (BAEs). Both RSAEs with first and second radial harmonic mode structures were observed. Calculations with the linear gyro-kinetic code LIGKA revealed that the ratio of the damping rates and the frequency difference between the first and second harmonic modes strongly depended on the shape of the q-profile. The bursting character of the BAE type modes, which were radially localized to rational q surfaces, was observed to sensitively depend on the plasma parameters, ranging from strongly bursting to almost steady state.

  18. Turbulence intermittency linked to the weakly coherent mode in ASDEX Upgrade I-mode plasmas

    NASA Astrophysics Data System (ADS)

    Happel, T.; Manz, P.; Ryter, F.; Hennequin, P.; Hetzenecker, A.; Conway, G. D.; Guimarais, L.; Honoré, C.; Stroth, U.; Viezzer, E.; The ASDEX Upgrade Team

    2016-06-01

    This letter shows for the first time a pronounced increase of extremely intermittent edge density turbulence behavior inside the confinement region related to the I-mode confinement regime in the ASDEX Upgrade tokamak. With improving confinement, the perpendicular propagation velocity of density fluctuations in the plasma edge increases together with the intermittency of the observed density bursts. Furthermore, it is shown that the weakly coherent mode, a fluctuation feature generally observed in I-mode plasmas, is connected to the observed bursts. It is suggested that the large amplitude density bursts could be generated by a non-linearity similar to that in the Korteweg-de-Vries equation which includes the radial temperature gradient.

  19. Geodesic oscillations and the weakly coherent mode in the I-mode of ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Manz, P.; Lauber, P.; Nikolaeva, V. E.; Happel, T.; Ryter, F.; Birkenmeier, G.; Bogomolov, A.; Conway, G. D.; Manso, M. E.; Maraschek, M.; Prisiazhniuk, D.; Viezzer, E.

    2015-08-01

    Density fluctuations in I-mode discharges in ASDEX Upgrade are studied. The I-mode specific weakly coherent mode (WCM) appears at the transition from the L to I-mode. The WCM but also the turbulence in general are strongly modulated by a low frequency mode which can be related to the geodesic acoustic mode (GAM). The GAM induces an energy transfer away from the central WCM frequency, indicating an underlying instability responsible for the WCM. During the I-mode magnetic fluctuations close to the WCM frequency are intensified, which can be assigned to the geodesic Alfvénic oscillation. The geodesic Alfvénic oscillation is already present in the L-mode, and does not follow changes of frequency of the WCM, therefore it is not responsible for the WCM.

  20. Density profile sensitivity study of ASDEX Upgrade ICRF Antennas with the TOPICA code

    SciTech Connect

    Krivska, A.; Ceccuzzi, S.; Tuccillo, A. A.; Milanesio, D.; Maggiora, R.; Bobkov, V.; Braun, F.; Noterdaeme, J.-M.

    2011-12-23

    During operation of the ASDEX Upgrade (AUG) ion cyclotron radio frequency (ICRF) system, Tungsten (W)-coated poloidal limiters and structures connected along magnetic field lines to the antenna can be sources of W, which is attributed to sputtering by ions accelerated in radio frequency (RF) sheaths. In order to analyze and optimize the ICRF antenna performance, accurate and efficient simulation tools are necessary. TOPICA code was developed for analysis of ICRF antenna systems with plasma loading conditions modeled with ID FELICE code. This paper presents an initial comparative analysis of two AUG ICRF antennas for a set of model plasma density profiles (with varying density gradient and antenna cut-off distance). The antennas are presently installed in AUG and differ in that one was partially optimized using HFSS code to reduce E{sub ||} near fields. Power transferred to plasma and sheath driving RF potentials are computed.

  1. Non-linear modeling of the plasma response to RMPs in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Orain, F.; Hölzl, M.; Viezzer, E.; Dunne, M.; Bécoulet, M.; Cahyna, P.; Huijsmans, G. T. A.; Morales, J.; Willensdorfer, M.; Suttrop, W.; Kirk, A.; Pamela, S.; Günter, S.; Lackner, K.; Strumberger, E.; Lessig, A.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-02-01

    The plasma response to resonant magnetic perturbations (RMPs) in ASDEX Upgrade is modeled with the non-linear resistive MHD code JOREK, using input profiles that match those of the experiments as closely as possible. The RMP configuration for which edge localized modes are best mitigated in experiments is related to the largest edge kink response observed near the X-point in modeling. On the edge resonant surfaces q  =  m/n, the coupling between the kink component (m  >  nq) and the m resonant component is found to induce the amplification of the resonant magnetic perturbation. The ergodicity and the 3D-displacement near the X-point induced by the resonant amplification can only partly explain the density pumpout observed in experiments.

  2. Transport simulations of the pre-thermal-quench phase in ASDEX Upgrade massive gas injection experiments

    NASA Astrophysics Data System (ADS)

    Fable, E.; Pautasso, G.; Lehnen, M.; Dux, R.; Bernert, M.; Mlynek, A.; the ASDEX Upgrade Team

    2016-02-01

    The pre-thermal-quench (PTQ) phase of the massive gas injection (MGI) scenario to terminate the tokamak plasma discharge is studied by means of one-dimensional (1D) transport simulations. This phase is characterized by the cold-front penetration in the hot plasma after the gas has been released from the valves, and before the actual thermal quench takes place, with consequent plasma disruption at lower stored energy. The comparison between the simulations and the ASDEX Upgrade (AUG) experiments allows to gain insight in the observed dependencies and time scales. Despite the genuine three-dimensional structure of the problem, it is shown that the 1D simulations are already giving experimentally relevant answers, the reason for which will be discussed in detail. Influence of unknown parameters and simplifying assumptions are also discussed.

  3. First absolute measurements of fast-ion losses in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ramos, M.; Garcia-Munoz, M.; Jimenez-Ramos, M. C.; Garcia Lopez, J.; Galdon-Quiroga, J.; Sanchis-Sanchez, L.; Ayllon-Guerola, J.; Faitsch, M.; Gonzalez-Martin, J.; Hermann, A.; de Marne, P.; Rivero-Rodriguez, J. F.; Sieglin, B.; Snicker, A.; the ASDEX Upgrade Team

    2017-10-01

    A new diagnostic technique that allows to obtain absolute fluxes of fast-ion losses measured with absolutely calibrated scintillator based fast-ion loss detectors (FILD) is presented here. First absolute fluxes of fast-ion losses have been obtained in the ASDEX Upgrade tokamak. An instrument function that includes the scintillator efficiency, collimator geometry, optical transmission and camera efficiency has been constructed. The scintillator response to deuterium ions in the relevant energy range of fast-ions has been characterized using a tandem accelerator. Absolute flux of neutral beam injection (NBI) prompt losses has been obtained in magnetohydrodynamic quiescent plasmas. The temporal evolution of the heat load measured with FILD follows that measured at the FILD entrance obtained with an Infra-Red camera looking at the FILD detector head. ASCOT simulations are in good agreement with the absolute heat load of NBI prompt losses measured with FILD.

  4. Resolving the bulk ion region of millimeter-wave collective Thomson scattering spectra at ASDEX Upgrade

    SciTech Connect

    Stejner, M. Nielsen, S.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Rasmussen, J.; Salewski, M.; Moseev, D.; Schubert, M.; Stober, J.; Wagner, D. H.

    2014-09-15

    Collective Thomson scattering (CTS) measurements provide information about the composition and velocity distribution of confined ion populations in fusion plasmas. The bulk ion part of the CTS spectrum is dominated by scattering off fluctuations driven by the motion of thermalized ion populations. It thus contains information about the ion temperature, rotation velocity, and plasma composition. To resolve the bulk ion region and access this information, we installed a fast acquisition system capable of sampling rates up to 12.5 GS/s in the CTS system at ASDEX Upgrade. CTS spectra with frequency resolution in the range of 1 MHz are then obtained through direct digitization and Fourier analysis of the CTS signal. We here describe the design, calibration, and operation of the fast receiver system and give examples of measured bulk ion CTS spectra showing the effects of changing ion temperature, rotation velocity, and plasma composition.

  5. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated electron cyclotron emission.

    PubMed

    Freethy, S J; Conway, G D; Classen, I; Creely, A J; Happel, T; Köhn, A; Vanovac, B; White, A E

    2016-11-01

    Turbulent temperature fluctuations are measured on the ASDEX Upgrade tokamak using pairs of closely spaced, narrow-band heterodyne radiometer channels and a standard correlation technique. The pre-detection spacing and bandwidth of the radiometer channel pairs is chosen such that they are physically separated less than a turbulent correlation length, but do not overlap. The radiometer has 4 fixed filter frequency channels and two tunable filter channels for added flexibility in the measurement position. Relative temperature fluctuation amplitudes are observed in a helium plasma to be δT/T = (0.76 ± 0.02)%, (0.67 ± 0.02)%, and (0.59 ± 0.03)% at normalised toroidal flux radius of ρtor = 0.82, 0.75, and 0.68, respectively.

  6. Electromagnetic effects on turbulent transport in high-performance ASDEX Upgrade discharges

    SciTech Connect

    Doerk, H.; Dunne, M.; Ryter, F.; Schneider, P. A.; Wolfrum, E.; Jenko, F.

    2015-04-15

    Modern tokamak H-mode discharges routinely operate at high plasma beta. Dedicated experiments performed on multiple machines measure contradicting dependence of the plasma confinement on this important parameter. In view of designing high-performance scenarios for next-generation devices like ITER, a fundamental understanding of the involved physics is crucial. Theoretical results—most of which have been obtained for simplified setups—indicate that increased beta does not only modify the characteristics of microturbulence but also potentially introduces fundamentally new physics. Empowered by highly accurate measurements at ASDEX Upgrade, the GENE turbulence code is used to perform a comprehensive gyrokinetic study of dedicated H-Mode plasmas. We find the stabilization of ion-temperature-gradient driven turbulence to be the most pronounced beta effect in these experimentally relevant cases. The resulting beta-improved core confinement should thus be considered for extrapolations to future machines.

  7. Gyrokinetic studies of core turbulence features in ASDEX Upgrade H-mode plasmas

    SciTech Connect

    Navarro, A. Bañón Told, D.; Happel, T.; Görler, T.; Abiteboul, J.; Bustos, A.; Doerk, H.; Jenko, F.

    2015-04-15

    Gyrokinetic validation studies are crucial for developing confidence in the model incorporated in numerical simulations and thus improving their predictive capabilities. As one step in this direction, we simulate an ASDEX Upgrade discharge with the GENE code, and analyze various fluctuating quantities and compare them to experimental measurements. The approach taken is the following. First, linear simulations are performed in order to determine the turbulence regime. Second, the heat fluxes in nonlinear simulations are matched to experimental fluxes by varying the logarithmic ion temperature gradient within the expected experimental error bars. Finally, the dependence of various quantities with respect to the ion temperature gradient is analyzed in detail. It is found that density and temperature fluctuations can vary significantly with small changes in this parameter, thus making comparisons with experiments very sensitive to uncertainties in the experimental profiles. However, cross-phases are more robust, indicating that they are better observables for comparisons between gyrokinetic simulations and experimental measurements.

  8. Latest investigations on fluctuations, ELM filaments and turbulent transport in the SOL of ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Müller, H. W.; Adamek, J.; Cavazzana, R.; Conway, G. D.; Fuchs, C.; Gunn, J. P.; Herrmann, A.; Horaček, J.; Ionita, C.; Kallenbach, A.; Kočan, M.; Maraschek, M.; Maszl, C.; Mehlmann, F.; Nold, B.; Peterka, M.; Rohde, V.; Schweinzer, J.; Schrittwieser, R.; Vianello, N.; Wolfrum, E.; Zuin, M.; ASDEX Upgrade Team

    2011-07-01

    This paper presents turbulence investigations in the scrape-off layer (SOL) of ASDEX Upgrade in ohmic, L-mode and H-mode discharges using electrostatic and electromagnetic probes. Detailed studies are performed on small scale turbulence and on ELM filaments. Simultaneous measurements of floating and plasma potential fluctuations revealed significant differences between these quantities. Large errors can occur when the electric field is extracted from floating potential measurements, even in ohmic discharges. Turbulence studies in ohmic plasmas show the existence of density holes inside the separatrix and blobs outside. Close to the separatrix a reversal of the poloidal blob propagation velocity occurs. Investigations on the Reynolds stress in the scrape-off layer (SOL) show its importance for the momentum transport in L-mode while its impact for momentum transport during ELMs in H-mode is rather small. In the far SOL the electron density and temperature were measured during type-I ELMy H-mode at ASDEX Upgrade resolving ELM filaments. Strong density peaks and temperatures of several 10 eV were detected during the ELM events. Additional investigations on the ions in ELM filaments by a retarding field analyser indicate ion temperatures of 50-80 eV. ELMs also expel current concentrated in filaments into the SOL. Furthermore, discharges with small ELMs were studied. In N2 seeded discharges the type-I ELM frequency rises and the ELM duration decreases. For discharges with small type-II ELMs the mean turbulent radial particle flux is increased over the mean particle flux in type-I ELM discharges at otherwise similar plasma parameters.

  9. Feasibility study for a new high resolution Thomson scattering system for the ASDEX Upgrade pedestal

    NASA Astrophysics Data System (ADS)

    Tsalas, M.; Kantor, M. Yu; Maj, O.; Bilato, R.; de Vries, P. C.; Donné, A. J. H.; Herrmann, A.; Kurzan, B.; Wolfrum, E.; the ASDEX Upgrade Team

    2012-03-01

    A new Thomson scattering diagnostic is proposed for the study of fast plasma dynamics in the pedestal of ASDEX Upgrade. The diagnostic will measure electron temperature and density profiles over a ~ 3 cm wide area in the edge transport barrier region, with ~ 1-2 mm spatial resolution and ~ 10 kHz sampling rate. A challenging goal of the project is the study of the bootstrap current in the plasma pedestal by measuring the distortion and shift of the electron distribution along the toroidal direction. Expected spatial and time resolutions of the current density measurements are ~ 3 mm and ~ 1 ms correspondingly. The new diagnostic will be used to study the fast dynamic behaviour of the pedestal bootstrap current, where models indicate that it plays a key role in regulating edge stability, e.g. during ELMs. The diagnostic design is based on the intra-cavity multi-pass system currently in operation in TEXTOR, which uses a probing ruby laser, a grating spectrometer and two fast CMOS cameras for scattered light detection, and has achieved measuring accuracies of the order of ~ 1% for ne and ~ 2% for Te. Parts of that system will be reused in ASDEX Upgrade (some with significant modifications), but the laser multi-pass and light collection systems are entirely redesigned. Restrictions in space and line-of-sight availability have led to the adoption of a design which uses in-vessel multi-pass mirrors and light collection optics, requiring a number of innovative technical solutions to permit remote laser alignment and light collection. We give an overview of the project, discuss the underlying physics basis and present a number of technical solutions employed.

  10. Compatibility of ITER scenarios with full tungsten wall in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Gruber, O.; Sips, A. C. C.; Dux, R.; Eich, T.; Fuchs, J. C.; Herrmann, A.; Kallenbach, A.; Maggi, C. F.; Neu, R.; Pütterich, T.; Schweinzer, J.; Stober, J.; ASDEX Upgrade Team

    2009-11-01

    The transition of ASDEX Upgrade (AUG) from a graphite device to a full tungsten device is demonstrated with a reduction by an order of magnitude in both the carbon deposition and deuterium retention. The tungsten source is dominated by sputtering from intrinsic light impurities, and the tungsten influxes from the outboard limiters are the main source for the plasma. In H-mode discharges, central heating (neutral beams, ECRH) is used to increase turbulent outward transport avoiding tungsten accumulation. ICRH can only be used after boronization as its application otherwise results in large W influxes due to light impurities accelerated by electrical fields at the ICRH antennas. ELMs are important in reducing the inward transport of tungsten in the H-mode edge barrier and are controlled by gas puffing. Even without boronization, stationary, ITER baseline H-modes (confinement enhancement factor from ITER 98(y, 2) scaling H98 ~ 1, normalized beta βN ~ 2), with W concentrations below 3 × 10-5 were routinely achieved up to 1.2 MA plasma current. The compatibility of high performance improved H-modes with unboronized W wall was demonstrated, achieving H98 = 1.1 and βN up to 2.6 at modest triangularities δ <= 0.3 as required for advanced scenarios in ITER. With boronization the light impurities and the radiated power fraction especially in the divertor were reduced and the divertor plasma was actively cooled by N2 seeding. N2 seeding does not only protect the divertor tiles but also considerably improves the performance of improved H-mode discharges. The energy confinement increased to H98-factors of 1.25 (βN ~ 2.7) and thereby exceeded the best values in a carbon-dominated AUG machine under similar conditions. Recent investigations show that this improvement is due to higher temperatures rather than to peaking of the electron density profile. Further ITER discharge scenario tests include the demonstration of ECRF assisted low voltage plasma start-up and current rise

  11. On the effect of neoclassical flows on intrinsic momentum in ASDEX Upgrade Ohmic L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Hornsby, W. A.; Angioni, C.; Fable, E.; Manas, P.; McDermott, R.; Peeters, A. G.; Barnes, M.; Parra, F.; The ASDEX Upgrade Team

    2017-04-01

    A gyro-kinetic analysis of intrinsic rotation is presented for the ASDEX Upgrade tokamak. The gyro-kinetic turbulence code, GKW and the neoclassical transport code, NEO are coupled so that the neoclassical equilibrium distribution function is included in the background distribution function in the gyro-kinetic turbulence simulation. This implementation is benchmarked against a similar implementation in the gyro-kinetic code, GS2 (Dorland et al 2000 Phys. Rev. Lett. 85 5579) and against analytical predictions. A quasi-linear and non-linear gyro-kinetic turbulence analysis is performed on Ohmic L-mode ASDEX Upgrade plasmas showing that the symmetry breaking effects due to neoclassical background flows can produce significant toroidal momentum transport. While its magnitude is of the order of other symmetry breaking mechanisms, such as the Coriolis pinch, up–down asymmetry in the magnetic flux surfaces and E× B flow shear, the flow gradients it can sustain are appreciably smaller than the maximum gradients measured at the mid-radius of the ASDEX Upgrade tokamak core, which can be up to an order of magnitude larger. It is found that the gradient of the diamagnetic flow, and therefore the second derivatives of the density and temperature gradients are critical to the production of residual toroidal momentum flux. A quasi-linear estimate indicated that the second derivatives required to match the experimental flow gradient are up to an order of magnitude higher than the measured second derivatives. This analysis suggests that turbulent transport driven by neoclassical flows is not sufficient to explain the maximum flow gradients observed in ASDEX Upgrade.

  12. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated Electron Cyclotron Emission

    NASA Astrophysics Data System (ADS)

    Freethy, S.; Conway, G. D.; Classen, I.; Creely, A. J.; Happel, T.; Vanovac, B.; White, A. E.; ASDEX Upgrade Team

    2016-10-01

    First measurements of core (r/a < 0.95) turbulent electron temperature fluctuations made on the ASDEX Upgrade (AUG) tokamak using a Correlation Electron Cyclotron Emission (CECE) technique are presented. Validation of gyro-kinetic models against measurements of the underlying turbulent micro-structure are essential for developing predictive capabilities for future devices. In tokamak plasmas, turbulent temperature fluctuations are sufficiently broadband ( 0.5 MHz) and low-amplitude ( 1%) that conventional radiometer techniques are fundamentally unable to detect them and a correlation technique is required to further extract the signals. An application of the spectral decorrelation method had been designed and built for AUG. This CECE radiometer shares an optical path with a reflectometer and is sensitive to wavenumbers perpendicular to the magnetic field k⊥ up to 0.76 cm-1 . An upgrade to the focusing mirror will increase this range to k⊥ up to 1.4 cm-1. Measurements in Helium plasmas have been made at three radial locations simultaneously, providing a profile of the temperature fluctuation amplitude in the outer core of Electron Cyclotron Resonance Heated heated L-mode plasmas. New results and future plans will be presented. This work is supported by the US DOE under Grant DE-SC0006419.

  13. Numerically derived parametrisation of optimal RMP coil phase as a guide to experiments on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Ryan, D. A.; Liu, Y. Q.; Li, L.; Kirk, A.; Dunne, M.; Dudson, B.; Piovesan, P.; Suttrop, W.; Willensdorfer, M.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-02-01

    Edge localised modes (ELMs) are a repetitive MHD instability, which may be mitigated or suppressed by the application of resonant magnetic perturbations (RMPs). In tokamaks which have an upper and lower set of RMP coils, the applied spectrum of the RMPs can be tuned for optimal ELM control, by introducing a toroidal phase difference {{Δ }}{{Φ }} between the upper and lower rows. The magnitude of the outermost resonant component of the RMP field | {b}{{res}}1| (other proposed criteria are discussed herein) has been shown experimentally to correlate with mitigated ELM frequency, and to be controllable by {{Δ }}{{Φ }} (Kirk et al 2013 Plasma Phys. Control. Fusion 53 043007). This suggests that ELM mitigation may be optimised by choosing {{Δ }}{{Φ }}={{Δ }}{{{Φ }}}{{opt}}, such that | {b}{{res}}1| is maximised. However it is currently impractical to compute {{Δ }}{{{Φ }}}{{opt}} in advance of experiments. This motivates this computational study of the dependence of the optimal coil phase difference {{Δ }}{{{Φ }}}{{opt}}, on global plasma parameters {β }N and q 95, in order to produce a simple parametrisation of {{Δ }}{{{Φ }}}{{opt}}. In this work, a set of tokamak equilibria spanning a wide range of ({β }N, q 95) is produced, based on a reference equilibrium from an ASDEX Upgrade experiment. The MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681) is then used to compute {{Δ }}{{{Φ }}}{{opt}} across this equilibrium set for toroidal mode numbers n = 1-4, both for the vacuum field and including the plasma response. The computational scan finds that for fixed plasma boundary shape, rotation profiles and toroidal mode number n, {{Δ }}{{{Φ }}}{{opt}} is a smoothly varying function of ({β }N, q 95). A 2D quadratic function in ({β }N, q 95) is used to parametrise {{Δ }}{{{Φ }}}{{opt}}, such that for given ({β }N, q 95) and n, an estimate of {{Δ }}{{{Φ }}}{{opt}} may be made without requiring a plasma response computation. To quantify the uncertainty

  14. Measurements and simulations of ICRF induced plasma convection in front of the 3-strap antennas in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; ASDEX Upgrade Team; Eurofusion MST1 Team

    2016-10-01

    Plasma heating with waves in the Ion Cyclotron Range of Frequency (ICRF) is one of the standard heating methods in tokamaks. The parallel (to the magnetic field) component of the electric field of the waves enhances the edge plasma potential nonlinearly through radio-frequency-sheath (rf-sheath) rectification. The gradient of this potential across magnetic field drives plasma convection in the Scrape-Off Layer. To reduce the rf-sheath driven close to ICRF antennas, the parallel electric near-field has to be decreased. This can be achieved by minimization of undesired parasitic currents induced in the antenna box by the antenna currents. New antennas with a novel approach to reduce those undesired currents through the proper phase and amplitude of the current in 3-straps have been installed and validated on ASDEX Upgrade. With reflectometers embedded in one 3-strap antenna at different poloidal locations, the density profiles in front of the antenna can be measured in when the antenna is either active or passive. The ICRF induced edge plasma convection in different antenna feeding configurations (different phasing, different power ratio between the central and the side straps) has thus been studied. Also we have carried out comprehensive simulations by running the EMC3EIRENE, RAPLICASOL and SSWICH codes in an iterative and quasi self-consistent way. The steadystate ICRF induced plasma density convection can clearly be reproduced in the models and compared with the ones measured in experiments.

  15. Estimation of sheath potentials in front of ASDEX upgrade ICRF antenna with SSWICH asymptotic code

    NASA Astrophysics Data System (ADS)

    Křivská, A.; Bobkov, V.; Colas, L.; Jacquot, J.; Milanesio, D.; Ochoukov, R.

    2015-12-01

    Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF) heating became problematic in ASDEX Upgrade (AUG) tokamak after coating of ICRF antenna limiters and other plasma facing components by tungsten. Strong impurity influx was indeed produced at levels of injected power markedly lower than in the previous experiments. It is assumed that the impurity production is mainly driven by parallel component of Radio-Frequency (RF) antenna electric near-field E// that is rectified in sheaths. In this contribution we estimate poloidal distribution of sheath Direct Current (DC) potential in front of the ICRF antenna and simulate its relative variations over the parametric scans performed during experiments, trying to reproduce some of the experimental observations. In addition, relative comparison between two types of AUG ICRF antenna configurations, used for experiments in 2014, has been performed. For this purpose we use the Torino Polytechnic Ion Cyclotron Antenna (TOPICA) code and asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating (SSWICH) code. Further, we investigate correlation between amplitudes of the calculated oscillating sheath voltages and the E// fields computed at the lateral side of the antenna box, in relation with a heuristic antenna design strategy at IPP Garching to mitigate RF sheaths.

  16. Comparisons between global and local gyrokinetic simulations of an ASDEX Upgrade H-mode plasma

    NASA Astrophysics Data System (ADS)

    Navarro, Alejandro Bañón; Told, Daniel; Jenko, Frank; Görler, Tobias; Happel, Tim

    2016-04-01

    We investigate by means of local and global nonlinear gyrokinetic GENE simulations an ASDEX Upgrade H-mode plasma. We find that for the outer core positions (i.e., ρ tor ≈ 0.5 - 0.7 ), nonlocal effects are important. For nominal input parameters local simulations over-predict the experimental heat fluxes by a large factor, while a good agreement is found with global simulations. This was a priori not expected, since the values of 1 / ρ ⋆ were large enough that global and local simulations should have been in accordance. Nevertheless, due to the high sensitivity of the heat fluxes with respect to the input parameters, it is still possible to match the heat fluxes in local simulations with the experimental and global results by varying the ion temperature gradient within the experimental uncertainties. In addition to that, once an agreement in the transport quantities between local (flux-matched) and global simulations is achieved, an agreement for other quantities, such as density and temperature fluctuations, is also found. The case presented here clearly shows that even in the presence of global size-effects, the local simulation approach is still a valid and accurate approach.

  17. Simulation and real-time estimation of sawtooth crash effects on ASDEX-Upgrade plasmas

    NASA Astrophysics Data System (ADS)

    Piron, Chiara; Felici, Federico; Kim, Doohyun; Piovesan, Paolo; Rapson, Chris; Reich, Matthias; Sauter, Olivier; Treutterer, Wolfgang; van den Brand, Hugo; ASDEX Upgrade Team

    2014-10-01

    This work presents the integration of Porcelli's sawtooth model, including partial and full reconnection triggered by a shear threshold, in the RAPid Transport simulatOR code (RAPTOR) and its application to ASDEX-Upgrade(AUG) experiments. RAPTOR is a 1D profile evolution code designed for real-time reconstruction and control applications. RAPTOR is used in predictive simulations to model the plasma profile in sawtoothing AUG discharges, but it also simulates the profile evolution in real-time, yielding a plasma state estimate that includes the effect of sawteeth. This work aims to model AUG scenarios with sawteeth and to understand sawtooth control and locking experiments. It also discusses the improvements in the plasma state reconstruction, in particular in the evolution of the q-profile, obtained by the inclusion of Porcelli's model in the code. Possible applications to real-time sawtooth control, like suitable power actuator schemes and locking techniques, are investigated as well. This project has received funding from the EURATOM research and training programme 2014--2018.

  18. Effect of collisional heat transfer in ICRF power modulation experiment on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Tsujii, N.; D'Inca, R.; Noterdaeme, J.-M.; Bilato, R.; Bobkov, Vl. V.; Brambilla, M.; van Eester, D.; Harvey, R. W.; Jaeger, E. F.; Lerche, E. A.; Schneider, P.; ASDEX Upgrade Team

    2014-02-01

    ICRF (ion cyclotron range of frequencies) heating experiments were performed in D-H plasmas at various H concentrations on ASDEX Upgrade. The rf power was modulated to measure the electron power deposition profile from electron temperature modulation. To minimize the contribution from indirect collisional heating and the effect of radial transport, the rf power was modulated at 50 Hz. However, peaking of electron temperature modulation was still observed around the hydrogen cyclotron resonance indicating collisional heating contribution. Time dependent simulation of the hydrogen distribution function was performed for the discharges, using the full-wave code AORSA (E.F. Jaeger, et al., Phys. Plasmas, Vol. 8, page 1573 (2001)) coupled to the Fokker-Planck code CQL3D (R.W. Harvey, et al., Proc. IAEA (1992)). In the present experimental conditions, it was found that modulation of the collisional heating was comparable to that of direct wave damping. Impact of radial transport was also analyzed and found to appreciably smear out the modulation profile and reduce the phase delay.

  19. Collective Thomson scattering measurements of fast-ion transport due to sawtooth crashes in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Galdon-Quiroga, J.; Garcia-Munoz, M.; Geiger, B.; Jacobsen, A. S.; Jaulmes, F.; Korsholm, S. B.; Lazanyi, N.; Leipold, F.; Ryter, F.; Salewski, M.; Schubert, M.; Stober, J.; Wagner, D.; the ASDEX Upgrade Team; the EUROFusion MST1 Team

    2016-11-01

    Sawtooth instabilities can modify heating and current-drive profiles and potentially increase fast-ion losses. Understanding how sawteeth redistribute fast ions as a function of sawtooth parameters and of fast-ion energy and pitch is hence a subject of particular interest for future fusion devices. Here we present the first collective Thomson scattering (CTS) measurements of sawtooth-induced redistribution of fast ions at ASDEX Upgrade. These also represent the first localized fast-ion measurements on the high-field side of this device. The results indicate fast-ion losses in the phase-space measurement volume of about 50% across sawtooth crashes, in good agreement with values predicted with the Kadomtsev sawtooth model implemented in TRANSP and with the sawtooth model in the EBdyna_go code. In contrast to the case of sawteeth, we observe no fast-ion redistribution in the presence of fishbone modes. We highlight how CTS measurements can discriminate between different sawtooth models, in particular when aided by multi-diagnostic velocity-space tomography, and briefly discuss our results in light of existing measurements from other fast-ion diagnostics.

  20. A new compact solid-state neutral particle analyser at ASDEX Upgrade: Setup and physics modeling

    SciTech Connect

    Schneider, P. A.; Blank, H.; Geiger, B.; Mank, K.; Martinov, S.; Ryter, F.; Weiland, M.; Weller, A.

    2015-07-15

    At ASDEX Upgrade (AUG), a new compact solid-state detector has been installed to measure the energy spectrum of fast neutrals based on the principle described by Shinohara et al. [Rev. Sci. Instrum. 75, 3640 (2004)]. The diagnostic relies on the usual charge exchange of supra-thermal fast-ions with neutrals in the plasma. Therefore, the measured energy spectra directly correspond to those of confined fast-ions with a pitch angle defined by the line of sight of the detector. Experiments in AUG showed the good signal to noise characteristics of the detector. It is energy calibrated and can measure energies of 40-200 keV with count rates of up to 140 kcps. The detector has an active view on one of the heating beams. The heating beam increases the neutral density locally; thereby, information about the central fast-ion velocity distribution is obtained. The measured fluxes are modeled with a newly developed module for the 3D Monte Carlo code F90FIDASIM [Geiger et al., Plasma Phys. Controlled Fusion 53, 65010 (2011)]. The modeling allows to distinguish between the active (beam) and passive contributions to the signal. Thereby, the birth profile of the measured fast neutrals can be reconstructed. This model reproduces the measured energy spectra with good accuracy when the passive contribution is taken into account.

  1. The role of the density profile in the ASDEX-Upgrade pedestal structure

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; Potzel, S.; Reimold, F.; Wischmeier, M.; Wolfrum, E.; Frassinetti, L.; Beurskens, M.; Bilkova, P.; Cavedon, M.; Fischer, R.; Kurzan, B.; Laggner, F. M.; McDermott, R. M.; Tardini, G.; Trier, E.; Viezzer, E.; Willensdorfer, M.; The EUROfusion MST1 Team; The ASDEX-Upgrade Team

    2017-01-01

    Experimental evidence for the impact of a region of high density localised in the high-field side scrape-off layer (the HFSHD) on plasma confinement is shown in various dedicated experiments on ASDEX Upgrade (AUG). Increasing main ion fuelling is shown to increase the separatrix density and shift the density profile outwards. Predictive pedestal modelling of this shift indicates a 25% decrease in the attainable pedestal top pressure, which compares well with experimental observations in the gas scan. Since the HFSHD can be mitigated by applying nitrogen seeding, a combined scan in fuelling rate, heating power, and nitrogen seeding is presented. Significant increases in the achievable pedestal top pressure are observed with seeding, in particular at high heating powers, and are correlated with inward shifted density profiles and a reduction of the HFSHD and separatrix density. Interpretive linear stability analysis also confirms the impact of a radially shifted pressure profile on peeling-ballooning stability, with an inward shift allowing access to higher pressure gradients and pedestal widths.

  2. Intermittent transport across the scrape-off layer: latest results from ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Kočan, M.; Müller, H. W.; Nold, B.; Lunt, T.; Adámek, J.; Allan, S. Y.; Bernert, M.; Conway, G. D.; de Marné, P.; Eich, T.; Elmore, S.; Gennrich, F. P.; Herrmann, A.; Horacek, J.; Huang, Z.; Kallenbach, A.; Komm, M.; Maraschek, M.; Mehlmann, F.; Müller, S.; Ribeiro, T. T.; Rohde, V.; Schrittwieser, R.; Scott, B.; Stroth, U.; Suttrop, W.; Wolfrum, E.; the ASDEX Upgrade Team

    2013-07-01

    We report the latest results of turbulence and transport studies in the ASDEX Upgrade scrape-off layer (SOL). Dissimilarity between the plasma and the floating potential fluctuations is studied experimentally and by gyrofluid simulations. Measurements by a retarding field analyser reveal that both, edge-localized mode (ELM) and turbulent filaments, convey hot ions over large radial distances in the SOL. The measured far SOL ELM ion temperature increases with the ELM energy, consistent with earlier observations that large ELMs deposit a large fraction of their energy outside the divertor. In the SOL, the ELM suppression by magnetic perturbations (MPs) results in lower ELM ion energy in the far SOL. At the same time, large filaments of ion saturation current are replaced by more continuous bursts. Splitting of the divertor strike zones observed by the infrared imaging in H-mode with MPs agree with predictions from the EMC3-Eirene simulations. This suggests that the ‘lobe’ structures due to perturbation fields observed near the X-point are not significantly affected by plasma screening, and can be described by a vacuum approach, as in the EMC3-Eirene. Finally, some effects of the MPs on the L-mode SOL are addressed.

  3. Toroidal mode number determination of ELM associated phenomena on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Mink, Felician; Wolfrum, Elisabeth; Maraschek, Marc; Zohm, Hartmut; Horváth, László; Laggner, Florian M.; Manz, Peter; Viezzer, Eleonora; Stroth, Ulrich; the ASDEX Upgrade Team

    2016-12-01

    In highly confined tokamak plasmas periodically appearing edge localized modes (ELMs) are accompanied by mode-like magnetohydrodynamic (MHD) activities with defined toroidal mode numbers. Here the method of determining toroidal mode numbers n on the ASDEX Upgrade tokamak with a toroidally spread magnetic pick-up coil array is reviewed and improved by taking into account intrinsic coil phases. ELM synchronization is used to characterize inter-ELM MHD activity and their development during the ELM cycle in terms of their mode numbers. The mode number development is correlated with the development of the pedestal parameters which shows that the inter-ELM modes cause transport across the pedestal. An estimation of the position of the modes is done via a comparison between the mode velocities and the plasma rotation profile at the edge. Results show that during the ELM cycle MHD modes appear at several positions in the strong gradient region with clearly defined toroidal structures in the range of n  =  1-10. These structures of inter-ELM modes are preserved during the ELM crash where also a strong n  =  0 phenomenon occurs.

  4. Multi-view fast-ion D-alpha spectroscopy diagnostic at ASDEX Upgrade

    SciTech Connect

    Geiger, B.; Dux, R.; McDermott, R. M.; Potzel, S.; Reich, M.; Ryter, F.; Weiland, M.; Wünderlich, D.; Garcia-Munoz, M.; Collaboration: ASDEX Upgrade Team

    2013-11-15

    A novel fast-ion D-alpha (FIDA) diagnostic that is based on charge exchange spectroscopy has been installed at ASDEX Upgrade. The diagnostic uses a newly developed high-photon-throughput spectrometer together with a low-noise EM-CCD camera that allow measurements with 2 ms exposure time. Absolute intensities are obtained by calibrating the system with an integrating sphere and the wavelength dependence is determined to high accuracy using a neon lamp. Additional perturbative contributions to the spectra, such as D{sub 2}-molecular lines, the Stark broadened edge D-alpha emission, and passive FIDA radiation have been identified and can be subtracted or avoided experimentally. The FIDA radiation from fast deuterium ions after charge exchange reactions can therefore be analyzed continuously without superimposed line emissions at large Doppler shifts. Radial information on the fast ions is obtained from radially distributed lines of sight. The investigation of the fast-ion velocity distribution is possible due to three different viewing geometries. The independent viewing geometries access distinct parts of the fast-ion velocity space and make tomographic reconstructions possible.

  5. NBI-driven Alfvénic modes at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Lauber, Ph.; Classen, I. G. J.; Curran, D.; Igochine, V.; Geiger, B.; da Graça, S.; García-Muñoz, M.; Maraschek, M.; McCarthy, P.; the ASDEX Upgrade Team

    2012-09-01

    A large variety of electromagnetic modes excited by NBI-generated energetic ions are observed in the early phase of many discharges at ASDEX Upgrade. In addition to the well-known reversed shear Alfvén eigenmodes (RSAE) and the toroidal Alfvén eigenmodes (TAE), a set of modes around 70 kHz is observed as recently described in [7]. The modes were identified to be beta-induced Alfvén eigenmodes (BAE) connected with the appearance of the q = 2 and the q = 1.5 surface during the current ramp-up phase. In the view of ITER, these BAEs may occur in scenarios with q ≈ 2 (scenario 4) and therefore add significantly to the transport of energetic ions due to RSAEs and TAEs. Experimentally, the combination of ECE, soft-x-ray and magnetic measurements allows for a very reliable mode position and mode structure determination. The measurements are compared with linear gyrokinetic calculations employing the LIGKA code that uses a fully kinetic model to describe fast-particle-driven modes in general tokamak geometry.

  6. Improved time-frequency analysis of ASDEX Upgrade reflectometry data using the reassigned spectrogram technique

    SciTech Connect

    Varela, P.; Silva, A.; Silva, F. da; Graca, S. da; Manso, M. E. [Associacao EURATOM Conway, G. D. [MPI fuer Plasmaphysik, EURATOM Collaboration: ASDEX Upgrade Team

    2010-10-15

    The spectrogram is one of the best-known time-frequency distributions suitable to analyze signals whose energy varies both in time and frequency. In reflectometry, it has been used to obtain the frequency content of FM-CW signals for density profile inversion and also to study plasma density fluctuations from swept and fixed frequency data. Being implemented via the short-time Fourier transform, the spectrogram is limited in resolution, and for that reason several methods have been developed to overcome this problem. Among those, we focus on the reassigned spectrogram technique that is both easily automated and computationally efficient requiring only the calculation of two additional spectrograms. In each time-frequency window, the technique reallocates the spectrogram coordinates to the region that most contributes to the signal energy. The application to ASDEX Upgrade reflectometry data results in better energy concentration and improved localization of the spectral content of the reflected signals. When combined with the automatic (data driven) window length spectrogram, this technique provides improved profile accuracy, in particular, in regions where frequency content varies most rapidly such as the edge pedestal shoulder.

  7. Active Control of Power Exhaust in Strongly Heated ASDEX Upgrade Plasmas

    NASA Astrophysics Data System (ADS)

    Dux, Ralph; Kallenbach, Arne; Bernert, Matthias; Eich, Thomas; Fuchs, Christoph; Giannone, Louis; Herrmann, Albrecht; Schweinzer, Josef; Treutterer, Wolfgang

    2012-10-01

    Due to the absence of carbon as an intrinsic low-Z radiator, and tight limits for the acceptable power load on the divertor target, ITER will rely on impurity seeding for radiative power dissipation and for generation of partial detachment. The injection of more than one radiating species is required to optimise the power removal in the main plasma and in the divertor region, i.e. a low-Z species for radiation in the divertor and a medium-Z species for radiation in the outer core plasma. In ASDEX Upgrade, a set of robust sensors, which is suitable to feedback control the radiated power in the main chamber and the divertor as well as the electron temperature at the target, has been developed. Different feedback schemes were applied in H-mode discharges with a maximum heating power of up to 23,W, i.e. at ITER values of P/R (power per major radius) to control all combinations of power flux into the divertor region, power flux onto the target or electron temperature at the target through injection of nitrogen as the divertor radiator and argon as the main chamber radiator. Even at the highest heating powers the peak heat flux density at the target is kept at benign values. The control schemes and the plasma behaviour in these discharges will be discussed.

  8. A new compact solid-state neutral particle analyser at ASDEX Upgrade: Setup and physics modeling.

    PubMed

    Schneider, P A; Blank, H; Geiger, B; Mank, K; Martinov, S; Ryter, F; Weiland, M; Weller, A

    2015-07-01

    At ASDEX Upgrade (AUG), a new compact solid-state detector has been installed to measure the energy spectrum of fast neutrals based on the principle described by Shinohara et al. [Rev. Sci. Instrum. 75, 3640 (2004)]. The diagnostic relies on the usual charge exchange of supra-thermal fast-ions with neutrals in the plasma. Therefore, the measured energy spectra directly correspond to those of confined fast-ions with a pitch angle defined by the line of sight of the detector. Experiments in AUG showed the good signal to noise characteristics of the detector. It is energy calibrated and can measure energies of 40-200 keV with count rates of up to 140 kcps. The detector has an active view on one of the heating beams. The heating beam increases the neutral density locally; thereby, information about the central fast-ion velocity distribution is obtained. The measured fluxes are modeled with a newly developed module for the 3D Monte Carlo code F90FIDASIM [Geiger et al., Plasma Phys. Controlled Fusion 53, 65010 (2011)]. The modeling allows to distinguish between the active (beam) and passive contributions to the signal. Thereby, the birth profile of the measured fast neutrals can be reconstructed. This model reproduces the measured energy spectra with good accuracy when the passive contribution is taken into account.

  9. Adjoint Monte Carlo simulation of fusion product activation probe experiment in ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Äkäslompolo, S.; Bonheure, G.; Tardini, G.; Kurki-Suonio, T.; The ASDEX Upgrade Team

    2015-10-01

    The activation probe is a robust tool to measure flux of fusion products from a magnetically confined plasma. A carefully chosen solid sample is exposed to the flux, and the impinging ions transmute the material making it radioactive. Ultra-low level gamma-ray spectroscopy is used post mortem to measure the activity and, thus, the number of fusion products. This contribution presents the numerical analysis of the first measurement in the ASDEX Upgrade tokamak, which was also the first experiment to measure a single discharge. The ASCOT suite of codes was used to perform adjoint/reverse Monte Carlo calculations of the fusion products. The analysis facilitates, for the first time, a comparison of numerical and experimental values for absolutely calibrated flux. The results agree to within a factor of about two, which can be considered a quite good result considering the fact that all features of the plasma cannot be accounted in the simulations.Also an alternative to the present probe orientation was studied. The results suggest that a better optimized orientation could measure the flux from a significantly larger part of the plasma. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  10. Extensions to the charge exchange recombination spectroscopy diagnostic suite at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    McDermott, R. M.; Lebschy, A.; Geiger, B.; Bruhn, C.; Cavedon, M.; Dunne, M.; Dux, R.; Fischer, R.; Kappatou, A.; Pütterich, T.; Viezzer, E.

    2017-07-01

    A new core charge exchange recombination spectroscopy diagnostic has been installed in the ASDEX Upgrade tokamak that is capable of measuring the impurity ion temperature, toroidal rotation, and density on both the low field side (LFS) and high field side (HFS) of the plasma. The new system features 48 lines-of-sight (LOS) with a radial resolution that varies from ±2 cm on the LFS down to ±0.75 cm on the HFS and has sufficient signal to run routinely at 10 ms and for special circumstances down to 2.5 ms integration time. The LFS-HFS ion temperature profiles provide an additional constraint on the magnetic equilibrium reconstruction, and the toroidal rotation frequency profiles are of sufficiently high quality that information on the poloidal velocity can be extracted from the LFS-HFS asymmetry. The diagnostic LOS are coupled to two flexible-wavelength spectrometers such that complete LFS-HFS profiles from two separate impurities can be imaged simultaneously, albeit with reduced radial coverage. More frequently, the systems measure the same impurity providing very detailed information on the chosen species. Care has been taken to calibrate the systems as accurately as possible and to include in the data analysis any effects that could lead to spurious temperatures or rotations.

  11. Divertor heat load in ASDEX Upgrade L-mode in presence of external magnetic perturbation

    NASA Astrophysics Data System (ADS)

    Faitsch, M.; Sieglin, B.; Eich, T.; Herrmann, A.; Suttrop, W.; the ASDEX Upgrade Team

    2017-09-01

    Power exhaust is one of the major challenges for a future fusion device. Applying a non-axisymmetric external magnetic perturbation is one technique that is studied in order to mitigate or suppress large edge localized modes which accompany the high confinement regime in tokamaks. The external magnetic perturbation induces breaking in the axisymmetry of a tokamak and leads to a 2D heat flux pattern on the divertor target. The 2D heat flux pattern at the outer divertor target is studied on ASDEX Upgrade in stationary L-mode discharges. The amplitude of the 2D characteristic of the heat flux depends on the alignment between the field lines at the edge and the vacuum response of the applied magnetic perturbation spectrum. The 2D characteristic reduces with increasing density. The increasing divertor broadening, S, with increasing density is proposed as the main actuator. This is supported by a generic model using field line tracing and the vacuum field approach that is in quantitative agreement with the measured heat flux. The perturbed heat flux, averaged over a full toroidal rotation of the magnetic perturbation, is identical to the non-perturbed heat flux without magnetic perturbation. The transport qualifiers, power fall-off length {λ }q and divertor broadening, S, are the same within the uncertainty compared to the unperturbed reference. No additional cross field transport is observed.

  12. Machine safety issues with respect to the extension of ECRH systems at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Schuberta, Martin; Herrmann, Albrecht; Monaco, Francesco; Rohde, Volker; Schütz, Harald; Stober, Jörg; Vierle, Thomas; Vorbrugg, Stefan; Wagner, Dietmar; Zasche, Dieter; Zehetbauer, Thomas; Zeidner, Wolfgang

    2015-03-01

    The beam intensity of electron cyclotron resonance heating at ASDEX Upgrade has the potential to seriously damage in-vessel components, whenever not fully absorbed by the plasma. Operation is, therefore, interlocked with both plasma current and density above a given threshold. Microwave protection detectors installed in several ports on the low field side switch the heating system off, in case the stray radiation exceeds a given threshold. During regular inspections, however, damages were reported in the vicinity of the launchers and in particular around the tiles of the heat shield. On one hand, it was found that insulating material, which may not face the plasma, degraded due to millimetre wave absorption. The waves entered the free space behind the heat shield through gaps. On the other hand, local damage even of metallic components was observed on surfaces, which were directly exposed to the microwave beam. Polarisation errors, which led to a local shine through of significant beam power, were responsible. We note that this happened mainly on the high field side in a certain distance to the microwave protection detectors, which were not triggered by the events. In order to increase the level of protection, we identify three necessary measures: Firstly, polarisation control is to be automated such, that mode content and shine through can be monitored. Secondly, by installing additional detectors, the spatial coverage of stray radiation monitoring is enlarged. Thirdly, the heat shield tiles will be redesigned in order to increase the shielding against millimetre waves.

  13. Predictive analysis of q-profile influence on transport in JET and ASDEX Upgrade hybrid scenarios

    NASA Astrophysics Data System (ADS)

    Citrin, J.; Hobirk, J.; Schneider, M.; Artaud, J. F.; Bourdelle, C.; Crombe, K.; Hogeweij, G. M. D.; Imbeaux, F.; Joffrin, E.; Koechl, F.; Stober, J.; the ASDEX Upgrade Team; contributors, JET-EFDA; the ITM-TF ITER Scenario Modelling Group

    2012-06-01

    Hybrid scenarios in present machines are often characterized by improved confinement compared with the IPB98(y,2) empirical scaling law expectations. This work concentrates on isolating the impact of increased s/q at outer radii (where s is the magnetic shear) on core confinement in low-triangularity JET and ASDEX Upgrade (AUG) experiments. This is carried out by predictive heat and particle transport modelling using the integrated modelling code CRONOS coupled to the GLF23 turbulent transport model. For both machines, discharge pairs were analysed displaying similar pedestal confinement yet significant differences in core confinement. From these comparisons, it is found that s/q shaping at outer radii may be responsible for up to ˜50% of the relative core confinement improvement observed in these specific discharges. This relative improvement is independent of the degree of rotational shear turbulence suppression assumed in the GLF23 model. However, employing the full GLF23 rotational shear model leads to an overprediction of the ion temperatures in all discharges analysed. Additional mechanisms for core confinement improvement are discussed and estimated. Further linear threshold analysis with QuaLiKiz is carried out on both pairs of discharges. This work aims to validate recent predictions of the ITER hybrid scenario also employing CRONOS/GLF23, where a high level of confinement and resultant fusion power sensitivity to the s/q profile was found.

  14. Transport analysis of high radiation and high density plasmas in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Casali, L.; Bernert, M.; Dux, R.; Fischer, R.; Kallenbach, A.; Kurzan, B.; Lang, P.; Mlynek, A.; McDermott, R. M.; Ryter, F.; Sertoli, M.; Tardini, G.; Zohm, H.

    2014-12-01

    Future fusion reactors, foreseen in the "European road map" such as DEMO, will operate under more demanding conditions compared to present devices. They will require high divertor and core radiation by impurity seeding to reduce heat loads on divertor target plates. In addition, DEMO will have to work at high core densities to reach adequate fusion performance. The performance of fusion reactors depends on three essential parameters: temperature, density and energy confinement time. The latter characterizes the loss rate due to both radiation and transport processes. The DEMO foreseen scenarios described above were not investigated so far, but are now addressed at the ASDEX Upgrade tokamak. In this work we present the transport analysis of such scenarios. Plasma with high radiation by impurity seeding: transport analysis taking into account the radiation distribution shows no change in transport during impurity seeding. The observed confinement improvement is an effect of higher pedestal temperatures which extend to the core via stiffness. A non coronal radiation model was developed and compared to the bolometric measurements in order to provide a reliable radiation profile for transport calculations. High density plasmas with pellets: the analysis of kinetic profiles reveals a transient phase at the start of the pellet fuelling due to a slower density build up compared to the temperature decrease. The low particle diffusion can explain the confinement behaviour.

  15. Multi-view fast-ion D-alpha spectroscopy diagnostic at ASDEX Upgrade.

    PubMed

    Geiger, B; Dux, R; McDermott, R M; Potzel, S; Reich, M; Ryter, F; Weiland, M; Wünderlich, D; Garcia-Munoz, M

    2013-11-01

    A novel fast-ion D-alpha (FIDA) diagnostic that is based on charge exchange spectroscopy has been installed at ASDEX Upgrade. The diagnostic uses a newly developed high-photon-throughput spectrometer together with a low-noise EM-CCD camera that allow measurements with 2 ms exposure time. Absolute intensities are obtained by calibrating the system with an integrating sphere and the wavelength dependence is determined to high accuracy using a neon lamp. Additional perturbative contributions to the spectra, such as D2-molecular lines, the Stark broadened edge D-alpha emission, and passive FIDA radiation have been identified and can be subtracted or avoided experimentally. The FIDA radiation from fast deuterium ions after charge exchange reactions can therefore be analyzed continuously without superimposed line emissions at large Doppler shifts. Radial information on the fast ions is obtained from radially distributed lines of sight. The investigation of the fast-ion velocity distribution is possible due to three different viewing geometries. The independent viewing geometries access distinct parts of the fast-ion velocity space and make tomographic reconstructions possible.

  16. Fast-ion transport and NBI current drive in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Geiger, Benedikt; Weiland, Markus; Mlynek, Alexander; Dunne, Mike; Dux, Ralph; Fischer, Rainer; Hobirk, Joerg; Hopf, Christian; Reich, Matthias; Rittich, David; Ryter, Francois; Schneider, Philip; Tardini, Giovanni; Garcia-Munoz, Manuel; ASDEX Upgrade Team

    2014-10-01

    Good confinement of fast ions is essential in fusion devices because these suprathermal particles are responsible for plasma heating, current drive and can, if poorly confined, damage surrounding walls. The degradation of the fast-ion confinement caused by large and small scale instabilities must consequently be investigated. In the ASDEX Upgrade tokamak, fast ions are generated by neutral beam injection (NBI) and their slowing down distribution can be studied using FIDA spectroscopy, neutral particle analyzers and neutron detectors. Neo-classical fast-ion transport is observed by these measurements in MHD-quiescent discharges with relatively weak heating power (less than 5 MW). The presence of sawtooth instabilities, in contrast, yields a strong internal fast-ion redistribution that can be modelled very well when assuming full reconnection of the helical magnetic field. The fast-ion current drive efficiency has been studied in discharges with up to 10 MW of heating power in which on-axis and off-axis NBI were exchanged. The radial shape of the fast-ion population, generated by the different NBIs, changes as predicted and a corresponding modification of the current profile is measured.

  17. Conceptual design of a scintillator based Imaging Heavy Ion Beam Probe for the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Galdon-Quiroga, J.; Rivero-Rodriguez, J. F.; Garcia-Munoz, M.; Birkenmeier, G.; Viezzer, E.; Ayllon-Guerola, J.; Dunne, M.; Garcia-Lopez, J.; Gonzalez-Martin, J.; Jimenez-Ramos, M. C.; Rodriguez-Ramos, M.; Sanchis-Sanchez, L.; Wolfrum, E.; the ASDEX Upgrade Team

    2017-08-01

    A conceptual design of a new diagnostic for the simultaneous space and time resolved measurement of plasma density, potential and poloidal magnetic field fluctuations at ASDEX Upgrade is proposed. The diagnostic combines the detection techniques of standard heavy ion beam probes (HIBP) and scintillator based fast ion loss detectors (FILD), making use of an atomic beam to probe plasma parameters with high spatio-temporal resolution. This new approach takes advantage of using a neutral probe beam and a scintillator plate as detection system. The combination of these two techniques makes the diagnostic more compact than standard HIBP facilitating its integration in the machine. Simulations using an orbit following code have been carried out to investigate the viability of the proposed detection method based on the displacement of the beam strike-line on the scintillator plate. Relative plasma potential fluctuations from 10% to 100% in the potential well induce localized displacements in the strike line in the range of 0.1-1.0 mm, while poloidal magnetic field fluctuations such as those arising from edge currents produce displacements in the order of mm. The use of a scintillator screen provides virtually infinite spatial resolution together with a temporal resolution up to the MHz range, needed for the identification of internal fluctuations.

  18. Optimized tomography methods for plasma emissivity reconstruction at the ASDEX Upgrade tokamak.

    PubMed

    Odstrčil, T; Pütterich, T; Odstrčil, M; Gude, A; Igochine, V; Stroth, U

    2016-12-01

    The soft X-ray (SXR) emission provides valuable insight into processes happening inside of high-temperature plasmas. A standard method for deriving the local emissivity profiles of the plasma from the line-of-sight integrals measured by pinhole cameras is the tomographic inversion. Such an inversion is challenging due to its ill-conditioned nature and because the reconstructed profiles depend not only on the quality of the measurements but also on the inversion algorithm used. This paper provides a detailed description of several tomography algorithms, which solve the inversion problem of Tikhonov regularization with linear computational complexity in the number of basis functions. The feasibility of combining these methods with the minimum Fisher information regularization is demonstrated, and various statistical methods for the optimal choice of the regularization parameter are investigated with emphasis on their reliability and robustness. Finally, the accuracy and the capability of the methods are demonstrated by reconstructions of experimental SXR profiles, featuring poloidal asymmetric impurity distributions as measured at the ASDEX Upgrade tokamak.

  19. Estimation of sheath potentials in front of ASDEX upgrade ICRF antenna with SSWICH asymptotic code

    SciTech Connect

    Křivská, A.; Colas, L.; Milanesio, D.

    2015-12-10

    Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF) heating became problematic in ASDEX Upgrade (AUG) tokamak after coating of ICRF antenna limiters and other plasma facing components by tungsten. Strong impurity influx was indeed produced at levels of injected power markedly lower than in the previous experiments. It is assumed that the impurity production is mainly driven by parallel component of Radio-Frequency (RF) antenna electric near-field E// that is rectified in sheaths. In this contribution we estimate poloidal distribution of sheath Direct Current (DC) potential in front of the ICRF antenna and simulate its relative variations over the parametric scans performed during experiments, trying to reproduce some of the experimental observations. In addition, relative comparison between two types of AUG ICRF antenna configurations, used for experiments in 2014, has been performed. For this purpose we use the Torino Polytechnic Ion Cyclotron Antenna (TOPICA) code and asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating (SSWICH) code. Further, we investigate correlation between amplitudes of the calculated oscillating sheath voltages and the E// fields computed at the lateral side of the antenna box, in relation with a heuristic antenna design strategy at IPP Garching to mitigate RF sheaths.

  20. Gross and net erosion of tungsten in the outer strike-point region of ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Hakola, A.; Airila, M. I.; Karhunen, J.; Groth, M.; Herrmann, A.; Krieger, K.; Kurki-Suonio, T.; Meisl, G.; Oberkofler, M.; Neu, R.; Potzel, S.; Rohde, V.; ASDEX Upgrade Team

    2016-02-01

    We have investigated net and gross erosion of W in the outer strike-point (OSP) region of ASDEX Upgrade with the help of marker probes during low-density/high-temperature L-mode discharges. Post mortem analyses indicate net-erosion rates of 0.04-0.13 nm s-1, with the highest rates measured close to the OSP. Re-deposition was some 30-40% of gross erosion, which is lower than what has earlier been obtained spectroscopically (˜50-60%), possibly due to the special plasma conditions of our experiment and intense flux of W atoms originating from the main chamber. Gross erosion was also estimated by passive emission spectroscopy, and around the OSP the results matched with post mortem data. However, the spectroscopic erosion profile in the poloidal direction was much steeper than the post mortem one. Preliminary ERO simulations have predicted net erosion of the same order of magnitude as experimental results but reproducing the poloidal erosion/re-deposition profiles requires further work.

  1. Design and performance of the collective Thomson scattering receiver at ASDEX Upgrade

    SciTech Connect

    Furtula, V.; Salewski, M.; Leipold, F.; Michelsen, P. K.; Korsholm, S. B.; Meo, F.; Moseev, D.; Nielsen, S. K.; Stejner, M.; Johansen, T.

    2012-01-15

    Here we present the design of the fast-ion collective Thomson scattering receiver for millimeter wave radiation installed at ASDEX Upgrade, a tokamak for fusion plasma experiments. The receiver can detect spectral power densities of a few eV against the electron cyclotron emission background on the order of 100 eV under presence of gyrotron stray radiation that is several orders of magnitude stronger than the signal to be detected. The receiver down converts the frequencies of scattered radiation (100-110 GHz) to intermediate frequencies (IF) (4.5-14.5 GHz) by heterodyning. The IF signal is divided into 50 IF channels tightly spaced in frequency space. The channels are terminated by square-law detector diodes that convert the signal power into DC voltages. We present measurements of the transmission characteristics and performance of the main receiver components operating at mm-wave frequencies (notch, bandpass, and lowpass filters, a voltage-controlled variable attenuator, and an isolator), the down-converter unit, and the IF components (amplifiers, bandpass filters, and detector diodes). Furthermore, we determine the performance of the receiver as a unit through spectral response measurements and find reasonable agreement with the expectation based on the individual component measurements.

  2. Design and performance of the collective Thomson scattering receiver at ASDEX Upgrade.

    PubMed

    Furtula, V; Salewski, M; Leipold, F; Michelsen, P K; Korsholm, S B; Meo, F; Moseev, D; Nielsen, S K; Stejner, M; Johansen, T

    2012-01-01

    Here we present the design of the fast-ion collective Thomson scattering receiver for millimeter wave radiation installed at ASDEX Upgrade, a tokamak for fusion plasma experiments. The receiver can detect spectral power densities of a few eV against the electron cyclotron emission background on the order of 100 eV under presence of gyrotron stray radiation that is several orders of magnitude stronger than the signal to be detected. The receiver down converts the frequencies of scattered radiation (100-110 GHz) to intermediate frequencies (IF) (4.5-14.5 GHz) by heterodyning. The IF signal is divided into 50 IF channels tightly spaced in frequency space. The channels are terminated by square-law detector diodes that convert the signal power into DC voltages. We present measurements of the transmission characteristics and performance of the main receiver components operating at mm-wave frequencies (notch, bandpass, and lowpass filters, a voltage-controlled variable attenuator, and an isolator), the down-converter unit, and the IF components (amplifiers, bandpass filters, and detector diodes). Furthermore, we determine the performance of the receiver as a unit through spectral response measurements and find reasonable agreement with the expectation based on the individual component measurements.

  3. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade

    SciTech Connect

    Viezzer, E. E-mail: eviezzer@us.es; Dux, R.; Dunne, M. G.

    2016-11-15

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D{sub α}. The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  4. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade.

    PubMed

    Viezzer, E; Dux, R; Dunne, M G

    2016-11-01

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line Dα. The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  5. Study of near SOL decay lengths in ASDEX Upgrade under attached and detached divertor conditions

    NASA Astrophysics Data System (ADS)

    Sun, H. J.; Wolfrum, E.; Kurzan, B.; Eich, T.; Lackner, K.; Scarabosio, A.; Paradela Pérez, I.; Kardaun, O.; Faitsch, M.; Potzel, S.; Stroth, U.; the ASDEX Upgrade Team

    2017-10-01

    A database with attached, partially detached and completely detached divertors has been constructed in ASDEX Upgrade discharges in both H-mode and L-mode plasmas with Thomson Scattering data suitable for the analysis of the upstream SOL electron profiles. By comparing upstream temperature decay width, {λ }{Te,u}, with the scaling of the SOL power decay width, {λ }{q\\parallel e}, based on the downstream IR measurements, it is found that a simple relation based on classical electron conduction can relate {λ }{Te,u} and {λ }{q\\parallel e} well. The combined dataset can be described by both a single scaling and a separate scaling for H-modes and L-modes. For the single scaling, a strong inverse dependence of, {λ }{Te,u} on the separatrix temperature, {T}e,u, is found, suggesting the classical parallel Spitzer-Harm conductivity as dominant mechanism controlling the SOL width in both L-mode and H-mode over a large set of plasma parameters. This dependence on {T}e,u explains why, for the same global plasma parameters, {λ }{q\\parallel e} in L-mode is approximately twice that in H-mode and under detached conditions, the SOL upstream electron profile broadens when the density reaches a critical value. Comparing the derived scaling from experimental data with power balance, gives the cross-field thermal diffusivity as {χ }\\perp \\propto {T}e{1/2}/{n}e, consistent with earlier studies on Compass-D, JET and Alcator C-Mod. However, the possibility of the separate scalings for different regimes cannot be excluded, which gives results similar to those previously reported for the H-mode, but here the wider SOL width for L-mode plasmas is explained simply by the larger premultiplying coefficient. The relative merits of the two scalings in representing the data and their theoretical implications are discussed.

  6. Impact of a pulsed supersonic deuterium gas jet on the ELM behaviour in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Lang, P. T.; Neuhauser, J.; Bucalossi, J.; Chankin, A.; Coster, D. P.; Drube, R.; Dux, R.; Haas, G.; Horton, L. D.; Kalvin, S.; Kocsis, G.; Maraschek, M.; Mertens, V.; Rohde, V.; Rozhansky, V.; Schneider, R.; Senichenkov, I.; Veselova, I.; Wolfrum, E.; ASDEX Upgrade Team

    2005-09-01

    The possibility for pacing of type-I edge localized modes (ELMs) in H-mode plasmas by intermittent gas injection was investigated in ASDEX Upgrade as a possible alternative to, and in comparison with, ELM control by pellets. A Laval nozzle type molecular deuterium injector was used, delivering 1.7 ms long jets with up to about 1020D per pulse at a supersonic flow velocity of 2.2 km s-1. With a repetition rate of 2 Hz and a fast rise time of ap25 µs, comparable to typical ELM rise times, the injector seemed to be well-suited for single ELM trigger tests. When applied to H-mode discharges with a moderate type-I ELM frequency of 40-60 Hz, no prompt (<0.5 ms) ELM triggering could be achieved, in contrast to the experience with pellets. There was, however, clear evidence for a delayed effect in the form of an inverse correlation of the gas pulse amplitude with the time interval between the gas pulse and the next ELM. The apparent lack of prompt ELM triggering seems to be due to a self-blocking of the gas jet by an extremely fast formation of a high density plasma layer in the separatrix vicinity, while the delayed effect may be simply caused by the jet-induced axisymmetric edge profile modification, similar to the delayed ELM cascade observed after a prompt ELM in case of large pellet injection. The delayed trigger effect observed might still be useful for ELM control in future machines, but the related high gas fuelling at elevated pulse frequency could make it unattractive in view of overall plasma performance.

  7. The H-mode density limit in the full tungsten ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Bernert, M.; Eich, T.; Kallenbach, A.; Carralero, D.; Huber, A.; Lang, P. T.; Potzel, S.; Reimold, F.; Schweinzer, J.; Viezzer, E.; Zohm, H.

    2015-01-01

    The high confinement mode (H-mode) is the operational scenario foreseen for ITER, DEMO and future fusion power plants. At high densities, which are favorable in order to maximize the fusion power, a back transition from the H-mode to the low confinement mode (L-mode) is observed. In present tokamaks, this H-mode density limit (HDL) occurs at densities on the order of, but below, the Greenwald density. In gas ramp discharges at the fully tungsten covered ASDEX Upgrade tokamak (AUG), four distinct operational phases are identified in the approach towards the HDL. These phases are a stable H-mode, a degrading H-mode, the breakdown of the H-mode and an L-mode. They are reproducible, quasi-stable plasma regimes and provide a framework in which the HDL can be further analyzed. During the evolution, energy losses are increased and a fueling limit is encountered. The latter is correlated to a plateau of electron density in the scrape-off layer (SOL). The well-known extension of the good confinement at high density with high triangularity is reflected in this scheme by extending the first phase to higher densities. In this work, two mechanisms are proposed, which can explain the experimental observations. The fueling limit is most likely correlated to an outward shift of the ionization profile. The additional energy loss channel is presumably linked to a regime of increased radial filament transport in the SOL. The SOL and divertor plasmas play a key role for both mechanisms, in line with the previous hypothesis that the HDL is edge-determined. The four phases are also observed in carbon covered AUG, although the HDL density exhibits a different dependency on the heating power and plasma current. This can be attributed to a changed energy loss channel in the presented scheme.

  8. H-mode pedestal scaling in DIII-D, ASDEX Upgrade, and JET

    SciTech Connect

    Beurskens, M. N. A.; Lomas, P.; Saarelma, S.; Scannell, R.; Balboa, I.; Brix, M.; Flanagan, J.; Giroud, C.; Kempenaars, M.; Maddison, G.; McDonald, D.; Schneider, P. A.; Wolfrum, E.; Maggi, C. F.; Frassinetti, L.; Nunes, I.

    2011-05-15

    Multidevice pedestal scaling experiments in the DIII-D, ASDEX Upgrade (AUG), and JET tokamaks are presented in order to test two plasma physics pedestal width models. The first model proposes a scaling of the pedestal width {Delta}/a {proportional_to} {rho}*{sup 1/2} to {rho}* based on the radial extent of the pedestal being set by the point where the linear turbulence growth rate exceeds the ExB velocity. In the multidevice experiment where {rho}* at the pedestal top was varied by a factor of four while other dimensionless parameters where kept fixed, it has been observed that the temperature pedestal width in real space coordinates scales with machine size, and that therefore the gyroradius scaling suggested by the model is not supported by the experiments. The density pedestal width is not invariant with {rho}* which after comparison with a simple neutral fuelling model may be attributed to variations in the neutral fuelling patterns. The second model, EPED1, is based on kinetic ballooning modes setting the limit of the radial extent of the pedestal region and leads to {Delta}{sub {psi} {proportional_to}} {beta}{sub p}{sup 1/2}. All three devices show a scaling of the pedestal width in normalised poloidal flux as {Delta}{sub {psi} {proportional_to}} {beta}{sub p}{sup 1/2}, as described by the kinetic ballooning model; however, on JET and AUG, this could not be distinguished from an interpretation where the pedestal is fixed in real space. Pedestal data from all three devices have been compared with the predictive pedestal model EPED1 and the model produces pedestal height values that match the experimental data well.

  9. Influence of the first wall material on the particle fuelling in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Lunt, T.; Reimold, F.; Wolfrum, E.; Carralero, D.; Feng, Y.; Schmid, K.; the ASDEX Upgrade Team

    2017-05-01

    In the period from 2002 to 2007 the material of the plasma facing components (PFCs) of ASDEX Upgrade (AUG) was changed from carbon (C) to tungsten (W). Comparing the measured density profiles of low-density L-mode discharges with little or no gas puff before and after this modification, a significantly higher pedestal-top density was found for W PFCs together with a steeper gradient and a lower pedestal temperature. This change can be explained by larger particle- and energy reflection coefficients for D on W compared to D on C, as shown by EMC3-EIRENE simulations of AUG discharges in similar conditions on a computational grid extending to the main chamber first wall. In the simulations, a change of the wall material at fixed separatrix density indeed shows that for W PFCs more neutrals cross the separatrix, resulting in a steeper density gradient. Analysis of the source resolved and poloidally resolved neutral flux densities across the separatrix show a dominant contribution of the divertor targets to the fuelling profile in the simulation of the low density case. Increasing the density decreases the electron temperature at the target and therefore the potential drop in the electrostatic sheath as well as the energy of the ions impinging on the surface. Neutrals with ∼eV energies, able to reach the separatrix, are then only produced via molecular dissociation processes in the plasma volume independently of the PFC material. Also the contribution of the main chamber PFCs to the fuelling is observed to increase at higher densities.

  10. Simulating Divertor Detachment of Ohmic Discharges in ASDEX Upgrade Using SOLPS: the Role of Carbon

    SciTech Connect

    Wischmeier, M; Coster, D; Chankin, A; Fuchs, C; Groth, M; Harhausen, J; Kallenbach, A; Muller, H; Tsalas, M; Wolfrum, E

    2007-06-27

    With divertor detachment being a prerequisite for burning plasma operation in ITER, numerical codes such as SOLPS [1] have been developed for predicting and interpreting the divertor performance at all operational regimes in current tokamaks and ITER. In ITER complete detachment from the outer divertor target is not permitted as this might result in an X-point MARFE, imposing an upper limit for the upstream separatrix density, n{sub e}{sup sep}. Despite the knowledge of the basic mechanisms required for achieving detachment, such as radiative power exhaust, volumetric momentum and charge removal [1], a quantitative evaluation of experimentally observed detached regimes proves to be particularly difficult for several tokamaks. In particular the strong asymmetry of the ion flux density between the inner, {Lambda}{sub it}, and the outer target {Lambda}{sub ot} with increasing line averaged density, {bar n}{sub e}, and in particular ''vanishing'' of the ion flux, defined as full/complete detachment, at the inner target cannot be reproduced. It is unclear how this is related to divertor target plates or other plasma facing components containing carbon. As part of a combined effort at various experimental devices this paper contributes to the validation of the SOLPS code against experimental data from ASDEX Upgrade, AUG, at the onset of divertor detachment. In the framework established under the International Tokamak Physics Activity (ITPA) Divertor and SOL working group a series of ohmic discharges have been performed in AUG, which had as similar as possible plasma parameters as companion discharges undertaken in DIII-D [2]. The effect of activating drift terms, the influence of the chemical sputtering yield at the inner target and in addition to [3] the role of impurity influx from the inner heat shield are analyzed.

  11. Plasma-wall interaction studies in the full-W ASDEX upgrade during helium plasma discharges

    NASA Astrophysics Data System (ADS)

    Hakola, A.; Brezinsek, S.; Douai, D.; Balden, M.; Bobkov, V.; Carralero, D.; Greuner, H.; Elgeti, S.; Kallenbach, A.; Krieger, K.; Meisl, G.; Oberkofler, M.; Rohde, V.; Schneider, P.; Schwarz-Selinger, T.; Lahtinen, A.; De Temmerman, G.; Caniello, R.; Ghezzi, F.; Wauters, T.; Garcia-Carrasco, A.; Petersson, P.; Bogdanovic Radovic, I.; Siketic, Z.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2017-06-01

    Plasma-wall interactions have been studied in the full-W ASDEX Upgrade during its dedicated helium campaign. Relatively clean plasmas with a He content of  >80% could be obtained by applying ion cyclotron wall conditioning (ICWC) discharges upon changeover from D to He. However, co-deposited layers with significant amounts of He and D were measured on W samples exposed to ICWC plasmas at the low-field side (outer) midplane. This is a sign of local migration and accumulation of materials and residual fuel in regions shadowed from direct plasma exposure albeit globally D was removed from the vessel. When exposing W samples to ELMy H-mode helium plasmas in the outer strike-point region, no net erosion was observed but the surfaces had been covered with co-deposited layers mainly consisting of W, B, C, and D and being the thickest on rough and modified surfaces. This is different from the typical erosion-deposition patterns in D plasmas, where usually sharp net-erosion peaks surrounded by prominent net-deposition maxima for W are observed close to the strike point. Moreover, no clear signs of W nanostructure growth or destruction could be seen. The growth of deposited layers may impact the operation of future fusion reactors and is attributed to strong sources in the main chamber that under suitable conditions may switch the balance from net erosion into net deposition, even close to the strike points. In addition, the absence of noticeable chemical erosion in helium plasmas may have affected the thickness of the deposited layers. Retention of He, for its part, remained small and uniform throughout the strike-point region although our results indicate that samples with smooth surfaces can contain an order of magnitude less He than their rough counterparts.

  12. Collection strategy, inner morphology, and size distribution of dust particles in ASDEX Upgrade

    SciTech Connect

    M. Balden; N. Endstrasser; P. W. Humrickhouse; V. Rohde; M. Rasinski; U. von Toussaint; S. Elgeti; R. Neu

    2014-04-01

    The dust collection and analysis strategy in ASDEX Upgrade (AUG) is described. During five consecutive operation campaigns (2007–2011), Si collectors were installed, which were supported by filtered vacuum sampling and collection with adhesive tapes in 2009. The outer and inner morphology (e.g. shape) and elemental composition of the collected particles were analysed by scanning electron microscopy. The majority of the ~50?000 analysed particles on the Si collectors of campaign 2009 contain tungsten—the plasma-facing material in AUG—and show basically two different types of outer appearance: spheroids and irregularly shaped particles. By far most of the W-dominated spheroids consist of a solid W core, i.e. solidified W droplets. A part of these particles is coated with a low-Z material; a process that seems to happen presumably in the far scrape-off layer plasma. In addition, some conglomerates of B, C and W appear as spherical particles after their contact with plasma. By far most of the particles classified as B-, C- and W-dominated irregularly shaped particles consist of the same conglomerate with varying fraction of embedded W in the B–C matrix and some porosity, which can exceed 50%. The fragile structures of many conglomerates confirm the absence of intensive plasma contact. Both the ablation and mobilization of conglomerate material and the production of W droplets are proposed to be triggered by arcing. The size distribution of each dust particle class is best described by a log-normal distribution allowing an extrapolation of the dust volume and surface area. The maximum in this distribution is observed above the resolution limit of 0.28 µm only for the W-dominated spheroids, at around 1 µm. The amount of W-containing dust is extrapolated to be less than 300 mg on the horizontal areas of AUG.

  13. The effect of off-axis neutral beam injection on sawtooth stability in ASDEX Upgrade and Mega-Ampere Spherical Tokamak

    SciTech Connect

    Chapman, I. T.; de Bock, M. F.; Pinches, S. D.; Turnyanskiy, M. R.

    2009-07-15

    Sawtooth behavior has been investigated in plasmas heated with off-axis neutral beam injection in ASDEX Upgrade [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)] and the Mega-Ampere Spherical Tokamak (MAST) [A. Sykes et al., Nucl. Fusion 41, 1423 (2001)]. Provided that the fast ions are well confined, the sawtooth period is found to decrease as the neutral beam is injected further off-axis. Drift kinetic modeling of such discharges qualitatively shows that the passing fast ions born outside the q=1 rational surface can destabilize the n=1 internal kink mode, thought to be related to the sawtooth instability. This effect can be enhanced by optimizing the deposition of the off-axis beam energetic particle population with respect to the mode location.

  14. The effect of off-axis neutral beam injection on sawtooth stability in ASDEX Upgrade and Mega-Ampere Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    Chapman, I. T.; de Bock, M. F.; Pinches, S. D.; Turnyanskiy, M. R.; Mast Team; Igochine, V. G.; Maraschek, M.; Tardini, G.; ASDEX Upgrade Team

    2009-07-01

    Sawtooth behavior has been investigated in plasmas heated with off-axis neutral beam injection in ASDEX Upgrade [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)] and the Mega-Ampere Spherical Tokamak (MAST) [A. Sykes et al., Nucl. Fusion 41, 1423 (2001)]. Provided that the fast ions are well confined, the sawtooth period is found to decrease as the neutral beam is injected further off-axis. Drift kinetic modeling of such discharges qualitatively shows that the passing fast ions born outside the q =1 rational surface can destabilize the n =1 internal kink mode, thought to be related to the sawtooth instability. This effect can be enhanced by optimizing the deposition of the off-axis beam energetic particle population with respect to the mode location.

  15. The role of carbon and nitrogen on the H-mode confinement in ASDEX Upgrade with a metal wall

    NASA Astrophysics Data System (ADS)

    Beurskens, M. N. A.; Dunne, M. G.; Frassinetti, L.; Bernert, M.; Cavedon, M.; Fischer, R.; Järvinen, A.; Kallenbach, A.; Laggner, F. M.; McDermott, R. M.; Potzel, S.; Schweinzer, J.; Tardini, G.; Viezzer, E.; Wolfrum, E.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2016-05-01

    Carbon (CD4) and nitrogen (N2) have been seeded in ASDEX Upgrade (AUG) with a tungsten wall and have both led to a 20-30% confinement improvement. The reference plasma is a standard target plasma with I p /B T  =  1 MA/2.5 T, total input power P tot ~ 12 MW and normalized pressure of β N ~ 1.8. Carbon and nitrogen are almost perfectly exchangeable for the core, pedestal and divertor plasma in this experiment where impurity concentrations of C and N of 2% are achieved and Z eff only mildly increases from ~1.3 to ~1.7. As the radiation potentials of C and N are similar and peak well below 100 eV, both impurities act as divertor radiators and radiate well outside the pedestal region. The outer divertor is purposely kept in an attached state when C and N are seeded to avoid confinement degradation by detachment. As reported in earlier publications for nitrogen, carbon is also seen to reduce the high field side high density (the so-called HFSHD) in the scrape off layer above the inner divertor strike point by about 50%. This is accompanied by a confinement improvement for both low (δ ~ 0.25) and high (δ ~ 0.4) triangularity configurations for both seeding gases, due to an increase of pedestal temperature and stiff core temperature profiles. The electron density profiles show no apparent change due to the seeding. As an orthogonal effect, increasing the triangularity leads to an additionally increased pedestal density, independent of the impurity seeding. This experiment further closes the gap in understanding the confinement differences observed in carbon and metal wall devices; the absence of carbon can be substituted by nitrogen which leads to a similar confinement benefit. So far, no definite physics explanation for the confinement enhancement has been obtained, but the experimental observations in this paper provide input for further model development.

  16. Runaway electrons mitigation by 3D fields: new insights from ASDEX Upgrade and RFX-mod experiments

    NASA Astrophysics Data System (ADS)

    Gobbin, M.; Papp, G.; Marrelli, L.; McCarthy, P. J.; Nocente, M.; Pautasso, G.; Suttrop, W.; Piovesan, P.; Terranova, D.; Valisa, M.

    2016-10-01

    Disruption-generated runaway electron (RE) beams represent a severe threat for tokamak plasma-facing components, thus motivating the search of mitigation techniques. The application of optimized 3D fields might aid this purpose, as was recently investigated in ASDEX Upgrade and RFX-mod. In ASDEX Upgrade discharges, the application of n =1 resonant magnetic perturbations (RMPs) by the B-coils before and during the disruption results in a longer current quench time together with a lower RE current in the post-disruption phase. The strength of the observed effects depends on the upper-to-lower B-coil phasing, i.e. on the poloidal spectrum of the RMPs. These results are analyzed by means of numerical tools, like the guiding center code ORBIT, and the role of plasma response is also investigated. Similar experiments have been performed in RFX-mod low density plasmas where magnetic perturbations of various amplitudes, applied by non-axisymmetric coils, have been found to partially suppress REs. ORBIT simulations indicate, in this case, that RE orbit losses are associated to a raised level of stochasticity in the edge plasma region.

  17. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Suttrop, W.; Kirk, A.; Nazikian, R.; Leuthold, N.; Strumberger, E.; Willensdorfer, M.; Cavedon, M.; Dunne, M.; Fischer, R.; Fietz, S.; Fuchs, J. C.; Liu, Y. Q.; McDermott, R. M.; Orain, F.; Ryan, D. A.; Viezzer, E.; The ASDEX Upgrade Team; The DIII-D Team; The Eurofusion MST1 Team

    2017-01-01

    The interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m  =  qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality, ν \\text{ped}\\ast≤slant 0.4 : (a) a reduction of the global plasma density by up to 61 % and (b) a reduction of the energy loss associated with edge localised modes (ELMs) by a factor of up to 9. A comprehensive database of ELM mitigation pulses at low {ν\\ast} in ASDEX Upgrade shows that the degree of ELM mitigation correlates with the reduction of pedestal pressure which in turn is limited and defined by the onset of ELMs, i. e. a modification of the ELM stability limit by the magnetic perturbation.

  18. Numerical and experimental study of the redistribution of energetic and impurity ions by sawteeth in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Jaulmes, F.; Geiger, B.; Odstrčil, T.; Weiland, M.; Salewski, M.; Jacobsen, A. S.; Rasmussen, J.; Stejner, M.; Nielsen, S. K.; Westerhof, E.; the EUROfusion MST1 Team; the ASDEX Upgrade Team

    2016-11-01

    In the non-linear phase of a sawtooth, the complete reconnection of field lines around the q  =  1 flux surface often occurs resulting in a radial displacement of the plasma core. A complete time-dependent electromagnetic model of this type of reconnection has been developed and implemented in the EBdyna_go code. This contribution aims at studying the behaviour of ions, both impurity and fast particles, in the pattern of reconnecting field lines during sawtoothing plasma experiments in the ASDEX Upgrade tokamak by using the newly developed numerical framework. Simulations of full reconnection with tungsten impurity that include the centrifugal force are achieved and recover the soft x-ray measurements. Based on this full-reconnection description of the sawtooth, a simple tool dedicated to estimate the duration of the reconnection is introduced. This work then studies the redistribution of fast ions during several experimentally observed sawteeth. In some cases of sawteeth at ASDEX Upgrade, full reconnection is not always observed or expected so the code gives an upper estimate of the actual experimental redistribution. The results of detailed simulations of the crashes are compared with measurements from various diagnostics such as collective Thomson scattering and fast-ion D-alpha (FIDA) spectroscopy, including FIDA tomography. A convincing qualitative agreement is found in different parts of velocity space.

  19. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    DOE PAGES

    Suttrop, Wolfgang; Kirk, A.; Nazikian, R.; ...

    2016-11-22

    Here, the interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m = qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality,more » $$\

  20. Development progress of Correlation ECE and n-T cross-phase angle diagnostics for ASDEX-Upgrade

    NASA Astrophysics Data System (ADS)

    Freethy, Simon; Conway, Garrard; Classen, Ivo; Creely, Alex; White, Anne; Happel, Tim; Vanovac, Branka; ASDEX Upgrade Team

    2015-11-01

    Relative turbulent temperature fluctuation amplitudes can be measured using Correlation ECE (CECE). This technique uses two narrow frequency-band radiometer channels, with an equivalent physical spacing within a turbulent radial correlation length. Correlation techniques select the common turbulent fluctuation while suppressing uncorrelated thermal noise. If such a diagnostic views the same part of the plasma as a reflectometer, then the coherence and cross-phase angle between temperature and density fluctuations can be measured. Two 2nd harmonic, X-mode, CECE radiometers have recently been installed on ASDEX Upgrade, one of which shares the quasi-optical steerable antenna of an existing Doppler reflectometer, i.e with a common line of sight of the plasma. We report on the progress of the installation and preliminary data from both systems.

  1. Gaseous electron multiplier-based soft x-ray plasma diagnostics development: Preliminary tests at ASDEX Upgrade

    SciTech Connect

    Chernyshova, M. Malinowski, K.; Czarski, T.; Kowalska-Strzęciwilk, E.; Wojeński, A.; Poźniak, K. T.; Kasprowicz, G.; Krawczyk, R.; Kolasiński, P.; Zabołotny, W.; Zienkiewicz, P.; Mazon, D.; Jardin, A.

    2016-11-15

    A Gaseous Electron Multiplier (GEM)-based detector is being developed for soft X-ray diagnostics on tokamaks. Its main goal is to facilitate transport studies of impurities like tungsten. Such studies are very relevant to ITER, where the excessive accumulation of impurities in the plasma core should be avoided. This contribution provides details of the preliminary tests at ASDEX Upgrade (AUG) with a focus on the most important aspects for detector operation in harsh radiation environment. It was shown that both spatially and spectrally resolved data could be collected, in a reasonable agreement with other AUG diagnostics. Contributions to the GEM signal include also hard X-rays, gammas, and neutrons. First simulations of the effect of high-energy photons have helped understanding these contributions.

  2. Velocity-space sensitivities of neutron emission spectrometers at the tokamaks JET and ASDEX Upgrade in deuterium plasmas

    NASA Astrophysics Data System (ADS)

    Jacobsen, A. S.; Binda, F.; Cazzaniga, C.; Eriksson, J.; Hjalmarsson, A.; Nocente, M.; Salewski, M.; Tardini, G.

    2017-07-01

    Future fusion reactors are foreseen to be heated by the energetic alpha particles produced in fusion reactions. For this to happen, it is important that the energetic ions are sufficiently confined. In present day fusion experiments, energetic ions are primarily produced using external heating systems such as neutral beam injection and ion cyclotron resonance heating. In order to diagnose these fast ions, several different fast-ion diagnostics have been developed and implemented in the various experiments around the world. The velocity-space sensitivities of fast-ion diagnostics are given by so-called weight functions. Here instrument-specific weight functions are derived for neutron emission spectrometry detectors at the tokamaks JET and ASDEX Upgrade for the 2.45 MeV neutrons produced in deuterium-deuterium reactions in deuterium plasmas. Using these, it is possible to directly determine which part of velocity space each detector observes.

  3. Gaseous electron multiplier-based soft x-ray plasma diagnostics development: Preliminary tests at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Malinowski, K.; Czarski, T.; Wojeński, A.; Vezinet, D.; Poźniak, K. T.; Kasprowicz, G.; Mazon, D.; Jardin, A.; Herrmann, A.; Kowalska-Strzeciwilk, E.; Krawczyk, R.; Kolasiński, P.; Zabołotny, W.; Zienkiewicz, P.

    2016-11-01

    A Gaseous Electron Multiplier (GEM)-based detector is being developed for soft X-ray diagnostics on tokamaks. Its main goal is to facilitate transport studies of impurities like tungsten. Such studies are very relevant to ITER, where the excessive accumulation of impurities in the plasma core should be avoided. This contribution provides details of the preliminary tests at ASDEX Upgrade (AUG) with a focus on the most important aspects for detector operation in harsh radiation environment. It was shown that both spatially and spectrally resolved data could be collected, in a reasonable agreement with other AUG diagnostics. Contributions to the GEM signal include also hard X-rays, gammas, and neutrons. First simulations of the effect of high-energy photons have helped understanding these contributions.

  4. Implementation of the new multichannel X-mode edge density profile reflectometer for the ICRF antenna on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Aguiam, D. E.; Silva, A.; Bobkov, V.; Carvalho, P. J.; Carvalho, P. F.; Cavazzana, R.; Conway, G. D.; D'Arcangelo, O.; Fattorini, L.; Faugel, H.; Fernandes, A.; Fünfgelder, H.; Gonçalves, B.; Guimarais, L.; De Masi, G.; Meneses, L.; Noterdaeme, J. M.; Pereira, R. C.; Rocchi, G.; Santos, J. M.; Tuccillo, A. A.; Tudisco, O.

    2016-11-01

    A new multichannel frequency modulated continuous-wave reflectometry diagnostic has been successfully installed and commissioned on ASDEX Upgrade to measure the plasma edge electron density profile evolution in front of the Ion Cyclotron Range of Frequencies (ICRF) antenna. The design of the new three-strap ICRF antenna integrates ten pairs (sending and receiving) of microwave reflectometry antennas. The multichannel reflectometer can use three of these to measure the edge electron density profiles up to 2 × 1019 m-3, at different poloidal locations, allowing the direct study of the local plasma layers in front of the ICRF antenna. ICRF power coupling, operational effects, and poloidal variations of the plasma density profile can be consistently studied for the first time. In this work the diagnostic hardware architecture is described and the obtained density profile measurements were used to track outer radial plasma position and plasma shape.

  5. Velocity-space sensitivities of neutron emission spectrometers at the tokamaks JET and ASDEX Upgrade in deuterium plasmas.

    PubMed

    Jacobsen, A S; Binda, F; Cazzaniga, C; Eriksson, J; Hjalmarsson, A; Nocente, M; Salewski, M; Tardini, G

    2017-07-01

    Future fusion reactors are foreseen to be heated by the energetic alpha particles produced in fusion reactions. For this to happen, it is important that the energetic ions are sufficiently confined. In present day fusion experiments, energetic ions are primarily produced using external heating systems such as neutral beam injection and ion cyclotron resonance heating. In order to diagnose these fast ions, several different fast-ion diagnostics have been developed and implemented in the various experiments around the world. The velocity-space sensitivities of fast-ion diagnostics are given by so-called weight functions. Here instrument-specific weight functions are derived for neutron emission spectrometry detectors at the tokamaks JET and ASDEX Upgrade for the 2.45 MeV neutrons produced in deuterium-deuterium reactions in deuterium plasmas. Using these, it is possible to directly determine which part of velocity space each detector observes.

  6. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    SciTech Connect

    Suttrop, Wolfgang; Kirk, A.; Nazikian, R.; Leuthold, N.; Strumberger, E.; Willensdorfer, M.; Cavedon, M.; Dunne, M.; Fischer, R.; Fietz, S.; Fuchs, J. C.; Liu, Y. Q.; McDermott, R. M.; Orain, F.; Ryan, D. A.; Viezzer, E.

    2016-11-22

    Here, the interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m = qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality, $\

  7. Implementation of the new multichannel X-mode edge density profile reflectometer for the ICRF antenna on ASDEX Upgrade

    SciTech Connect

    Aguiam, D. E. Silva, A.; Carvalho, P. J.; Carvalho, P. F.; Fernandes, A.; Gonçalves, B.; Guimarais, L.; Meneses, L.; Pereira, R. C.; Santos, J. M.; Bobkov, V.; Conway, G. D.; Faugel, H.; Fünfgelder, H.; Cavazzana, R.; De Masi, G.; D’Arcangelo, O.; Rocchi, G.; Tuccillo, A. A.; and others

    2016-11-15

    A new multichannel frequency modulated continuous-wave reflectometry diagnostic has been successfully installed and commissioned on ASDEX Upgrade to measure the plasma edge electron density profile evolution in front of the Ion Cyclotron Range of Frequencies (ICRF) antenna. The design of the new three-strap ICRF antenna integrates ten pairs (sending and receiving) of microwave reflectometry antennas. The multichannel reflectometer can use three of these to measure the edge electron density profiles up to 2 × 10{sup 19} m{sup −3}, at different poloidal locations, allowing the direct study of the local plasma layers in front of the ICRF antenna. ICRF power coupling, operational effects, and poloidal variations of the plasma density profile can be consistently studied for the first time. In this work the diagnostic hardware architecture is described and the obtained density profile measurements were used to track outer radial plasma position and plasma shape.

  8. Dissociation of methane and nitrogen molecules and global transport of tracer impurities in an ASDEX Upgrade L-mode plasma

    NASA Astrophysics Data System (ADS)

    Miettunen, J.; Airila, M. I.; Makkonen, T.; Groth, M.; Lindholm, V.; Björkas, C.; Hakola, A.; Müller, H. W.; the ASDEX Upgrade Team

    2014-09-01

    We model the dissociation of injected methane (13CH4) and nitrogen (15N2) molecules and the subsequent transport of tracer ions in ASDEX Upgrade (AUG) low confinement (L-mode) plasma conditions resembling a tracer injection experiment conducted in 2011. Based on simulations with the ERO code, the dissociation is predicted to occur relatively close to the injection port in the far-scrape-off layer (far-SOL) plasma with the dissociation location moving closer to the injection location with increasing plasma density and heating power. Simulations of global transport of the tracer ions resulting from the dissociation using the ASCOT code predict that the decreasing penetration depth of the molecules (dissociation in the far-SOL) increases the ratio between main chamber and divertor deposition.

  9. Effect of E × B driven transport on the deposition of carbon in the outer divertor of ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    ASDEX Upgrade Team; Aho-Mantila, L.; Wischmeier, M.; Krieger, K.; Rohde, V.; Müller, H. W.; Coster, D. P.; Groth, M.; Kirschner, A.; Neu, R.; Potzel, S.; Sieglin, B.; Wolfrum, E.

    2011-08-01

    Reversal of the toroidal magnetic field and plasma current is observed to considerably change the re-deposition of 13C injected into the outer divertor scrape-off layer of ASDEX Upgrade. In forward field low-density L-mode plasmas, 24-32% of injected carbon is found locally re-deposited. The deposition tails are aligned toroidally both upstream and downstream of the exit holes and indicate transport towards the strike point. In reversed field with similar main plasma parameters, the re-deposition efficiency is a factor of 2 smaller. The deposition is more localized and shows transport towards the outer scrape-off layer. Numerical modelling with the SOLPS5.0 and ERO codes shows that these differences in 13C deposition can be attributed to the combination of the E × B drift reversal directly influencing the transport of carbon and changes in local plasma conditions due to the drift reversal.

  10. ICRF wave field measurements in the presence of scrape off layer turbulence on the ASDEX Upgrade tokamak (invited)

    NASA Astrophysics Data System (ADS)

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Jacquot, J.; Noterdaeme, J.-M.; Suárez López, G.

    2016-11-01

    A new array of B-dot probes was installed on ASDEX Upgrade. The purpose of the new diagnostic is to study Ion Cyclotron Range-off Frequencies (ICRF) wave field distributions in the evanescent scrape-off layer (SOL) plasma region on the low field side of ASDEX Upgrade. The vacuum measurements (no gas, BT = 0 T) reveal ICRF wave field measurements consistent with the profiles expected from the newly installed 3-strap ICRF antennas outside the antenna box: the shape of the toroidal distribution of both the amplitude and the phase is the same for the case of only the central straps being active, as for the case of only the side straps being active. These profiles become strongly modified during plasma operations. The modifications can be separated into two types: "Inter-edge localized mode (ELM)" and "During-ELM" periods. The phase distribution of the ICRF wave fields remains well-defined during the Inter-ELM period; however, it becomes more spread out over the entire 360° range during ELMs. The observed modulations cannot be explained by the observed changes in the ICRF power, as monitored in the transmission line. However, they are consistent with ICRF coupling changes introduced by plasma filaments: the plasma density perturbations due to the filaments are high enough to change the nature of the fast ICRF wave field from evanescent to propagating. The coverage of the present diagnostic is being expanded to include both the low field side and the high field side probes. Additionally, a manipulator probe head is being developed to measure ICRF wave field radial profiles across the SOL region.

  11. Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team

    2015-01-01

    ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the

  12. The effect of a metal wall on confinement in JET and ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Beurskens, M. N. A.; Schweinzer, J.; Angioni, C.; Burckhart, A.; Challis, C. D.; Chapman, I.; Fischer, R.; Flanagan, J.; Frassinetti, L.; Giroud, C.; Hobirk, J.; Joffrin, E.; Kallenbach, A.; Kempenaars, M.; Leyland, M.; Lomas, P.; Maddison, G.; Maslov, M.; McDermott, R.; Neu, R.; Nunes, I.; Osborne, T.; Ryter, F.; Saarelma, S.; Schneider, P. A.; Snyder, P.; Tardini, G.; Viezzer, E.; Wolfrum, E.; the ASDEX Upgrade Team; Contributors, JET-EFDA

    2013-12-01

    In both JET and ASDEX Upgrade (AUG) the plasma energy confinement has been affected by the presence of a metal wall by the requirement of increased gas fuelling to avoid tungsten pollution of the plasma. In JET with a beryllium/tungsten wall the high triangularity baseline H-mode scenario (i.e. similar to the ITER reference scenario) has been the strongest affected and the benefit of high shaping to give good normalized confinement of H98 ˜ 1 at high Greenwald density fraction of fGW ˜ 0.8 has not been recovered to date. In AUG with a full tungsten wall, a good normalized confinement H98 ˜ 1 could be achieved in the high triangularity baseline plasmas, albeit at elevated normalized pressure βN > 2. The confinement lost with respect to the carbon devices can be largely recovered by the seeding of nitrogen in both JET and AUG. This suggests that the absence of carbon in JET and AUG with a metal wall may have affected the achievable confinement. Three mechanisms have been tested that could explain the effect of carbon or nitrogen (and the absence thereof) on the plasma confinement. First it has been seen in experiments and by means of nonlinear gyrokinetic simulations (with the GENE code), that nitrogen seeding does not significantly change the core temperature profile peaking and does not affect the critical ion temperature gradient. Secondly, the dilution of the edge ion density by the injection of nitrogen is not sufficient to explain the plasma temperature and pressure rise. For this latter mechanism to explain the confinement improvement with nitrogen seeding, strongly hollow Zeff profiles would be required which is not supported by experimental observations. The confinement improvement with nitrogen seeding cannot be explained with these two mechanisms. Thirdly, detailed pedestal structure analysis in JET high triangularity baseline plasmas have shown that the fuelling of either deuterium or nitrogen widens the pressure pedestal. However, in JET-ILW this

  13. H-mode characterisation for dominant ECRH and comparison to dominant NBI or ICRF heating at ASDEX Upgrade

    SciTech Connect

    Sommer, F.; Stober, J.; Angioni, C.; Fable, E.; Bernert, M.; Burckhart,; Bobkov, V.; Fischer, R.; Fuchs, C.; McDermott, R. M.; Suttrop, W.; Viezzer, E.; Collaboration: ASDEX Upgrade Team

    2014-02-12

    At ASDEX Upgrade the ECRH system has been upgraded to provide up to 4 MW of heating power at 140 GHz (or 2.2 MW at 105 GHz). The power at 140 GHz exceeds the minimum H-mode power threshold for typical high I{sub p}, B{sub t} conditions by approximately a factor of two. The upgrade allows H-modes with dominant electron heating and significant electron-ion heat exchange to be studied, i.e. the situation expected in ITER. This paper reports on systematic studies varying the heating mix with NBI, ICRF and ECRH and its effect on pedestal parameters and core transport. The H-mode pedestal is hardly affected by the choice of heating mix, but the ion temperature in the plasma center is found to vary significantly. The ion channel dominates heat transport and ion temperature gradient modes (ITG) are found to be the most unstable microinstability in all the scenarios considered. R/L{sub Ti} at half radius reduces by a factor of two when T{sub e}/T{sub i} increases from 0.9 to 1.5. TGLF modelling of the electron and ion temperature and electron density profiles shows very good agreement with the experimental data when applying a realistic sawtooth model.

  14. Laboratory astrophysics on ASDEX Upgrade: Measurements and analysis of K-shell O, F, and Ne spectra in the 9 - 20 A region

    NASA Technical Reports Server (NTRS)

    Hansen, S. B.; Fournier, K. B.; Finkenthal, M. J.; Smith, R.; Puetterich, T.; Neu, R.

    2006-01-01

    High-resolution measurements of K-shell emission from O, F, and Ne have been performed at the ASDEX Upgrade tokamak in Garching, Germany. Independently measured temperature and density profiles of the plasma provide a unique test bed for model validation. We present comparisons of measured spectra with calculations based on transport and collisional-radiative models and discuss the reliability of commonly used diagnostic line ratios.

  15. 3D ELM fluctuation measurements with the new dual array ECE-Imaging diagnostic on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Classen, Ivo; Vanovac, Branka; Domier, Calvin; Luhmann, Neville; Bogomolov, Anton; Suttrop, Wolfgang; Tobias, Benjamin; ASDEX Upgrade Team

    2015-11-01

    In a major upgrade, the (2D) electron cyclotron emission imaging diagnostic (ECE-Imaging) at ASDEX Upgrade (AUG) has been equipped with a second detector array, and has been successfully commissioned. The two detector arrays observe the plasma through the same vacuum window, both under a slight toroidal angle, to enable quasi-3D measurements of the electron temperature. The system measures a total of 288 channels, in two toroidally separated 2D arrays of approximately 50 cm vertically by 10 cm radially. The toroidal separation between the two poloidal observation planes is about 40 cm, such that the majority of the field lines is observed by both arrays simultaneously, thereby enabling a direct measurement of the 3D properties of plasma instabilities like ELM filaments. The toroidal separation of 40 cm is sufficient for the accurate measurement of both phase differences and transit times of (rotating) plasma structures, enabling a distinction between time varying 2D structures and true 3D structures (not possible with 2D diagnostics). The research will mainly focus on the investigation of the 3D structure of the temperature fluctuations related to edge localized modes (ELMs), in particular precursors and filaments. The first results on ELMs will be reported.

  16. 2-dimensional mapping of ICRF-induced scrape-off layer modifications with a retarding field analyser on ASDEX-Upgrade

    NASA Astrophysics Data System (ADS)

    Colas, L.; Bobkov, V.; Carralero, D.; Kočan, M.; Müller, H. W.; Manz, P.; Kubič, M.; Gunn, J. P.; Herrmann, A.; Rohde, V.; ASDEX-Upgrade Team

    2014-02-01

    Using a reciprocating Retarding Field Analyser (RFA), Scrape-Off Layer (SOL) modifications were investigated on ASDEX-Upgrade during heating with waves in the Ion Cyclotron Range of Frequencies (ICRF), suspected for enhanced impurity production in this all-metal machine. Two quantities involved in the sputtering were measured: the current Islit on a saturated slit plate, proportional to the parallel ion flux and the mean parallel energy t of collected ions, averaged over many RF cycles. Combining multiple RFA reciprocations over a scan of q95 provided 2D poloidal/radial resolution. In the outer SOL a localized RF-perturbed zone was evidenced on the RFA side magnetically connected to an active ICRF antenna. A flat 2D Islit pattern surrounded by steep gradients was observed, correlatively with t exceeding 150eV. The centre of the zone is connected radially slightly behind the leading edge of antenna side limiters, with a radial extension up to ±2cm. The zone is broadest and t is largest near the bottom of the active antenna. This is interpreted as a zone of local plasma biasing via sheath rectification, creating density convection around it. The Islit pattern is qualitatively consistent with simple considerations about E×B particle convection.

  17. Global performance enhancements via pedestal optimisation on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; Frassinetti, L.; Beurskens, M. N. A.; Cavedon, M.; Fietz, S.; Fischer, R.; Giannone, L.; Huijsmans, G. T. A.; Kurzan, B.; Laggner, F.; McCarthy, P. J.; McDermott, R. M.; Tardini, G.; Viezzer, E.; Willensdorfer, M.; Wolfrum, E.; The EUROfusion MST1 Team; The ASDEX Upgrade Team

    2017-02-01

    Results of experimental scans of heating power, plasma shape, and nitrogen content are presented, with a focus on global performance and pedestal alteration. In detailed scans at low triangularity, it is shown that the increase in stored energy due to nitrogen seeding stems from the pedestal. It is also shown that the confinement increase is driven through the temperature pedestal at the three heating power levels studied. In a triangularity scan, an orthogonal effect of shaping and seeding is observed, where increased plasma triangularity increases the pedestal density, while impurity seeding (carbon and nitrogen) increases the pedestal temperature in addition to this effect. Modelling of these effects was also undertaken, with interpretive and predictive models being employed. The interpretive analysis shows a general agreement of the experimental pedestals in separate power, shaping, and seeding scans with peeling-ballooning theory. Predictive analysis was used to isolate the individual effects, showing that the trends of additional heating power and increased triangularity can be recoverd. However, a simple change of the effective charge in the plasma cannot explain the observed levels of confinement improvement in the present models.

  18. Effects of outer top gas injection on ICRF coupling in ASDEX Upgrade: towards modelling of ITER gas injection

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Bobkov, V.; Noterdaeme, J.-M.; Tierens, W.; Bilato, R.; Carralero, D.; Coster, D.; Jacquot, J.; Jacquet, P.; Lunt, T.; Pitts, R. A.; Rohde, V.; Siegl, G.; Fuenfgelder, H.; Aguiam, D.; Silva, A.; Colas, L.; Ceccuzzi, S.; the ASDEX Upgrade Team

    2017-07-01

    The influence of outer top gas injection on the scrape-off layer (SOL) density and ion cyclotron range of frequency (ICRF) coupling has been studied in ASDEX Upgrade (AUG) L-mode plasmas for the first time. The three-dimensional (3D) edge plasma fluid and neutral transport code EMC3-EIRENE is used to simulate the SOL plasma density, and the 3D wave code RAPLICASOL is used to compute the ICRF coupling resistance with the calculated density. Improvements have been made in the EMC3-EIRENE simulations by fitting transport parameters separately for each gas puffing case. It is found that the calculated local density profiles and coupling resistances are in good agreement with the experimental ones. The results indicate that the SOL density increase depends sensitively on the spreading of the injected outer top gas. If more gas enters into the main chamber through the paths near the top of vessel, the SOL density increase will be more toroidally uniform; if more gas chooses the paths closer to the mid-plane, then the SOL density increase will be more local and more significant. Among the various local gas puffing methods, the mid-plane gas valve close to the antenna is still the best option in terms of improving ICRF coupling. Differences between the outer top gas puffing in AUG and the outer top gas puffing in ITER are briefly summarized. Instructive suggestions for ITER and future plans for ITER gas injection simulations are discussed.

  19. Interpretation of the effects of electron cyclotron power absorption in pre-disruptive tokamak discharges in ASDEX Upgrade

    SciTech Connect

    Nowak, S.; Lazzaro, E.; Granucci, G.; Esposito, B.; Maraschek, M.; Zohm, H.; Sauter, O.; Brunetti, D.; Collaboration: ASDEX Upgrade Team

    2012-09-15

    Tokamak disruptions are events of fatal collapse of the magnetohydrodynamic (MHD) confinement configuration, which cause a rapid loss of the plasma thermal energy and the impulsive release of magnetic energy and heat on the tokamak first wall components. The physics of the disruptions is very complex and non-linear, strictly associated with the dynamics of magnetic tearing perturbations. The crucial problem of the response to the effects of localized heat deposition and current driven by external (rf) sources to avoid or quench the MHD tearing instabilities has been investigated both experimentally and theoretically on the ASDEX Upgrade tokamak. The analysis of the conditions under which a disruption can be prevented by injection of electron cyclotron (EC) rf power, or, alternatively, may be caused by it, shows that the local EC heating can be more significant than EC current drive in ensuring neoclassical tearing modes (NTMs) stability, due to two main reasons: first, the drop of temperature associated with the island thermal short circuit tends to reduce the neoclassical character of the instability and to limit the EC current drive generation; second, the different effects on the mode evolution of both the location of the power deposition relative to the island separatrix and the island shape deformation lead to less strict requirements of precise power deposition focussing. A contribution to the validation of theoretical models of the events associated with NTM is given and can be used to develop concepts for their control, relevant also for ITER-like scenarios.

  20. Correlation Electron Temperature Fluctuation Measurements on Alcator C-Mod and ASDEX Upgrade: Cross Machine Comparisons and Transport Model Validation

    NASA Astrophysics Data System (ADS)

    White, A. E.; Creely, A. J.; Freethy, S.; Cao, N.; Conway, G. D.; Goerler, T.; Happel, T.; Howard, N. T.; Inman, C.; Rice, J. E.; Rodriguez Fernandez, P.; Sung, C.; C-Mod, Alcator; Upgrade, Asdex

    2016-10-01

    Correlation Electron Cyclotron Emission diagnostics have been developed for Alcator C-Mod and ASDEX Upgrade. Measurements of long wavelength (ktheta rhos <0.5) electron temperature fluctuations have been measured in the core plasma (0.5

  1. Scintillator based detector for fast-ion losses induced by magnetohydrodynamic instabilities in the ASDEX upgrade tokamak

    NASA Astrophysics Data System (ADS)

    García-Muñoz, M.; Fahrbach, H.-U.; Zohm, H.; ASDEX Upgrade Team

    2009-05-01

    A scintillator based detector for fast-ion losses has been designed and installed on the ASDEX upgrade (AUG) tokamak [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)]. The detector resolves in time the energy and pitch angle of fast-ion losses induced by magnetohydrodynamics (MHD) fluctuations. The use of a novel scintillator material with a very short decay time and high quantum efficiency allows to identify the MHD fluctuations responsible for the ion losses through Fourier analysis. A Faraday cup (secondary scintillator plate) has been embedded behind the scintillator plate for an absolute calibration of the detector. The detector is mounted on a manipulator to vary its radial position with respect to the plasma. A thermocouple on the inner side of the graphite protection enables the safety search for the most adequate radial position. To align the scintillator light pattern with the light detectors a system composed by a lens and a vacuum-compatible halogen lamp has been allocated within the detector head. In this paper, the design of the scintillator probe, as well as the new technique used to analyze the data through spectrograms will be described. A last section is devoted to discuss the diagnosis prospects of this method for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)].

  2. The I-mode confinement regime at ASDEX Upgrade: global properties and characterization of strongly intermittent density fluctuations

    NASA Astrophysics Data System (ADS)

    Happel, T.; Manz, P.; Ryter, F.; Bernert, M.; Dunne, M.; Hennequin, P.; Hetzenecker, A.; Stroth, U.; Conway, G. D.; Guimarais, L.; Honoré, C.; Viezzer, E.; The ASDEX Upgrade Team

    2017-01-01

    Properties of the I-mode confinement regime on the ASDEX Upgrade tokamak are summarized. A weak dependence of the power threshold for the L-I transition on the toroidal magnetic field strength is found. During improved confinement, the edge radial electric field well deepens. Stability calculations show that the I-mode pedestal is peeling-ballooning stable. Turbulence investigations reveal strongly intermittent density fluctuations linked to the weakly coherent mode in the confined plasma, which become stronger as the confinement quality increases. Across all investigated structure sizes ({{k}\\bot}≈ 5 -12 cm-1, with {{k}\\bot} the perpendicular wavenumber of turbulent density fluctuations), the intermittent turbulence bursts are observed. Comparison with bolometry data shows that they move poloidally toward the X-point and finally end up in the divertor. This might be indicative that they play a role in inhibiting the density profile growth, such that no pedestal is formed in the edge density profile.

  3. Quantification of the impact of large and small-scale instabilities on the fast-ion confinement in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Geiger, B.; Weiland, M.; Mlynek, A.; Reich, M.; Bock, A.; Dunne, M.; Dux, R.; Fable, E.; Fischer, R.; Garcia-Munoz, M.; Hobirk, J.; Hopf, C.; Nielsen, S.; Odstrcil, T.; Rapson, C.; Rittich, D.; Ryter, F.; Salewski, M.; Schneider, P. A.; Tardini, G.; Willensdorfer, M.

    2015-01-01

    The confinement fast ions, generated by neutral beam injection (NBI), has been investigated at the ASDEX Upgrade tokamak. In plasmas that exhibit strong sawtooth crashes, a significant sawtooth-induced internal redistribution of mainly passing fast ions is observed, which is in very good agreement with the theoretical predictions based on the Kadomtsev model. Between the sawtooth crashes, the fishbone modes are excited which, however, do not cause measurable changes in the global fast-ion population. During experiments with on- and off-axis NBI and without strong magnetohydrodynamic (MHD) modes, the fast-ion measurements agree very well with the neo-classical predictions. This shows that the MHD-induced (large-scale), as well as a possible turbulence-induced (small-scale) fast-ion transport is negligible under these conditions. However, in discharges performed to study the off-axis NBI current drive efficiency with up to 10 MW of heating power, the fast-ion measurements agree best with the theoretical predictions that assume a weak level anomalous fast-ion transport. This is also in agreement with measurements of the internal inductance, a Motional Stark Effect diagnostic and a novel polarimetry diagnostic: the fast-ion driven current profile is clearly modified when changing the NBI injection geometry and the measurements agree best with the predictions that assume weak anomalous fast-ion diffusion.

  4. Scintillator based detector for fast-ion losses induced by magnetohydrodynamic instabilities in the ASDEX upgrade tokamak

    SciTech Connect

    Garcia-Munoz, M.; Fahrbach, H.-U.; Zohm, H.; Collaboration: ASDEX Upgrade Team

    2009-05-15

    A scintillator based detector for fast-ion losses has been designed and installed on the ASDEX upgrade (AUG) tokamak [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)]. The detector resolves in time the energy and pitch angle of fast-ion losses induced by magnetohydrodynamics (MHD) fluctuations. The use of a novel scintillator material with a very short decay time and high quantum efficiency allows to identify the MHD fluctuations responsible for the ion losses through Fourier analysis. A Faraday cup (secondary scintillator plate) has been embedded behind the scintillator plate for an absolute calibration of the detector. The detector is mounted on a manipulator to vary its radial position with respect to the plasma. A thermocouple on the inner side of the graphite protection enables the safety search for the most adequate radial position. To align the scintillator light pattern with the light detectors a system composed by a lens and a vacuum-compatible halogen lamp has been allocated within the detector head. In this paper, the design of the scintillator probe, as well as the new technique used to analyze the data through spectrograms will be described. A last section is devoted to discuss the diagnosis prospects of this method for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)].

  5. Assessment of SOLPS5.0 divertor solutions with drifts and currents against L-mode experiments in ASDEX Upgrade and JET

    NASA Astrophysics Data System (ADS)

    Aho-Mantila, L.; Potzel, S.; Coster, D. P.; Wischmeier, M.; Brix, M.; Fischer, R.; Marsen, S.; Meigs, A.; Müller, H. W.; Scarabosio, A.; Stamp, M. F.; Brezinsek, S.; the ASDEX Upgrade Team; JET Contributors, the

    2017-03-01

    The divertor solutions obtained with the plasma edge modelling tool SOLPS5.0 are discussed. The code results are benchmarked against carefully analysed L-mode discharges at various density levels with and without impurity seeding in the full-metal tokamaks ASDEX Upgrade and JET. The role of the cross-field drifts and currents in the solutions is analysed in detail, and the improvements achieved by fully activating the drift and current terms in view of matching the experimental signals are addressed. The persisting discrepancies are also discussed.

  6. Experimental analysis and WallDYN simulations of the global nitrogen migration in ASDEX Upgrade L-mode discharges

    NASA Astrophysics Data System (ADS)

    Meisl, G.; Schmid, K.; Oberkofler, M.; Krieger, K.; Lisgo, S. W.; Aho-Mantila, L.; Reimold, F.; Lunt, T.; ASDEX Upgrade Team

    2016-03-01

    This work presents ASDEX Upgrade experiments, where the nitrogen deposition and re-erosion on divertor manipulator samples and the effect of its transport through the plasma were studied. These results are compared to WallDYN-DIVIMP simulations based on SOLPS plasma backgrounds and employing an improved WallDYN model, which includes the effusion of nitrogen from saturated surfaces. On one hand, this allows the WallDYN code and the new saturation model with a comprehensive data set to be benchmarked, on the other hand the simulations help in the interpretation of the experimental results. Both, experimental results and simulations, show that the N content in the region of the outer strike line reaches its steady-state value within one discharge. The simulations also reproduce the experimentally observed nitrogen content in samples exposed to N2-seeded discharges. With respect to the boron deposition, the nitrogen deposition in a non-seeded discharge and the re-erosion of nitrogen discrepancies to the WallDYN-DIVIMP simulations are observed. Based on SDTrimSP simulations, these are attributed to the missing depth resolution of the WallDYN surface model. A detailed comparison of spectroscopic measurements to WallDYN simulations, based on a novel synthetic spectroscopy diagnostic for WallDYN, shows that the nitrogen fluxes in the plasma are well described by the simulations. From a comparison of several WallDYN-DIVIMP simulations employing customized onion-skin model plasma backgrounds the physical processes controlling the nitrogen concentration in the core plasma and the applicability of onion-skin model plasma backgrounds are discussed. From these simulations the private flux zone with the gas valve, the outer baffle and the high field side main wall are identified as the main sources for the nitrogen content of the core plasma.

  7. Non-boronized compared with boronized operation of ASDEX Upgrade with full-tungsten plasma facing components

    NASA Astrophysics Data System (ADS)

    Kallenbach, A.; Dux, R.; Mayer, M.; Neu, R.; Pütterich, T.; Bobkov, V.; Fuchs, J. C.; Eich, T.; Giannone, L.; Gruber, O.; Herrmann, A.; Horton, L. D.; Maggi, C. F.; Meister, H.; Müller, H. W.; Rohde, V.; Sips, A.; Stäbler, A.; Stober, J.; ASDEX Upgrade Team

    2009-04-01

    After completion of the tungsten coating of all plasma facing components, ASDEX Upgrade has been operated without boronization for 1 1/2 experimental campaigns. This has allowed the study of fuel retention under conditions of relatively low D co-deposition with low-Z impurities as well as the operational space of a full-tungsten device for the unfavourable condition of a relatively high intrinsic impurity level. Restrictions in operation were caused by the central accumulation of tungsten in combination with density peaking, resulting in H-L backtransitions induced by too low separatrix power flux. Most important control parameters have been found to be the central heating power, as delivered predominantly by ECRH, and the ELM frequency, most easily controlled by gas puffing. Generally, ELMs exhibit a positive impact, with the effect of impurity flushing out of the pedestal region overbalancing the ELM-induced W source. The restrictions of plasma operation in the unboronized W machine occurred predominantly under low or medium power conditions. Under medium-high power conditions, stable operation with virtually no difference between boronized and unboronized discharges was achieved. Due to the reduced intrinsic radiation with boronization and the limited power handling capability of VPS coated divertor tiles (≈10 MW m-2), boronized operation at high heating powers was possible only with radiative cooling. To enable this, a previously developed feedback system using (thermo-)electric current measurements as approximate sensor for the divertor power flux was introduced into the standard AUG operation. To avoid the problems with reduced ELM frequency due to core plasma radiation, nitrogen was selected as radiating species since its radiative characteristic peaks at lower electron temperatures in comparison with Ne and Ar, favouring SOL and divertor radiative losses. Nitrogen seeding resulted not only in the desired divertor power load reduction but also in improved

  8. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    NASA Astrophysics Data System (ADS)

    Adamek, J.; Müller, H. W.; Silva, C.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S.; Horacek, J.; Kurzan, B.; Bilkova, P.; Böhm, P.; Aftanas, M.; Vondracek, P.; Stöckel, J.; Panek, R.; Fernandes, H.; Figueiredo, H.

    2016-04-01

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (ΦBPP) and the floating potential (Vfl) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula Te = (ΦBPP - Vfl)/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  9. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    SciTech Connect

    Adamek, J. Horacek, J.; Bilkova, P.; Böhm, P.; Aftanas, M.; Vondracek, P.; Stöckel, J.; Panek, R.; Müller, H. W.; Silva, C.; Fernandes, H.; Figueiredo, H.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S.; Kurzan, B.

    2016-04-15

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (Φ{sub BPP}) and the floating potential (V{sub fl}) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula T{sub e} = (Φ{sub BPP} − V{sub fl})/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  10. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes.

    PubMed

    Adamek, J; Müller, H W; Silva, C; Schrittwieser, R; Ionita, C; Mehlmann, F; Costea, S; Horacek, J; Kurzan, B; Bilkova, P; Böhm, P; Aftanas, M; Vondracek, P; Stöckel, J; Panek, R; Fernandes, H; Figueiredo, H

    2016-04-01

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (ΦBPP) and the floating potential (Vfl) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula Te = (ΦBPP - Vfl)/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  11. Toroidal modelling of RMP response in ASDEX Upgrade: coil phase scan, q 95 dependence, and toroidal torques

    NASA Astrophysics Data System (ADS)

    Liu, Yueqiang; Ryan, D.; Kirk, A.; Li, Li; Suttrop, W.; Dunne, M.; Fischer, R.; Fuchs, J. C.; Kurzan, B.; Piovesan, P.; Willensdorfer, M.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2016-05-01

    The plasma response to the vacuum resonant magnetic perturbation (RMP) fields, produced by the ELM control coils in ASDEX Upgrade experiments, is computationally modelled using the MARS-F/K codes (Liu et al 2000 Phys. Plasmas 7 3681, Liu et al 2008 Phys. Plasmas 15 112503). A systematic investigation is carried out, considering various plasma and coil configurations as in the ELM control experiments. The low q plasmas, with {{q}95}˜ 3.8 (q 95 is the safety factor q value at 95% of the equilibrium poloidal flux), responding to low n (n is the toroidal mode number) field perturbations from each single row of the ELM coils, generates a core kink amplification effect. Combining two rows, with different toroidal phasing, thus leads to either cancellation or reinforcement of the core kink response, which in turn determines the poloidal location of the peak plasma surface displacement. The core kink response is typically weak for the n  =  4 coil configuration at low q, and for the n  =  2 configuration but only at high q ({{q}95}˜ 5.5 ). A phase shift of around 60 degrees for low q plasmas, and around 90 degrees for high q plasmas, is found in the coil phasing, between the plasma response field and the vacuum RMP field, that maximizes the edge resonant field component. This leads to an optimal coil phasing of about 100 (-100) degrees for low (high) q plasmas, that maximizes both the edge resonant field component and the plasma surface displacement near the X-point of the separatrix. This optimal phasing closely corresponds to the best ELM mitigation observed in experiments. A strong parallel sound wave damping moderately reduces the core kink response but has minor effect on the edge peeling response. For low q plasmas, modelling shows that both the resonant electromagnetic torque and the neoclassical toroidal viscous (NTV) torque (due to the presence of 3D magnetic field perturbations) contribute to the toroidal flow damping, in particular near the

  12. Novel mono-static arrangement of the ASDEX Upgrade high field side reflectometers compatible with electron cyclotron resonance heating stray radiationa)

    NASA Astrophysics Data System (ADS)

    Silva, A.; Varela, P.; Meneses, L.; Manso, M.; ASDEX Upgrade Team

    2012-10-01

    The ASDEX Upgrade frequency modulated continuous wave broadband reflectometer system uses a mono-static antenna configuration with in-vessel hog-horns and 3 dB directional couplers. The operation of the new electron cyclotron resonance heating (ECRH) launcher and the start of collective Thomson scattering experiments caused several events where the fragile dummy loads inside the high field side directional couplers were damaged, due to excessive power resulting from the ECRH stray fields. In this paper, we present a non-conventional application of the existing three-port directional coupler that hardens the system to the ECRH stray fields and at the same time generates the necessary reference signal. Electromagnetic simulations and laboratory tests were performed to validate the proposed solution and are compared with the in-vessel calibration tests.

  13. Novel mono-static arrangement of the ASDEX Upgrade high field side reflectometers compatible with electron cyclotron resonance heating stray radiation.

    PubMed

    Silva, A; Varela, P; Meneses, L; Manso, M

    2012-10-01

    The ASDEX Upgrade frequency modulated continuous wave broadband reflectometer system uses a mono-static antenna configuration with in-vessel hog-horns and 3 dB directional couplers. The operation of the new electron cyclotron resonance heating (ECRH) launcher and the start of collective Thomson scattering experiments caused several events where the fragile dummy loads inside the high field side directional couplers were damaged, due to excessive power resulting from the ECRH stray fields. In this paper, we present a non-conventional application of the existing three-port directional coupler that hardens the system to the ECRH stray fields and at the same time generates the necessary reference signal. Electromagnetic simulations and laboratory tests were performed to validate the proposed solution and are compared with the in-vessel calibration tests.

  14. Novel free-boundary equilibrium and transport solver with theory-based models and its validation against ASDEX Upgrade current ramp scenarios

    NASA Astrophysics Data System (ADS)

    Fable, E.; Angioni, C.; Casson, F. J.; Told, D.; Ivanov, A. A.; Jenko, F.; McDermott, R. M.; Medvedev, S. Yu; Pereverzev, G. V.; Ryter, F.; Treutterer, W.; Viezzer, E.; the ASDEX Upgrade Team

    2013-12-01

    Tokamak scenario development requires an understanding of the properties that determine the kinetic profiles in non-steady plasma phases and of the self-consistent evolution of the magnetic equilibrium. Current ramps are of particular interest since many transport-relevant parameters explore a large range of values and their impact on transport mechanisms has to be assessed. To this purpose, a novel full-discharge modelling tool has been developed, which couples the transport code ASTRA (Pereverzev et al 1991 IPP Report 5/42) and the free boundary equilibrium code SPIDER (Ivanov et al 2005 32nd EPS Conf. on Plasma Physics vol 29C (ECA) P-5.063 and http://epsppd.epfl.ch/Tarragona/pdf/P5_063.pdf), utilizing a specifically designed coupling scheme. The current ramp-up phase can be accurately and reliably simulated using this scheme, where a plasma shape, position and current controller is applied, which mimics the one of ASDEX Upgrade. Transport of energy is provided by theory-based models (e.g. TGLF (Staebler et al 2007 Phys. Plasmas 14 055909)). A recipe based on edge-relevant parameters (Scott 2000 Phys. Plasmas 7 1845) is proposed to resolve the low current phase of the current ramps, where the impact of the safety factor on micro-instabilities could make quasi-linear approaches questionable in the plasma outer region. Current ramp scenarios, selected from ASDEX Upgrade discharges, are then simulated to validate both the coupling with the free-boundary evolution and the prediction of profiles. Analysis of the underlying transport mechanisms is presented, to clarify the possible physics origin of the observed L-mode empirical energy confinement scaling. The role of toroidal micro-instabilities (ITG, TEM) and of non-linear effects is discussed.

  15. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Noterdaeme, J.-M.

    2015-11-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k//) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (ktor). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k// as strap phasing is moved away from the dipole configuration. This result is the opposite of the ktor trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k//, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.

  16. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade.

    PubMed

    Ochoukov, R; Bobkov, V; Faugel, H; Fünfgelder, H; Noterdaeme, J-M

    2015-11-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k(//)) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k(tor)). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k(//) as strap phasing is moved away from the dipole configuration. This result is the opposite of the k(tor) trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k(//), as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.

  17. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    SciTech Connect

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Noterdaeme, J.-M.

    2015-11-15

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k{sub //}) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k{sub tor}). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k{sub //} as strap phasing is moved away from the dipole configuration. This result is the opposite of the k{sub tor} trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k{sub //}, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas’ operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to

  18. Modelling of the ICRF induced E  ×  B convection in the scrape-off-layer of ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Feng, Y.; Noterdaeme, J.-M.; Bobkov, V.; Colas, L.; Coster, D.; Lunt, T.; Bilato, R.; Jacquot, J.; Ochoukov, R.; Van Eester, D.; Křivská, A.; Jacquet, P.; Guimarais, L.; the ASDEX Upgrade Team

    2016-09-01

    In magnetic controlled fusion devices, plasma heating with radio-frequency (RF) waves in the ion cyclotron (IC) range of frequency relies on the electric field of the fast wave to heat the plasma. However, the slow wave can be generated parasitically. The electric field of the slow wave can induce large biased plasma potential (DC potential) through sheath rectification. The rapid variation of the rectified potential across the equilibrium magnetic field can cause significant convective transport (E  ×  B drifts) in the scrape-off layer (SOL). In order to understand this phenomenon and reproduce the experiments, 3D realistic simulations are carried out with the 3D edge plasma fluid and kinetic neutral code EMC3-Eirene in ASDEX Upgrade. For this, we have added the prescribed drift terms to the EMC3 equations and verified the 3D code results against the analytical ones in cylindrical geometry. The edge plasma potential derived from the experiments is used to calculate the drift velocities, which are then treated as input fields in the code to obtain the final density distributions. Our simulation results are in good agreement with the experiments.

  19. Micro-NRA and micro-3HIXE with 3He microbeam on samples exposed in ASDEX Upgrade and Pilot-PSI machines

    NASA Astrophysics Data System (ADS)

    Kelemen, Mitja; Založnik, Anže; Vavpetič, Primož; Pečovnik, Matic; Pelicon, Primož; Hakola, Antti; Lahtinen, Aki; Karhunen, Juuso; Piip, Kaarel; Paris, Peeter; Laan, Matti; Krieger, Karl; Oberkofler, Martin; van der Meiden, Hennie; Markelj, Sabina

    2017-08-01

    Micro nuclear reaction analysis (micro-NRA) exploiting the nuclear reaction D(3He,p)4He was used for post-mortem analyses of special marker samples, exposed to deuterium plasma inside ASDEX Upgrade (AUG) tokamak and to the deuterium plasma jet in the Pilot-PSI linear plasma gun. Lateral concentration profiles of deuterium and erosion/deposition profiles of the marker materials were obtained by a combination of micro-NRA and particle induced X-ray emission by 3He beam (3HIXE). In the case of AUG samples, where 25 nm thick W marker layers had been deposited on unpolished and polished graphite substrates, the effect of surface roughness on local erosion and deposition was also investigated. The lateral distribution of W concentration showed that erosion is much more distinct in the case of polished samples and the resulting surface shows a ;leopard; skin pattern of W accumulated on carbon aggregates left on the surface from polishing. The Pilot-PSI samples indicated preferential accumulation of deuterium a few mm off from the centre of the region affected by the plasma beam. This is connected with the largest surface modifications while the thick deposited layers at the centre do not favour deuterium retention per se. The results were cross correlated with those obtained using laser-induced breakdown spectroscopy (LIBS). With its quantitative abilities, micro-NRA provided essential calibration data for in situ LIBS operation, as well as for complementary post mortem Secondary Ion Mass Spectroscopy (SIMS).

  20. Localized Scrape-Off Layer density modifications by Ion Cyclotron near fields in JET and ASDEX-Upgrade L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Colas, L.; Jacquet, Ph.; Van Eester, D.; Bobkov, V.; Brix, M.; Meneses, L.; Tamain, P.; Marsen, S.; Silva, C.; Carralero, D.; Kočan, M.; Müller, H.-W.; Crombé, K.; Křivska, A.; Goniche, M.; Lerche, E.; Rimini, F. G.

    2015-08-01

    Combining Lithium beam emission spectroscopy and edge reflectometry, localized Scrape-Off Layer (SOL) density modifications by Ion Cyclotron Range of Frequencies (ICRF) near fields were characterized in JET L-mode plasmas. When using the ICRF wave launchers connected magnetically to the Li-beam chord, the density decreased more steeply 2-3 cm outside the last closed flux surface (mapped onto the outer mid-plane) and its value at the outer limiter radial position was half the ohmic value. The depletion depends on the ICRF power and on the phasing between adjacent radiating straps. Convection due to ponderomotive effects and/or E × B0 drifts is suspected: during ICRF-heated H-mode discharges in 2013, DC potentials up to 70 V were measured locally in the outer SOL by a floating reciprocating probe, located toroidally several metres from the active antennas. These observations are compared with probe measurements on ASDEX-Upgrade. Their implications for wave coupling, heat loads and impurity production are discussed.

  1. A comparison of the impact of central ECRH and central ICRH on the tungsten behaviour in ASDEX Upgrade H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Angioni, C.; Sertoli, M.; Bilato, R.; Bobkov, V.; Loarte, A.; Ochoukov, R.; Odstrcil, T.; Pütterich, T.; Stober, J.; The ASDEX Upgrade Team

    2017-05-01

    A comparison of the impact of additional central electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH) on the behaviour of the tungsten (W) density in the core of H-mode plasmas heated with neutral beam injection (NBI) is performed in ASDEX Upgrade. Both localized and broad profiles of the power density of the ECRH have been obtained, where broad profiles reproduce the profile shape of the ICRH power density, which is applied with a hydrogen minority heating scheme. In contrast to ECRH, which produces direct electron heating only, ICRH eventually heats both electrons and ions in almost equal fractions. It is found that both additional RF heating systems reduce the peaking of the W density profile with increasing central RF heating power. Approximately the same values of W density peaking are obtained when the same values of electron heating are produced by the two RF heating systems, which implies that less total heating power is required with ECRH than with ICRH to reduce the W density peaking. A related modelling activity shows that an important ingredient to explain the experimentally observed trend is the variation of the turbulent W diffusion as a function of the electron to ion heat flux ratio. Additional effects are connected with the more favorable W neoclassical transport convection in the presence of ICRH, produced by the combination of stronger central ion temperature gradients and the impact of the H minority on the W poloidal density asymmetry.

  2. Temporal evolution and spatial distribution of dust creation events in Tore Supra and in ASDEX Upgrade studied by CCD image analysis

    NASA Astrophysics Data System (ADS)

    Hong, Suk-Ho; Grisolia, Christian; Rohde, Volker; Monier-Garbet, Pascale; Tore Supra Team; ASDEX Upgrade Team

    2010-03-01

    Images of wide-angle visible standard CCD cameras contain information on dust creation events (DCEs) that occur during plasma operations. Analysing the straight line-like dust traces in the shallow volume of scrape-off layer along the vacuum vessel, caused by plasma-dust interaction, the database on the DCEs is built. The database provides short/long term temporal evolution and spatial distribution of origins of DCEs in fusion devices. We have studied the DCEs of CIMES (2006) and DITS (2007) Tore Supra (TS) campaigns, and the DCEs of the 2007 ASDEX Upgrade (AUG) campaign. The results from the TS CIMES campaign show different patterns of DCEs meaning different plasma-wall interaction depending on power coupling. The TS DITS campaign indicates that dusts may be an operational limit if a fixed plasma operation scenario is used repeatedly. Different behaviours of DCEs between the carbon limiter machine and the full tungsten divertor machine are found, which is important for next generation fusion machines like ITER.

  3. Outer divertor of ASDEX Upgrade in low-density L-mode discharges in forward and reversed magnetic field: II. Analysis of local impurity migration

    NASA Astrophysics Data System (ADS)

    Aho-Mantila, L.; Wischmeier, M.; Krieger, K.; Rohde, V.; Hakola, A.; Potzel, S.; Kirschner, A.; Borodin, D.; the ASDEX Upgrade Team

    2012-10-01

    Part I (Aho-Mantila L. et al 2012 Nucl. Fusion 52 103006) presented a detailed analysis of outer divertor plasma conditions in low-density L-mode discharges in ASDEX Upgrade. In this paper, we analyse the local migration of carbon that originates from 13CH4 injected into these plasmas from the vertical outer target. Notable changes are observed in the local carbon deposition patterns when reversing the magnetic field in the experiments. Kinetic impurity-following simulations are performed using the 3D ERO code package with 2D background plasma solutions calculated with the SOLPS5.0 code package. The modelling shows that the measured changes are due to the changes in plasma collisionality, dissociation and ionization rates, and E × B drift of the impurities. These conditions affect the direction and rate of impurity migration inside and out of the divertor, having wider consequences on the global migration of impurities in a divertor tokamak. It is further shown that the migration pathways are largely determined by carbon ions and, hence, relevant for impurities in general. Neutral carbon and hydrocarbons are deposited only in the near vicinity of the injection, where they affect the local re-deposition efficiency. In this limited region, a perturbation of the local plasma conditions by the methane puff appears likely, yielding a significant uncertainty for interpreting the deposition efficiencies. The local deposition is largely influenced by the magnetic presheath electric field, the structure of which is the main uncertainty in the SOLPS5.0-ERO simulations.

  4. Role of plasma shape in access to ELM suppression at low collisionality: First observation of ELM suppression in ASDEX Upgrade in a shape-matching identity experiment with DIII-D

    NASA Astrophysics Data System (ADS)

    Suttrop, Wolfgang; Nazikian, Raffi; Kirk, Andrew; ASDEX Upgrade Team; Diii-D Team; Eurofusion Mst1 Team

    2016-10-01

    Controlled plasma shape scans at low pedestal collisionality νped* < 0.4 in DIII-D reveal that the threshold of magnetic perturbation field strength for suppression of edge-localized modes (ELMs) depends on both upper and lower plasma triangularity. Similar plasmas with matching shape and matching plasma parameters have been performed in DIII-D and ASDEX Upgrade. In these discharges, stationary ELM suppression by magnetic perturbations is observed for the first time in ASDEX Upgrade.Despite different divertor geometry and different first wall materials in the two machines, these plasmas show many similarities: Complete ELM suppression occurs in a narrow windows around q95 3.7 with transitions to phases with ``fuzzy'' ELMs outside these windows, electron density and temperature profiles as well as the total pedestal pressure are well matched, while there are variations of other quantities such as impurity concentrations and impurity rotation frequencies. A first experiment with injection of tungsten shows that the tungsten impurity content in the plasma decays on the time scale of energy confinement. see http://www.euro-fusionscipub.org/mst1.

  5. Role of Te/Ti and ∇vtor in ion heat transport of ASDEX Upgrade H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Manini, A.; Angioni, C.; Peeters, A. G.; Ryter, F.; Jacchia, A.; Maggi, C. F.; Suttrop, W.; ASDEX Upgrade Team

    2006-12-01

    Experiments in H-mode plasmas have shown that both heat and particle transport are sensitive to the ratio between electron and ion temperature (Te/Ti). While decreasing Te/Ti is beneficial for confinement, an increased electron heating in these so called 'hot ion plasmas' deteriorates the confinement. H-mode plasmas with low Te/Ti are often accompanied by high toroidal rotation velocity (vphi). Its gradient (∇vphi) can destabilize the ion temperature gradient mode (ITG) through its parallel component in the parallel velocity shear, but it has also stabilizing effects since it produces an E × B shearing rate (ωE × B). In this paper, the effects of electron heating on the ion heat transport is investigated in H-mode plasmas heated by neutral beam injection (NBI) and electron cyclotron heating (ECH). In particular, the correlation on Te/Ti and ∇vphi is studied and compared with calculations made with GLF23 and GS2. Experimentally it is shown that the normalized gradient length of the ions ( R/L_{T_{\\rmi}} ) is correlated with both Te/Ti and ∇vphi: peaked ion temperature profiles are only obtained with low Te/Ti and high ∇vphi, and vice-versa. When ECH is added, both ion heat and momentum transport are enhanced, leading to a drop of both the Ti and vphi profiles. The effective growth rate γeff = γ-ωE × B is calculated, with the mode growth rate γ determined with GS2 and ωE × B with GLF23. The ion transport is enhanced due to the decrease of the ITG R/L_{T_{\\rmi}} threshold with increasing Te/Ti. Comparison of the dependence of R/L_{T_{\\rmi}} on Te/Ti and ∇vphi between experiments and modelling indicates that the deterioration of confinement cannot be explained by the changes in only Te/Ti or ∇vphi, but by the combined effects of both parameters. The changes in Te/Ti act directly on the ITG threshold, while the ones in ∇vphi modify the ωE × B shearing rate leading to changes in the effective threshold.

  6. Particle transport analysis of the density build-up after the L-H transition in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Willensdorfer, M.; Fable, E.; Wolfrum, E.; Aho-Mantila, L.; Aumayr, F.; Fischer, R.; Reimold, F.; Ryter, F.; the ASDEX Upgrade Team

    2013-09-01

    Predictive-iterative modelling has been performed to investigate the role of convective and diffusive particle transport in the edge during the density build-up after the L-H transition. For the time-dependent modelling, the 1.5D radial transport code ASTRA has been used. The convective velocity, diffusion coefficient and the particle source profiles have been parameterized. Their parameters were varied until the best match of the modelling to the density measurements was found. The extensive parameter scans show that the density build-up can be reproduced by assuming only a diffusive edge transport barrier (ETB) with reduced diffusion coefficient at the edge with respect to the core values. Moreover, the replacement of the diffusive ETB by a strong inwards directed convective velocity at the edge (edge pinch) did not succeed in describing the data. This indicates that a diffusive ETB is required to explain the density build-up. However, the addition of an edge pinch to the diffusive ETB barrier slightly enhances the agreement between modelling and experiment. The best agreement was found with an edge diffusion coefficient of 0.031 m2 s-1 and an edge convective velocity of -0.5 m s-1. Because of the large uncertainties in the source, it is not possible to pin down the exact value for the additional edge pinch. An upper limit for a possible edge convective velocity of -5 m s-1 was estimated. These findings could also be confirmed by analysing H-mode phases of a collisionality scan, in which the normalized collisionality \

  7. Seed enhancement/upgrading techniques: Read the seed

    Treesearch

    Kim R. Creasy

    2002-01-01

    To the nursery industry in Canada, seed enhancing and upgrading techniques have ever increasingly become and are now an integral part of their operations prior to greenhouse sowing. The terms "enhancing" and "upgrading" can be used interchangeably, but they essentially mean the same thing. It's the idea of improving the quality of initial...

  8. Pellet imaging techniques on ASDEX

    SciTech Connect

    Wurden, G.A. ); Buechl, K.; Hofmann, J.; Lang, R.; Loch, R.; Rudyj, A.; Sandmann, W. )

    1990-01-01

    As part of a USDOE/ASDEX collaboration, a detailed examination of pellet ablation in ASDEX with a variety of diagnostics has allowed a better understanding of a number of features of hydrogen ice pellet ablation in a plasma. In particular, fast gated photos with an intensified Xybion CCD video camera allow in-situ velocity measurements of the pellet as it penetrates the plasma. With time resolution of typically 100 nanoseconds and exposures every 50 microseconds, the evolution of each pellet in a multi-pellet ASDEX tokamak plasma discharge can be followed. When the pellet cloud track has striations, the light intensity profile through the cloud is hollow (dark near the pellet), whereas at the beginning or near the end of the pellet trajectory the track is typically smooth (without striations) and has a gaussian-peaked light emission profile. New, single pellet Stark broadened D{sub {alpha}}D{sub {beta}}, and D{sub {gamma}} spectra, obtained with a tangentially viewing scanning mirror/spectrometer with Reticon array readout, are consistent with cloud densities of 2 {times} 10{sup 17}cm{sup {minus}3} or higher in the regions of strongest light emission. A spatially resolved array of D{sub {alpha}} detectors shows that the light variations during the pellet ablation are not caused solely by a modulation of the incoming energy flux as the pellet crosses rational q-surfaces, but instead are a result of a dynamic, non-stationary, ablation process. 20 refs., 4 figs.

  9. Developing Multimedia Enhanced Content to Upgrade Subject Content Knowledge of Secondary School Teachers in Tanzania

    ERIC Educational Resources Information Center

    Mtebe, Joel S.; Kibga, Elia Y.; Mwambela, Alfred A.; Kissaka, Mussa M.

    2015-01-01

    The failure rates and lack of interest amongst students in science and mathematics in secondary schools in Tanzania is a serious problem. The Ministry of Education and Vocational Training (MoEVT) implemented a project to enhance and upgrade the pedagogical knowledge and subject content knowledge of teachers in selected difficult topics in science…

  10. Recent upgrades and enhancements of the FEM3A model

    SciTech Connect

    Chan, S.T.

    1994-12-01

    In 1984, the US Army Edgewood Research, Development and Engineering Center began to fund Lawrence Livermore National Laboratory to further develop FEM3, a fully three-dimensional heavy-gas dispersion model, as a research tool for studying the atmospheric transport and diffusion of certain chemical systems. As a result, a significantly improved version of the model, called FEM3A, was delivered to ERDEC in 1988. During the past few years, two more major improvements have been developed and tested. They are: improved mass conservation for treating dispersion scenarios with large density variations, and the addition of an advanced turbulence submodel based on the k-{var_epsilon} transport equations. These enhancements have resulted in substantial improvements in the dispersion simulations of heavy-gases and can greatly extend the range of applicability of the model, including the ability to treat problems with large density variations and dispersion scenarios of much greater complexities. Documented in this report are the new features and some of the improvements obtained with the new model.

  11. A CONCEPTUAL 3-GEV LANSCE LINAC UPGRADE FOR ENHANCED PROTON RADIOGRAPHY

    SciTech Connect

    Garnett, Robert W; Rybarcyk, Lawrence J.; Merrill, Frank E.; O'Hara, James F.; Rees, Daniel E.; Walstrom, Peter L.

    2012-05-14

    A conceptual design of a 3-GeV linac upgrade that would enable enhanced proton radiography at the Los Alamos Neutron Science Center (LANSCE) is presented. The upgrade is based on the use of superconducting accelerating cavities to increase the present LANSCE linac output energy from 800 MeV to 3 GeV. The LANSCE linac currently provides negative hydrogen ion (H{sup -}) and proton (H{sup +}) beams to several user facilities that support Isotope Production, NNSA Stockpile Stewardship, and Basic Energy Science programs. Required changes to the front-end, the accelerating structures, and to the RF systems to meet the new performance goals, and changes to the existing beam switchyard to maintain operations for a robust user program are also described.

  12. Noble magnetic barriers in the ASDEX UG tokamak

    NASA Astrophysics Data System (ADS)

    Ali, Halima; Punjabi, Alkesh; Vazquez, Justin

    2010-02-01

    The second-order perturbation method of creating invariant tori inside chaos in Hamiltonian systems (Ali, H.; Punjabi, A. Plasma Phys. Contr. F. 2007, 49, 1565-1582) is applied to the axially symmetric divertor experiment upgrade (ASDEX UG) tokamak to build noble irrational magnetic barriers inside chaos created by resonant magnetic perturbations (m, n)=(3, 2)+(4, 3), with m and n the poloidal and toroidal mode numbers of the Fourier expansion of the magnetic perturbation. The radial dependence of the Fourier modes is ignored. The modes are considered to be locked and have the same amplitude δ. A symplectic mathematical mapping in magnetic coordinates is used to integrate magnetic field line trajectories in the ASDEX UG. Tori with noble irrational rotational transform are the last ones to be destroyed by perturbation in Hamiltonian systems. For this reason, noble irrational magnetic barriers are built inside chaos, and the strongest noble irrational barrier is identified. Three candidate locations for the strongest noble barrier in ASDEX UG are selected. All three candidate locations are chosen to be roughly midway between the resonant rational surfaces ψ32 and ψ43. ψ is the magnetic coordinate of the flux surface. The three candidate surfaces are the noble irrational surfaces close to the surface with q value that is a mediant of q=3/2 and 4/3, q value of the physical midpoint of the two resonant surfaces, and the q value of the surface where the islands of the two perturbing modes just overlap. These q values of the candidate surfaces are denoted by q MED, q MID, and q OVERLAP. The strongest noble barrier close to q MED has the continued fraction representation (CFR) [1;2,2,1∞] and exists for δ≤2.6599×10-4; the strongest noble barrier close to q MID has CFR [1;2,2,2,1∞] and exists for δ≤4.6311×10-4; and the strongest noble barrier close to q OVERLAP has CFR [1;2,2,6,2,1∞] and exists for δ≤1.367770×10-4. From these results, the strongest

  13. Viewgraphs presented at the ASDEX/DOE workshop on disruptions in divertor tokamaks

    SciTech Connect

    Granetz, R.; Gruber, O.; Zohm, H.

    1994-09-01

    The emphasis of this year`s ASDEX/DOE workshop was on disruptions in diverted tokamaks. The meeting was held here at MIT on 14--15 March. It is particularly appropriate that MIT hosted the workshop this year, since Alcator C-Mod had just recently completed its very first run campaign, and disruptions are one of the key areas of research in our program. There were a total of 14 speakers, with participants from IPP (Garching), CRPP (Lausanne), Culham, General Atomics, PPPL, Sandia, ORNL, the ITER JCT, and MIT. The subjects addressed included statistical analysis of disruption probabilities in ASDEX, modelling of the vertical axisymmetric plasma motion in DIII-D, impact of disruptions on the design of the ITER divertors, modelling of runaway electrons, and TSC calculations of disruption-induced currents and forces in TPX, etc. One item of particular interest to us was the experimental correlation of halo current magnitude with plasma current on ASDEX-Upgrade. The data indicates at least a linear, and possibly even a quadractic dependence. This has important implications for Alcator C-Mod, since it would predict halo currents of order 1 MA or more at full performance. At the conclusion of the talks, an informal discussion of disruption databases was held, primarily for the purpose of helping us develop a useful one for C-Mod.

  14. Ex-situ biogas upgrading and enhancement in different reactor systems.

    PubMed

    Kougias, Panagiotis G; Treu, Laura; Benavente, Daniela Peñailillo; Boe, Kanokwan; Campanaro, Stefano; Angelidaki, Irini

    2017-02-01

    Biogas upgrading is envisioned as a key process for clean energy production. The current study evaluates the efficiency of different reactor configurations for ex-situ biogas upgrading and enhancement, in which externally provided hydrogen and carbon dioxide were biologically converted to methane by the action of hydrogenotrophic methanogens. The methane content in the output gas of the most efficient configuration was >98%, allowing its exploitation as substitute to natural gas. Additionally, use of digestate from biogas plants as a cost efficient method to provide all the necessary nutrients for microbial growth was successful. High-throughput 16S rRNA sequencing revealed that the microbial community was resided by novel phylotypes belonging to the uncultured order MBA08 and to Bacteroidales. Moreover, only hydrogenotrophic methanogens were identified belonging to Methanothermobacter and Methanoculleus genera. Methanothermobacter thermautotrophicus was the predominant methanogen in the biofilm formed on top of the diffuser surface in the bubble column reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. EPIC Computer Upgrade

    NASA Image and Video Library

    Expedition 30 Commander Dan Burbank and Flight Engineer Don Pettit work on installing hardware for the Enhanced Processor and Integrated Communications (EPIC) upgrade of the International Space Sta...

  16. Enhancement of the Logistics Battle Command Model: Architecture Upgrades and Attrition Module Development

    DTIC Science & Technology

    2017-01-05

    database files. While it currently does not support writing via JDBC, that functionality is not necessary for LBC purposes. Therefore, we select...identify the error and write the correct version of the input file in a separate location. Upgrading Dependent Libraries We upgrade the following...52. output = open(output_filename , ’wb’) #establish output.csv file with handle 53. 54. # Write Header 55. output.write

  17. Tritium Plasma Experiment Upgrade and Improvement of Surface Diagnostic Capabilities at STAR Facility for Enhancing Tritium and Nuclear PMI Sciences

    SciTech Connect

    Shimada, M.; Taylor, C. N.; Pawelko, R. J.; Cadwallader, L. C.; Merrill, B. J.

    2016-04-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials with tritium [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. The plasma-material-interaction (PMI) determines a boundary condition for diffusing tritium into bulk PFCs, and the tritium PMI is crucial for enhancing fundamental sciences that dictate tritium fuel cycles and safety and are high importance to an FNSF and DEMO. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  18. Captain upgrade CRM training: A new focus for enhanced flight operations

    NASA Technical Reports Server (NTRS)

    Taggart, William R.

    1993-01-01

    Crew Resource Management (CRM) research has resulted in numerous payoffs of applied applications in flight training and standardization of air carrier flight operations. This paper describes one example of how basic research into human factors and crew performance was used to create a specific training intervention for upgrading new captains for a major United States air carrier. The basis for the training is examined along with some of the specific training methods used, and several unexpeced results.

  19. Captain upgrade CRM training: A new focus for enhanced flight operations

    NASA Technical Reports Server (NTRS)

    Taggart, William R.

    1993-01-01

    Crew Resource Management (CRM) research has resulted in numerous payoffs of applied applications in flight training and standardization of air carrier flight operations. This paper describes one example of how basic research into human factors and crew performance was used to create a specific training intervention for upgrading new captains for a major United States air carrier. The basis for the training is examined along with some of the specific training methods used, and several unexpeced results.

  20. SRS control system upgrade requirements

    SciTech Connect

    Hill, L.F.

    1998-08-04

    This document defines requirements for an upgrade of the Sodium Removal System (SRS) control system. The upgrade is being performed to solve a number of maintainability and operability issues. The upgraded system will provide the same functions, controls and interlocks as the present system, and in addition provide enhanced functionality in areas discussed in this document.

  1. The upgraded cold neutron triple-axis spectrometer FLEXX - enhanced capabilities by new instrumental options

    NASA Astrophysics Data System (ADS)

    Habicht, Klaus; Lucía Quintero-Castro, Diana; Toft-Petersen, Rasmus; Kure, Mathias; Mäde, Lucas; Groitl, Felix; Le, Manh Duc

    2015-01-01

    The upgrade of the cold neutron triple axis spectrometer FLEXX, a work-horse instrument for inelastic neutron scattering matching the sample environment capabilities at Helmholtz-Zentrum Berlin, has been successfully accomplished. Experiments confirmed an order of magnitude gain in flux now allowing for intensity demanding options to be fully exploited at FLEXX. In this article, we describe the layout and design of two newly available FLEXX instrument options in detail. The new Heusler analyzer gives an increase of the detected polarized neutron flux due to its superior focusing properties, significantly improving the feasibility of future polarized and neutron resonance spin echo experiments. The MultiFLEXX option provides simultaneous access to large regions in wavevector and energy space for inelastic excitations thus adding mapping capabilities to the spectrometer.

  2. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    SciTech Connect

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  3. Long-pulse suprathermal discharges in the ASDEX tokamak

    SciTech Connect

    Fussmann, G.; Campbell, D.; Eberhagen, A.; Engelhardt, W.; Karger, F.; Keilhacker, M.; Klueber, O.; Lackner, K.; Sesnic, S.; Wagner, F.; Behringer, K.; Gehre, O.; Gernhardt, J.; Glock, E.; Haas, G.; Kornherr, M.; Lisitano, G.; Mayer, H.M.; Meisel, D.; Mueller, R.; Murmann, H.; Niedermeyer, H.; Poschenrieder, W.; Rapp, H.; Ruhs, N.; Schneider, F.; Siller, G.; Steuer, K.

    1981-10-05

    Use of the ASDEX divertor permits the production of stable low-density discharges (n/sub e/> or approx. =10/sup 12/ cm/sup -3/) with extremely low resistivity lasting for more than 10 s. While the distribution functions of electrons and ions show suprathermal tails, runaway electrons in the megaelectronvolt range are found to disappear with decreasing density. There are indications that in these discharges the energy confinement is improved compared with ALCATOR scaling.

  4. ISS Update: Computer Upgrade on Station

    NASA Image and Video Library

    NASA Public Affairs Officer Brandi Dean interviews Gary Cox, EPIC Project Manager, about EPIC (Enhanced Processor and Integrated Communications), the computer upgrade program for the International ...

  5. Slum Upgrading and Health Equity.

    PubMed

    Corburn, Jason; Sverdlik, Alice

    2017-03-24

    Informal settlement upgrading is widely recognized for enhancing shelter and promoting economic development, yet its potential to improve health equity is usually overlooked. Almost one in seven people on the planet are expected to reside in urban informal settlements, or slums, by 2030. Slum upgrading is the process of delivering place-based environmental and social improvements to the urban poor, including land tenure, housing, infrastructure, employment, health services and political and social inclusion. The processes and products of slum upgrading can address multiple environmental determinants of health. This paper reviewed urban slum upgrading evaluations from cities across Asia, Africa and Latin America and found that few captured the multiple health benefits of upgrading. With the Sustainable Development Goals (SDGs) focused on improving well-being for billions of city-dwellers, slum upgrading should be viewed as a key strategy to promote health, equitable development and reduce climate change vulnerabilities. We conclude with suggestions for how slum upgrading might more explicitly capture its health benefits, such as through the use of health impact assessment (HIA) and adopting an urban health in all policies (HiAP) framework. Urban slum upgrading must be more explicitly designed, implemented and evaluated to capture its multiple global environmental health benefits.

  6. Slum Upgrading and Health Equity

    PubMed Central

    Corburn, Jason; Sverdlik, Alice

    2017-01-01

    Informal settlement upgrading is widely recognized for enhancing shelter and promoting economic development, yet its potential to improve health equity is usually overlooked. Almost one in seven people on the planet are expected to reside in urban informal settlements, or slums, by 2030. Slum upgrading is the process of delivering place-based environmental and social improvements to the urban poor, including land tenure, housing, infrastructure, employment, health services and political and social inclusion. The processes and products of slum upgrading can address multiple environmental determinants of health. This paper reviewed urban slum upgrading evaluations from cities across Asia, Africa and Latin America and found that few captured the multiple health benefits of upgrading. With the Sustainable Development Goals (SDGs) focused on improving well-being for billions of city-dwellers, slum upgrading should be viewed as a key strategy to promote health, equitable development and reduce climate change vulnerabilities. We conclude with suggestions for how slum upgrading might more explicitly capture its health benefits, such as through the use of health impact assessment (HIA) and adopting an urban health in all policies (HiAP) framework. Urban slum upgrading must be more explicitly designed, implemented and evaluated to capture its multiple global environmental health benefits. PMID:28338613

  7. Characteristics of type I and type III ELM precursors in ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    Kass, T.; Günter, S.; Maraschek, M.; Suttrop, W.; Zohm, H.; ASDEX Upgrade Team

    1998-01-01

    The temporal evolution of the edge electron pressure gradient during the development of a type I ELM shows that proximity of ∇pedge to the ideal ballooning limit is not sufficient to trigger a type I ELM. Thus, the MHD structure of ELMs is investigated further. The present discussion focuses on the phenomenology of type I and type III ELM precursors. The ELM precursor types are well distinguished by their frequency behaviour and mode structure. The type I ELM precursor oscillation originates from a thin layer close to the plasma edge. For type III ELMs, on the contrary, ∇pedge has a much stronger influence as indicated by their occurrence during L mode.

  8. Fast-Ion Losses due to High-Frequency MHD Perturbations in the ASDEX Upgrade Tokamak

    SciTech Connect

    Garcia-Munoz, M.; Fahrbach, H.-U.; Guenter, S.; Igochine, V.; Maraschek, M.; Zohm, H.; Mantsinen, M. J.; Martin, P.; Piovesan, P.; Sassenberg, K.

    2008-02-08

    Time-resolved energy and pitch angle measurements of fast-ion losses correlated in frequency and phase with high-frequency magnetohydrodynamic perturbations have been obtained for the first time in a magnetic fusion device and are presented here. A detailed analysis of fast-ion losses due to toroidal Alfven eigenmodes has revealed the existence of a new core-localized magnetohydrodynamic perturbation, the sierpes mode. The sierpes mode is a non-Alfvenic instability which dominates the losses of fast ions in ion cyclotron resonance heated discharges, and it is named for its footprint in the spectrograms ('sierpes' means 'snake' in Spanish). The sierpes mode has been reconstructed by means of highly resolved multichord soft-x-ray measurements.

  9. Investigation of pellet-triggered MHD events in the ASDEX upgrade

    SciTech Connect

    Lang, P. T.; Lackner, K.; Kallenbach, A.; Maraschek, M.; Perez von Thun, C. P.; Suttrop, W.

    2008-09-15

    In order to gain deeper insight into the process of MHD activity triggered by pellets we extended our previous analysis (standard type-I edge localized modes (ELMs)) to type-I ELMs in radiative edge scenarios, type-III ELMs, the quiescent H-mode regime, and core mode activity such as neoclassical tearing modes or snakes. Pellet triggering of mode activity has turned out to be a quite general feature, but only in case of the ELMs can it be unambiguously attributed to prompt local impact by the pellet. For edge plasma conditions characterized by higher resistivity, the growth time of spontaneous ELMs increases while the plasma changes from the type-I into the type-III regime. However, pellet-triggered ELMs retain fast rise times. In the quiescent Hmode, pellets still trigger ELM-like mode activity, but no longer accompanied by a significant release of energy from the plasma.

  10. Pedestal structure and inter-ELM evolution for different main ion species in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Laggner, F. M.; Wolfrum, E.; Cavedon, M.; Mink, F.; Bernert, M.; Dunne, M. G.; Schneider, P. A.; Kappatou, A.; Birkenmeier, G.; Fischer, R.; Willensdorfer, M.; Aumayr, F.

    2017-05-01

    In tokamak plasmas with different main ion species, a change in confinement occurs, known as the isotope effect. Experiments comparing hydrogen (H), deuterium (D), and helium (4He) plasmas have been performed to identify processes that define the pedestal structure and evolution in between the crashes of edge localized modes (ELMs). The pedestal top electron densities and temperatures have been matched to compare the pedestal shape and stability. In the D and H discharges, the pedestal electron temperature profiles do not differ, whereas the density profile in H has shallower gradients. Furthermore, the heat flux across the pedestal in H is roughly a factor of two higher than in D. In 4He plasmas at similar stored energy, the pedestal top electron density is roughly a factor of 1.5 larger than in the references owing to the larger effective charge. The peeling-ballooning theory, which is independent of the main ion species mass, can sufficiently describe the pedestal stability in the hydrogenic plasmas. The inter-ELM pedestal evolution has the same sequence of recovery phases for all investigated species, giving evidence that similar mechanisms are acting in the pedestals. This is further supported by a similar evolution of the inter-ELM magnetic signature and the corresponding toroidal structure.

  11. Pedestal shape, stability and inter-ELM evolution for different main ion species in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Laggner, Florian M.

    2016-10-01

    In tokamak plasmas with different main ion species as hydrogen isotopes or helium, a change of confinement occurs, known as isotope effect. To identify the processes defining the pedestal structure and evolution, experiments comparing hydrogen (H), deuterium (D) and helium (He) plasmas have been performed. Their goal was to match the pedestal top electron density and temperatures and compare the pedestal shape and stability. A factor of almost 10 higher gas puff as well as a factor of 2 higher heating power were required in H to achieve the same pedestal top values as in the D reference. While the pedestal electron temperature profiles do not differ, the density profile in H has shallower gradients. These can be explained by a lower particle confinement in H, if the ionization source profile is assumed to be similar. In He plasmas owing to the larger effective charge, the stored energy at similar pedestal top electron density is roughly a factor of 1.5 smaller than in the references, leading to the absence of ELMs. In summary the experimental results suggest different particle and energy confinement for different main ion species, however, peeling-ballooning theory can sufficiently describe the pedestal stability and ELM behavior. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under Grant Agreement No. 633053.

  12. Predictive modelling of the impact of a radiative divertor on pedestal confinement on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, Mike; Potzel, Steffen; Wischmeier, Marco; Wolfrum, Elisabeth; Frassinetti, Lorenzo; Reimold, Felix; Eurofusion Mst1 Team; ASDEX Upgrade Team

    2015-11-01

    In future devices, tailoring of the edge density profile and radiation profile for power exhaust control via a deuterium gas puff and extrinsic impurity seeding will be necessary. It has been observed on present day machines that high D fuelling can reduce the plasma stored energy while adding impurity seeding can act to improve confinement by up to 40%. This study presents a combination of observations and modelling completed on AUG with the aim of determining the mechanisms behind the confinement degradation with a gas puff and improvement with impurity seeding. In particular, predictive modelling, based on the EPED pedestal model, has been extensively used. Alterations of the temperature and density at the separatrix are found to have large impacts on pedestal stability. Measured changes in divertor properties are used to inform the direction and magnitude of these alterations, with experimentally relevant confinement changes being recovered via pressure profile shifts. http://www.euro-fusionscipub.org/mst1

  13. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    SciTech Connect

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site`s centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million.

  14. Interaction between Ni and HZSM-5 in aromatization-enhanced reactive adsorption desulfurization catalysts for FCC gasoline upgrading.

    PubMed

    Zhao, Jinchong; Zhang, Lulu; She, Nannan; Liu, Yunqi; Chai, Yongming; Liu, Chenguang

    A compound catalyst (RA) consisted of Ni, ZnO and HZSM-5 with functions of reactive adsorption desulfurization (RADS) and olefin aromatization for fluid catalytic cracking (FCC) gasoline upgrading was prepared. X-ray powder diffraction (XRD), temperature-programmed reduction and low-temperature N2 adsorption were used to characterize the properties of the catalysts. Performance evaluation by FCC gasoline was carried out, and the result showed that the catalyst RA performed well in desulfurization and aromatization. For comparison, RADS catalyst (represented by DS) consisted of Ni and ZnO and aromatization catalyst (represented by Ar) consisted of HZSM-5 were prepared, respectively. They were combined in different ways to help investigating interaction between Ni and HZSM-5. Performance evaluated by FCC gasoline showed that catalyst RA performed best in desulfurization with a slight octane number loss. Interaction between Ni and HZSM-5 is a significant factor which influences the performance of the catalyst.

  15. Gemini Instrument Upgrade Program

    NASA Astrophysics Data System (ADS)

    Diaz, Ruben; Goodsell, Stephen; Kleinman, Scot

    2016-08-01

    The Gemini Observatory* remains committed to keeping its operational instrumentation competitive and serving the needs of its user community. Currently the observatory operates a 4 instruments + 1 AO system at each site. At Gemini North the GMOS-N, GNIRS, NIFS and NIRI instruments are offered supported by the ALTAIR AO system. In the south, GMOS-S, F-2, GPI and GSAOI are offered instrumentation and GeMS is the provided AO System. This paper reviews our strategy to keep our instrumentation suite competitive, examines both our current funded upgrade projects and our potential future enhancements. We summarize the work done and the results so far obtained within the instrument upgrade program.

  16. Site-specific economic and ecological analysis of enhanced production, upgrade and feed-in of biomethane from organic wastes.

    PubMed

    Lindorfer, J; Schwarz, M M

    2013-01-01

    The present study analyses the cost structure and ecological performance of biomethane production and feed-in from organic wastes and manure in a site-specific approach for Upper Austria. The theoretically available quantities of biowaste and manure can feed representative biogas plant capacities resulting in relatively high biomethane full costs in the natural gas grid of at least 9.0 €-cents/kWh, which shows strong economies of scale when feed-in flows of methane from 30 to 120 Nm(3)/h are considered. From the ecological point of view small plant capacities are to be preferred since the environmental effect, i.e. the global warming potential (up to -22% of CO(2eq)), is lower in comparison to higher capacities as a consequence of reduced transport in the evaluated scenarios. To enforce the combined energetic use of the biowaste fraction, co-operation between compost facility, gas grid and biogas plant operators is necessary to use existing infrastructure, logistics and knowledge to promote the production, upgrade and feed-in of biomethane from biowastes at attractive locations in Upper Austria and in the whole of Europe.

  17. The upgraded DØ detector

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, D. L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S. N.; Ahn, S. H.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Anastasoaie, M.; Andeen, T.; Anderson, J. T.; Anderson, S.; Andrieu, B.; Angstadt, R.; Anosov, V.; Arnoud, Y.; Arov, M.; Askew, A.; Åsman, B.; Assis Jesus, A. C. S.; Atramentov, O.; Autermann, C.; Avila, C.; Babukhadia, L.; Bacon, T. C.; Badaud, F.; Baden, A.; Baffioni, S.; Bagby, L.; Baldin, B.; Balm, P. W.; Banerjee, P.; Banerjee, S.; Barberis, E.; Bardon, O.; Barg, W.; Bargassa, P.; Baringer, P.; Barnes, C.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bhattacharjee, M.; Baturitsky, M. A.; Bauer, D.; Bean, A.; Baumbaugh, B.; Beauceron, S.; Begalli, M.; Beaudette, F.; Begel, M.; Bellavance, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Besson, A.; Beuselinck, R.; Beutel, D.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Binder, M.; Biscarat, C.; Bishoff, A.; Black, K. M.; Blackler, I.; Blazey, G.; Blekman, F.; Blessing, S.; Bloch, D.; Blumenschein, U.; Bockenthien, E.; Bodyagin, V.; Boehnlein, A.; Boeriu, O.; Bolton, T. A.; Bonamy, P.; Bonifas, D.; Borcherding, F.; Borissov, G.; Bos, K.; Bose, T.; Boswell, C.; Bowden, M.; Brandt, A.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchanan, N. J.; Buchholz, D.; Buehler, M.; Buescher, V.; Burdin, S.; Burke, S.; Burnett, T. H.; Busato, E.; Buszello, C. P.; Butler, D.; Butler, J. M.; Cammin, J.; Caron, S.; Bystricky, J.; Canal, L.; Canelli, F.; Carvalho, W.; Casey, B. C. K.; Casey, D.; Cason, N. M.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapin, D.; Charles, F.; Cheu, E.; Chevalier, L.; Chi, E.; Chiche, R.; Cho, D. K.; Choate, R.; Choi, S.; Choudhary, B.; Chopra, S.; Christenson, J. H.; Christiansen, T.; Christofek, L.; Churin, I.; Cisko, G.; Claes, D.; Clark, A. R.; Clément, B.; Clément, C.; Coadou, Y.; Colling, D. J.; Coney, L.; Connolly, B.; Cooke, M.; Cooper, W. E.; Coppage, D.; Corcoran, M.; Coss, J.; Cothenet, A.; Cousinou, M.-C.; Cox, B.; Crépé-Renaudin, S.; Cristetiu, M.; Cummings, M. A. C.; Cutts, D.; da Motta, H.; Das, M.; Davies, B.; Davies, G.; Davis, G. A.; Davis, W.; De, K.; de Jong, P.; de Jong, S. J.; De La Cruz-Burelo, E.; De La Taille, C.; De Oliveira Martins, C.; Dean, S.; Degenhardt, J. D.; Déliot, F.; Delsart, P. A.; Del Signore, K.; DeMaat, R.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Doets, M.; Doidge, M.; Dong, H.; Doulas, S.; Dudko, L. V.; Duflot, L.; Dugad, S. R.; Duperrin, A.; Dvornikov, O.; Dyer, J.; Dyshkant, A.; Eads, M.; Edmunds, D.; Edwards, T.; Ellison, J.; Elmsheuser, J.; Eltzroth, J. T.; Elvira, V. D.; Eno, S.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, D.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fagan, J.; Fast, J.; Fatakia, S. N.; Fein, D.; Feligioni, L.; Ferapontov, A. V.; Ferbel, T.; Ferreira, M. J.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fleck, I.; Fitzpatrick, T.; Flattum, E.; Fleuret, F.; Flores, R.; Foglesong, J.; Fortner, M.; Fox, H.; Franklin, C.; Freeman, W.; Fu, S.; Fuess, S.; Gadfort, T.; Galea, C. F.; Gallas, E.; Galyaev, E.; Gao, M.; Garcia, C.; Garcia-Bellido, A.; Gardner, J.; Gavrilov, V.; Gay, A.; Gay, P.; Gelé, D.; Gelhaus, R.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Geurkov, G.; Ginther, G.; Gobbi, B.; Goldmann, K.; Golling, T.; Gollub, N.; Golovtsov, V.; Gómez, B.; Gomez, G.; Gomez, R.; Goodwin, R.; Gornushkin, Y.; Gounder, K.; Goussiou, A.; Graham, D.; Graham, G.; Grannis, P. D.; Gray, K.; Greder, S.; Green, D. R.; Green, J.; Green, J. A.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groer, L.; Grünendahl, S.; Grünewald, M. W.; Gu, W.; Guglielmo, J.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hadley, N. J.; Haggard, E.; Haggerty, H.; Hagopian, S.; Hall, I.; Hall, R. E.; Han, C.; Han, L.; Hance, R.; Hanagaki, K.; Hanlet, P.; Hansen, S.; Harder, K.; Harel, A.; Harrington, R.; Hauptman, J. M.; Hauser, R.; Hays, C.; Hays, J.; Hazen, E.; Hebbeker, T.; Hebert, C.; Hedin, D.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hensel, C.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hong, S. J.; Hooper, R.; Hou, S.; Houben, P.; Hu, Y.; Huang, J.; Huang, Y.; Hynek, V.; Huffman, D.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jacquier, Y.; Jaffré, M.; Jain, S.; Jain, V.; Jakobs, K.; Jayanti, R.; Jenkins, A.; Jesik, R.; Jiang, Y.; Johns, K.; Johnson, M.; Johnson, P.; Jonckheere, A.; Jonsson, P.; Jöstlein, H.; Jouravlev, N.; Juarez, M.; Juste, A.; Kaan, A. P.; Kado, M. M.; Käfer, D.; Kahl, W.; Kahn, S.; Kajfasz, E.; Kalinin, A. M.; Kalk, J.; Kalmani, S. D.; Karmanov, D.; Kasper, J.; Katsanos, I.; Kau, D.; Kaur, R.; Ke, Z.; Kehoe, R.; Kermiche, S.; Kesisoglou, S.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. M.; Kim, H.; Kim, K. H.; Kim, T. J.; Kirsch, N.; Klima, B.; Klute, M.; Kohli, J. M.; Konrath, J.-P.; Komissarov, E. V.; Kopal, M.; Korablev, V. M.; Kostritski, A.; Kotcher, J.; Kothari, B.; Kotwal, A. V.; Koubarovsky, A.; Kozelov, A. V.; Kozminski, J.; Kryemadhi, A.; Kouznetsov, O.; Krane, J.; Kravchuk, N.; Krempetz, K.; Krider, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kubinski, R.; Kuchinsky, N.; Kuleshov, S.; Kulik, Y.; Kumar, A.; Kunori, S.; Kupco, A.; Kurča, T.; Kvita, J.; Kuznetsov, V. E.; Kwarciany, R.; Lager, S.; Lahrichi, N.; Landsberg, G.; Larwill, M.; Laurens, P.; Lavigne, B.; Lazoflores, J.; Le Bihan, A.-C.; Le Meur, G.; Lebrun, P.; Lee, S. W.; Lee, W. M.; Leflat, A.; Leggett, C.; Lehner, F.; Leitner, R.; Leonidopoulos, C.; Leveque, J.; Lewis, P.; Li, J.; Li, Q. Z.; Li, X.; Lima, J. G. R.; Lincoln, D.; Lindenmeyer, C.; Linn, S. L.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Litmaath, M.; Lizarazo, J.; Lobo, L.; Lobodenko, A.; Lokajicek, M.; Lounis, A.; Love, P.; Lu, J.; Lubatti, H. J.; Lucotte, A.; Lueking, L.; Luo, C.; Lynker, M.; Lyon, A. L.; Machado, E.; Maciel, A. K. A.; Madaras, R. J.; Mättig, P.; Magass, C.; Magerkurth, A.; Magnan, A.-M.; Maity, M.; Makovec, N.; Mal, P. K.; Malbouisson, H. B.; Malik, S.; Malyshev, V. L.; Manakov, V.; Mao, H. S.; Maravin, Y.; Markley, D.; Markus, M.; Marshall, T.; Martens, M.; Martin, M.; Martin-Chassard, G.; Mattingly, S. E. K.; Matulik, M.; Mayorov, A. A.; McCarthy, R.; McCroskey, R.; McKenna, M.; McMahon, T.; Meder, D.; Melanson, H. L.; Melnitchouk, A.; Mendes, A.; Mendoza, D.; Mendoza, L.; Meng, X.; Merekov, Y. P.; Merkin, M.; Merritt, K. W.; Meyer, A.; Meyer, J.; Michaut, M.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mikhailov, V.; Miller, D.; Mitrevski, J.; Mokhov, N.; Molina, J.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Moulik, T.; Muanza, G. S.; Mostafa, M.; Moua, S.; Mulders, M.; Mundim, L.; Mutaf, Y. D.; Nagaraj, P.; Nagy, E.; Naimuddin, M.; Nang, F.; Narain, M.; Narasimhan, V. S.; Narayanan, A.; Naumann, N. A.; Neal, H. A.; Negret, J. P.; Nelson, S.; Neuenschwander, R. T.; Neustroev, P.; Noeding, C.; Nomerotski, A.; Novaes, S. F.; Nozdrin, A.; Nunnemann, T.; Nurczyk, A.; Nurse, E.; O'Dell, V.; O'Neil, D. C.; Oguri, V.; Olis, D.; Oliveira, N.; Olivier, B.; Olsen, J.; Oshima, N.; Oshinowo, B. O.; Otero y Garzón, G. J.; Padley, P.; Papageorgiou, K.; Parashar, N.; Park, J.; Park, S. K.; Parsons, J.; Partridge, R.; Parua, N.; Patwa, A.; Pawloski, G.; Perea, P. M.; Perez, E.; Peters, O.; Pétroff, P.; Petteni, M.; Phaf, L.; Piegaia, R.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Pogorelov, Y.; Pol, M.-E.; Pompoš, A.; Polosov, P.; Pope, B. G.; Popkov, E.; Porokhovoy, S.; Prado da Silva, W. L.; Pritchard, W.; Prokhorov, I.; Prosper, H. B.; Protopopescu, S.; Przybycien, M. B.; Qian, J.; Quadt, A.; Quinn, B.; Ramberg, E.; Ramirez-Gomez, R.; Rani, K. J.; Ranjan, K.; Rao, M. V. S.; Rapidis, P. A.; Rapisarda, S.; Raskowski, J.; Ratoff, P. N.; Ray, R. E.; Reay, N. W.; Rechenmacher, R.; Reddy, L. V.; Regan, T.; Renardy, J.-F.; Reucroft, S.; Rha, J.; Ridel, M.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Robinson, S.; Rodrigues, R. F.; Roco, M.; Rotolo, C.; Royon, C.; Rubinov, P.; Ruchti, R.; Rucinski, R.; Rud, V. I.; Russakovich, N.; Russo, P.; Sabirov, B.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santoro, A.; Satyanarayana, B.; Savage, G.; Sawyer, L.; Scanlon, T.; Schaile, D.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schieferdecker, P.; Schmitt, C.; Schwanenberger, C.; Schukin, A. A.; Schwartzman, A.; Schwienhorst, R.; Sengupta, S.; Severini, H.; Shabalina, E.; Shamim, M.; Shankar, H. C.; Shary, V.; Shchukin, A. A.; Sheahan, P.; Shephard, W. D.; Shivpuri, R. K.; Shishkin, A. A.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Simak, V.; Sirotenko, V.; Skow, D.; Skubic, P.; Slattery, P.; Smith, D. E.; Smith, R. P.; Smolek, K.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Song, X.; Song, Y.; Sonnenschein, L.; Sopczak, A.; Sorín, V.; Sosebee, M.; Soustruznik, K.; Souza, M.; Spartana, N.; Spurlock, B.; Stanton, N. R.; Stark, J.; Steele, J.; Stefanik, A.; Steinberg, J.; Steinbrück, G.; Stevenson, K.; Stolin, V.; Stone, A.; Stoyanova, D. A.; Strandberg, J.; Strang, M. A.; Strauss, M.; Ströhmer, R.; Strom, D.; Strovink, M.; Stutte, L.; Sumowidagdo, S.; Sznajder, A.; Talby, M.; Tentindo-Repond, S.; Tamburello, P.; Taylor, W.; Telford, P.; Temple, J.; Terentyev, N.; Teterin, V.; Thomas, E.; Thompson, J.; Thooris, B.; Titov, M.; Toback, D.; Tokmenin, V. V.; Tolian, C.; Tomoto, M.; Tompkins, D.; Toole, T.; Torborg, J.; Touze, F.; Towers, S.; Trefzger, T.; Trincaz-Duvoid, S.; Trippe, T. G.; Tsybychev, D.; Tuchming, B.; Tully, C.; Turcot, A. S.; Tuts, P. M.; Utes, M.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Vachon, B.; van den Berg, P. J.; van Gemmeren, P.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vartapetian, A.; Vasilyev, I. A.; Vaupel, M.; Vaz, M.; Verdier, P.; Vertogradov, L. S.; Verzocchi, M.; Vigneault, M.; Villeneuve-Seguier, F.; Vishwanath, P. R.; Vlimant, J.-R.; Von Toerne, E.; Vorobyov, A.; Vreeswijk, M.; Vu Anh, T.; Vysotsky, V.; Wahl, H. D.; Walker, R.; Wallace, N.; Wang, L.; Wang, Z.-M.; Warchol, J.; Warsinsky, M.; Watts, G.; Wayne, M.; Weber, M.; Weerts, H.; Wegner, M.; Wermes, N.; Wetstein, M.; White, A.; White, V.; Whiteson, D.; Wicke, D.; Wijnen, T.; Wijngaarden, D. A.; Wilcer, N.; Willutzki, H.; Wilson, G. W.; Wimpenny, S. J.; Wittlin, J.; Wlodek, T.; Wobisch, M.; Womersley, J.; Wood, D. R.; Wyatt, T. R.; Wu, Z.; Xie, Y.; Xu, Q.; Xuan, N.; Yacoob, S.; Yamada, R.; Yan, M.; Yarema, R.; Yasuda, T.; Yatsunenko, Y. A.; Yen, Y.; Yip, K.; Yoo, H. D.; Yoffe, F.; Youn, S. W.; Yu, J.; Yurkewicz, A.; Zabi, A.; Zanabria, M.; Zatserklyaniy, A.; Zdrazil, M.; Zeitnitz, C.; Zhang, B.; Zhang, D.; Zhang, X.; Zhao, T.; Zhao, Z.; Zheng, H.; Zhou, B.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zitoun, R.; Zmuda, T.; Zutshi, V.; Zviagintsev, S.; Zverev, E. G.; Zylberstejn, A.

    2006-09-01

    The DØ experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DØ.

  18. A study of runaway electron confinement in the ASDEX tokamak

    SciTech Connect

    Kwon, O.J.; Diamond, P.H.; Wagner, F.; Fussmann, G.

    1988-03-01

    The results of runaway electron confinement experiments from ASDEX are analyzed to elucidate the structure of electromagnetic turbulence that causes anomalous electron heat transport in the L-mode confinement regime. From a simple model, the radial correlation length (W) of the magnetic turbulence is determined to be about 1 mm. Using this value and that of the experimentally deduced electron thermal diffusivity, we determine the radial magnetic fluctuation level at the plasma edge in the L-mode to be (B/sub r/B/sub 0/) )similarreverse arrowto) 2 x 10/sup -4/. Scalings of W and B/sub r/B/sub 0/ are deduced from parameter scans. From a comparison of these results with the predictions of various theoretical models, it is concluded that skin-depth turbulence, electromagnetic drift wave turbulence, rippling modes, and microtearing modes are inferior candidates and that resistive-ballooning modes offer the best possibility for a consistent interpretation of the data. 25 refs., 9 figs., 1 tab

  19. HVCM Topology Enhancements to Support a Power Upgrade Required by a Second Target Station (STS) at SNS

    SciTech Connect

    Solley, Dennis J; Anderson, David E; Patel, Gunjan P; Peplov, Vladimir V; Saethre, Robert B; Wezensky, Mark W

    2012-01-01

    This paper discusses the topology used in the HVCMs at SNS to process power for both the cold and warm linac sections of the klystron gallery in support of extended operations at the megawatt level. In anticipation of a second target station and higher anticipated power levels, an enhancement to the present topology is being investigated. SPICE circuit simulations and preliminary experimental data will be presented.

  20. Upgrading food wastes by means of bromelain and papain to enhance growth and immunity of grass carp (Ctenopharyngodon idella).

    PubMed

    Choi, W M; Lam, C L; Mo, W Y; Wong, M H

    2016-04-01

    The fast growing of global aquaculture industry accompanied with increasing pressure on the supply and price of traditional feed materials (e.g., fish meal and soy bean meal). This circumstance has urged the need to search alternative sources of feed stuff. Food waste was used as feed stuff in rearing fish which possess substantial protein and lipid. Grass carp are major species reared in Hong Kong with lower nutritional requirements; it is also an ideal species for investigating the feasibility of using food waste as fish feeds for local aquaculture industry. The growth and immunity, reflected by total protein, total immunologlobulin (IgI), and nitroblue tetrazolium (NBT) activity of grass carp blood, were depressed when feeding with food waste feeds without enzymes. However, the supplementation of bromelain and papain in fish feed enhanced the efficient use of food waste by grass carp, which in turn improved the fish immunity. The present results indicated that the addition of those enzymes could enhance the feed utilization by fish and hematological parameters of grass carp, and the improvement on growth and immunity superior to the control (commercial feed) was observed with the addition of bromelain and papain supplement. Addition of 1 and 2 % mixture of bromelain and papain could significantly enhance the lipid utilization in grass carp.

  1. Transport simulations of ohmic pellet experiments on the TFTR, ASDEX, and ALCATOR-C tokamaks

    SciTech Connect

    Redi, M.H.; Tang, W.M.; Owens, D.K.; Greenwald, M.; Gruber, O.; Kaufmann, M.

    1988-07-01

    Transport simulations of ohmic gas-fuelled and pellet-fuelled experiments have been carried out to test a microinstability-based, profile-consistent model of anomalous transport in tokamaks. Predictions for experiments on the TFTR, ASDEX, and ALCATOR-C tokamaks were found consistent with the observed confinement and temperature measurements. 26 refs., 11 figs., 10 tabs.

  2. Vacuum upgrade and enhanced performances of the double imaging electron/ion coincidence end-station at the vacuum ultraviolet beamline DESIRS.

    PubMed

    Tang, Xiaofeng; Garcia, Gustavo A; Gil, Jean-François; Nahon, Laurent

    2015-12-01

    We report here the recent upgrade of the SAPHIRS permanent photoionization end-station at the DESIRS vacuum ultraviolet beamline of synchrotron SOLEIL, whose performances have been enhanced by installing an additional double-skimmer differential chamber. The smaller molecular beam profile obtained at the interaction region has increased the mass resolution of the double imaging photoelectron photoion coincidence (i(2)PEPICO) spectrometer, DELICIOUS III, installed in the photoionization chamber of the SAPHIRS endstation, by a factor of two, to M/ΔM ∼ 1700 (FWHM). The electron kinetic energy resolution offered by the velocity map imaging (VMI) part of the spectrometer has been improved down to 2.8% (ΔE/E) as we show on the N2 photoionization case in the double skimmer configuration. As a representative example of the overall state-of-the-art i(2)PEPICO performances, experimental results of the dissociation of state-selected O2(+)(B(2)∑(g)(-), v(+) = 0-6) molecular ions performed at the fixed photon energy of hν = 21.1 eV are presented.

  3. Vacuum upgrade and enhanced performances of the double imaging electron/ion coincidence end-station at the vacuum ultraviolet beamline DESIRS

    NASA Astrophysics Data System (ADS)

    Tang, Xiaofeng; Garcia, Gustavo A.; Gil, Jean-François; Nahon, Laurent

    2015-12-01

    We report here the recent upgrade of the SAPHIRS permanent photoionization end-station at the DESIRS vacuum ultraviolet beamline of synchrotron SOLEIL, whose performances have been enhanced by installing an additional double-skimmer differential chamber. The smaller molecular beam profile obtained at the interaction region has increased the mass resolution of the double imaging photoelectron photoion coincidence (i2PEPICO) spectrometer, DELICIOUS III, installed in the photoionization chamber of the SAPHIRS endstation, by a factor of two, to M/ΔM ˜ 1700 (FWHM). The electron kinetic energy resolution offered by the velocity map imaging (VMI) part of the spectrometer has been improved down to 2.8% (ΔE/E) as we show on the N2 photoionization case in the double skimmer configuration. As a representative example of the overall state-of-the-art i2PEPICO performances, experimental results of the dissociation of state-selected O2+ (B 2 ∑ g - , v+ = 0-6) molecular ions performed at the fixed photon energy of hν = 21.1 eV are presented.

  4. TLRS-3 system upgrades

    NASA Technical Reports Server (NTRS)

    Eichinger, Richard; Cheng, Grace; Crawford, William; Cresswell, Don; Crooks, Henry A.; Donovan, Howard; Edge, David R.; Emenheiser, Kenneth S.; Hanrahan, William P., III; Heinick, J. Michael

    1993-01-01

    This presentation describes the upgrades to the Transportable Laser Ranging Systems serial number three (TLRS-3), and the impact that these upgrades will have on the TLRS-3 performance in the field. The four major areas of system upgrades are the HP-380 computer, the Optical Attenuation Mechanism (OAM), the upgraded spatial, spectral and temporal filtering for improved daylight ranging capability, and the software upgrade to enable the system to track the Etalon satellites. The TLRS-3 was returned to the Goddard Geophysical and Astronomical Observatory (GGAO) in December 1991 for system upgrades in preparation of the TOPEX/POSEIDON campaign scheduled to begin in the summer of 1992. Many system upgrades were incorporated into the system while interleaving planned facility maintenance making TLRS-3 a more versatile and more dependable laser ranging system. The TLRS-3 was initially baselined with the MOBLAS-7 via simultaneous satellite ranging on the LAGEOS, Ajisai, Starlette, and ERS-I satellites. During the upgrades and following completion of the system upgrades intercomparisons with the MOBLAS-7 were made to verify the integrity and accuracy of the system changes. Several other groups of personnel participated in the TLRS-3 upgrade and they are: the Survey Section, the Precision Measurement Equipment Laboratory, the Architectural and Engineering Services Department, the Precision Timing Section, and the station personnel at TLRS-3 and MOBLAS-7.

  5. The D0 Upgrade

    SciTech Connect

    Abachi, S.; D0 Collaboration

    1995-07-01

    In this paper we describe the approved DO Upgrade detector, and its physics capabilities. The DO Upgrade is under construction and will run during the next Fermilab collider running period in early 1999 (Run II). The upgrade is designed to work at the higher luminosities and shorter bunch spacings expected during this run. The major elements of t he upgrade are: a new tracking system with a silicon tracker, scintillating fiber tracker, a 2T solenoid, and a central preshower detector; new calorimeter electronics; new muon trigger and tracking detectors with new muon system electronics; a forward preshower detector; new trigger electronics and DAQ improvements to handle the higher rates.

  6. Hydrocarbonaceous material upgrading method

    DOEpatents

    Brecher, Lee E.; Mones, Charles G.; Guffey, Frank D.

    2015-06-02

    A hydrocarbonaceous material upgrading method may involve a novel combination of heating, vaporizing and chemically reacting hydrocarbonaceous feedstock that is substantially unpumpable at pipeline conditions, and condensation of vapors yielded thereby, in order to upgrade that feedstock to a hydrocarbonaceous material condensate that meets crude oil pipeline specification.

  7. The upgraded scheme of Hefei Light Source

    SciTech Connect

    Li Weimin; Xu Hongliang; Wang Lin; Feng Guangyao; Zhang Shancai; Hao Hao

    2010-06-23

    To enhance the performance of Hefei Light Source, which was designed and constructed two decades ago, an upgrade project would be carried out in the near future. The detail upgrade scheme was described in this paper. Firstly, the magnet lattice of storage ring should be reconstructed with 4 DBA cells, whose advantages are lower beam emittance and more straight section available for insertion devices. Secondly, the beam diagnostics, main power supply, transverse and longitudinal multi-bunch feedback, beam control and manipulation system would be upgrade to improve the beam orbit stability. Finally, the injection system of storage ring and injector, which is composed of electron linac and beam transfer line, would be updated in order to assure smooth beam accumulation process under new low emittance lattice. With above improvement, it is hopeful to increase the brilliance of Hefei Light Source by two orders approximately. After three-year upgrade project, the performance of HLS would meet the demands of advanced SR users.

  8. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    In this project we well evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated. (VC)

  9. Direct Observation of Current in Type-I Edge-Localized-Mode Filaments on the ASDEX Upgrade Tokamak

    SciTech Connect

    Vianello, N.; Zuin, M.; Cavazzana, R.; Naulin, V.; Rasmussen, J. J.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.

    2011-03-25

    Magnetically confined plasmas in the high confinement regime are regularly subjected to relaxation oscillations, termed edge localized modes (ELMs), leading to large transport events. Present ELM theories rely on a combined effect of edge current and the edge pressure gradients which result in intermediate mode number (n congruent with 10-15) structures (filaments) localized in the perpendicular plane and extended along the field lines. By detailed localized measurements of the magnetic field perturbation associated to type-I ELM filaments, it is shown that these filaments carry a substantial current.

  10. Investigation of inter-ELM ion heat transport in the H-mode pedestal of ASDEX Upgrade plasmas

    NASA Astrophysics Data System (ADS)

    Viezzer, E.; Fable, E.; Cavedon, M.; Angioni, C.; Dux, R.; Laggner, F. M.; Bernert, M.; Burckhart, A.; McDermott, R. M.; Pütterich, T.; Ryter, F.; Willensdorfer, M.; Wolfrum, E.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-02-01

    The ion heat transport in the pedestal of H-mode plasmas is investigated in various H-mode discharges with different pedestal ion collisionalities. Interpretive modelling suggests that in all analyzed discharges the ion heat diffusivity coefficient, {χ\\text{i}} , in the pedestal is close to the neoclassical prediction within the experimental uncertainties. The impact of changing the deposition location of the electron cyclotron resonance heating on the ion heat transport has been studied. The effect on the background profiles is small. The pre-ELM (edge localized modes) edge profiles as well as the behaviour of the electron temperature and density, ion temperature and impurity toroidal rotation during the ELM cycle are very similar in discharges with on- and off-axis ECRH heating. No significant deviation of {χ\\text{i}} from neoclassics is observed when changing the ECRH deposition location to the plasma edge.

  11. Upgrades to NRLMOL code

    NASA Astrophysics Data System (ADS)

    Basurto, Luis

    This project consists of performing upgrades to the massively parallel NRLMOL electronic structure code in order to enhance its performance by increasing its flexibility by: a) Utilizing dynamically allocated arrays, b) Executing in a parallel environment sections of the program that were previously executed in a serial mode, c) Exploring simultaneous concurrent executions of the program through the use of an already existing MPI environment; thus enabling the simulation of larger systems than it is currently capable of performing. Also developed was a graphical user interface that will allow less experienced users to start performing electronic structure calculations by aiding them in performing the necessary configuration of input files as well as providing graphical tools for the displaying and analysis of results. Additionally, a computational toolkit that can avail of large supercomputers and make use of various levels of approximation for atomic interactions was developed to search for stable atomic clusters and predict novel stable endohedral fullerenes. As an application of the developed computational toolkit, a search was conducted for stable isomers of Sc3N C80 fullerene. In this search, about 1.2 million isomers of C80 were optimized in various charged states at the PM6 level. Subsequently, using the selected optimized isomers of C80 in various charged state, about 10,000 isomers of Sc3N C80 were constructed which were optimized using semi-empirical PM6 quantum chemical method. A few selected lowest isomers of Sc3N C80 were optimized at the DFT level. The calculation confirms the lowest 3 isomers previously reported in literature but 4 new isomers are found within the lowest 10 isomers. Using the upgraded NRLMOL code, a study was done of the electronic structure of a multichromoric molecular complex containing two of each borondipyrromethane dye, Zn-tetraphenyl-porphyrin, bisphenyl anthracene and a fullerene. A systematic examination of the effect of

  12. Simplifying SCADA RTU upgrades

    SciTech Connect

    Barr, J.; Curnutt, B. )

    1989-07-01

    When a pipe line company decides to upgrade SCADA remote terminal units (RTUs) in a system, the new RTUs are usually made to work with existing communications and host equipment. The authors tell how to avoid most conversion problems.

  13. Tapping upgrade potential

    SciTech Connect

    Gill, H.S. )

    1993-01-01

    Modernizing aging hydropower stations presents plant owners with a unique opportunity for improving efficiency and plant output. But several factors should be considered before undertaking a turbine upgrade project.

  14. Training for Technology Upgrade.

    ERIC Educational Resources Information Center

    Strandberg, John

    1997-01-01

    A computer system conversion in a business was relatively painless for users and invisible to customers. The plan relied on basic training strategies that apply to a variety of technology upgrades. (Author/JOW)

  15. Optics upgrade for switchyard

    SciTech Connect

    Kobilarcik, Thomas R.; /Fermilab

    2005-08-01

    An upgrade of the Switchyard optics is proposed. This upgrade extends the P3 (old Main Ring) lattice through enclosure C. The septa for the 3-way Meson Area split is moved from enclosure F1 to enclosure M01. The functionality of the Meson Target Train is preserved. Finally, for the purpose of demonstrating that the resulting split can be transported, a straw-man lattice is proposed for enclosure M02 and beyond.

  16. The Upgraded D0 detector

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Clermont-Ferrand U. /LPSC, Grenoble /Marseille, CPPM /Orsay, LAL /Paris U., VI-VII /DAPNIA, Saclay /Strasbourg, IReS

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  17. Upgrade of the BATMAN test facility for H- source development

    NASA Astrophysics Data System (ADS)

    Heinemann, B.; Fröschle, M.; Falter, H.-D.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Riedl, R.; Ruf, B.

    2015-04-01

    The development of a radio frequency (RF) driven source for negative hydrogen ions for the neutral beam heating devices of fusion experiments has been successfully carried out at IPP since 1996 on the test facility BATMAN. The required ITER parameters have been achieved with the prototype source consisting of a cylindrical driver on the back side of a racetrack like expansion chamber. The extraction system, called "Large Area Grid" (LAG) was derived from a positive ion accelerator from ASDEX Upgrade (AUG) using its aperture size (ø 8 mm) and pattern but replacing the first two electrodes and masking down the extraction area to 70 cm2. BATMAN is a well diagnosed and highly flexible test facility which will be kept operational in parallel to the half size ITER source test facility ELISE for further developments to improve the RF efficiency and the beam properties. It is therefore planned to upgrade BATMAN with a new ITER-like grid system (ILG) representing almost one ITER beamlet group, namely 5 × 14 apertures (ø 14 mm). Additionally to the standard three grid extraction system a repeller electrode upstream of the grounded grid can optionally be installed which is positively charged against it by 2 kV. This is designated to affect the onset of the space charge compensation downstream of the grounded grid and to reduce the backstreaming of positive ions from the drift space backwards into the ion source. For magnetic filter field studies a plasma grid current up to 3 kA will be available as well as permanent magnets embedded into a diagnostic flange or in an external magnet frame. Furthermore different source vessels and source configurations are under discussion for BATMAN, e.g. using the AUG type racetrack RF source as driver instead of the circular one or modifying the expansion chamber for a more flexible position of the external magnet frame.

  18. The LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Piucci, Alessio

    2017-07-01

    During the LHC Run 1 the LHCb experiment has successfully performed a large number of high precision measurements in heavy flavour physics using 3 fb-1 of data collected at centre-of-mass energies of 7 TeV and 8 TeV. In LHC Run 2 the LHCb is expected to integrate an additional 5 fb-1 data, however many of the measurements will remain limited by statistics. For this reason LHCb will undergo in 2020 a major upgrade during the Long Shutdown 2 of LHC, with the aim to collect 50 fb-1 of data by 2028. To achieve this goal the LHCb detector readout rate will be upgraded from the current 1 MHz to the LHC bunch crossing rate of 40 MHz. The luminosity delivered to the experiment will increase by a factor five, up to 2 ṡ 1033 cm-2 s-1. The online selection of events will be uniquely performed by a pure software trigger, improving the trigger efficiencies. In order to sustain the increased luminosity and readout rate, all the sub-detectors will be upgraded. The architecture of the upgraded DAQ system and trigger strategy will be presented, as well an overview of the sub-detector upgrades.

  19. Time-resolved measurements of hydrogen and deuterium fluxes in the ASDEX plasma boundary

    SciTech Connect

    Roth, J.; Varga, P.; Martinelli, A.P.; Scherzer, B.M.U.; Chen, C.K.; Wampler, W.R.; Taglauer, E.

    1982-01-01

    Hydrogen and deuterium fluxes parallel to the toroidal magnetic field were measured in the plasma boundary of ASDEX using graphite collector probes. Time resolution of the order of 100 ms can be obtained by rotating the cylindrical probes behind an aperture during the discharge. The trapped amount of hydrogen was determined by subsequent thermal desorption; in the analyses of deuterium the D(/sup 3/He,p)/sup 4/He nuclear reaction was used. Both methods yield quantitative results. Measurements were done for limiter and divertor discharges in the range of 4 to 20 cm outside the limiter or separatrix. The time distributions show a maximum flux at the beginning and the end of the discharge. The relatively lower flux during the plateau phase of the discharge is in the range 10/sup 15/ to 2 x 10/sup 17/ cm/sup -2/ sec/sup -1/, depending on the radial probe position; the maximum values are higher by a factor of 5 to 50. During neutral hydrogen injection, an additional maximum can be observed. The radial l/e-decay length is about 0.9 cm in front and 0.4 cm behind the fixed limiter. The results are compared with independent measurements in ASDEX and other plasma machines.

  20. Enhanced Production of Runaway Electrons during a Disruptive Termination of Discharges Heated with Lower Hybrid Power in the Frascati Tokamak Upgrade

    SciTech Connect

    Martin-Solis, J. R.; Esposito, B.; Panaccione, L.; Sanchez, R.; Poli, F. M.

    2006-10-20

    We report on the observation of a large production of runaway electrons during a disruptive termination of discharges heated with lower-hybrid waves at the Frascati Tokamak Upgrade. The runaway current plateaus, which can carry up to 80% of the predisruptive current, are observed more often than in normal Ohmic disruptions. The largest runaway currents correspond to the slowest plasma current decay rates. This trend is opposite to what is observed in most tokamaks. We attribute this anomalous behavior to the acceleration of the preexistent wave-resonant suprathermal electrons during the disruption decay phase. These results could be relevant for the operation of the ITER tokamak whenever a sizeable amount of lower-hybrid power is made available.

  1. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  2. ATLAS IBL Pixel Upgrade

    NASA Astrophysics Data System (ADS)

    La Rosa, A.; Atlas Ibl Collaboration

    2011-06-01

    The upgrade for ATLAS detector will undergo different phases towards super-LHC. The first upgrade for the Pixel detector will consist of the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (LHC phase-I upgrade). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 3.3 cm. The IBL will require the development of several new technologies to cope with increase of radiation or pixel occupancy and also to improve the physics performance which will be achieved by reducing the pixel size and of the material budget. Three different promising sensor technologies (planar-Si, 3D-Si and diamond) are currently under investigation for the pixel detector. An overview of the project with particular emphasis on the pixel module is presented in this paper.

  3. ADCOM Secure Voice Upgrade.

    DTIC Science & Technology

    1981-08-27

    EE G/EETS-TR-81-17-KN ENMIhE~h 1842 EEG/EETS TR 81-17-EK’"" ’""LEVEL AELECT E D -cH q is ITECHNICAL REPORT ADCOM SECURE VOICE UPGRADE A Past of Pride...REPO NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER 1842 EEG/EETS-TR-81-17-EK 1/ 5. TYPE OF REPORT & PERIOD COVERED ADCOM Secure Voice...neceseary and Identify by block number) This technical report is a re-evaluation of alternatives to satisfy the ADCOM secure voice upgrade requirements. The

  4. The UKIRT Upgrades Programme

    NASA Astrophysics Data System (ADS)

    Adamson, Andy; Davies, John; Robson, Ian

    Tim Hawarden presented this paper to the 30th anniversary workshop, just a month before his untimely death. The editors have done their best to convert his talk into this paper, and gratefully acknowledge the assistance of Nick Rees (a member of the Upgrades team, now at Diamond Light Source). Tim's discussion concerned the UKIRT Upgrades Project, which ran through the 1990s and transformed the telescope and made it truly competitive on the world stage for operation into the twenty-first century. The reference list at the end of the paper is comprehensive; some of these are referred to in the paper itself and some are included for completeness only.

  5. VISIR upgrade overview and status

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Käufl, Hans Ulrich; Baksai, Pedro; Dobrzycka, Danuta; Finger, Gert; Ives, Derek; Jakob, Gerd; Lagadec, Eric; Lundin, Lars; Mawet, Dimitri; Mehrgan, Leander; Moerchen, Margaret; Momany, Yazan; Moreau, Vincent; Pantin, Eric; Riquelme, Miguel; Siebenmorgen, Ralf; Silber, Armin; Smette, Alain; Taylor, Julian; van den Ancker, Mario; Venema, Lars; Weilenmann, Ueli; Yegorova, Irina

    2012-09-01

    We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO's VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As Aquarius detector array (Raytheon) which has demonstrated very good performance (sensitivity, stability) in the laboratory IR detector test facility (modified TIMMI 2 instrument). A prism spectroscopic mode will cover the N-band in a single observation. New scientific capabilities for high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and phase-mask coronagraphic (4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a userdefined constraint on water vapour. Improved pipelines based on the ESO Reflex concept will provide better support to astronomers. The upgraded VISIR will be a powerful instrument providing background limited performance for diffraction-limited observations at an 8-m telescope. It will offer synergy with facilities such as ALMA, JWST, VLTI and SOFIA, while a wealth of targets is available from survey work (e.g. VISTA, WISE). In addition it will bring confirmation of the technical readiness and scientific value of several aspects of potential mid-IR instrumentation at Extremely Large Telescopes. The intervention on VISIR and installation of hardware has been completed in July and commissioning will take place during July and August. VISIR is scheduled to be available to the users starting Oct 2012.

  6. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  7. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  8. Tevatron detector upgrades

    SciTech Connect

    Lipton, R.; /Fermilab

    2005-01-01

    The D0 and CDF experiments are in the process of upgrading their detectors to cope with the high luminosities projected for the remainder of Tevatron Run II. They discuss the expected Tevatron environment through 2009, the detector challenges due to increasing luminosity in this period, and the solutions undertaken by the two experiments to mitigate detector problems and maximize physics results.

  9. LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Hennessy, Karol

    2017-02-01

    The upgrade of the LHCb experiment, scheduled for LHC Run-III, scheduled to start in 2021, will transform the experiment to a trigger-less system reading out the full detector at 40 MHz event rate. All data reduction algorithms will be executed in a high-level software farm enabling the detector to run at luminosities of 2×1033 cm-2 s-1. The Vertex Locator (VELO) is the silicon vertex detector surrounding the interaction region. The current detector will be replaced with a hybrid pixel system equipped with electronics capable of reading out at 40 MHz. The upgraded VELO will provide fast pattern recognition and track reconstruction to the software trigger. The silicon pixel sensors have 55×55 μm2 pitch, and are read out by the VeloPix ASIC, from the Timepix/Medipix family. The hottest region will have pixel hit rates of 900 Mhits/s yielding a total data rate of more than 3 Tbit/s for the upgraded VELO. The detector modules are located in a separate vacuum, separated from the beam vacuum by a thin custom made foil. The foil will be manufactured through milling and possibly thinned further by chemical etching. The material budget will be minimised by the use of evaporative CO2 coolant circulating in microchannels within 400 μm thick silicon substrates. The current status of the VELO upgrade is described and latest results from operation of irradiated sensor assemblies are presented.

  10. Upgrading Undergraduate Biology Education

    ERIC Educational Resources Information Center

    Musante, Susan

    2011-01-01

    On many campuses throughout the country, undergraduate biology education is in serious need of an upgrade. During the past few decades, the body of biological knowledge has grown exponentially, and as a research endeavor, the practice of biology has evolved. Education research has also made great strides, revealing many new insights into how…

  11. VISIR upgrade overview and status

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Käufl, Hans-Ulrich; Baksai, Pedro; Di Lieto, Nicola; Dobrzycka, Danuta; Duhoux, Philippe; Finger, Gert; Heikamp, Stephanie; Ives, Derek; Jakob, Gerd; Lundin, Lars; Mawet, Dimitri; Mehrgan, Leander; Momany, Yazan; Moreau, Vincent; Pantin, Eric; Riquelme, Miguel; Sandrock, Stefan; Siebenmorgen, Ralf; Smette, Alain; Taylor, Julian; van den Ancker, Mario; Valdes, Guillermo; Venema, Lars; Weilenmann, Ueli

    2014-07-01

    We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO's VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As AQUARIUS detector array (Raytheon) which has been carefully characterized in ESO's IR detector test facility (modified TIMMI 2 instrument). A prism spectroscopic mode will cover the N-band in a single observation. New scientific capabilities for high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and phase-mask coronagraphic (4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a user-defined constraint on water vapour. During the commissioning in 2012 it was found that the on-sky sensitivity of the AQUARIUS detector was significantly below expectations and that VISIR was not ready to go back to science operations. Extensive testing of the detector arrays in the laboratory and on-sky enabled us to diagnose the cause for the shortcoming of the detector as excess low frequency noise (ELFN). It is inherent to the design chosen for this detector and can't be remedied by changing the detector set-up. Since this is a form of correlated noise its impact can be limited by modulating the scene recorded by the detector. We have studied several mitigation options and found that faster chopping using the secondary mirror (M2) of the VLT offers the most promising way forward. Faster M2 chopping has been tested and is scheduled for implementation before the end of 2014

  12. Analysis Efforts Supporting NSTX Upgrades

    SciTech Connect

    H.Zhang, P. Titus, P. Rogoff, A.Zolfaghari, D. Mangra, M. Smith

    2010-11-29

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio, spherical torus (ST) configuration device which is located at Princeton Plasma Physics Laboratory (PPPL) This device is presently being updated to enhance its physics by doubling the TF field to 1 Tesla and increasing the plasma current to 2 Mega-amperes. The upgrades include a replacement of the centerstack and addition of a second neutral beam. The upgrade analyses have two missions. The first is to support design of new components, principally the centerstack, the second is to qualify existing NSTX components for higher loads, which will increase by a factor of four. Cost efficiency was a design goal for new equipment qualification, and reanalysis of the existing components. Showing that older components can sustain the increased loads has been a challenging effort in which designs had to be developed that would limit loading on weaker components, and would minimize the extent of modifications needed. Two areas representing this effort have been chosen to describe in more details: analysis of the current distribution in the new TF inner legs, and, second, analysis of the out-of-plane support of the existing TF outer legs.

  13. The strongest magnetic barrier in the DIII-D tokamak and comparison with the ASDEX UG

    NASA Astrophysics Data System (ADS)

    Ali, Halima; Punjabi, Alkesh

    2013-05-01

    Magnetic perturbations in tokamaks lead to the formation of magnetic islands, chaotic field lines, and the destruction of flux surfaces. Controlling or reducing transport along chaotic field lines is a key challenge in magnetically confined fusion plasmas. A local control method was proposed by Chandre et al. [Nucl. Fusion 46, 33-45 (2006)] to build barriers to magnetic field line diffusion by addition of a small second-order control term localized in the phase space to the field line Hamiltonian. Formation and existence of such magnetic barriers in Ohmically heated tokamaks (OHT), ASDEX UG and piecewise analytic DIII-D [Luxon, J.L.; Davis, L.E., Fusion Technol. 8, 441 (1985)] plasma equilibria was predicted by the authors [Ali, H.; Punjabi, A., Plasma Phys. Control. Fusion 49, 1565-1582 (2007)]. Very recently, this prediction for the DIII-D has been corroborated [Volpe, F.A., et al., Nucl. Fusion 52, 054017 (2012)] by field-line tracing calculations, using experimentally constrained Equilibrium Fit (EFIT) [Lao, et al., Nucl. Fusion 25, 1611 (1985)] DIII-D equilibria perturbed to include the vacuum field from the internal coils utilized in the experiments. This second-order approach is applied to the DIII-D tokamak to build noble irrational magnetic barriers inside the chaos created by the locked resonant magnetic perturbations (RMPs) (m, n)=(3, 1)+(4, 1), with m and n the poloidal and toroidal mode numbers of the Fourier expansion of the magnetic perturbation with amplitude δ. A piecewise, analytic, accurate, axisymmetric generating function for the trajectories of magnetic field lines in the DIII-D is constructed in magnetic coordinates from the experimental EFIT Grad-Shafranov solver [Lao, L, et al., Fusion Sci. Technol. 48, 968 (2005)] for the shot 115,467 at 3000 ms in the DIII-D. A symplectic mathematical map is used to integrate field lines in the DIII-D. A numerical algorithm [Ali, H., et al., Radiat. Eff. Def. Solids Inc. Plasma Sc. Plasma Tech. 165, 83

  14. RHIC LUMINOSITY UPGRADE PROGRAM

    SciTech Connect

    Fischer, W.

    2010-05-23

    The Relativistic Heavy Ion Collider (RHIC) operates with either ions or polarized protons. After increasing the heavy ion luminosity by two orders of magnitude since its commissioning in 2000, the current luminosity upgrade program aims for an increase by another factor of 4 by means of 3D stochastic cooling and a new 56 MHz SRF system. An Electron Beam Ion Source is being commissioned that will allow the use of uranium beams. Electron cooling is considered for collider operation below the current injection energy. For the polarized proton operation both luminosity and polarization are important. In addition to ongoing improvements in the AGS injector, the construction of a new high-intensity polarized source has started. In RHIC a number of upgrades are under way to increase the intensity and polarization transmission to 250 GeV beam energy. Electron lenses will be installed to partially compensate the head-on beam-beam effect.

  15. The CDF upgrade

    SciTech Connect

    Newman-Holmes, C.; CDF Collaboration

    1995-01-01

    The Collider Detector at Fermilab (CDF) has been used to study proton-antiproton collisions at the Fermilab Tevatron since 1985. Over the years, the detector has evolved steadily to increase its physics capability and to keep pace with improvements to the Tevatron. Fermilab is currently building a new Main Injector accelerator which will lead to even larger luminosity values. This paper describes upgrades to CDF that will allow one to exploit the higher luminosity of the Main Injector.

  16. KEK ATF Injector Upgrade

    SciTech Connect

    Yeremian, anahid D

    1999-03-24

    The main goal at the Accelerator Test Facility (ATF) at the KEK laboratory in Japan is to develop the technology that can stably supply the main linac with an extremely flat multi-bunch beam. The injector for this accelerator was upgraded to produce greater than 2 x 10{sup 10} in electrons a single bunch at 80 MeV in a very narrow bunch.

  17. The D0 upgrade

    SciTech Connect

    Tuts, P.M.; The D0 Collaboration

    1992-10-01

    The original D0 detector was proposed in 1983, with a focus on high P{sub T} physics using precision measurements of e`s, {mu}`s, jets, and missing E{sub T}. This detector, as of the summer of 1992, has started data taking at the Fermilab Collider. However, by 1995/6 the luminosity will reach 10{sup 31} cm{sup {minus}2}sec{sup {minus}1}, and the minimum bunch spacing will drop to 396ns from the present 3.5{mu}s (by the Main Injector era, luminosities will approach 10{sup 32} cm{sup {minus}2}sec{sup {minus}1} and minimum bunch spacings may reach 132ns). These changes in the accelerator conditions force us to upgrade or replace a number of detector subsystems in order to meet these new demands. In addition, the upgrade offers us the opportunity to expand the physics horizons to include not only the all important high P{sub T} physics menu, but also the low P{sub T} physics that has become increasingly important. In this paper we describe the D0 detector upgrade.

  18. The D0 upgrade

    SciTech Connect

    Tuts, P.M. . Physics Dept.)

    1992-10-01

    The original D0 detector was proposed in 1983, with a focus on high P[sub T] physics using precision measurements of e's, [mu]'s, jets, and missing E[sub T]. This detector, as of the summer of 1992, has started data taking at the Fermilab Collider. However, by 1995/6 the luminosity will reach 10[sup 31] cm[sup [minus]2]sec[sup [minus]1], and the minimum bunch spacing will drop to 396ns from the present 3.5[mu]s (by the Main Injector era, luminosities will approach 10[sup 32] cm[sup [minus]2]sec[sup [minus]1] and minimum bunch spacings may reach 132ns). These changes in the accelerator conditions force us to upgrade or replace a number of detector subsystems in order to meet these new demands. In addition, the upgrade offers us the opportunity to expand the physics horizons to include not only the all important high P[sub T] physics menu, but also the low P[sub T] physics that has become increasingly important. In this paper we describe the D0 detector upgrade.

  19. The LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Dosil Suárez, Álvaro

    2016-07-01

    The upgrade of the LHCb experiment, planned for 2019, will transform the experiment to a trigger-less system reading out the full detector at 40 MHz event rate. All data reduction algorithms will be executed in a high-level software farm. The upgraded detector will run at luminosities of 2×1033 cm-2 s-1 and probe physics beyond the Standard Model in the heavy flavour sector with unprecedented precision. The Vertex Locator (VELO) is the silicon vertex detector surrounding the interaction region. The current detector will be replaced with a hybrid pixel system equipped with electronics capable of reading out at 40 MHz. The detector comprises silicon pixel sensors with 55×55 μm2 pitch, read out by the VeloPix ASIC, based on the TimePix/MediPix family. The hottest region will have pixel hit rates of 900 Mhits/s yielding a total data rate more than 3 Tbit/s for the upgraded VELO. The detector modules are located in a separate vacuum, separated from the beam vacuum by a thin custom made foil. The detector halves are retracted when the beams are injected and closed at stable beams, positioning the first sensitive pixel at 5.1 mm from the beams. The material budget will be minimised by the use of evaporative CO2 coolant circulating in microchannels within 400 μm thick silicon substrates.

  20. AMI FW UPGRADEABILITY TEST PROCEDURE AND SECURITY ASSESSMENT

    SciTech Connect

    Snyder, Isabelle B

    2014-01-01

    The National Institute of Standards and Technology (NIST) is producing NISTIR 7823 to define test requirements for Smart Meter upgradability. The term Smart Meter refers specifically to advanced electric meters being deployed to enhance management of electricity distribution for residential and industrial consumers. The underlying functional and security requirements for Smart Meter upgradability are specified in NEMA standard SG-AMI 1-2009. The purpose of NISTIR 7823 is to describe conformance test requirements that may be used voluntarily by testers and/or test laboratories to determine whether Smart Meters and Upgrade Management Systems conform to the requirements of NEMA SG-AMI 1-2009.

  1. CDF calorimeter and its upgrade

    SciTech Connect

    Seiya, Y.

    1995-01-01

    The CDF calorimeter systems are briefly reviewed with an emphasis on the calibration and the performance of the central electromagnetic calorimeter. Several physics analyses where the calorimetry plays an important role are discussed. The present gas calorimeter will be upgraded in accord with the collider upgrade. The new system is a scintillator-based calorimeter with optical fiber readout. A status of the CDF calorimeter upgrade project is also described.

  2. The LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Jacobsson, Richard

    2013-11-01

    With the demonstration that LHCb can successfully perform forward precision measurements with event pileup, the operation and trigger strategy evolved significantly during the LHC Run 1 allowing LHCb to collect over 3fb-1 at centre-of-mass energies of 7TeV and 8TeV. Increased bandwidth opened the door for LHCb to extend the physics program. The additional statistics and well managed systematic effects together with the stable trigger and data taking conditions have led to a very large number of world-class measurements and dominance in heavy flavour physics [1], in addition to a reputation of an excellent forward general purpose detector at the LHC. Long Shutdown (LS) 1 (2013-2014) will allow LHCb to fully explore the large statistics collected and prepare LHCb for Run 2 (2015 - 2017). However, even after an additional expected integrated luminosity of 5-6 fb-1 in Run 2, many of the LHCb precision measurements will remain limited by statistics, and some exploratory physics modes will not even be accessible yet. With the need for reconstructing the event topology in order to efficiently trigger on the beauty and the charm hadrons decays, the current 1 MHz readout limit is the main bottle neck to run at higher luminosity and with higher trigger efficiencies. LHCb will therefore undergo a major upgrade in LS 2 ( 2018 - 2019) aimed at collecting an order of magnitude more data by 2028. The upgrade consists of a full readout at the LHC bunch crossing rate ( 40 MHz) with the ultimate flexibility of only a software trigger. In order to increase the instantaneous luminosity up to 2x1033cm-2s-1, several sub-detector upgrades are also underway to cope with the higher occupancies and radiation dose.

  3. The Bevalac Upgrade Project

    SciTech Connect

    Alonso, J.R.; Dwinell, R.D.; Feinberg, B.; Frias, R.; Gough, R.A.; Howard, D.R.; Hunt, D.B.; Krebs, G.F.; Krupnick, J.T.; Lewis, S.A.

    1987-03-01

    This paper describes a proposed upgrade of the Bevalac accelerator complex in which the present Bevatron is replaced with a modern, strong-focusing 17 T-m synchrotron. This new ring is designed to accelerate all ions throughout the periodic table with intensities 100 to 1000 times higher than the present Bevatron. It will also provide a substantially improved beam spill structure and will reduce operating costs. A fast extraction capability can be used to inject a future heavy ion storage ring. Pulse-to-pulse switching of energy and ion species is an important goal. The existing injectors, shielding, experimental facilities and utilities of the present Bevalac will remain substantially intact.

  4. Bonneville upgrades lines

    SciTech Connect

    Not Available

    1993-08-30

    A stretch of Bonneville Power Administration transmission line between Spokane and the Grand Coulee Dam is an 82-mile bottleneck as it is the last 115-kv section of [open quotes]road[close quotes] along a 500-kv transmission [open quotes]highway[close quotes]. Soon the administration will change all that. A number of independent and utility powerplants have been proposed in Idaho, Montana and the Spokane, Wash., area during the 1990s. As the operators will need to move their power, Bonneville is planning to build a $144-million, 500-kv line to upgrade the 115-kv section. The agency is planning to use its existing right-of-way.

  5. Upgraded Coal Interest Group

    SciTech Connect

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  6. Upgrading Enterprise Search

    SciTech Connect

    McDunn, R

    2005-04-28

    This presentation will describe the process we went through this past year to upgrade our enterprise search tool from a very old version of Inktomi to the latest version of Verity Ultraseek. We started with requirements gathering and then compared requirements against several available products to determine which product to choose. After purchasing the product, we worked through several defined phases of implementation and customization, with initial rollout late January 2004. Finally, we will show you where we are today and describe future search plans.

  7. Upgraded demonstration vehicle task report

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Hardy, K.; Livingston, R.; Sandberg, J.

    1981-01-01

    Vehicle/battery performance capabilities and interface problems that occurred when upgraded developmental batteries were integrated with upgraded versions of comercially available electric vehicles were investigated. Developmental batteries used included nickel zinc batteries, a nickel iron battery, and an improved lead acid battery. Testing of the electric vehicles and upgraded batteries was performed in the complete vehicle system environment to characterize performance and identify problems unique to the vehicle/battery system. Constant speed tests and driving schedule range tests were performed on a chassis dynamometer. The results from these tests of the upgraded batteries and vehicles were compared to performance capabilities for the same vehicles equipped with standard batteries.

  8. H-1 Upgrades (4BW/4BN) (H-1 Upgrades)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-101 H-1 Upgrades (4BW/4BN) (H-1 Upgrades) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be

  9. SNO+ Readout Electronics Upgrades

    NASA Astrophysics Data System (ADS)

    Bonventre, Richard; Shokair, Timothy; Knapik, Robert

    2012-03-01

    The SNO+ experiment is designed to explore several topics in neutrino physics including neutrinoless double beta decay, reactor antineutrinos, and low energy solar neutrinos. SNO+ uses the existing Sudbury Neutrino Observatory (SNO) detector, with the heavy water target replaced with liquid scintillator. The new target requires an upgrade to the command and control electronics to handle the higher rates expected with scintillation light as compared to Cherenkov light. The readout electronics have been upgraded to autonomously push data to a central data acquisition computer over ethernet from each of the 19 front end crates. The autonomous readout is achieved with a field programmable gate array (FPGA) with an embedded processor. Inside the FPGA fabric a state machine is configured to pull data across the VME-like bus of each crate. A small C program, making use of the open source Light Weight IP (LWIP) libraries, is run directly on the hardware (with no operating system) to push the data via TCP/IP. The hybrid combination of `high-level' C code and a `low-level' VHDL state machine is a cost effective and flexible solution for reading out individual front end crates.

  10. Energy Efficiency Upgrades

    SciTech Connect

    Roby Williams

    2012-03-29

    The energy efficiency upgrades project at Hardin County General Hospital did not include research nor was it a demonstration project. The project enabled the hospital to replace outdated systems with modern efficient models. Hardin County General Hospital is a 501c3, nonprofit hospital and the sole community provider for Hardin and Pope Counties of Illinois. This project provided much needed equipment and facility upgrades that would not have been possible through locally generated funding. Task 1 was a reroofing of the hospital. The hospital architect designed the replacement to increase the energy efficiency of the hospital roof/ceiling structure. Task 2 was replacement and installation of a new more efficient CT scanner for the hospital. Included in the project was replacement of HVAC equipment for the entire radiological suite. Task 5 was a replacement and installation of a new higher capacity diesel-fueled emergency generator for the hospital replacing a 50+ year old gas-fired generator. Task 7 was the replacement of 50+ year-old walk-in cooler/freezer with a newer, energy efficient model. Task 8 was the replacement of 10+ year-old washing machines in the hospital laundry with higher capacity, energy efficient models. Task 9 was replacement of 50-year old single pane curtain window system with double-pane insulated windows. Additionally, insulation was added around ventilation systems and the curtain wall system.

  11. ATLAS Detector Upgrade Prospects

    NASA Astrophysics Data System (ADS)

    Dobre, M.; ATLAS Collaboration

    2017-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC was ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015 and 2016. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, which will deliver of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred fb ‑1 expected for LHC running by the end of 2018 to 3000 fb ‑1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extensions to larger pseudorapidity, particularly in tracking and muon systems. This report summarizes various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC luminosity during this decade and the next. A brief overview is also given on physics prospects with a pp centre-of-mass energy of 14 TeV.

  12. 12 GeV Upgrade

    SciTech Connect

    2017-01-01

    To expand the opportunity for discovery, Jefferson Lab is upgrading its facility by doubling the maximum energy of CEBAF's electron beam from 6 billion electron volts (GeV) to 12 billion electron volts (GeV), constructing a new experimental hall and upgrading its three existing experimental halls.

  13. Upgrading Yellow-Poplar Seeds

    Treesearch

    F. T. Bonner; G. L. Switzer

    1971-01-01

    Yellow-poplar seed lots can be upgraded considerably by dewinging in a debearder and then cleaning and separating the seeds into four specific-gravity fractions with a fractionating aspirator or a gravity separator. By this process, lots with an original soundness of 6 to 10 percent were upgraded to between 60 and 65 percent full seeds.

  14. Skill Upgrading, Incorporated. Final Report.

    ERIC Educational Resources Information Center

    Skill Upgrading, Inc., Baltimore, MD.

    As in two other projects in Cleveland and Newark, New Jersey, this project was set up in Baltimore to provide technical assistance in designing ways to meet in-plant skills needs by upgrading job skills on entry workers through High Intensity Training (HIT). Skill Upgrading, Inc. was established in Maryland to provide training and manpower…

  15. TMX upgrade experimental operating plan

    SciTech Connect

    Coensgen, F.H.; Davis, J.C.; Simonen, T.C.

    1981-07-01

    This document describes the operating plan for the TMX Upgrade experiment. This plan covers the period from November 1981 to March 1983 and describes how the TMX will be brought into operation, our schedules and milestones, and how we will determine if the TMX Upgrade program milestones have been met.

  16. Prospects for the upgraded Tevatron

    SciTech Connect

    Flaugher, B.

    1995-07-01

    Plans and prospects for the next Fermilab collider running period, Run II (beginning in 1999), are described. The upgrades to the accelerator are discussed in the context of expected achievable instantaneous and integrated luminosity. Upgrades to the two collider detectors, CDF and D0, along with physics potential for Run II are also described. Options for Fermilab beyond Run II are mentioned.

  17. Seismic upgrades of healthcare facilities.

    PubMed

    Yusuf, A

    1997-06-01

    Before 1989 seismic upgrading of hospital structures was not a primary consideration among hospital owners. However, after extensive earthquake damage to hospital buildings at Loma Prieta in Northern California in 1989 and then at Northridge in Southern California in 1994, hospital owners, legislators, and design teams become concerned about the need for seismic upgrading of existing facilities. Because the damage hospital structures sustained in the earthquakes was so severe and far-reaching, California has enacted laws that mandate seismic upgrading for existing facilities. Now hospital owners will have to upgrade buildings that do not conform to statewide seismic adequacy laws. By 2030, California expects all of its hospital structures to be sufficiently seismic-resistant. Slowly, regions in the Midwest and on the East Coast are following their example. This article outlines reasons and ways for seismic upgrading of existing facilities.

  18. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  19. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  20. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will also be investigated.

  1. The FNAL injector upgrade

    SciTech Connect

    Tan, C.Y.; Bollinger, D.S.; Duel, K.L.; Lackey, J.R.; Pellico, W.A.; /Fermilab

    2011-03-01

    The present FNAL H{sup -} injector has been operational since the 1970s and consists of two magnetron H{sup -} sources and two 750 keV Cockcroft-Walton Accelerators. In the upgrade, both slit-type magnetron sources will be replaced with circular aperture sources, and the Cockcroft-Waltons with a 200 MHz RFQ (radio frequency quadrupole). Operational experience at BNL (Brookhaven National Laboratory) has shown that the upgraded source and RFQ will be more reliable, improve beam quality and require less manpower than the present system. The present FNAL (Fermi National Accelerator Laboratory) injector has been operational since 1978 and has been a reliable source of H{sup -} beams for the Fermilab program. At present there are two Cockcroft-Walton injectors, each with a magnetron H{sup -} source with a slit aperture. With these two sources in operation, the injector has a reliability of better than 97%. However, issues with maintenance, equipment obsolescence, increased beam quality demands and retirement of critical personnel, have made it more difficult for the continued reliable running of the H{sup -} injector. The recent past has also seen an increase in both downtime and source output issues. With these problems coming to the forefront, a new 750 keV injector is being built to replace the present system. The new system will be similar to the one at BNL (Brookhaven National Laboratory) that has a similar magnetron source with a round aperture and a 200MHz RFQ. This combination has been shown to operate extremely reliably.

  2. NIRSS Upgrades: Final Report

    NASA Technical Reports Server (NTRS)

    Politovich, Marcia K.

    2007-01-01

    This year we were able to further the NIRSS program by re-writing the data ingest and display code from LabVIEW to C++ and Java. This was leveraged by a University of Colorado Computer Science Department Senior Project. The upgrade made the display more portable and upgradeable. Comparisons with research aircraft flights conducted during AIRS-2 were also done and demonstrate reasonable skill in determining cloud altitudes and liquid water distribution. Improvements can still be made to the cloud and liquid logic. The icing hazard index was not evaluated here since that represents work in progress and needs to be made compatible with the new CIP-Severity algorithm. CIP is the Current Icing Potential product that uses a combination decision tree/fuzzy logic algorithm to combine numerical weather model output with operational sensor data (NEXRAD, GOES, METARs and voice pilot reports) to produce an hourly icing diagnosis across the CONUS. The new severity algorithm seeks to diagnose liquid water production through rising, cooling air, and depletion by ice processes. The information used by CIP is very different from that ingested by NIRSS but some common ground does exist. Additionally, the role of NIRSS and the information it both needs and provides needs to be determined in context of the Next Generation Air Traffic System (NGATS). The Weather Integrated Products Team has a plan for an Initial Operating Capability (IOC) to take place in 2012. NIRSS is not explicitly a part of that IOC but should be considered as a follow-on as part of the development path to a 2025 full capability.

  3. Upgrade of the CMS hadron calorimeter for an upgraded LHC

    NASA Astrophysics Data System (ADS)

    Anderson, Jacob; CMS Hcal Collaboration

    2012-12-01

    The CMS barrel and endcap hadron calorimeters (Hcal) upgrading the current photo-sensors are hybrid photodiodes (HPDs) to meet the demands of the upgraded luminosity of the LHC. A key aspect of the Hcal upgrade is to add longitudinal segmentation to improve background rejection, energy resolution, and electron isolation at L1 trigger. The increased segmentation can be achieved by replacing the HPD's with multi-pixel Geiger-mode avalanche photodiodes. The upgraded electronics are required to operate in a harsh environment and are constrained by the existing infrastructure. The proposed solutions span from chip level to system level. They include the development of a new ADC ASIC, the design and testing of higher speed transmitters to handle the increased data volume, the evaluation and use of circuits from other developments, evaluation of commercial FPGAs, better thermal design and improvements in the overall architecture.

  4. The LHCb upgrade: plans and physics potential

    NASA Astrophysics Data System (ADS)

    Marconi, U.

    2017-04-01

    LHCb is performing a large number of world-class precision measurements in heavy flavour physics. However, yet by the end of the LHC Run 2, many of these measurements will remain limited by statistics, even though adding the expected integrated luminosity of 5 - 6 fb-1. The main obstacle preventing LHCb to run the present detector at higher luminosities, with enhanced trigger efficiencies, is the current 1 MHz readout system limitation. The detector will therefore undergo a major upgrade in the Long Shutdown 2 (2018 - 2019) aiming at collecting an order of magnitude more data by 2028. The upgrade consists of a new readout system operating at the LHC bunch crossing rate of 40 MHz. The data acquisition system will exploit the ultimate flexibility of a software trigger. The instantaneous luminosity will increase to 2 ×1033 cm-2s-1, five times higher than presently. In order to cope with the higher expected occupancies and radiation doses several sub-detector upgrades are underway. The physics potential of LHCb shall improve considerably, as will be discussed.

  5. NSTX-U Control System Upgrades

    SciTech Connect

    Erickson, K. G.; Gates, D. A.; Gerhardt, S. P.; Lawson, J. E.; Mozulay, R.; Sichta, P.; Tchilinguirian, G. J.

    2014-06-01

    The National Spherical Tokamak Experiment (NSTX) is undergoing a wealth of upgrades (NSTX-U). These upgrades, especially including an elongated pulse length, require broad changes to the control system that has served NSTX well. A new fiber serial Front Panel Data Port input and output (I/O) stream will supersede the aging copper parallel version. Driver support for the new I/O and cyber security concerns require updating the operating system from Redhat Enterprise Linux (RHEL) v4 to RedHawk (based on RHEL) v6. While the basic control system continues to use the General Atomics Plasma Control System (GA PCS), the effort to forward port the entire software package to run under 64-bit Linux instead of 32-bit Linux included PCS modifications subsequently shared with GA and other PCS users. Software updates focused on three key areas: (1) code modernization through coding standards (C99/C11), (2) code portability and maintainability through use of the GA PCS code generator, and (3) support of 64-bit platforms. Central to the control system upgrade is the use of a complete real time (RT) Linux platform provided by Concurrent Computer Corporation, consisting of a computer (iHawk), an operating system and drivers (RedHawk), and RT tools (NightStar). Strong vendor support coupled with an extensive RT toolset influenced this decision. The new real-time Linux platform, I/O, and software engineering will foster enhanced capability and performance for NSTX-U plasma control.

  6. NSLS control system upgrade status

    SciTech Connect

    Smith, J.; Ramamoorthy, S.; Tang, Y.; Flannigan, J.; Sathe, S.; Keane, J.; Krinsky, S.

    1993-07-01

    The NSLS control system initially installed in 1978 has undergone several modifications but the basic system architecture remained relatively unchanged. The need for faster response, increased reliability and better diagnostics made the control system upgrade a priority. Since the NSLS runs continuously, major changes to the control system are difficult. The upgrade plan had to allow continuous incremental changes to the control system without having any detrimental effect on operations. The plan had to provide for immediate improvement in a few key areas, such as data access rates, and be complete in a short time. At present, most accelerator operations utilize the upgraded control system.

  7. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-01-01

    In this project we intend to study a novel process concept, i.e, the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  8. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-01-01

    In this project we intend to study a novel process concept, i.e.,the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we wig evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  9. Altair performance and upgrades

    NASA Astrophysics Data System (ADS)

    Lai, Olivier; Véran, Jean-Pierre; Herriot, Glen; White, John; Ball, Jesse; Trujillo, Chad

    2014-07-01

    Altair is the facility single conjugate AO system for Gemini North. Although it has been in operation for more than 10 years (and upgraded to LGS in 2007), Altair's performance is degraded by three main issues: vibrations of the telescope and instrument support structure, spatial aliasing on centroid offsets from the M2 support structure print-through on the optical surface and static non-common path aberrations. Monte-Carlo simulations can reproduce the behavior of Altair when including these three effects and they are roughly of the same order of magnitude. Solutions or mitigations are being investigated to overcome these nefarious effects and restore Altair's performance to its nominal level. A simplex algorithm as well as a phase diversity approach are being investigated to measure and correct for static aberrations. A high accuracy phase map of the M2 print-through has been obtained and is being used to calibrate and/or filter centroids affected by aliasing. A new real time computer is under consideration, to be able to handle more advanced controllers, especially notch filters to combat vibrations. In this paper we will report on the various simulations and on-sky results of this rejuvenation of one of Gemini's workhorse instruments.

  10. Mining Upgrades to Reduce Pollution

    EPA Pesticide Factsheets

    Settlement with Southern Coal Corporation and 26 affiliates requires the companies to comprehensively upgrade their coal mining and processing operations to prevent polluted wastewater from threatening rivers and streams and communities across Appalachia.

  11. Upgrading in an Industrial Setting. Final Report.

    ERIC Educational Resources Information Center

    Russell, Wendell

    The project objectives were: (1) to assess existing industrial upgrading practices in an Atomic Energy Commission contractor organization, (2) to design new alternative upgrading methods, (3) to experiment with new upgrading methods, (4) to plan for utilization of proven upgrading programs, and (5) to document and disseminate activities. A twelve…

  12. RISK REDUCTION FOR MATERIAL ACCOUNTABILITY UPGRADES.

    SciTech Connect

    FISHBONE, L.G.; SISKIND, B.

    2005-05-16

    We present in this paper a method for evaluating explicitly the contribution of nuclear material accountability upgrades to risk reduction at nuclear facilities. The method yields the same types of values for conditional risk reduction that physical protection and material control upgrades yield. Thereby, potential material accountability upgrades can be evaluated for implementation in the same way that protection and control upgrades are evaluated.

  13. Rate enhancement for catalytic upgrading coal naphthas

    SciTech Connect

    Liaw, Shuh Jeng; Keogh, R.A.; Davis, B.H.

    1992-01-01

    The amount of individual nitrogen and sulfur presented in the feed and hydrotreated Illinois [number sign]6 naphtha were determined. The major nitrogen class in the naphtha are anilines. The major sulfur components identified are thiophenes and benzothiophenes. The aniline and quinoline is harder to remove than pyridine. The aniline and pyridine, without any carbon substituted, is the easiest one to remove in their class. The quinoline, without any carbon substituted, is approximately as hard as one carbon substituted quinoline to remove. Both Co-Mo and Ni-W catalysts follow the similar pattern of the nitrogen removal at different temperatures. The sulfur compounds of the Ill. [number sign]6 naphtha was separated to three classes, i.e. sulfides and thiols, thiophenes and benzothiophenes, for comparisons. The thiophenes was the major component of the hydrotreated naphtha at most temperatures; however, the sulfides and thiols class becomes the major component at temperatures greater than 300[degree]C.

  14. Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading.

    PubMed

    Xu, Heng; Wang, Kaijun; Holmes, Dawn E

    2014-12-01

    Innovative methods for biogas upgrading based on biological/in-situ concepts have started to arouse considerable interest. Bioelectrochemical removal of CO2 for biogas upgrading was proposed here and demonstrated in both batch and continuous experiments. The in-situ biogas upgrading system seemed to perform better than the ex-situ one, but CO2 content was kept below 10% in both systems. The in-situ system's performance was further enhanced under continuous operation. Hydrogenotrophic methanogenesis and alkali production with CO2 absorption could be major contributors to biogas upgrading. Molecular studies showed that all the biocathodes associated with biogas upgrading were dominated by sequences most similar to the same hydrogenotrophic methanogen species, Methanobacterium petrolearium (97-99% sequence identity). Conclusively, bioelectrochemical removal of CO2 showed great potential for biogas upgrading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Upgrade of the BATMAN test facility for H{sup −} source development

    SciTech Connect

    Heinemann, B. Fröschle, M.; Falter, H.-D.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Riedl, R.; Ruf, B.

    2015-04-08

    The development of a radio frequency (RF) driven source for negative hydrogen ions for the neutral beam heating devices of fusion experiments has been successfully carried out at IPP since 1996 on the test facility BATMAN. The required ITER parameters have been achieved with the prototype source consisting of a cylindrical driver on the back side of a racetrack like expansion chamber. The extraction system, called “Large Area Grid” (LAG) was derived from a positive ion accelerator from ASDEX Upgrade (AUG) using its aperture size (ø 8 mm) and pattern but replacing the first two electrodes and masking down the extraction area to 70 cm2. BATMAN is a well diagnosed and highly flexible test facility which will be kept operational in parallel to the half size ITER source test facility ELISE for further developments to improve the RF efficiency and the beam properties. It is therefore planned to upgrade BATMAN with a new ITER-like grid system (ILG) representing almost one ITER beamlet group, namely 5 × 14 apertures (ø 14 mm). Additionally to the standard three grid extraction system a repeller electrode upstream of the grounded grid can optionally be installed which is positively charged against it by 2 kV. This is designated to affect the onset of the space charge compensation downstream of the grounded grid and to reduce the backstreaming of positive ions from the drift space backwards into the ion source. For magnetic filter field studies a plasma grid current up to 3 kA will be available as well as permanent magnets embedded into a diagnostic flange or in an external magnet frame. Furthermore different source vessels and source configurations are under discussion for BATMAN, e.g. using the AUG type racetrack RF source as driver instead of the circular one or modifying the expansion chamber for a more flexible position of the external magnet frame.

  16. The D0 detector upgrade

    SciTech Connect

    Bross, A.D.

    1995-02-01

    The Fermilab collider program is undergoing a major upgrade of both the accelerator complex and the two detectors. Operation of the Tevatron at luminosities upwards of ten time that currently provided will occur in early 1999 after the commissioning of the new Fermilab Main Injector. The D0 upgrade program has been established to deliver a detector that will meet the challenges of this environment. A new magnetic tracker consisting of a superconducting solenoid, a silicon vertex detector, a scintillating fiber central tracker, and a central preshower detector will replace the current central tracking and transition radiation chambers. We present the design and performance capabilities of these new systems and describe results from physics simulations that demonstrate the physics reach of the upgraded detector.

  17. Physical protection upgrades in Ukraine.

    SciTech Connect

    Djakov, A.

    1998-08-06

    The U.S. DOE is providing nuclear material safeguards assistance in both material control and accountability and in physical protection to several facilities in Ukraine. This paper summarizes the types of physical protection upgrades that have been or are presently being implemented at these facilities. These facilities include the Kiev Institute for Nuclear Research, Kharkov Institute of Physics and Technology, Sevastopol Institute of Nuclear Energy and Industry, and the South Ukraine Nuclear Power Plant. Typical upgrades include: hardening of storage areas; improvements in access control, intrusion detection, and CCTV assessment; central alarm station improvements; and implementation of new voice communication systems. Methods used to implement these upgrades and problems encountered are discussed. Training issues are also discussed.

  18. The upgraded MAGIC Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Tescaro, D.

    2014-12-01

    The MAGIC Cherenkov telescopes underwent a major upgrade in 2011 and 2012. A new 1039-pixel camera and a larger area digital trigger system were installed in MAGIC-I, making it essentially identical to the newer MAGIC-II telescope. The readout systems of both telescopes were also upgraded, with fully programmable receiver boards and DRS4-chip-based digitization systems. The upgrade eased the operation and maintenance of the telescopes and also improved significantly their performance. The system has now an integral sensitivity as good as 0.6% of the Crab Nebula flux (for E > 400 GeV), with an effective analysis threshold at 70 GeV. This allows MAGIC to secure one of the leading roles among the current major ground-based Imaging Atmospheric Cherenkov telescopes for the next 5-10 years.

  19. Work plan for upgrade of SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control System (DACS-1)

    SciTech Connect

    Truitt, R.W.

    1994-08-01

    The purpose of this effort is to upgrade the existing DACS-1 used for control and data acquisition in support of the hydrogen mitigation program for tank 101-SY. The planned upgrades will enhance the system capabilities to support additional mitigation projects and improve the system operability by implementing changes identified during operation of the system to date. Once the upgrades have been implemented, the DACS-1 system should operate as it did prior to the upgrade, but with greatly increased speed and capability. No retraining of Test Engineers will be required; the upgrade is designed to be transparent to those who operate it, with only a noticeable increase in the speed of the system. This work plan defines the tasks required for implementing the upgrade. It identifies deliverables, responsible organizations and individuals, interfaces, and schedule. This upgrade effort employs system engineering principles wherever applicable.

  20. Argonne's atlas control system upgrade.

    SciTech Connect

    Munson, F.; Quock, D.; Chapin, B.; Figueroa, J.

    1999-09-27

    The ATLAS facility (Argonne Tandem-Linac Accelerator System) is located at the Argonne National Laboratory. The facility is a tool used in nuclear and atomic physics research, which focuses primarily on heavy-ion physics. The accelerator as well as its control system are evolutionary in nature, and consequently, continue to advance. In 1998 the most recent project to upgrade the ATLAS control system was completed. This paper briefly reviews the upgrade, and summarizes the configuration and features of the resulting control system.

  1. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-01-01

    Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. Having the inherent capability for combining reaction and separation in a single step, they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, such as these typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. This project will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. Development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  2. NSTX-U Control System Upgrades

    DOE PAGES

    Erickson, K. G.; Gates, D. A.; Gerhardt, S. P.; ...

    2014-06-01

    The National Spherical Tokamak Experiment (NSTX) is undergoing a wealth of upgrades (NSTX-U). These upgrades, especially including an elongated pulse length, require broad changes to the control system that has served NSTX well. A new fiber serial Front Panel Data Port input and output (I/O) stream will supersede the aging copper parallel version. Driver support for the new I/O and cyber security concerns require updating the operating system from Redhat Enterprise Linux (RHEL) v4 to RedHawk (based on RHEL) v6. While the basic control system continues to use the General Atomics Plasma Control System (GA PCS), the effort to forwardmore » port the entire software package to run under 64-bit Linux instead of 32-bit Linux included PCS modifications subsequently shared with GA and other PCS users. Software updates focused on three key areas: (1) code modernization through coding standards (C99/C11), (2) code portability and maintainability through use of the GA PCS code generator, and (3) support of 64-bit platforms. Central to the control system upgrade is the use of a complete real time (RT) Linux platform provided by Concurrent Computer Corporation, consisting of a computer (iHawk), an operating system and drivers (RedHawk), and RT tools (NightStar). Strong vendor support coupled with an extensive RT toolset influenced this decision. The new real-time Linux platform, I/O, and software engineering will foster enhanced capability and performance for NSTX-U plasma control.« less

  3. Old PCs: Upgrade or Abandon?

    ERIC Educational Resources Information Center

    Perez, Ernest

    1997-01-01

    Examines the practical realities of upgrading Intel personal computers in libraries, considering budgets and technical personnel availability. Highlights include adding RAM; putting in faster processor chips, including clock multipliers; new hard disks; CD-ROM speed; motherboards and interface cards; cost limits and economic factors; and…

  4. Old PCs: Upgrade or Abandon?

    ERIC Educational Resources Information Center

    Perez, Ernest

    1997-01-01

    Examines the practical realities of upgrading Intel personal computers in libraries, considering budgets and technical personnel availability. Highlights include adding RAM; putting in faster processor chips, including clock multipliers; new hard disks; CD-ROM speed; motherboards and interface cards; cost limits and economic factors; and…

  5. Upgrade of the ALICE inner tracking system

    NASA Astrophysics Data System (ADS)

    Rossegger, Stefan

    2013-12-01

    The Inner Tracking System (ITS) is the key ALICE detector for the study of heavy flavor production at LHC. Heavy flavor can be studied via the identification of short-lived hadrons containing heavy quarks which have a mean proper decay length in the order of 100-300 μm. To accomplish this task, the ITS is composed of six cylindrical layers of silicon detectors (two pixel, two drift and two strip) with a radial coverage from 3.9 to 43 cm and an average material budget of 1.1% X0 per layer. In order to enhance the ALICE physics capabilities, and, in particular, the tracking performance for heavy-flavor detection, the possibility of an ITS upgrade has been studied in great detail. It will make use of the spectacular progress made in the field of imaging sensors over the last 10 years as well as the possibility to install a smaller radius beampipe. The upgraded detector will have greatly improved features in terms of the impact parameter resolution, standalone tracking efficiency at low pt, momentum resolution and readout capabilities. The usage of the most recent monolithic and/or hybrid pixel detector technologies allows the improvement of the detector material budget and the intrinsic spatial resolution both by a factor of three with respect to the present ITS. The installation of a smaller beam-pipe reduces the distance between the first detector layer and the interaction vertex. Under these assumptions, simulations show that an overall improvement of the impact parameter resolution by a factor of three is possible. The Conceptual Design Report for the Upgrade of the ALICE ITS, which covers the design and performance requirements, the upgrade options, as well as the necessary R&D efforts, was made public in September 2012. An intensive R&D program has been launched to review the different technological options under consideration. The new detector should be ready to be installed during the long LHC shutdown period scheduled in 2017-2018.

  6. The CEBAF RF Separator System Upgrade

    SciTech Connect

    J. Hovater; Mark Augustine; Al Guerra; Richard Nelson; Robert Terrell; Mark Wissmann

    2004-08-01

    The CEBAF accelerator uses RF deflecting cavities operating at the third sub-harmonic (499 MHz) of the accelerating frequency (1497 MHz) to ''kick'' the electron beam to the experimental halls. The cavities operate in a TEM dipole mode incorporating mode enhancing rods to increase the cavity's transverse shunt impedance [1]. As the accelerators energy has increased from 4 GeV to 6 GeV the RF system, specifically the 1 kW solid-state amplifiers, have become problematic, operating in saturation because of the increased beam energy demands. Two years ago we began a study to look into replacement for the RF amplifiers and decided to use a commercial broadcast Inductive Output Tube (IOT) capable of 30 kW. The new RF system uses one IOT amplifier on multiple cavities as opposed to one amplifier per cavity as was originally used. In addition, the new RF system supports a proposed 12 GeV energy upgrade to CEBAF. We are currently halfway through the upgrade with three IOTs in operation and the remaining one nearly installed. This paper reports on the new RF system and the IOT performance.

  7. WIYN bench upgrade: a revitalized spectrograph

    NASA Astrophysics Data System (ADS)

    Bershady, M.; Barden, S.; Blanche, P.-A.; Blanco, D.; Corson, C.; Crawford, S.; Glaspey, J.; Habraken, S.; Jacoby, G.; Keyes, J.; Knezek, P.; Lemaire, P.; Liang, M.; McDougall, E.; Poczulp, G.; Sawyer, D.; Westfall, K.; Willmarth, D.

    2008-07-01

    We describe the redesign and upgrade of the versatile fiber-fed Bench Spectrograph on the WIYN 3.5m telescope. The spectrograph is fed by either the Hydra multi-object positioner or integral-field units (IFUs) at two other ports, and can be configured with an adjustable camera-collimator angle to use low-order and echelle gratings. The upgrade, including a new collimator, charge-coupled device (CCD) and modern controller, and volume-phase holographic gratings (VPHG), has high performance-to-cost ratio by combining new technology with a system reconfiguration that optimizes throughput while utilizing as much of the existing instrument as possible. A faster, all-refractive collimator enhances throughput by 60%, nearly eliminates the slit-function due to vignetting, and improves image quality to maintain instrumental resolution. Two VPH gratings deliver twice the diffraction efficiency of existing surface-relief gratings: A 740 l/mm grating (float-glass and post-polished) used in 1st and 2nd-order, and a large 3300 l/mm grating (spectral resolution comparable to the R2 echelle). The combination of collimator, high-quantum efficiency (QE) CCD, and VPH gratings yields throughput gain-factors of up to 3.5.

  8. 32 CFR 881.7 - Discharge upgrade.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Discharge upgrade. 881.7 Section 881.7 National... ACTIVE MILITARY SERVICE AND DISCHARGE FOR CIVILIAN OR CONTRACTUAL GROUPS § 881.7 Discharge upgrade. If... discharge upgrade under AFI 36-3201, Air Force Discharge Review Board (formerly AFR 20-10) or to the Air...

  9. 32 CFR 881.7 - Discharge upgrade.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Discharge upgrade. 881.7 Section 881.7 National... ACTIVE MILITARY SERVICE AND DISCHARGE FOR CIVILIAN OR CONTRACTUAL GROUPS § 881.7 Discharge upgrade. If... discharge upgrade under AFI 36-3201, Air Force Discharge Review Board (formerly AFR 20-10) or to the Air...

  10. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 1, September 21, 1989--December 20, 1989

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    In this project we well evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated. (VC)

  11. H-1 Upgrades (4BW/4BN) (H-1 Upgrades)

    DTIC Science & Technology

    2013-12-01

    President’s Budget PE - Program Element Proc - Procurement Prod Est - Production Estimate QR - Quantity Related Qty - Quantity RDT&E - Research...Pounds MFHBA - Mean Flight Hours Between Abort mm - Millimeter MMH/FH - Maintenance Man Hours per Flight Hours NCOW - Net-Centric Operation and...Upgrades December 2013 SAR April 16, 2014 17:13:57 UNCLASSIFIED 15 Track to Budget RDT&E Appn BA PE Navy 1319 05 0604245N Project

  12. Creation of a magnetic barrier at a noble q close to physical midpoint between two resonant surfaces in the ASDEX UG tokamak

    NASA Astrophysics Data System (ADS)

    Vazquez, Justin; Ali, Halima; Punjabi, Alkesh

    2009-11-01

    Ciraolo, Vittot and Chandre method of building invariant manifolds inside chaos in Hamiltonian systems [Ali H. and Punjabi A, Plasma Phys. Control. Fusion, 49, 1565--1582 (2007)] is used in the ASDEX UG tokamak. In this method, a second order perturbation is added to the perturbed Hamiltonian [op cit]. It creates an invariant torus inside the chaos, and reduces the plasma transport. The perturbation that is added to the equilibrium Hamiltonian is at least an order of magnitude smaller than the perturbation that causes chaos. This additional term has a finite, limited number of Fourier modes. Resonant magnetic perturbations (m,n) = (3,2)+(4,3) are added to the field line Hamiltonian for the ASDEX UG. An area-preserving map for the field line trajectories in the ASDEX UG is used. The common amplitude δ of these modes that gives complete chaos between the resonant surfaces ψ43 and ψ32 is determined. A magnetic barrier is built at a surface with noble q that is very nearly equals to the q at the physical midpoint between the two resonant surfaces. The maximum amplitude of magnetic perturbation for which this barrier can be sustained is determined. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793.

  13. MIPP Plastic Ball electronics upgrade

    SciTech Connect

    Baldin, Boris; /Fermilab

    2009-01-01

    An upgrade electronics design for Plastic Ball detector is described. The Plastic Ball detector was a part of several experiments in the past and its back portion (proposed to be used in MIPP) consists of 340 photomultipliers equipped with a sandwich scintillator. The scintillator sandwich has fast and slow signal component with decay times 10 ns and 1 {micro}s respectively. The upgraded MIPP experiment will collect up to 12,000 events during each 4 second spill and read them out in {approx}50 seconds between spills. The MIPP data acquisition system will employ deadtime-less concept successfully implemented in Muon Electronics of Dzero experiment at Fermilab. An 8-channel prototype design of the Plastic Ball Front End (PBFE) implementing these requirements is discussed. Details of the schematic design, simulation and prototype test results are discussed.

  14. RHIC and its upgrade programmes.

    SciTech Connect

    Roser,T.

    2008-06-23

    As the first hadron accelerator and collider consisting of two independent superconducting rings RHIC has operated with a wide range of beam energies and particle species. After a brief review of the achieved performance the presentation will give an overview of the plans, challenges and status of machine upgrades, that range from a new heavy ion pre-injector and beam cooling at 100 GeV to a high luminosity electron-ion collider.

  15. The Pegasus-Upgrade Experiment

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Bongard, M. W.; Barr, J. L.; Frerichs, H. G.; Lewicki, B. T.; Reusch, J. A.; Schmitz, O.; Winz, G. R.

    2015-11-01

    Tokamak operation at near-unity aspect ratio provides access to advanced tokamak physics at modest parameters. High plasma current is accessible at very low toroidal field. This offers H-mode performance at Te levels that allow use of electrostatic and magnetic probe arrays through the edge pedestal region into the plasma core. An upgrade to the Pegasus ST is planned to exploit these features and pursue unique studies in three areas: local measurements of pedestal and ELM dynamics at Alfvenic timescales; direct measurement of the local plasma response to application of 3D magnetic perturbations with high spectral flexibility; and extension of Local Helicity Injection for nonsolenoidal startup to NSTX-U-relevant confinement and stability regimes. Significant but relatively low-cost upgrades to the facility are proposed: a new centerstack with larger solenoid and 2x the number of toroidal field conductors; a new TF power supply and conversion of the 200 MVA OH power supply to a cascaded multilevel inverter configuration; and installation of an extensive 3D-magnetic perturbation coil system for ELM mitigation and suppression studies. The upgraded facility will provide 0.3 MA plasmas with pulse lengths of 50-100 msec flattop, aspect ratio <1.25, and toroidal field up to 0.4 T. These research activities will be integrated into related efforts on DIII-D and NSTX-U. Work supported by US DOE grant DE-FG02-96ER54375.

  16. Upgrade of the CMS tracker

    NASA Astrophysics Data System (ADS)

    Tricomi, A.

    2014-03-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity up to or above 5 × 1034 cm-2s-1 sometimes after 2020, to possibly reach an integrated luminosity of 3000 fb-1 at the end of that decade. The foreseen increases of both the instantaneous and the integrated luminosity by the LHC during the next ten years will necessitate a stepwise upgrade of the CMS tracking detector. During the extended end-of-year shutdown 2016-2017 the pixel detector will be exchanged with a new one. The so-called Phase1 Pixel foresees one additional barrel layer and one additional end-cap disk, a new readout chip, reduction of material, and the installation of more efficient cooling and powering systems. In the so-called Phase2, when LHC will reach the High Luminosity (HL-LHC) phase, CMS will need a completely new Tracker detector, in order to fully exploit the high-demanding operating conditions and the delivered luminosity. The new Tracker should have also trigger capabilities. To achieve such goals, R&D activities are ongoing to explore options and develop solutions that would allow including tracking information at Level-1. The design choices for the CMS pixel and outer tracker upgrades are discussed along with some highlights of the R&D activities.

  17. The Pierre Auger Observatory Upgrade

    NASA Astrophysics Data System (ADS)

    Marsella, Giovanni

    2017-03-01

    It is planned to operate the Pierre Auger Observatory until at least the end of 2024. An upgrade of the experiment has been proposed in order to provide additional measurements to allow one to elucidate the mass composition and the origin of the flux suppression at the highest energies, to search for a flux contribution of protons up to the highest energies and to reach a sensitivity to a contribution as small as 10% in the flux suppression region, to study extensive air showers and hadronic multi-particle production. With operation planned until 2024, event statistics will more than double compared with the existing Auger data set, with the critical added advantage that every event will now have mass information. Obtaining additional composition-sensitive information will not only help to better reconstruct the properties of the primary particles at the highest energies, but also improve the measurements in the energy range just above the ankle. Furthermore, measurements with the new detectors will help to reduce systematic uncertainties related to the modelling hadronic showers and to limitations in the reconstruction algorithms. A description of the principal proposed Auger upgrade will be presented. The Auger upgrade promises high-quality future data, and real scope for new physics.

  18. The upgraded WIYN bench spectrograph

    NASA Astrophysics Data System (ADS)

    Knezek, Patricia M.; Bershady, Matthew A.; Willmarth, Daryl; Glaspey, John; Poczulp, Gary; Blanco, Dan; Britanik, Lana; McDougall, Eugene; Corson, Charles; Liang, Ming; Keyes, Joe; Jacoby, George

    2010-07-01

    We present the as-built design overview and post-installation performance of the upgraded WIYN Bench Spectrograph. This Bench is currently fed by either of the general-use multi-fiber instruments at the WIYN 3.5m telescope on Kitt Peak, the Hydra multi-object positioner, and the SparsePak integral field unit (IFU). It is very versatile, and can be configured to accommodate low-order, echelle, and volume phase holographic gratings. The overarching goal of the upgrade was to increase the average spectrograph throughput by ~60% while minimizing resolution loss (< 20%). In order to accomplish these goals, the project has had three major thrusts: (1) a new CCD was provided with a nearly constant 30% increase is throughput over 320-1000 nm; (2) two Volume Phase Holographic (VPH) gratings were delivered; and (3) installed a new all-refractive collimator that properly matches the output fiber irradiance (EE90) and optimizes pupil placement. Initial analysis of commissioning data indicates that the total throughput of the system has increased 50-70% using the 600 l/mm surface ruled grating, indicating that the upgrade has achieved its goal. Furthermore, it has been demonstrated that overall image resolution meets the requirement of <20% loss.

  19. Making SPIFFI SPIFFIER: upgrade of the SPIFFI instrument for use in ERIS and performance analysis from re-commissioning

    NASA Astrophysics Data System (ADS)

    George, E. M.; Gräff, D.; Feuchtgruber, H.; Hartl, M.; Eisenhauer, F.; Buron, A.; Davies, R.; Genzel, R.; Huber, H.; Rau, C.; Plattner, M.; Wiezorrek, E.; Weisz, H.; Amico, P.; Glindemann, A.; Hau, G.; Kuntschner, H.

    2016-08-01

    SPIFFI is an AO-fed integral field spectrograph operating as part of SINFONI on the VLT, which will be upgraded and reused as SPIFFIER in the new VLT instrument ERIS. In January 2016, we used new technology developments to perform an early upgrade to optical subsystems in the SPIFFI instrument so ongoing scientific programs can make use of enhanced performance before ERIS arrives in 2020. We report on the upgraded components and the performance of SPIFFI after the upgrade, including gains in throughput and spatial and spectral resolution. We show results from re-commissioning, highlighting the potential for scientific programs to use the capabilities of the upgraded SPIFFI. Finally, we discuss the additional upgrades for SPIFFIER which will be implemented before it is integrated into ERIS.

  20. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    SciTech Connect

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  1. Progress and plan of KSTAR plasma control system upgrade

    DOE PAGES

    Hahn, Sang-hee; Kim, Y. J.; Penaflor, B. G.; ...

    2016-06-01

    The plasma control system (PCS) has been one of essential systems in annual KSTAR plasma campaigns: starting from a single-process version in 2008, extensive upgrades are done through the previous 7 years in order to achieve major goals of KSTAR performance enhancement. Here, major implementations are explained in this paper. In consequences of successive upgrades, the present KSTAR PCS is able to achieve ~48 s of 500 kA plasma pulses with full real-time shaping controls and real-time NB power controls. It has become a huge system capable of dealing with 8 separate categories of algorithms, 26 actuators directly controllable duringmore » the shot, and real-time data communication units consisting of +180 analog channels and +600 digital input/outputs through the reflective memory (RFM) network. The next upgrade of the KSTAR PCS is planned in 2015 before the campaign. An overview of the upgrade layout will be given for this paper. The real-time system box is planned to use the CERN MRG-Realtime OS, an ITER-compatible standard operating system. New hardware is developed for faster real-time streaming system for future installations of actuators/diagnostics.« less

  2. MWPC prototyping and testing for STAR inner TPC upgrade

    NASA Astrophysics Data System (ADS)

    Shen, F.; Wang, S.; Yang, C.; Xu, Q.

    2017-06-01

    STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is upgrading the inner sectors of the Time Projection Chamber (iTPC). The iTPC upgrade project will increase the segmentation on the inner pad plane from 13 to 40 pad rows and renew the inner sector wire chambers. The upgrade will expand the TPC's acceptance from |η|<=1.0 to |η|<=1.5. Furthermore, the detector will have better acceptance for tracks with low momentum, as well as better resolution in both momentum and dE/dx for tracks of all momenta. The enhanced measurement capabilities of STAR-iTPC upgrade are crucial to the physics program of the Phase II of Beam Energy Scan (BES-II) at RHIC during 2019-2020, in particular the QCD phase transition study. In this proceedings, I will discuss the iTPC MWPC module fabrication and testing results from the first full size iTPC MWPC pre-prototype made at Shandong University.

  3. The iTPC upgrade for BES-II

    NASA Astrophysics Data System (ADS)

    Videbaek, Flemming; STAR Collaboration

    2015-10-01

    STAR has proposed to upgrade the inner sectors of the STAR TPC to increase the segmentation on the inner padplane and to renew the inner sector wires. The upgrade will provide better momentum resolution, better dE/dx resolution and, most importantly, it will provide improved acceptance at high rapidity to | η| <= 1.5 compared to the current TPC configuration of | η| <= 1 and to extend the pt coverage towards lower pt. The enhanced measurement capabilities of STAR after the iTPC upgrade are a vital part of the BES-II effort for 2019-2020. The expanded rapidity coverage provides a major benefit for many analyses, especially those sensitive to changes in correlation lengths near a critical point, like the net-proton Kurtosis which exhibits interesting energy trends that only appear near the edge of the current STAR acceptance. In the area of dielectron measurements it reduces hadron contamination from a dominant source of uncertainty to an expected statistical uncertainty of only 10%, and will enable significantly improved understanding of in-medium modifications. In this talk I will discuss the physics impact and give a technical overview of the detector upgrade. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science.

  4. Progress and plan of KSTAR plasma control system upgrade

    SciTech Connect

    Hahn, Sang-hee; Kim, Y. J.; Penaflor, B. G.; Bak, J. G.; Han, H.; Hong, J. S.; Jeon, Y. M.; Jeong, J. H.; Joung, M.; Juhn, J. W.; Kim, J. S.; Kim, H. S.; Lee, W. R.; Woo, M. H.; Eidietis, N. W.; Ferron, J. R.; Humphreys, D. A.; Hyatt, A.; Johnson, R. D.; Piglowski, D. A.; Walker, M. L.; Welander, A. S.; Mueller, D.; Milne, P. G.

    2016-06-01

    The plasma control system (PCS) has been one of essential systems in annual KSTAR plasma campaigns: starting from a single-process version in 2008, extensive upgrades are done through the previous 7 years in order to achieve major goals of KSTAR performance enhancement. Here, major implementations are explained in this paper. In consequences of successive upgrades, the present KSTAR PCS is able to achieve ~48 s of 500 kA plasma pulses with full real-time shaping controls and real-time NB power controls. It has become a huge system capable of dealing with 8 separate categories of algorithms, 26 actuators directly controllable during the shot, and real-time data communication units consisting of +180 analog channels and +600 digital input/outputs through the reflective memory (RFM) network. The next upgrade of the KSTAR PCS is planned in 2015 before the campaign. An overview of the upgrade layout will be given for this paper. The real-time system box is planned to use the CERN MRG-Realtime OS, an ITER-compatible standard operating system. New hardware is developed for faster real-time streaming system for future installations of actuators/diagnostics.

  5. Progress in MPC and A upgrades at Luch

    SciTech Connect

    Mizin, P.; Chukov, V.; Rogatchev, V.; Curtiss, J.; Erkkila, B.; Goodey, K.; Hembree, D. Jr.; Lowe, D.; Turner, C.

    1997-09-01

    Luch, a MINATOM facility, has been engaged in both scientific research and uranium processing for fifty years. Since the spring of 1996, Luch has participated in a program of US/Russia Cooperation in Nuclear MPC and A Upgrades. The program began with planning for immediate upgrades in MPC and A, with en emphasis on physical protection. In addition, US and Luch experts exchanged technical data during a number of workshops, to establish a common understanding of available MPC and A tools and equipment. Site characterizations and vulnerability assessments were then prepared by Luch, to form the basis for the current program of methodical upgrades in all areas of MPC and A. Access control, alarms and alarm communications are being improved as part of this program. Control of nuclear material is being enhanced through improvements in material monitoring and in transportation security when nuclear material is moved between buildings on the Luch site. A comprehensive, site-wide computer network for Luch was designed during a recent workshop. Acquiring and installing this computer system, complete with COREMAS software, is currently in progress. Nuclear material analysis will be improved through NDA techniques using Canberra InSpector systems. The planned upgrades in nuclear MPC and A will reinforce safeguards over large quantities of HEU at Luch.

  6. The PHENIX Muon Trigger Upgrade Level-1 Trigger System

    NASA Astrophysics Data System (ADS)

    Lajoie, John; Kempel, Todd

    2010-02-01

    The PHENIX Muon Trigger Upgrade adds a set of Level-1 trigger detectors to the existing muon spectrometers and will enhance the ability of the experiment to pursue a rich program of spin physics in polarized proton collisions. The upgrade will allow the experiment to select high momentum muons from the decay of W bosons and reject both beam-associated and low-momentum collision background, enabling the study of quark and antiquark polarization in the proton. The Muon Trigger Upgrade will add momentum and timing information to the present muon Level-1 trigger, which only makes use of tracking in the PHENIX muon identifier (MuID) panels. Signals from new Resistive Plate Chambers (RPCs) and re-instrumented planes in the existing muon tracking (MuTr) chambers will provide momentum and timing information for the new Level-1 trigger. An RPC timing resolution of ˜2 ns will permit rejection of beam related backgrounds while tracking information from the RPCs and MuTr station will be used by the trigger to select events with high momentum muon candidates. The RPC and MuTr hit information will be sent by optical fibers to a set of Level-1 trigger processors that will make use of cutting edge FPGA technology to provide very high data densities in a compact form factor. The layout of the upgrade, details of the Level-1 electronics and trigger algorithm development will be presented. )

  7. Digital Beamforming Synthetic Aperture Radar (DBSAR) Polarimetric Upgrade

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Perrine, Martin; McLinden, Matthew; Valett, Susan

    2011-01-01

    The Digital Beamforming Synthetic Aperture Radar (DBSAR) is a state-of-the-art radar system developed at NASA/Goddard Space Flight Center for the development and implementation of digital beamforming radar techniques. DBSAR was recently upgraded to polarimetric operation in order to enhance its capability as a science instrument. Two polarimetric approaches were carried out which will be demonstrated in upcoming flight campaigns.

  8. Upgrade of the LHCb VELO detector

    NASA Astrophysics Data System (ADS)

    Williams, Mark

    2017-01-01

    The LHCb experiment is a single-arm forward spectrometer optimised for performing heavy-flavour physics analyses, using proton-proton collisions provided by the LHC machine. A major upgrade of the LHCb experiment will take place prior to the start of Run 3 operations in 2021. The upgraded Vertex Locator (VELO) is an essential component of this upgrade. Its main role is to enable high precision track and vertex reconstruction, with data-driven readout to the software trigger at 40 MHz, in the higher-luminosity environment of Run 3. To achieve this goal, significant improvements are planned with respect to the current detector, including a switch from microstrips to pixels, upgraded electronics, and a new cooling system. I will briefly motiviate the need for an upgrade, describe the main aspects of the VELO upgrade design, and show highlights of recent sensor characterisation studies using the CERN SPS test beam.

  9. LHC Status and Upgrade Challenges

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey

    2009-11-01

    The Large Hadron Collider has had a trying start-up and a challenging operational future lays ahead. Critical to the machine's performance is controlling a beam of particles whose stored energy is equivalent to 80 kg of TNT. Unavoidable beam losses result in energy deposition throughout the machine and without adequate protection this power would result in quenching of the superconducting magnets. A brief overview of the machine layout and principles of operation will be reviewed including a summary of the September 2008 accident. The current status of the LHC, startup schedule and upgrade options to achieve the target luminosity will be presented.

  10. SOFIA Gets Avionics and Mission Systems Upgrades

    NASA Image and Video Library

    NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, has received major upgrades to its telescope control and avionics systems that will significantly improve their efficiency and ope...

  11. Space Station Live: ISS Communications Unit Upgrade

    NASA Image and Video Library

    NASA Public Affairs Officer Nicole Cloutier-Lemasters interviews International Space Station Flight Director Mike Lammers about the recent Ku communications unit upgrade work taking place aboard th...

  12. Tritium Plasma Experiment Upgrade for Fusion Tritium and Nuclear Sciences

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.

    2015-11-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of tritium plasma-driven permeation and optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  13. On-detector Electronics for the LHCb VELO Upgrade

    NASA Astrophysics Data System (ADS)

    Naik, S.

    2017-02-01

    The LHCb Experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. The experiment will be upgraded to a trigger-less system reading out the full detector at a 40 MHz event rate with all selection algorithms executed in a CPU farm. The upgraded Vertex Locator will be a hybrid pixel detector read out by the VeloPix ASIC with on-chip zero-suppression. The overview of the system and the design of the VELO on-detector electronics that include the front-end hybrid, the opto-conversion and power distribution boards will be summarised. The results from the evaluation of these prototypes and further enhancement techniques will be discussed.

  14. The upgrade system of BESIII ETOF with MRPC technology

    NASA Astrophysics Data System (ADS)

    Wang, X. Z.; Sun, Y. J.; Li, C.; Heng, Y. K.; Wu, Z.; Cao, P.; Dai, H. L.; Ji, X. L.; Gong, W. X.; Liu, Z.; Luo, X. L.; Sun, W. J.; Wang, S. Y.; Wang, Y.; Yang, R. X.; Ye, M.; Zhao, J. L.

    2016-08-01

    An upgrade, based on Multigap Resistive Plate Chamber (MRPC) technology, of the endcap Time-Of-Flight (ETOF) detector of the Beijing Spectrometer III (BESIII) has been proposed for the replacement of the current scintillator + PMT based ETOF, with the aim of improving the time resolution down to 80 ps sigma. This improvement will enhance the particle identification capability to meet the higher precision requirements of physics. The ETOF system including MRPC modules, Front End Electronics (FEE), CLOCK module, fast control boards and Time to Digital modules (TDIG), has been designed, constructed and parts of the ETOF system have seperately tested. Aiming at examining the quality of entire ETOF system and training the operation of all participated instruments, a cosmic ray test system was built and tested in the laboratory for about three months to guarantee the performance. In this paper the results of the test are presented indicating that the entire ETOF system works well and satisfies the requirements of the upgrade.

  15. Project W-420 stack monitoring system upgrades

    SciTech Connect

    CARPENTER, K.E.

    1999-02-25

    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420.

  16. Conference on Upgrading and New Careers.

    ERIC Educational Resources Information Center

    National Manpower Policy Task Force, Washington, DC.

    This conference met to consider the political and financial problems in providing government-financed programs to improve upgrading in private and public jobs. The morning session was devoted to federal support of upgrading in industry. In the afternoon session, participants discussed new careers in the service sector, including civil service…

  17. The D[O] upgrade silicon tracker

    SciTech Connect

    Heinson, A.P.

    1992-11-01

    A large silicon strip tracking detector is planned for the upgrade of the D0 experiment at Fermilab. This detector is designed to gag secondary vertices, to measure the momenta of charged particles and to operate in the high rate environment of the upgraded Tevatron. Details of the detector design are presented here.

  18. Performance of the upgraded Orroral laser ranging system

    NASA Technical Reports Server (NTRS)

    Luck, John M.

    1993-01-01

    The topics discussed include the following: upgrade arrangements, system prior to 1991, elements of the upgrade, laser performance, timing system performance, pass productivity, system precision, system accuracy, telescope pointing and future upgrades and extensions.

  19. Upgrade Summer Severe Weather Tool

    NASA Technical Reports Server (NTRS)

    Watson, Leela

    2011-01-01

    The goal of this task was to upgrade to the existing severe weather database by adding observations from the 2010 warm season, update the verification dataset with results from the 2010 warm season, use statistical logistic regression analysis on the database and develop a new forecast tool. The AMU analyzed 7 stability parameters that showed the possibility of providing guidance in forecasting severe weather, calculated verification statistics for the Total Threat Score (TTS), and calculated warm season verification statistics for the 2010 season. The AMU also performed statistical logistic regression analysis on the 22-year severe weather database. The results indicated that the logistic regression equation did not show an increase in skill over the previously developed TTS. The equation showed less accuracy than TTS at predicting severe weather, little ability to distinguish between severe and non-severe weather days, and worse standard categorical accuracy measures and skill scores over TTS.

  20. Vertex upgrading problems for VLSI

    SciTech Connect

    Paik, D.

    1991-01-01

    The author examines vertex modification (splitting, deleting and upgrading) problems that arise in VLSI CAD and other application areas. The problems he considers differ from previously studied vertex-deletion problems in that he is interested in modifying vertices in a dag so that the resulting dag has no path whose length exceeds a prespecified amount. Vertex-modification problems can be used to model the scan register placement problem in VLSI design, placement of signal boosters in lossy circuits, satellite uplink/downlink placement in communication networks, etc. The approach adopted is to first determine which of these problems are NP-hard. Pseudo polynomial time algorithms and fast heuristics for the NP-hard versions are explored. Fast polynomial time algorithms for other versions are developed. Experimentation using the ISCAS benchmark circuits are also performed.

  1. Five-megajoule homopolar upgrade

    SciTech Connect

    Bullion, T.M.; Zowarka, R.C.; Aanstoos, T.A.; Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1981-01-01

    The five-megajoule homopolar generator (5-MJ HPG) designed and built in 1974 by the Center for Eelctromechanics at the University of Texas at Austin (CEM-UT) was the result of an engineering feasibility study that examined alternate means of pulsed energy storage for controlled thermonuclear fusion experiments. The machine proved very reliable and useful in a variety of applications, notably pulsed resistance welding, and was modified in 1978 to improve its flexibility and ease of maintenance. CEM-UT is now completing a major upgrading of this HPG to a hydraulically motored, 10-MJ, 47-V, 1.02-MA device capable of welding large-section, high-carbon railroad rail. This report considers the design and fabrication of the new rotor, shaft, brush mechanisms, field coil, making switch, busbar system, and control system, as well as the addition of the 31-MPa (4500 psi) hydraulic motoring system. Future applications of the 10-MJ HPG are also discussed.

  2. Biological upgrading of coal liquids

    SciTech Connect

    Not Available

    1992-01-01

    Culture screening and performance studies were performed with a variety of cultures in removing nitrogen compounds from coal liquid. Two cultures were shown to be effective in removing 17 and 26 percent of the nitrogen in coal liquid as determined by elemental analysis. Experiments will continue in an effort to find additional cultures and isolates able to degrade nitrogen, as well as oxygen and sulfur as heteroatom compounds, from coal liquids. A biological process for upgrading of coal liquids would offer significant advantages, such as operation at ordinary temperature and pressure with better energy efficiency. Of greater importance is the fact that microorganisms do not require an external supply of hydrogen for heteroatom removal, obtaining required hydrogen from water. Furthermore, the biocatalysts are continuously regenerated by growth on the heteroatom compounds. Ring structures are degraded as the heteroatoms are removed. The heteroatoms are in an inocuous form, such as NH[sub 3], SO[sub 4][sup 2[minus

  3. CDF level 2 trigger upgrade

    SciTech Connect

    Anikeev, K.; Bogdan, M.; DeMaat, R.; Fedorko, W.; Frisch, H.; Hahn, K.; Hakala, M.; Keener, P.; Kim, Y.; Kroll, J.; Kwang, S.; Lewis, J.; Lin, C.; Liu, T.; Marjamaa, F.; Mansikkala, T.; Neu, C.; Pitkanen, S.; Reisert, B.; Rusu, V.; Sanders, H.; /Fermilab /Chicago U. /Pennsylvania U.

    2006-01-01

    We describe the new CDF Level 2 Trigger, which was commissioned during Spring 2005. The upgrade was necessitated by several factors that included increased bandwidth requirements, in view of the growing instantaneous luminosity of the Tevatron, and the need for a more robust system, since the older system was reaching the limits of maintainability. The challenges in designing the new system were interfacing with many different upstream detector subsystems, processing larger volumes of data at higher speed, and minimizing the impact on running the CDF experiment during the system commissioning phase. To meet these challenges, the new system was designed around a general purpose motherboard, the PULSAR, which is instrumented with powerful FPGAs and modern SRAMs, and which uses mezzanine cards to interface with upstream detector components and an industry standard data link (S-LINK) within the system.

  4. LHCb Upgrade: Scintillating Fibre Tracker

    NASA Astrophysics Data System (ADS)

    Tobin, Mark; LHCb Upgrade Scintillating Fibre Tracker Group

    2016-07-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The evolution of the design since the Technical Design Report in 2014 and the latest R & D results are presented.

  5. Energy Efficiency Through Lighting Upgrades

    SciTech Connect

    Berst, Kara; Howeth, Maria

    2013-02-26

    Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year's average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

  6. Superbend upgrade on the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Robin, D.; Krupnick, J.; Schlueter, R.; Steier, C.; Marks, S.; Wang, B.; Zbasnik, J.; Benjegerdes, R.; Biocca, A.; Bish, P.; Brown, W.; Byrne, W.; Chen, J.; Decking, W.; DeVries, J.; DeMarco, W. R.; Fahmie, M.; Geyer, A.; Harkins, J.; Henderson, T.; Hinkson, J.; Hoyer, E.; Hull, D.; Jacobson, S.; McDonald, J.; Molinari, P.; Mueller, R.; Nadolski, L.; Nishimura, H.; Nishimura, K.; Ottens, F.; Paterson, J. A.; Pipersky, P.; Portmann, G.; Ritchie, A.; Rossi, S.; Salvant, B.; Scarvie, T.; Schmidt, A.; Spring, J.; Taylor, C.; Thur, W.; Timossi, C.; Wandesforde, A.

    2005-02-01

    The Advanced Light Source (ALS) is a third generation synchrotron light source at Lawrence Berkeley National Laboratory (LBNL). There was an increasing demand for additional high brightness hard X-ray beamlines in the 7-40 keV range, so in August 2001, three 1.3 T normal conducting bending magnets were removed from the storage ring and replaced with 5 T superconducting magnets (Superbends). The radiation produced by these Superbends is an order of magnitude higher in photon brightness and flux at 12 keV, making them excellent sources of hard X-rays for protein crystallography and other hard X-ray applications. The Superbends did not compromise the performance of the facility in the VUV and soft X-ray regions of the spectrum. The Superbends will eventually feed 12 new beam lines, greatly enhancing the facility's capability and capacity in the hard X-ray region. The Superbend project is the biggest upgrade since the ALS storage ring was commissioned in 1993. In this paper we present an overview of the Superbend project, its challenges and the resulting impact on the ALS.

  7. Screening of processing and upgrading schemes

    SciTech Connect

    Not Available

    1991-10-01

    The RFP was predicated on DOE's desire to enhance the development of advanced transportation fuels made from coal via a program to process mild coal gasification (MCG) liquids into high volumetric energy density (HEDF) test fuels. The desired product fuels were to be cost effectively manufactured, have high volumetric energy density, and be hydrocarbon-based for existing and prototype turbine and diesel engines. The sources for these special fuels consist of the abundant and secure indigenous energy resources of coal. Comparison studies were also to be made using other non-petroleum fossil fuels such as shale oil and tar sands bitumen. METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily skimmed'' from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in 1-, 2-, and 3-ring aromatics.

  8. MAPS application for the ITS upgrade

    NASA Astrophysics Data System (ADS)

    Lattuca, A.; Alice Collaboration

    2016-01-01

    The Monolithic Active Pixel Sensor (MAPS) technology is of central interest for the innermost tracking layers of particle physics experiments since they enhance the detector granularity and thus allow for very high spatial resolution with low material budget. This contribution will focus on the MAPS implementation for the ALICE ITS Upgrade. Within the ongoing R&D program, the ALPIDE chip is under development with a wide pixel matrix consisting of 512 rows and 1024 columns. With this high pixel granularity a fast read out is mandatory. For this purpose a high speed serial link, which works at the targeting speeds of 1.2Gbps/400Mbps, is integrated in the chip in order to send out data at the far end of a differential cable. To overcome the physical limitations imposed by the signal lines and properly reconstruct the signal, pre-emphasis technique is mandatory at such long distances. This contribution summarizes the ongoing studies on the data transmission quality and presents the first measurement of the first produced prototype.

  9. Superbend upgrade of the Advanced Light Source

    SciTech Connect

    Robin, D.; Krupnick, J.; Schlueter, R.; Steier, C.; Marks, S.; Wang, B.; Zbasnik, J.; Benjegerdes, R.; Biocca, A.; Bish, P.; Brown, W.; Byrne, W.; Chen, J.; Decking, W.; DeVries, J.; DeMarco, W.R.; Fahmie, M.; Geyer, A.; Harkins, J.; Henderson, T.; Hinkson, J.; Hoyer, E.; Hull, D.; Jacobson, S.; McDonald, J.; Molinari, P.; Mueller, R.; Nadolski, L.; Nishimura, H.; Nishimura, K.; Ottens, F.; Paterson, J.A.; Pipersky, P.; Portmann, G.; Richie, A.; Rossi, S.; Salvant, B.; Scarvie, T.; Schmidt,A.; Spring, J.; Taylor, C.; Thur, W.; Timossi, C.; Wandesforde, A.

    2004-05-26

    The Advanced Light Source (ALS) is a third generation synchrotron light source located at Lawrence Berkeley National Laboratory (LBNL). There was an increasing demand at the ALS for additional high brightness hard x-ray beamlines in the 7 to 40 keV range. In response to that demand, the ALS storage ring was modified in August 2001. Three 1.3 Tesla normal conducting bending magnets were removed and replaced with three 5 Tesla superconducting magnets (Superbends). The radiation produced by these Superbends is an order of magnitude higher in photon brightness and flux at 12 keV than that of the 1.3 Tesla bends, making them excellent sources of hard x-rays for protein crystallography and other hard x-ray applications. At the same time the Superbends did not compromise the performance of the facility in the VUV and soft x-ray regions of the spectrum. The Superbends will eventually feed 12 new beamlines greatly enhancing the facility's capability and capacity in the hard x-ray region. The Superbend project is the biggest upgrade to the ALS storage ring since it was commissioned in 1993. In this paper we present an overview of the Superbend project, its challenges and the resulting impact on the ALS.

  10. STAR Upgrade Plan for the Coming Decade

    NASA Astrophysics Data System (ADS)

    Huang, Huan Zhong

    2013-05-01

    The STAR Collaboration will complete the Heavy Flavor Tracker (HFT) and the Muon Telescope Detector (MTD) upgrades by 2014. STAR has also embarked on an upgrade plan to extend the capabilities for measuring jets, electron/photon and leading particles in the forward rapidity region in the coming decade. Planned detector upgrades include tracking detectors for charged particles, electro-magnetic and hadronic calorimeters and particle identification detector in the forward direction. We will present physics motivations, status of detector R&D and design considerations for the forward measurements focusing on p + p/p + A and polarized p + p collisions.

  11. Habitat Demonstration Unit Medical Operations Workstation Upgrades

    NASA Technical Reports Server (NTRS)

    Trageser, Katherine H.

    2011-01-01

    This paper provides an overview of the design and fabrication associated with upgrades for the Medical Operations Workstation in the Habitat Demonstration Unit. The work spanned a ten week period. The upgrades will be used during the 2011 Desert Research and Technology Studies (Desert RATS) field campaign. Upgrades include a deployable privacy curtain system, a deployable tray table, an easily accessible biological waste container, reorganization and labeling of the medical supplies, and installation of a retractable camera. All of the items were completed within the ten week period.

  12. DAΦNE status and upgrade plans

    NASA Astrophysics Data System (ADS)

    Zobov, M.; DAΦNE Collaboration Team

    2008-12-01

    The Frascati Φ-factory DAΦNE has successfully completed experimental runs for the three main detectors, KLOE, FINUDA and DEAR. The best peak luminosity achieved so far is 1.6 × 1032 cm-2 s-1, while the best daily integrated luminosity is 10 pb-1. At present the DAΦNE team is preparing an upgrade of the collider based on the novel crab waist collision scheme. The upgrade is aimed at pushing the luminosity towards 1033cm-2s-1. In this paper we describe present collider performance and discuss ongoing preparatory work for the upgrade.

  13. Upgrade Rate and Imaging Features of Atypical Apocrine Lesions.

    PubMed

    Chang Sen, Lauren Q; Berg, Wendie A; Carter, Gloria J

    2017-09-01

    The purpose of our work was to identify imaging features of atypical apocrine lesions and determine the rate of upgrade to ductal carcinoma in situ (DCIS) or invasive carcinoma at excision after such a diagnosis on percutaneous breast biopsy. From January 1, 2006, through October 8, 2013, a total of 33,157 breast core biopsies were performed at University of Pittsburgh Medical Center. Of those, 58 (0.2%) showed atypical apocrine lesions. For 24, atypical apocrine adenosis (AAA) or atypical apocrine metaplasia (AAM) was the only risk lesion, with no known ipsilateral malignancy, and the results of excision were available. The median patient age was 58 years (range 43-88). Among 24 atypical apocrine lesions (20 AAA and 4 AAM), four (16.7%; 95% confidence interval: 4.7, 37.4) were upgraded at excision: one invasive ductal carcinoma (grade 2, 0.2 cm, estrogen receptor positive, progesterone receptor positive, HER2/Neu negative) and three DCIS (two grade 3, one grade 2). All four upgraded lesions were AAA (20%; 4/20). Twelve AAA were seen as an irregular (n = 9) or circumscribed (n = 3) mass on ultrasound; three masses had calcifications. Six of 20 (30%) AAA were seen on biopsy of calcifications only and calcifications were within two AAA lesions at histopathology. One AAA (1/20, 5%) was asymmetry only, and one (1/20, 5%) a persistently enhancing MR focus. All four malignancies were masses on ultrasound (three irregular, one circumscribed), and three malignancies had calcifications (two coarse heterogeneous, one amorphous). While concordant with an irregular or circumscribed mass on imaging, with or without amorphous or coarse heterogeneous calcifications, AAA merits excision with a 20% upgrade rate to malignancy. Further study of AAM is warranted. © 2017 Wiley Periodicals, Inc.

  14. Muon Physics at Run-I and its upgrade plan

    NASA Astrophysics Data System (ADS)

    Benekos, Nektarios Chr.

    2015-05-01

    The Large Hadron Collider (LHC) and its multi-purpose Detector, ATLAS, has been operated successfully at record centre-of-mass energies of 7 and TeV. After this successful LHC Run-1, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the data set from about few hundred fb-1 expected for LHC running to 3000 fb-1 by around 2030. To cope with the corresponding rate increase, the ATLAS detector needs to be upgraded. The upgrade will proceed in two steps: Phase I in the LHC shutdown 2018/19 and Phase II in 2023-25. The largest of the ATLAS Phase-1 upgrades concerns the replacement of the first muon station of the highrapidity region, the so called New Small Wheel. This configuration copes with the highest rates expected in Phase II and considerably enhances the performance of the forward muon system by adding triggering functionality to the first muon station. Prospects for the ongoing and future data taking are presented. This article presents the main muon physics results from LHC Run-1 based on a total luminosity of 30 fb^-1. Prospects for the ongoing and future data taking are also presented. We will conclude with an update of the status of the project and the steps towards a complete operational system, ready to be installed in ATLAS in 2018/19.

  15. Pegasus power system facility upgrades

    NASA Astrophysics Data System (ADS)

    Lewicki, B. T.; Kujak-Ford, B. A.; Winz, G. R.

    2008-11-01

    Two key Pegasus systems have been recently upgraded: the Ohmic-transformer IGCT bridge control system, and the plasma-gun injector power system. The Ohmic control system contains two new microprocessor controlled components to provide an interface between the PWM controller and the IGCT bridges. An interface board conditions the command signals from the PWM controller. A splitter/combiner board routes the conditioned PWM commands to an array of IGCT bridges and interprets IGCT bridge status. This system allows for any PWM controller to safely control IGCT bridges. Future developments will include a transition to a polyphasic bridge control. This will allow for 3 to 4 times the present pulse length and provide a much higher switching frequency. The plasma gun injector system now includes active current feedback control on gun bias current via PWM buck type power supplies. Near term goals include a doubling or tripling of the applied bias voltage. Future arc bias system power supplies may include a simpler boost type system which will allow access to even higher voltages using existing low voltage energy storage systems.

  16. Safety upgrades plug car leaks

    SciTech Connect

    Not Available

    1993-08-01

    To lessen the chance of a chemical leak occurring during rail transport, some companies are improving tank car sturdiness and safety by adding such features as top-loading valves, on-board monitoring devices, and thicker, more impact-resistant hulls. Results include a dramatic drop in the number of rail incidents and leak tank cars. Chemicals Division of Olin Corporation (Stamford, Connecticut) has assigned its name to a new fleet of chlorine, caustic soda and toluene diisocyanate (TDI) tank cars. Each car carries the company's Care[trademark]Car registered trademark. The upgrade is part of a company-wide quality improvement process started in 1986. The company requires acoustic emissions (AE) testing on all hazardous materials tank cars. If an area has a defect, it expands and makes a slight sound when subjected to stress. In an AE test, cars are subject to simulated bumps and jolts as in rail shipment. Electronic sensors transfer any stress noises onto a computer screen, where an operator can pinpoint the trouble source.

  17. Upgrades to MINERVA control software

    NASA Astrophysics Data System (ADS)

    Wilson, Maurice; Eastman, Jason D.

    2017-01-01

    The MINiature Exoplanet Radial Velocity Array (MINERVA) is an array of four robotic telescopes located on Mt. Hopkins in Arizona that will find and characterize rocky planets around our nearest stars. We discuss the latest upgrades to the MINERVA robotic control software. Previously, our robotic control software was only capable of taking radial velocities or photometry for the entire night, but not both. We have recently increased the speed and ease of transitioning between photometry and radial velocity (RV) observations. We can now arbitrarily assign a subset of the telescopes to either photometric or spectroscopic observations. This capability enables us to monitor stellar activity while measuring the star’s RV, gather photometry on one star while continuing our RV survey of other targets and provide education and public outreach opportunities where others can observe with one or more telescopes while we continue using the remaining telescopes for research. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1144152.

  18. Airborne Warning and Control System Block 40/45 Upgrade (AWACS Blk 40/45 Upgrade)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-277 Airborne Warning and Control System Block 40/45 Upgrade (AWACS Blk 40/45 Upgrade) As of...DSN Fax: 336-5412 Date Assigned: February 4, 2015 Program Information Program Name Airborne Warning and Control System Block 40/45 Upgrade (AWACS... Warning and Control System (AWACS) provides a highly mobile, flexible, survivable theater Battle Management (BM), Wide Area Surveillance, and

  19. System and process for upgrading hydrocarbons

    SciTech Connect

    Bingham, Dennis N.; Klingler, Kerry M.; Smith, Joseph D.; Turner, Terry D.; Wilding, Bruce M.

    2015-08-25

    In one embodiment, a system for upgrading a hydrocarbon material may include a black wax upgrade subsystem and a molten salt gasification (MSG) subsystem. The black wax upgrade subsystem and the MSG subsystem may be located within a common pressure boundary, such as within a pressure vessel. Gaseous materials produced by the MSG subsystem may be used in the process carried out within the black wax upgrade subsystem. For example, hydrogen may pass through a gaseous transfer interface to interact with black wax feed material to hydrogenate such material during a cracking process. In one embodiment, the gaseous transfer interface may include one or more openings in a tube or conduit which is carrying the black wax material. A pressure differential may control the flow of hydrogen within the tube or conduit. Related methods are also disclosed.

  20. Space Station Live: Station Communications Upgrade

    NASA Image and Video Library

    NASA Public Affairs Officer Nicole Cloutier-Lemasters recently spoke with Penny Roberts, one of the leads for the International Space Station Avionics and Software group, about the upgrade of the K...

  1. Initial performance of upgraded Tevatron cryogenic systems

    SciTech Connect

    Norris, B.L.

    1996-09-01

    Fermilab began operating a re-designed satellite refrigerator systems in November 1993. Upgrades were installed to operate the Tevatron at a magnet temperature of 3.5 K, approximately 1K lower than the original design. Refrigerator upgrades included new valve boxes, larger reciprocating expanders, the installation of cold vapor compressors, new sub-atmospheric instrumentation and an entirely new distributed controls system. Cryogenic system reliability data for Colliding Physics Run 1B is presented emphasizing a failure analysis for each aspect of the upgrade. Comparison to data for Colliding Physics Run 1A (previous to upgrade) is presented to show the impact of a major system overhaul. New operational problems and their solutions are presented in detail.

  2. Recovery Act. Tapoco project. Cheoah upgrade

    SciTech Connect

    Tran, Paul

    2013-10-02

    Under Funding Opportunity Announcement Number: DE-FOA-0000120, Recovery Act: Hydroelectric Facility Modernization, Alcoa Power Generating Inc. (APGI), a fully owned subsidiary of Alcoa Inc., implemented major upgrades at its Cheoah hydroelectric facility near Robbinsville, North Carolina.

  3. TMX Upgrade magnet-set geometry design

    SciTech Connect

    Wong, R.L.

    1981-09-24

    A magnet set, consisting of 24 coils, has been designed for the TMX Upgrade. Like the coil set designed for the TMX experiment, the coils for TMX Upgrade consist of a central-cell set with a minimum-B plug set on each end. Between the central cell and each end plug, there is a flux bundle recircularizing transition set. Physics considerations require that the TMX Upgrade magnet set be almost twice as long as the TMX magnet set (14 m between the outer mirrors). The central circular coils are the only coils used from TMX. The TMX transition set of two C-coils and an octupole is replaced by a C-coil and an Ioffe coil. The TMX plug composed of a baseball coil and two C-coils is replaced by an Ioffe coil, two C-coils and two circular coils. A comparison between the TMX and TMX Upgrade magnet sets is shown.

  4. The upgrade of the LHCb Vertex Locator

    NASA Astrophysics Data System (ADS)

    Bird, T.

    2014-12-01

    The LHCb experiment is set for a significant upgrade, which will be ready for Run 3 of the LHC in 2020. This upgrade will allow LHCb to run at a significantly higher instantaneous luminosity and collect an integrated luminosity of 50fb-1 by the end of Run 4. In this process the Vertex Locator (VELO) detector will be upgraded to a pixel-based silicon detector. The upgraded VELO will improve upon the current detector by being closer to the beams and having lower material modules with microchannel cooling and a thinner RF-foil. Simulations have shown that it will maintain its excellent performance, even after the radiation damage caused by collecting an integrated luminosity of 50fb-1.

  5. Advanced Photon Source Upgrade Project - Materials

    ScienceCinema

    Gibbson, Murray

    2016-07-12

    An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

  6. Physics benchmarks of the VELO upgrade

    NASA Astrophysics Data System (ADS)

    Eklund, L.

    2016-12-01

    The LHCb Experiment at the LHC is successfully performing precision measurements primarily in the area of flavour physics. The collaboration is preparing an upgrade that will start taking data in 2021 with a trigger-less readout at five times the current luminosity. The vertex locator has been crucial in the success of the experiment and will continue to be so for the upgrade. It will be replaced by a hybrid pixel detector and this paper discusses the performance benchmarks of the upgraded detector. Despite the challenging experimental environment, the vertex locator will maintain or improve upon its benchmark figures compared to the current detector. Finally the long term plans for LHCb, beyond those of the upgrade currently in preparation, are discussed.

  7. Completion of the ATLAS control system upgrade.

    SciTech Connect

    Munson, F. H.

    1998-11-30

    In the fall of 1992 at the SNEAP(Symposium of North Eastern Accelerator Personnel) a project to up grade the ATLAS (Argonne Tandem Linear Accelerator System) control system was first reported. Not unlike the accelerator it services the control system will continue to evolve. However, the first of this year has marked the completion of this most recent upgrade project. Since the control system upgrade took place during a period when ATLAS was operating at a record number of hours, special techniques were necessary to enable the development of the new control system ''on line'' while still saving the needs of normal operations. This paper reviews the techniques used for upgrading the ATLAS control system while the system was in use. In addition a summary of the upgrade project and final configuration, as well as some of the features of the new control system is provided.

  8. Facilities Upgrade and Retrofit. Strategies for Success.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2000-01-01

    Provides three articles on the subject of educational facility upgrading and retrofiting that address setting guidelines for classroom acoustics, making sports facilities brighter and more energy-efficient, and cutting energy bills and protecting interiors. (GR)

  9. Get a winning Oracle upgrade session using the quarterback approach

    NASA Technical Reports Server (NTRS)

    Anderson, G.

    2002-01-01

    Upgrades, upgrades... too much customer down time. Find out how we shrunk our production upgrade schedule 40% from our estimate of 10 days 12 hours to 6 days 2 hours using the quarterback approach. So your upgrade is not that complex, come anyway. This approach is scalable to any size project and will be extremely valuable.

  10. Get a winning Oracle upgrade session using the quarterback approach

    NASA Technical Reports Server (NTRS)

    Anderson, G.

    2002-01-01

    Upgrades, upgrades... too much customer down time. Find out how we shrunk our production upgrade schedule 40% from our estimate of 10 days 12 hours to 6 days 2 hours using the quarterback approach. So your upgrade is not that complex, come anyway. This approach is scalable to any size project and will be extremely valuable.

  11. 25 CFR 175.40 - Financing of extensions and upgrades.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Financing of extensions and upgrades. 175.40 Section 175... UTILITIES System Extensions and Upgrades § 175.40 Financing of extensions and upgrades. (a) The utility may extend or upgrade its electric system to serve additional loads (new or increased loads). (b) If funds...

  12. 25 CFR 175.40 - Financing of extensions and upgrades.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Financing of extensions and upgrades. 175.40 Section 175... UTILITIES System Extensions and Upgrades § 175.40 Financing of extensions and upgrades. (a) The utility may extend or upgrade its electric system to serve additional loads (new or increased loads). (b) If funds...

  13. D0 Silicon Upgrade: Upgrade Piping Loads on Cleanroom Roof

    SciTech Connect

    Sakla, Steve; /Fermilab

    1995-08-28

    The proposed piping layout for the DO upgrade will run along the south wall of DAB. The cryogenic service pipe runs above the upper and lower cleanroom roofs and will need to be supported by the roofs beams. Calculations were done to determine the stresses in the I-beams created by the existing and additional loads due to the upgrade. Refer to drawing no. 3823.115-ME-317283 for drawings of the piping layout. Figure 1 shows the 'plan view' portion of this drawing. The weight of the individual lines were calculated in figure 2 assuming a pipe density of O.28 lbm/in{sup 3} for stainless steel (0.12% C) and a fluid density (assuming LN2 at 1 atm) of 0.03 lbm/in{sup 3}. The weights of the corrugated steel flooring, assembly hall feed cans, support beams, and roof hatch were also included in the analysis. These loads are calculated on pgs. 5-6. A floor load of 50 lbf/ft{sup 2} was also added in order to maintain the existing floor load limit in addition to the added piping loads. Measurements of the dimensions of the I-beams determined that the nominal sizes of the beams were W8 x 21 for the lower roof and W14 x 26 for the upper roof. Pipe lengths were determined from the drawing for each of the lines on pgs. 1-2 of the calculations (refer to all piping by line numbers according to figure 2). A total weight was calculated for lines 3-9 along the south wall and lines 1-2 running along the north wall of the lower cleanroom roof. To simplify the calculations these weights were assumed to be evenly distributed on the 5 I-beam supports of the lower cleanroom roof 2.5 feet in from the south wall. The stress analysis was done using FrameMac, a 2-D finite element program for the Macintosh. Beam 3 was not included in the analysis because it is structurally equivalent to beam 1. The program outputted maximum values for shear stress, bending stress, shear force, and moments in each of the beams analyzed. These values were then compared to the allowable stresses as per the

  14. CDF central preshower and crack detector upgrade

    SciTech Connect

    Artikov, A.; Boudagov, J.; Chokheli, D.; Drake, G.; Gallinaro, M.; Giunta, M.; Grudzinski, J.; Huston, J.; Iori, M.; Kim, D.; Kim, M.; /Dubna, JINR /Argonne /Rockefeller U. /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore /Michigan State U. /INFN, Rome /Rome U. /CHEP, Taegu /Seoul Natl. U.

    2007-02-01

    The CDF Central Preshower and Crack Detector Upgrade consist of scintillator tiles with embedded wavelength-shifting fibers, clear-fiber optical cables, and multi-anode photomultiplier readout. A description of the detector design, test results from R&D studies, and construction phase are reported. The upgrade was installed late in 2004, and a large amount of proton-antiproton collider data has been collected since then. Detector studies using those data are also discussed.

  15. Upgrading data quality at Superfund sites

    SciTech Connect

    Ellis, H.V. III; Holm-Hansen, T.

    1994-12-31

    EPA guidance stresses the importance of the data quality objectives (DQO) process in establishing sampling and analytical requirements at the cleanup of Superfund and other hazardous waste sites. This presentation focuses on the use of existing data for site characterization and methods for upgrading existing data to DQO requirements for the hazard ranking system, baseline risk assessments, and potential remedial actions. Three case studies are presented which evaluate data upgrading in site characterization.

  16. BNL ACCELERATOR TEST FACILITY CONTROL SYSTEM UPGRADE.

    SciTech Connect

    MALONE,R.; BEN-ZVI,I.; WANG,X.; YAKIMENKO,V.

    2001-06-18

    Brookhaven National Laboratory's Accelerator Test Facility (ATF) has embarked on a complete upgrade of its decade old computer system. The planned improvements affect every major component: processors (Intel Pentium replaces VAXes), operating system (Linux/Real-Time Linux supplants OpenVMS), and data acquisition equipment (fast Ethernet equipment replaces CAMAC serial highway.) This paper summarizes the strategies and progress of the upgrade along with plans for future expansion.

  17. IPNS upgrade: A feasibility study

    SciTech Connect

    1995-04-01

    Many of Argonne National Laboratory`s (ANL`s) scientific staff members were very active in R&D work related to accelerator-based spoliation sources in the 1970s and early 1980s. In 1984, the Seitz/Eastman Panel of the National Academy of Sciences reviewed U.S. materials science research facilities. One of the recommendations of this panel was that the United States build a reactor-based steady-state source, the Advanced Neutron Source (ANS), at Oak Ridge National Laboratory. Subsequently, R&D activities related to the design of an accelerator-based source assumed a lower priority. The resumption of pulsed-source studies in this country started simultaneously with design activities in Europe aimed at the European Spallation Source (ESS). The European Community funded a workshop in September 1991 to define the parameters of the ESS. Participants in this workshop included both accelerator builders and neutron source users. A consortium of European countries has proposed to build a 5-MW pulsed source, and a feasibility study is currently under way. Soon after the birth of the ESS, a small group at ANL set about bringing themselves up to date on pulsed-source information since 1984 and studied the feasibility of upgrading ANL`s Intense Pulsed Neutron Source (IPNS) to 1 MW by means of a rapidly cycling synchrotron that could be housed, along with its support facilities, in existing buildings. In early 1993, the Kohn panel recommended that (1) design and construction of the ANS should be completed according to the proposed project schedule and (2) development of competitive proposals for cost-effective design and construction of a 1-MW pulsed spallation source should be authorized immediately.

  18. PSL Icing Facility Upgrade Overview

    NASA Technical Reports Server (NTRS)

    Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.

    2014-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.

  19. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Riedler, P.

    2016-12-01

    During the long shutdown of the Large Hadron Collider (LHC) in 2019-20 (LS2) the present Inner Tracking System (ITS) of the ALICE experiment based on silicon pixel, silicon drift and silicon strip detectors, will be entirely replaced by a new tracker using novel monolithic silicon pixel chips. This new tracker will significantly enhance heavy flavour measurements, which are out of reach for the present system, e.g. charmed baryons, such as the ΛC, and will allow studying hadrons containing a beauty quark. The new tracker will provide an improved pointing resolution in rϕ and z, decreasing the present values by a factor 3 and 5, respectively, to about 40 μm for a pT of 500 MeV/c. Each of the seven layers will be constructed using 50 μm, respectively 100 μm thin silicon chips on a very light weight carbon fibre based support structure for the innermost and the outer layers. The material budget for the first three layers corresponds to 0.3% X0/layer while the four outer layers will have an average material budget of 1% X0/layer. The innermost layer will be placed at 23 mm radius, compared to presently 39 mm. Furthermore, the readout rate of the new ITS will increase from presently 1 kHz to 50 kHz for Pb-Pb collisions and 400 kHz for p-p collisions, thus matching the expected event rate for Pb-Pb collisions after LS2. This contribution will provide an overview of the upgrade of the ALICE ITS and the expected performance improvement and will present the actual status of the R&D.

  20. Internet2 Spurs Equipment Upgrades, but Use in Research Remains Limited.

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    1999-01-01

    Nearly three years after the beginning of the Internet2 project, designed to enhance research by building a superfast version of the Internet, few professors are finding it revolutionary. Most participating institutions have not upgraded local networks to take full advantage of the two interconnected high-speed networks used by the project.…

  1. Conceptual Design Report: Fermilab Upgrade: Main Injector - Technical Components and Civil Construction, January, 1989

    SciTech Connect

    None, None

    1989-01-12

    This report contains a description of the design and cost estimate of a new 150 GeV accelerator, designated the Main Injector, which will be required to support the upgrade of the Fermilab Collider. The construction of this accelerator will simultaneously result in significant enhancements to the Fermilab fixed target program.

  2. Internet2 Spurs Equipment Upgrades, but Use in Research Remains Limited.

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    1999-01-01

    Nearly three years after the beginning of the Internet2 project, designed to enhance research by building a superfast version of the Internet, few professors are finding it revolutionary. Most participating institutions have not upgraded local networks to take full advantage of the two interconnected high-speed networks used by the project.…

  3. 76 FR 40648 - Safety Enhancements Part 139, Certification of Airports; Reopening of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... several safety enhancements for airports. Recently, regulations.gov had a software upgrade which resulted in documents previously submitted to the docket that were not accessible as a result of the upgrade...

  4. Climate balance of biogas upgrading systems.

    PubMed

    Pertl, A; Mostbauer, P; Obersteiner, G

    2010-01-01

    One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO(2).

  5. Climate balance of biogas upgrading systems

    SciTech Connect

    Pertl, A.; Mostbauer, P.; Obersteiner, G.

    2010-01-15

    One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO{sub 2}.

  6. Upgrades for GERDA Phase II

    NASA Astrophysics Data System (ADS)

    Heisel, Mark

    2014-09-01

    The Germanium Detector Array (GERDA) experiment is searching for the neutrinoless double beta decay (0 νββ) of 76Ge. It is a process that violates lepton number conservation and is predicted to occur in extensions of the standard model of particle physics. GERDA is located underground in the Gran Sasso National Laboratory (LNGS), Italy. An array of bare high-purity germanium detectors enriched in 76Ge is operated in a cryostat with 64 m3 of liquid argon supplemented by a 3 m thick shield of water. The experiment aims at exploring the 0 νββ decay up to a half life of 2 .1026 yr in two phases: Phase I of the experiment has been concluded last year. No signal is observed and the so far best limit is derived for the half life of the 0 νββ decay of 76Ge, T1/20ν <= 2 . 1 .1025 yr (90% C.L.), after an exposure of 21 . 6 kg .yr. The result refutes an earlier claim of discovery with high probability. The background index of 1 .10-2 cts/(keV .kg .yr) is lower by about one order of magnitude compared to previous experiments. At present the experiment is being upgraded to Phase II. The aim is to collect an exposure of 100kg .yr and further reduce the background by another order of magnitude to a level of <=10-3 cts/(keV .kg .yr). The detector mass will be increased by ~20 kg of new Broad Energy Germanium (BEGe) detectors from enriched 76Ge, which exhibit superior pulse shape discrimination and hence background rejection power. Low mass detector holders, cold front-end electronics, contacting and cabling schemes are redesigned for ultra low mass and radiopurity. In addition, a retractable liquid argon veto will be installed to efficiently suppress background events that induce scintillation in the liquid argon. A hybrid solution of photomultiplier tubes and silicon photomultipliers coupled to scintillating fibres was chosen. This talk gives an account of the results and these challenging modifications to meet our design goals. The Germanium Detector Array (GERDA

  7. AN/ASQ-197 provides commonality to Recce systems and avionics upgrades

    NASA Astrophysics Data System (ADS)

    Regan, Brendan P.

    1993-02-01

    In an attempt to strike a balance between increases in multi-role tactical air reconnaissance mission tasking and simultaneous decreases in defense spending, many users are evaluating upgrades to existing sensors and reconnaissance systems. At the heart of any cost-effective reconnaissance system upgrade must be a flexible reconnaissance management system, capable of filling multiple rolls in today's film backed reconnaissance system, while enabling successful transition to the Electro-Optical (EO) system of tomorrow. As a case in point this paper describes enhanced effectiveness and growth potential that Fairchild's AN/ASQ-197 Sensor Control-Data Display Set (SC-DDS) can provide.

  8. New Hubble Servicing Mission to upgrade instruments

    NASA Astrophysics Data System (ADS)

    2006-10-01

    The history of the NASA/ESA Hubble Space Telescope is dominated by the familiar sharp images and amazing discoveries that have had an unprecedented scientific impact on our view of the world and our understanding of the universe. Nevertheless, such important contributions to science and humankind have only been possible as result of regular upgrades and enhancements to Hubble’s instrumentation. Using the Space Shuttle for this fifth Servicing Mission underlines the important role that astronauts have played and continue to play in increasing the Space Telescope’s lifespan and scientific power. Since the loss of Columbia in 2003, the Shuttle has been successfully launched on three missions, confirming that improvements made to it have established the required high level of safety for the spacecraft and its crew. “There is never going to be an end to the science that we can do with a machine like Hubble”, says David Southwood, ESA’s Director of Science. “Hubble is our way of exploring our origins. Everyone should be proud that there is a European element to it and that we all are part of its success at some level.” This Servicing Mission will not just ensure that Hubble can function for perhaps as much as another ten years; it will also increase its capabilities significantly in key areas. This highly visible mission is expected to take place in 2008 and will feature several space walks. As part of the upgrade, two new scientific instruments will be installed: the Cosmic Origins Spectrograph and Wide Field Camera 3. Each has advanced technology sensors that will dramatically improve Hubble’s potential for discovery and enable it to observe faint light from the youngest stars and galaxies in the universe. With such an astounding increase in its science capabilities, this orbital observatory will continue to penetrate the most distant regions of outer space and reveal breathtaking phenomena. “Today, Hubble is producing more science than ever before in

  9. High-rate hydrogenotrophic methanogenesis for biogas upgrading: the role of anaerobic granules.

    PubMed

    Xu, Heng; Gong, Shufen; Sun, Yuanzi; Ma, Hailing; Zheng, Mingyue; Wang, Kaijun

    2015-01-01

    Hydrogenotrophic methanogenesis has been proved to be a feasible biological method for biogas upgrading. To improve its performance, the feasibility of typical anaerobic granules as the inoculum was investigated in both batch and continuous experiments. The results from batch experiments showed that glucose-acclimated granules seemed to perform better than granules acclimated to acidified products (AP, i.e. acetate, propionate and ethanol) in in situ biogas upgrading systems and a slightly higher H2 consumption rate (1.5 mmol H2 g VSS(-1) h(-1)) was obtained for glucose-acclimated granules. For AP-acclimated granules, the inhibition on anaerobic digestion and pH increase (up to 9.55±0.16) took place, and the upgrading performance was adversely affected. In contrast, better performance for AP-acclimated granules was observed in ex situ systems, possibly due to their higher hydrogenotrophic methanogenic activities (HMA). Moreover, when gas-liquid mass transfer limitations were alleviated, the upgrading performance was significantly improved (three-fold) for both glucose-acclimated and AP-acclimated granules. The HMA of anaerobic granules could be further enhanced to improve biogas upgrading performance via continuous cultivation with H2/CO2 as the sole substrate. During the three months' cultivation, secondary granulation and microbial population shift were observed, but anaerobic granules still remained intact and their HMA increased from 0.2 to 0.6 g COD g VSS(-1) d(-1). It indicated that the formation of hydrogenotrophic methanogenic granules, a new type of anaerobic granules specialized for high-rate hydrogenotrophic methanogenesis and biogas upgrading, might be possible. Conclusively, anaerobic granules showed great potential for biogas upgrading.

  10. AN APPLICATION OF GAME THEORY: FUNDING INTERDEPENDENT MC and A UPGRADE DECISIONS

    SciTech Connect

    B. G. SCOTT

    2001-06-01

    Funding Material, Control and Accountability (MC&A) system upgrades has been identified as a partial solution for mitigating the diversion threat of weapons-grade nuclear material. Effective MC&A system upgrades are dependent on appropriate decisions based on based on funding, implementation, operation and oversight. Traditional MC&A upgrade decisions inherently assumed that all decision-makers possessed similar payoff vectors allowing for a fairly consistent and unified approach to MC&A system enhancements; however, MC&A upgrade projects in non-traditional environments may be required to take into account situations where the potential payoff vectors among decision-makers may be significantly different. Once a decision-maker is required to take into account the decisions of others, the process can be modeled as a game. Game theory has been previously be used to shed light on many aspects of social and economic behavior where a payoff from a set of strategies is dependent on the strategy of others. In this paper, the application of game theory in the context of MC&A upgrades is discussed. Various MC&A upgrades decision payoff matrices for relevant circumstances are evaluated for static (simultaneous) and dynamic (sequential decisions) games. Optimal strategies and equilibrium conditions for these payoff matrices are analyzed. Additional game factors (bargaining, uncertain outcomes, moral hazards) that may affect the outcome of the game are briefly discussed. By demonstrating the application of game theory to a nontraditional environment that may require MC&A upgrades, this work increases the understanding out how outcomes are logically connected to the respective value decision-makers assign to choices.

  11. Developments towards the LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Cid Vidal, Xabier

    2016-09-01

    The Vertex Locator (VELO) is a silicon strip detector surrounding the interaction region of the LHCb experiment. The upgrade of the VELO is planned to be installed in 2019-2020, and the current detector will be replaced by a hybrid pixel system equipped with electronics capable of reading out at a rate of 40 MHz. The new detector is designed to withstand the radiation dose expected at an integrated luminosity of 50 fb-1. The detector will be composed of silicon pixel sensors, read out by the VeloPix ASIC that is being developed based on the TimePix/MediPix family. The prototype sensors for the VELO upgrade are being irradiated in five different facilities and the post-irradiation performance is being measured with testbeams, and in the lab. These proceedings present the VELO upgrade and briefly discuss the results of the sensor testing campaign.

  12. Microbial biocatalyst developments to upgrade fossil fuels.

    PubMed

    Kilbane, John J

    2006-06-01

    Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts.

  13. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Belikov, Iouri

    2016-10-01

    A Large Ion Collider Experiment (ALICE) is built to study the properties of the strongly interacting matter created in heavy-ion collisions at the LHC. With the upgrade of its Inner Tracking System (ITS), the ALICE experiment is going to increase the rate of data taking by almost two orders of magnitude. At the same time, the precision of secondary vertex reconstruction will become by at least a factor 3 better than it currently is. In this talk, we briefly show some selected physics results motivating the upgrade of the ITS, describe the design goals and the layout of the new detector, and highlight a few important measurements that will be realized after the completion of this upgrade.

  14. Level-2 Calorimeter Trigger Upgrade at CDF

    SciTech Connect

    Flanagan, G.U.; /Purdue U.

    2007-04-01

    The CDF Run II Level-2 calorimeter trigger is implemented in hardware and is based on an algorithm used in Run I. This system insured good performance at low luminosity obtained during the Tevatron Run II. However, as the Tevatron instantaneous luminosity increases, the limitations of the current system due to the algorithm start to become clear. In this paper, we will present an upgrade of the Level-2 calorimeter trigger system at CDF. The upgrade is based on the Pulsar board, a general purpose VME board developed at CDF and used for upgrading both the Level-2 tracking and the Level-2 global decision crate. This paper will describe the design, hardware and software implementation, as well as the advantages of this approach over the existing system.

  15. Physics capabilities of the DO upgrade detector

    SciTech Connect

    Ellison, J.

    1994-11-01

    The D0 detector at Fermilab is being upgraded to meet the demands imposed by high luminosity Tevatron running planned to begin in 1998. The central tracking detectors will be replaced with silicon and scintillating fiber tracking systems inside a solenoidal magnetic field and a preshower detector will be added to aid in electron identification. The design and performance of these systems are described and detailed simulations of the physics capabilities of the upgraded detector are presented. In particular the authors focus on the study of electroweak boson properties and top quark physics and briefly describe the b-physics capabilities.

  16. CMS Calorimeter Trigger Phase I upgrade

    NASA Astrophysics Data System (ADS)

    Klabbers, P.; Gorski, T.; Bachtis, M.; Compton, K.; Dasu, S.; Farmahini-Farahani, A.; Fobes, R.; Gregerson, A.; Grothe, M.; Ross, I.; Seemuth, D.; Schulte, M.; Smith, W. H.

    2012-01-01

    We present a design for the Phase-1 upgrade of the Compact Muon Solenoid (CMS) calorimeter trigger system composed of FPGAs and Multi-GBit/sec links that adhere to the μTCA crate Telecom standard. The upgrade calorimeter trigger will implement algorithms that create collections of isolated and non-isolated electromagnetic objects, isolated and non-isolated tau objects and jet objects. The algorithms are organized in several steps with progressive data reduction. These include a particle cluster finder that reconstructs overlapping clusters of 2x2 calorimeter towers and applies electron identification, a cluster overlap filter, particle isolation determination, jet reconstruction, particle separation and sorting.

  17. SPEAR 3 Upgrade Project: A Status Report

    SciTech Connect

    Corbett, William

    2001-07-07

    The SPEAR 3 upgrade project at SSRL will replace the original FODO lattice with a 234-m, 18-cell DBA lattice with gradient dipoles. The new hardware draws heavily on PEP-II B-Factory technology: a copper vacuum chamber, IGBT power supply technology, and mode-damped rf cavities to reach beam currents up to 500 mA at 3 GeV. First article magnets, supports, girders, vacuum chambers, pumps and RF components have been fabricated and a prototype girder assembly is nearing completion. I&C systems, radiation shielding and utility upgrades are in progress. In this paper we report on the status of the main accelerator subsystems.

  18. Next linear collider test accelerator injector upgrade

    SciTech Connect

    Yeremian, A.D.; Miller, R.H.

    1995-12-31

    The Next Linear Collider Test Accelerator (NLCTA) is being constructed at SLAC to demonstrate multibunch beam loading compensation, suppression of higher order deflecting modes and measure transverse components of the accelerating fields in X-band accelerating structures. Currently a simple injector which provides the average current necessary for the beam loading compensations studies is under construction. An injector upgrade is planned to produce bunch trains similar to that of the NLC with microbunch intensity, separation and energy spread, identical to that of NLC. We discuss the design of the NLCTA injector upgrade.

  19. STS-101: Atlantis Orbiter Upgrade Briefing

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Live footage shows panelists, Manager of the Space Shuttle Program Development, Elric McHenry, and the Associate Program Manager for Space Shuttle Upgrades, Andy Allen, giving an overview of the new upgrades on the STS-101 Orbiter. McHenry and Allen speaks about the changes and modernization of Atlantis. The panelists' mentions all the new capabilities of the new glass cockpit. They emphasize the redesign of the engine, specifically, the ability to shut down automatically. They also discuss future implementation of a smart cockpit.

  20. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 2, December 21, 1989--March 20, 1990

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  1. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 8, June 21, 1991--September 20, 1991

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will also be investigated.

  2. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 7, March 21, 1991--June 20, 1991

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  3. Upgrading of an activated sludge wastewater treatment plant by adding a moving bed biofilm reactor as pre-treatment and ozonation followed by biofiltration for enhanced COD reduction: design and operation experience.

    PubMed

    Kaindl, Nikolaus

    2010-01-01

    A paper mill producing 500,000 ton of graphic paper annually has an on-site wastewater treatment plant that treats 7,240,000 m³ of wastewater per year, mechanically first, then biologically and at last by ozonation. Increased paper production capacity led to higher COD load in the mill effluent while production of higher proportions of brighter products gave worse biodegradability. Therefore the biological capacity of the WWTP needed to be increased and extra measures were necessary to enhance the efficiency of COD reduction. The full scale implementation of one MBBR with a volume of 1,230 m³ was accomplished in 2000 followed by another MBBR of 2,475 m³ in 2002. An ozonation step with a capacity of 75 kg O₃/h was added in 2004 to meet higher COD reduction demands during the production of brighter products and thus keeping the given outflow limits. Adding a moving bed biofilm reactor prior to the existing activated sludge step gives: (i) cost advantages when increasing biological capacity as higher COD volume loads of MBBRs allow smaller reactors than usual for activated sludge plants; (ii) a relief of strain from the activated sludge step by biological degradation in the MBBR; (iii) equalizing of peaks in the COD load and toxic effects before affecting the activated sludge step; (iv) a stable volume sludge index below 100 ml/g in combination with an optimization of the activated sludge step allows good sludge separation--an important condition for further treatment with ozone. Ozonation and subsequent bio-filtration pre-treated waste water provide: (i) reduction of hard COD unobtainable by conventional treatment; (ii) controllable COD reduction in a very wide range and therefore elimination of COD-peaks; (iii) reduction of treatment costs by combination of ozonation and subsequent bio-filtration; (iv) decrease of the color in the ozonated wastewater. The MBBR step proved very simple to operate as part of the biological treatment. Excellent control of the COD

  4. Colorado River Sewer System Joint Venture to Upgrade Wastewater System

    EPA Pesticide Factsheets

    SAN FRANCISCO -Today, the Colorado River Sewer System Joint Venture, located in Parker, Ariz. entered into an agreement with the EPA to upgrade their wastewater treatment system to meet stringent water quality standards. The cost of the upgrade is ap

  5. Healthy Indoor Environment Protocols for Home Energy Upgrades

    EPA Pesticide Factsheets

    This page contains the EPA-developed Healthy Indoor Environment Protocols for Home Energy Upgrades, a PDF guide that provides a set of best practices for improving indoor air quality in conjunction with energy upgrade work in homes.

  6. T-Farm complex alarm upgrades

    SciTech Connect

    Roberts, J.B.

    1995-01-01

    The alarm and controls associated with the T, TX, and TY farms are located in the 242-T control room. The design data for replacement and upgrades of the alarm panels is in this document. This task was canceled previous to the 90% design review point.

  7. CMS: Present status, limitations, and upgrade plans

    SciTech Connect

    Cheung, H.W.K.; /Fermilab

    2011-09-01

    An overview of the CMS upgrade plans will be presented. A brief status of the CMS detector will be given, covering some of the issues we have so far experienced. This will be followed by an overview of the various CMS upgrades planned, covering the main motivations for them, and the various R&D efforts for the possibilities under study. The CMS detector has been working extremely well since the start of data-taking at the LHC as is evidenced by the numerous excellent results published by CMS and presented at this workshop and recent conferences. Less well documented are the various issues that have been encountered with the detector. In the spirit of this workshop I will cover some of these issues with particular emphasis on problems that motivate some of the upgrades to the CMS detector for this decade of data-taking. Though the CMS detector has been working extremely well and expectations are great for making the most of the LHC luminosity, there have been a number of issues encountered so far. Some of these have been described and while none currently presents a problem for physics performance, some of them are expected to become more problematic, especially at the highest Phase 1 luminosities for which the majority of the integrated luminosity will be collected. These motivate upgrades for various parts of the CMS detector so that the current excellent physics performance can be maintained or even surpassed in the realm of the highest Phase 1 luminosities.

  8. UPGRADES TO Monteburns, VERSION 3.0

    SciTech Connect

    Galloway, Jack D; Trellue, Holly R

    2012-06-22

    Monteburns VERSION 3.0 is an upgrade of the existing Monteburns code available through RSICC. The new version includes modern programming style, increased parallel computing, more accurate capture gamma calculations and an automated input generator. This capability was demonstrated through a small PWR core simulation.

  9. PC Made Easy: Upgrading Computer Collections.

    ERIC Educational Resources Information Center

    Hannigan, Matt

    1997-01-01

    Provides guidelines for ordering the best computer books, geared to the library's size. Covers series, articles, subjects, and publishers most useful to a broad audience, as well as the best places to seek information on new titles and where to find reviews. Offers time savers for upgrading a computer book collection and discusses weeding…

  10. ALPHA: A Case Study in Upgrading.

    ERIC Educational Resources Information Center

    Granick, Leonard P. R.; And Others

    An industry-focused upgrading model, based upon job redesigns of entry-level and higher skill positions and a multi-step diagonal/vertical progression ladder was installed in a company having a 150-employee blue collar work force. The model provided for rapid promotion and wage increases of both present employees and new hires, supported by skills…

  11. The Newly Upgraded Large COMPASS Polarized Target

    SciTech Connect

    Gautheron, F.

    2007-06-13

    During the CERN SPS 2005 shutdown the COMPASS target system received a major hardware upgrade for the new period of data taking starting in 2006. A new superconducting magnet with a larger acceptance combined with a new microwave cavity and a three cell target setup have been installed and already showed excellent performances that we present for the first time.

  12. Chicago Initiative Aims to Upgrade Principal Pipeline

    ERIC Educational Resources Information Center

    Maxwell, Lesli A.

    2013-01-01

    Even with nearly 50 schools shutting down at the end of this month, Chicago education officials have been barreling ahead with plans to groom a large crop of high-performing principals that they say represents the most ambitious effort the city has undertaken to upgrade its school leadership ranks. The goal, said Chicago schools CEO Barbara…

  13. Filtration engineering study to upgrade the ETF

    SciTech Connect

    McDonald, F.N.N.

    1995-10-18

    Filtration technologies are evaluated which have potential to augment or upgrade the 200 Area Effluent Treatment Facility. The study was written in anticipation of treating future waste waters that have high fouling potentials. The Three ultrafilters judged to be capable of treating future waste waters are: hollow fiber, tubular, and centrifugal

  14. Preparation for upgrading western subbituminous coal

    SciTech Connect

    Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

    1990-11-01

    The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

  15. Design of the Compact Auburn Torsatron Upgrade

    NASA Astrophysics Data System (ADS)

    Hartwell, G. J.; Gandy, R. F.; Knowlton, S. F.; Watts, C.; Schneider, T. A.; Carnevali, A.

    1998-11-01

    As part of the National Stellarator Proof-of-Principle program, the Compact Auburn Torsatron is in the process of being upgraded operate with ohmic plasma current. The upgrade will be used to investigate MHD stability and plasma disruptions during the transition from pure stellarator plasmas to those in which the rotational transform is partially generated by the ohmic plasma current. The upgrade consists of three main parts: 1) the addition of a new power supply that will allow CAT-U to operate at magnetic fields Bo = 0.5T. This system consists of ten motor-generators capable of producing 8 MW of power for several seconds. 2) the addition of an air-core ohmic heating transformer to drive 25 kA of plasma current for 100 ms with a flux of 0.2-0.3 V-s. 3) Target plasmas for ohmic current stability studies in CAT-U will be generated by ICRF at ω=ω_ci using a Nagoya Type-III antenna as in CHS(T.Watari et al. in Radio Frequency Power in Plasmas (Proc. 12^th) Top. conf. Savannah, GA 1997) AIP Conf. Proc. 403, 57, AIP (1997). The expected RF power is P_RF = 200kW at f = 7.5 MHz. Each of the subsystems for the upgrade of CAT will be discussed.

  16. The BABAR detector: Upgrades, operation and performance

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; del Amo Sanchez, P.; Gaillard, J.-M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Robbe, P.; Tisserand, V.; Zghiche, A.; Grauges, E.; Garra Tico, J.; Lopez, L.; Martinelli, M.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, G. P.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Clark, A. R.; Day, C. T.; Furman, M.; Gill, M. S.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kral, J. F.; Kukartsev, G.; LeClerc, C.; Levi, M. E.; Lynch, G.; Merchant, A. M.; Mir, L. M.; Oddone, P. J.; Orimoto, T. J.; Osipenkov, I. L.; Pripstein, M.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Suzuki, A.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Zisman, M.; Barrett, M.; Bright-Thomas, P. G.; Ford, K. E.; Harrison, T. J.; Hart, A. J.; Hawkes, C. M.; Knowles, D. J.; Morgan, S. E.; O'Neale, S. W.; Penny, R. C.; Smith, D.; Soni, N.; Watson, A. T.; Watson, N. K.; Goetzen, K.; Held, T.; Koch, H.; Kunze, M.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schmuecker, H.; Schroeder, T.; Steinke, M.; Fella, A.; Antonioli, E.; Boyd, J. T.; Chevalier, N.; Cottingham, W. N.; Foster, B.; Mackay, C.; Walker, D.; Abe, K.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Khan, A.; Kyberd, P.; McKemey, A. K.; Randle-Conde, A.; Saleem, M.; Sherwood, D. J.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Korol, A. A.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Telnov, V. I.; Todyshev, K. Yu.; Yushkov, A. N.; Best, D. S.; Bondioli, M.; Bruinsma, M.; Chao, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; McMahon, S.; Mommsen, R. K.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Hartfiel, B. L.; Weinstein, A. J. R.; Atmacan, H.; Foulkes, S. D.; Gary, J. W.; Layter, J.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Wang, K.; Yasin, Z.; Zhang, L.; Hadavand, H. K.; Hill, E. J.; Paar, H. P.; Rahatlou, S.; Schwanke, U.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Kuznetsova, N.; Levy, S. L.; Lu, A.; Mazur, M. A.; Richman, J. D.; Verkerke, W.; Beck, T. W.; Beringer, J.; Eisner, A. M.; Flacco, C. J.; Grillo, A. A.; Grothe, M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Nesom, G.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Spencer, E.; Spradlin, P.; Turri, M.; Walkowiak, W.; Wang, L.; Wilder, M.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.; Chen, E.; Cheng, C. H.; Doll, D. A.; Dorsten, M. P.; Dvoretskii, A.; Echenard, B.; Erwin, R. J.; Fang, F.; Flood, K.; Hitlin, D. G.; Metzler, S.; Narsky, I.; Oyang, J.; Piatenko, T.; Porter, F. C.; Ryd, A.; Samuel, A.; Yang, S.; Zhu, R. Y.; Andreassen, R.; Devmal, S.; Geld, T. L.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Abe, T.; Antillon, E. A.; Barillari, T.; Becker, J.; Blanc, F.; Bloom, P. C.; Chen, S.; Clifton, Z. C.; Derrington, I. M.; Destree, J.; Dima, M. O.; Ford, W. T.; Gaz, A.; Gilman, J. D.; Hachtel, J.; Hirschauer, J. F.; Johnson, D. R.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Rankin, P.; Roy, J.; Ruddick, W. O.; Smith, J. G.; Ulmer, K. A.; van Hoek, W. C.; Wagner, S. R.; West, C. G.; Zhang, J.; Ayad, R.; Blouw, J.; Chen, A.; Eckhart, E. A.; Harton, J. L.; Hu, T.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q. L.; Altenburg, D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Brandt, T.; Brose, J.; Colberg, T.; Dahlinger, G.; Dickopp, M.; Eckstein, P.; Futterschneider, H.; Kaiser, S.; Kobel, M. J.; Krause, R.; Müller-Pfefferkorn, R.; Mader, W. F.; Maly, E.; Nogowski, R.; Otto, S.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Wilden, L.; Bernard, D.; Brochard, F.; Cohen-Tanugi, J.; Dohou, F.; Ferrag, S.; Latour, E.; Mathieu, A.; Renard, C.; Schrenk, S.; T'Jampens, S.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Anjomshoaa, A.; Bernet, R.; Clark, P. J.; Lavin, D. R.; Muheim, F.; Playfer, S.; Robertson, A. I.; Swain, J. E.; Watson, J. E.; Xie, Y.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Carassiti, V.; Cecchi, A.; Cibinetto, G.; Cotta Ramusino, A.; Evangelisti, F.; Fioravanti, E.; Franchini, P.; Garzia, I.; Landi, L.; Luppi, E.; Malaguti, R.; Negrini, M.; Padoan, C.; Petrella, A.; Piemontese, L.; Santoro, V.; Sarti, A.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; de Sangro, R.; Santoni, M.; Zallo, A.; Bagnasco, S.; Buzzo, A.; Capra, R.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M. M.; Minutoli, S.; Monge, M. R.; Musico, P.; Passaggio, S.; Pastore, F. C.; Patrignani, C.; Pia, M. G.; Robutti, E.; Santroni, A.; Tosi, S.; Bhuyan, B.; Prasad, V.; Bailey, S.; Brandenburg, G.; Chaisanguanthum, K. S.; Lee, C. L.; Morii, M.; Won, E.; Wu, J.; Adametz, A.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Klose, V.; Lacker, H. M.; Aspinwall, M. L.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Flack, R. L.; Gaillard, J. R.; Gunawardane, N. J. W.; Morton, G. W.; Nash, J. A.; Nikolich, M. B.; Panduro Vazquez, W.; Sanders, P.; Smith, D.; Taylor, G. P.; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Grenier, G. J.; Hamilton, R.; Lee, S.-J.; Mallik, U.; Meyer, N. T.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Fischer, P.-A.; Lamsa, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Schott, G.; Albert, J. N.; Arnaud, N.; Beigbeder, C.; Breton, D.; Davier, M.; Derkach, D.; Dû, S.; Firmino da Costa, J.; Grosdidier, G.; Höcker, A.; Laplace, S.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Nief, J. Y.; Petersen, T. C.; Plaszczynski, S.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Tocut, V.; Trincaz-Duvoid, S.; Wang, L. L.; Wormser, G.; Bionta, R. M.; Brigljević, V.; Lange, D. J.; Simani, M. C.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, M.; Hutchcroft, D. E.; Kay, M.; Parry, R. J.; Payne, D. J.; Schofield, K. C.; Sloane, R. J.; Touramanis, C.; Azzopardi, D. E.; Bellodi, G.; Bevan, A. J.; Clarke, C. K.; Cormack, C. M.; Di Lodovico, F.; Dixon, P.; George, K. A.; Menges, W.; Potter, R. J. L.; Sacco, R.; Shorthouse, H. W.; Sigamani, M.; Strother, P.; Vidal, P. B.; Brown, C. L.; Cowan, G.; Flaecher, H. U.; George, S.; Green, M. G.; Hopkins, D. A.; Jackson, P. S.; Kurup, A.; Marker, C. E.; McGrath, P.; McMahon, T. R.; Paramesvaran, S.; Salvatore, F.; Vaitsas, G.; Winter, M. A.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Allison, J.; Alwyn, K. E.; Bailey, D. S.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Forti, A. C.; Fullwood, J.; Hart, P. A.; Hodgkinson, M. C.; Jackson, F.; Jackson, G.; Kelly, M. P.; Kolya, S. D.; Lafferty, G. D.; Lyon, A. J.; Naisbit, M. T.; Savvas, N.; Weatherall, J. H.; West, T. J.; Williams, J. C.; Yi, J. I.; Anderson, J.; Farbin, A.; Hulsbergen, W. D.; Jawahery, A.; Lillard, V.; Roberts, D. A.; Schieck, J. R.; Simi, G.; Tuggle, J. M.; Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.; Staengle, H.; Willocq, S. Y.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Koeneke, K.; Lang, M. I.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Yi, M.; Zhao, M.; Zheng, Y.; Klemetti, M.; Lindemann, D.; Mangeol, D. J. J.; Mclachlin, S. E.; Milek, M.; Patel, P. M.; Robertson, S. H.; Biassoni, P.; Cerizza, G.; Lazzaro, A.; Lombardo, V.; Neri, N.; Palombo, F.; Pellegrini, R.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Godang, R.; Brunet, S.; Cote, D.; Nguyen, X.; Simard, M.; Taras, P.; Viaud, B.; Nicholson, H.; Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Onorato, G.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Allmendinger, T.; Benelli, G.; Brau, B.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Smith, D. S.; Ter-Antonyan, R.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Iwasaki, M.; Kolb, J. A.; Lu, M.; Potter, C. T.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Borsato, E.; Castelli, G.; Colecchia, F.; Crescente, A.; Dal Corso, F.; Dorigo, A.; Fanin, C.; Furano, F.; Gagliardi, N.; Galeazzi, F.; Margoni, M.; Marzolla, M.; Michelon, G.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Solagna, P.; Stevanato, E.; Stroili, R.; Tiozzo, G.; Voci, C.; Akar, S.; Bailly, P.; Ben-Haim, E.; Bonneaud, G.; Briand, H.; Chauveau, J.; Hamon, O.; John, M. J. J.; Lebbolo, H.; Leruste, Ph.; Malclès, J.; Marchiori, G.; Martin, L.; Ocariz, J.; Perez, A.; Pivk, M.; Prendki, J.; Roos, L.; Sitt, S.; Stark, J.; Thérin, G.; Vallereau, A.; Biasini, M.; Covarelli, R.; Manoni, E.; Pennazzi, S.; Pioppi, M.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Bucci, F.; Calderini, G.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Morsani, F.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Sandrelli, F.; Triggiani, G.; Walsh, J. J.; Haire, M.; Judd, D.; Biesiada, J.; Danielson, N.; Elmer, P.; Fernholz, R. E.; Lau, Y. P.; Lu, C.; Miftakov, V.; Olsen, J.; Lopes Pegna, D.; Sands, W. R.; Smith, A. J. S.; Telnov, A. V.; Tumanov, A.; Varnes, E. W.; Baracchini, E.; Bellini, F.; Bulfon, C.; Buccheri, E.; Cavoto, G.; D'Orazio, A.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Lamanna, E.; Leonardi, E.; Li Gioi, L.; Lunadei, R.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; del Re, D.; Renga, F.; Safai Tehrani, F.; Serra, M.; Voena, C.; Bünger, C.; Christ, S.; Hartmann, T.; Leddig, T.; Schröder, H.; Wagner, G.; Waldi, R.; Adye, T.; Bly, M.; Brew, C.; Condurache, C.; De Groot, N.; Franek, B.; Geddes, N. I.; Gopal, G. P.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.; Xella, S. M.; Aleksan, R.; Bourgeois, P.; Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; Giraud, P.-F.; Georgette, Z.; Graziani, G.; Hamel de Monchenault, G.; Kozanecki, W.; Langer, M.; Legendre, M.; London, G. W.; Mayer, B.; Micout, P.; Serfass, B.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Akre, R.; Aston, D.; Azemoon, T.; Bard, D. J.; Bartelt, J.; Bartoldus, R.; Bechtle, P.; Becla, J.; Benitez, J. F.; Berger, N.; Bertsche, K.; Boeheim, C. T.; Bouldin, K.; Boyarski, A. M.; Boyce, R. F.; Browne, M.; Buchmueller, O. L.; Burgess, W.; Cai, Y.; Cartaro, C.; Ceseracciu, A.; Claus, R.; Convery, M. R.; Coupal, D. P.; Craddock, W. W.; Crane, G.; Cristinziani, M.; DeBarger, S.; Decker, F. J.; Dingfelder, J. C.; Donald, M.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Ecklund, S.; Erickson, R.; Fan, S.; Field, R. C.; Fisher, A.; Fox, J.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Gaponenko, I.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hadig, T.; Halyo, V.; Haller, G.; Hamilton, J.; Hanushevsky, A.; Hasan, A.; Hast, C.; Hee, C.; Himel, T.; Hryn'ova, T.; Huffer, M. E.; Hung, T.; Innes, W. R.; Iverson, R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kharakh, D.; Kocian, M. L.; Krasnykh, A.; Krebs, J.; Kroeger, W.; Kulikov, A.; Kurita, N.; Langenegger, U.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Libby, J.; Lindquist, B.; Luitz, S.; Lüth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; McCulloch, M.; McDonald, J.; Melen, R.; Menke, S.; Metcalfe, S.; Messner, R.; Moss, L. J.; Mount, R.; Muller, D. R.; Neal, H.; Nelson, D.; Nelson, S.; Nordby, M.; Nosochkov, Y.; Novokhatski, A.; O'Grady, C. P.; O'Neill, F. G.; Ofte, I.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Petrak, S.; Piemontese, M.; Pierson, S.; Pulliam, T.; Ratcliff, B. N.; Ratkovsky, S.; Reif, R.; Rivetta, C.; Rodriguez, R.; Roodman, A.; Salnikov, A. A.; Schietinger, T.; Schindler, R. H.; Schwarz, H.; Schwiening, J.; Seeman, J.; Smith, D.; Snyder, A.; Soha, A.; Stanek, M.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Tanaka, H. A.; Teytelman, D.; Thompson, J. M.; Tinslay, J. S.; Trunov, A.; Turner, J.; van Bakel, N.; van Winkle, D.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Weinstein, A. J. R.; Weber, T.; West, C. A.; Wienands, U.; Wisniewski, W. J.; Wittgen, M.; Wittmer, W.; Wright, D. H.; Wulsin, H. W.; Yan, Y.; Yarritu, A. K.; Yi, K.; Yocky, G.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Singh, H.; Weidemann, A. W.; White, R. M.; Wilson, J. R.; Yumiceva, F. X.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Meyer, T. I.; Miyashita, T. S.; Petersen, B. A.; Roat, C.; Ahmed, M.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Liu, J.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Gorodeisky, R.; Guttman, N.; Peimer, D.; Soffer, A.; De Silva, A.; Lund, P.; Krishnamurthy, M.; Ragghianti, G.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Satpathy, A.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Ye, S.; Bianchi, F.; Bona, M.; Gallo, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Borean, C.; Bosisio, L.; Cossutti, F.; Della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Poropat, P.; Rashevskaya, I.; Vitale, L.; Vuagnin, G.; Manfredi, P. F.; Re, V.; Speziali, V.; Frank, E. D.; Gladney, L.; Guo, Q. H.; Panetta, J.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Agarwal, A.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Brown, C. M.; Choi, H. H. F.; Fortin, D.; Fransham, K. B.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Back, J. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E.; Band, H. R.; Chen, X.; Cheng, B.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Hollar, J. J.; Hu, H.; Johnson, J. R.; Kutter, P. E.; Li, H.; Liu, R.; Mellado, B.; Mihalyi, A.; Mohapatra, A. K.; Pan, Y.; Pierini, M.; Prepost, R.; Scott, I. J.; Tan, P.; Vuosalo, C. O.; von Wimmersperg-Toeller, J. H.; Wu, S. L.; Yu, Z.; Greene, M. G.; Kordich, T. M. B.

    2013-11-01

    The BABAR detector operated successfully at the PEP-II asymmetric e+e- collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.

  17. Operation status and upgrading of HIRFL

    NASA Astrophysics Data System (ADS)

    Tang, J. Y.; Wang, Y. F.; Wei, B. W.

    2001-12-01

    The operation status and the undergoing upgrading at HIRFL machine are presented. The accelerated ion species with the machine have been expanding, including metallic ions and higher energy with the new ECR ion source. The upgrading of HIRFL as the pre-accelerator of CSR storage ring has been processing steadily. The new 14.5 GHz ECR ion source has been put in operation in early 1999. A full-superconducting ECR ion source of 18 GHz is under design. The manufacture of the new vacuum chamber for SFC is just finished and the installation is to be started. The construction of the new B1 buncher is nearly to be finished, and the off-line test and the installation will be started soon. Another two identical bunchers will be ordered after the test. The beam distribution system is under upgrading to make all experiment stations separate from the others and the time-sharing mode possible, and a new cancer-therapy station is also under construction. The other upgrading items include the yoke enlarging of SFC, beam diagnostics, computer control and beam distribution system.

  18. Instrument hardware and software upgrades at IPNS

    NASA Astrophysics Data System (ADS)

    Worlton, Thomas; Hammonds, John; Mikkelson, D.; Mikkelson, Ruth; Porter, Rodney; Tao, Julian; Chatterjee, Alok

    2006-11-01

    IPNS is in the process of upgrading their time-of-flight neutron scattering instruments with improved hardware and software. The hardware upgrades include replacing old VAX Qbus and Multibus-based data acquisition systems with new systems based on VXI and VME. Hardware upgrades also include expanded detector banks and new detector electronics. Old VAX Fortran-based data acquisition and analysis software is being replaced with new software as part of the ISAW project. ISAW is written in Java for ease of development and portability, and is now used routinely for data visualization, reduction, and analysis on all upgraded instruments. ISAW provides the ability to process and visualize the data from thousands of detector pixels, each having thousands of time channels. These operations can be done interactively through a familiar graphical user interface or automatically through simple scripts. Scripts and operators provided by end users are automatically included in the ISAW menu structure, along with those distributed with ISAW, when the application is started.

  19. MR LLRF VXI upgrade beam study period

    SciTech Connect

    Mesiner, K.; /Fermilab

    1995-01-01

    AD/RFI/LLRF group personnel performed several studies with the MR LLRF VXI upgrade system during the evening of 7/29/95. The study period lasted about 4 hours. The MR operating conditions were a mixture of $29 and $2B cycles, with beam injected only on the $29. The author believes the $2B cycles were present for reasons unrelated to the study. The basic study period goal was to test the initial VXI version of MR LLRF finite state machine (FSM) execution. This goal represents what has been called MR LLRF VXI Upgrade Implementation Stage No.2 throughout presentations and documentation on the upgrade project. The test includes control of MR LLRF NIM hardware, the MR RF cavities, and beam via XVI TTL FSM outputs. Numerous MR LLRF VXI system objects, or components, must work together correctly for a successful test. Very briefly, the required objects include VXI Front End hardware, the ACNET/Front End interface code, and the VXI/NIM Interface chassis (the chassis solves VXI-CAMAC-NIM RF and FSM output connectivity and development problems). Though this initial FSM does not yet fully support Upgrade Implementation Stage 2 functionality, all code and hardware for the following basic functionality is tested.

  20. Results of the MTLRS-1 upgrade

    NASA Technical Reports Server (NTRS)

    Sperber, Peter; Amberg, L.; Blenski, G.; Etling, W.; Hessels, U.; Motz, R.; Beyer, L.

    1993-01-01

    In this report, the results of the upgrade of the German Modular Transportable Laser Ranging System MTLRS-1 are summarized. A short description of the new components and their influence on the system accuracy is given. It is shown, that the single shot accuracy of the MTLRS-1 has been improved from 5 cm to 1 cm.

  1. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Kushpil, Svetlana; ALICE Collaboration

    2016-02-01

    ALICE detector was constructed to study the properties of hot and dense hadronic matter formed in relativistic nuclear collisions. During the second long LHC shutdown in 2019-2020, the collaboration plans to upgrade the current vertex detector, the Inner Tracking System (ITS), in order to increase the reconstruction accuracy of secondary vertices and to lower the threshold of particle transverse momentum measurement. The upgrade strategy of ITS is based on the application of new Monolithic Active Pixel Sensors (MAPS) designed in 0.18 μm CMOS technology. The 50 μm thick chip consists of a single silicon die incorporating a 0.18 μm high-resistivity silicon epitaxial layer (sensor active volume) and matrix of charge collection diodes (pixels) with readout electronics. Radiation hardness of the upgraded ITS is one of the crucial moments in the overall performance of the system. A wide set of MAPS structures with different read-out circuits was produced and is being studied by the ALICE collaboration to optimize the pixel sensor functionality. An overview of the ALICE ITS upgrade and the expected performance improvement will be presented together with selected results from a campaign that includes several irradiation and beam tests.

  2. Testing of FMI's Coal Upgrading Process

    SciTech Connect

    Vijay Sethi

    2009-03-21

    WRI and FMI have collaborated to develop and test a novel coal upgrading technology. Proprietary coal upgrading technology is a fluidized bed-based continuous process which allows high through-puts, reducing the coal processing costs. Processing is carried out under controlled oxidizing conditions at mild enough conditions that compared to other coal upgrading technologies; the produced water is not as difficult to treat. All the energy required for coal drying and upgrading is derived from the coal itself. Under the auspices of the Jointly Sponsored Research Program, Cooperative Agreement DE-FC26-98FT40323, a nominal 400 lbs/hour PDU was constructed and operated. Over the course of this project, several low-rank coals were successfully tested in the PDU. In all cases, a higher Btu, low moisture content, stable product was produced and subsequently analyzed. Stack emissions were monitored and produced water samples were analyzed. Product stability was established by performing moisture readsorption testing. Product pyrophobicity was demonstrated by instrumenting a coal pile.

  3. Chicago Initiative Aims to Upgrade Principal Pipeline

    ERIC Educational Resources Information Center

    Maxwell, Lesli A.

    2013-01-01

    Even with nearly 50 schools shutting down at the end of this month, Chicago education officials have been barreling ahead with plans to groom a large crop of high-performing principals that they say represents the most ambitious effort the city has undertaken to upgrade its school leadership ranks. The goal, said Chicago schools CEO Barbara…

  4. Preparation for upgrading western subbituminous coal

    SciTech Connect

    Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

    1990-11-01

    The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

  5. Guidelines for Home Energy Upgrade Professionals: Standard Work Specifications for Multifamily Energy Upgrades (Fact Sheet)

    SciTech Connect

    Not Available

    2011-08-01

    This fact sheet provides essential information about the 2011 publication of the Workforce Guidelines for Multifamily Home Energy Upgrades, including their origin, their development with the help of industry leaders to create the standard work specifications for retrofit work.

  6. Fuel Flexible Gas Turbine Combustor Flametube Facility Upgraded

    NASA Technical Reports Server (NTRS)

    Little, James E.; Nemets, Steve A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfeld, Bruce J.

    2004-01-01

    In fiscal year 2003, test cell 23 of the Research Combustion Laboratory (RCL 23) at the NASA Glenn Research Center was upgraded with the addition of gaseous hydrogen as a working propellant and the addition of a 450-psig air-supply system. Test flexibility was further enhanced by upgrades to the facility control systems. RCL 23 can now test with gaseous hydrogen flow rates up to 0.05 lbm/sec and jet fuel flow rates up to 0.62 lbm/sec. Research airflow rates up to 3 lbm/sec are possible with the 450-psig supply system over a range of inlet temperatures. Nonvitiated, heated air is supplied from a shell and tube heat exchanger. The maximum nonvitiated facility air temperature is 1100 F at 1.5 lbm/sec. Research-section exhaust temperatures are limited to 3200 F because of material and cooling capacity limits. A variety of support systems are available depending on the research hardware configuration. Test section ignition can be provided via either a hydrogen air torch system or an electronic spark system. Emissions measurements are obtained with either pneumatically or electromechanically actuated gas sample probes, and the electromechanical system allows for radial measurements at a user-specified axial location for measurement of emissions profiles. Gas analysis data can be obtained for a variety of species, including carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NO and NOx), oxygen (O2), unburnt hydrocarbons, and unburnt hydrogen. Facility control is accomplished with a programmable logic control system. Facility operations have been upgraded to a system based on graphical user interface control screens. A data system is available for real-time acquisition and monitoring of both measurements in engineering units and performance calculations. The upgrades have made RCL 23 a highly flexible facility for research into low emissions gas turbine combustor concepts, and the flame tube configuration inherently allows for a variety of fuel nozzle

  7. Upgrading the CEBAF Accelerator to 12 GeV

    SciTech Connect

    Leigh Harwood

    2006-07-01

    Jefferson Lab is preparing to upgrade its 6 GeV Continuous Electron Beam Accelerator Facility (CEBAF) to 12 GeV. The doubled energy will significantly extend research reach of the three existing experimental Halls A, B and C, and the upgrade will add scientific capability, with a newly constructed hall, Hall D. Areas of special initial interest are reactions at high xBjorken, GPD's and exotic hybrid mesons. The present linacs will have their acceleration roughly doubled through the addition of 10 new cryomodules which will perform at {approx}5 times the original specification for CEBAF. The cryogenics plant will be roughly doubled and new rf systems will be installed for the new cryomodules. The beam transport system will strongly leverage existing hardware but must be enhanced with new power supplies, one new recirculation arc, and a beamline to the new Hall D. A brief description of the scope for the various accelerator subsystems will be given as well as the status of the project as a whole.

  8. THERMAL UPGRADING OF 9977 RADIOACTIVE MATERIAL (RAM) TYPE B PACKAGE

    SciTech Connect

    Gupta, N.; Abramczyk, G.

    2012-03-26

    The 9977 package is a radioactive material package that was originally certified to ship Heat Sources and RTG contents up to 19 watts and it is now being reviewed to significantly expand its contents in support of additional DOE missions. Thermal upgrading will be accomplished by employing stacked 3013 containers, a 3013 aluminum spacer and an external aluminum sleeve for enhanced heat transfer. The 7th Addendum to the original 9977 package Safety Basis Report describing these modifications is under review for the DOE certification. The analyses described in this paper show that this well-designed and conservatively analyzed package can be upgraded to carry contents with decay heat up to 38 watts with some simple design modifications. The Model 9977 package has been designed as a replacement for the Department of Transportation (DOT) Fissile Specification 6M package. The 9977 package is a very versatile Type B package which is certified to transport and store a wide spectrum of radioactive materials. The package was analyzed quite conservatively to increase its usefulness and store different payload configurations. Its versatility is evident from several daughter packages such as the 9978 and H1700, and several addendums where the payloads have been modified to suit the Shipper's needs without additional testing.

  9. Analysis of NSTX Upgrade OH Magnet and Center Stack

    SciTech Connect

    A. Zolfaghari, P. Titus, J. Chrzanowski, A. Salehzadeh, F. Dahlgren

    2010-11-30

    The new ohmic heating (OH) coil and center stack for the National Spherical Torus Experiment (NSTX) upgrade are required to meet cooling and structural requirements for operation at the enhanced 1 Tesla toroidal field and 2 MA plasma current. The OH coil is designed to be cooled in the time between discharges by water flowing in the center of the coil conductor. We performed resistive heating and thermal hydraulic analyses to optimize coolant channel size to keep the coil temperature below 100 C and meet the required 20 minute cooling time. Coupled electromagnetic, thermal and structural FEA analyses were performed to determine if the OH coil meets the requirements of the structural design criteria. Structural response of the OH coil to its self-field and the field from other coils was analyzed. A model was developed to analyze the thermal and electromagnetic interaction of centerstack components such as the OH coil, TF inner legs and the Bellville washer preload mechanism. Torsional loads from the TF interaction with the OH and poloidal fields are transferred through the TF flag extensions via a torque transfer coupling to the rest of the tokamak structure. A 3D FEA analysis was performed to qualify this design. The results of these analyses, which will be presented in this paper, have led to the design of OH coil and centerstack components that meet the requirements of the NSTX-upgrade structural design criteria.

  10. Fischer-Tropsch wax characterization and upgrading: Final report

    SciTech Connect

    Shah, P.P.; Sturtevant, G.C.; Gregor, J.H.; Humbach, M.J.; Padrta, F.G.; Steigleder, K.Z.

    1988-06-06

    The characterization and upgrading of Fischer-Tropsch wax was studied. The focus of the program was to maximize the yield of marketable transportation fuels from the Fischer-Tropsch process. The wax was characterized using gel permeation chromatography (GPC), high resolution mass spectrometry (HRMS), infrared spectroscopy (IR), gas chromatography (GC), nuclear magnetic resonance (NMR) and various other physical analyses. Hydrocracking studies conducted in a pilot plant indicate that Fischer-Tropsch wax is an excellent feedstock. A high yield of excellent quality diesel fuel was produced with satisfactory catalyst performance at relatively mild operating conditions. Correlations for predicting key diesel fuel properties were developed and checked against actual laboratory blend data. The blending study was incorporated into an economic evaluation. Finally, it is possible to take advantage of the high quality of the Fischer-Tropsch derived distillate by blending a lower value light cycle oil (produced from a refinery FCC unit) representing a high aromatic and low cetane number. The blended stream meets diesel pool specifications (up to 60 wt % LCO addition). The value added to this blending stream further enhances the upgrading complex return. 22 refs., 39 figs., 48 tabs.

  11. Upgrading the Ward Beecher Planetarium for the 21st Century

    NASA Astrophysics Data System (ADS)

    Durrell, P. R.; Young, W.; Pirko, R.; Shanks, S. L.; Neiheisel, J.; Dean, M. E.; Kotel, R.; Schaefer, S.; Morlan, R.; Wilson, A.; Feldmeier, J. J.

    2005-12-01

    We report on recent progress and future public outreach plans in light of a significant upgrade of the Ward Beecher Planetarium at Youngstown State University. Over a period of 40 years, the facility has been a first-rate 150 seat planetarium and introductory astronomy classroom, and in its history has seen over 50 000 undergraduate students and over 750 000 visits from people in the surrounding area and beyond. Through a recent generous donation from the Ward Beecher Foundation, we have added the SciDome full-dome visualization system, and soon will be replacing our Spitz A3P planetarium star projector. These upgrades, in addition to new digital video projectors and a complete overhaul of our roof-top observatory, are being done in order to further enhance both the education of YSU students and our ability to continue numerous public outreach programs, including full-dome digital planetarium shows, public observing, shows for both elementary and high school students, and home-schooling programs.

  12. Upgrade of hadron endcap calorimeters CMS at LHC

    NASA Astrophysics Data System (ADS)

    Bunin, P. D.; Zaroubin, A. V.

    2017-09-01

    We present the survey of the main tasks in upgrading the hadron endcap (HE) calorimeters of the CMS experiment at LHC. The results of the HE upgrade during the LHC Long Shutdown (2013-2014) and plans for upgrade during LHC Extended Year End Technical Stop (December 2016-May 2017) are discussed.

  13. The JLAB 12 GeV Energy Upgrade of CEBAF

    SciTech Connect

    Harwood, Leigh H.

    2013-12-01

    This presentation should describe the progress of the 12GeV Upgrade of CEBAF at Jefferson Lab. The status of the upgrade should be presented as well as details on the construction, procurement, installation and commissioning of the magnet and SRF components of the upgrade.

  14. 31 CFR 26.5 - Upgrades and additional environmental information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Upgrades and additional environmental... ENVIRONMENTAL REVIEW OF ACTIONS BY MULTILATERAL DEVELOPMENT BANDS (MDBs) § 26.5 Upgrades and additional environmental information. (a) Environmental category upgrades. If the WGMA and the Department of the Treasury...

  15. College teachers can upgrade skills

    NASA Astrophysics Data System (ADS)

    The National Science Foundation has announced the second year of its Undergraduate Faculty Enhancement Program grants for undergraduate faculty seminars and conferences. NSF provides leadership and financial assistance so colleges and universities can systematically help undergraduate faculty learn new ideas and techniques in their fields and better their teaching skills.Faculty who teach undergraduates have specific needs to stay abreast of recent developments in their disciplines, according to NSF. They need to know of new experimental techniques and how to incorporate them into the classroom, to work with new instruments, to learn about recent theoretical developments in their fields, to synthesize knowledge across their own and other disciplines, and to interact with experts and colleagues. The program requires participants to work actively in their fields and to interact with scientists, engineers, and mathematicians skilled in the topic area, and emphasizes communication with fellow participants.

  16. First Results From the (Multibeam) Hydrosweep DS2 Upgrade on the R/V Maurice Ewing

    NASA Astrophysics Data System (ADS)

    Chayes, D. N.; Slagle, A.; Caress, D. W.; Arko, R. A.

    2001-12-01

    The ATLAS Hydrosweep DS multibeam swath mapping sonar system on the R/V Maurice Ewing was upgraded to a DS2 in May 2000. This upgrade increased the effective swath width from 59 beams over about 89 degrees to as many as 140 beams over approximately 118 degrees, added sidescan image as well as data records from which backscatter can be extracted. The upgrade replaced the outdated processing computer, half-inch tape drive and console with modern workstations and 4mm tape. The upgrade did not require changes to the under hull transducer arrays or transceivers so it was relatively inexpensive and was accomplished in a few days during a transit of the Panama Canal. Evaluation and software enhancements were done during subsequent transits. MB-System was enhanced to support the native, raw data format of the Hydrosweep DS2. We also expect to be able to support the more general SURF format that is also generated by new ATLAS sonar systems in the near future. In addition to the hardware and software upgrades to the multibeam, we installed a POS/MV-320 vertical reference system to take over from our venerable HIPPY-120 as the primary attitude reference for the Hydrosweep on the Ewing. The attitude data from the POS has allowed us to eliminate the turn rate restrictions and to improve the data quality. As an additional benefit the P-Code aided position data produced by the POS is significantly more stable and better behaved than our other navigation sources. The upgraded sonar was used during EW0108 (Taylor) in the Gulf of Corinth. As is usually the case with new implementations or modifications of complex systems, some unexpected behaviors were observed and carefully documented. Good remote support from the manufacturer enabled us to implement fixes and to generate very good quality bathymetry and sidescan images on board and in shore-side post processing. Two related software prototypes are currently being evaluated as part of this upgrade package. One is a web-based real

  17. Completion of the Brightness Upgrade of the ALS

    NASA Astrophysics Data System (ADS)

    Steier, C.; Madur, A.; Bailey, B.; Berg, K.; Biocca, A.; Black, A.; Casey, P.; Colomb, D.; Gunion, B.; Li, N.; Marks, S.; Nishimura, H.; Pappas, C.; Petermann, K.; Portmann, G.; Prestemon, S.; Rawlins, A.; Robin, D.; Rossi, S.; Scarvie, T.; Schlueter, R.; Sun, C.; Tarawneh, H.; Wan, W.; Williams, E.; Yin, L.; Zhou, Q.; Jin, J.; Zhang, J.; Chen, C.; Wen, Y.; Wu, J.

    2014-03-01

    The Advanced Light Source (ALS) at Berkeley Lab remains one of the brightest sources for soft x-rays worldwide. A multiyear upgrade of the ALS is underway, which includes new and replacement x-ray beamlines, a replacement of many of the original insertion devices and many upgrades to the accelerator. The accelerator upgrade that affects the ALS performance most directly is the ALS brightness upgrade [1], which reduces the horizontal emittance from 6.3 to 2.0 nm (2.5 nm effective). Magnets for this upgrade were installed in late 2012 and early 2013 followed by user operation with the reduced emittance.

  18. Upgrading of Intermediate Bio-Oil Produced by Catalytic Pyrolysis

    SciTech Connect

    Abdullah, Zia; Chadwell, Brad; Taha, Rachid; Hindin, Barry; Ralston, Kevin

    2015-06-30

    The objectives of this project were to (1) develop a process to upgrade catalytic pyrolysis bio-oil, (2) investigate new upgrading catalysts suited for upgrading catalytic pyrolysis bio-oil, (3) demonstrate upgrading system operation for more than 1,000 hours using a single catalyst charge, and (4) produce a final upgraded product that can be blended to 30 percent by weight with petroleum fuels or that is compatible with existing petroleum refining operations. This project has, to the best of our knowledge, for the first time enabled a commercially viable bio-oil hydrotreatment process to produce renewable blend stock for transportation fuels.

  19. Canted Undulator Upgrade for GeoSoilEnviroCARS Sector 13 at the Advanced Photon Source

    SciTech Connect

    Sutton, Stephen

    2013-02-02

    Support for the beamline component of the canted undulator upgrade of Sector 13 (GeoSoilEnviroCARS; managed and operated by the University of Chicago) at the Advanced Photon Source (APS; Argonne National Laboratory) was received from three agencies (equally divided): NASA-SRLIDAP (now LARS), NSF-EAR-IF (ARRA) and DOE-Single Investigator Small Group (SISGR). The associated accelerator components (undulators, canted front end) were provided by the APS using DOE-ARRA funding. The intellectual merit of the research enabled by the upgrade lies in advancing our knowledge of the composition, structure and properties of earth materials; the processes they control; and the processes that produce them. The upgrade will facilitate scientific advances in the following areas: high pressure mineral physics and chemistry, non-crystalline and nano-crystalline materials at high pressure, chemistry of hydrothermal fluids, reactions at mineral-water interfaces, biogeochemistry, oxidation states of magmas, flow dynamics of fluids and solids, and cosmochemistry. The upgrade, allowing the microprobe to operate 100% of the time and the high pressure and surface scattering and spectroscopy instruments to receive beam time increases, will facilitate much more efficient use of the substantial investment in these instruments. The broad scientific community will benefit by the increase in the number of scientists who conduct cutting-edge research at GSECARS. The user program in stations 13ID-C (interface scattering) and 13ID-D (laser heated diamond anvil cell and large volume press) recommenced in June 2012. The operation of the 13ID-E microprobe station began in the Fall 2012 cycle (Oct.-Dec 2012). The upgraded canted beamlines double the amount of undulator beam time at Sector 13 and provide new capabilities including extended operations of the X-ray microprobe down to the sulfur K edge and enhanced brightness at high energy. The availability of the upgraded beamlines will advance the

  20. Charge breeder for the SPIRAL1 upgrade: Preliminary results

    SciTech Connect

    Maunoury, L. Delahaye, P.; Dubois, M.; Bajeat, O.; Frigot, R.; Jeanne, A.; Jardin, P.; Kamalou, O.; Lecomte, P.; Osmond, B.; Peschard, G.; Savalle, A.; Angot, J.; Sole, P.; Lamy, T.

    2016-02-15

    In the framework of the SPIRAL1 upgrade under progress at the GANIL lab, the charge breeder based on a LPSC Phoenix ECRIS, first tested at ISOLDE has been modified to benefit of the last enhancements of this device from the 1+/n+ community. The modifications mainly concern the 1 + optics, vacuum techniques, and the RF—buffer gas injection into the charge breeder. Prior to its installation in the midst of the low energy beam line of the SPIRAL1 facility, it has been decided to qualify its performances and several operation modes at the test bench of LPSC lab. This contribution shall present preliminary results of experiments conducted at LPSC concerning the 1 + to n+ conversion efficiencies for noble gases as well as for alkali elements and the corresponding transformation times.

  1. The Jefferson Lab 12 GeV Upgrade

    SciTech Connect

    R.D. McKeown

    2010-09-01

    Construction of the 12 GeV upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility is presently underway. This upgrade includes doubling the energy of the electron beam to 12 GeV, the addition of a new fourth experimental hall, and the construction of upgraded detector hardware. An overview of this upgrade project is presented, along with highlights of the anticipated experimental program. The 12 GeV upgrade project at Jefferson Lab will enable a powerful new experimental program that will advance our understanding of the quark/gluon structure of hadronic matter, the nature of Quantum Chromodynamics, and the properties of a new extended standard model of particle interactions. Commissioning of the upgraded beam will be begin in 2013, and the full complement of upgraded experimental equipment will be completed in 2015. This unique facility will provide many opportunities for exploration and discovery for a large international community of nuclear scientists.

  2. A poloidal section neutron camera for MAST upgrade

    SciTech Connect

    Sangaroon, S.; Weiszflog, M.; Cecconello, M.; Conroy, S.; Ericsson, G.; Wodniak, I.; Keeling, D.; Turnyanskiy, M. [EURATOM Collaboration: MAST Team

    2014-08-21

    The Mega Ampere Spherical Tokamak Upgrade (MAST Upgrade) is intended as a demonstration of the physics viability of the Spherical Tokamak (ST) concept and as a platform for contributing to ITER/DEMO physics. Concerning physics exploitation, MAST Upgrade plasma scenarios can contribute to the ITER Tokamak physics particularly in the field of fast particle behavior and current drive studies. At present, MAST is equipped with a prototype neutron camera (NC). On the basis of the experience and results from previous experimental campaigns using the NC, the conceptual design of a neutron camera upgrade (NC Upgrade) is being developed. As part of the MAST Upgrade, the NC Upgrade is considered a high priority diagnostic since it would allow studies in the field of fast ions and current drive with good temporal and spatial resolution. In this paper, we explore an optional design with the camera array viewing the poloidal section of the plasma from different directions.

  3. Upgrading Reference Set — EDRN Public Portal

    Cancer.gov

    We are proposing a multi-institutional study to identify molecular biomarkers and clinical measures that will predict presence of Gleason 7 or higher cancer (as evidence in the radical prostatectomy specimen) among patients with a biopsy diagnosis of Gleason score ≤ 6 prostate cancer. This proposal will be conducted in two phases. The first phase will assemble an “Upgrading Reference Set” that will include clinical information as well as biologics on a cohort of 600 men. The first phase will also assess the clinical parameters associated with upgrading, as well as, perform a central pathology review of both biopsies and prostatectomy specimens to confirm tumor grade. The second phase will use the biologics collected in phase 1 to evaluate a series of biomarkers to further refine the prediction of Gleason 7-10 cancer at radical prostatectomy.

  4. CHALLENGES FOR THE SNS RING ENERGY UPGRADE

    SciTech Connect

    Plum, Michael A; Gorlov, Timofey V; Holmes, Jeffrey A; Hunter, W Ted; Roseberry, Jr., R Tom; Wang, Jian-Guang

    2012-01-01

    The Oak Ridge Spallation Neutron Source accumulator ring presently operates at a beam power of about 1 MW with a beam energy of about 910 MeV. A power upgrade is planned to increase the beam energy to 1.3 GeV. For the accumulator ring this mostly involves modifications to the injection and extraction sections. A variety of modifications to the existing injection section were necessary to achieve 1 MW, and the tools developed and the lessons learned from this work are now being applied to the design of the new injection section. This paper will discuss the tools and the lessons learned, and also present the design and status of the upgrades to the accumulator ring.

  5. Phase-2 Upgrade of the CMS Tracker

    NASA Astrophysics Data System (ADS)

    Mersi, Stefano; CMS Collaboration

    2016-04-01

    An upgrade program is planned for the LHC which will smoothly bring the luminosity up to or above 5 ×1034 cm-2 s-1 sometimes after 2020, to possibly reach an integrated luminosity of 3000 fb-1 at the end of that decade. In this ultimate scenario, called Phase-2, when LHC will reach the High Luminosity phase (HL-LHC), CMS will need a completely new Tracker detector, in order to fully exploit the highly-demanding operating conditions and the delivered luminosity. The new Tracker should have also trigger capabilities. To achieve such goals, R&D activities are ongoing to explore options and develop solutions that would allow including tracking information at Level-1. The design choices for the CMS pixel and outer tracker upgrades are discussed along with some highlights of the R&D activities and expected detector performance.

  6. Biorefining compounds and organocatalytic upgrading methods

    DOEpatents

    Chen, Eugene Y.; Liu, Dajiang

    2016-10-18

    The invention provides new methods for the direct umpolung self-condensation of 5-hydroxymethylfurfural (HMF) by organocatalysis, thereby upgrading the readily available substrate into 5,5'-di(hydroxymethyl)furoin (DHMF). While many efficient catalyst systems have been developed for conversion of plant biomass resources into HMF, the invention now provides methods to convert such nonfood biomass directly into DHMF by a simple process as described herein. The invention also provides highly effective new methods for upgrading other biomass furaldehydes and related compound to liquid fuels. The methods include the organocatalytic self-condensation (umpolung) of biomass furaldehydes into (C.sub.8-C.sub.12)furoin intermediates, followed by hydrogenation, etherification or esterification into oxygenated biodiesel, or hydrodeoxygenation by metal-acid tandem catalysis into premium hydrocarbon fuels.

  7. The upgrade of PKUAMS control system

    SciTech Connect

    Lu Xiangyang; Li Bin; Li Kun; Guo Zhiyu

    1999-06-10

    To meet the requirements of the 'Xia-Shang-Zhou Chronology' Project, Peking University AMS facility updated the control system of the PKUAMS by using the ControlNet system product, Group3 Ltd, New Zealand. The upgraded control system consists of a PC-based Loop Controller (LC), six Device Interfaces (DI) and several adequacy signal conditioners. The operation software is written by LabView registered (for Windows registered 3.X). After a half year operation, the upgraded control system shows better performance, even though it has suffered serious terminal sparks and the frequent sparks from the ion source. The control stability is better than 0.1% for 8 hours and the precision is better than 0.05%.

  8. An Upgrade for the Advanced Light Source

    SciTech Connect

    Chemla, Daniel S.; Feinberg, Benedict; Hussain, Zahid; Kirz, Janos; Krebs, Gary F.; Padmore, Howard A.; Robin, David S.; Robinson, Arthur L.; Smith, Neville V.

    2004-09-01

    One of the first third-generation synchrotron light sources, the ALS, has been operating for almost a decade at Berkeley Lab, where experimenters have been exploiting its high brightness for forefront science. However, accelerator and insertion-device technology have significantly changed since the ALS was designed. As a result, the performance of the ALS is in danger of being eclipsed by that of newer, more advanced sources. The ALS upgrade that we are planning includes full-energy, top-off injection with higher storage-ring current and the replacement of five first-generation insertion devices with nine state-of-the art insertion devices and four new application-specific beamlines now being identified in a strategic planning process. The upgrade will help keep the ALS at the forefront of soft x-ray synchrotron light sources for the next two decades.

  9. Upgrade of the Photon Factory Control System

    NASA Astrophysics Data System (ADS)

    Obina, T.; Pak, C. O.; Sato, Y.; Mishina, A.; Harada, K.; Kobayashi, Y.; Myajima, T.; Nagahashi, S.; Nogami, T.; Sakanaka, S.; Shioya, T.; Tadano, M.; Takahashi, T.; Tanimoto, Y.; Umemori, K.

    2007-01-01

    The Photon Factory control system was originally developed more than 20 years ago and has been upgraded several times. As a part of the straight-sections upgrade, which started in March, 2005, we renewed the control system incorporating modern technologies in both low-level and high-level control layers. In the low-level layer, a PLC (Programmable Logic Controller) is now intensively used for title safety control system, for RF klystron control boards and for the vacuum control system. In the middle-level and high-level layers, the EPICS (Experimental Physics and Industrial Control System) software toolkit was adopted. We also replaced VME-board computers with HP-RT operating system by Linux-based computers, which are now used as input/output controllers (IOCs) for the EPICS. The new system has been running without any serious problems since its commissioning in September, 2005.

  10. Jefferson Lab 12 GEV Cebaf Upgrade

    NASA Astrophysics Data System (ADS)

    Rode, C. H.

    2010-04-01

    The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at ˜6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a 310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

  11. Upgrade of Nuclotron power supply system

    NASA Astrophysics Data System (ADS)

    Karpinskii, V. N.; Kondrat'ev, N. G.; Osipenkov, A. L.; Karavaev, V. G.; Filippov, N. A.; Trubnikov, G. V.; Kovalenko, A. D.; Sidorin, A. O.; Butenko, A. V.; Volkov, V. I.; Vasilishin, B. V.; Kirichenko, A. E.; Romanov, S. V.

    2010-12-01

    One of the trends of Nuclotron development lies in modifying the power supply system and upgrading the energy evacuation system of structural magnets in order to provide reliable durable operation of the synchrotron at a dipole magnet field level of 2 T. This is necessary for Nuclotron operation as part of the injection chain of the heavy-ion NICA collider under design at JINR and for the current program of physical studies. The principles of construction and specific features of the existing system based on a separate power supply of structural dipole and quadrupole magnetic elements are considered. The main provisions of the upgrade of the power supply system, structural and schematic diagrams, control schemes, and energy evacuation switch schemes from superconducting elements are presented.

  12. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 12, June 21, 1992--September 20, 1992

    SciTech Connect

    Tsotsis, T.T.

    1992-12-31

    In this project we intend to study a novel process concept, i.e.,the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we wig evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  13. High temperature ceramic membrane reactors for coal liquid upgrading. Quarter report No. 9, September 21, 1991--December 20, 1991

    SciTech Connect

    Tsotsis, T.T.

    1992-07-01

    In this project we intend to study a novel process concept, i.e, the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  14. Upgrading physics packages for LAHET/MCNPX

    SciTech Connect

    Prael, R.E.

    1998-12-31

    A number of the physics capabilities have been upgraded in the development version of LAHET for the eventual use in MCNPX. These include a high-energy generator for particle interactions, complete definition for particle reaction and elastic scattering cross sections, a current mass excess tabulation, and an improved stopping power formulation. These developments are reported in this paper, along with some identification of the areas of continuing effort.

  15. The Sandia Lightning Simulator Recommissioning and upgrades.

    SciTech Connect

    Martinez, Leonard E.; Caldwell, Michele

    2005-08-01

    The Sandia lightning simulator at Sandia National Laboratories can provide up to 200 kA for a simulated single lightning stroke, 100 kA for a subsequent stroke, and hundreds of Amperes of continuing current. It has recently been recommissioned after a decade of inactivity and the single-stroke capability demonstrated. The simulator capabilities, basic design components, upgrades, and diagnostic capabilities are discussed in this paper.

  16. Fast sweeping reflectometry upgrade on Tore Supra

    SciTech Connect

    Clairet, F.; Bottereau, C.; Molina, D.; Ducobu, L.; Leroux, F.; Barbuti, A.; Heuraux, S.

    2010-10-15

    In order to study the temporal dynamics of turbulence, the sweep time of our reflectometry has been shortened from 20 to 2 {mu}s with 1 {mu}s dead time. Detailed technical aspects of the upgrade are given, namely, about the stability of the ramp generation, the detection setup, and the fast acquisition module. A review of studies (velocity measurement of the turbulence, modifications of the wavenumber spectrum, radial mapping of correlation time, etc.) offered by such improvements is presented.

  17. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four

  18. Upgrade of the ATLAS Tile Calorimeter Electronics

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Tile Calorimeter System, ATLAS

    2015-02-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase-II) where the peak luminosity will increase 5 times compared to the design luminosity (1034 cm-2s-1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expected to happen around 2024. The TileCal upgrade aims at replacing the majority of the on- and off- detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, configuration and detector control. For the off-detector electronics a pre-processor (sROD) is being developed, which takes care of the initial trigger processing while temporarily storing the main data flow in pipeline and derandomizer memories. One demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, is planned to be inserted in ATLAS this year.

  19. Seamounts, Direct Blast and Volume Reverberation Upgrades

    DTIC Science & Technology

    1988-11-30

    Highway. Suits 1204. Arlington, VA 22202-4302. "n to the Office of Management and Budget. Peperworik Reduction Project (0704-0188). Washington. DC 2050M. 1...Subtitle. 5. Funding Numbers. Seamounts, Direct Blast And Volume Reverberation Upgrades proram Eemen No 3 7 85N Project No R02017 6. Author(s). L...Section Pae 1 INTRODUCTION ................................. 1-1 2 ASERT: DATA PREPARATION FOR ASTRAL ........... 2-1 2.1 Overview and Purpose of

  20. Upgrade of the mini spectrum analyzer

    NASA Astrophysics Data System (ADS)

    Montebugnoli, Stelio; Bortolotti, Claudio; Buttaccio, Salvo; Cattani, Alessandro; Maccaferri, Andrea; Maccaferri, Giuseppe; Miani, Cristiano; Orfei, Alessandro; Roma, Mauro; Tuccari, Gino; Amico, Nicola D.; Grueff, Gavril

    1997-01-01

    The upgrade of the mini spectrum analyzer, built at the Medicina radiotelescope station laboratories and devoted to the Jupiter-SL9 crash on July 94, is presented. The new version of the spectrometer allows precise spectroscopy measurements and it has just been used for the Comet Hyakutake observations (May 1996) with very promising results. The same system could be used in small SETI activities with a possible future involvement of the Medicina/Noto antennas in this program.

  1. SLC Energy Upgrade Program at SLAC

    SciTech Connect

    Loew, G.A.; Allen, M.A.; Cassel, R.L.; Dean, N.R.; Konrad, G.T.; Koontz, R.F.; Lebacqz, J.V.

    1985-03-01

    The SLAC Linear Collider (SLC) must reach a nominal center-of-mass energy of 100 GeV to fulfill its high energy physics goals. This paper describes the energy upgrade program that is being implemented on the SLAC linear accelerator to meet these goals. It includes a discussion of the design requirements and available technical options, the rationale for the adopted solution, and the technical problems involved in the engineering and production of klystrons and modulators.

  2. Mobile Telemetry Van Remote Control Upgrade

    DTIC Science & Technology

    2012-05-17

    Advantages of Remote Control System Upgrade • Summary Overview • Remote control of Telemetry Mobile Ground Support ( TMGS ) Van proposed to allow...NWC) personnel provided valuable data for full-function remote control of telemetry tracking vans Background • TMGS Vans support Flight Test...control capability from main TM site at Building 5790 currently allows support via TMGS Van at nearby C- 15 Site, Plant 42 in Palmdale, and as far

  3. Title I Design Report: Fermilab Linac Upgrade

    SciTech Connect

    Fermilab,

    1990-02-01

    The Fermilab Linac Upgrade Project is motivated by the requirement to increase Collider luminosity which will increase the physics discovery potential of the Tevatron Collider. The Linac Upgrade is one of several steps which will increase the Collider luminosity. The basic accelerator physics motivation for the project is the following chain of logic. The existing Main Ring Accelerator has a fixed, relatively small admittance for 8 GeV protons injected from the Booster Accelerator. While it is demonstrably p088ible to increase the number of protons accelerated in the Booster, space charge effects at injection into the Booster from the Linac increase the emittance of the beam delivered from the Booster to the Main Ring beyond the available admittance of the Main Ring. An increase in the energy of the protons injected into the Booster, however, will reduce the emittance growth due to the space charge effects at injection. Therefore, for a given admittance into the Main Ring, a greater number of protons will be accelerated in the Booster with a matching emittance if the injection energy is raised. The goal of the Linac Upgrade is to double the output energy of the Linac from 200MeV to 400MeV.

  4. Criteria development for upgrading computer networks

    NASA Technical Reports Server (NTRS)

    Efe, Kemal

    1995-01-01

    Being an infrastructure system, the computer network has a fundamental role in the day to day activities of personnel working at KSC. It is easily appreciated that the lack of 'satisfactory' network performance can have a high 'cost' for KSC. Yet, this seemingly obvious concept is quite difficult to demonstrate. At what point do we say that performance is below the lowest tolerable level? How do we know when the 'cost' of using the system at the current level of degraded performance exceeds the cost of upgrading it? In this research, we consider the cost and performance factors that may have an effect in decision making in regards to upgrading computer networks. Cost factors are detailed in terms of 'direct costs' and 'subjective costs'. Performance factors are examined in terms of 'required performance' and 'offered performance.' Required performance is further examined by presenting a methodology for trend analysis based on applying interpolation methods to observed traffic levels. Offered performance levels are analyzed by deriving simple equations to evaluate network performance. The results are evaluated in the light of recommended upgrade policies currently in use for telephone exchange systems, similarities and differences between the two types of services are discussed.

  5. Proposal to upgrade the MIPP experiment

    SciTech Connect

    Isenhower, D.; Sadler, M.; Towell, R.; Watson, S.; Peterson, R.J.; Baker, W.; Carey, D.; Christian, D.; Demarteau, M.; Jensen, D.; Johnstone, C.; Meyer, H.; Raja, R.; Ronzhin, A.; Solomey, N.; Wester, W.; Gutbrod, H.; Peters, K.; Feldman, G.; Torun, Y.; Messier, M.D.; /Indiana U. /Iowa U. /Dubna, JINR /Kent State U. /Groningen, KVI /Michigan U. /St. Petersburg, INP /Purdue U. /South Carolina U. /Virginia U. /Wisconsin U., Madison

    2006-09-01

    The upgraded MIPP physics results are needed for the support of NuMI projects, atmospheric cosmic ray and neutrino programs worldwide and will permit a systematic study of non-perturbative QCD interactions. The MIPP TPC is the largest contributor to the MIPP event size by far. Its readout system and electronics were designed in the 1990's and limit it to a readout rate of 60 Hz in simple events and {approx} 20 Hz in complicated events. With the readout chips designed for the ALICE collaboration at the LHC, we propose a low cost scheme of upgrading the MIPP data acquisition speed to 3000 Hz. This will also enable us to measure the medium energy numi target to be used for the NOvA/MINERvA experiments. We outline the capabilities of the upgraded MIPP detector to obtain high statistics particle production data on a number of nuclei that will help towards the understanding and simulation of hadronic showers in matter. Measurements of nitrogen cross sections will permit a better understanding of cosmic ray shower systematics in the atmosphere. In addition, we explore the possibilities of providing tagged neutral beams using the MIPP spectrometer that may be crucial for validating the Particle Flow Algorithm proposed for calorimeters for the International Linear Collider detectors. Lastly, we outline the physics potential of such a detector in understanding non-perturbative QCD processes.

  6. Progress on the NSTX Center Stack Upgrade

    SciTech Connect

    L. Dudek, J. Chrzanowski, P. Heitzenroeder, D. Mangra, C. Neumeyer, M. Smith, R. Strykowsky, P. Titus, T. Willard

    2010-09-22

    The National Spherical Torus Experiment (NSTX) will be upgraded to provide increased toroidal field, plasma current and pulse length. This involves the replacement of the so-called center stack, including the inner legs of the Toroidal Field (TF) coil, the Ohmic Heating (OH) coil, and the inner Poloidal Field (PF) coils. In addition the increased performance of the upgrade requires qualification of remaining existing components for higher loads. Initial conceptual design efforts were based on worst-case combinations of possible currents that the power supplies could deliver. This proved to be an onerous requirement and caused many of the outer coils support structures to require costly heavy reinforcement. This has led to the planned implementation of a Digital Coil Protection System (DCPS) to reduce design-basis loads to levels that are more realistic and manageable. As a minimum, all components must be qualified for the increase in normal operating loads with headroom. Design features and analysis efforts needed to meet the upgrade loading are discussed. Mission and features of the DCPS are presented.

  7. The APS control system network upgrade.

    SciTech Connect

    Sidorowicz, K. v.; Leibfritz, D.; McDowell, W. P.

    1999-10-22

    When it was installed,the Advanced Photon Source (APS) control system network was at the state-of-the-art. Different aspects of the system have been reported at previous meetings [1,2]. As loads on the controls network have increased due to newer and faster workstations and front-end computers, we have found performance of the system declining and have implemented an upgraded network. There have been dramatic advances in networking hardware in the last several years. The upgraded APS controls network replaces the original FDDI backbone and shared Ethernet hubs with redundant gigabit uplinks and fully switched 10/100 Ethernet switches with backplane fabrics in excess of 20 Gbits/s (Gbps). The central collapsed backbone FDDI concentrator has been replaced with a Gigabit Ethernet switch with greater than 30 Gbps backplane fabric. Full redundancy of the system has been maintained. This paper will discuss this upgrade and include performance data and performance comparisons with the original network.

  8. Upgrade of the Proton West secondary beamline

    SciTech Connect

    Spiegel, L.

    1989-10-10

    As originally designed and operated, protons entering PW6 were steered by a series of EPB dipoles into a single interaction length beryllium target, some 43 feet from the enclosure wall. Ensuing secondary beams, either p{sup +}/{pi}{sup +} or p{sup -}/{pi}{sup -}, were collected by a string of quadrupoles following the target, steered westward, away from the Proton Center line, through PW6 and PW7, and ultimately focussed on experiment production targets located within the large PW8 hall. Around the Spring of 1988 it was decided to upgrade the existing Proton West secondary beamline to allow for transport of a primary proton beam, anticipated to be either 800 or 900 GeV/c, through PW8. This upgrade project, which is now nearing completion, was largely motivated by the then recent approval of E-771, a hadronic beauty production experiment located in PW8. E-771 represents the third in a series of experiments for the large-acceptance dimuon spectrometer presently located at the end of the Proton West beamline. This Technical Memo is a summary of the upgrade --- an explanation of the underlying strategy and a documentation of the final locations of the secondary beamline elements. 6 refs., 2 figs., 2 tabs.

  9. Upgrading of raw oil into advanced fuel

    SciTech Connect

    Not Available

    1991-10-01

    The overall objective of the research effort is the determination of the minimum processing requirements to produce high energy density fuels (HEDF) having acceptable fuel specifications. The program encompasses assessing current technology capability; selecting acceptable processing and refining schemes; and generating samples of advanced test fuels. The Phase I Baseline Program is intended to explore the processing alternatives for producing advanced HEDF from two raw synfuel feedstocks, one from Mild Coal Gasification as exemplified by the COALITE process and one from Colorado shale oil. Eight key tasks have been identified as follows: (1) Planning and Environmental Permitting; (2) Transporting and Storage of Raw Fuel Sources and Products; (3) Screening of Processing and Upgrading Schemes; (4) Proposed Upgrading Schemes for Advanced Fuel; (5) Upgrading of Raw Oil into Advanced Fuel (6) Packaging and Shipment of Advanced Fuels; (7) Updated Technical and Economic Assessment; and, (8) Final Report of Phase I Efforts. This topical report summarizes the operations and results of the Phase I Task 5 sample preparation program. The specific objectives of Task 5 were to: Perform laboratory characterization tests on the raw COALITE feed, the intermediate liquids to the required hydroprocessing units and final advanced fuels and byproducts; and produce a minimum of 25-gal of Category I test fuel for evaluation by DOE and its contractors.

  10. VISIR upgrade overview: all's well that ends well

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Käufl, Hans Ulrich; Tristram, Konrad; Asmus, Daniel; Baksai, Pedro; Di Lieto, Nicola; Dobrzycka, Danuta; Duhoux, Philippe; Finger, Gert; Hummel, Christian; Ives, Derek; Jakob, Gerd; Lundin, Lars; Mawet, Dimitri; Mehrgan, Leander; Pantin, Eric; Riquelme, Miguel; Sanchez, Joel; Sandrock, Stefan; Siebenmorgen, Ralf; Stegmeier, Jörg; Smette, Alain; Taylor, Julian; van den Ancker, Mario; Valdes, Guillermo; Venema, Lars

    2016-08-01

    We present an overview of the VISIR instrument after its upgrade and return to science operations. VISIR is the midinfrared imager and spectrograph at ESO's VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan was based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As AQUARIUS detector array manufactured by Raytheon. In addition, a new prism spectroscopic mode covers the whole N-band in a single observation. Finally, new scientific capabilities for high resolution and high-contrast imaging are offered by sub-aperture mask and coronagraphic modes. In order to make optimal use of favourable atmospheric conditions, a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a user-defined constraint on water vapour. During the commissioning in 2012, it was found that the on-sky sensitivity of the AQUARIUS detector was significantly below expectations. Extensive testing of the detector arrays in the laboratory and on-sky enabled us to diagnose the cause for the shortcoming of the detector as excess low frequency noise. It is inherent to the design chosen for this detector and cannot be remedied by changing the detector set-up. Since this is a form of correlated noise, its impact can be limited by modulating the scene recorded by the detector. After careful analysis, we have implemented fast (up to 4 Hz) chopping with field stabilization using the secondary mirror of the VLT. During commissioning, the upgraded VISIR has been confirmed to be more sensitive than the old instrument, and in particular for low-resolution spectroscopy in the N-band, a gain of a factor 6 is realized in observing efficiency

  11. On optimal strategies for upgrading networks

    SciTech Connect

    Krumke, S.O.; Noltemeier, H.; Marathe, M.V.; Ravi, S.S.; Ravi, R.; Sundaram, R.

    1996-07-02

    We study {ital budget constrained optimal network upgrading problems}. Such problems aim at finding optimal strategies for improving a network under some cost measure subject to certain budget constraints. Given an edge weighted graph {ital G(V,E)}, in the {ital edge based upgrading model}, it is assumed that each edge {ital e} of the given network has an associated function {ital c(e)} that specifies for each edge {ital e} the amount by which the length {ital l(e)} is to be reduced. In the {ital node based upgrading model} a node {ital v} can be upgraded at an expense of cost {ital (v)}. Such an upgrade reduces the cost of each edge incident on {ital v} by a fixed factor {rho}, where 0 < {rho} < 1. For a given budget, {ital B}, the goal is to find an improvement strategy such that the total cost of reduction is a most the given budget {ital B} and the cost of a subgraph (e.g. minimum spanning tree) under the modified edge lengths is the best over all possible strategies which obey the budget constraint. Define an ({alpha},{beta})-approximation algorithm as a polynomial-time algorithm that produces a solution within {alpha} times the optimal function value, violating the budget constraint by a factor of at most {Beta}. The results obtained in this paper include the following 1. We show that in general the problem of computing optimal reduction strategy for modifying the network as above is {bold NP}-hard. 2. In the node based model, we show how to devise a near optimal strategy for improving the bottleneck spanning tree. The algorithms have a performance guarantee of (2 ln {ital n}, 1). 3. for the edge based improvement problems we present improved (in terms of performance and time) approximation algorithms. 4. We also present pseudo-polynomial time algorithms (extendible to polynomial time approximation schemes) for a number of edge/node based improvement problems when restricted to the class of treewidth-bounded graphs.

  12. Upgrade of the LHCb Vertex Locator

    NASA Astrophysics Data System (ADS)

    Leflat, A.

    2014-08-01

    The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a trigger-less system operating at 40 MHz. All data reduction algorithms will be executed in a high-level software farm, with access to all event information. This will enable the detector to run at luminosities of 1-2 × 1033/cm2/s and probe physics beyond the Standard Model in the heavy sector with unprecedented precision. The upgraded VELO must be low mass, radiation hard and vacuum compatible. It must be capable of fast pattern recognition and track reconstruction and will be required to drive data to the outside world at speeds of up to 2.5 Tbit/s. This challenge is being met with a new Vertex Locator (VELO) design based on hybrid pixel detectors positioned to within 5 mm of the LHC colliding beams. The sensors have 55 × 55 μm square pixels and the VELOPix ASIC which is being developed for the readout is based on the Timepix/Medipix family of chips. The hottest ASIC will have to cope with pixel hit rates of up to 900 MHz. The material budget will be optimised with the use of evaporative CO2 coolant circulating in microchannels within a thin silicon substrate. Microchannel cooling brings many advantages: very efficient heat transfer with almost no temperature gradients across the module, no CTE mismatch with silicon components, and low material contribution. This is a breakthrough technology being developed for LHCb. LHCb is also focussing effort on the construction of a lightweight foil to separate the primary and secondary LHC vacua, the development of high speed cables and radiation qualification of the module. The 40 MHz readout will also bring significant conceptual changes to the way in which the upgrade trigger is operated. Work is in progress to incorporate momentum and impact parameter information into the trigger at the earliest possible stage, using the fast pattern recognition capabilities of the upgraded detector. The current status of the VELO upgrade will

  13. A review on optimization production and upgrading biogas through CO2 removal using various techniques.

    PubMed

    Andriani, Dian; Wresta, Arini; Atmaja, Tinton Dwi; Saepudin, Aep

    2014-02-01

    Biogas from anaerobic digestion of organic materials is a renewable energy resource that consists mainly of CH4 and CO2. Trace components that are often present in biogas are water vapor, hydrogen sulfide, siloxanes, hydrocarbons, ammonia, oxygen, carbon monoxide, and nitrogen. Considering the biogas is a clean and renewable form of energy that could well substitute the conventional source of energy (fossil fuels), the optimization of this type of energy becomes substantial. Various optimization techniques in biogas production process had been developed, including pretreatment, biotechnological approaches, co-digestion as well as the use of serial digester. For some application, the certain purity degree of biogas is needed. The presence of CO2 and other trace components in biogas could affect engine performance adversely. Reducing CO2 content will significantly upgrade the quality of biogas and enhancing the calorific value. Upgrading is generally performed in order to meet the standards for use as vehicle fuel or for injection in the natural gas grid. Different methods for biogas upgrading are used. They differ in functioning, the necessary quality conditions of the incoming gas, and the efficiency. Biogas can be purified from CO2 using pressure swing adsorption, membrane separation, physical or chemical CO2 absorption. This paper reviews the various techniques, which could be used to optimize the biogas production as well as to upgrade the biogas quality.

  14. Capability Set 13: Blue Force Tracking Upgrades Offer Greater Situational Awareness

    DTIC Science & Technology

    2012-01-01

    situational awareness picture. Prior to and as part of Capability Set 13, JCR is being fielded to Afghanistan. The system allows Soldiers in battle...Soldier experience and feedback. While JCR is being fielded to troops in Afghan- istan through CS 13, JBC-P, which will bring enhanced on-the-move command...Among the upgrades JCR brings is JCR -Logis- tics, which integrates FBCB2/BFT capability with Movement Tracking System for Army logisticians. The

  15. Exploration of the Equilibrium Operating Space For NSTX-Upgrade

    SciTech Connect

    S.P. Gerhardt, R. Andre and J.E. Menard

    2012-04-25

    This paper explores a range of high-performance equilibrium scenarios available in the NSTX-Upgrade device [J.E. Menard, submitted for publication to Nuclear Fusion]. NSTX-Upgrade is a substantial upgrade to the existing NSTX device [M. Ono, et al., Nuclear Fusion 40, 557 (2000)], with significantly higher toroidal field and solenoid capabilities, and three additional neutral beam sources with significantly larger current drive efficiency. Equilibria are computed with freeboundary TRANSP, allowing a self consistent calculation of the non-inductive current drive sources, the plasma equilibrium, and poloidal field coil current, using the realistic device geometry. The thermal profiles are taken from a variety of existing NSTX discharges, and different assumptions for the thermal confinement scalings are utilized. The no-wall and idealwall n=1 stability limits are computed with the DCON code. The central and minimum safety factors are quite sensitive to many parameters: they generally increases with large outer plasmawall gaps and higher density, but can have either trend with the confinement enhancement factor. In scenarios with strong central beam current drive, the inclusion of non-classical fast ion diffusion raises qmin, decreases the pressure peaking, and generally improves the global stability, at the expense of a reduction in the non-inductive current drive fraction; cases with less beam current drive are largely insensitive to additional fast ion diffusion. The non-inductive current level is quite sensitive to the underlying confinement and profile assumptions. For instance, for BT=1.0 T and Pinj=12.6 MW, the non-inductive current level varies from 875 kA with ITER-98y,2 thermal confinement scaling and narrow thermal profiles to 1325 kA for an ST specific scaling expression and broad profiles. This sensitivity should facilitate the determination of the correct scaling of transport with current and field to use for future fully non-inductive ST devices

  16. Methods and apparatuses for preparing upgraded pyrolysis oil

    DOEpatents

    Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

    2013-10-01

    Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

  17. Upgrading the Northern Finland Seismological Network

    NASA Astrophysics Data System (ADS)

    Narkilahti, Janne; Kozlovskaya, Elena; Silvennoinen, Hanna; Hurskainen, Riitta; Nevalainen, Jouni

    2016-04-01

    The Finnish National Seismic Network (FNSN) comprises national Helsinki University Seismological network (HE) ISUH and the Northern Finland Seismological Network (FN) hosted by the Sodankylä Geophysical Observatory (SGO) of the University of Oulu. The FN network currently consists of four real-time permanent stations equipped with Streckeisen STS-2 broad band seismometers that are recording continuous digital seismic data. At present, the network is a part of GEOFON Extended Virtual Network and of the ORFEUS Virtual European Broadband Seismograph Network. In the future, the network will be the part of EPOS-European Plate Observing System research infrastructure. As a part of EPOS project activities, the SGO started to upgrade their own network in 2014. The main target of the network upgrade is to increase the permanent station coverage in the European Arctic region, particularly behind the Polar Circle. Another target is to transform the network into a broadband seismic array capable to detect long-period seismic signals originating from seismic events in the Arctic. The first upgrade phase started in 2014, when two new stations were installed and now are working in the test regime. These stations are used as prototypes for testing seismic equipment and technical solutions for real-time data transmission and vault construction under cold climate conditions. The first prototype station is installed in a surface vault and equipped with Nanometrics Trillium 120P sensor, while the other one is installed in a borehole and equipped with Trillium Posthole seismometer. These prototype stations have provided to us valuable experience on the downhole and surface deployment of broadband seismic instruments. We also have been able to compare the capabilities and performance of high sensitivity broadband sensor deployed in borehole with that deployed in surface vault. The results of operation of prototype stations will be used in site selection and installation of four new

  18. REVIVING AND UPGRADING OF THE EP DEVICE

    SciTech Connect

    Rodriquez, I.; Higinbotham, D.W.

    2008-01-01

    At Thomas Jefferson National Accelerator Facility, an electron beam is used to probe the fundamental properties of the nucleus. In these experiments, it is essential to know the precise energy of the beam. An important instrument along the beamline to measure the beam energy is the eP device. The device measures the scattered electron angle and the recoil proton angle of an elastic collision. From these angle measurements, the beam energy can be calculated. Many eP device components such as computer software, controls, and mechanical parts needed to be upgraded and/or replaced in order for the eP device to be operational again. A research study was conducted of the current hydrogen target and its properties as well as alternate targets for better performance. As the maximum electron beam energy incident on the eP device will soon be upgraded from 6 GeV to 12 GeV, an analysis was also done on potential changes to the position of the electron and proton detectors in order to accommodate this change. Calculations show that for the new energy upgrade, electron detectors need to be positioned at 5° above and below the beamline to measure the energy of 12 GeV. New proton detectors need to be placed at an angle of 49.2° above and below the beamline to measure energies of 6.6 GeV and 8.8 GeV. With these changes the eP device will measure the range of new energies from 2.2 GeV to 12 GeV. From the target research studies it was found that a carbon nanotube mixture with polypropylene could be the ideal target for the eP device because of its high thermal conductivity and its high hydrogen content. The changes made to the eP device demonstrate the importance of continued research and new technologies.

  19. Status of the Cyclotron Institute Upgrade Project

    NASA Astrophysics Data System (ADS)

    Melconian, Dan

    2016-09-01

    The Texas A&M University Re-accelerated EXotics (T-REX) project, an upgrade to the Cyclotron Institute, will provide high-quality re-accelerated secondary beams of a unique energy range and the ability to provide primary beams to two experiments concurrently. The upgrade is nearing completion of its three major tasks: re-commissioning of the existing K150 cyclotron; construction of light- and heavy-ion guide transport systems; and charge-boosting the K150 RIB for re-acceleration using the K500 cyclotron. The light-ion guide transport system will utilize the high intensity (>= 10 μ A) proton beam from the K150 to produce rare ions via fusion-evapouration reactions or proton-induced fission fragments. These ions will be transported to an ECR charge breeder prior to injection in the K500. The heavy-ion guide will use deep inelastic, transfer and fragmentation reactions using the up to 25 MeV/u primary beams from the K150. The products will be separated by a superconducting solenoid and collected in a large gas-catcher, after which a multi-RFQ system will transport the RIB to any of: the charge-breeder and K500; the TAMU Penning Trap beamline; or an MR-TOF for beam analysis. The status of the T-REX upgrade and an overview of its capabilities will be presented Supported by DOE Grant Number DE-FG03-93ER40773 and the Robert A. Welch Foundation Grant Number H-A-0098.

  20. Successful Strategies for Rapidly Upgrading PTC Windchill 9.1 to Windchill 10.1 on a Light Budget

    NASA Technical Reports Server (NTRS)

    Shearrow, Charles A.

    2013-01-01

    Topics covered include: The Frugal Times Historical Upgrade Process; Planning for Possible Constraints; PTC Compatibility Matrix; In-Place Upgrade Process; Pre-Upgrade Activities; Upgrade Activities; Post Upgrade Activities; Results of the Upgrade; Tips for an Upgrade On a Shoestring Budget.

  1. Commissioning Simulations for the APS Upgrade Lattice

    SciTech Connect

    Sajaev, V.; Borland, M.

    2015-01-01

    A hybrid seven-bend-achromat lattice that features very strong focusing elements and a relatively small vacuum chamber has been proposed for the APS upgrade. Achieving design lattice parameters during commissioning will need to be accomplished quickly in order to minimize dark time for APS users. The paper will describe start-to-end simulation of the machine commissioning beginning from first-turn trajectory correction, progressing to orbit and lattice correction, and culminating in evaluation of the nonlinear performance of the corrected lattice

  2. Upgrading protected areas to conserve wild biodiversity.

    PubMed

    Pringle, Robert M

    2017-05-31

    International agreements mandate the expansion of Earth's protected-area network as a bulwark against the continued extinction of wild populations, species, and ecosystems. Yet many protected areas are underfunded, poorly managed, and ecologically damaged; the conundrum is how to increase their coverage and effectiveness simultaneously. Innovative restoration and rewilding programmes in Costa Rica's Área de Conservación Guanacaste and Mozambique's Parque Nacional da Gorongosa highlight how degraded ecosystems can be rehabilitated, expanded, and woven into the cultural fabric of human societies. Worldwide, enormous potential for biodiversity conservation can be realized by upgrading existing nature reserves while harmonizing them with the needs and aspirations of their constituencies.

  3. Upgrade of the area II spectrograph

    SciTech Connect

    Rehm, K.E.; Bolduc, C.

    1995-08-01

    Because of the low beam energies required for experiments of astrophysical interest, the first test experiments with radioactive {sup 18}F beams can be performed in Area II. Because of the shorter distances between ion source and detector this also results in higher transmission efficiencies. The Enge split-pole spectrograph, which was not used during the last 8 years, was equipped with a new cryopump system, upgrades to the magnet power supply and the NMR system were performed. A rotating target system was built which should alleviate target deterioration effects that were observed in first test experiments.

  4. BaBar Forward Endcap Upgrade

    SciTech Connect

    Anulli, F.

    2004-06-17

    The muon and neutral hadron detector (Instrumented Flux Return or IFR) in the forward endcap of the BaBar detector at SLAC was upgraded by the installation of a new generation of Resistive Plate Chambers (RPCs) and by increasing the absorber. The chamber replacement was made necessary by the rapid aging and efficiency loss of the original BaBar RPCs. Based on our experience with those original RPCs and 24 RPCs with thinner linseed oil treatments, improvements in the design, construction, and testing of the new generation RPCs were implemented and are described in detail.

  5. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect

    Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

  6. Alaska Seismic Network Upgrade and Expansion

    NASA Astrophysics Data System (ADS)

    Sandru, J. M.; Hansen, R. A.; Estes, S. A.; Fowler, M.

    2009-12-01

    AEIC (Alaska Earthquake Information Center) has begun the task of upgrading the older regional seismic monitoring sites that have been in place for a number of years. Many of the original sites (some dating to the 1960's) are still single component analog technology. This was a very reasonable and ultra low power reliable system for its day. However with the advanced needs of today's research community, AEIC has begun upgrading to Broadband and Strong Motion Seismometers, 24 bit digitizers and high-speed two-way communications, while still trying to maintain the utmost reliability and maintaining low power consumption. Many sites have been upgraded or will be upgraded from single component to triaxial broad bands and triaxial accerometers. This provided much greater dynamic range over the older antiquated technology. The challenge is compounded by rapidly changing digital technology. Digitizersand data communications based on analog phone lines utilizing 9600 baud modems and RS232 are becoming increasingly difficult to maintain and increasingly expensive compared to current methods that use Ethernet, TCP/IP and UDP connections. Gaining a reliable Internet connection can be as easy as calling up an ISP and having a DSL connection installed or may require installing our own satellite uplink, where other options don't exist. LANs are accomplished with a variety of communications devices such as spread spectrum 900 MHz radios or VHF radios for long troublesome shots. WANs are accomplished with a much wider variety of equipment. Traditional analog phone lines are being used in some instances, however 56K lines are much more desirable. Cellular data links have become a convenient option in semiurban environments where digital cellular coverage is available. Alaska is slightly behind the curve on cellular technology due to its low population density and vast unpopulated areas but has emerged into this new technology in the last few years. Partnerships with organizations

  7. UIUC control console installation and upgrade

    SciTech Connect

    Holm, Richard L.

    1994-07-01

    The University of Illinois Nuclear Reactor Laboratory shutdown in March of 1993 to install the General Atomics digital control console. Two weeks of this period were devoted to refurbishment of the rod drives and two weeks were the actual installation of the console. Much of the wiring necessary to install the console was done during the period when the rod drives were being refurbished. A few mistakes were made along the way. 1) A 'repaired' extension cord was temporarily used to supply power to the DAC... the ground and neutral were reversed... this was not appreciated by the DAC{exclamation_point} We had to replace a couple of the boards in the DAC after that little fiasco. 2) The instrumentation cables for the rod drives were received with the plugs all connected and ready to install... except you can't put a two inch plug through a half inch conduit. We had to cut the plugs off, run the cable through the conduit, and then resolder the plugs on where the rod drive assembly connects (my privilege). 3) We had to replace the memory board in the NM1000 in order to prevent it from losing its mind every time it got turned off. 4) There were problems with the pulse data acquisition that were eventually traced to a problem in the ribbon cable between the mother and daughter boards. All in all the installation and operation of the console went fairly well. There are still occasional glitches, but none serious or excessively annoying. The console installation is part of an upgrade program to replace all of the instrumentation in the facility with the modern equivalent. The pressure and flow sensors, currently air operated, are being replaced with 4-20 ma transmitters for input into the control console and into a mimic board for the primary and secondary systems. Through the funding of the now defunct, temporarily we hope, Reactor Instrumentation Program we have upgraded our area radiation monitors as well. These upgrades provide us with more reliable equipment as well as

  8. MCNPX graphics and arithmetic tally upgrades

    SciTech Connect

    Durkee, Joe W; James, Michael R; Waters, Laurie S

    2008-01-01

    The MCNPX MCPLOT package is the tool used to plot tallies and cross-sections. We report on an assortment of upgrades to MCPLOT that are intended to improve the appearance of two-dimensional tally and cross-section plots. We have also expanded the content and versatility of the MCPLOT 'help' command. Finally, we describe the initial phase of capability implementation to post-process tally data using arithmetic operations. These improvements will enable users to better display and manipulate simulation results.

  9. RHIC BPM SYSTEM PERFORMANCE, UPGRADES, AND TOOLS.

    SciTech Connect

    SATOGATA,T.; CAMERON,P.; CERNIGLIA,P.; CUPOLO,J.; DAWSON,C.; DEGEN,C.; MEAD,J.; PTITSYN,V.; SIKORA,R.

    2002-06-02

    During the RHIC 2001-2 run, the beam position monitor (BPM) system provided independent average orbit and turn-by-turn (TBT) position measurements at 162 locations in each measurement plane and RHIC ring. TBT acquisition was successfully upgraded from 128 turns to 1024 turns per trigger, including injection. Closed orbits were acquired and automatically archived every two seconds through each acceleration ramp for orbit analysis and feed-forward orbit correction. This paper presents the overall system performance during this run, including precision, reproducibility, radiation damage, and analysis tools. We also summarize future plans, including million-turn TBT acquisition for nonlinear dynamics studies.

  10. BaBar forward endcap upgrade

    NASA Astrophysics Data System (ADS)

    Anulli, F.; Baldini, R.; Calcaterra, A.; Daniello, L.; de Sangro, R.; Finocchiaro, G.; Patteri, P.; Piccolo, M.; Santoni, M.; Zallo, A.; Cheng, C. H.; Lange, D. J.; Wright, D. M.; Boyce, R.; Krebs, J.; Messner, R.; Putallaz, G.; Wisniewski, W. J.; Buzzo, A.; Crosetti, G.; LoVetere, M.; Minutoli, S.; Passaggio, S.; Pollovio, P.; Robutti, E.; Tosi, S.; Trovato, A.; Cartaro, C.; Fabozzi, F.; Lista, L.; Piccolo, D.; Paolucci, P.; Avanzini, C.; Carpinelli, M.; Forti, F.; Neri, N.; Paoloni, E.; Rizzi, D.; Bellini, F.; Buccheri, A.; Cavoto, G.; del Re, D.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gargiulo, C.; Gaspero, M.; Lunadei, R.; Mazzoni, M. A.; Morganti, S.; Pelosi, A.; Pierini, M.; Piredda, G.; Voena, C.; Sinev, N.; Strom, D.; Foulkes, S.; Wang, K.; Band, H. R.; Hollar, J.; Tan, P.

    2005-02-01

    The muon and neutral hadron detector (instrumented flux return or IFR) in the forward endcap of the BaBar detector at SLAC was upgraded by the installation of a new generation of resistive plate chambers (RPCs) and by increasing the absorber. The chamber replacement was made necessary by the rapid aging and efficiency loss of the original BaBar RPCs. Based on our experience with those original RPCs and 24 RPCs with thinner linseed oil treatments, improvements in the design, construction, and testing of the new generation RPCs were implemented and are described in detail.

  11. Operation and Upgrades of the LCLS*

    SciTech Connect

    Frisch, J.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Emma, P.; Fisher, A.; Gilevich, S.; Hastings, J.; Hays, G.; Hering, P.; Huang, Z.; Iverson, R.; /SLAC /Argonne /SLAC

    2010-10-27

    The LCLS FEL began user operations in September 2009 with photon energies from 800eV to 2 KeV and pulse energies above 2 mJ. Both long pulse (50-200 femtosecond FWHM) and short pulse (<10 femtosecond FWHM at 150 uJ) pulses were delivered at user request. In addition the FEL was operated at fundamental photon energies up to 10 KeV in preparation for hard X-ray experiments. FEL operating parameters, performance and reliability results will be presented, in addition to plans for upgrades to the facility.

  12. An upgraded SCUBA-2 for JCMT

    NASA Astrophysics Data System (ADS)

    Bintley, Dan; Dempsey, Jessica T.; Friberg, Per; Holland, Wayne S.; MacIntosh, Michael J.

    2016-07-01

    SCUBA-2 is a state of the art wide field camera on the JCMT. SCUBA-2 has been fully operational since November 2011, producing a wide range of science results, including a unique series of survey programs. A new large survey programme commenced in 2015, which included for the first time, polarisation sensitive measurements using POL-2, the polarimeter ancillary instrument. We discuss proposals and the science case for upgrading SCUBA-2 with new detector arrays that will keep SCUBA-2 and the JCMT at the forefront of continuum submillimetre science.

  13. Electron cyclotron heating in TMX-Upgrade

    SciTech Connect

    Stallard, B.W.; Hooper, E.B. Jr.

    1981-01-01

    TMX-Upgrade, an improved tandem mirror experiment under construction at LLNL, will use electron cyclotron resonance heating (ECRH) to create thermal barriers and to increase the center cell ion confining potential. Gyrotron oscillators (200 kW, 28 GHz) supply the heating power for the potential confined electron (fundamental heating) and the mirror-confined electrons (harmonic heating) in the thermal barriers. Important issues are temperature limitation and microstability for the hot electrons. Off-midplane heating can control anisotropy-driven microstability. Spacially restricting heating offers the possibility of temperature control by limiting the energy for resonant interaction.

  14. Upgrading of existing structures. Final report on phase 2

    SciTech Connect

    Gabrielsen, B.L.; Tansely, R.S.; Cuzner, G.

    1980-06-01

    This report presents the results of an investigation of blast upgrading of existing structures, which consisted of developing failure prediction methodologies for various structure types, both in 'as built' and in upgraded configurations, and verifying these prediction techniques with full-scale load tests. These upgrading schemes were developed for use as shelters in support of Civil Defense crisis relocation planning. Structure types investigated included wood, steel, and concrete floor and roof systems. The results of this study are being used in the development of a shelter manual presenting the various upgrading concepts in an illustrative workbook form for use in the field.

  15. Efficient carbon rejection upgrades Mexico's Maya crude oil

    SciTech Connect

    Suchanek, A.J.; Moore, A.S.

    1986-08-01

    Poor-quality crude oils and resids can be effectively upgraded by a chemically efficient carbon-rejection process followed by hydrotreating. The effectiveness is demonstrated by utilizing the asphalt residual treating (ART) process to upgrade whole Maya crude oil from Mexico, in a 100,000-b/d refinery. Maya was chosen because it represents most of the world's poor-quality crude oils and resids, and because the results of processing Maya will be similar for other poor-quality feed stocks. Here is a review of the upgrade process, along with investment and operating economics of the Maya upgrade.

  16. FPGA-based algorithms for the new trigger system for the phase 2 upgrade of the CMS drift tubes detector

    NASA Astrophysics Data System (ADS)

    Cela-Ruiz, J.-M.

    2017-01-01

    The new luminosity conditions imposed after the LHC upgrade will require a dedicated upgrade of several subdetectors. To cope with the new requirements, CMS drift tubes subdetector electronics will be redesigned in order to achieve the new foreseen response speed. In particular, it is necessary to enhance the first stage of the trigger system (L1A). In this document we present the development of a software algorithm, based on the mean timer paradigm, capable of reconstructing muon trajectories and rejecting spurious signals. It has been initially written in C++ programming language, but designed with its portability to a FPGA VHDL code in mind.

  17. Upgrade of the Dow TRIGA research reactor

    SciTech Connect

    Kocher, C.W.

    1991-11-01

    Useful operation of the Dow TRIGA{sup a} research reactor over a period of >20 years has led to a commitment to upgrades enabling another two decades of use with increased capabilities. The reactor utilization program and the upgrades are described in this paper. These included requesting a 20-yr license instead of the 10-yr license, which had been used previously; changing the license to allow operation at power levels of up to 300 kW, which provided improved analytical sensitivity; adding fuel elements to the core, which allowed better performance at the higher power levels; renovating the laboratories, which included consolidating the radioactive materials handling areas and improving the sample preparation areas; installing new shielding, detectors, computers, and sample-handling robots for greater productivity and sensitivity; replacing the 1967-1974 era control console and renovating the control rod drives to provide greater safety, reliability, and maintenance capabilities; and identifying, training, and licensing more senior reactor operators to allow the staff to continue operating and improving this system well past the turn of the century.

  18. Upgrades to the TPSX Material Properties Database

    NASA Technical Reports Server (NTRS)

    Squire, T. H.; Milos, F. S.; Partridge, Harry (Technical Monitor)

    2001-01-01

    The TPSX Material Properties Database is a web-based tool that serves as a database for properties of advanced thermal protection materials. TPSX provides an easy user interface for retrieving material property information in a variety of forms, both graphical and text. The primary purpose and advantage of TPSX is to maintain a high quality source of often used thermal protection material properties in a convenient, easily accessible form, for distribution to government and aerospace industry communities. Last year a major upgrade to the TPSX web site was completed. This year, through the efforts of researchers at several NASA centers, the Office of the Chief Engineer awarded funds to update and expand the databases in TPSX. The FY01 effort focuses on updating correcting the Ames and Johnson thermal protection materials databases. In this session we will summarize the improvements made to the web site last year, report on the status of the on-going database updates, describe the planned upgrades for FY02 and FY03, and provide a demonstration of TPSX.

  19. Low Energy Accelerator Facility Upgrade and test

    SciTech Connect

    Alford, K.; Chemerisov, S.; Gromov, R.; Hafenrichter, L.; Jonah, C. D.; Tafoya, R.; Wesolowski, K.; Brown, D.; Forknall, S.; Gardner, James; Macrillo, Dave; Zulpo, A.

    2015-01-01

    The Low Energy Accelerator Facility (LEAF) contains a low-energy linac with high average beam power, which was designed and built in the late 1960’s primarily for radiation-chemistry experiments. The maximum beam energy in that configuration was 21 MeV. Although, the installation is old, it is still reliable. The accelerator was repurposed for development of accelerator-based technologies for the production of 99Mo with funding provided by the National Nuclear Security Administration’s Office of Material Management and Minimization (M3 ). An extensive scientific program on the production of radioactive isotopes demanded an upgrade of the accelerator to fit the experimental requirements. Several possible LEAF upgrades were proposed to increase the electron beam energy. The final design proposed the replacement of the old accelerating structures with new ones. In 2011-2012, the new structures were manufactured, installed, and tested with the beam energy up to 50 MeV and average beam power up to 20 kW. LEAF now is an attractive installation for performing research into medical isotope production.

  20. The Phase1 CMS Pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Tavolaro, V. R.

    2016-12-01

    The pixel detector of the CMS experiment will be replaced in an extended end-of-year shutdown during winter 2016/2017 with an upgraded one able to cope with peak instantaneous luminosities beyond the nominal LHC instantaneous luminosity of 1 × 1034 cm-2 s-1. Under the conditions expected in the coming years, which will see an increase of a factor two in instantaneous luminosity, the present system would experience a dynamic inefficiency caused mainly by data losses due to buffer overflows. The Phase I upgrade of the CMS pixel detector, described in this paper, will operate at full efficiency at an instantaneous luminosity of 2 × 1034 cm-2 s-1 and beyond, thanks to a new readout chip. The new detector will feature one additional tracking point both in the barrel and in the forward regions, while reducing the material budget as a result of a new CO2 cooling system and optimised layout of the services. In this paper, the design and the technological choices of the Phase I detector will be reviewed and the status of the construction of the detector and the performance of its components will be discussed.