Science.gov

Sample records for asdex upgrade enhancements

  1. The enhanced ASDEX Upgrade pellet centrifuge launcher.

    PubMed

    Plöckl, B; Lang, P T

    2013-10-01

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  2. The enhanced ASDEX Upgrade pellet centrifuge launcher

    NASA Astrophysics Data System (ADS)

    Plöckl, B.; Lang, P. T.

    2013-10-01

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  3. The enhanced ASDEX Upgrade pellet centrifuge launcher

    SciTech Connect

    Plöckl, B.; Lang, P. T.

    2013-10-15

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  4. Enhancement of the FIDA diagnostic at ASDEX Upgrade for velocity space tomography

    NASA Astrophysics Data System (ADS)

    Weiland, M.; Geiger, B.; Jacobsen, A. S.; Reich, M.; Salewski, M.; Odstrčil, T.; the ASDEX Upgrade Team

    2016-02-01

    Recent upgrades to the FIDA (fast-ion D-alpha) diagnostic at ASDEX Upgrade are discussed. The diagnostic has been extended from three to five line of sight arrays with different angles to the magnetic field, and a spectrometer redesign allows the simultaneous measurement of red- and blue-shifted parts of the Doppler spectrum. These improvements make it possible to reconstruct the 2D fast-ion velocity distribution f≤ft(E,{{v}\\parallel}/v\\right) from the FIDA measurements by tomographic inversion under a wide range of plasma parameters. Two applications of the tomography are presented: a comparison between the distributions resulting from 60 keV and 93 keV neutral beam injection and a velocity-space resolved study of fast-ion redistribution induced by a sawtooth crash inside and outside the sawtooth inversion radius.

  5. Overview of ASDEX Upgrade results

    NASA Astrophysics Data System (ADS)

    Gruber, O.; Bosch, H.-S.; Günter, S.; Herrmann, A.; Kallenbach, A.; Kaufmann, M.; Krieger, K.; Lackner, K.; Mertens, V.; Neu, R.; Ryter, F.; Schweinzer, J.; Stäbler, A.; Suttrop, W.; Wolf, R.; Asmussen, K.; Bard, A.; Becker, G.; Behler, K.; Behringer, K.; Bergmann, A.; Bessenrodt-Weberpals, M.; Borrass, K.; Braams, B.; Brambilla, M.; Brandenburg, R.; Braun, F.; Brinkschulte, H.; Brückner, R.; Brüsehaber, B.; Büchl, K.; Buhler, A.; Callaghan, H. P.; Carlson, A.; Coster, D. P.; Cupido, L.; de Peña Hempel, S.; Dorn, C.; Drube, R.; Dux, R.; Egorov, S.; Engelhardt, W.; Fahrbach, H.-U.; Fantz, U.; Feist, H.-U.; Franzen, P.; Fuchs, J. C.; Fussmann, G.; Gafert, J.; Gantenbein, G.; Gehre, O.; Geier, A.; Gernhardt, J.; Gubanka, E.; Gude, A.; Haas, G.; Hallatschek, K.; Hartmann, D.; Heinemann, B.; Herppich, G.; Herrmann, W.; Hofmeister, F.; Holzhauer, E.; Jacobi, D.; Kakoulidis, M.; Karakatsanis, N.; Kardaun, O.; Khutoretski, A.; Kollotzek, H.; Kötterl, S.; Kraus, W.; Kurzan, B.; Kyriakakis, G.; Lang, P. T.; Lang, R. S.; Laux, M.; Lengyel, L. L.; Leuterer, F.; Lorenz, A.; Maier, H.; Manso, M.; Maraschek, M.; Markoulaki, M.; Mast, K.-F.; McCarthy, P. J.; Meisel, D.; Meister, H.; Merkel, R.; Meskat, J. P.; Müller, H. W.; Münich, M.; Murmann, H.; Napiontek, B.; Neu, G.; Neuhauser, J.; Niethammer, M.; Noterdaeme, J.-M.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pinches, S.; Raupp, G.; Reinmüller, K.; Riedl, R.; Rohde, V.; Röhr, H.; Roth, J.; Salzmann, H.; Sandmann, W.; Schilling, H.-B.; Schlögl, D.; Schmidtmann, K.; Schneider, H.; Schneider, R.; Schneider, W.; Schramm, G.; Schweizer, S.; Schwörer, R. R.; Scott, B. D.; Seidel, U.; Serra, F.; Sesnic, S.; Sihler, C.; Silva, A.; Speth, E.; Steuer, K.-H.; Stober, J.; Streibl, B.; Thoma, A.; Treutterer, W.; Troppmann, M.; Tsois, N.; Ullrich, W.; Ulrich, M.; Varela, P.; Verbeek, H.; Vollmer, O.; Wedler, H.; Weinlich, M.; Wenzel, U.; Wesner, F.; Wunderlich, R.; Xantopoulos, N.; Yu, Q.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H.-P.; Zohm, H.; Zouhar, M.

    1999-09-01

    The closed ASDEX Upgrade Divertor II, `LYRA', is capable of handling heating powers of up to 20 MW or P/R of 12 MW/m, owing to a reduction of the maximum heat flux to the target plates by more than a factor of 2 compared with the open Divertor I. This reduction is caused by high radiative losses from carbon and hydrogen inside the divertor region and is in agreement with B2-EIRENE modelling predictions. At medium densities in the H mode, the type I ELM behaviour shows no dependence on the heating method (NBI, ICRH). ASDEX Upgrade-JET dimensionless identity experiments showed compatibility of the L-H transition with core physics constraints, while in the H mode confinement, inconsistencies with the invariance principle were established. At high densities close to the Greenwald density, the MHD limited edge pressures, the influence of divertor detachment on separatrix parameters and increasing edge transport lead to limited edge densities and finally to temperatures below the critical edge temperatures for H mode. This results in a drastic increase of the H mode threshold power and an upper H mode density limit with gas puff refuelling. The H mode confinement degradation approaching this density limit is caused by the ballooning mode limited edge pressures and `stiff' temperature profiles relating core and edge temperatures. Repetitive high field side pellet injection allows for H mode operation well above the Greenwald density; moreover, higher confinement than with gas fuelling is found up to the highest densities. Neoclassical tearing modes limit the achievable β depending on the collisionality at the resonant surface. In agreement with the polarization current model, the onset β is found to be proportional to the ion gyroradius in the collisionless regime, while higher collisionalities are stabilizing. The fractional energy loss connected with saturated modes at high pressures is about 25%. A reduction of neoclassical mode amplitude and an increase of β have

  6. Overview of ASDEX Upgrade results

    NASA Astrophysics Data System (ADS)

    Gruber, O.; Arslanbekov, R.; Atanasiu, C.; Bard, A.; Becker, G.; Becker, W.; Beckmann, M.; Behler, K.; Behringer, K.; Bergmann, A.; Bilato, R.; Bolshukin, D.; Borrass, K.; Bosch, H.-S.; Braams, B.; Brambilla, M.; Brandenburg, R.; Braun, F.; Brinkschulte, H.; Brückner, R.; Brüsehaber, B.; Büchl, K.; Buhler, A.; Bürbaumer, H.; Carlson, A.; Ciric, M.; Conway, G.; Coster, D. P.; Dorn, C.; Drube, R.; Dux, R.; Egorov, S.; Engelhardt, W.; Fahrbach, H.-U.; Fantz, U.; Faugel, H.; Foley, M.; Franzen, P.; Fu, P.; Fuchs, J. C.; Gafert, J.; Gantenbein, G.; Gehre, O.; Geier, A.; Gernhardt, J.; Gubanka, E.; Gude, A.; Günter, S.; Haas, G.; Hartmann, D.; Heinemann, B.; Herrmann, A.; Hobirk, J.; Hofmeister, F.; Hohenöcker, H.; Horton, L.; Hu, L.; Jacobi, D.; Jakobi, M.; Jenko, F.; Kallenbach, A.; Kardaun, O.; Kaufmann, M.; Kendl, A.; Kim, J.-W.; Kirov, K.; Kochergov, R.; Kollotzek, H.; Kraus, W.; Krieger, K.; Kurzan, B.; Kyriakakis, G.; Lackner, K.; Lang, P. T.; Lang, R. S.; Laux, M.; Lengyel, L.; Leuterer, F.; Lorenz, A.; Maier, H.; Mank, K.; Manso, M.-E.; Maraschek, M.; Mast, K.-F.; McCarthy, P. J.; Meisel, D.; Meister, H.; Meo, F.; Merkel, R.; Mertens, V.; Meskat, J. P.; Monk, R.; Müller, H. W.; Münich, M.; Murmann, H.; Neu, G.; Neu, R.; Neuhauser, J.; Noterdaeme, J.-M.; Nunes, I.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pinches, S.; Poli, E.; Pugno, R.; Raupp, G.; Ribeiro, T.; Riedl, R.; Riondato, S.; Rohde, V.; Röhr, H.; Roth, J.; Ryter, F.; Salzmann, H.; Sandmann, W.; Sarelma, S.; Schade, S.; Schilling, H.-B.; Schlögl, D.; Schmidtmann, K.; Schneider, R.; Schneider, W.; Schramm, G.; Schweinzer, J.; Schweizer, S.; Scott, B. D.; Seidel, U.; Serra, F.; Sesnic, S.; Sihler, C.; Silva, A.; Sips, A.; Speth, E.; Stäbler, A.; Steuer, K.-H.; Stober, J.; Streibl, B.; Strumberger, E.; Suttrop, W.; Tabasso, A.; Tanga, A.; Tardini, G.; Tichmann, C.; Treutterer, W.; Troppmann, M.; Tsois, N.; Ullrich, W.; Ulrich, M.; Varela, P.; Vollmer, O.; Wenzel, U.; Wesner, F.; Wolf, R.; Wolfrum, E.; Wunderlich, R.; Xantopoulos, N.; Yu, Q.; Zarrabian, M.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H.-P.; Zeiler, A.; Zohm, H.

    2001-10-01

    Ion and electron temperature profiles in conventional L and H mode on ASDEX Upgrade are generally stiff and limited by a critical temperature gradient length ∇T/T as given by ion temperature gradient (ITG) driven turbulence. ECRH experiments indicate that electron temperature (Te) profiles are also stiff, as predicted by electron temperature gradient turbulence with streamers. Accordingly, the core and edge temperatures are proportional to each other and the plasma energy is proportional to the pedestal pressure for fixed density profiles. Density profiles are not stiff, and confinement improves with density peaking. Medium triangularity shapes (δ<0.45) show strongly improved confinement up to the Greenwald density nGW and therefore higher βvalues, owing to increasing pedestal pressure, and H mode density operation extends above nGW. Density profile peaking at nGW was achieved with controlled gas puffing rates, and first results from a new high field side pellet launcher allowing higher pellet velocities are promising. At these high densities, small type II ELMs provide good confinement with low divertor power loading. In advanced scenarios the highest performance was achieved in the improved H mode with HL-89PβN approx 7.2 at δ = 0.3 for five confinement times, limited by neoclassical tearing modes (NTMs) at low central magnetic shear (qmin approx 1). The T profiles are still governed by ITG and trapped electron mode (TEM) turbulence, and confinement is improved by density peaking connected with low magnetic shear. Ion internal transport barrier (ITB) discharges - mostly with reversed shear (qmin>1) and L mode edge - achieved HL-89P <= 2.1 and are limited to βN <= 1.7 by internal and external ideal MHD modes. Turbulence driven transport is suppressed, in agreement with the E × B shear flow paradigm, and core transport coefficients are at the neoclassical ion transport level, where the latter was established by Monte Carlo simulations. Reactor relevant ion

  7. Overview of ASDEX Upgrade results

    NASA Astrophysics Data System (ADS)

    Stroth, U.; Adamek, J.; Aho-Mantila, L.; Äkäslompolo, S.; Amdor, C.; Angioni, C.; Balden, M.; Bardin, S.; Barrera Orte, L.; Behler, K.; Belonohy, E.; Bergmann, A.; Bernert, M.; Bilato, R.; Birkenmeier, G.; Bobkov, V.; Boom, J.; Bottereau, C.; Bottino, A.; Braun, F.; Brezinsek, S.; Brochard, T.; Brüdgam, M.; Buhler, A.; Burckhart, A.; Casson, F. J.; Chankin, A.; Chapman, I.; Clairet, F.; Classen, I. G. J.; Coenen, J. W.; Conway, G. D.; Coster, D. P.; Curran, D.; da Silva, F.; de Marné, P.; D'Inca, R.; Douai, D.; Drube, R.; Dunne, M.; Dux, R.; Eich, T.; Eixenberger, H.; Endstrasser, N.; Engelhardt, K.; Esposito, B.; Fable, E.; Fischer, R.; Fünfgelder, H.; Fuchs, J. C.; Gál, K.; García Muñoz, M.; Geiger, B.; Giannone, L.; Görler, T.; da Graca, S.; Greuner, H.; Gruber, O.; Gude, A.; Guimarais, L.; Günter, S.; Haas, G.; Hakola, A. H.; Hangan, D.; Happel, T.; Härtl, T.; Hauff, T.; Heinemann, B.; Herrmann, A.; Hobirk, J.; Höhnle, H.; Hölzl, M.; Hopf, C.; Houben, A.; Igochine, V.; Ionita, C.; Janzer, A.; Jenko, F.; Kantor, M.; Käsemann, C.-P.; Kallenbach, A.; Kálvin, S.; Kantor, M.; Kappatou, A.; Kardaun, O.; Kasparek, W.; Kaufmann, M.; Kirk, A.; Klingshirn, H.-J.; Kocan, M.; Kocsis, G.; Konz, C.; Koslowski, R.; Krieger, K.; Kubic, M.; Kurki-Suonio, T.; Kurzan, B.; Lackner, K.; Lang, P. T.; Lauber, P.; Laux, M.; Lazaros, A.; Leipold, F.; Leuterer, F.; Lindig, S.; Lisgo, S.; Lohs, A.; Lunt, T.; Maier, H.; Makkonen, T.; Mank, K.; Manso, M.-E.; Maraschek, M.; Mayer, M.; McCarthy, P. J.; McDermott, R.; Mehlmann, F.; Meister, H.; Menchero, L.; Meo, F.; Merkel, P.; Merkel, R.; Mertens, V.; Merz, F.; Mlynek, A.; Monaco, F.; Müller, S.; Müller, H. W.; Münich, M.; Neu, G.; Neu, R.; Neuwirth, D.; Nocente, M.; Nold, B.; Noterdaeme, J.-M.; Pautasso, G.; Pereverzev, G.; Plöckl, B.; Podoba, Y.; Pompon, F.; Poli, E.; Polozhiy, K.; Potzel, S.; Püschel, M. J.; Pütterich, T.; Rathgeber, S. K.; Raupp, G.; Reich, M.; Reimold, F.; Ribeiro, T.; Riedl, R.; Rohde, V.; Rooij, G. v.; Roth, J.; Rott, M.; Ryter, F.; Salewski, M.; Santos, J.; Sauter, P.; Scarabosio, A.; Schall, G.; Schmid, K.; Schneider, P. A.; Schneider, W.; Schrittwieser, R.; Schubert, M.; Schweinzer, J.; Scott, B.; Sempf, M.; Sertoli, M.; Siccinio, M.; Sieglin, B.; Sigalov, A.; Silva, A.; Sommer, F.; Stäbler, A.; Stober, J.; Streibl, B.; Strumberger, E.; Sugiyama, K.; Suttrop, W.; Tala, T.; Tardini, G.; Teschke, M.; Tichmann, C.; Told, D.; Treutterer, W.; Tsalas, M.; Van Zeeland, M. A.; Varela, P.; Veres, G.; Vicente, J.; Vianello, N.; Vierle, T.; Viezzer, E.; Viola, B.; Vorpahl, C.; Wachowski, M.; Wagner, D.; Wauters, T.; Weller, A.; Wenninger, R.; Wieland, B.; Willensdorfer, M.; Wischmeier, M.; Wolfrum, E.; Würsching, E.; Yu, Q.; Zammuto, I.; Zasche, D.; Zehetbauer, T.; Zhang, Y.; Zilker, M.; Zohm, H.

    2013-10-01

    The medium size divertor tokamak ASDEX Upgrade (major and minor radii 1.65 m and 0.5 m, respectively, magnetic-field strength 2.5 T) possesses flexible shaping and versatile heating and current drive systems. Recently the technical capabilities were extended by increasing the electron cyclotron resonance heating (ECRH) power, by installing 2 × 8 internal magnetic perturbation coils, and by improving the ion cyclotron range of frequency compatibility with the tungsten wall. With the perturbation coils, reliable suppression of large type-I edge localized modes (ELMs) could be demonstrated in a wide operational window, which opens up above a critical plasma pedestal density. The pellet fuelling efficiency was observed to increase which gives access to H-mode discharges with peaked density profiles at line densities clearly exceeding the empirical Greenwald limit. Owing to the increased ECRH power of 4 MW, H-mode discharges could be studied in regimes with dominant electron heating and low plasma rotation velocities, i.e. under conditions particularly relevant for ITER. The ion-pressure gradient and the neoclassical radial electric field emerge as key parameters for the transition. Using the total simultaneously available heating power of 23 MW, high performance discharges have been carried out where feed-back controlled radiative cooling in the core and the divertor allowed the divertor peak power loads to be maintained below 5 MW m-2. Under attached divertor conditions, a multi-device scaling expression for the power-decay length was obtained which is independent of major radius and decreases with magnetic field resulting in a decay length of 1 mm for ITER. At higher densities and under partially detached conditions, however, a broadening of the decay length is observed. In discharges with density ramps up to the density limit, the divertor plasma shows a complex behaviour with a localized high-density region in the inner divertor before the outer divertor detaches

  8. Chapter 3: Plasma Control in ASDEX Upgrade

    SciTech Connect

    Mertens, Vitus; Raupp, Gerhard; Treutterer, Wolfgang

    2003-11-15

    In modern tokamak machines, exploration and successful development of improved plasma regimes is impossible without adequate control systems. In ASDEX Upgrade, the control tasks are performed by two systems, the continuously operating machine control and the plasma control active as long as a plasma discharge lasts. Machine control based on programmable logic controllers operates on a relatively slow timescale of {tau} = 100 ms to configure and monitor the machine's technical systems. Real-time plasma controllers run on faster cycle times of a few milliseconds to feedback (FB) control plasma shape and performance quantities. During the burn of a discharge, a real-time supervisor monitors the full technical and physical system state ({tau} = 10 ms) and applies alternate discharge program segments to optimize discharge performance or react to failures. The supervisor is fully integrated with a layered machine protection system.Plasma position and shape control in ASDEX Upgrade is particularly difficult: Since the poloidal magnetic field (PF) coils are located reactor relevant outside the toroidal magnetic field coil system and distant from the plasma, each PF coil has a global effect on all shape quantities. This makes simultaneous control of shape parameters a multivariable problem. The feedback control algorithm is based on a matrix proportional-integral-derivative method, adapted to handle saturation of coil currents, excess of coil forces, or to balance loads among coils. Control cycle time is {approx}3 ms.In parallel, the plasma performance control (sometimes called kinetic control ) acts on particle fueling and auxiliary heating systems. It consists mainly of FB loops each controlling a single variable. These circuits can be freely combined to simultaneously control a number of different plasma quantities. A clear hierarchy in the control processes allows special real-time processes to override the programmed plasma discharge feedback action: The set of

  9. The compact neutron spectrometer at ASDEX Upgrade

    SciTech Connect

    Giacomelli, L.; Zimbal, A.; Tittelmeier, K.; Schuhmacher, H.; Tardini, G.; Neu, R.; Collaboration: ASDEX Upgrade Team

    2011-12-15

    The first neutron spectrometer of ASDEX Upgrade (AUG) was installed in November 2008. It is a compact neutron spectrometer (CNS) based on a BC501A liquid scintillating detector, which can simultaneously measure 2.45-MeV and 14-MeV neutrons emitted from deuterium (D) plasmas and {gamma} radiation. The scintillating detector is coupled to a digital pulse shape discrimination data acquisition (DPSD) system capable of count rates up to 10{sup 6} s{sup -1}. The DPSD system can operate in acquisition and processing mode. With the latter n-{gamma} discrimination is performed off-line based on the two-gate method. The paper describes the tests of the CNS and its installation at AUG. The neutron emission from the D plasma measured during a discharge with high auxiliary heating power was used to validate the CNS performance. The study of the optimal settings for the DPSD data processing to maximize the n-{gamma} discrimination capability of the CNS is reported. The CNS measured both 2.45-MeV and 14-MeV neutrons emitted in AUG D plasmas with a maximum count rate of 5.4 x10{sup 5} s{sup -1} (>10 times higher than similar spectrometers previously achieved) with an efficiency of 9.3 x 10{sup -10} events per AUG neutron.

  10. The tungsten divertor experiment at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Neu, R.; Asmussen, K.; Krieger, K.; Thoma, A.; Bosch, H.-S.; Deschka, S.; Dux, R.; Engelhardt, W.; García-Rosales, C.; Gruber, O.; Herrmann, A.; Kallenbach, A.; Kaufmann, M.; Mertens, V.; Ryter, F.; Rohde, V.; Roth, J.; Sokoll, M.; Stäbler, A.; Suttrop, W.; Weinlich, M.; Zohm, H.; Alexander, M.; Becker, G.; Behler, K.; Behringer, K.; Behrisch, R.; Bergmann, A.; Bessenrodt-Weberpals, M.; Brambilla, M.; Brinkschulte, H.; Büchl, K.; Carlson, A.; Chodura, R.; Coster, D.; Cupido, L.; de Blank, H. J.; de Peña Hempel, S.; Drube, R.; Fahrbach, H.-U.; Feist, J.-H.; Feneberg, W.; Fiedler, S.; Franzen, P.; Fuchs, J. C.; Fußmann, G.; Gafert, J.; Gehre, O.; Gernhardt, J.; Haas, G.; Herppich, G.; Herrmann, W.; Hirsch, S.; Hoek, M.; Hoenen, F.; Hofmeister, F.; Hohenöcker, H.; Jacobi, D.; Junker, W.; Kardaun, O.; Kass, T.; Kollotzek, H.; Köppendörfer, W.; Kurzan, B.; Lackner, K.; Lang, P. T.; Lang, R. S.; Laux, M.; Lengyel, L. L.; Leuterer, F.; Manso, M. E.; Maraschek, M.; Mast, K.-F.; McCarthy, P.; Meisel, D.; Merkel, R.; Müller, H. W.; Münich, M.; Murmann, H.; Napiontek, B.; Neu, G.; Neuhauser, J.; Niethammer, M.; Noterdaeme, J.-M.; Pasch, E.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pitcher, C. S.; Poschenrieder, W.; Raupp, G.; Reinmüller, K.; Riedl, R.; Röhr, H.; Salzmann, H.; Sandmann, W.; Schilling, H.-B.; Schlögl, D.; Schneider, H.; Schneider, R.; Schneider, W.; Schramm, G.; Schweinzer, J.; Scott, B. D.; Seidel, U.; Serra, F.; Speth, E.; Silva, A.; Steuer, K.-H.; Stober, J.; Streibl, B.; Treutterer, W.; Troppmann, M.; Tsois, N.; Ulrich, M.; Varela, P.; Verbeek, H.; Verplancke, Ph; Vollmer, O.; Wedler, H.; Wenzel, U.; Wesner, F.; Wolf, R.; Wunderlich, R.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H.-P.

    1996-12-01

    Tungsten-coated tiles, manufactured by plasma spray on graphite, were mounted in the divertor of the ASDEX Upgrade tokamak and cover almost 90% of the surface facing the plasma in the strike zone. Over 600 plasma discharges have been performed to date, around 300 of which were auxiliary heated with heating powers up to 10 MW. The production of tungsten in the divertor was monitored by a W I line at 400.8 nm. In the plasma centre an array of spectral lines at 5 nm emitted by ionization states around W XXX was measured. From the intensity of these lines the W content was derived. Under normal discharge conditions W-concentrations around 0741-3335/38/12A/013/img12 or even lower were found. The influence on the main plasma parameters was found to be negligible. The maximum concentrations observed decrease with increasing heating power. In several low power discharges accumulation of tungsten occurred and the temperature profile was flattened. The concentrations of the intrinsic impurities carbon and oxygen were comparable to the discharges with the graphite divertor. Furthermore, the density and the 0741-3335/38/12A/013/img13 limits remained unchanged and no negative influence on the energy confinement or on the H-mode threshold was found. Discharges with neon radiative cooling showed the same behaviour as in the graphite divertor case.

  11. First results with 3-strap ICRF antennas in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, V.; Braun, F.; Dux, R.; Herrmann, A.; Faugel, H.; Fünfgelder, H.; Kallenbach, A.; Neu, R.; Noterdaeme, J.-M.; Ochoukov, R.; Pütterich, Th.; Tuccilo, A.; Tudisco, O.; Wang, Y.; Yang, Q.; ASDEX Upgrade Team

    2016-08-01

    The 3-strap antennas in ASDEX Upgrade allow ICRF operation with low tungsten (W) content in the confined plasma with W-coated antenna limiters. With the 3-strap antenna configuration, the local W impurity source at the antenna is drastically reduced and the core W concentration is similar to that of the boron coated 2-strap antenna at a given ICRF power. Operation of the 3-strap antennas with the power ratio between the central and the outer straps of 1.5:1 and 2:1 is adopted to minimize the ICRF-specific W release.

  12. Imaging motional Stark effect measurements at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Ford, O. P.; Burckhart, A.; McDermott, R.; Pütterich, T.; Wolf, R. C.

    2016-11-01

    This paper presents an overview of results from the Imaging Motional Stark Effect (IMSE) diagnostic obtained during its first measurement campaign at ASDEX Upgrade since installation as a permanent diagnostic. A brief overview of the IMSE technique is given, followed by measurements of a standard H-mode discharge, which are compared to equilibrium reconstructions showing good agreement where expected. The development of special discharges for the calibration of pitch angle is reported and safety factor profile changes during sawteeth crashes are shown, which can be resolved to a few percent due to the high sensitivity at good time resolution of the new IMSE system.

  13. H-mode studies with microwave reflectometry on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Manso, M.; Serra, F.; Kurzan, B.; Nunes, I.; Santos, J.; Silva, A.; Suttrop, W.; Varela, P.; Vergamota, S.

    1998-05-01

    The microwave reflectometry system on ASDEX Upgrade measures density profiles (in broadband swept operation) and plasma fluctuations (fixed-frequency operation) both at the high-field side (HFS) and low-field side (LFS). Densities up to 0741-3335/40/5/036/img12 can be probed. We analyse the evolution of turbulence at the L-H transition and during the ELMy phase of H-mode discharges. The detailed density profile evolution during type I ELMs is resolved and profile oscillations associated with ELM precursors are studied.

  14. Spectrally resolved motional Stark effect measurements on ASDEX Upgrade

    SciTech Connect

    Reimer, R.; Dinklage, A.; Wolf, R.; Fischer, R.; Hobirk, J.; Löbhard, T.; Mlynek, A.; Reich, M.; Sawyer, L.; Collaboration: ASDEX Upgrade

    2013-11-15

    A spectrally resolved Motional Stark Effect (MSE) diagnostic has been installed at ASDEX Upgrade. The MSE data have been fitted by a forward model providing access to information about the magnetic field in the plasma interior [R. Reimer, A. Dinklage, J. Geiger et al., Contrib. Plasma Phys. 50, 731–735 (2010)]. The forward model for the beam emission spectra comprises also the fast ion D{sub α} signal [W. W. Heidbrink and G. J. Sadler, Nucl. Fusion 34, 535–615 (1994)] and the smearing on the CCD-chip. The calculated magnetic field data as well as the revealed (dia)magnetic effects are consistent with the results from equilibrium reconstruction solver. Measurements of the direction of the magnetic field are affected by unknown and varying polarization effects in the observation.

  15. Prediction and mitigation of disruptions in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Pautasso, G.; Egorov, S.; Tichmann, Ch; Fuchs, J. C.; Herrmann, A.; Maraschek, M.; Mast, F.; Mertens, V.; Perchermeier, I.; Windsor, C. G.; Zehetbauer, T.; ASDEX Upgrade Team

    2001-03-01

    Disruptions in tokamaks are instabilities events which can damage the machine components. The avoidance and mitigation of these events is desirable in present machines as well as in Next Step devices (such as ITER). A neural network has been developed to predict the occurrence of disruptions caused by edge cooling mechanisms in ASDEX Upgrade. The network works reliably and is able to predict the majority (85%) of the disruptions. The neural network has been trained to predict the time interval up to the disruption and this makes it suitable to be used on-line either to avoid disruptions (by means of auxiliary heating and reduction of gas puffing) or to mitigate the unavoidable ones. For this last purpose, a solid pellet injector has been developed and tested; the injected impurity pellets have been shown to reduce the vertical forces and the conductive fluxes to the divertor.

  16. New Frequency Step-Tunable Ecrh System for Asdex Upgrade

    NASA Astrophysics Data System (ADS)

    Wagner, D.; Leuterer, F.; Manini, A.; Monaco, F.; Münich, M.; Ryter, F.; Schütz, H.; Zohm, H.; Franke, T.; Heidinger, R.; Thumm, M.; Kasparek, W.; Gantenbein, G.; Litvak, A. G.; Popov, L. G.; Nichiporenko, V. O.; Myasnikov, V. E.; Denisov, G. G.; Tai, E. M.; Solyanova, E. A.; Malygin, S. A.

    2006-02-01

    A new broadband ECRH (Electron Cyclotron Resonance Heating) system is currently under construction at the ASDEX Upgrade tokamak. This system will employ multi-frequency gyrotrons step-tunable in the range 105 140 GHz. In its final stage the system will consist of 4 gyrotrons with a total power of 4 MW and a pulse length of 10 s. It employs a fast steerable launcher for feedback controlled deposition that allows for poloidal steering of 10° within 100 ms. Transmission line elements, such as corrugated waveguides, polarizer mirrors and vacuum windows, are designed to cope for this frequency band.

  17. Real time capable infrared thermography for ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  18. Structure and dynamics of sawteeth crashes in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Igochine, V.; Boom, J.; Classen, I.; Dumbrajs, O.; Günter, S.; Lackner, K.; Pereverzev, G.; Zohm, H.; ASDEX Upgrade Team

    2010-12-01

    The crash phase of the sawteeth in ASDEX Upgrade tokamak [Herrmann et al., Fusion Sci. Technol. 44(3), 569 (2003)] is investigated in detail in this paper by means of soft x-ray (SXR) and electron cyclotron emission (ECE) diagnostics. Analysis of precursor and postcursor (1,1) modes shows that the crash does not affect the position of the resonant surface q =1. Our experimental results suggest that sawtooth crash models should contain two ingredients to be consistent with experimental observations: (1) the (1,1) mode structure should survive the crash and (2) the flux changes should be small to preserve the position of the q =1 surface close to its original location. Detailed structure of the reconnection point was investigated with ECE imaging diagnostic. It is shown that reconnection starts locally. The expelled core is hot which is consistent with SXR tomography results. The observed results can be explained in the framework of a stochastic model.

  19. Analysis of ICRF-Accelerated Ions in ASDEX Upgrade

    SciTech Connect

    Mantsinen, M. J.; Eriksson, L.-G.; Noterdaeme, J.-M.

    2007-09-28

    MHD-induced losses of fast ions with energy in the MeV range have been observed during high-power ICRF heating of hydrogen minority ions in the ASDEX Upgrade tokamak (R{sub 0}{approx_equal}1.65 m, a{approx_equal}0.5 m). ICRF heating and ICRF-driven fast ions in discharges exhibiting fast ion losses due to toroidal Alfven eigenmodes and a new core-localised MHD instability are analysed. It is found that the lost ions are ICRF-accelerated trapped protons with energy in the range of 0.3-1.6 MeV, orbit widths of 20-35 cm, and turning points at r/a>0.5 and at major radii close to the cyclotron resonance {omega} = {omega}{sub cH}(R). The presence of such protons is consistent with ICRF modelling.

  20. Real time capable infrared thermography for ASDEX Upgrade

    SciTech Connect

    Sieglin, B. Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  1. Structure and dynamics of sawteeth crashes in ASDEX Upgrade

    SciTech Connect

    Igochine, V.; Guenter, S.; Lackner, K.; Pereverzev, G.; Zohm, H.; Boom, J.; Classen, I.; Dumbrajs, O.

    2010-12-15

    The crash phase of the sawteeth in ASDEX Upgrade tokamak [Herrmann et al., Fusion Sci. Technol. 44(3), 569 (2003)] is investigated in detail in this paper by means of soft x-ray (SXR) and electron cyclotron emission (ECE) diagnostics. Analysis of precursor and postcursor (1,1) modes shows that the crash does not affect the position of the resonant surface q=1. Our experimental results suggest that sawtooth crash models should contain two ingredients to be consistent with experimental observations: (1) the (1,1) mode structure should survive the crash and (2) the flux changes should be small to preserve the position of the q=1 surface close to its original location. Detailed structure of the reconnection point was investigated with ECE imaging diagnostic. It is shown that reconnection starts locally. The expelled core is hot which is consistent with SXR tomography results. The observed results can be explained in the framework of a stochastic model.

  2. Recent ASDEX Upgrade research in support of ITER and DEMO

    NASA Astrophysics Data System (ADS)

    H. Zohmthe ASDEX Upgrade Team; the EUROfusion MST1 Team

    2015-10-01

    Recent experiments on the ASDEX Upgrade tokamak aim at improving the physics base for ITER and DEMO to aid the machine design and prepare efficient operation. Type I edge localized mode (ELM) mitigation using resonant magnetic perturbations (RMPs) has been shown at low pedestal collisionality (νped\\ast <0.4) . In contrast to the previous high ν* regime, suppression only occurs in a narrow RMP spectral window, indicating a resonant process, and a concomitant confinement drop is observed due to a reduction of pedestal top density and electron temperature. Strong evidence is found for the ion heat flux to be the decisive element for the L-H power threshold. A physics based scaling of the density at which the minimum PLH occurs indicates that ITER could take advantage of it to initiate H-mode at lower density than that of the final Q = 10 operational point. Core density fluctuation measurements resolved in radius and wave number show that an increase of R/LTe introduced by off-axis electron cyclotron resonance heating (ECRH) mainly increases the large scale fluctuations. The radial variation of the fluctuation level is in agreement with simulations using the GENE code. Fast particles are shown to undergo classical slowing down in the absence of large scale magnetohydrodynamic (MHD) events and for low heating power, but show signs of anomalous radial redistribution at large heating power, consistent with a broadened off-axis neutral beam current drive current profile under these conditions. Neoclassical tearing mode (NTM) suppression experiments using electron cyclotron current drive (ECCD) with feedback controlled deposition have allowed to test several control strategies for ITER, including automated control of (3,2) and (2,1) NTMs during a single discharge. Disruption mitigation studies using massive gas injection (MGI) can show an increased fuelling efficiency with high field side injection, but a saturation of the fuelling efficiency is observed at high injected

  3. Application of AXUV diode detectors at ASDEX Upgrade

    SciTech Connect

    Bernert, M. Eich, T.; Burckhart, A.; Fuchs, J. C.; Giannone, L.; Kallenbach, A.; McDermott, R. M.; Sieglin, B.

    2014-03-15

    In the ASDEX Upgrade tokamak, a radiation measurement for a wide spectral range, based on semiconductor detectors, with 256 lines of sight and a time resolution of 5μs was recently installed. In combination with the foil based bolometry, it is now possible to estimate the absolutely calibrated radiated power of the plasma on fast timescales. This work introduces this diagnostic based on AXUV (Absolute eXtended UltraViolet) n-on-p diodes made by International Radiation Detectors, Inc. The measurement and the degradation of the diodes in a tokamak environment is shown. Even though the AXUV diodes are developed to have a constant sensitivity for all photon energies (1 eV-8 keV), degradation leads to a photon energy dependence of the sensitivity. The foil bolometry, which is restricted to a time resolution of less than 1 kHz, offers a basis for a time dependent calibration of the diodes. The measurements of the quasi-calibrated diodes are compared with the foil bolometry and found to be accurate on the kHz time scale. Therefore, it is assumed, that the corrected values are also valid for the highest time resolution (200 kHz). With this improved diagnostic setup, the radiation induced by edge localized modes is analyzed on fast timescales.

  4. Progress in controlling ICRF-edge interactions in ASDEX upgrade

    SciTech Connect

    Bobkov, Vl. Ochoukov, R.; Bilato, R.; Braun, F.; Carralero, D.; Dux, R.; Faugel, H.; Fünfgelder, H.; Jacquot, J.; Lunt, T.; Potzel, S.; Pütterich, Th.; Jacquet, Ph.; Monakhov, I.; Zhang, W.; Noterdaeme, J.-M.; Stepanov, I.; Colas, L.; Meyer, O.; Czarnecka, A.; and others

    2015-12-10

    RF measurements during variation of the strap voltage balance of the original 2-strap ICRF antenna in ASDEX Upgrade at constant power are consistent with electromagnetic calculations by HFSS and TOPICA, more so for the latter. RF image current compensation is observed at the antenna limiters in the experiment at a local strap voltage of about half of the value of the remote strap, albeit with a non-negligible uncertainty in phasing. The RF-specific tungsten (W) source at the broad-limiter 2-strap antenna correlates strongly with the RF voltage at the local strap at the locations not connected to opposite side of the antenna along magnetic field lines. The trends of the observed increase of the RF loading with injection of local gas are well described by a combined EMC3-Eirene – FELICE calculations, with the most efficient improvement confirmed for the outer-midplane valves, but underestimated by about 1/3. The corresponding deuterium density tailoring is also likely responsible for the decrease of local W sources observed in the experiment.

  5. Real-time diamagnetic flux measurements on ASDEX Upgrade.

    PubMed

    Giannone, L; Geiger, B; Bilato, R; Maraschek, M; Odstrčil, T; Fischer, R; Fuchs, J C; McCarthy, P J; Mertens, V; Schuhbeck, K H

    2016-05-01

    Real-time diamagnetic flux measurements are now available on ASDEX Upgrade. In contrast to the majority of diamagnetic flux measurements on other tokamaks, no analog summation of signals is necessary for measuring the change in toroidal flux or for removing contributions arising from unwanted coupling to the plasma and poloidal field coil currents. To achieve the highest possible sensitivity, the diamagnetic measurement and compensation coil integrators are triggered shortly before plasma initiation when the toroidal field coil current is close to its maximum. In this way, the integration time can be chosen to measure only the small changes in flux due to the presence of plasma. Two identical plasma discharges with positive and negative magnetic field have shown that the alignment error with respect to the plasma current is negligible. The measured diamagnetic flux is compared to that predicted by TRANSP simulations. The poloidal beta inferred from the diamagnetic flux measurement is compared to the values calculated from magnetic equilibrium reconstruction codes. The diamagnetic flux measurement and TRANSP simulation can be used together to estimate the coupled power in discharges with dominant ion cyclotron resonance heating.

  6. The prototype imaging motional Stark effect diagnostic for ASDEX upgrade.

    PubMed

    Ford, O P; Howard, J; Wolf, R C

    2015-09-01

    This paper presents the development and testing of the prototype Imaging Motional Stark-Effect (IMSE) diagnostic, designed for ASDEX upgrade. A detailed description of the core hardware, theory of operation, and application to complex MSE spectra are presented and analytical evaluation methods suitable for the required accuracy are developed. The diagnostic is tested with a MSE-like polarised spectrum to assess the accuracy of different modulation modes suggested in previous works. Each is found to have small systematic errors due to non-ideal effects of the components, which must be carefully examined. In particular, the effect of intrinsic contrast that results from imperfect parallelism of the birefringent plates is found to have a strong effect. Methods to mitigate and correct for this are discussed. With the necessary corrections and calibrations, the accuracy of polarisation orientation is shown to be within ±0.2°. The effect of finite ellipticity is examined and the possibility to measure this to an accuracy of ±2.0° is demonstrated. The system is shown to be insensitive to broadband polarised background light, temperature variations, and critically to variations in the details of the MSE spectrum.

  7. ELM behavior in ASDEX Upgrade with and without nitrogen seeding

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Dunne, M. G.; Beurskens, M.; Wolfrum, E.; Bogomolov, A.; Carralero, D.; Cavedon, M.; Fischer, R.; Laggner, F. M.; McDermott, R. M.; Meyer, H.; Tardini, G.; Viezzer, E.; the EUROfusion MST1 Team; the ASDEX-Upgrade Team

    2017-02-01

    The Type I ELM behavior in ASDEX Upgrade with full W plasma facing components is studied in terms of time scales and energy losses for a large set of shots characterized by similar operational parameters but different nitrogen seeding rate and input power. ELMs with no nitrogen can have two typical behaviors, that can be classified depending on their duration, the long and the short ELMs. The work shows that both short and long ELMs have a similar first phase, but the long ELMs are characterized by a second phase with further energy losses. The second phase disappears when nitrogen is seeded with a flux rate above 1022 (e s-1). The phenomenon is compatible with a threshold effect. The presence of the second phase is related to a high divertor/scrape-off layer (SOL) temperature and/or to a low pedestal temperature. The ELM energy losses of the two phases are regulated by different mechanisms. The energy losses of the first phase increase with nitrogen which, in turn, produce the increase of the pedestal temperature. So the energy losses of the first phase are regulated by the pedestal top parameters and the increase with nitrogen is due to the decreasing pedestal collisionality. The energy losses of the second phase are related to the divertor/SOL conditions. The long ELMs energy losses increase with increasing divertor temperature and with the number of the expelled filaments. In terms of the power lost by the plasma, the nitrogen seeding increases the power losses of the short ELMs. The long ELMs have a first phase with power losses comparable to the short ELMs losses. Assuming no major difference in the wetted area, these results suggest that (i) the nitrogen might increase the divertor heat fluxes during the short ELMs and that (ii) the long ELMs, despite the longer time scale, are not beneficial in terms of divertor heat loads.

  8. A compact lithium pellet injector for tokamak pedestal studies in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Arredondo Parra, R.; Moreno Quicios, R.; Ploeckl, B.; Birkenmeier, G.; Herrmann, A.; Kocsis, G.; Laggner, F. M.; Lang, P. T.; Lunt, T.; Macian-Juan, R.; Rohde, V.; Sellmair, G.; Szepesi, T.; Wolfrum, E.; Zeidner, W.; Neu, R.

    2016-02-01

    Experiments have been performed at ASDEX Upgrade, aiming to investigate the impact of lithium in an all-metal-wall tokamak and attempting to enhance the pedestal operational space. For this purpose, a lithium pellet injector has been developed, capable of injecting pellets carrying a particle content ranging from 1.82 × 1019 atoms (0.21 mg) to 1.64 × 1020 atoms (1.89 mg). The maximum repetition rate is about 2 Hz. Free flight launch from the torus outboard side without a guiding tube was realized. In such a configuration, angular dispersion and speed scatter are low, and a transfer efficiency exceeding 90% was achieved in the test bed. Pellets are accelerated in a gas gun; hence special care was taken to avoid deleterious effects by the propellant gas pulse. Therefore, the main plasma gas species was applied as propellant gas, leading to speeds ranging from 420 m/s to 700 m/s. In order to minimize the residual amount of gas to be introduced into the plasma vessel, a large expansion volume equipped with a cryopump was added into the flight path. In view of the experiments, an optimal propellant gas pressure of 50 bars was chosen for operation, since at this pressure maximum efficiency and low propellant gas flux coincide. This led to pellet speeds of 585 m/s ± 32 m/s. Lithium injection has been achieved at ASDEX Upgrade, showing deep pellet penetration into the plasma, though pedestal broadening has not been observed yet.

  9. A compact lithium pellet injector for tokamak pedestal studies in ASDEX Upgrade.

    PubMed

    Arredondo Parra, R; Moreno Quicios, R; Ploeckl, B; Birkenmeier, G; Herrmann, A; Kocsis, G; Laggner, F M; Lang, P T; Lunt, T; Macian-Juan, R; Rohde, V; Sellmair, G; Szepesi, T; Wolfrum, E; Zeidner, W; Neu, R

    2016-02-01

    Experiments have been performed at ASDEX Upgrade, aiming to investigate the impact of lithium in an all-metal-wall tokamak and attempting to enhance the pedestal operational space. For this purpose, a lithium pellet injector has been developed, capable of injecting pellets carrying a particle content ranging from 1.82 × 10(19) atoms (0.21 mg) to 1.64 × 10(20) atoms (1.89 mg). The maximum repetition rate is about 2 Hz. Free flight launch from the torus outboard side without a guiding tube was realized. In such a configuration, angular dispersion and speed scatter are low, and a transfer efficiency exceeding 90% was achieved in the test bed. Pellets are accelerated in a gas gun; hence special care was taken to avoid deleterious effects by the propellant gas pulse. Therefore, the main plasma gas species was applied as propellant gas, leading to speeds ranging from 420 m/s to 700 m/s. In order to minimize the residual amount of gas to be introduced into the plasma vessel, a large expansion volume equipped with a cryopump was added into the flight path. In view of the experiments, an optimal propellant gas pressure of 50 bars was chosen for operation, since at this pressure maximum efficiency and low propellant gas flux coincide. This led to pellet speeds of 585 m/s ± 32 m/s. Lithium injection has been achieved at ASDEX Upgrade, showing deep pellet penetration into the plasma, though pedestal broadening has not been observed yet.

  10. Upgrade to the control system of the reflectometry diagnostic of ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    Graça, S.; Santos, J.; Manso, M. E.

    2004-10-01

    The broadband frequency modulation-continuous wave microwave/millimeter wave reflectometer of ASDEX upgrade tokamak (Institut für Plasma Physik (IPP), Garching, Germany) developed by Centro de Fusão Nuclear (Lisboa, Portugal) with the collaboration of IPP, is a complex system with 13 channels (O and X modes) and two types of operation modes (swept and fixed frequency). The control system that ensures remote operation of the diagnostic incorporates VME and CAMAC bus based acquisition/timing systems. Microprocessor input/output boards are used to control and monitor the microwave circuitry and associated electronic devices. The implementation of the control system is based on an object-oriented client/server model: a centralized server manages the hardware and receives input from remote clients. Communication is handled through transmission control protocol/internet protocol sockets. Here we describe recent upgrades of the control system aiming to: (i) accommodate new channels; (ii) adapt to the heterogeneity of computing platforms and operating systems; and (iii) overcome remote access restrictions. Platform and operating system independence was achieved by redesigning the graphical user interface in JAVA. As secure shell is the standard remote access protocol adopted in major fusion laboratories, secure shell tunneling was implemented to allow remote operation of the diagnostic through the existing firewalls.

  11. Edge and core Thomson scattering systems and their calibration on the ASDEX Upgrade tokamak

    SciTech Connect

    Kurzan, B.; Murmann, H. D.

    2011-10-15

    A new 10 channel Thomson scattering (TS) system was installed on the ASDEX Upgrade tokamak to measure radial profiles of electron density and temperature at the plasma edge with high radial resolution. Together with the already existing TS system, which is now used for the core plasma, electron density and temperature profiles extending from the edge to the core are now obtained in a single discharge. The TS systems are relatively calibrated by an optical parametric oscillator.

  12. Experimental Characterization of the Electron Heat Transport in Low-Density ASDEX Upgrade Plasmas

    SciTech Connect

    Ryter, F.; Imbeaux, F.; Leuterer, F.; Fahrbach, H.-U.; Suttrop, W.; ASDEX Upgrade Team

    2001-06-11

    The electron heat transport is investigated in ASDEX Upgrade conventional L -mode plasmas with pure electron heating provided by electron-cyclotron heating (ECH) at low density. Under these conditions, steady-state and ECH modulation experiments indicate without ambiguity that electron heat transport exhibits a clear threshold in {nabla}T{sub e}/T{sub e} and also suggest that it has a gyro-Bohm character.

  13. A cross-tokamak neural network disruption predictor for the JET and ASDEX Upgrade tokamaks

    NASA Astrophysics Data System (ADS)

    Windsor, C. G.; Pautasso, G.; Tichmann, C.; Buttery, R. J.; Hender, T. C.; EFDA Contributors, JET; ASDEX Upgrade Team

    2005-05-01

    First results are reported on the prediction of disruptions in one tokamak, based on neural networks trained on another tokamak. The studies use data from the JET and ASDEX Upgrade devices, with a neural network trained on just seven normalized plasma parameters. In this way, a simple single layer perceptron network trained solely on JET correctly anticipated 67% of disruptions on ASDEX Upgrade in advance of 0.01 s before the disruption. The converse test led to a 69% success rate in advance of 0.04 s before the disruption in JET. Only one overall time scaling parameter is allowed between the devices, which can be introduced from theoretical arguments. Disruption prediction performance based on such networks trained and tested on the same device shows even higher success rates (JET, 86%; ASDEX Upgrade, 90%), despite the small number of inputs used and simplicity of the network. It is found that while performance for networks trained and tested on the same device can be improved with more complex networks and many adjustable weights, for cross-machine testing the best approach is a simple single layer perceptron. This offers the basis of a potentially useful technique for large future devices such as ITER, which with further development might help to reduce disruption frequency and minimize the need for a large disruption campaign to train disruption avoidance systems.

  14. Modelling plasma response to RMP fields in ASDEX Upgrade with varying edge safety factor and triangularity

    NASA Astrophysics Data System (ADS)

    Li, L.; Liu, Y. Q.; Kirk, A.; Wang, N.; Liang, Y.; Ryan, D.; Suttrop, W.; Dunne, M.; Fischer, R.; Fuchs, J. C.; Kurzan, B.; Piovesan, P.; Willensdorfer, M.; Zhong, F. C.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2016-12-01

    Toroidal computations are performed using the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681), in order to understand correlations between the plasma response and the observed mitigation of the edge localized modes (ELM) using resonant magnetic perturbation fields in ASDEX Upgrade. In particular, systematic numerical scans of the edge safety factor reveal that the amplitude of the resonant poloidal harmonic of the response radial magnetic field near the plasma edge, as well as the plasma radial displacement near the X-point, can serve as good indicators for predicting the optimal toroidal phasing between the upper and lower rows of coils in ASDEX Upgrade. The optimal coil phasing scales roughly linearly with the edge safety factor {{q}95} , for various choices of the toroidal mode number n  =  1-4 of the coil configuration. The optimal coil phasing is also predicted to vary with the upper triangularity of the plasma shape in ASDEX Upgrade. Furthermore, multiple resonance effects of the plasma response, with continuously varying {{q}95} , are computationally observed and investigated.

  15. Solid tungsten Divertor-III for ASDEX Upgrade and contributions to ITER

    NASA Astrophysics Data System (ADS)

    Herrmann, A.; Greuner, H.; Jaksic, N.; Balden, M.; Kallenbach, A.; Krieger, K.; de Marné, P.; Rohde, V.; Scarabosio, A.; Schall, G.; the ASDEX Upgrade Team

    2015-06-01

    ASDEX Upgrade became a full tungsten experiment in 2007 by coating its graphite plasma facing components with tungsten. In 2013 a redesigned solid tungsten divertor, Div-III, was installed and came into operation in 2014. The redesign of the outer divertor geometry provided the opportunity to increase the pumping efficiency in the lower divertor by increasing the gap between divertor and vessel. In parallel, a by-pass was installed into the cryo-pump in the divertor region allowing adapting of the pumping speed to the required edge density. Safe divertor operation and heat removal becomes more and more significant for future fusion devices. This requires developing ‘tools’ for divertor heat load control and to optimize the divertor design. The new divertor manipulator, DIM-II, allows retracting a relevant part of the outer divertor into a target exchange box without venting ASDEX Upgrade. Different front-ends can be installed and exposed to the plasma. At present, front-ends for probe exposition, gas puffing, electrical probes and actively cooled prototype targets are under construction. The installation of solid tungsten, the control of the pumping speed and the flexibility for testing divertor modifications on a weekly base is a unique feature of ASDEX Upgrade and offers together with the extended set of diagnostics the possibility to investigate dedicated questions for a future divertor design.

  16. Impact of lithium pellets on plasma performance in the ASDEX Upgrade all-metal-wall tokamak

    NASA Astrophysics Data System (ADS)

    Lang, P. T.; Maingi, R.; Mansfield, D. K.; McDermott, R. M.; Neu, R.; Wolfrum, E.; Arredondo Parra, R.; Bernert, M.; Birkenmeier, G.; Diallo, A.; Dunne, M.; Fable, E.; Fischer, R.; Geiger, B.; Hakola, A.; Nikolaeva, V.; Kappatou, A.; Laggner, F.; Oberkofler, M.; Ploeckl, B.; Potzel, S.; Pütterich, T.; Sieglin, B.; Szepesi, T.; ASDEX Upgrade Team

    2017-01-01

    The impact of lithium (Li) on plasma performance was investigated at the ASDEX Upgrade tokamak, which features a full tungsten wall. Li pellets containing 1.6  ×  1020 Li atoms were launched with a speed of 600 m s-1 to achieve deep penetration into the plasma and minimize the impact on the first wall. Homogeneous transient Li concentrations in the plasma of up to 15% were established. The Li sustainment time in the plasma decreased with an increasing heating power from 150 to 40 ms. Due to the pellet rate being restricted to 2 Hz, no Li pile-up could take place. No significant positive impact on plasma properties, as reported from other tokamak devices, could be found; the Li pellets rather caused a small reduction in plasma energy, mainly due to enhanced radiation. Due to pellet injection, a short-lived Li layer was formed on the plasma-facing components, which lasted a few discharges and led to moderately beneficial effects during plasma start-up. Most pellets were found to trigger type-I ELMs, either by their direct local perturbation or indirectly by the altered edge conditions; however, reliability was less than 100%.

  17. Simulations of gas puff effects on edge density and ICRF coupling in ASDEX upgrade using EMC3-Eirene

    SciTech Connect

    Zhang, W.; Lunt, T.; Bobkov, V.; Coster, D.; Brida, D.; Noterdaeme, J.-M.; Jacquet, P.; Feng, Y.

    2015-12-10

    Simulations were carried out with the 3D plasma transport code EMC3-EIRENE, to study the deuterium gas (D{sub 2}) puff effects on edge density and the coupling of Ion Cyclotron Range of Frequency (ICRF) power in ASDEX Upgrade. Firstly we simulated an inter-ELM phase of an H-mode discharge with a moderate (1.2 × 10{sup 22} electrons/s) lower divertor gas puff. Then we changed the gas source positions to the mid-plane or top of machine while keeping other conditions the same. Cases with different mid-plane or top gas valves are investigated. Our simulations indicate that compared to lower divertor gas puffing, the mid-plane gas puff can enhance the local density in front of the antennas most effectively, while a rather global (toroidally uniform) but significantly smaller enhancement is found for top gas puffing. Our results show quantitative agreement with the experiments.

  18. Status, Operation, and Extension of the ECRH System at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Wagner, D.; Stober, J.; Leuterer, F.; Monaco, F.; Müller, S.; Münich, M.; Rapson, C. J.; Reich, M.; Schubert, M.; Schütz, H.; Treutterer, W.; Zohm, H.; Thumm, M.; Scherer, T.; Meier, A.; Gantenbein, G.; Jelonnek, J.; Kasparek, W.; Lechte, C.; Plaum, B.; Goodman, T.; Litvak, A. G.; Denisov, G. G.; Chirkov, A.; Zapevalov, V.; Malygin, V.; Popov, L. G.; Nichiporenko, V. O.; Myasnikov, V. E.; Tai, E. M.; Solyanova, E. A.; Malygin, S. A.

    2016-01-01

    The upgraded electron cyclotron resonance heating (ECRH) system at ASDEX Upgrade (AUG) has been routinely used with eight gyrotrons during the last experimental campaign. A further upgrade will replace the existing system of four short-pulse (140 GHz, 2 s, 500 kW) gyrotrons. The final goal is to have around 6.5-7 MW at 140 GHz (or 5.5 MW at 105 GHz) from eight units available in the plasma during the whole AUG discharge (10 s). The system operates at 140 and 105 GHz with X2, O2 and X3 schemes. For B > 3 T also an ITER-like O1-scenario can be run using the 105 GHz option. Four of the eight launching antennas are capable of fast poloidal movements necessary for real-time control of the location of power deposition.

  19. A fast feedback controlled magnetic drive for the ASDEX Upgrade fast-ion loss detectors.

    PubMed

    Ayllon-Guerola, J; Gonzalez-Martin, J; Garcia-Munoz, M; Rivero-Rodriguez, J; Herrmann, A; Vorbrugg, S; Leitenstern, P; Zoletnik, S; Galdon, J; Garcia Lopez, J; Rodriguez-Ramos, M; Sanchis-Sanchez, L; Dominguez, A D; Kocan, M; Gunn, J P; Garcia-Vallejo, D; Dominguez, J

    2016-11-01

    A magnetically driven fast-ion loss detector system for the ASDEX Upgrade tokamak has been designed and will be presented here. The device is feedback controlled to adapt the detector head position to the heat load and physics requirements. Dynamic simulations have been performed taking into account effects such as friction, coil self-induction, and eddy currents. A real time positioning control algorithm to maximize the detector operational window has been developed. This algorithm considers dynamical behavior and mechanical resistance as well as measured and predicted thermal loads. The mechanical design and real time predictive algorithm presented here may be used for other reciprocating systems.

  20. On-line prediction and mitigation of disruptions in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Pautasso, G.; Tichmann, C.; Egorov, S.; Zehetbauer, T.; Gruber, O.; Maraschek, M.; Mast, K.-F.; Mertens, V.; Perchermeier, I.; Raupp, G.; Treutterer, W.; Windsor, C. G.; ASDEX Upgrade Team

    2002-01-01

    An on-line predictor of the time to disruption has been installed on the ASDEX Upgrade tokamak. It is suitable either for avoidance of disruptions or for mitigation of those that are unavoidable. The prediction uses a neural network trained on eight plasma parameters and their time derivatives extracted from 99 disruptive discharges. The network was tested off-line over 500 discharges and was found to work reliably and to be able to predict the majority of the disruptions. The trained network was installed on-line, tested over 128 discharges and used to inject killer pellets to mitigate the disruption loads.

  1. A multichannel reflectometer for edge density profile measurements at the ICRF antenna in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Tudisco, O.; Silva, A.; Ceccuzzi, S.; D'Arcangelo, O.; Rocchi, G.; Fuenfgelder, H.; Bobkov, V.; Cavazzana, R.; Conway, G. D.; Friesen, J.; Gonçalves, B.; Mancini, A.; Meneses, L.; Noterdaeme, J. M.; Siegl, G.; Simonetto, A.; Tsujii, N.; Tuccillo, A. A.; Vierle, T.; Zammuto, I.; ASDEX Upgrade Team, Ftu Team

    2014-02-01

    A multichannel reflectometer will be built for the new three-straps ICRF antenna of ASDEX Upgrade (AUG), to study the density behavior in front of it. Ten different accesses to the plasma are available for the three reflectometer channels that can be interchanged without breaking the machine vacuum. Frequency is scanned from 40 GHz to 68 GHz, in 10μs, which corresponds to a cut-off density ranging from 1018÷1019m-3 in the Right cut-off of the X-mode propagation, for standard toroidal magnetic field values of AUG.

  2. A fast feedback controlled magnetic drive for the ASDEX Upgrade fast-ion loss detectors

    NASA Astrophysics Data System (ADS)

    Ayllon-Guerola, J.; Gonzalez-Martin, J.; Garcia-Munoz, M.; Rivero-Rodriguez, J.; Herrmann, A.; Vorbrugg, S.; Leitenstern, P.; Zoletnik, S.; Galdon, J.; Garcia Lopez, J.; Rodriguez-Ramos, M.; Sanchis-Sanchez, L.; Dominguez, A. D.; Kocan, M.; Gunn, J. P.; Garcia-Vallejo, D.; Dominguez, J.

    2016-11-01

    A magnetically driven fast-ion loss detector system for the ASDEX Upgrade tokamak has been designed and will be presented here. The device is feedback controlled to adapt the detector head position to the heat load and physics requirements. Dynamic simulations have been performed taking into account effects such as friction, coil self-induction, and eddy currents. A real time positioning control algorithm to maximize the detector operational window has been developed. This algorithm considers dynamical behavior and mechanical resistance as well as measured and predicted thermal loads. The mechanical design and real time predictive algorithm presented here may be used for other reciprocating systems.

  3. ELM behaviour and linear MHD stability of edge ECRH heated ASDEX Upgrade plasmas

    NASA Astrophysics Data System (ADS)

    Burckhart, A.; Dunne, M.; Wolfrum, E.; Fischer, R.; McDermott, R.; Viezzer, E.; Willensdorfer, M.; the ASDEX Upgrade Team

    2016-05-01

    In order to test the peeling-ballooning ELM model, ECRH heating was applied to the edge of ASDEX Upgrade type-I ELMy H-mode plasmas to alter the pedestal pressure and current density profiles. The discharges were analysed with respect to ideal MHD stability. While the ELM frequency increased and the pedestal gradients relaxed with edge ECRH, the MHD stability boundary did not change. The results indicate that the peeling-ballooning model is insufficient to fully explain the triggering of ELM instabilities in the presence of edge ECRH heating.

  4. Fringe jump analysis and implementation of polarimetry on the ASDEX Upgrade DCN interferometer

    SciTech Connect

    Mlynek, A. Casali, L.; Eixenberger, H.; Ford, O.

    2014-11-15

    The ASDEX Upgrade tokamak is equipped with a 5-channel DCN interferometer with a probing wavelength of 195 μm. Up to now, phase measurement and density calculation have been accomplished by hard-wired phase counting electronics. Meanwhile, a fast digitizer has been installed which acquires the raw signals. That way, the various causes of counting errors by integer multiples of 2π, so-called fringe jumps, can be analyzed, and phase reconstruction schemes based on digital signal processing can be developed. In addition, a prototype polarimeter setup has been installed on one channel and allows for measurement of the Faraday rotation experienced by the probing beam.

  5. Influence of gas injection location and magnetic perturbations on ICRF antenna performance in ASDEX Upgrade

    SciTech Connect

    Bobkov, V.; Bilato, R.; Dux, R.; Faugel, H.; Kallenbach, A.; Müller, H. W.; Potzel, S.; Pütterich, Th.; Suttrop, W.; Stepanov, I.; Noterdaeme, J.-M.; Jacquet, P.; Monakhov, I.; Czarnecka, A.; Collaboration: ASDEX Upgrade Team

    2014-02-12

    In ASDEX Upgrade H-modes with H{sub 98}≈0.95, similar effect of the ICRF antenna loading improvement by local gas injection was observed as previously in L-modes. The antenna loading resistance R{sub a} between and during ELMs can increase by more than 25% after a switch-over from a deuterium rate of 7.5⋅10{sup 21} D/s injected from a toroidally remote location to the same amount of deuterium injected close to an antenna. However, in contrast to L-mode, this effect is small in H-mode when the valve downstream w.r.t. parallel plasma flows is used. In L-mode, a non-linearity of R{sub a} at P{sub ICRP}<30 kW is observed when using the gas valve integrated in antenna. Application of magnetic perturbations (MPs) in H-mode discharges leads to an increase of R{sub a}>30% with no effect of spectrum and phase of MPs on R{sub a} found so far. In the case ELMs are fully mitigated, the antenna loading is higher and steadier. In the case ELMs are not fully mitigated, the value of R{sub a} between ELMs is increased. Looking at the W source modification for the improved loading, the local gas injection is accompanied by decreased values of tungsten (W) influx Γ{sub W} from the limiters and its effective sputtering yield Y{sub w}, with the exception of the locations directly at the antenna gas valve. Application of MPs leads to increase of Γ{sub W} and Y{sub w} for some of the MP phases. With nitrogen seeding in the divertor, ICRF is routinely used to avoid impurity accumulation and that despite enhanced Γ{sub W} and Y{sub W} at the antenna limiters.

  6. Perturbative Thermal Transport Studies on Alcator C-Mod and ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Creely, A. J.; White, A. E.; Edlund, E. M.; Howard, N. T.; Hubbard, A. E.; Ryter, F.

    2015-11-01

    Perturbative thermal diffusivity has been measured on Alcator C-Mod and ASDEX Upgrade via the extended-time-to-peak method with heat pulses generated by partial sawtooth crashes. Heat pulses generated by sawtooth crashes have been used extensively in the past to study perturbative diffusivity, but the details of the sawtooth event lead to non-diffusive ``ballistic'' transport, invalidating their use for measuring perturbative diffusivity. Partial sawteeth generate a heat pulse without the ballistic transport of full sawteeth [Fredrickson 2000]. Partial sawtooth analysis was applied to over 50 C-Mod shots containing both L- and I-Mode, as well as ASDEX Upgrade plasmas, though partial sawteeth were less common on AUG. Results indicate correlations between perturbative diffusivity and confinement regime (L- vs. I-mode), as well as correlations with local temperature, density, the associated gradients, and gradient scale lengths (a/LTe and a/Ln). Finally, diffusivities calculated from partial sawteeth were compared to perturbative diffusivities calculated with the GYRO gyrokinetic code, leading to quantitative agreement with multi-scale GYRO simulations. This work is supported by the US DOE under grants DE-SC0006419 and DE-FC02-99ER54512-CMOD.

  7. Avoidance of disruptions at high βN in ASDEX Upgrade with off-axis ECRH

    NASA Astrophysics Data System (ADS)

    Esposito, B.; Granucci, G.; Maraschek, M.; Nowak, S.; Gude, A.; Igochine, V.; Lazzaro, E.; McDermott, R.; Poli, E.; Stober, J.; Suttrop, W.; Treutterer, W.; Zohm, H.; Brunetti, D.; ASDEX Upgrade Team

    2011-08-01

    Experiments on disruption avoidance have been carried out in H-mode ASDEX Upgrade plasmas: the localized perpendicular injection of ECRH (1.5 MW ~ 0.2Ptot) onto the q = 2 resonant surface has led to the delay and/or complete avoidance of disruptions in a high βN scenario (Ip = 1 MA, Bt = 2.1 T, q95 ~ 3.6, with NBI ~7.5 MW). In these discharges (at low q95 and low density) neoclassical tearing modes (NTMs) are excited: the growth and locking of the m/n = 2/1 mode leads to the disruption. The scheme of the experiment is successfully applied in the same way as in previous disruption avoidance experiments in FTU and ASDEX Upgrade. As soon as the disruption precursor signal (the locked mode detector and/or the loop voltage) reaches the preset threshold, the ECRH power is triggered by real-time control. A poloidal scan in deposition location (ρdep) has been carried out by setting the poloidal launching mirrors at different angles in each discharge. The results depend on ρdep: complete disruption avoidance can be achieved when the power is injected close to or onto the 2/1 island. When ECRH is injected outside the island (either at radii inside or outside the q = 2 surface), the discharge is disrupted as in the reference case.

  8. Magnetic activity and radial electric field during I-phase in ASDEX Upgrade plasmas

    NASA Astrophysics Data System (ADS)

    Birkenmeier, Gregor; Cavedon, Marco; Conway, Garrard; Manz, Peter; Puetterich, Thomas; Stroth, Ulrich; ASDEX Upgrade Team Team

    2016-10-01

    At the transition from the low (L-mode) to the high (H-mode) confinement regime, so called limit-cycle oscillations (LCOs) can occur at the edge of a fusion plasma. During the LCO evolution, which is also called I-phase, the relative importance of background flows and turbulence-generated zonal flows can change, and it is still unclear whether a large contribution of zonal flows is a necessary condition for triggering the H-mode. At ASDEX Upgrade, I-phases have been studied in a wide range of parameters. The modulation of flows and gradients during I-phase is accompanied by a strong magnetic activity with a specific poloidal and toroidal structure. The magnetic activity increases during the development of an edge pedestal during I-phase, and is preceded by type-III ELM-like precursors. During all phases of the I-phase, the radial electric field Er is found to be close to the neoclassical prediction of the electric field Er , neo. These results suggest that zonal flows do not contribute significantly to the LCO dynamics, and the burst like behavior is reminiscent of a critical-gradient driven instability like edge localized modes. These observations on ASDEX Upgrade seem to be inconsistent with LCO models based on an interaction between zonal flows and turbulence.

  9. Fuzzy-neural approaches to the prediction of disruptions in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Morabito, F. C.; Versaci, M.; Pautasso, G.; Tichmann, C.; ASDEX Upgrade Team

    2001-11-01

    Disruption is a sudden loss of magnetic confinement that can cause damage to the machine walls and support structures. For this reason, it is of practical interest to be able to detect the onset of such an event early. A novel technique is presented of early prediction of plasma disruption in tokamak reactors which uses neural networks and `fuzzy' inference. The studies carried out in the work make use of an experimental database of disruptive shots made available by the ASDEX Upgrade Team. The main result of the work is that, in the limit of the available database, it is possible to predict the onset of the disruptive event sufficiently in advance in order to put the control system into action. The proposed system is a modular scheme that exploits a decomposition of the original database carried out in a proper way.

  10. Resolving the bulk ion region of millimeter-wave collective Thomson scattering spectra at ASDEX Upgrade

    SciTech Connect

    Stejner, M. Nielsen, S.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Rasmussen, J.; Salewski, M.; Moseev, D.; Schubert, M.; Stober, J.; Wagner, D. H.

    2014-09-15

    Collective Thomson scattering (CTS) measurements provide information about the composition and velocity distribution of confined ion populations in fusion plasmas. The bulk ion part of the CTS spectrum is dominated by scattering off fluctuations driven by the motion of thermalized ion populations. It thus contains information about the ion temperature, rotation velocity, and plasma composition. To resolve the bulk ion region and access this information, we installed a fast acquisition system capable of sampling rates up to 12.5 GS/s in the CTS system at ASDEX Upgrade. CTS spectra with frequency resolution in the range of 1 MHz are then obtained through direct digitization and Fourier analysis of the CTS signal. We here describe the design, calibration, and operation of the fast receiver system and give examples of measured bulk ion CTS spectra showing the effects of changing ion temperature, rotation velocity, and plasma composition.

  11. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated electron cyclotron emission

    NASA Astrophysics Data System (ADS)

    Freethy, S. J.; Conway, G. D.; Classen, I.; Creely, A. J.; Happel, T.; Köhn, A.; Vanovac, B.; White, A. E.

    2016-11-01

    Turbulent temperature fluctuations are measured on the ASDEX Upgrade tokamak using pairs of closely spaced, narrow-band heterodyne radiometer channels and a standard correlation technique. The pre-detection spacing and bandwidth of the radiometer channel pairs is chosen such that they are physically separated less than a turbulent correlation length, but do not overlap. The radiometer has 4 fixed filter frequency channels and two tunable filter channels for added flexibility in the measurement position. Relative temperature fluctuation amplitudes are observed in a helium plasma to be δT/T = (0.76 ± 0.02)%, (0.67 ± 0.02)%, and (0.59 ± 0.03)% at normalised toroidal flux radius of ρtor = 0.82, 0.75, and 0.68, respectively.

  12. Investigation of fast particle driven instabilities by 2D electron cyclotron emission imaging on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Classen, I. G. J.; Lauber, Ph; Curran, D.; Boom, J. E.; Tobias, B. J.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Garcia Munoz, M.; Geiger, B.; Maraschek, M.; Van Zeeland, M. A.; da Graça, S.; ASDEX Upgrade Team

    2011-12-01

    Detailed measurements of the 2D mode structure of Alfvén instabilities in the current ramp-up phase of neutral beam heated discharges were performed on ASDEX Upgrade, using the electron cyclotron emission imaging (ECEI) diagnostic. This paper focuses on the observation of reversed shear Alfvén eigenmodes (RSAEs) and bursting modes that, with the use of the information from ECEI, have been identified as beta-induced Alfvén eigenmodes (BAEs). Both RSAEs with first and second radial harmonic mode structures were observed. Calculations with the linear gyro-kinetic code LIGKA revealed that the ratio of the damping rates and the frequency difference between the first and second harmonic modes strongly depended on the shape of the q-profile. The bursting character of the BAE type modes, which were radially localized to rational q surfaces, was observed to sensitively depend on the plasma parameters, ranging from strongly bursting to almost steady state.

  13. Investigation of fast ion pressure effects in ASDEX Upgrade by spectral MSE measurements

    NASA Astrophysics Data System (ADS)

    Reimer, René; Dinklage, Andreas; Wolf, Robert; Dunne, Mike; Geiger, Benedikt; Hobirk, Jörg; Reich, Matthias; ASDEX Upgrade Team; McCarthy, Patrick J.

    2017-04-01

    High precision measurements of fast ion effects on the magnetic equilibrium in the ASDEX Upgrade tokamak have been conducted in a high-power (10 MW) neutral-beam injection discharge. An improved analysis of the spectral motional Stark effect data based on forward-modeling, including the Zeeman effect, fine-structure and non-statistical sub-level distribution, revealed changes in the order of 1% in |B| . The results were found to be consistent with results from the equilibrium solver CLISTE. The measurements allowed us to derive the fast ion pressure fraction to be Δ {{p}\\text{FI}}/{{p}\\text{mhd}}≈ 10 % and variations of the fast ion pressure are consistent with calculations of the transport code TRANSP. The results advance the understanding of fast ion confinement and magneto-hydrodynamic stability in the presence of fast ions.

  14. Interpretation of fast measurements of plasma potential, temperature and density in SOL of ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Horacek, J.; Adamek, J.; Müller, H. W.; Seidl, J.; Nielsen, A. H.; Rohde, V.; Mehlmann, F.; Ionita, C.; Havlíčková, E.; ASDEX Upgrade Team

    2010-10-01

    This paper focuses on interpretation of fast (1 µs) and local (2-4 mm) measurements of plasma density, potential and electron temperature in the edge plasma of tokamak ASDEX Upgrade. Steady-state radial profiles demonstrate the credibility of the ball-pen probe. We demonstrate that floating potential fluctuations measured by a Langmuir probe are dominated by plasma electron temperature rather than potential. Spatial and temporal scales are found consistent with expectations based on interchange-driven turbulence. Conditionally averaged signals found for both potential and density are also consistent; however, those for temperature show an unexpected ~4 mm wide decrease by 10% at the very centre of a blob. In the wall shadow, temperature measured by the swept Langmuir probe yields values ~10 eV, whilst the ball-pen temperature gradient is more steep and credible, dropping down to ~1 eV.

  15. Turbulence intermittency linked to the weakly coherent mode in ASDEX Upgrade I-mode plasmas

    NASA Astrophysics Data System (ADS)

    Happel, T.; Manz, P.; Ryter, F.; Hennequin, P.; Hetzenecker, A.; Conway, G. D.; Guimarais, L.; Honoré, C.; Stroth, U.; Viezzer, E.; The ASDEX Upgrade Team

    2016-06-01

    This letter shows for the first time a pronounced increase of extremely intermittent edge density turbulence behavior inside the confinement region related to the I-mode confinement regime in the ASDEX Upgrade tokamak. With improving confinement, the perpendicular propagation velocity of density fluctuations in the plasma edge increases together with the intermittency of the observed density bursts. Furthermore, it is shown that the weakly coherent mode, a fluctuation feature generally observed in I-mode plasmas, is connected to the observed bursts. It is suggested that the large amplitude density bursts could be generated by a non-linearity similar to that in the Korteweg-de-Vries equation which includes the radial temperature gradient.

  16. Geodesic oscillations and the weakly coherent mode in the I-mode of ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Manz, P.; Lauber, P.; Nikolaeva, V. E.; Happel, T.; Ryter, F.; Birkenmeier, G.; Bogomolov, A.; Conway, G. D.; Manso, M. E.; Maraschek, M.; Prisiazhniuk, D.; Viezzer, E.

    2015-08-01

    Density fluctuations in I-mode discharges in ASDEX Upgrade are studied. The I-mode specific weakly coherent mode (WCM) appears at the transition from the L to I-mode. The WCM but also the turbulence in general are strongly modulated by a low frequency mode which can be related to the geodesic acoustic mode (GAM). The GAM induces an energy transfer away from the central WCM frequency, indicating an underlying instability responsible for the WCM. During the I-mode magnetic fluctuations close to the WCM frequency are intensified, which can be assigned to the geodesic Alfvénic oscillation. The geodesic Alfvénic oscillation is already present in the L-mode, and does not follow changes of frequency of the WCM, therefore it is not responsible for the WCM.

  17. Transport simulations of the pre-thermal-quench phase in ASDEX Upgrade massive gas injection experiments

    NASA Astrophysics Data System (ADS)

    Fable, E.; Pautasso, G.; Lehnen, M.; Dux, R.; Bernert, M.; Mlynek, A.; the ASDEX Upgrade Team

    2016-02-01

    The pre-thermal-quench (PTQ) phase of the massive gas injection (MGI) scenario to terminate the tokamak plasma discharge is studied by means of one-dimensional (1D) transport simulations. This phase is characterized by the cold-front penetration in the hot plasma after the gas has been released from the valves, and before the actual thermal quench takes place, with consequent plasma disruption at lower stored energy. The comparison between the simulations and the ASDEX Upgrade (AUG) experiments allows to gain insight in the observed dependencies and time scales. Despite the genuine three-dimensional structure of the problem, it is shown that the 1D simulations are already giving experimentally relevant answers, the reason for which will be discussed in detail. Influence of unknown parameters and simplifying assumptions are also discussed.

  18. Video analysis of dust events in full-tungsten ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Brochard, F.; Shalpegin, A.; Bardin, S.; Lunt, T.; Rohde, V.; Briançon, J. L.; Pautasso, G.; Vorpahl, C.; Neu, R.; The ASDEX Upgrade Team

    2017-03-01

    Fast video data recorded during seven consecutive operation campaigns (2008-2012) in full-tungsten ASDEX Upgrade have been analyzed with an algorithm developed to automatically detect and track dust particles. A total of 2425 discharges have been analyzed, corresponding to 12 204 s of plasma operation. The analysis aimed at precisely identifying and sorting the discharge conditions responsible of the dust generation or remobilization. Dust rates are found to be significantly lower than in tokamaks with carbon PFCs. Significant dust events occur mostly during off-normal plasma phases such as disruptions and particularly those preceded by vertical displacement events (VDEs). Dust rates are also increased but to a lower extent during type-I ELMy H-modes. The influences of disruption energy, heating scenario, vessel venting and vessel vibrations are also presented.

  19. Making ICRF power compatible with a high-Z wall in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, V.; Aguiam, D.; Bilato, R.; Brezinsek, S.; Colas, L.; Faugel, H.; Fünfgelder, H.; Herrmann, A.; Jacquot, J.; Kallenbach, A.; Milanesio, D.; Maggiora, R.; Neu, R.; Noterdaeme, J.-M.; Ochoukov, R.; Potzel, S.; Pütterich, T.; Silva, A.; Tierens, W.; Tuccilo, A.; Tudisco, O.; Wang, Y.; Yang, Q.; Zhang, W.; ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-01-01

    A comparison of the ASDEX Upgrade 3-strap ICRF antenna data with the linear electro-magnetic TOPICA calculations is presented. The comparison substantiates a reduction of the local electric field at the radially protruding plasma-facing elements of the antenna as a relevant approach for minimizing tungsten (W) sputtering in conditions when the slow wave is strongly evanescent. The measured reaction of the time-averaged RF current at the antenna limiters to the antenna feeding variations is less sensitive than predicted by the calculations. This is likely to have been caused by temporal and spatial fluctuations in the 3D plasma density distribution affected by local non-linear interactions. The 3-strap antenna with the W-coated limiters produces drastically less W sputtering compared to the W-coated 2-strap antennas. This is consistent with the non-linear asymptotic SSWICH-SW calculations for RF sheaths.

  20. Density profile sensitivity study of ASDEX Upgrade ICRF Antennas with the TOPICA code

    SciTech Connect

    Krivska, A.; Ceccuzzi, S.; Tuccillo, A. A.; Milanesio, D.; Maggiora, R.; Bobkov, V.; Braun, F.; Noterdaeme, J.-M.

    2011-12-23

    During operation of the ASDEX Upgrade (AUG) ion cyclotron radio frequency (ICRF) system, Tungsten (W)-coated poloidal limiters and structures connected along magnetic field lines to the antenna can be sources of W, which is attributed to sputtering by ions accelerated in radio frequency (RF) sheaths. In order to analyze and optimize the ICRF antenna performance, accurate and efficient simulation tools are necessary. TOPICA code was developed for analysis of ICRF antenna systems with plasma loading conditions modeled with ID FELICE code. This paper presents an initial comparative analysis of two AUG ICRF antennas for a set of model plasma density profiles (with varying density gradient and antenna cut-off distance). The antennas are presently installed in AUG and differ in that one was partially optimized using HFSS code to reduce E{sub ||} near fields. Power transferred to plasma and sheath driving RF potentials are computed.

  1. Non-linear modeling of the plasma response to RMPs in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Orain, F.; Hölzl, M.; Viezzer, E.; Dunne, M.; Bécoulet, M.; Cahyna, P.; Huijsmans, G. T. A.; Morales, J.; Willensdorfer, M.; Suttrop, W.; Kirk, A.; Pamela, S.; Günter, S.; Lackner, K.; Strumberger, E.; Lessig, A.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-02-01

    The plasma response to resonant magnetic perturbations (RMPs) in ASDEX Upgrade is modeled with the non-linear resistive MHD code JOREK, using input profiles that match those of the experiments as closely as possible. The RMP configuration for which edge localized modes are best mitigated in experiments is related to the largest edge kink response observed near the X-point in modeling. On the edge resonant surfaces q  =  m/n, the coupling between the kink component (m  >  nq) and the m resonant component is found to induce the amplification of the resonant magnetic perturbation. The ergodicity and the 3D-displacement near the X-point induced by the resonant amplification can only partly explain the density pumpout observed in experiments.

  2. Disruption mitigation by injection of small quantities of noble gas in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Pautasso, G.; Bernert, M.; Dibon, M.; Duval, B.; Dux, R.; Fable, E.; Fuchs, J. C.; Conway, G. D.; Giannone, L.; Gude, A.; Herrmann, A.; Hoelzl, M.; McCarthy, P. J.; Mlynek, A.; Maraschek, M.; Nardon, E.; Papp, G.; Potzel, S.; Rapson, C.; Sieglin, B.; Suttrop, W.; Treutterer, W.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-01-01

    The most recent experiments of disruption mitigation by massive gas injection in ASDEX Upgrade have concentrated on small—relatively to the past—quantities of noble gas injected, and on the search for the minimum amount of gas necessary for the mitigation of the thermal loads on the divertor and for a significant reduction of the vertical force during the current quench. A scenario for the generation of a long-lived runaway electron beam has been established; this allows the study of runaway current dissipation by moderate quantities of argon injected. This paper presents these recent results and discusses them in the more general context of physical models and extrapolation, and of the open questions, relevant for the realization of the ITER disruption mitigation system.

  3. Electromagnetic simulations of the ASDEX Upgrade ICRF Antenna with the TOPICA code

    SciTech Connect

    Krivska, A.; Milanesio, D.; Bobkov, V.; Braun, F.; Noterdaeme, J.-M.

    2009-11-26

    Accurate and efficient simulation tools are necessary to optimize the ICRF antenna design for a set of operational conditions. The TOPICA code was developed for performance prediction and for the analysis of ICRF antenna systems in the presence of plasma, given realistic antenna geometries. Fully 3D antenna geometries can be adopted in TOPICA, just as in available commercial codes. But while those commercial codes cannot operate with a plasma loading, the TOPICA code correctly accounts for realistic plasma loading conditions, by means of the coupling with 1D FELICE code. This paper presents the evaluation of the electric current distribution on the structure, of the parallel electric field in the region between the straps and the plasma and the computation of sheaths driving RF potentials. Results of TOPICA simulations will help to optimize and re-design the ICRF ASDEX Upgrade antenna in order to reduce tungsten (W) sputtering attributed to the rectified sheath effect during ICRF operation.

  4. Gyrokinetic studies of core turbulence features in ASDEX Upgrade H-mode plasmas

    SciTech Connect

    Navarro, A. Bañón Told, D.; Happel, T.; Görler, T.; Abiteboul, J.; Bustos, A.; Doerk, H.; Jenko, F.

    2015-04-15

    Gyrokinetic validation studies are crucial for developing confidence in the model incorporated in numerical simulations and thus improving their predictive capabilities. As one step in this direction, we simulate an ASDEX Upgrade discharge with the GENE code, and analyze various fluctuating quantities and compare them to experimental measurements. The approach taken is the following. First, linear simulations are performed in order to determine the turbulence regime. Second, the heat fluxes in nonlinear simulations are matched to experimental fluxes by varying the logarithmic ion temperature gradient within the expected experimental error bars. Finally, the dependence of various quantities with respect to the ion temperature gradient is analyzed in detail. It is found that density and temperature fluctuations can vary significantly with small changes in this parameter, thus making comparisons with experiments very sensitive to uncertainties in the experimental profiles. However, cross-phases are more robust, indicating that they are better observables for comparisons between gyrokinetic simulations and experimental measurements.

  5. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated electron cyclotron emission.

    PubMed

    Freethy, S J; Conway, G D; Classen, I; Creely, A J; Happel, T; Köhn, A; Vanovac, B; White, A E

    2016-11-01

    Turbulent temperature fluctuations are measured on the ASDEX Upgrade tokamak using pairs of closely spaced, narrow-band heterodyne radiometer channels and a standard correlation technique. The pre-detection spacing and bandwidth of the radiometer channel pairs is chosen such that they are physically separated less than a turbulent correlation length, but do not overlap. The radiometer has 4 fixed filter frequency channels and two tunable filter channels for added flexibility in the measurement position. Relative temperature fluctuation amplitudes are observed in a helium plasma to be δT/T = (0.76 ± 0.02)%, (0.67 ± 0.02)%, and (0.59 ± 0.03)% at normalised toroidal flux radius of ρtor = 0.82, 0.75, and 0.68, respectively.

  6. Electromagnetic effects on turbulent transport in high-performance ASDEX Upgrade discharges

    SciTech Connect

    Doerk, H.; Dunne, M.; Ryter, F.; Schneider, P. A.; Wolfrum, E.; Jenko, F.

    2015-04-15

    Modern tokamak H-mode discharges routinely operate at high plasma beta. Dedicated experiments performed on multiple machines measure contradicting dependence of the plasma confinement on this important parameter. In view of designing high-performance scenarios for next-generation devices like ITER, a fundamental understanding of the involved physics is crucial. Theoretical results—most of which have been obtained for simplified setups—indicate that increased beta does not only modify the characteristics of microturbulence but also potentially introduces fundamentally new physics. Empowered by highly accurate measurements at ASDEX Upgrade, the GENE turbulence code is used to perform a comprehensive gyrokinetic study of dedicated H-Mode plasmas. We find the stabilization of ion-temperature-gradient driven turbulence to be the most pronounced beta effect in these experimentally relevant cases. The resulting beta-improved core confinement should thus be considered for extrapolations to future machines.

  7. Latest investigations on fluctuations, ELM filaments and turbulent transport in the SOL of ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Müller, H. W.; Adamek, J.; Cavazzana, R.; Conway, G. D.; Fuchs, C.; Gunn, J. P.; Herrmann, A.; Horaček, J.; Ionita, C.; Kallenbach, A.; Kočan, M.; Maraschek, M.; Maszl, C.; Mehlmann, F.; Nold, B.; Peterka, M.; Rohde, V.; Schweinzer, J.; Schrittwieser, R.; Vianello, N.; Wolfrum, E.; Zuin, M.; ASDEX Upgrade Team

    2011-07-01

    This paper presents turbulence investigations in the scrape-off layer (SOL) of ASDEX Upgrade in ohmic, L-mode and H-mode discharges using electrostatic and electromagnetic probes. Detailed studies are performed on small scale turbulence and on ELM filaments. Simultaneous measurements of floating and plasma potential fluctuations revealed significant differences between these quantities. Large errors can occur when the electric field is extracted from floating potential measurements, even in ohmic discharges. Turbulence studies in ohmic plasmas show the existence of density holes inside the separatrix and blobs outside. Close to the separatrix a reversal of the poloidal blob propagation velocity occurs. Investigations on the Reynolds stress in the scrape-off layer (SOL) show its importance for the momentum transport in L-mode while its impact for momentum transport during ELMs in H-mode is rather small. In the far SOL the electron density and temperature were measured during type-I ELMy H-mode at ASDEX Upgrade resolving ELM filaments. Strong density peaks and temperatures of several 10 eV were detected during the ELM events. Additional investigations on the ions in ELM filaments by a retarding field analyser indicate ion temperatures of 50-80 eV. ELMs also expel current concentrated in filaments into the SOL. Furthermore, discharges with small ELMs were studied. In N2 seeded discharges the type-I ELM frequency rises and the ELM duration decreases. For discharges with small type-II ELMs the mean turbulent radial particle flux is increased over the mean particle flux in type-I ELM discharges at otherwise similar plasma parameters.

  8. Compatibility of ITER scenarios with full tungsten wall in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Gruber, O.; Sips, A. C. C.; Dux, R.; Eich, T.; Fuchs, J. C.; Herrmann, A.; Kallenbach, A.; Maggi, C. F.; Neu, R.; Pütterich, T.; Schweinzer, J.; Stober, J.; ASDEX Upgrade Team

    2009-11-01

    The transition of ASDEX Upgrade (AUG) from a graphite device to a full tungsten device is demonstrated with a reduction by an order of magnitude in both the carbon deposition and deuterium retention. The tungsten source is dominated by sputtering from intrinsic light impurities, and the tungsten influxes from the outboard limiters are the main source for the plasma. In H-mode discharges, central heating (neutral beams, ECRH) is used to increase turbulent outward transport avoiding tungsten accumulation. ICRH can only be used after boronization as its application otherwise results in large W influxes due to light impurities accelerated by electrical fields at the ICRH antennas. ELMs are important in reducing the inward transport of tungsten in the H-mode edge barrier and are controlled by gas puffing. Even without boronization, stationary, ITER baseline H-modes (confinement enhancement factor from ITER 98(y, 2) scaling H98 ~ 1, normalized beta βN ~ 2), with W concentrations below 3 × 10-5 were routinely achieved up to 1.2 MA plasma current. The compatibility of high performance improved H-modes with unboronized W wall was demonstrated, achieving H98 = 1.1 and βN up to 2.6 at modest triangularities δ <= 0.3 as required for advanced scenarios in ITER. With boronization the light impurities and the radiated power fraction especially in the divertor were reduced and the divertor plasma was actively cooled by N2 seeding. N2 seeding does not only protect the divertor tiles but also considerably improves the performance of improved H-mode discharges. The energy confinement increased to H98-factors of 1.25 (βN ~ 2.7) and thereby exceeded the best values in a carbon-dominated AUG machine under similar conditions. Recent investigations show that this improvement is due to higher temperatures rather than to peaking of the electron density profile. Further ITER discharge scenario tests include the demonstration of ECRF assisted low voltage plasma start-up and current rise

  9. On the effect of neoclassical flows on intrinsic momentum in ASDEX Upgrade Ohmic L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Hornsby, W. A.; Angioni, C.; Fable, E.; Manas, P.; McDermott, R.; Peeters, A. G.; Barnes, M.; Parra, F.; The ASDEX Upgrade Team

    2017-04-01

    A gyro-kinetic analysis of intrinsic rotation is presented for the ASDEX Upgrade tokamak. The gyro-kinetic turbulence code, GKW and the neoclassical transport code, NEO are coupled so that the neoclassical equilibrium distribution function is included in the background distribution function in the gyro-kinetic turbulence simulation. This implementation is benchmarked against a similar implementation in the gyro-kinetic code, GS2 (Dorland et al 2000 Phys. Rev. Lett. 85 5579) and against analytical predictions. A quasi-linear and non-linear gyro-kinetic turbulence analysis is performed on Ohmic L-mode ASDEX Upgrade plasmas showing that the symmetry breaking effects due to neoclassical background flows can produce significant toroidal momentum transport. While its magnitude is of the order of other symmetry breaking mechanisms, such as the Coriolis pinch, up–down asymmetry in the magnetic flux surfaces and E× B flow shear, the flow gradients it can sustain are appreciably smaller than the maximum gradients measured at the mid-radius of the ASDEX Upgrade tokamak core, which can be up to an order of magnitude larger. It is found that the gradient of the diamagnetic flow, and therefore the second derivatives of the density and temperature gradients are critical to the production of residual toroidal momentum flux. A quasi-linear estimate indicated that the second derivatives required to match the experimental flow gradient are up to an order of magnitude higher than the measured second derivatives. This analysis suggests that turbulent transport driven by neoclassical flows is not sufficient to explain the maximum flow gradients observed in ASDEX Upgrade.

  10. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated Electron Cyclotron Emission

    NASA Astrophysics Data System (ADS)

    Freethy, S.; Conway, G. D.; Classen, I.; Creely, A. J.; Happel, T.; Vanovac, B.; White, A. E.; ASDEX Upgrade Team

    2016-10-01

    First measurements of core (r/a < 0.95) turbulent electron temperature fluctuations made on the ASDEX Upgrade (AUG) tokamak using a Correlation Electron Cyclotron Emission (CECE) technique are presented. Validation of gyro-kinetic models against measurements of the underlying turbulent micro-structure are essential for developing predictive capabilities for future devices. In tokamak plasmas, turbulent temperature fluctuations are sufficiently broadband ( 0.5 MHz) and low-amplitude ( 1%) that conventional radiometer techniques are fundamentally unable to detect them and a correlation technique is required to further extract the signals. An application of the spectral decorrelation method had been designed and built for AUG. This CECE radiometer shares an optical path with a reflectometer and is sensitive to wavenumbers perpendicular to the magnetic field k⊥ up to 0.76 cm-1 . An upgrade to the focusing mirror will increase this range to k⊥ up to 1.4 cm-1. Measurements in Helium plasmas have been made at three radial locations simultaneously, providing a profile of the temperature fluctuation amplitude in the outer core of Electron Cyclotron Resonance Heated heated L-mode plasmas. New results and future plans will be presented. This work is supported by the US DOE under Grant DE-SC0006419.

  11. Numerically derived parametrisation of optimal RMP coil phase as a guide to experiments on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Ryan, D. A.; Liu, Y. Q.; Li, L.; Kirk, A.; Dunne, M.; Dudson, B.; Piovesan, P.; Suttrop, W.; Willensdorfer, M.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-02-01

    Edge localised modes (ELMs) are a repetitive MHD instability, which may be mitigated or suppressed by the application of resonant magnetic perturbations (RMPs). In tokamaks which have an upper and lower set of RMP coils, the applied spectrum of the RMPs can be tuned for optimal ELM control, by introducing a toroidal phase difference {{Δ }}{{Φ }} between the upper and lower rows. The magnitude of the outermost resonant component of the RMP field | {b}{{res}}1| (other proposed criteria are discussed herein) has been shown experimentally to correlate with mitigated ELM frequency, and to be controllable by {{Δ }}{{Φ }} (Kirk et al 2013 Plasma Phys. Control. Fusion 53 043007). This suggests that ELM mitigation may be optimised by choosing {{Δ }}{{Φ }}={{Δ }}{{{Φ }}}{{opt}}, such that | {b}{{res}}1| is maximised. However it is currently impractical to compute {{Δ }}{{{Φ }}}{{opt}} in advance of experiments. This motivates this computational study of the dependence of the optimal coil phase difference {{Δ }}{{{Φ }}}{{opt}}, on global plasma parameters {β }N and q 95, in order to produce a simple parametrisation of {{Δ }}{{{Φ }}}{{opt}}. In this work, a set of tokamak equilibria spanning a wide range of ({β }N, q 95) is produced, based on a reference equilibrium from an ASDEX Upgrade experiment. The MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681) is then used to compute {{Δ }}{{{Φ }}}{{opt}} across this equilibrium set for toroidal mode numbers n = 1-4, both for the vacuum field and including the plasma response. The computational scan finds that for fixed plasma boundary shape, rotation profiles and toroidal mode number n, {{Δ }}{{{Φ }}}{{opt}} is a smoothly varying function of ({β }N, q 95). A 2D quadratic function in ({β }N, q 95) is used to parametrise {{Δ }}{{{Φ }}}{{opt}}, such that for given ({β }N, q 95) and n, an estimate of {{Δ }}{{{Φ }}}{{opt}} may be made without requiring a plasma response computation. To quantify the uncertainty

  12. Measurements and simulations of ICRF induced plasma convection in front of the 3-strap antennas in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; ASDEX Upgrade Team; Eurofusion MST1 Team

    2016-10-01

    Plasma heating with waves in the Ion Cyclotron Range of Frequency (ICRF) is one of the standard heating methods in tokamaks. The parallel (to the magnetic field) component of the electric field of the waves enhances the edge plasma potential nonlinearly through radio-frequency-sheath (rf-sheath) rectification. The gradient of this potential across magnetic field drives plasma convection in the Scrape-Off Layer. To reduce the rf-sheath driven close to ICRF antennas, the parallel electric near-field has to be decreased. This can be achieved by minimization of undesired parasitic currents induced in the antenna box by the antenna currents. New antennas with a novel approach to reduce those undesired currents through the proper phase and amplitude of the current in 3-straps have been installed and validated on ASDEX Upgrade. With reflectometers embedded in one 3-strap antenna at different poloidal locations, the density profiles in front of the antenna can be measured in when the antenna is either active or passive. The ICRF induced edge plasma convection in different antenna feeding configurations (different phasing, different power ratio between the central and the side straps) has thus been studied. Also we have carried out comprehensive simulations by running the EMC3EIRENE, RAPLICASOL and SSWICH codes in an iterative and quasi self-consistent way. The steadystate ICRF induced plasma density convection can clearly be reproduced in the models and compared with the ones measured in experiments.

  13. Simulation and real-time estimation of sawtooth crash effects on ASDEX-Upgrade plasmas

    NASA Astrophysics Data System (ADS)

    Piron, Chiara; Felici, Federico; Kim, Doohyun; Piovesan, Paolo; Rapson, Chris; Reich, Matthias; Sauter, Olivier; Treutterer, Wolfgang; van den Brand, Hugo; ASDEX Upgrade Team

    2014-10-01

    This work presents the integration of Porcelli's sawtooth model, including partial and full reconnection triggered by a shear threshold, in the RAPid Transport simulatOR code (RAPTOR) and its application to ASDEX-Upgrade(AUG) experiments. RAPTOR is a 1D profile evolution code designed for real-time reconstruction and control applications. RAPTOR is used in predictive simulations to model the plasma profile in sawtoothing AUG discharges, but it also simulates the profile evolution in real-time, yielding a plasma state estimate that includes the effect of sawteeth. This work aims to model AUG scenarios with sawteeth and to understand sawtooth control and locking experiments. It also discusses the improvements in the plasma state reconstruction, in particular in the evolution of the q-profile, obtained by the inclusion of Porcelli's model in the code. Possible applications to real-time sawtooth control, like suitable power actuator schemes and locking techniques, are investigated as well. This project has received funding from the EURATOM research and training programme 2014--2018.

  14. A new compact solid-state neutral particle analyser at ASDEX Upgrade: Setup and physics modeling.

    PubMed

    Schneider, P A; Blank, H; Geiger, B; Mank, K; Martinov, S; Ryter, F; Weiland, M; Weller, A

    2015-07-01

    At ASDEX Upgrade (AUG), a new compact solid-state detector has been installed to measure the energy spectrum of fast neutrals based on the principle described by Shinohara et al. [Rev. Sci. Instrum. 75, 3640 (2004)]. The diagnostic relies on the usual charge exchange of supra-thermal fast-ions with neutrals in the plasma. Therefore, the measured energy spectra directly correspond to those of confined fast-ions with a pitch angle defined by the line of sight of the detector. Experiments in AUG showed the good signal to noise characteristics of the detector. It is energy calibrated and can measure energies of 40-200 keV with count rates of up to 140 kcps. The detector has an active view on one of the heating beams. The heating beam increases the neutral density locally; thereby, information about the central fast-ion velocity distribution is obtained. The measured fluxes are modeled with a newly developed module for the 3D Monte Carlo code F90FIDASIM [Geiger et al., Plasma Phys. Controlled Fusion 53, 65010 (2011)]. The modeling allows to distinguish between the active (beam) and passive contributions to the signal. Thereby, the birth profile of the measured fast neutrals can be reconstructed. This model reproduces the measured energy spectra with good accuracy when the passive contribution is taken into account.

  15. Multi-view fast-ion D-alpha spectroscopy diagnostic at ASDEX Upgrade

    SciTech Connect

    Geiger, B.; Dux, R.; McDermott, R. M.; Potzel, S.; Reich, M.; Ryter, F.; Weiland, M.; Wünderlich, D.; Garcia-Munoz, M.; Collaboration: ASDEX Upgrade Team

    2013-11-15

    A novel fast-ion D-alpha (FIDA) diagnostic that is based on charge exchange spectroscopy has been installed at ASDEX Upgrade. The diagnostic uses a newly developed high-photon-throughput spectrometer together with a low-noise EM-CCD camera that allow measurements with 2 ms exposure time. Absolute intensities are obtained by calibrating the system with an integrating sphere and the wavelength dependence is determined to high accuracy using a neon lamp. Additional perturbative contributions to the spectra, such as D{sub 2}-molecular lines, the Stark broadened edge D-alpha emission, and passive FIDA radiation have been identified and can be subtracted or avoided experimentally. The FIDA radiation from fast deuterium ions after charge exchange reactions can therefore be analyzed continuously without superimposed line emissions at large Doppler shifts. Radial information on the fast ions is obtained from radially distributed lines of sight. The investigation of the fast-ion velocity distribution is possible due to three different viewing geometries. The independent viewing geometries access distinct parts of the fast-ion velocity space and make tomographic reconstructions possible.

  16. Adjoint Monte Carlo simulation of fusion product activation probe experiment in ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Äkäslompolo, S.; Bonheure, G.; Tardini, G.; Kurki-Suonio, T.; The ASDEX Upgrade Team

    2015-10-01

    The activation probe is a robust tool to measure flux of fusion products from a magnetically confined plasma. A carefully chosen solid sample is exposed to the flux, and the impinging ions transmute the material making it radioactive. Ultra-low level gamma-ray spectroscopy is used post mortem to measure the activity and, thus, the number of fusion products. This contribution presents the numerical analysis of the first measurement in the ASDEX Upgrade tokamak, which was also the first experiment to measure a single discharge. The ASCOT suite of codes was used to perform adjoint/reverse Monte Carlo calculations of the fusion products. The analysis facilitates, for the first time, a comparison of numerical and experimental values for absolutely calibrated flux. The results agree to within a factor of about two, which can be considered a quite good result considering the fact that all features of the plasma cannot be accounted in the simulations.Also an alternative to the present probe orientation was studied. The results suggest that a better optimized orientation could measure the flux from a significantly larger part of the plasma. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  17. A new compact solid-state neutral particle analyser at ASDEX Upgrade: Setup and physics modeling

    SciTech Connect

    Schneider, P. A.; Blank, H.; Geiger, B.; Mank, K.; Martinov, S.; Ryter, F.; Weiland, M.; Weller, A.

    2015-07-15

    At ASDEX Upgrade (AUG), a new compact solid-state detector has been installed to measure the energy spectrum of fast neutrals based on the principle described by Shinohara et al. [Rev. Sci. Instrum. 75, 3640 (2004)]. The diagnostic relies on the usual charge exchange of supra-thermal fast-ions with neutrals in the plasma. Therefore, the measured energy spectra directly correspond to those of confined fast-ions with a pitch angle defined by the line of sight of the detector. Experiments in AUG showed the good signal to noise characteristics of the detector. It is energy calibrated and can measure energies of 40-200 keV with count rates of up to 140 kcps. The detector has an active view on one of the heating beams. The heating beam increases the neutral density locally; thereby, information about the central fast-ion velocity distribution is obtained. The measured fluxes are modeled with a newly developed module for the 3D Monte Carlo code F90FIDASIM [Geiger et al., Plasma Phys. Controlled Fusion 53, 65010 (2011)]. The modeling allows to distinguish between the active (beam) and passive contributions to the signal. Thereby, the birth profile of the measured fast neutrals can be reconstructed. This model reproduces the measured energy spectra with good accuracy when the passive contribution is taken into account.

  18. Fast-ion transport and NBI current drive in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Geiger, Benedikt; Weiland, Markus; Mlynek, Alexander; Dunne, Mike; Dux, Ralph; Fischer, Rainer; Hobirk, Joerg; Hopf, Christian; Reich, Matthias; Rittich, David; Ryter, Francois; Schneider, Philip; Tardini, Giovanni; Garcia-Munoz, Manuel; ASDEX Upgrade Team

    2014-10-01

    Good confinement of fast ions is essential in fusion devices because these suprathermal particles are responsible for plasma heating, current drive and can, if poorly confined, damage surrounding walls. The degradation of the fast-ion confinement caused by large and small scale instabilities must consequently be investigated. In the ASDEX Upgrade tokamak, fast ions are generated by neutral beam injection (NBI) and their slowing down distribution can be studied using FIDA spectroscopy, neutral particle analyzers and neutron detectors. Neo-classical fast-ion transport is observed by these measurements in MHD-quiescent discharges with relatively weak heating power (less than 5 MW). The presence of sawtooth instabilities, in contrast, yields a strong internal fast-ion redistribution that can be modelled very well when assuming full reconnection of the helical magnetic field. The fast-ion current drive efficiency has been studied in discharges with up to 10 MW of heating power in which on-axis and off-axis NBI were exchanged. The radial shape of the fast-ion population, generated by the different NBIs, changes as predicted and a corresponding modification of the current profile is measured.

  19. Comparisons between global and local gyrokinetic simulations of an ASDEX Upgrade H-mode plasma

    NASA Astrophysics Data System (ADS)

    Navarro, Alejandro Bañón; Told, Daniel; Jenko, Frank; Görler, Tobias; Happel, Tim

    2016-04-01

    We investigate by means of local and global nonlinear gyrokinetic GENE simulations an ASDEX Upgrade H-mode plasma. We find that for the outer core positions (i.e., ρ tor ≈ 0.5 - 0.7 ), nonlocal effects are important. For nominal input parameters local simulations over-predict the experimental heat fluxes by a large factor, while a good agreement is found with global simulations. This was a priori not expected, since the values of 1 / ρ ⋆ were large enough that global and local simulations should have been in accordance. Nevertheless, due to the high sensitivity of the heat fluxes with respect to the input parameters, it is still possible to match the heat fluxes in local simulations with the experimental and global results by varying the ion temperature gradient within the experimental uncertainties. In addition to that, once an agreement in the transport quantities between local (flux-matched) and global simulations is achieved, an agreement for other quantities, such as density and temperature fluctuations, is also found. The case presented here clearly shows that even in the presence of global size-effects, the local simulation approach is still a valid and accurate approach.

  20. Improved time-frequency analysis of ASDEX Upgrade reflectometry data using the reassigned spectrogram technique

    SciTech Connect

    Varela, P.; Silva, A.; Silva, F. da; Graca, S. da; Manso, M. E. [Associacao EURATOM Conway, G. D. [MPI fuer Plasmaphysik, EURATOM Collaboration: ASDEX Upgrade Team

    2010-10-15

    The spectrogram is one of the best-known time-frequency distributions suitable to analyze signals whose energy varies both in time and frequency. In reflectometry, it has been used to obtain the frequency content of FM-CW signals for density profile inversion and also to study plasma density fluctuations from swept and fixed frequency data. Being implemented via the short-time Fourier transform, the spectrogram is limited in resolution, and for that reason several methods have been developed to overcome this problem. Among those, we focus on the reassigned spectrogram technique that is both easily automated and computationally efficient requiring only the calculation of two additional spectrograms. In each time-frequency window, the technique reallocates the spectrogram coordinates to the region that most contributes to the signal energy. The application to ASDEX Upgrade reflectometry data results in better energy concentration and improved localization of the spectral content of the reflected signals. When combined with the automatic (data driven) window length spectrogram, this technique provides improved profile accuracy, in particular, in regions where frequency content varies most rapidly such as the edge pedestal shoulder.

  1. NBI-driven Alfvénic modes at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Lauber, Ph.; Classen, I. G. J.; Curran, D.; Igochine, V.; Geiger, B.; da Graça, S.; García-Muñoz, M.; Maraschek, M.; McCarthy, P.; the ASDEX Upgrade Team

    2012-09-01

    A large variety of electromagnetic modes excited by NBI-generated energetic ions are observed in the early phase of many discharges at ASDEX Upgrade. In addition to the well-known reversed shear Alfvén eigenmodes (RSAE) and the toroidal Alfvén eigenmodes (TAE), a set of modes around 70 kHz is observed as recently described in [7]. The modes were identified to be beta-induced Alfvén eigenmodes (BAE) connected with the appearance of the q = 2 and the q = 1.5 surface during the current ramp-up phase. In the view of ITER, these BAEs may occur in scenarios with q ≈ 2 (scenario 4) and therefore add significantly to the transport of energetic ions due to RSAEs and TAEs. Experimentally, the combination of ECE, soft-x-ray and magnetic measurements allows for a very reliable mode position and mode structure determination. The measurements are compared with linear gyrokinetic calculations employing the LIGKA code that uses a fully kinetic model to describe fast-particle-driven modes in general tokamak geometry.

  2. Intermittent transport across the scrape-off layer: latest results from ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Kočan, M.; Müller, H. W.; Nold, B.; Lunt, T.; Adámek, J.; Allan, S. Y.; Bernert, M.; Conway, G. D.; de Marné, P.; Eich, T.; Elmore, S.; Gennrich, F. P.; Herrmann, A.; Horacek, J.; Huang, Z.; Kallenbach, A.; Komm, M.; Maraschek, M.; Mehlmann, F.; Müller, S.; Ribeiro, T. T.; Rohde, V.; Schrittwieser, R.; Scott, B.; Stroth, U.; Suttrop, W.; Wolfrum, E.; the ASDEX Upgrade Team

    2013-07-01

    We report the latest results of turbulence and transport studies in the ASDEX Upgrade scrape-off layer (SOL). Dissimilarity between the plasma and the floating potential fluctuations is studied experimentally and by gyrofluid simulations. Measurements by a retarding field analyser reveal that both, edge-localized mode (ELM) and turbulent filaments, convey hot ions over large radial distances in the SOL. The measured far SOL ELM ion temperature increases with the ELM energy, consistent with earlier observations that large ELMs deposit a large fraction of their energy outside the divertor. In the SOL, the ELM suppression by magnetic perturbations (MPs) results in lower ELM ion energy in the far SOL. At the same time, large filaments of ion saturation current are replaced by more continuous bursts. Splitting of the divertor strike zones observed by the infrared imaging in H-mode with MPs agree with predictions from the EMC3-Eirene simulations. This suggests that the ‘lobe’ structures due to perturbation fields observed near the X-point are not significantly affected by plasma screening, and can be described by a vacuum approach, as in the EMC3-Eirene. Finally, some effects of the MPs on the L-mode SOL are addressed.

  3. Toroidal mode number determination of ELM associated phenomena on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Mink, Felician; Wolfrum, Elisabeth; Maraschek, Marc; Zohm, Hartmut; Horváth, László; Laggner, Florian M.; Manz, Peter; Viezzer, Eleonora; Stroth, Ulrich; the ASDEX Upgrade Team

    2016-12-01

    In highly confined tokamak plasmas periodically appearing edge localized modes (ELMs) are accompanied by mode-like magnetohydrodynamic (MHD) activities with defined toroidal mode numbers. Here the method of determining toroidal mode numbers n on the ASDEX Upgrade tokamak with a toroidally spread magnetic pick-up coil array is reviewed and improved by taking into account intrinsic coil phases. ELM synchronization is used to characterize inter-ELM MHD activity and their development during the ELM cycle in terms of their mode numbers. The mode number development is correlated with the development of the pedestal parameters which shows that the inter-ELM modes cause transport across the pedestal. An estimation of the position of the modes is done via a comparison between the mode velocities and the plasma rotation profile at the edge. Results show that during the ELM cycle MHD modes appear at several positions in the strong gradient region with clearly defined toroidal structures in the range of n  =  1-10. These structures of inter-ELM modes are preserved during the ELM crash where also a strong n  =  0 phenomenon occurs.

  4. Predictive analysis of q-profile influence on transport in JET and ASDEX Upgrade hybrid scenarios

    NASA Astrophysics Data System (ADS)

    Citrin, J.; Hobirk, J.; Schneider, M.; Artaud, J. F.; Bourdelle, C.; Crombe, K.; Hogeweij, G. M. D.; Imbeaux, F.; Joffrin, E.; Koechl, F.; Stober, J.; the ASDEX Upgrade Team; contributors, JET-EFDA; the ITM-TF ITER Scenario Modelling Group

    2012-06-01

    Hybrid scenarios in present machines are often characterized by improved confinement compared with the IPB98(y,2) empirical scaling law expectations. This work concentrates on isolating the impact of increased s/q at outer radii (where s is the magnetic shear) on core confinement in low-triangularity JET and ASDEX Upgrade (AUG) experiments. This is carried out by predictive heat and particle transport modelling using the integrated modelling code CRONOS coupled to the GLF23 turbulent transport model. For both machines, discharge pairs were analysed displaying similar pedestal confinement yet significant differences in core confinement. From these comparisons, it is found that s/q shaping at outer radii may be responsible for up to ˜50% of the relative core confinement improvement observed in these specific discharges. This relative improvement is independent of the degree of rotational shear turbulence suppression assumed in the GLF23 model. However, employing the full GLF23 rotational shear model leads to an overprediction of the ion temperatures in all discharges analysed. Additional mechanisms for core confinement improvement are discussed and estimated. Further linear threshold analysis with QuaLiKiz is carried out on both pairs of discharges. This work aims to validate recent predictions of the ITER hybrid scenario also employing CRONOS/GLF23, where a high level of confinement and resultant fusion power sensitivity to the s/q profile was found.

  5. Machine safety issues with respect to the extension of ECRH systems at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Schuberta, Martin; Herrmann, Albrecht; Monaco, Francesco; Rohde, Volker; Schütz, Harald; Stober, Jörg; Vierle, Thomas; Vorbrugg, Stefan; Wagner, Dietmar; Zasche, Dieter; Zehetbauer, Thomas; Zeidner, Wolfgang

    2015-03-01

    The beam intensity of electron cyclotron resonance heating at ASDEX Upgrade has the potential to seriously damage in-vessel components, whenever not fully absorbed by the plasma. Operation is, therefore, interlocked with both plasma current and density above a given threshold. Microwave protection detectors installed in several ports on the low field side switch the heating system off, in case the stray radiation exceeds a given threshold. During regular inspections, however, damages were reported in the vicinity of the launchers and in particular around the tiles of the heat shield. On one hand, it was found that insulating material, which may not face the plasma, degraded due to millimetre wave absorption. The waves entered the free space behind the heat shield through gaps. On the other hand, local damage even of metallic components was observed on surfaces, which were directly exposed to the microwave beam. Polarisation errors, which led to a local shine through of significant beam power, were responsible. We note that this happened mainly on the high field side in a certain distance to the microwave protection detectors, which were not triggered by the events. In order to increase the level of protection, we identify three necessary measures: Firstly, polarisation control is to be automated such, that mode content and shine through can be monitored. Secondly, by installing additional detectors, the spatial coverage of stray radiation monitoring is enlarged. Thirdly, the heat shield tiles will be redesigned in order to increase the shielding against millimetre waves.

  6. Collective Thomson scattering measurements of fast-ion transport due to sawtooth crashes in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Galdon-Quiroga, J.; Garcia-Munoz, M.; Geiger, B.; Jacobsen, A. S.; Jaulmes, F.; Korsholm, S. B.; Lazanyi, N.; Leipold, F.; Ryter, F.; Salewski, M.; Schubert, M.; Stober, J.; Wagner, D.; the ASDEX Upgrade Team; the EUROFusion MST1 Team

    2016-11-01

    Sawtooth instabilities can modify heating and current-drive profiles and potentially increase fast-ion losses. Understanding how sawteeth redistribute fast ions as a function of sawtooth parameters and of fast-ion energy and pitch is hence a subject of particular interest for future fusion devices. Here we present the first collective Thomson scattering (CTS) measurements of sawtooth-induced redistribution of fast ions at ASDEX Upgrade. These also represent the first localized fast-ion measurements on the high-field side of this device. The results indicate fast-ion losses in the phase-space measurement volume of about 50% across sawtooth crashes, in good agreement with values predicted with the Kadomtsev sawtooth model implemented in TRANSP and with the sawtooth model in the EBdyna_go code. In contrast to the case of sawteeth, we observe no fast-ion redistribution in the presence of fishbone modes. We highlight how CTS measurements can discriminate between different sawtooth models, in particular when aided by multi-diagnostic velocity-space tomography, and briefly discuss our results in light of existing measurements from other fast-ion diagnostics.

  7. Estimation of sheath potentials in front of ASDEX upgrade ICRF antenna with SSWICH asymptotic code

    SciTech Connect

    Křivská, A.; Colas, L.; Milanesio, D.

    2015-12-10

    Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF) heating became problematic in ASDEX Upgrade (AUG) tokamak after coating of ICRF antenna limiters and other plasma facing components by tungsten. Strong impurity influx was indeed produced at levels of injected power markedly lower than in the previous experiments. It is assumed that the impurity production is mainly driven by parallel component of Radio-Frequency (RF) antenna electric near-field E// that is rectified in sheaths. In this contribution we estimate poloidal distribution of sheath Direct Current (DC) potential in front of the ICRF antenna and simulate its relative variations over the parametric scans performed during experiments, trying to reproduce some of the experimental observations. In addition, relative comparison between two types of AUG ICRF antenna configurations, used for experiments in 2014, has been performed. For this purpose we use the Torino Polytechnic Ion Cyclotron Antenna (TOPICA) code and asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating (SSWICH) code. Further, we investigate correlation between amplitudes of the calculated oscillating sheath voltages and the E// fields computed at the lateral side of the antenna box, in relation with a heuristic antenna design strategy at IPP Garching to mitigate RF sheaths.

  8. The role of the density profile in the ASDEX-Upgrade pedestal structure

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; Potzel, S.; Reimold, F.; Wischmeier, M.; Wolfrum, E.; Frassinetti, L.; Beurskens, M.; Bilkova, P.; Cavedon, M.; Fischer, R.; Kurzan, B.; Laggner, F. M.; McDermott, R. M.; Tardini, G.; Trier, E.; Viezzer, E.; Willensdorfer, M.; The EUROfusion MST1 Team; The ASDEX-Upgrade Team

    2017-01-01

    Experimental evidence for the impact of a region of high density localised in the high-field side scrape-off layer (the HFSHD) on plasma confinement is shown in various dedicated experiments on ASDEX Upgrade (AUG). Increasing main ion fuelling is shown to increase the separatrix density and shift the density profile outwards. Predictive pedestal modelling of this shift indicates a 25% decrease in the attainable pedestal top pressure, which compares well with experimental observations in the gas scan. Since the HFSHD can be mitigated by applying nitrogen seeding, a combined scan in fuelling rate, heating power, and nitrogen seeding is presented. Significant increases in the achievable pedestal top pressure are observed with seeding, in particular at high heating powers, and are correlated with inward shifted density profiles and a reduction of the HFSHD and separatrix density. Interpretive linear stability analysis also confirms the impact of a radially shifted pressure profile on peeling-ballooning stability, with an inward shift allowing access to higher pressure gradients and pedestal widths.

  9. Effect of collisional heat transfer in ICRF power modulation experiment on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Tsujii, N.; D'Inca, R.; Noterdaeme, J.-M.; Bilato, R.; Bobkov, Vl. V.; Brambilla, M.; van Eester, D.; Harvey, R. W.; Jaeger, E. F.; Lerche, E. A.; Schneider, P.; ASDEX Upgrade Team

    2014-02-01

    ICRF (ion cyclotron range of frequencies) heating experiments were performed in D-H plasmas at various H concentrations on ASDEX Upgrade. The rf power was modulated to measure the electron power deposition profile from electron temperature modulation. To minimize the contribution from indirect collisional heating and the effect of radial transport, the rf power was modulated at 50 Hz. However, peaking of electron temperature modulation was still observed around the hydrogen cyclotron resonance indicating collisional heating contribution. Time dependent simulation of the hydrogen distribution function was performed for the discharges, using the full-wave code AORSA (E.F. Jaeger, et al., Phys. Plasmas, Vol. 8, page 1573 (2001)) coupled to the Fokker-Planck code CQL3D (R.W. Harvey, et al., Proc. IAEA (1992)). In the present experimental conditions, it was found that modulation of the collisional heating was comparable to that of direct wave damping. Impact of radial transport was also analyzed and found to appreciably smear out the modulation profile and reduce the phase delay.

  10. Experimental investigation of the fast-ion transport in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Geiger, Benedikt; Dux, Ralph; Ryter, Francois; Tardini, Giovanni; Garcia-Munoz, Manuel; ASDEX Upgrade Team

    2013-10-01

    The radial transport of fast-ions is an active field of investigation in fusion devices. In particular, in the presence of MHD instabilities, fast-ions can be redistributed and even ejected from the plasma. This reduces the plasma heating and current drive efficiencies and must consequently be investigated and avoided in view of future fusion devices. In ASDEX Upgrade, sawtooth crashes in NBI heated plasmas have been observed to induce a very strong radial redistribution of the fast-ion population, as measured by fast-ion D-alpha (FIDA) spectroscopy. Modelling done with TRANSP assuming the Kadomstev sawtooth model very well reproduces the experimental measurements. In contrast to the strong anomalous fast-ion transport due to sawtooth crashes, the transport of the fast ions is found to be neo-classical in the absence of significant MHD activity. This is shown by the measurement of the redistributed fast-ions in the time interval following the crashes and by dedicated experiments with off-axis NBI deposition. All the measurements in MHD quiescent plasmas are well reproduced by the neo-classical fast-ion distribution functions from the TRANSP code.

  11. Optimized tomography methods for plasma emissivity reconstruction at the ASDEX Upgrade tokamak.

    PubMed

    Odstrčil, T; Pütterich, T; Odstrčil, M; Gude, A; Igochine, V; Stroth, U

    2016-12-01

    The soft X-ray (SXR) emission provides valuable insight into processes happening inside of high-temperature plasmas. A standard method for deriving the local emissivity profiles of the plasma from the line-of-sight integrals measured by pinhole cameras is the tomographic inversion. Such an inversion is challenging due to its ill-conditioned nature and because the reconstructed profiles depend not only on the quality of the measurements but also on the inversion algorithm used. This paper provides a detailed description of several tomography algorithms, which solve the inversion problem of Tikhonov regularization with linear computational complexity in the number of basis functions. The feasibility of combining these methods with the minimum Fisher information regularization is demonstrated, and various statistical methods for the optimal choice of the regularization parameter are investigated with emphasis on their reliability and robustness. Finally, the accuracy and the capability of the methods are demonstrated by reconstructions of experimental SXR profiles, featuring poloidal asymmetric impurity distributions as measured at the ASDEX Upgrade tokamak.

  12. Simulating Divertor Detachment of Ohmic Discharges in ASDEX Upgrade Using SOLPS: the Role of Carbon

    SciTech Connect

    Wischmeier, M; Coster, D; Chankin, A; Fuchs, C; Groth, M; Harhausen, J; Kallenbach, A; Muller, H; Tsalas, M; Wolfrum, E

    2007-06-27

    With divertor detachment being a prerequisite for burning plasma operation in ITER, numerical codes such as SOLPS [1] have been developed for predicting and interpreting the divertor performance at all operational regimes in current tokamaks and ITER. In ITER complete detachment from the outer divertor target is not permitted as this might result in an X-point MARFE, imposing an upper limit for the upstream separatrix density, n{sub e}{sup sep}. Despite the knowledge of the basic mechanisms required for achieving detachment, such as radiative power exhaust, volumetric momentum and charge removal [1], a quantitative evaluation of experimentally observed detached regimes proves to be particularly difficult for several tokamaks. In particular the strong asymmetry of the ion flux density between the inner, {Lambda}{sub it}, and the outer target {Lambda}{sub ot} with increasing line averaged density, {bar n}{sub e}, and in particular ''vanishing'' of the ion flux, defined as full/complete detachment, at the inner target cannot be reproduced. It is unclear how this is related to divertor target plates or other plasma facing components containing carbon. As part of a combined effort at various experimental devices this paper contributes to the validation of the SOLPS code against experimental data from ASDEX Upgrade, AUG, at the onset of divertor detachment. In the framework established under the International Tokamak Physics Activity (ITPA) Divertor and SOL working group a series of ohmic discharges have been performed in AUG, which had as similar as possible plasma parameters as companion discharges undertaken in DIII-D [2]. The effect of activating drift terms, the influence of the chemical sputtering yield at the inner target and in addition to [3] the role of impurity influx from the inner heat shield are analyzed.

  13. H-mode pedestal scaling in DIII-D, ASDEX Upgrade, and JET

    SciTech Connect

    Beurskens, M. N. A.; Lomas, P.; Saarelma, S.; Scannell, R.; Balboa, I.; Brix, M.; Flanagan, J.; Giroud, C.; Kempenaars, M.; Maddison, G.; McDonald, D.; Schneider, P. A.; Wolfrum, E.; Maggi, C. F.; Frassinetti, L.; Nunes, I.

    2011-05-15

    Multidevice pedestal scaling experiments in the DIII-D, ASDEX Upgrade (AUG), and JET tokamaks are presented in order to test two plasma physics pedestal width models. The first model proposes a scaling of the pedestal width {Delta}/a {proportional_to} {rho}*{sup 1/2} to {rho}* based on the radial extent of the pedestal being set by the point where the linear turbulence growth rate exceeds the ExB velocity. In the multidevice experiment where {rho}* at the pedestal top was varied by a factor of four while other dimensionless parameters where kept fixed, it has been observed that the temperature pedestal width in real space coordinates scales with machine size, and that therefore the gyroradius scaling suggested by the model is not supported by the experiments. The density pedestal width is not invariant with {rho}* which after comparison with a simple neutral fuelling model may be attributed to variations in the neutral fuelling patterns. The second model, EPED1, is based on kinetic ballooning modes setting the limit of the radial extent of the pedestal region and leads to {Delta}{sub {psi} {proportional_to}} {beta}{sub p}{sup 1/2}. All three devices show a scaling of the pedestal width in normalised poloidal flux as {Delta}{sub {psi} {proportional_to}} {beta}{sub p}{sup 1/2}, as described by the kinetic ballooning model; however, on JET and AUG, this could not be distinguished from an interpretation where the pedestal is fixed in real space. Pedestal data from all three devices have been compared with the predictive pedestal model EPED1 and the model produces pedestal height values that match the experimental data well.

  14. The H-mode density limit in the full tungsten ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Bernert, M.; Eich, T.; Kallenbach, A.; Carralero, D.; Huber, A.; Lang, P. T.; Potzel, S.; Reimold, F.; Schweinzer, J.; Viezzer, E.; Zohm, H.

    2015-01-01

    The high confinement mode (H-mode) is the operational scenario foreseen for ITER, DEMO and future fusion power plants. At high densities, which are favorable in order to maximize the fusion power, a back transition from the H-mode to the low confinement mode (L-mode) is observed. In present tokamaks, this H-mode density limit (HDL) occurs at densities on the order of, but below, the Greenwald density. In gas ramp discharges at the fully tungsten covered ASDEX Upgrade tokamak (AUG), four distinct operational phases are identified in the approach towards the HDL. These phases are a stable H-mode, a degrading H-mode, the breakdown of the H-mode and an L-mode. They are reproducible, quasi-stable plasma regimes and provide a framework in which the HDL can be further analyzed. During the evolution, energy losses are increased and a fueling limit is encountered. The latter is correlated to a plateau of electron density in the scrape-off layer (SOL). The well-known extension of the good confinement at high density with high triangularity is reflected in this scheme by extending the first phase to higher densities. In this work, two mechanisms are proposed, which can explain the experimental observations. The fueling limit is most likely correlated to an outward shift of the ionization profile. The additional energy loss channel is presumably linked to a regime of increased radial filament transport in the SOL. The SOL and divertor plasmas play a key role for both mechanisms, in line with the previous hypothesis that the HDL is edge-determined. The four phases are also observed in carbon covered AUG, although the HDL density exhibits a different dependency on the heating power and plasma current. This can be attributed to a changed energy loss channel in the presented scheme.

  15. Impact of a pulsed supersonic deuterium gas jet on the ELM behaviour in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Lang, P. T.; Neuhauser, J.; Bucalossi, J.; Chankin, A.; Coster, D. P.; Drube, R.; Dux, R.; Haas, G.; Horton, L. D.; Kalvin, S.; Kocsis, G.; Maraschek, M.; Mertens, V.; Rohde, V.; Rozhansky, V.; Schneider, R.; Senichenkov, I.; Veselova, I.; Wolfrum, E.; ASDEX Upgrade Team

    2005-09-01

    The possibility for pacing of type-I edge localized modes (ELMs) in H-mode plasmas by intermittent gas injection was investigated in ASDEX Upgrade as a possible alternative to, and in comparison with, ELM control by pellets. A Laval nozzle type molecular deuterium injector was used, delivering 1.7 ms long jets with up to about 1020D per pulse at a supersonic flow velocity of 2.2 km s-1. With a repetition rate of 2 Hz and a fast rise time of ap25 µs, comparable to typical ELM rise times, the injector seemed to be well-suited for single ELM trigger tests. When applied to H-mode discharges with a moderate type-I ELM frequency of 40-60 Hz, no prompt (<0.5 ms) ELM triggering could be achieved, in contrast to the experience with pellets. There was, however, clear evidence for a delayed effect in the form of an inverse correlation of the gas pulse amplitude with the time interval between the gas pulse and the next ELM. The apparent lack of prompt ELM triggering seems to be due to a self-blocking of the gas jet by an extremely fast formation of a high density plasma layer in the separatrix vicinity, while the delayed effect may be simply caused by the jet-induced axisymmetric edge profile modification, similar to the delayed ELM cascade observed after a prompt ELM in case of large pellet injection. The delayed trigger effect observed might still be useful for ELM control in future machines, but the related high gas fuelling at elevated pulse frequency could make it unattractive in view of overall plasma performance.

  16. The effect of off-axis neutral beam injection on sawtooth stability in ASDEX Upgrade and Mega-Ampere Spherical Tokamak

    SciTech Connect

    Chapman, I. T.; de Bock, M. F.; Pinches, S. D.; Turnyanskiy, M. R.

    2009-07-15

    Sawtooth behavior has been investigated in plasmas heated with off-axis neutral beam injection in ASDEX Upgrade [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)] and the Mega-Ampere Spherical Tokamak (MAST) [A. Sykes et al., Nucl. Fusion 41, 1423 (2001)]. Provided that the fast ions are well confined, the sawtooth period is found to decrease as the neutral beam is injected further off-axis. Drift kinetic modeling of such discharges qualitatively shows that the passing fast ions born outside the q=1 rational surface can destabilize the n=1 internal kink mode, thought to be related to the sawtooth instability. This effect can be enhanced by optimizing the deposition of the off-axis beam energetic particle population with respect to the mode location.

  17. The effect of off-axis neutral beam injection on sawtooth stability in ASDEX Upgrade and Mega-Ampere Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    Chapman, I. T.; de Bock, M. F.; Pinches, S. D.; Turnyanskiy, M. R.; Mast Team; Igochine, V. G.; Maraschek, M.; Tardini, G.; ASDEX Upgrade Team

    2009-07-01

    Sawtooth behavior has been investigated in plasmas heated with off-axis neutral beam injection in ASDEX Upgrade [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)] and the Mega-Ampere Spherical Tokamak (MAST) [A. Sykes et al., Nucl. Fusion 41, 1423 (2001)]. Provided that the fast ions are well confined, the sawtooth period is found to decrease as the neutral beam is injected further off-axis. Drift kinetic modeling of such discharges qualitatively shows that the passing fast ions born outside the q =1 rational surface can destabilize the n =1 internal kink mode, thought to be related to the sawtooth instability. This effect can be enhanced by optimizing the deposition of the off-axis beam energetic particle population with respect to the mode location.

  18. The role of carbon and nitrogen on the H-mode confinement in ASDEX Upgrade with a metal wall

    NASA Astrophysics Data System (ADS)

    Beurskens, M. N. A.; Dunne, M. G.; Frassinetti, L.; Bernert, M.; Cavedon, M.; Fischer, R.; Järvinen, A.; Kallenbach, A.; Laggner, F. M.; McDermott, R. M.; Potzel, S.; Schweinzer, J.; Tardini, G.; Viezzer, E.; Wolfrum, E.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2016-05-01

    Carbon (CD4) and nitrogen (N2) have been seeded in ASDEX Upgrade (AUG) with a tungsten wall and have both led to a 20-30% confinement improvement. The reference plasma is a standard target plasma with I p /B T  =  1 MA/2.5 T, total input power P tot ~ 12 MW and normalized pressure of β N ~ 1.8. Carbon and nitrogen are almost perfectly exchangeable for the core, pedestal and divertor plasma in this experiment where impurity concentrations of C and N of 2% are achieved and Z eff only mildly increases from ~1.3 to ~1.7. As the radiation potentials of C and N are similar and peak well below 100 eV, both impurities act as divertor radiators and radiate well outside the pedestal region. The outer divertor is purposely kept in an attached state when C and N are seeded to avoid confinement degradation by detachment. As reported in earlier publications for nitrogen, carbon is also seen to reduce the high field side high density (the so-called HFSHD) in the scrape off layer above the inner divertor strike point by about 50%. This is accompanied by a confinement improvement for both low (δ ~ 0.25) and high (δ ~ 0.4) triangularity configurations for both seeding gases, due to an increase of pedestal temperature and stiff core temperature profiles. The electron density profiles show no apparent change due to the seeding. As an orthogonal effect, increasing the triangularity leads to an additionally increased pedestal density, independent of the impurity seeding. This experiment further closes the gap in understanding the confinement differences observed in carbon and metal wall devices; the absence of carbon can be substituted by nitrogen which leads to a similar confinement benefit. So far, no definite physics explanation for the confinement enhancement has been obtained, but the experimental observations in this paper provide input for further model development.

  19. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Suttrop, W.; Kirk, A.; Nazikian, R.; Leuthold, N.; Strumberger, E.; Willensdorfer, M.; Cavedon, M.; Dunne, M.; Fischer, R.; Fietz, S.; Fuchs, J. C.; Liu, Y. Q.; McDermott, R. M.; Orain, F.; Ryan, D. A.; Viezzer, E.; The ASDEX Upgrade Team; The DIII-D Team; The Eurofusion MST1 Team

    2017-01-01

    The interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m  =  qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality, ν \\text{ped}\\ast≤slant 0.4 : (a) a reduction of the global plasma density by up to 61 % and (b) a reduction of the energy loss associated with edge localised modes (ELMs) by a factor of up to 9. A comprehensive database of ELM mitigation pulses at low {ν\\ast} in ASDEX Upgrade shows that the degree of ELM mitigation correlates with the reduction of pedestal pressure which in turn is limited and defined by the onset of ELMs, i. e. a modification of the ELM stability limit by the magnetic perturbation.

  20. Numerical and experimental study of the redistribution of energetic and impurity ions by sawteeth in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Jaulmes, F.; Geiger, B.; Odstrčil, T.; Weiland, M.; Salewski, M.; Jacobsen, A. S.; Rasmussen, J.; Stejner, M.; Nielsen, S. K.; Westerhof, E.; the EUROfusion MST1 Team; the ASDEX Upgrade Team

    2016-11-01

    In the non-linear phase of a sawtooth, the complete reconnection of field lines around the q  =  1 flux surface often occurs resulting in a radial displacement of the plasma core. A complete time-dependent electromagnetic model of this type of reconnection has been developed and implemented in the EBdyna_go code. This contribution aims at studying the behaviour of ions, both impurity and fast particles, in the pattern of reconnecting field lines during sawtoothing plasma experiments in the ASDEX Upgrade tokamak by using the newly developed numerical framework. Simulations of full reconnection with tungsten impurity that include the centrifugal force are achieved and recover the soft x-ray measurements. Based on this full-reconnection description of the sawtooth, a simple tool dedicated to estimate the duration of the reconnection is introduced. This work then studies the redistribution of fast ions during several experimentally observed sawteeth. In some cases of sawteeth at ASDEX Upgrade, full reconnection is not always observed or expected so the code gives an upper estimate of the actual experimental redistribution. The results of detailed simulations of the crashes are compared with measurements from various diagnostics such as collective Thomson scattering and fast-ion D-alpha (FIDA) spectroscopy, including FIDA tomography. A convincing qualitative agreement is found in different parts of velocity space.

  1. Runaway electrons mitigation by 3D fields: new insights from ASDEX Upgrade and RFX-mod experiments

    NASA Astrophysics Data System (ADS)

    Gobbin, M.; Papp, G.; Marrelli, L.; McCarthy, P. J.; Nocente, M.; Pautasso, G.; Suttrop, W.; Piovesan, P.; Terranova, D.; Valisa, M.

    2016-10-01

    Disruption-generated runaway electron (RE) beams represent a severe threat for tokamak plasma-facing components, thus motivating the search of mitigation techniques. The application of optimized 3D fields might aid this purpose, as was recently investigated in ASDEX Upgrade and RFX-mod. In ASDEX Upgrade discharges, the application of n =1 resonant magnetic perturbations (RMPs) by the B-coils before and during the disruption results in a longer current quench time together with a lower RE current in the post-disruption phase. The strength of the observed effects depends on the upper-to-lower B-coil phasing, i.e. on the poloidal spectrum of the RMPs. These results are analyzed by means of numerical tools, like the guiding center code ORBIT, and the role of plasma response is also investigated. Similar experiments have been performed in RFX-mod low density plasmas where magnetic perturbations of various amplitudes, applied by non-axisymmetric coils, have been found to partially suppress REs. ORBIT simulations indicate, in this case, that RE orbit losses are associated to a raised level of stochasticity in the edge plasma region.

  2. Gaseous electron multiplier-based soft x-ray plasma diagnostics development: Preliminary tests at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Malinowski, K.; Czarski, T.; Wojeński, A.; Vezinet, D.; Poźniak, K. T.; Kasprowicz, G.; Mazon, D.; Jardin, A.; Herrmann, A.; Kowalska-Strzeciwilk, E.; Krawczyk, R.; Kolasiński, P.; Zabołotny, W.; Zienkiewicz, P.

    2016-11-01

    A Gaseous Electron Multiplier (GEM)-based detector is being developed for soft X-ray diagnostics on tokamaks. Its main goal is to facilitate transport studies of impurities like tungsten. Such studies are very relevant to ITER, where the excessive accumulation of impurities in the plasma core should be avoided. This contribution provides details of the preliminary tests at ASDEX Upgrade (AUG) with a focus on the most important aspects for detector operation in harsh radiation environment. It was shown that both spatially and spectrally resolved data could be collected, in a reasonable agreement with other AUG diagnostics. Contributions to the GEM signal include also hard X-rays, gammas, and neutrons. First simulations of the effect of high-energy photons have helped understanding these contributions.

  3. Implementation of the new multichannel X-mode edge density profile reflectometer for the ICRF antenna on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Aguiam, D. E.; Silva, A.; Bobkov, V.; Carvalho, P. J.; Carvalho, P. F.; Cavazzana, R.; Conway, G. D.; D'Arcangelo, O.; Fattorini, L.; Faugel, H.; Fernandes, A.; Fünfgelder, H.; Gonçalves, B.; Guimarais, L.; De Masi, G.; Meneses, L.; Noterdaeme, J. M.; Pereira, R. C.; Rocchi, G.; Santos, J. M.; Tuccillo, A. A.; Tudisco, O.

    2016-11-01

    A new multichannel frequency modulated continuous-wave reflectometry diagnostic has been successfully installed and commissioned on ASDEX Upgrade to measure the plasma edge electron density profile evolution in front of the Ion Cyclotron Range of Frequencies (ICRF) antenna. The design of the new three-strap ICRF antenna integrates ten pairs (sending and receiving) of microwave reflectometry antennas. The multichannel reflectometer can use three of these to measure the edge electron density profiles up to 2 × 1019 m-3, at different poloidal locations, allowing the direct study of the local plasma layers in front of the ICRF antenna. ICRF power coupling, operational effects, and poloidal variations of the plasma density profile can be consistently studied for the first time. In this work the diagnostic hardware architecture is described and the obtained density profile measurements were used to track outer radial plasma position and plasma shape.

  4. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    SciTech Connect

    Suttrop, Wolfgang; Kirk, A.; Nazikian, R.; Leuthold, N.; Strumberger, E.; Willensdorfer, M.; Cavedon, M.; Dunne, M.; Fischer, R.; Fietz, S.; Fuchs, J. C.; Liu, Y. Q.; McDermott, R. M.; Orain, F.; Ryan, D. A.; Viezzer, E.

    2016-11-22

    Here, the interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m = qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality, $\

  5. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    DOE PAGES

    Suttrop, Wolfgang; Kirk, A.; Nazikian, R.; ...

    2016-11-22

    Here, the interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m = qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality,more » $$\

  6. Development progress of Correlation ECE and n-T cross-phase angle diagnostics for ASDEX-Upgrade

    NASA Astrophysics Data System (ADS)

    Freethy, Simon; Conway, Garrard; Classen, Ivo; Creely, Alex; White, Anne; Happel, Tim; Vanovac, Branka; ASDEX Upgrade Team

    2015-11-01

    Relative turbulent temperature fluctuation amplitudes can be measured using Correlation ECE (CECE). This technique uses two narrow frequency-band radiometer channels, with an equivalent physical spacing within a turbulent radial correlation length. Correlation techniques select the common turbulent fluctuation while suppressing uncorrelated thermal noise. If such a diagnostic views the same part of the plasma as a reflectometer, then the coherence and cross-phase angle between temperature and density fluctuations can be measured. Two 2nd harmonic, X-mode, CECE radiometers have recently been installed on ASDEX Upgrade, one of which shares the quasi-optical steerable antenna of an existing Doppler reflectometer, i.e with a common line of sight of the plasma. We report on the progress of the installation and preliminary data from both systems.

  7. ICRF wave field measurements in the presence of scrape off layer turbulence on the ASDEX Upgrade tokamak (invited)

    NASA Astrophysics Data System (ADS)

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Jacquot, J.; Noterdaeme, J.-M.; Suárez López, G.

    2016-11-01

    A new array of B-dot probes was installed on ASDEX Upgrade. The purpose of the new diagnostic is to study Ion Cyclotron Range-off Frequencies (ICRF) wave field distributions in the evanescent scrape-off layer (SOL) plasma region on the low field side of ASDEX Upgrade. The vacuum measurements (no gas, BT = 0 T) reveal ICRF wave field measurements consistent with the profiles expected from the newly installed 3-strap ICRF antennas outside the antenna box: the shape of the toroidal distribution of both the amplitude and the phase is the same for the case of only the central straps being active, as for the case of only the side straps being active. These profiles become strongly modified during plasma operations. The modifications can be separated into two types: "Inter-edge localized mode (ELM)" and "During-ELM" periods. The phase distribution of the ICRF wave fields remains well-defined during the Inter-ELM period; however, it becomes more spread out over the entire 360° range during ELMs. The observed modulations cannot be explained by the observed changes in the ICRF power, as monitored in the transmission line. However, they are consistent with ICRF coupling changes introduced by plasma filaments: the plasma density perturbations due to the filaments are high enough to change the nature of the fast ICRF wave field from evanescent to propagating. The coverage of the present diagnostic is being expanded to include both the low field side and the high field side probes. Additionally, a manipulator probe head is being developed to measure ICRF wave field radial profiles across the SOL region.

  8. Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team

    2015-01-01

    ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the

  9. The effect of a metal wall on confinement in JET and ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Beurskens, M. N. A.; Schweinzer, J.; Angioni, C.; Burckhart, A.; Challis, C. D.; Chapman, I.; Fischer, R.; Flanagan, J.; Frassinetti, L.; Giroud, C.; Hobirk, J.; Joffrin, E.; Kallenbach, A.; Kempenaars, M.; Leyland, M.; Lomas, P.; Maddison, G.; Maslov, M.; McDermott, R.; Neu, R.; Nunes, I.; Osborne, T.; Ryter, F.; Saarelma, S.; Schneider, P. A.; Snyder, P.; Tardini, G.; Viezzer, E.; Wolfrum, E.; the ASDEX Upgrade Team; Contributors, JET-EFDA

    2013-12-01

    In both JET and ASDEX Upgrade (AUG) the plasma energy confinement has been affected by the presence of a metal wall by the requirement of increased gas fuelling to avoid tungsten pollution of the plasma. In JET with a beryllium/tungsten wall the high triangularity baseline H-mode scenario (i.e. similar to the ITER reference scenario) has been the strongest affected and the benefit of high shaping to give good normalized confinement of H98 ˜ 1 at high Greenwald density fraction of fGW ˜ 0.8 has not been recovered to date. In AUG with a full tungsten wall, a good normalized confinement H98 ˜ 1 could be achieved in the high triangularity baseline plasmas, albeit at elevated normalized pressure βN > 2. The confinement lost with respect to the carbon devices can be largely recovered by the seeding of nitrogen in both JET and AUG. This suggests that the absence of carbon in JET and AUG with a metal wall may have affected the achievable confinement. Three mechanisms have been tested that could explain the effect of carbon or nitrogen (and the absence thereof) on the plasma confinement. First it has been seen in experiments and by means of nonlinear gyrokinetic simulations (with the GENE code), that nitrogen seeding does not significantly change the core temperature profile peaking and does not affect the critical ion temperature gradient. Secondly, the dilution of the edge ion density by the injection of nitrogen is not sufficient to explain the plasma temperature and pressure rise. For this latter mechanism to explain the confinement improvement with nitrogen seeding, strongly hollow Zeff profiles would be required which is not supported by experimental observations. The confinement improvement with nitrogen seeding cannot be explained with these two mechanisms. Thirdly, detailed pedestal structure analysis in JET high triangularity baseline plasmas have shown that the fuelling of either deuterium or nitrogen widens the pressure pedestal. However, in JET-ILW this

  10. H-mode characterisation for dominant ECRH and comparison to dominant NBI or ICRF heating at ASDEX Upgrade

    SciTech Connect

    Sommer, F.; Stober, J.; Angioni, C.; Fable, E.; Bernert, M.; Burckhart,; Bobkov, V.; Fischer, R.; Fuchs, C.; McDermott, R. M.; Suttrop, W.; Viezzer, E.; Collaboration: ASDEX Upgrade Team

    2014-02-12

    At ASDEX Upgrade the ECRH system has been upgraded to provide up to 4 MW of heating power at 140 GHz (or 2.2 MW at 105 GHz). The power at 140 GHz exceeds the minimum H-mode power threshold for typical high I{sub p}, B{sub t} conditions by approximately a factor of two. The upgrade allows H-modes with dominant electron heating and significant electron-ion heat exchange to be studied, i.e. the situation expected in ITER. This paper reports on systematic studies varying the heating mix with NBI, ICRF and ECRH and its effect on pedestal parameters and core transport. The H-mode pedestal is hardly affected by the choice of heating mix, but the ion temperature in the plasma center is found to vary significantly. The ion channel dominates heat transport and ion temperature gradient modes (ITG) are found to be the most unstable microinstability in all the scenarios considered. R/L{sub Ti} at half radius reduces by a factor of two when T{sub e}/T{sub i} increases from 0.9 to 1.5. TGLF modelling of the electron and ion temperature and electron density profiles shows very good agreement with the experimental data when applying a realistic sawtooth model.

  11. Laboratory astrophysics on ASDEX Upgrade: Measurements and analysis of K-shell O, F, and Ne spectra in the 9 - 20 A region

    NASA Technical Reports Server (NTRS)

    Hansen, S. B.; Fournier, K. B.; Finkenthal, M. J.; Smith, R.; Puetterich, T.; Neu, R.

    2006-01-01

    High-resolution measurements of K-shell emission from O, F, and Ne have been performed at the ASDEX Upgrade tokamak in Garching, Germany. Independently measured temperature and density profiles of the plasma provide a unique test bed for model validation. We present comparisons of measured spectra with calculations based on transport and collisional-radiative models and discuss the reliability of commonly used diagnostic line ratios.

  12. 3D ELM fluctuation measurements with the new dual array ECE-Imaging diagnostic on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Classen, Ivo; Vanovac, Branka; Domier, Calvin; Luhmann, Neville; Bogomolov, Anton; Suttrop, Wolfgang; Tobias, Benjamin; ASDEX Upgrade Team

    2015-11-01

    In a major upgrade, the (2D) electron cyclotron emission imaging diagnostic (ECE-Imaging) at ASDEX Upgrade (AUG) has been equipped with a second detector array, and has been successfully commissioned. The two detector arrays observe the plasma through the same vacuum window, both under a slight toroidal angle, to enable quasi-3D measurements of the electron temperature. The system measures a total of 288 channels, in two toroidally separated 2D arrays of approximately 50 cm vertically by 10 cm radially. The toroidal separation between the two poloidal observation planes is about 40 cm, such that the majority of the field lines is observed by both arrays simultaneously, thereby enabling a direct measurement of the 3D properties of plasma instabilities like ELM filaments. The toroidal separation of 40 cm is sufficient for the accurate measurement of both phase differences and transit times of (rotating) plasma structures, enabling a distinction between time varying 2D structures and true 3D structures (not possible with 2D diagnostics). The research will mainly focus on the investigation of the 3D structure of the temperature fluctuations related to edge localized modes (ELMs), in particular precursors and filaments. The first results on ELMs will be reported.

  13. 2-dimensional mapping of ICRF-induced scrape-off layer modifications with a retarding field analyser on ASDEX-Upgrade

    NASA Astrophysics Data System (ADS)

    Colas, L.; Bobkov, V.; Carralero, D.; Kočan, M.; Müller, H. W.; Manz, P.; Kubič, M.; Gunn, J. P.; Herrmann, A.; Rohde, V.; ASDEX-Upgrade Team

    2014-02-01

    Using a reciprocating Retarding Field Analyser (RFA), Scrape-Off Layer (SOL) modifications were investigated on ASDEX-Upgrade during heating with waves in the Ion Cyclotron Range of Frequencies (ICRF), suspected for enhanced impurity production in this all-metal machine. Two quantities involved in the sputtering were measured: the current Islit on a saturated slit plate, proportional to the parallel ion flux and the mean parallel energy t of collected ions, averaged over many RF cycles. Combining multiple RFA reciprocations over a scan of q95 provided 2D poloidal/radial resolution. In the outer SOL a localized RF-perturbed zone was evidenced on the RFA side magnetically connected to an active ICRF antenna. A flat 2D Islit pattern surrounded by steep gradients was observed, correlatively with t exceeding 150eV. The centre of the zone is connected radially slightly behind the leading edge of antenna side limiters, with a radial extension up to ±2cm. The zone is broadest and t is largest near the bottom of the active antenna. This is interpreted as a zone of local plasma biasing via sheath rectification, creating density convection around it. The Islit pattern is qualitatively consistent with simple considerations about E×B particle convection.

  14. Global performance enhancements via pedestal optimisation on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; Frassinetti, L.; Beurskens, M. N. A.; Cavedon, M.; Fietz, S.; Fischer, R.; Giannone, L.; Huijsmans, G. T. A.; Kurzan, B.; Laggner, F.; McCarthy, P. J.; McDermott, R. M.; Tardini, G.; Viezzer, E.; Willensdorfer, M.; Wolfrum, E.; The EUROfusion MST1 Team; The ASDEX Upgrade Team

    2017-02-01

    Results of experimental scans of heating power, plasma shape, and nitrogen content are presented, with a focus on global performance and pedestal alteration. In detailed scans at low triangularity, it is shown that the increase in stored energy due to nitrogen seeding stems from the pedestal. It is also shown that the confinement increase is driven through the temperature pedestal at the three heating power levels studied. In a triangularity scan, an orthogonal effect of shaping and seeding is observed, where increased plasma triangularity increases the pedestal density, while impurity seeding (carbon and nitrogen) increases the pedestal temperature in addition to this effect. Modelling of these effects was also undertaken, with interpretive and predictive models being employed. The interpretive analysis shows a general agreement of the experimental pedestals in separate power, shaping, and seeding scans with peeling-ballooning theory. Predictive analysis was used to isolate the individual effects, showing that the trends of additional heating power and increased triangularity can be recoverd. However, a simple change of the effective charge in the plasma cannot explain the observed levels of confinement improvement in the present models.

  15. Scintillator based detector for fast-ion losses induced by magnetohydrodynamic instabilities in the ASDEX upgrade tokamak

    SciTech Connect

    Garcia-Munoz, M.; Fahrbach, H.-U.; Zohm, H.; Collaboration: ASDEX Upgrade Team

    2009-05-15

    A scintillator based detector for fast-ion losses has been designed and installed on the ASDEX upgrade (AUG) tokamak [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)]. The detector resolves in time the energy and pitch angle of fast-ion losses induced by magnetohydrodynamics (MHD) fluctuations. The use of a novel scintillator material with a very short decay time and high quantum efficiency allows to identify the MHD fluctuations responsible for the ion losses through Fourier analysis. A Faraday cup (secondary scintillator plate) has been embedded behind the scintillator plate for an absolute calibration of the detector. The detector is mounted on a manipulator to vary its radial position with respect to the plasma. A thermocouple on the inner side of the graphite protection enables the safety search for the most adequate radial position. To align the scintillator light pattern with the light detectors a system composed by a lens and a vacuum-compatible halogen lamp has been allocated within the detector head. In this paper, the design of the scintillator probe, as well as the new technique used to analyze the data through spectrograms will be described. A last section is devoted to discuss the diagnosis prospects of this method for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)].

  16. The I-mode confinement regime at ASDEX Upgrade: global properties and characterization of strongly intermittent density fluctuations

    NASA Astrophysics Data System (ADS)

    Happel, T.; Manz, P.; Ryter, F.; Bernert, M.; Dunne, M.; Hennequin, P.; Hetzenecker, A.; Stroth, U.; Conway, G. D.; Guimarais, L.; Honoré, C.; Viezzer, E.; The ASDEX Upgrade Team

    2017-01-01

    Properties of the I-mode confinement regime on the ASDEX Upgrade tokamak are summarized. A weak dependence of the power threshold for the L-I transition on the toroidal magnetic field strength is found. During improved confinement, the edge radial electric field well deepens. Stability calculations show that the I-mode pedestal is peeling-ballooning stable. Turbulence investigations reveal strongly intermittent density fluctuations linked to the weakly coherent mode in the confined plasma, which become stronger as the confinement quality increases. Across all investigated structure sizes ({{k}\\bot}≈ 5 -12 cm-1, with {{k}\\bot} the perpendicular wavenumber of turbulent density fluctuations), the intermittent turbulence bursts are observed. Comparison with bolometry data shows that they move poloidally toward the X-point and finally end up in the divertor. This might be indicative that they play a role in inhibiting the density profile growth, such that no pedestal is formed in the edge density profile.

  17. Correlation Electron Temperature Fluctuation Measurements on Alcator C-Mod and ASDEX Upgrade: Cross Machine Comparisons and Transport Model Validation

    NASA Astrophysics Data System (ADS)

    White, A. E.; Creely, A. J.; Freethy, S.; Cao, N.; Conway, G. D.; Goerler, T.; Happel, T.; Howard, N. T.; Inman, C.; Rice, J. E.; Rodriguez Fernandez, P.; Sung, C.; C-Mod, Alcator; Upgrade, Asdex

    2016-10-01

    Correlation Electron Cyclotron Emission diagnostics have been developed for Alcator C-Mod and ASDEX Upgrade. Measurements of long wavelength (ktheta rhos <0.5) electron temperature fluctuations have been measured in the core plasma (0.5

  18. Quantification of the impact of large and small-scale instabilities on the fast-ion confinement in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Geiger, B.; Weiland, M.; Mlynek, A.; Reich, M.; Bock, A.; Dunne, M.; Dux, R.; Fable, E.; Fischer, R.; Garcia-Munoz, M.; Hobirk, J.; Hopf, C.; Nielsen, S.; Odstrcil, T.; Rapson, C.; Rittich, D.; Ryter, F.; Salewski, M.; Schneider, P. A.; Tardini, G.; Willensdorfer, M.

    2015-01-01

    The confinement fast ions, generated by neutral beam injection (NBI), has been investigated at the ASDEX Upgrade tokamak. In plasmas that exhibit strong sawtooth crashes, a significant sawtooth-induced internal redistribution of mainly passing fast ions is observed, which is in very good agreement with the theoretical predictions based on the Kadomtsev model. Between the sawtooth crashes, the fishbone modes are excited which, however, do not cause measurable changes in the global fast-ion population. During experiments with on- and off-axis NBI and without strong magnetohydrodynamic (MHD) modes, the fast-ion measurements agree very well with the neo-classical predictions. This shows that the MHD-induced (large-scale), as well as a possible turbulence-induced (small-scale) fast-ion transport is negligible under these conditions. However, in discharges performed to study the off-axis NBI current drive efficiency with up to 10 MW of heating power, the fast-ion measurements agree best with the theoretical predictions that assume a weak level anomalous fast-ion transport. This is also in agreement with measurements of the internal inductance, a Motional Stark Effect diagnostic and a novel polarimetry diagnostic: the fast-ion driven current profile is clearly modified when changing the NBI injection geometry and the measurements agree best with the predictions that assume weak anomalous fast-ion diffusion.

  19. Assessment of SOLPS5.0 divertor solutions with drifts and currents against L-mode experiments in ASDEX Upgrade and JET

    NASA Astrophysics Data System (ADS)

    Aho-Mantila, L.; Potzel, S.; Coster, D. P.; Wischmeier, M.; Brix, M.; Fischer, R.; Marsen, S.; Meigs, A.; Müller, H. W.; Scarabosio, A.; Stamp, M. F.; Brezinsek, S.; the ASDEX Upgrade Team; JET Contributors, the

    2017-03-01

    The divertor solutions obtained with the plasma edge modelling tool SOLPS5.0 are discussed. The code results are benchmarked against carefully analysed L-mode discharges at various density levels with and without impurity seeding in the full-metal tokamaks ASDEX Upgrade and JET. The role of the cross-field drifts and currents in the solutions is analysed in detail, and the improvements achieved by fully activating the drift and current terms in view of matching the experimental signals are addressed. The persisting discrepancies are also discussed.

  20. Experimental analysis and WallDYN simulations of the global nitrogen migration in ASDEX Upgrade L-mode discharges

    NASA Astrophysics Data System (ADS)

    Meisl, G.; Schmid, K.; Oberkofler, M.; Krieger, K.; Lisgo, S. W.; Aho-Mantila, L.; Reimold, F.; Lunt, T.; ASDEX Upgrade Team

    2016-03-01

    This work presents ASDEX Upgrade experiments, where the nitrogen deposition and re-erosion on divertor manipulator samples and the effect of its transport through the plasma were studied. These results are compared to WallDYN-DIVIMP simulations based on SOLPS plasma backgrounds and employing an improved WallDYN model, which includes the effusion of nitrogen from saturated surfaces. On one hand, this allows the WallDYN code and the new saturation model with a comprehensive data set to be benchmarked, on the other hand the simulations help in the interpretation of the experimental results. Both, experimental results and simulations, show that the N content in the region of the outer strike line reaches its steady-state value within one discharge. The simulations also reproduce the experimentally observed nitrogen content in samples exposed to N2-seeded discharges. With respect to the boron deposition, the nitrogen deposition in a non-seeded discharge and the re-erosion of nitrogen discrepancies to the WallDYN-DIVIMP simulations are observed. Based on SDTrimSP simulations, these are attributed to the missing depth resolution of the WallDYN surface model. A detailed comparison of spectroscopic measurements to WallDYN simulations, based on a novel synthetic spectroscopy diagnostic for WallDYN, shows that the nitrogen fluxes in the plasma are well described by the simulations. From a comparison of several WallDYN-DIVIMP simulations employing customized onion-skin model plasma backgrounds the physical processes controlling the nitrogen concentration in the core plasma and the applicability of onion-skin model plasma backgrounds are discussed. From these simulations the private flux zone with the gas valve, the outer baffle and the high field side main wall are identified as the main sources for the nitrogen content of the core plasma.

  1. Non-boronized compared with boronized operation of ASDEX Upgrade with full-tungsten plasma facing components

    NASA Astrophysics Data System (ADS)

    Kallenbach, A.; Dux, R.; Mayer, M.; Neu, R.; Pütterich, T.; Bobkov, V.; Fuchs, J. C.; Eich, T.; Giannone, L.; Gruber, O.; Herrmann, A.; Horton, L. D.; Maggi, C. F.; Meister, H.; Müller, H. W.; Rohde, V.; Sips, A.; Stäbler, A.; Stober, J.; ASDEX Upgrade Team

    2009-04-01

    After completion of the tungsten coating of all plasma facing components, ASDEX Upgrade has been operated without boronization for 1 1/2 experimental campaigns. This has allowed the study of fuel retention under conditions of relatively low D co-deposition with low-Z impurities as well as the operational space of a full-tungsten device for the unfavourable condition of a relatively high intrinsic impurity level. Restrictions in operation were caused by the central accumulation of tungsten in combination with density peaking, resulting in H-L backtransitions induced by too low separatrix power flux. Most important control parameters have been found to be the central heating power, as delivered predominantly by ECRH, and the ELM frequency, most easily controlled by gas puffing. Generally, ELMs exhibit a positive impact, with the effect of impurity flushing out of the pedestal region overbalancing the ELM-induced W source. The restrictions of plasma operation in the unboronized W machine occurred predominantly under low or medium power conditions. Under medium-high power conditions, stable operation with virtually no difference between boronized and unboronized discharges was achieved. Due to the reduced intrinsic radiation with boronization and the limited power handling capability of VPS coated divertor tiles (≈10 MW m-2), boronized operation at high heating powers was possible only with radiative cooling. To enable this, a previously developed feedback system using (thermo-)electric current measurements as approximate sensor for the divertor power flux was introduced into the standard AUG operation. To avoid the problems with reduced ELM frequency due to core plasma radiation, nitrogen was selected as radiating species since its radiative characteristic peaks at lower electron temperatures in comparison with Ne and Ar, favouring SOL and divertor radiative losses. Nitrogen seeding resulted not only in the desired divertor power load reduction but also in improved

  2. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes.

    PubMed

    Adamek, J; Müller, H W; Silva, C; Schrittwieser, R; Ionita, C; Mehlmann, F; Costea, S; Horacek, J; Kurzan, B; Bilkova, P; Böhm, P; Aftanas, M; Vondracek, P; Stöckel, J; Panek, R; Fernandes, H; Figueiredo, H

    2016-04-01

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (ΦBPP) and the floating potential (Vfl) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula Te = (ΦBPP - Vfl)/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  3. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    NASA Astrophysics Data System (ADS)

    Adamek, J.; Müller, H. W.; Silva, C.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S.; Horacek, J.; Kurzan, B.; Bilkova, P.; Böhm, P.; Aftanas, M.; Vondracek, P.; Stöckel, J.; Panek, R.; Fernandes, H.; Figueiredo, H.

    2016-04-01

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (ΦBPP) and the floating potential (Vfl) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula Te = (ΦBPP - Vfl)/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  4. Toroidal modelling of RMP response in ASDEX Upgrade: coil phase scan, q 95 dependence, and toroidal torques

    NASA Astrophysics Data System (ADS)

    Liu, Yueqiang; Ryan, D.; Kirk, A.; Li, Li; Suttrop, W.; Dunne, M.; Fischer, R.; Fuchs, J. C.; Kurzan, B.; Piovesan, P.; Willensdorfer, M.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2016-05-01

    The plasma response to the vacuum resonant magnetic perturbation (RMP) fields, produced by the ELM control coils in ASDEX Upgrade experiments, is computationally modelled using the MARS-F/K codes (Liu et al 2000 Phys. Plasmas 7 3681, Liu et al 2008 Phys. Plasmas 15 112503). A systematic investigation is carried out, considering various plasma and coil configurations as in the ELM control experiments. The low q plasmas, with {{q}95}˜ 3.8 (q 95 is the safety factor q value at 95% of the equilibrium poloidal flux), responding to low n (n is the toroidal mode number) field perturbations from each single row of the ELM coils, generates a core kink amplification effect. Combining two rows, with different toroidal phasing, thus leads to either cancellation or reinforcement of the core kink response, which in turn determines the poloidal location of the peak plasma surface displacement. The core kink response is typically weak for the n  =  4 coil configuration at low q, and for the n  =  2 configuration but only at high q ({{q}95}˜ 5.5 ). A phase shift of around 60 degrees for low q plasmas, and around 90 degrees for high q plasmas, is found in the coil phasing, between the plasma response field and the vacuum RMP field, that maximizes the edge resonant field component. This leads to an optimal coil phasing of about 100 (-100) degrees for low (high) q plasmas, that maximizes both the edge resonant field component and the plasma surface displacement near the X-point of the separatrix. This optimal phasing closely corresponds to the best ELM mitigation observed in experiments. A strong parallel sound wave damping moderately reduces the core kink response but has minor effect on the edge peeling response. For low q plasmas, modelling shows that both the resonant electromagnetic torque and the neoclassical toroidal viscous (NTV) torque (due to the presence of 3D magnetic field perturbations) contribute to the toroidal flow damping, in particular near the

  5. Novel mono-static arrangement of the ASDEX Upgrade high field side reflectometers compatible with electron cyclotron resonance heating stray radiationa)

    NASA Astrophysics Data System (ADS)

    Silva, A.; Varela, P.; Meneses, L.; Manso, M.; ASDEX Upgrade Team

    2012-10-01

    The ASDEX Upgrade frequency modulated continuous wave broadband reflectometer system uses a mono-static antenna configuration with in-vessel hog-horns and 3 dB directional couplers. The operation of the new electron cyclotron resonance heating (ECRH) launcher and the start of collective Thomson scattering experiments caused several events where the fragile dummy loads inside the high field side directional couplers were damaged, due to excessive power resulting from the ECRH stray fields. In this paper, we present a non-conventional application of the existing three-port directional coupler that hardens the system to the ECRH stray fields and at the same time generates the necessary reference signal. Electromagnetic simulations and laboratory tests were performed to validate the proposed solution and are compared with the in-vessel calibration tests.

  6. Novel mono-static arrangement of the ASDEX Upgrade high field side reflectometers compatible with electron cyclotron resonance heating stray radiation.

    PubMed

    Silva, A; Varela, P; Meneses, L; Manso, M

    2012-10-01

    The ASDEX Upgrade frequency modulated continuous wave broadband reflectometer system uses a mono-static antenna configuration with in-vessel hog-horns and 3 dB directional couplers. The operation of the new electron cyclotron resonance heating (ECRH) launcher and the start of collective Thomson scattering experiments caused several events where the fragile dummy loads inside the high field side directional couplers were damaged, due to excessive power resulting from the ECRH stray fields. In this paper, we present a non-conventional application of the existing three-port directional coupler that hardens the system to the ECRH stray fields and at the same time generates the necessary reference signal. Electromagnetic simulations and laboratory tests were performed to validate the proposed solution and are compared with the in-vessel calibration tests.

  7. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Noterdaeme, J.-M.

    2015-11-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k//) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (ktor). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k// as strap phasing is moved away from the dipole configuration. This result is the opposite of the ktor trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k//, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.

  8. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    SciTech Connect

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Noterdaeme, J.-M.

    2015-11-15

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k{sub //}) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k{sub tor}). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k{sub //} as strap phasing is moved away from the dipole configuration. This result is the opposite of the k{sub tor} trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k{sub //}, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas’ operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to

  9. Temporal evolution and spatial distribution of dust creation events in Tore Supra and in ASDEX Upgrade studied by CCD image analysis

    NASA Astrophysics Data System (ADS)

    Hong, Suk-Ho; Grisolia, Christian; Rohde, Volker; Monier-Garbet, Pascale; Tore Supra Team; ASDEX Upgrade Team

    2010-03-01

    Images of wide-angle visible standard CCD cameras contain information on dust creation events (DCEs) that occur during plasma operations. Analysing the straight line-like dust traces in the shallow volume of scrape-off layer along the vacuum vessel, caused by plasma-dust interaction, the database on the DCEs is built. The database provides short/long term temporal evolution and spatial distribution of origins of DCEs in fusion devices. We have studied the DCEs of CIMES (2006) and DITS (2007) Tore Supra (TS) campaigns, and the DCEs of the 2007 ASDEX Upgrade (AUG) campaign. The results from the TS CIMES campaign show different patterns of DCEs meaning different plasma-wall interaction depending on power coupling. The TS DITS campaign indicates that dusts may be an operational limit if a fixed plasma operation scenario is used repeatedly. Different behaviours of DCEs between the carbon limiter machine and the full tungsten divertor machine are found, which is important for next generation fusion machines like ITER.

  10. Modelling of the ICRF induced E  ×  B convection in the scrape-off-layer of ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Feng, Y.; Noterdaeme, J.-M.; Bobkov, V.; Colas, L.; Coster, D.; Lunt, T.; Bilato, R.; Jacquot, J.; Ochoukov, R.; Van Eester, D.; Křivská, A.; Jacquet, P.; Guimarais, L.; the ASDEX Upgrade Team

    2016-09-01

    In magnetic controlled fusion devices, plasma heating with radio-frequency (RF) waves in the ion cyclotron (IC) range of frequency relies on the electric field of the fast wave to heat the plasma. However, the slow wave can be generated parasitically. The electric field of the slow wave can induce large biased plasma potential (DC potential) through sheath rectification. The rapid variation of the rectified potential across the equilibrium magnetic field can cause significant convective transport (E  ×  B drifts) in the scrape-off layer (SOL). In order to understand this phenomenon and reproduce the experiments, 3D realistic simulations are carried out with the 3D edge plasma fluid and kinetic neutral code EMC3-Eirene in ASDEX Upgrade. For this, we have added the prescribed drift terms to the EMC3 equations and verified the 3D code results against the analytical ones in cylindrical geometry. The edge plasma potential derived from the experiments is used to calculate the drift velocities, which are then treated as input fields in the code to obtain the final density distributions. Our simulation results are in good agreement with the experiments.

  11. Localized Scrape-Off Layer density modifications by Ion Cyclotron near fields in JET and ASDEX-Upgrade L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Colas, L.; Jacquet, Ph.; Van Eester, D.; Bobkov, V.; Brix, M.; Meneses, L.; Tamain, P.; Marsen, S.; Silva, C.; Carralero, D.; Kočan, M.; Müller, H.-W.; Crombé, K.; Křivska, A.; Goniche, M.; Lerche, E.; Rimini, F. G.

    2015-08-01

    Combining Lithium beam emission spectroscopy and edge reflectometry, localized Scrape-Off Layer (SOL) density modifications by Ion Cyclotron Range of Frequencies (ICRF) near fields were characterized in JET L-mode plasmas. When using the ICRF wave launchers connected magnetically to the Li-beam chord, the density decreased more steeply 2-3 cm outside the last closed flux surface (mapped onto the outer mid-plane) and its value at the outer limiter radial position was half the ohmic value. The depletion depends on the ICRF power and on the phasing between adjacent radiating straps. Convection due to ponderomotive effects and/or E × B0 drifts is suspected: during ICRF-heated H-mode discharges in 2013, DC potentials up to 70 V were measured locally in the outer SOL by a floating reciprocating probe, located toroidally several metres from the active antennas. These observations are compared with probe measurements on ASDEX-Upgrade. Their implications for wave coupling, heat loads and impurity production are discussed.

  12. Improvement of the phase regulation between two amplifiers feeding the inputs of the 3dB combiner in the ASDEX-Upgrade ICRH system

    NASA Astrophysics Data System (ADS)

    Grine, D.; Pompon, F.; Faugel, H.; Funfgelder, H.; Noterdaeme, J. M.; Koch, R.

    2011-12-01

    The present ICRF system at ASDEX Upgrade uses 3dB combiners to forward the combined power of a generator pair to a single line [1]. Optimal output performance is achieved when the voltages at the two input lines of a combiner are equal in amplitude and in phase quadrature. If this requirement is not met, a large amount of power is lost in the dummy loads of the combiner. To minimize losses, it is paramount to reach this phase relationship in a fast and stable way. The current phase regulation system is based on analog phase locked loops circuits. The main limitation of this system is the response time: several tens of milliseconds are needed to achieve a stable state. In order to get rid of the response time limitation of the current system, a new system is proposed based on a multi-channel direct digital synthesis device which is steered by a microcontroller and a software-based controller. The proposed system has been developed and successfully tested on a test-bench. The results show a remarkable improvement in the reduction of the response times. Other significant advantages provided by the new system include greater flexibility for frequency and phase settings, lower cost and a noticeable size reduction of the system.

  13. Role of plasma shape in access to ELM suppression at low collisionality: First observation of ELM suppression in ASDEX Upgrade in a shape-matching identity experiment with DIII-D

    NASA Astrophysics Data System (ADS)

    Suttrop, Wolfgang; Nazikian, Raffi; Kirk, Andrew; ASDEX Upgrade Team; Diii-D Team; Eurofusion Mst1 Team

    2016-10-01

    Controlled plasma shape scans at low pedestal collisionality νped* < 0.4 in DIII-D reveal that the threshold of magnetic perturbation field strength for suppression of edge-localized modes (ELMs) depends on both upper and lower plasma triangularity. Similar plasmas with matching shape and matching plasma parameters have been performed in DIII-D and ASDEX Upgrade. In these discharges, stationary ELM suppression by magnetic perturbations is observed for the first time in ASDEX Upgrade.Despite different divertor geometry and different first wall materials in the two machines, these plasmas show many similarities: Complete ELM suppression occurs in a narrow windows around q95 3.7 with transitions to phases with ``fuzzy'' ELMs outside these windows, electron density and temperature profiles as well as the total pedestal pressure are well matched, while there are variations of other quantities such as impurity concentrations and impurity rotation frequencies. A first experiment with injection of tungsten shows that the tungsten impurity content in the plasma decays on the time scale of energy confinement. see http://www.euro-fusionscipub.org/mst1.

  14. Role of Te/Ti and ∇vtor in ion heat transport of ASDEX Upgrade H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Manini, A.; Angioni, C.; Peeters, A. G.; Ryter, F.; Jacchia, A.; Maggi, C. F.; Suttrop, W.; ASDEX Upgrade Team

    2006-12-01

    Experiments in H-mode plasmas have shown that both heat and particle transport are sensitive to the ratio between electron and ion temperature (Te/Ti). While decreasing Te/Ti is beneficial for confinement, an increased electron heating in these so called 'hot ion plasmas' deteriorates the confinement. H-mode plasmas with low Te/Ti are often accompanied by high toroidal rotation velocity (vphi). Its gradient (∇vphi) can destabilize the ion temperature gradient mode (ITG) through its parallel component in the parallel velocity shear, but it has also stabilizing effects since it produces an E × B shearing rate (ωE × B). In this paper, the effects of electron heating on the ion heat transport is investigated in H-mode plasmas heated by neutral beam injection (NBI) and electron cyclotron heating (ECH). In particular, the correlation on Te/Ti and ∇vphi is studied and compared with calculations made with GLF23 and GS2. Experimentally it is shown that the normalized gradient length of the ions ( R/L_{T_{\\rmi}} ) is correlated with both Te/Ti and ∇vphi: peaked ion temperature profiles are only obtained with low Te/Ti and high ∇vphi, and vice-versa. When ECH is added, both ion heat and momentum transport are enhanced, leading to a drop of both the Ti and vphi profiles. The effective growth rate γeff = γ-ωE × B is calculated, with the mode growth rate γ determined with GS2 and ωE × B with GLF23. The ion transport is enhanced due to the decrease of the ITG R/L_{T_{\\rmi}} threshold with increasing Te/Ti. Comparison of the dependence of R/L_{T_{\\rmi}} on Te/Ti and ∇vphi between experiments and modelling indicates that the deterioration of confinement cannot be explained by the changes in only Te/Ti or ∇vphi, but by the combined effects of both parameters. The changes in Te/Ti act directly on the ITG threshold, while the ones in ∇vphi modify the ωE × B shearing rate leading to changes in the effective threshold.

  15. Pellet imaging techniques on ASDEX

    SciTech Connect

    Wurden, G.A. ); Buechl, K.; Hofmann, J.; Lang, R.; Loch, R.; Rudyj, A.; Sandmann, W. )

    1990-01-01

    As part of a USDOE/ASDEX collaboration, a detailed examination of pellet ablation in ASDEX with a variety of diagnostics has allowed a better understanding of a number of features of hydrogen ice pellet ablation in a plasma. In particular, fast gated photos with an intensified Xybion CCD video camera allow in-situ velocity measurements of the pellet as it penetrates the plasma. With time resolution of typically 100 nanoseconds and exposures every 50 microseconds, the evolution of each pellet in a multi-pellet ASDEX tokamak plasma discharge can be followed. When the pellet cloud track has striations, the light intensity profile through the cloud is hollow (dark near the pellet), whereas at the beginning or near the end of the pellet trajectory the track is typically smooth (without striations) and has a gaussian-peaked light emission profile. New, single pellet Stark broadened D{sub {alpha}}D{sub {beta}}, and D{sub {gamma}} spectra, obtained with a tangentially viewing scanning mirror/spectrometer with Reticon array readout, are consistent with cloud densities of 2 {times} 10{sup 17}cm{sup {minus}3} or higher in the regions of strongest light emission. A spatially resolved array of D{sub {alpha}} detectors shows that the light variations during the pellet ablation are not caused solely by a modulation of the incoming energy flux as the pellet crosses rational q-surfaces, but instead are a result of a dynamic, non-stationary, ablation process. 20 refs., 4 figs.

  16. Recent upgrades and enhancements of the FEM3A model

    SciTech Connect

    Chan, S.T.

    1994-12-01

    In 1984, the US Army Edgewood Research, Development and Engineering Center began to fund Lawrence Livermore National Laboratory to further develop FEM3, a fully three-dimensional heavy-gas dispersion model, as a research tool for studying the atmospheric transport and diffusion of certain chemical systems. As a result, a significantly improved version of the model, called FEM3A, was delivered to ERDEC in 1988. During the past few years, two more major improvements have been developed and tested. They are: improved mass conservation for treating dispersion scenarios with large density variations, and the addition of an advanced turbulence submodel based on the k-{var_epsilon} transport equations. These enhancements have resulted in substantial improvements in the dispersion simulations of heavy-gases and can greatly extend the range of applicability of the model, including the ability to treat problems with large density variations and dispersion scenarios of much greater complexities. Documented in this report are the new features and some of the improvements obtained with the new model.

  17. Ex-situ biogas upgrading and enhancement in different reactor systems.

    PubMed

    Kougias, Panagiotis G; Treu, Laura; Benavente, Daniela Peñailillo; Boe, Kanokwan; Campanaro, Stefano; Angelidaki, Irini

    2017-02-01

    Biogas upgrading is envisioned as a key process for clean energy production. The current study evaluates the efficiency of different reactor configurations for ex-situ biogas upgrading and enhancement, in which externally provided hydrogen and carbon dioxide were biologically converted to methane by the action of hydrogenotrophic methanogens. The methane content in the output gas of the most efficient configuration was >98%, allowing its exploitation as substitute to natural gas. Additionally, use of digestate from biogas plants as a cost efficient method to provide all the necessary nutrients for microbial growth was successful. High-throughput 16S rRNA sequencing revealed that the microbial community was resided by novel phylotypes belonging to the uncultured order MBA08 and to Bacteroidales. Moreover, only hydrogenotrophic methanogens were identified belonging to Methanothermobacter and Methanoculleus genera. Methanothermobacter thermautotrophicus was the predominant methanogen in the biofilm formed on top of the diffuser surface in the bubble column reactor.

  18. Noble magnetic barriers in the ASDEX UG tokamak

    NASA Astrophysics Data System (ADS)

    Ali, Halima; Punjabi, Alkesh; Vazquez, Justin

    2010-02-01

    The second-order perturbation method of creating invariant tori inside chaos in Hamiltonian systems (Ali, H.; Punjabi, A. Plasma Phys. Contr. F. 2007, 49, 1565-1582) is applied to the axially symmetric divertor experiment upgrade (ASDEX UG) tokamak to build noble irrational magnetic barriers inside chaos created by resonant magnetic perturbations (m, n)=(3, 2)+(4, 3), with m and n the poloidal and toroidal mode numbers of the Fourier expansion of the magnetic perturbation. The radial dependence of the Fourier modes is ignored. The modes are considered to be locked and have the same amplitude δ. A symplectic mathematical mapping in magnetic coordinates is used to integrate magnetic field line trajectories in the ASDEX UG. Tori with noble irrational rotational transform are the last ones to be destroyed by perturbation in Hamiltonian systems. For this reason, noble irrational magnetic barriers are built inside chaos, and the strongest noble irrational barrier is identified. Three candidate locations for the strongest noble barrier in ASDEX UG are selected. All three candidate locations are chosen to be roughly midway between the resonant rational surfaces ψ32 and ψ43. ψ is the magnetic coordinate of the flux surface. The three candidate surfaces are the noble irrational surfaces close to the surface with q value that is a mediant of q=3/2 and 4/3, q value of the physical midpoint of the two resonant surfaces, and the q value of the surface where the islands of the two perturbing modes just overlap. These q values of the candidate surfaces are denoted by q MED, q MID, and q OVERLAP. The strongest noble barrier close to q MED has the continued fraction representation (CFR) [1;2,2,1∞] and exists for δ≤2.6599×10-4; the strongest noble barrier close to q MID has CFR [1;2,2,2,1∞] and exists for δ≤4.6311×10-4; and the strongest noble barrier close to q OVERLAP has CFR [1;2,2,6,2,1∞] and exists for δ≤1.367770×10-4. From these results, the strongest

  19. Viewgraphs presented at the ASDEX/DOE workshop on disruptions in divertor tokamaks

    SciTech Connect

    Granetz, R.; Gruber, O.; Zohm, H.

    1994-09-01

    The emphasis of this year`s ASDEX/DOE workshop was on disruptions in diverted tokamaks. The meeting was held here at MIT on 14--15 March. It is particularly appropriate that MIT hosted the workshop this year, since Alcator C-Mod had just recently completed its very first run campaign, and disruptions are one of the key areas of research in our program. There were a total of 14 speakers, with participants from IPP (Garching), CRPP (Lausanne), Culham, General Atomics, PPPL, Sandia, ORNL, the ITER JCT, and MIT. The subjects addressed included statistical analysis of disruption probabilities in ASDEX, modelling of the vertical axisymmetric plasma motion in DIII-D, impact of disruptions on the design of the ITER divertors, modelling of runaway electrons, and TSC calculations of disruption-induced currents and forces in TPX, etc. One item of particular interest to us was the experimental correlation of halo current magnitude with plasma current on ASDEX-Upgrade. The data indicates at least a linear, and possibly even a quadractic dependence. This has important implications for Alcator C-Mod, since it would predict halo currents of order 1 MA or more at full performance. At the conclusion of the talks, an informal discussion of disruption databases was held, primarily for the purpose of helping us develop a useful one for C-Mod.

  20. EPIC Computer Upgrade

    NASA Video Gallery

    Expedition 30 Commander Dan Burbank and Flight Engineer Don Pettit work on installing hardware for the Enhanced Processor and Integrated Communications (EPIC) upgrade of the International Space Sta...

  1. Captain upgrade CRM training: A new focus for enhanced flight operations

    NASA Technical Reports Server (NTRS)

    Taggart, William R.

    1993-01-01

    Crew Resource Management (CRM) research has resulted in numerous payoffs of applied applications in flight training and standardization of air carrier flight operations. This paper describes one example of how basic research into human factors and crew performance was used to create a specific training intervention for upgrading new captains for a major United States air carrier. The basis for the training is examined along with some of the specific training methods used, and several unexpeced results.

  2. SRS control system upgrade requirements

    SciTech Connect

    Hill, L.F.

    1998-08-04

    This document defines requirements for an upgrade of the Sodium Removal System (SRS) control system. The upgrade is being performed to solve a number of maintainability and operability issues. The upgraded system will provide the same functions, controls and interlocks as the present system, and in addition provide enhanced functionality in areas discussed in this document.

  3. The upgraded cold neutron triple-axis spectrometer FLEXX - enhanced capabilities by new instrumental options

    NASA Astrophysics Data System (ADS)

    Habicht, Klaus; Lucía Quintero-Castro, Diana; Toft-Petersen, Rasmus; Kure, Mathias; Mäde, Lucas; Groitl, Felix; Le, Manh Duc

    2015-01-01

    The upgrade of the cold neutron triple axis spectrometer FLEXX, a work-horse instrument for inelastic neutron scattering matching the sample environment capabilities at Helmholtz-Zentrum Berlin, has been successfully accomplished. Experiments confirmed an order of magnitude gain in flux now allowing for intensity demanding options to be fully exploited at FLEXX. In this article, we describe the layout and design of two newly available FLEXX instrument options in detail. The new Heusler analyzer gives an increase of the detected polarized neutron flux due to its superior focusing properties, significantly improving the feasibility of future polarized and neutron resonance spin echo experiments. The MultiFLEXX option provides simultaneous access to large regions in wavevector and energy space for inelastic excitations thus adding mapping capabilities to the spectrometer.

  4. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    SciTech Connect

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  5. ISS Update: Computer Upgrade on Station

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean interviews Gary Cox, EPIC Project Manager, about EPIC (Enhanced Processor and Integrated Communications), the computer upgrade program for the International ...

  6. Fast-Ion Losses due to High-Frequency MHD Perturbations in the ASDEX Upgrade Tokamak

    SciTech Connect

    Garcia-Munoz, M.; Fahrbach, H.-U.; Guenter, S.; Igochine, V.; Maraschek, M.; Zohm, H.; Mantsinen, M. J.; Martin, P.; Piovesan, P.; Sassenberg, K.

    2008-02-08

    Time-resolved energy and pitch angle measurements of fast-ion losses correlated in frequency and phase with high-frequency magnetohydrodynamic perturbations have been obtained for the first time in a magnetic fusion device and are presented here. A detailed analysis of fast-ion losses due to toroidal Alfven eigenmodes has revealed the existence of a new core-localized magnetohydrodynamic perturbation, the sierpes mode. The sierpes mode is a non-Alfvenic instability which dominates the losses of fast ions in ion cyclotron resonance heated discharges, and it is named for its footprint in the spectrograms ('sierpes' means 'snake' in Spanish). The sierpes mode has been reconstructed by means of highly resolved multichord soft-x-ray measurements.

  7. Characteristics of type I and type III ELM precursors in ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    Kass, T.; Günter, S.; Maraschek, M.; Suttrop, W.; Zohm, H.; ASDEX Upgrade Team

    1998-01-01

    The temporal evolution of the edge electron pressure gradient during the development of a type I ELM shows that proximity of ∇pedge to the ideal ballooning limit is not sufficient to trigger a type I ELM. Thus, the MHD structure of ELMs is investigated further. The present discussion focuses on the phenomenology of type I and type III ELM precursors. The ELM precursor types are well distinguished by their frequency behaviour and mode structure. The type I ELM precursor oscillation originates from a thin layer close to the plasma edge. For type III ELMs, on the contrary, ∇pedge has a much stronger influence as indicated by their occurrence during L mode.

  8. Investigation of pellet-triggered MHD events in the ASDEX upgrade

    SciTech Connect

    Lang, P. T.; Lackner, K.; Kallenbach, A.; Maraschek, M.; Perez von Thun, C. P.; Suttrop, W.

    2008-09-15

    In order to gain deeper insight into the process of MHD activity triggered by pellets we extended our previous analysis (standard type-I edge localized modes (ELMs)) to type-I ELMs in radiative edge scenarios, type-III ELMs, the quiescent H-mode regime, and core mode activity such as neoclassical tearing modes or snakes. Pellet triggering of mode activity has turned out to be a quite general feature, but only in case of the ELMs can it be unambiguously attributed to prompt local impact by the pellet. For edge plasma conditions characterized by higher resistivity, the growth time of spontaneous ELMs increases while the plasma changes from the type-I into the type-III regime. However, pellet-triggered ELMs retain fast rise times. In the quiescent Hmode, pellets still trigger ELM-like mode activity, but no longer accompanied by a significant release of energy from the plasma.

  9. Pedestal shape, stability and inter-ELM evolution for different main ion species in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Laggner, Florian M.

    2016-10-01

    In tokamak plasmas with different main ion species as hydrogen isotopes or helium, a change of confinement occurs, known as isotope effect. To identify the processes defining the pedestal structure and evolution, experiments comparing hydrogen (H), deuterium (D) and helium (He) plasmas have been performed. Their goal was to match the pedestal top electron density and temperatures and compare the pedestal shape and stability. A factor of almost 10 higher gas puff as well as a factor of 2 higher heating power were required in H to achieve the same pedestal top values as in the D reference. While the pedestal electron temperature profiles do not differ, the density profile in H has shallower gradients. These can be explained by a lower particle confinement in H, if the ionization source profile is assumed to be similar. In He plasmas owing to the larger effective charge, the stored energy at similar pedestal top electron density is roughly a factor of 1.5 smaller than in the references, leading to the absence of ELMs. In summary the experimental results suggest different particle and energy confinement for different main ion species, however, peeling-ballooning theory can sufficiently describe the pedestal stability and ELM behavior. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under Grant Agreement No. 633053.

  10. Predictive modelling of the impact of a radiative divertor on pedestal confinement on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, Mike; Potzel, Steffen; Wischmeier, Marco; Wolfrum, Elisabeth; Frassinetti, Lorenzo; Reimold, Felix; Eurofusion Mst1 Team; ASDEX Upgrade Team

    2015-11-01

    In future devices, tailoring of the edge density profile and radiation profile for power exhaust control via a deuterium gas puff and extrinsic impurity seeding will be necessary. It has been observed on present day machines that high D fuelling can reduce the plasma stored energy while adding impurity seeding can act to improve confinement by up to 40%. This study presents a combination of observations and modelling completed on AUG with the aim of determining the mechanisms behind the confinement degradation with a gas puff and improvement with impurity seeding. In particular, predictive modelling, based on the EPED pedestal model, has been extensively used. Alterations of the temperature and density at the separatrix are found to have large impacts on pedestal stability. Measured changes in divertor properties are used to inform the direction and magnitude of these alterations, with experimentally relevant confinement changes being recovered via pressure profile shifts. http://www.euro-fusionscipub.org/mst1

  11. Slum Upgrading and Health Equity.

    PubMed

    Corburn, Jason; Sverdlik, Alice

    2017-03-24

    Informal settlement upgrading is widely recognized for enhancing shelter and promoting economic development, yet its potential to improve health equity is usually overlooked. Almost one in seven people on the planet are expected to reside in urban informal settlements, or slums, by 2030. Slum upgrading is the process of delivering place-based environmental and social improvements to the urban poor, including land tenure, housing, infrastructure, employment, health services and political and social inclusion. The processes and products of slum upgrading can address multiple environmental determinants of health. This paper reviewed urban slum upgrading evaluations from cities across Asia, Africa and Latin America and found that few captured the multiple health benefits of upgrading. With the Sustainable Development Goals (SDGs) focused on improving well-being for billions of city-dwellers, slum upgrading should be viewed as a key strategy to promote health, equitable development and reduce climate change vulnerabilities. We conclude with suggestions for how slum upgrading might more explicitly capture its health benefits, such as through the use of health impact assessment (HIA) and adopting an urban health in all policies (HiAP) framework. Urban slum upgrading must be more explicitly designed, implemented and evaluated to capture its multiple global environmental health benefits.

  12. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    SciTech Connect

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site`s centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million.

  13. Interaction between Ni and HZSM-5 in aromatization-enhanced reactive adsorption desulfurization catalysts for FCC gasoline upgrading.

    PubMed

    Zhao, Jinchong; Zhang, Lulu; She, Nannan; Liu, Yunqi; Chai, Yongming; Liu, Chenguang

    A compound catalyst (RA) consisted of Ni, ZnO and HZSM-5 with functions of reactive adsorption desulfurization (RADS) and olefin aromatization for fluid catalytic cracking (FCC) gasoline upgrading was prepared. X-ray powder diffraction (XRD), temperature-programmed reduction and low-temperature N2 adsorption were used to characterize the properties of the catalysts. Performance evaluation by FCC gasoline was carried out, and the result showed that the catalyst RA performed well in desulfurization and aromatization. For comparison, RADS catalyst (represented by DS) consisted of Ni and ZnO and aromatization catalyst (represented by Ar) consisted of HZSM-5 were prepared, respectively. They were combined in different ways to help investigating interaction between Ni and HZSM-5. Performance evaluated by FCC gasoline showed that catalyst RA performed best in desulfurization with a slight octane number loss. Interaction between Ni and HZSM-5 is a significant factor which influences the performance of the catalyst.

  14. Gemini Instrument Upgrade Program

    NASA Astrophysics Data System (ADS)

    Diaz, Ruben; Goodsell, Stephen; Kleinman, Scot

    2016-08-01

    The Gemini Observatory* remains committed to keeping its operational instrumentation competitive and serving the needs of its user community. Currently the observatory operates a 4 instruments + 1 AO system at each site. At Gemini North the GMOS-N, GNIRS, NIFS and NIRI instruments are offered supported by the ALTAIR AO system. In the south, GMOS-S, F-2, GPI and GSAOI are offered instrumentation and GeMS is the provided AO System. This paper reviews our strategy to keep our instrumentation suite competitive, examines both our current funded upgrade projects and our potential future enhancements. We summarize the work done and the results so far obtained within the instrument upgrade program.

  15. Site-specific economic and ecological analysis of enhanced production, upgrade and feed-in of biomethane from organic wastes.

    PubMed

    Lindorfer, J; Schwarz, M M

    2013-01-01

    The present study analyses the cost structure and ecological performance of biomethane production and feed-in from organic wastes and manure in a site-specific approach for Upper Austria. The theoretically available quantities of biowaste and manure can feed representative biogas plant capacities resulting in relatively high biomethane full costs in the natural gas grid of at least 9.0 €-cents/kWh, which shows strong economies of scale when feed-in flows of methane from 30 to 120 Nm(3)/h are considered. From the ecological point of view small plant capacities are to be preferred since the environmental effect, i.e. the global warming potential (up to -22% of CO(2eq)), is lower in comparison to higher capacities as a consequence of reduced transport in the evaluated scenarios. To enforce the combined energetic use of the biowaste fraction, co-operation between compost facility, gas grid and biogas plant operators is necessary to use existing infrastructure, logistics and knowledge to promote the production, upgrade and feed-in of biomethane from biowastes at attractive locations in Upper Austria and in the whole of Europe.

  16. A study of runaway electron confinement in the ASDEX tokamak

    SciTech Connect

    Kwon, O.J.; Diamond, P.H.; Wagner, F.; Fussmann, G.

    1988-03-01

    The results of runaway electron confinement experiments from ASDEX are analyzed to elucidate the structure of electromagnetic turbulence that causes anomalous electron heat transport in the L-mode confinement regime. From a simple model, the radial correlation length (W) of the magnetic turbulence is determined to be about 1 mm. Using this value and that of the experimentally deduced electron thermal diffusivity, we determine the radial magnetic fluctuation level at the plasma edge in the L-mode to be (B/sub r/B/sub 0/) )similarreverse arrowto) 2 x 10/sup -4/. Scalings of W and B/sub r/B/sub 0/ are deduced from parameter scans. From a comparison of these results with the predictions of various theoretical models, it is concluded that skin-depth turbulence, electromagnetic drift wave turbulence, rippling modes, and microtearing modes are inferior candidates and that resistive-ballooning modes offer the best possibility for a consistent interpretation of the data. 25 refs., 9 figs., 1 tab

  17. Transport simulations of ohmic pellet experiments on the TFTR, ASDEX, and ALCATOR-C tokamaks

    SciTech Connect

    Redi, M.H.; Tang, W.M.; Owens, D.K.; Greenwald, M.; Gruber, O.; Kaufmann, M.

    1988-07-01

    Transport simulations of ohmic gas-fuelled and pellet-fuelled experiments have been carried out to test a microinstability-based, profile-consistent model of anomalous transport in tokamaks. Predictions for experiments on the TFTR, ASDEX, and ALCATOR-C tokamaks were found consistent with the observed confinement and temperature measurements. 26 refs., 11 figs., 10 tabs.

  18. HVCM Topology Enhancements to Support a Power Upgrade Required by a Second Target Station (STS) at SNS

    SciTech Connect

    Solley, Dennis J; Anderson, David E; Patel, Gunjan P; Peplov, Vladimir V; Saethre, Robert B; Wezensky, Mark W

    2012-01-01

    This paper discusses the topology used in the HVCMs at SNS to process power for both the cold and warm linac sections of the klystron gallery in support of extended operations at the megawatt level. In anticipation of a second target station and higher anticipated power levels, an enhancement to the present topology is being investigated. SPICE circuit simulations and preliminary experimental data will be presented.

  19. Upgrading food wastes by means of bromelain and papain to enhance growth and immunity of grass carp (Ctenopharyngodon idella).

    PubMed

    Choi, W M; Lam, C L; Mo, W Y; Wong, M H

    2016-04-01

    The fast growing of global aquaculture industry accompanied with increasing pressure on the supply and price of traditional feed materials (e.g., fish meal and soy bean meal). This circumstance has urged the need to search alternative sources of feed stuff. Food waste was used as feed stuff in rearing fish which possess substantial protein and lipid. Grass carp are major species reared in Hong Kong with lower nutritional requirements; it is also an ideal species for investigating the feasibility of using food waste as fish feeds for local aquaculture industry. The growth and immunity, reflected by total protein, total immunologlobulin (IgI), and nitroblue tetrazolium (NBT) activity of grass carp blood, were depressed when feeding with food waste feeds without enzymes. However, the supplementation of bromelain and papain in fish feed enhanced the efficient use of food waste by grass carp, which in turn improved the fish immunity. The present results indicated that the addition of those enzymes could enhance the feed utilization by fish and hematological parameters of grass carp, and the improvement on growth and immunity superior to the control (commercial feed) was observed with the addition of bromelain and papain supplement. Addition of 1 and 2 % mixture of bromelain and papain could significantly enhance the lipid utilization in grass carp.

  20. Vacuum upgrade and enhanced performances of the double imaging electron/ion coincidence end-station at the vacuum ultraviolet beamline DESIRS

    NASA Astrophysics Data System (ADS)

    Tang, Xiaofeng; Garcia, Gustavo A.; Gil, Jean-François; Nahon, Laurent

    2015-12-01

    We report here the recent upgrade of the SAPHIRS permanent photoionization end-station at the DESIRS vacuum ultraviolet beamline of synchrotron SOLEIL, whose performances have been enhanced by installing an additional double-skimmer differential chamber. The smaller molecular beam profile obtained at the interaction region has increased the mass resolution of the double imaging photoelectron photoion coincidence (i2PEPICO) spectrometer, DELICIOUS III, installed in the photoionization chamber of the SAPHIRS endstation, by a factor of two, to M/ΔM ˜ 1700 (FWHM). The electron kinetic energy resolution offered by the velocity map imaging (VMI) part of the spectrometer has been improved down to 2.8% (ΔE/E) as we show on the N2 photoionization case in the double skimmer configuration. As a representative example of the overall state-of-the-art i2PEPICO performances, experimental results of the dissociation of state-selected O2+ (B 2 ∑ g - , v+ = 0-6) molecular ions performed at the fixed photon energy of hν = 21.1 eV are presented.

  1. Vacuum upgrade and enhanced performances of the double imaging electron/ion coincidence end-station at the vacuum ultraviolet beamline DESIRS.

    PubMed

    Tang, Xiaofeng; Garcia, Gustavo A; Gil, Jean-François; Nahon, Laurent

    2015-12-01

    We report here the recent upgrade of the SAPHIRS permanent photoionization end-station at the DESIRS vacuum ultraviolet beamline of synchrotron SOLEIL, whose performances have been enhanced by installing an additional double-skimmer differential chamber. The smaller molecular beam profile obtained at the interaction region has increased the mass resolution of the double imaging photoelectron photoion coincidence (i(2)PEPICO) spectrometer, DELICIOUS III, installed in the photoionization chamber of the SAPHIRS endstation, by a factor of two, to M/ΔM ∼ 1700 (FWHM). The electron kinetic energy resolution offered by the velocity map imaging (VMI) part of the spectrometer has been improved down to 2.8% (ΔE/E) as we show on the N2 photoionization case in the double skimmer configuration. As a representative example of the overall state-of-the-art i(2)PEPICO performances, experimental results of the dissociation of state-selected O2(+)(B(2)∑(g)(-), v(+) = 0-6) molecular ions performed at the fixed photon energy of hν = 21.1 eV are presented.

  2. The D0 Upgrade

    SciTech Connect

    Abachi, S.; D0 Collaboration

    1995-07-01

    In this paper we describe the approved DO Upgrade detector, and its physics capabilities. The DO Upgrade is under construction and will run during the next Fermilab collider running period in early 1999 (Run II). The upgrade is designed to work at the higher luminosities and shorter bunch spacings expected during this run. The major elements of t he upgrade are: a new tracking system with a silicon tracker, scintillating fiber tracker, a 2T solenoid, and a central preshower detector; new calorimeter electronics; new muon trigger and tracking detectors with new muon system electronics; a forward preshower detector; new trigger electronics and DAQ improvements to handle the higher rates.

  3. Hydrocarbonaceous material upgrading method

    DOEpatents

    Brecher, Lee E.; Mones, Charles G.; Guffey, Frank D.

    2015-06-02

    A hydrocarbonaceous material upgrading method may involve a novel combination of heating, vaporizing and chemically reacting hydrocarbonaceous feedstock that is substantially unpumpable at pipeline conditions, and condensation of vapors yielded thereby, in order to upgrade that feedstock to a hydrocarbonaceous material condensate that meets crude oil pipeline specification.

  4. The upgraded scheme of Hefei Light Source

    SciTech Connect

    Li Weimin; Xu Hongliang; Wang Lin; Feng Guangyao; Zhang Shancai; Hao Hao

    2010-06-23

    To enhance the performance of Hefei Light Source, which was designed and constructed two decades ago, an upgrade project would be carried out in the near future. The detail upgrade scheme was described in this paper. Firstly, the magnet lattice of storage ring should be reconstructed with 4 DBA cells, whose advantages are lower beam emittance and more straight section available for insertion devices. Secondly, the beam diagnostics, main power supply, transverse and longitudinal multi-bunch feedback, beam control and manipulation system would be upgrade to improve the beam orbit stability. Finally, the injection system of storage ring and injector, which is composed of electron linac and beam transfer line, would be updated in order to assure smooth beam accumulation process under new low emittance lattice. With above improvement, it is hopeful to increase the brilliance of Hefei Light Source by two orders approximately. After three-year upgrade project, the performance of HLS would meet the demands of advanced SR users.

  5. Direct Observation of Current in Type-I Edge-Localized-Mode Filaments on the ASDEX Upgrade Tokamak

    SciTech Connect

    Vianello, N.; Zuin, M.; Cavazzana, R.; Naulin, V.; Rasmussen, J. J.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.

    2011-03-25

    Magnetically confined plasmas in the high confinement regime are regularly subjected to relaxation oscillations, termed edge localized modes (ELMs), leading to large transport events. Present ELM theories rely on a combined effect of edge current and the edge pressure gradients which result in intermediate mode number (n congruent with 10-15) structures (filaments) localized in the perpendicular plane and extended along the field lines. By detailed localized measurements of the magnetic field perturbation associated to type-I ELM filaments, it is shown that these filaments carry a substantial current.

  6. Investigation of inter-ELM ion heat transport in the H-mode pedestal of ASDEX Upgrade plasmas

    NASA Astrophysics Data System (ADS)

    Viezzer, E.; Fable, E.; Cavedon, M.; Angioni, C.; Dux, R.; Laggner, F. M.; Bernert, M.; Burckhart, A.; McDermott, R. M.; Pütterich, T.; Ryter, F.; Willensdorfer, M.; Wolfrum, E.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-02-01

    The ion heat transport in the pedestal of H-mode plasmas is investigated in various H-mode discharges with different pedestal ion collisionalities. Interpretive modelling suggests that in all analyzed discharges the ion heat diffusivity coefficient, {χ\\text{i}} , in the pedestal is close to the neoclassical prediction within the experimental uncertainties. The impact of changing the deposition location of the electron cyclotron resonance heating on the ion heat transport has been studied. The effect on the background profiles is small. The pre-ELM (edge localized modes) edge profiles as well as the behaviour of the electron temperature and density, ion temperature and impurity toroidal rotation during the ELM cycle are very similar in discharges with on- and off-axis ECRH heating. No significant deviation of {χ\\text{i}} from neoclassics is observed when changing the ECRH deposition location to the plasma edge.

  7. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    In this project we well evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated. (VC)

  8. Upgrades to NRLMOL code

    NASA Astrophysics Data System (ADS)

    Basurto, Luis

    This project consists of performing upgrades to the massively parallel NRLMOL electronic structure code in order to enhance its performance by increasing its flexibility by: a) Utilizing dynamically allocated arrays, b) Executing in a parallel environment sections of the program that were previously executed in a serial mode, c) Exploring simultaneous concurrent executions of the program through the use of an already existing MPI environment; thus enabling the simulation of larger systems than it is currently capable of performing. Also developed was a graphical user interface that will allow less experienced users to start performing electronic structure calculations by aiding them in performing the necessary configuration of input files as well as providing graphical tools for the displaying and analysis of results. Additionally, a computational toolkit that can avail of large supercomputers and make use of various levels of approximation for atomic interactions was developed to search for stable atomic clusters and predict novel stable endohedral fullerenes. As an application of the developed computational toolkit, a search was conducted for stable isomers of Sc3N C80 fullerene. In this search, about 1.2 million isomers of C80 were optimized in various charged states at the PM6 level. Subsequently, using the selected optimized isomers of C80 in various charged state, about 10,000 isomers of Sc3N C80 were constructed which were optimized using semi-empirical PM6 quantum chemical method. A few selected lowest isomers of Sc3N C80 were optimized at the DFT level. The calculation confirms the lowest 3 isomers previously reported in literature but 4 new isomers are found within the lowest 10 isomers. Using the upgraded NRLMOL code, a study was done of the electronic structure of a multichromoric molecular complex containing two of each borondipyrromethane dye, Zn-tetraphenyl-porphyrin, bisphenyl anthracene and a fullerene. A systematic examination of the effect of

  9. Tapping upgrade potential

    SciTech Connect

    Gill, H.S. )

    1993-01-01

    Modernizing aging hydropower stations presents plant owners with a unique opportunity for improving efficiency and plant output. But several factors should be considered before undertaking a turbine upgrade project.

  10. Training for Technology Upgrade.

    ERIC Educational Resources Information Center

    Strandberg, John

    1997-01-01

    A computer system conversion in a business was relatively painless for users and invisible to customers. The plan relied on basic training strategies that apply to a variety of technology upgrades. (Author/JOW)

  11. The Upgraded D0 detector

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Clermont-Ferrand U. /LPSC, Grenoble /Marseille, CPPM /Orsay, LAL /Paris U., VI-VII /DAPNIA, Saclay /Strasbourg, IReS

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  12. Optics upgrade for switchyard

    SciTech Connect

    Kobilarcik, Thomas R.; /Fermilab

    2005-08-01

    An upgrade of the Switchyard optics is proposed. This upgrade extends the P3 (old Main Ring) lattice through enclosure C. The septa for the 3-way Meson Area split is moved from enclosure F1 to enclosure M01. The functionality of the Meson Target Train is preserved. Finally, for the purpose of demonstrating that the resulting split can be transported, a straw-man lattice is proposed for enclosure M02 and beyond.

  13. Time-resolved measurements of hydrogen and deuterium fluxes in the ASDEX plasma boundary

    SciTech Connect

    Roth, J.; Varga, P.; Martinelli, A.P.; Scherzer, B.M.U.; Chen, C.K.; Wampler, W.R.; Taglauer, E.

    1982-01-01

    Hydrogen and deuterium fluxes parallel to the toroidal magnetic field were measured in the plasma boundary of ASDEX using graphite collector probes. Time resolution of the order of 100 ms can be obtained by rotating the cylindrical probes behind an aperture during the discharge. The trapped amount of hydrogen was determined by subsequent thermal desorption; in the analyses of deuterium the D(/sup 3/He,p)/sup 4/He nuclear reaction was used. Both methods yield quantitative results. Measurements were done for limiter and divertor discharges in the range of 4 to 20 cm outside the limiter or separatrix. The time distributions show a maximum flux at the beginning and the end of the discharge. The relatively lower flux during the plateau phase of the discharge is in the range 10/sup 15/ to 2 x 10/sup 17/ cm/sup -2/ sec/sup -1/, depending on the radial probe position; the maximum values are higher by a factor of 5 to 50. During neutral hydrogen injection, an additional maximum can be observed. The radial l/e-decay length is about 0.9 cm in front and 0.4 cm behind the fixed limiter. The results are compared with independent measurements in ASDEX and other plasma machines.

  14. Upgrade of the BATMAN test facility for H- source development

    NASA Astrophysics Data System (ADS)

    Heinemann, B.; Fröschle, M.; Falter, H.-D.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Riedl, R.; Ruf, B.

    2015-04-01

    The development of a radio frequency (RF) driven source for negative hydrogen ions for the neutral beam heating devices of fusion experiments has been successfully carried out at IPP since 1996 on the test facility BATMAN. The required ITER parameters have been achieved with the prototype source consisting of a cylindrical driver on the back side of a racetrack like expansion chamber. The extraction system, called "Large Area Grid" (LAG) was derived from a positive ion accelerator from ASDEX Upgrade (AUG) using its aperture size (ø 8 mm) and pattern but replacing the first two electrodes and masking down the extraction area to 70 cm2. BATMAN is a well diagnosed and highly flexible test facility which will be kept operational in parallel to the half size ITER source test facility ELISE for further developments to improve the RF efficiency and the beam properties. It is therefore planned to upgrade BATMAN with a new ITER-like grid system (ILG) representing almost one ITER beamlet group, namely 5 × 14 apertures (ø 14 mm). Additionally to the standard three grid extraction system a repeller electrode upstream of the grounded grid can optionally be installed which is positively charged against it by 2 kV. This is designated to affect the onset of the space charge compensation downstream of the grounded grid and to reduce the backstreaming of positive ions from the drift space backwards into the ion source. For magnetic filter field studies a plasma grid current up to 3 kA will be available as well as permanent magnets embedded into a diagnostic flange or in an external magnet frame. Furthermore different source vessels and source configurations are under discussion for BATMAN, e.g. using the AUG type racetrack RF source as driver instead of the circular one or modifying the expansion chamber for a more flexible position of the external magnet frame.

  15. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  16. ATLAS IBL Pixel Upgrade

    NASA Astrophysics Data System (ADS)

    La Rosa, A.; Atlas Ibl Collaboration

    2011-06-01

    The upgrade for ATLAS detector will undergo different phases towards super-LHC. The first upgrade for the Pixel detector will consist of the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (LHC phase-I upgrade). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 3.3 cm. The IBL will require the development of several new technologies to cope with increase of radiation or pixel occupancy and also to improve the physics performance which will be achieved by reducing the pixel size and of the material budget. Three different promising sensor technologies (planar-Si, 3D-Si and diamond) are currently under investigation for the pixel detector. An overview of the project with particular emphasis on the pixel module is presented in this paper.

  17. Upgrading of Existing Structures.

    DTIC Science & Technology

    1980-06-01

    and double shoring, flange, boxed beam , and king post truss upgrading methods. - 1 - ,-. Upgraded concrete floors tested were single and double...Post Flange Beam Truss WOOD - D.L. = 20 psf t 4.5 11.4 - 2.4 1.7 1.7 Light - Joist, Glulam* (0.4) (6.8) (9.2) (2.6) (1.7) (2.2)** Medium- Joist, Glulam... truss shoring consists basically of cables or rods secured parallel to joists or beams and ten- sioned to form a king post truss configuration. The

  18. The UKIRT Upgrades Programme

    NASA Astrophysics Data System (ADS)

    Adamson, Andy; Davies, John; Robson, Ian

    Tim Hawarden presented this paper to the 30th anniversary workshop, just a month before his untimely death. The editors have done their best to convert his talk into this paper, and gratefully acknowledge the assistance of Nick Rees (a member of the Upgrades team, now at Diamond Light Source). Tim's discussion concerned the UKIRT Upgrades Project, which ran through the 1990s and transformed the telescope and made it truly competitive on the world stage for operation into the twenty-first century. The reference list at the end of the paper is comprehensive; some of these are referred to in the paper itself and some are included for completeness only.

  19. VISIR upgrade overview and status

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Käufl, Hans Ulrich; Baksai, Pedro; Dobrzycka, Danuta; Finger, Gert; Ives, Derek; Jakob, Gerd; Lagadec, Eric; Lundin, Lars; Mawet, Dimitri; Mehrgan, Leander; Moerchen, Margaret; Momany, Yazan; Moreau, Vincent; Pantin, Eric; Riquelme, Miguel; Siebenmorgen, Ralf; Silber, Armin; Smette, Alain; Taylor, Julian; van den Ancker, Mario; Venema, Lars; Weilenmann, Ueli; Yegorova, Irina

    2012-09-01

    We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO's VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As Aquarius detector array (Raytheon) which has demonstrated very good performance (sensitivity, stability) in the laboratory IR detector test facility (modified TIMMI 2 instrument). A prism spectroscopic mode will cover the N-band in a single observation. New scientific capabilities for high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and phase-mask coronagraphic (4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a userdefined constraint on water vapour. Improved pipelines based on the ESO Reflex concept will provide better support to astronomers. The upgraded VISIR will be a powerful instrument providing background limited performance for diffraction-limited observations at an 8-m telescope. It will offer synergy with facilities such as ALMA, JWST, VLTI and SOFIA, while a wealth of targets is available from survey work (e.g. VISTA, WISE). In addition it will bring confirmation of the technical readiness and scientific value of several aspects of potential mid-IR instrumentation at Extremely Large Telescopes. The intervention on VISIR and installation of hardware has been completed in July and commissioning will take place during July and August. VISIR is scheduled to be available to the users starting Oct 2012.

  20. The strongest magnetic barrier in the DIII-D tokamak and comparison with the ASDEX UG

    NASA Astrophysics Data System (ADS)

    Ali, Halima; Punjabi, Alkesh

    2013-05-01

    Magnetic perturbations in tokamaks lead to the formation of magnetic islands, chaotic field lines, and the destruction of flux surfaces. Controlling or reducing transport along chaotic field lines is a key challenge in magnetically confined fusion plasmas. A local control method was proposed by Chandre et al. [Nucl. Fusion 46, 33-45 (2006)] to build barriers to magnetic field line diffusion by addition of a small second-order control term localized in the phase space to the field line Hamiltonian. Formation and existence of such magnetic barriers in Ohmically heated tokamaks (OHT), ASDEX UG and piecewise analytic DIII-D [Luxon, J.L.; Davis, L.E., Fusion Technol. 8, 441 (1985)] plasma equilibria was predicted by the authors [Ali, H.; Punjabi, A., Plasma Phys. Control. Fusion 49, 1565-1582 (2007)]. Very recently, this prediction for the DIII-D has been corroborated [Volpe, F.A., et al., Nucl. Fusion 52, 054017 (2012)] by field-line tracing calculations, using experimentally constrained Equilibrium Fit (EFIT) [Lao, et al., Nucl. Fusion 25, 1611 (1985)] DIII-D equilibria perturbed to include the vacuum field from the internal coils utilized in the experiments. This second-order approach is applied to the DIII-D tokamak to build noble irrational magnetic barriers inside the chaos created by the locked resonant magnetic perturbations (RMPs) (m, n)=(3, 1)+(4, 1), with m and n the poloidal and toroidal mode numbers of the Fourier expansion of the magnetic perturbation with amplitude δ. A piecewise, analytic, accurate, axisymmetric generating function for the trajectories of magnetic field lines in the DIII-D is constructed in magnetic coordinates from the experimental EFIT Grad-Shafranov solver [Lao, L, et al., Fusion Sci. Technol. 48, 968 (2005)] for the shot 115,467 at 3000 ms in the DIII-D. A symplectic mathematical map is used to integrate field lines in the DIII-D. A numerical algorithm [Ali, H., et al., Radiat. Eff. Def. Solids Inc. Plasma Sc. Plasma Tech. 165, 83

  1. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  2. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  3. LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Hennessy, Karol

    2017-02-01

    The upgrade of the LHCb experiment, scheduled for LHC Run-III, scheduled to start in 2021, will transform the experiment to a trigger-less system reading out the full detector at 40 MHz event rate. All data reduction algorithms will be executed in a high-level software farm enabling the detector to run at luminosities of 2×1033 cm-2 s-1. The Vertex Locator (VELO) is the silicon vertex detector surrounding the interaction region. The current detector will be replaced with a hybrid pixel system equipped with electronics capable of reading out at 40 MHz. The upgraded VELO will provide fast pattern recognition and track reconstruction to the software trigger. The silicon pixel sensors have 55×55 μm2 pitch, and are read out by the VeloPix ASIC, from the Timepix/Medipix family. The hottest region will have pixel hit rates of 900 Mhits/s yielding a total data rate of more than 3 Tbit/s for the upgraded VELO. The detector modules are located in a separate vacuum, separated from the beam vacuum by a thin custom made foil. The foil will be manufactured through milling and possibly thinned further by chemical etching. The material budget will be minimised by the use of evaporative CO2 coolant circulating in microchannels within 400 μm thick silicon substrates. The current status of the VELO upgrade is described and latest results from operation of irradiated sensor assemblies are presented.

  4. VISIR upgrade overview and status

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Käufl, Hans-Ulrich; Baksai, Pedro; Di Lieto, Nicola; Dobrzycka, Danuta; Duhoux, Philippe; Finger, Gert; Heikamp, Stephanie; Ives, Derek; Jakob, Gerd; Lundin, Lars; Mawet, Dimitri; Mehrgan, Leander; Momany, Yazan; Moreau, Vincent; Pantin, Eric; Riquelme, Miguel; Sandrock, Stefan; Siebenmorgen, Ralf; Smette, Alain; Taylor, Julian; van den Ancker, Mario; Valdes, Guillermo; Venema, Lars; Weilenmann, Ueli

    2014-07-01

    We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO's VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As AQUARIUS detector array (Raytheon) which has been carefully characterized in ESO's IR detector test facility (modified TIMMI 2 instrument). A prism spectroscopic mode will cover the N-band in a single observation. New scientific capabilities for high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and phase-mask coronagraphic (4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a user-defined constraint on water vapour. During the commissioning in 2012 it was found that the on-sky sensitivity of the AQUARIUS detector was significantly below expectations and that VISIR was not ready to go back to science operations. Extensive testing of the detector arrays in the laboratory and on-sky enabled us to diagnose the cause for the shortcoming of the detector as excess low frequency noise (ELFN). It is inherent to the design chosen for this detector and can't be remedied by changing the detector set-up. Since this is a form of correlated noise its impact can be limited by modulating the scene recorded by the detector. We have studied several mitigation options and found that faster chopping using the secondary mirror (M2) of the VLT offers the most promising way forward. Faster M2 chopping has been tested and is scheduled for implementation before the end of 2014

  5. RHIC LUMINOSITY UPGRADE PROGRAM

    SciTech Connect

    Fischer, W.

    2010-05-23

    The Relativistic Heavy Ion Collider (RHIC) operates with either ions or polarized protons. After increasing the heavy ion luminosity by two orders of magnitude since its commissioning in 2000, the current luminosity upgrade program aims for an increase by another factor of 4 by means of 3D stochastic cooling and a new 56 MHz SRF system. An Electron Beam Ion Source is being commissioned that will allow the use of uranium beams. Electron cooling is considered for collider operation below the current injection energy. For the polarized proton operation both luminosity and polarization are important. In addition to ongoing improvements in the AGS injector, the construction of a new high-intensity polarized source has started. In RHIC a number of upgrades are under way to increase the intensity and polarization transmission to 250 GeV beam energy. Electron lenses will be installed to partially compensate the head-on beam-beam effect.

  6. The CDF upgrade

    SciTech Connect

    Newman-Holmes, C.; CDF Collaboration

    1995-01-01

    The Collider Detector at Fermilab (CDF) has been used to study proton-antiproton collisions at the Fermilab Tevatron since 1985. Over the years, the detector has evolved steadily to increase its physics capability and to keep pace with improvements to the Tevatron. Fermilab is currently building a new Main Injector accelerator which will lead to even larger luminosity values. This paper describes upgrades to CDF that will allow one to exploit the higher luminosity of the Main Injector.

  7. The D0 upgrade

    SciTech Connect

    Tuts, P.M.; The D0 Collaboration

    1992-10-01

    The original D0 detector was proposed in 1983, with a focus on high P{sub T} physics using precision measurements of e`s, {mu}`s, jets, and missing E{sub T}. This detector, as of the summer of 1992, has started data taking at the Fermilab Collider. However, by 1995/6 the luminosity will reach 10{sup 31} cm{sup {minus}2}sec{sup {minus}1}, and the minimum bunch spacing will drop to 396ns from the present 3.5{mu}s (by the Main Injector era, luminosities will approach 10{sup 32} cm{sup {minus}2}sec{sup {minus}1} and minimum bunch spacings may reach 132ns). These changes in the accelerator conditions force us to upgrade or replace a number of detector subsystems in order to meet these new demands. In addition, the upgrade offers us the opportunity to expand the physics horizons to include not only the all important high P{sub T} physics menu, but also the low P{sub T} physics that has become increasingly important. In this paper we describe the D0 detector upgrade.

  8. The D0 upgrade

    SciTech Connect

    Tuts, P.M. . Physics Dept.)

    1992-10-01

    The original D0 detector was proposed in 1983, with a focus on high P[sub T] physics using precision measurements of e's, [mu]'s, jets, and missing E[sub T]. This detector, as of the summer of 1992, has started data taking at the Fermilab Collider. However, by 1995/6 the luminosity will reach 10[sup 31] cm[sup [minus]2]sec[sup [minus]1], and the minimum bunch spacing will drop to 396ns from the present 3.5[mu]s (by the Main Injector era, luminosities will approach 10[sup 32] cm[sup [minus]2]sec[sup [minus]1] and minimum bunch spacings may reach 132ns). These changes in the accelerator conditions force us to upgrade or replace a number of detector subsystems in order to meet these new demands. In addition, the upgrade offers us the opportunity to expand the physics horizons to include not only the all important high P[sub T] physics menu, but also the low P[sub T] physics that has become increasingly important. In this paper we describe the D0 detector upgrade.

  9. The LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Dosil Suárez, Álvaro

    2016-07-01

    The upgrade of the LHCb experiment, planned for 2019, will transform the experiment to a trigger-less system reading out the full detector at 40 MHz event rate. All data reduction algorithms will be executed in a high-level software farm. The upgraded detector will run at luminosities of 2×1033 cm-2 s-1 and probe physics beyond the Standard Model in the heavy flavour sector with unprecedented precision. The Vertex Locator (VELO) is the silicon vertex detector surrounding the interaction region. The current detector will be replaced with a hybrid pixel system equipped with electronics capable of reading out at 40 MHz. The detector comprises silicon pixel sensors with 55×55 μm2 pitch, read out by the VeloPix ASIC, based on the TimePix/MediPix family. The hottest region will have pixel hit rates of 900 Mhits/s yielding a total data rate more than 3 Tbit/s for the upgraded VELO. The detector modules are located in a separate vacuum, separated from the beam vacuum by a thin custom made foil. The detector halves are retracted when the beams are injected and closed at stable beams, positioning the first sensitive pixel at 5.1 mm from the beams. The material budget will be minimised by the use of evaporative CO2 coolant circulating in microchannels within 400 μm thick silicon substrates.

  10. AMI FW UPGRADEABILITY TEST PROCEDURE AND SECURITY ASSESSMENT

    SciTech Connect

    Snyder, Isabelle B

    2014-01-01

    The National Institute of Standards and Technology (NIST) is producing NISTIR 7823 to define test requirements for Smart Meter upgradability. The term Smart Meter refers specifically to advanced electric meters being deployed to enhance management of electricity distribution for residential and industrial consumers. The underlying functional and security requirements for Smart Meter upgradability are specified in NEMA standard SG-AMI 1-2009. The purpose of NISTIR 7823 is to describe conformance test requirements that may be used voluntarily by testers and/or test laboratories to determine whether Smart Meters and Upgrade Management Systems conform to the requirements of NEMA SG-AMI 1-2009.

  11. The LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Jacobsson, Richard

    2013-11-01

    With the demonstration that LHCb can successfully perform forward precision measurements with event pileup, the operation and trigger strategy evolved significantly during the LHC Run 1 allowing LHCb to collect over 3fb-1 at centre-of-mass energies of 7TeV and 8TeV. Increased bandwidth opened the door for LHCb to extend the physics program. The additional statistics and well managed systematic effects together with the stable trigger and data taking conditions have led to a very large number of world-class measurements and dominance in heavy flavour physics [1], in addition to a reputation of an excellent forward general purpose detector at the LHC. Long Shutdown (LS) 1 (2013-2014) will allow LHCb to fully explore the large statistics collected and prepare LHCb for Run 2 (2015 - 2017). However, even after an additional expected integrated luminosity of 5-6 fb-1 in Run 2, many of the LHCb precision measurements will remain limited by statistics, and some exploratory physics modes will not even be accessible yet. With the need for reconstructing the event topology in order to efficiently trigger on the beauty and the charm hadrons decays, the current 1 MHz readout limit is the main bottle neck to run at higher luminosity and with higher trigger efficiencies. LHCb will therefore undergo a major upgrade in LS 2 ( 2018 - 2019) aimed at collecting an order of magnitude more data by 2028. The upgrade consists of a full readout at the LHC bunch crossing rate ( 40 MHz) with the ultimate flexibility of only a software trigger. In order to increase the instantaneous luminosity up to 2x1033cm-2s-1, several sub-detector upgrades are also underway to cope with the higher occupancies and radiation dose.

  12. The Bevalac Upgrade Project

    SciTech Connect

    Alonso, J.R.; Dwinell, R.D.; Feinberg, B.; Frias, R.; Gough, R.A.; Howard, D.R.; Hunt, D.B.; Krebs, G.F.; Krupnick, J.T.; Lewis, S.A.

    1987-03-01

    This paper describes a proposed upgrade of the Bevalac accelerator complex in which the present Bevatron is replaced with a modern, strong-focusing 17 T-m synchrotron. This new ring is designed to accelerate all ions throughout the periodic table with intensities 100 to 1000 times higher than the present Bevatron. It will also provide a substantially improved beam spill structure and will reduce operating costs. A fast extraction capability can be used to inject a future heavy ion storage ring. Pulse-to-pulse switching of energy and ion species is an important goal. The existing injectors, shielding, experimental facilities and utilities of the present Bevalac will remain substantially intact.

  13. Upgraded Coal Interest Group

    SciTech Connect

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  14. Upgraded demonstration vehicle task report

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Hardy, K.; Livingston, R.; Sandberg, J.

    1981-01-01

    Vehicle/battery performance capabilities and interface problems that occurred when upgraded developmental batteries were integrated with upgraded versions of comercially available electric vehicles were investigated. Developmental batteries used included nickel zinc batteries, a nickel iron battery, and an improved lead acid battery. Testing of the electric vehicles and upgraded batteries was performed in the complete vehicle system environment to characterize performance and identify problems unique to the vehicle/battery system. Constant speed tests and driving schedule range tests were performed on a chassis dynamometer. The results from these tests of the upgraded batteries and vehicles were compared to performance capabilities for the same vehicles equipped with standard batteries.

  15. SNO+ Readout Electronics Upgrades

    NASA Astrophysics Data System (ADS)

    Bonventre, Richard; Shokair, Timothy; Knapik, Robert

    2012-03-01

    The SNO+ experiment is designed to explore several topics in neutrino physics including neutrinoless double beta decay, reactor antineutrinos, and low energy solar neutrinos. SNO+ uses the existing Sudbury Neutrino Observatory (SNO) detector, with the heavy water target replaced with liquid scintillator. The new target requires an upgrade to the command and control electronics to handle the higher rates expected with scintillation light as compared to Cherenkov light. The readout electronics have been upgraded to autonomously push data to a central data acquisition computer over ethernet from each of the 19 front end crates. The autonomous readout is achieved with a field programmable gate array (FPGA) with an embedded processor. Inside the FPGA fabric a state machine is configured to pull data across the VME-like bus of each crate. A small C program, making use of the open source Light Weight IP (LWIP) libraries, is run directly on the hardware (with no operating system) to push the data via TCP/IP. The hybrid combination of `high-level' C code and a `low-level' VHDL state machine is a cost effective and flexible solution for reading out individual front end crates.

  16. Energy Efficiency Upgrades

    SciTech Connect

    Roby Williams

    2012-03-29

    The energy efficiency upgrades project at Hardin County General Hospital did not include research nor was it a demonstration project. The project enabled the hospital to replace outdated systems with modern efficient models. Hardin County General Hospital is a 501c3, nonprofit hospital and the sole community provider for Hardin and Pope Counties of Illinois. This project provided much needed equipment and facility upgrades that would not have been possible through locally generated funding. Task 1 was a reroofing of the hospital. The hospital architect designed the replacement to increase the energy efficiency of the hospital roof/ceiling structure. Task 2 was replacement and installation of a new more efficient CT scanner for the hospital. Included in the project was replacement of HVAC equipment for the entire radiological suite. Task 5 was a replacement and installation of a new higher capacity diesel-fueled emergency generator for the hospital replacing a 50+ year old gas-fired generator. Task 7 was the replacement of 50+ year-old walk-in cooler/freezer with a newer, energy efficient model. Task 8 was the replacement of 10+ year-old washing machines in the hospital laundry with higher capacity, energy efficient models. Task 9 was replacement of 50-year old single pane curtain window system with double-pane insulated windows. Additionally, insulation was added around ventilation systems and the curtain wall system.

  17. ATLAS Detector Upgrade Prospects

    NASA Astrophysics Data System (ADS)

    Dobre, M.; ATLAS Collaboration

    2017-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC was ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015 and 2016. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, which will deliver of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred fb ‑1 expected for LHC running by the end of 2018 to 3000 fb ‑1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extensions to larger pseudorapidity, particularly in tracking and muon systems. This report summarizes various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC luminosity during this decade and the next. A brief overview is also given on physics prospects with a pp centre-of-mass energy of 14 TeV.

  18. TMX upgrade experimental operating plan

    SciTech Connect

    Coensgen, F.H.; Davis, J.C.; Simonen, T.C.

    1981-07-01

    This document describes the operating plan for the TMX Upgrade experiment. This plan covers the period from November 1981 to March 1983 and describes how the TMX will be brought into operation, our schedules and milestones, and how we will determine if the TMX Upgrade program milestones have been met.

  19. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  20. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will also be investigated.

  1. Seismic upgrades of healthcare facilities.

    PubMed

    Yusuf, A

    1997-06-01

    Before 1989 seismic upgrading of hospital structures was not a primary consideration among hospital owners. However, after extensive earthquake damage to hospital buildings at Loma Prieta in Northern California in 1989 and then at Northridge in Southern California in 1994, hospital owners, legislators, and design teams become concerned about the need for seismic upgrading of existing facilities. Because the damage hospital structures sustained in the earthquakes was so severe and far-reaching, California has enacted laws that mandate seismic upgrading for existing facilities. Now hospital owners will have to upgrade buildings that do not conform to statewide seismic adequacy laws. By 2030, California expects all of its hospital structures to be sufficiently seismic-resistant. Slowly, regions in the Midwest and on the East Coast are following their example. This article outlines reasons and ways for seismic upgrading of existing facilities.

  2. The FNAL injector upgrade

    SciTech Connect

    Tan, C.Y.; Bollinger, D.S.; Duel, K.L.; Lackey, J.R.; Pellico, W.A.; /Fermilab

    2011-03-01

    The present FNAL H{sup -} injector has been operational since the 1970s and consists of two magnetron H{sup -} sources and two 750 keV Cockcroft-Walton Accelerators. In the upgrade, both slit-type magnetron sources will be replaced with circular aperture sources, and the Cockcroft-Waltons with a 200 MHz RFQ (radio frequency quadrupole). Operational experience at BNL (Brookhaven National Laboratory) has shown that the upgraded source and RFQ will be more reliable, improve beam quality and require less manpower than the present system. The present FNAL (Fermi National Accelerator Laboratory) injector has been operational since 1978 and has been a reliable source of H{sup -} beams for the Fermilab program. At present there are two Cockcroft-Walton injectors, each with a magnetron H{sup -} source with a slit aperture. With these two sources in operation, the injector has a reliability of better than 97%. However, issues with maintenance, equipment obsolescence, increased beam quality demands and retirement of critical personnel, have made it more difficult for the continued reliable running of the H{sup -} injector. The recent past has also seen an increase in both downtime and source output issues. With these problems coming to the forefront, a new 750 keV injector is being built to replace the present system. The new system will be similar to the one at BNL (Brookhaven National Laboratory) that has a similar magnetron source with a round aperture and a 200MHz RFQ. This combination has been shown to operate extremely reliably.

  3. NIRSS Upgrades: Final Report

    NASA Technical Reports Server (NTRS)

    Politovich, Marcia K.

    2007-01-01

    This year we were able to further the NIRSS program by re-writing the data ingest and display code from LabVIEW to C++ and Java. This was leveraged by a University of Colorado Computer Science Department Senior Project. The upgrade made the display more portable and upgradeable. Comparisons with research aircraft flights conducted during AIRS-2 were also done and demonstrate reasonable skill in determining cloud altitudes and liquid water distribution. Improvements can still be made to the cloud and liquid logic. The icing hazard index was not evaluated here since that represents work in progress and needs to be made compatible with the new CIP-Severity algorithm. CIP is the Current Icing Potential product that uses a combination decision tree/fuzzy logic algorithm to combine numerical weather model output with operational sensor data (NEXRAD, GOES, METARs and voice pilot reports) to produce an hourly icing diagnosis across the CONUS. The new severity algorithm seeks to diagnose liquid water production through rising, cooling air, and depletion by ice processes. The information used by CIP is very different from that ingested by NIRSS but some common ground does exist. Additionally, the role of NIRSS and the information it both needs and provides needs to be determined in context of the Next Generation Air Traffic System (NGATS). The Weather Integrated Products Team has a plan for an Initial Operating Capability (IOC) to take place in 2012. NIRSS is not explicitly a part of that IOC but should be considered as a follow-on as part of the development path to a 2025 full capability.

  4. NSTX-U Control System Upgrades

    SciTech Connect

    Erickson, K. G.; Gates, D. A.; Gerhardt, S. P.; Lawson, J. E.; Mozulay, R.; Sichta, P.; Tchilinguirian, G. J.

    2014-06-01

    The National Spherical Tokamak Experiment (NSTX) is undergoing a wealth of upgrades (NSTX-U). These upgrades, especially including an elongated pulse length, require broad changes to the control system that has served NSTX well. A new fiber serial Front Panel Data Port input and output (I/O) stream will supersede the aging copper parallel version. Driver support for the new I/O and cyber security concerns require updating the operating system from Redhat Enterprise Linux (RHEL) v4 to RedHawk (based on RHEL) v6. While the basic control system continues to use the General Atomics Plasma Control System (GA PCS), the effort to forward port the entire software package to run under 64-bit Linux instead of 32-bit Linux included PCS modifications subsequently shared with GA and other PCS users. Software updates focused on three key areas: (1) code modernization through coding standards (C99/C11), (2) code portability and maintainability through use of the GA PCS code generator, and (3) support of 64-bit platforms. Central to the control system upgrade is the use of a complete real time (RT) Linux platform provided by Concurrent Computer Corporation, consisting of a computer (iHawk), an operating system and drivers (RedHawk), and RT tools (NightStar). Strong vendor support coupled with an extensive RT toolset influenced this decision. The new real-time Linux platform, I/O, and software engineering will foster enhanced capability and performance for NSTX-U plasma control.

  5. NSLS control system upgrade status

    SciTech Connect

    Smith, J.; Ramamoorthy, S.; Tang, Y.; Flannigan, J.; Sathe, S.; Keane, J.; Krinsky, S.

    1993-07-01

    The NSLS control system initially installed in 1978 has undergone several modifications but the basic system architecture remained relatively unchanged. The need for faster response, increased reliability and better diagnostics made the control system upgrade a priority. Since the NSLS runs continuously, major changes to the control system are difficult. The upgrade plan had to allow continuous incremental changes to the control system without having any detrimental effect on operations. The plan had to provide for immediate improvement in a few key areas, such as data access rates, and be complete in a short time. At present, most accelerator operations utilize the upgraded control system.

  6. Rate enhancement for catalytic upgrading coal naphthas

    SciTech Connect

    Liaw, Shuh Jeng; Keogh, R.A.; Davis, B.H.

    1992-01-01

    The amount of individual nitrogen and sulfur presented in the feed and hydrotreated Illinois [number sign]6 naphtha were determined. The major nitrogen class in the naphtha are anilines. The major sulfur components identified are thiophenes and benzothiophenes. The aniline and quinoline is harder to remove than pyridine. The aniline and pyridine, without any carbon substituted, is the easiest one to remove in their class. The quinoline, without any carbon substituted, is approximately as hard as one carbon substituted quinoline to remove. Both Co-Mo and Ni-W catalysts follow the similar pattern of the nitrogen removal at different temperatures. The sulfur compounds of the Ill. [number sign]6 naphtha was separated to three classes, i.e. sulfides and thiols, thiophenes and benzothiophenes, for comparisons. The thiophenes was the major component of the hydrotreated naphtha at most temperatures; however, the sulfides and thiols class becomes the major component at temperatures greater than 300[degree]C.

  7. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-01-01

    In this project we intend to study a novel process concept, i.e, the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  8. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-01-01

    In this project we intend to study a novel process concept, i.e.,the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we wig evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  9. Altair performance and upgrades

    NASA Astrophysics Data System (ADS)

    Lai, Olivier; Véran, Jean-Pierre; Herriot, Glen; White, John; Ball, Jesse; Trujillo, Chad

    2014-07-01

    Altair is the facility single conjugate AO system for Gemini North. Although it has been in operation for more than 10 years (and upgraded to LGS in 2007), Altair's performance is degraded by three main issues: vibrations of the telescope and instrument support structure, spatial aliasing on centroid offsets from the M2 support structure print-through on the optical surface and static non-common path aberrations. Monte-Carlo simulations can reproduce the behavior of Altair when including these three effects and they are roughly of the same order of magnitude. Solutions or mitigations are being investigated to overcome these nefarious effects and restore Altair's performance to its nominal level. A simplex algorithm as well as a phase diversity approach are being investigated to measure and correct for static aberrations. A high accuracy phase map of the M2 print-through has been obtained and is being used to calibrate and/or filter centroids affected by aliasing. A new real time computer is under consideration, to be able to handle more advanced controllers, especially notch filters to combat vibrations. In this paper we will report on the various simulations and on-sky results of this rejuvenation of one of Gemini's workhorse instruments.

  10. Mining Upgrades to Reduce Pollution

    EPA Pesticide Factsheets

    Settlement with Southern Coal Corporation and 26 affiliates requires the companies to comprehensively upgrade their coal mining and processing operations to prevent polluted wastewater from threatening rivers and streams and communities across Appalachia.

  11. RISK REDUCTION FOR MATERIAL ACCOUNTABILITY UPGRADES.

    SciTech Connect

    FISHBONE, L.G.; SISKIND, B.

    2005-05-16

    We present in this paper a method for evaluating explicitly the contribution of nuclear material accountability upgrades to risk reduction at nuclear facilities. The method yields the same types of values for conditional risk reduction that physical protection and material control upgrades yield. Thereby, potential material accountability upgrades can be evaluated for implementation in the same way that protection and control upgrades are evaluated.

  12. Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading.

    PubMed

    Xu, Heng; Wang, Kaijun; Holmes, Dawn E

    2014-12-01

    Innovative methods for biogas upgrading based on biological/in-situ concepts have started to arouse considerable interest. Bioelectrochemical removal of CO2 for biogas upgrading was proposed here and demonstrated in both batch and continuous experiments. The in-situ biogas upgrading system seemed to perform better than the ex-situ one, but CO2 content was kept below 10% in both systems. The in-situ system's performance was further enhanced under continuous operation. Hydrogenotrophic methanogenesis and alkali production with CO2 absorption could be major contributors to biogas upgrading. Molecular studies showed that all the biocathodes associated with biogas upgrading were dominated by sequences most similar to the same hydrogenotrophic methanogen species, Methanobacterium petrolearium (97-99% sequence identity). Conclusively, bioelectrochemical removal of CO2 showed great potential for biogas upgrading.

  13. Upgrade of the BATMAN test facility for H{sup −} source development

    SciTech Connect

    Heinemann, B. Fröschle, M.; Falter, H.-D.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Riedl, R.; Ruf, B.

    2015-04-08

    The development of a radio frequency (RF) driven source for negative hydrogen ions for the neutral beam heating devices of fusion experiments has been successfully carried out at IPP since 1996 on the test facility BATMAN. The required ITER parameters have been achieved with the prototype source consisting of a cylindrical driver on the back side of a racetrack like expansion chamber. The extraction system, called “Large Area Grid” (LAG) was derived from a positive ion accelerator from ASDEX Upgrade (AUG) using its aperture size (ø 8 mm) and pattern but replacing the first two electrodes and masking down the extraction area to 70 cm2. BATMAN is a well diagnosed and highly flexible test facility which will be kept operational in parallel to the half size ITER source test facility ELISE for further developments to improve the RF efficiency and the beam properties. It is therefore planned to upgrade BATMAN with a new ITER-like grid system (ILG) representing almost one ITER beamlet group, namely 5 × 14 apertures (ø 14 mm). Additionally to the standard three grid extraction system a repeller electrode upstream of the grounded grid can optionally be installed which is positively charged against it by 2 kV. This is designated to affect the onset of the space charge compensation downstream of the grounded grid and to reduce the backstreaming of positive ions from the drift space backwards into the ion source. For magnetic filter field studies a plasma grid current up to 3 kA will be available as well as permanent magnets embedded into a diagnostic flange or in an external magnet frame. Furthermore different source vessels and source configurations are under discussion for BATMAN, e.g. using the AUG type racetrack RF source as driver instead of the circular one or modifying the expansion chamber for a more flexible position of the external magnet frame.

  14. Work plan for upgrade of SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control System (DACS-1)

    SciTech Connect

    Truitt, R.W.

    1994-08-01

    The purpose of this effort is to upgrade the existing DACS-1 used for control and data acquisition in support of the hydrogen mitigation program for tank 101-SY. The planned upgrades will enhance the system capabilities to support additional mitigation projects and improve the system operability by implementing changes identified during operation of the system to date. Once the upgrades have been implemented, the DACS-1 system should operate as it did prior to the upgrade, but with greatly increased speed and capability. No retraining of Test Engineers will be required; the upgrade is designed to be transparent to those who operate it, with only a noticeable increase in the speed of the system. This work plan defines the tasks required for implementing the upgrade. It identifies deliverables, responsible organizations and individuals, interfaces, and schedule. This upgrade effort employs system engineering principles wherever applicable.

  15. Argonne's atlas control system upgrade.

    SciTech Connect

    Munson, F.; Quock, D.; Chapin, B.; Figueroa, J.

    1999-09-27

    The ATLAS facility (Argonne Tandem-Linac Accelerator System) is located at the Argonne National Laboratory. The facility is a tool used in nuclear and atomic physics research, which focuses primarily on heavy-ion physics. The accelerator as well as its control system are evolutionary in nature, and consequently, continue to advance. In 1998 the most recent project to upgrade the ATLAS control system was completed. This paper briefly reviews the upgrade, and summarizes the configuration and features of the resulting control system.

  16. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-01-01

    Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. Having the inherent capability for combining reaction and separation in a single step, they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, such as these typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. This project will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. Development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  17. NSTX-U Control System Upgrades

    DOE PAGES

    Erickson, K. G.; Gates, D. A.; Gerhardt, S. P.; ...

    2014-06-01

    The National Spherical Tokamak Experiment (NSTX) is undergoing a wealth of upgrades (NSTX-U). These upgrades, especially including an elongated pulse length, require broad changes to the control system that has served NSTX well. A new fiber serial Front Panel Data Port input and output (I/O) stream will supersede the aging copper parallel version. Driver support for the new I/O and cyber security concerns require updating the operating system from Redhat Enterprise Linux (RHEL) v4 to RedHawk (based on RHEL) v6. While the basic control system continues to use the General Atomics Plasma Control System (GA PCS), the effort to forwardmore » port the entire software package to run under 64-bit Linux instead of 32-bit Linux included PCS modifications subsequently shared with GA and other PCS users. Software updates focused on three key areas: (1) code modernization through coding standards (C99/C11), (2) code portability and maintainability through use of the GA PCS code generator, and (3) support of 64-bit platforms. Central to the control system upgrade is the use of a complete real time (RT) Linux platform provided by Concurrent Computer Corporation, consisting of a computer (iHawk), an operating system and drivers (RedHawk), and RT tools (NightStar). Strong vendor support coupled with an extensive RT toolset influenced this decision. The new real-time Linux platform, I/O, and software engineering will foster enhanced capability and performance for NSTX-U plasma control.« less

  18. Old PCs: Upgrade or Abandon?

    ERIC Educational Resources Information Center

    Perez, Ernest

    1997-01-01

    Examines the practical realities of upgrading Intel personal computers in libraries, considering budgets and technical personnel availability. Highlights include adding RAM; putting in faster processor chips, including clock multipliers; new hard disks; CD-ROM speed; motherboards and interface cards; cost limits and economic factors; and…

  19. Upgrade of the ALICE inner tracking system

    NASA Astrophysics Data System (ADS)

    Rossegger, Stefan

    2013-12-01

    The Inner Tracking System (ITS) is the key ALICE detector for the study of heavy flavor production at LHC. Heavy flavor can be studied via the identification of short-lived hadrons containing heavy quarks which have a mean proper decay length in the order of 100-300 μm. To accomplish this task, the ITS is composed of six cylindrical layers of silicon detectors (two pixel, two drift and two strip) with a radial coverage from 3.9 to 43 cm and an average material budget of 1.1% X0 per layer. In order to enhance the ALICE physics capabilities, and, in particular, the tracking performance for heavy-flavor detection, the possibility of an ITS upgrade has been studied in great detail. It will make use of the spectacular progress made in the field of imaging sensors over the last 10 years as well as the possibility to install a smaller radius beampipe. The upgraded detector will have greatly improved features in terms of the impact parameter resolution, standalone tracking efficiency at low pt, momentum resolution and readout capabilities. The usage of the most recent monolithic and/or hybrid pixel detector technologies allows the improvement of the detector material budget and the intrinsic spatial resolution both by a factor of three with respect to the present ITS. The installation of a smaller beam-pipe reduces the distance between the first detector layer and the interaction vertex. Under these assumptions, simulations show that an overall improvement of the impact parameter resolution by a factor of three is possible. The Conceptual Design Report for the Upgrade of the ALICE ITS, which covers the design and performance requirements, the upgrade options, as well as the necessary R&D efforts, was made public in September 2012. An intensive R&D program has been launched to review the different technological options under consideration. The new detector should be ready to be installed during the long LHC shutdown period scheduled in 2017-2018.

  20. The CEBAF RF Separator System Upgrade

    SciTech Connect

    J. Hovater; Mark Augustine; Al Guerra; Richard Nelson; Robert Terrell; Mark Wissmann

    2004-08-01

    The CEBAF accelerator uses RF deflecting cavities operating at the third sub-harmonic (499 MHz) of the accelerating frequency (1497 MHz) to ''kick'' the electron beam to the experimental halls. The cavities operate in a TEM dipole mode incorporating mode enhancing rods to increase the cavity's transverse shunt impedance [1]. As the accelerators energy has increased from 4 GeV to 6 GeV the RF system, specifically the 1 kW solid-state amplifiers, have become problematic, operating in saturation because of the increased beam energy demands. Two years ago we began a study to look into replacement for the RF amplifiers and decided to use a commercial broadcast Inductive Output Tube (IOT) capable of 30 kW. The new RF system uses one IOT amplifier on multiple cavities as opposed to one amplifier per cavity as was originally used. In addition, the new RF system supports a proposed 12 GeV energy upgrade to CEBAF. We are currently halfway through the upgrade with three IOTs in operation and the remaining one nearly installed. This paper reports on the new RF system and the IOT performance.

  1. WIYN bench upgrade: a revitalized spectrograph

    NASA Astrophysics Data System (ADS)

    Bershady, M.; Barden, S.; Blanche, P.-A.; Blanco, D.; Corson, C.; Crawford, S.; Glaspey, J.; Habraken, S.; Jacoby, G.; Keyes, J.; Knezek, P.; Lemaire, P.; Liang, M.; McDougall, E.; Poczulp, G.; Sawyer, D.; Westfall, K.; Willmarth, D.

    2008-07-01

    We describe the redesign and upgrade of the versatile fiber-fed Bench Spectrograph on the WIYN 3.5m telescope. The spectrograph is fed by either the Hydra multi-object positioner or integral-field units (IFUs) at two other ports, and can be configured with an adjustable camera-collimator angle to use low-order and echelle gratings. The upgrade, including a new collimator, charge-coupled device (CCD) and modern controller, and volume-phase holographic gratings (VPHG), has high performance-to-cost ratio by combining new technology with a system reconfiguration that optimizes throughput while utilizing as much of the existing instrument as possible. A faster, all-refractive collimator enhances throughput by 60%, nearly eliminates the slit-function due to vignetting, and improves image quality to maintain instrumental resolution. Two VPH gratings deliver twice the diffraction efficiency of existing surface-relief gratings: A 740 l/mm grating (float-glass and post-polished) used in 1st and 2nd-order, and a large 3300 l/mm grating (spectral resolution comparable to the R2 echelle). The combination of collimator, high-quantum efficiency (QE) CCD, and VPH gratings yields throughput gain-factors of up to 3.5.

  2. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 1, September 21, 1989--December 20, 1989

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    In this project we well evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated. (VC)

  3. Creation of a magnetic barrier at a noble q close to physical midpoint between two resonant surfaces in the ASDEX UG tokamak

    NASA Astrophysics Data System (ADS)

    Vazquez, Justin; Ali, Halima; Punjabi, Alkesh

    2009-11-01

    Ciraolo, Vittot and Chandre method of building invariant manifolds inside chaos in Hamiltonian systems [Ali H. and Punjabi A, Plasma Phys. Control. Fusion, 49, 1565--1582 (2007)] is used in the ASDEX UG tokamak. In this method, a second order perturbation is added to the perturbed Hamiltonian [op cit]. It creates an invariant torus inside the chaos, and reduces the plasma transport. The perturbation that is added to the equilibrium Hamiltonian is at least an order of magnitude smaller than the perturbation that causes chaos. This additional term has a finite, limited number of Fourier modes. Resonant magnetic perturbations (m,n) = (3,2)+(4,3) are added to the field line Hamiltonian for the ASDEX UG. An area-preserving map for the field line trajectories in the ASDEX UG is used. The common amplitude δ of these modes that gives complete chaos between the resonant surfaces ψ43 and ψ32 is determined. A magnetic barrier is built at a surface with noble q that is very nearly equals to the q at the physical midpoint between the two resonant surfaces. The maximum amplitude of magnetic perturbation for which this barrier can be sustained is determined. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793.

  4. H-1 Upgrades (4BW/4BN) (H-1 Upgrades)

    DTIC Science & Technology

    2013-12-01

    President’s Budget PE - Program Element Proc - Procurement Prod Est - Production Estimate QR - Quantity Related Qty - Quantity RDT&E - Research...Pounds MFHBA - Mean Flight Hours Between Abort mm - Millimeter MMH/FH - Maintenance Man Hours per Flight Hours NCOW - Net-Centric Operation and...Upgrades December 2013 SAR April 16, 2014 17:13:57 UNCLASSIFIED 15 Track to Budget RDT&E Appn BA PE Navy 1319 05 0604245N Project

  5. MIPP Plastic Ball electronics upgrade

    SciTech Connect

    Baldin, Boris; /Fermilab

    2009-01-01

    An upgrade electronics design for Plastic Ball detector is described. The Plastic Ball detector was a part of several experiments in the past and its back portion (proposed to be used in MIPP) consists of 340 photomultipliers equipped with a sandwich scintillator. The scintillator sandwich has fast and slow signal component with decay times 10 ns and 1 {micro}s respectively. The upgraded MIPP experiment will collect up to 12,000 events during each 4 second spill and read them out in {approx}50 seconds between spills. The MIPP data acquisition system will employ deadtime-less concept successfully implemented in Muon Electronics of Dzero experiment at Fermilab. An 8-channel prototype design of the Plastic Ball Front End (PBFE) implementing these requirements is discussed. Details of the schematic design, simulation and prototype test results are discussed.

  6. RHIC and its upgrade programmes.

    SciTech Connect

    Roser,T.

    2008-06-23

    As the first hadron accelerator and collider consisting of two independent superconducting rings RHIC has operated with a wide range of beam energies and particle species. After a brief review of the achieved performance the presentation will give an overview of the plans, challenges and status of machine upgrades, that range from a new heavy ion pre-injector and beam cooling at 100 GeV to a high luminosity electron-ion collider.

  7. The Pierre Auger Observatory Upgrade

    NASA Astrophysics Data System (ADS)

    Marsella, Giovanni

    2017-03-01

    It is planned to operate the Pierre Auger Observatory until at least the end of 2024. An upgrade of the experiment has been proposed in order to provide additional measurements to allow one to elucidate the mass composition and the origin of the flux suppression at the highest energies, to search for a flux contribution of protons up to the highest energies and to reach a sensitivity to a contribution as small as 10% in the flux suppression region, to study extensive air showers and hadronic multi-particle production. With operation planned until 2024, event statistics will more than double compared with the existing Auger data set, with the critical added advantage that every event will now have mass information. Obtaining additional composition-sensitive information will not only help to better reconstruct the properties of the primary particles at the highest energies, but also improve the measurements in the energy range just above the ankle. Furthermore, measurements with the new detectors will help to reduce systematic uncertainties related to the modelling hadronic showers and to limitations in the reconstruction algorithms. A description of the principal proposed Auger upgrade will be presented. The Auger upgrade promises high-quality future data, and real scope for new physics.

  8. The Pegasus-Upgrade Experiment

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Bongard, M. W.; Barr, J. L.; Frerichs, H. G.; Lewicki, B. T.; Reusch, J. A.; Schmitz, O.; Winz, G. R.

    2015-11-01

    Tokamak operation at near-unity aspect ratio provides access to advanced tokamak physics at modest parameters. High plasma current is accessible at very low toroidal field. This offers H-mode performance at Te levels that allow use of electrostatic and magnetic probe arrays through the edge pedestal region into the plasma core. An upgrade to the Pegasus ST is planned to exploit these features and pursue unique studies in three areas: local measurements of pedestal and ELM dynamics at Alfvenic timescales; direct measurement of the local plasma response to application of 3D magnetic perturbations with high spectral flexibility; and extension of Local Helicity Injection for nonsolenoidal startup to NSTX-U-relevant confinement and stability regimes. Significant but relatively low-cost upgrades to the facility are proposed: a new centerstack with larger solenoid and 2x the number of toroidal field conductors; a new TF power supply and conversion of the 200 MVA OH power supply to a cascaded multilevel inverter configuration; and installation of an extensive 3D-magnetic perturbation coil system for ELM mitigation and suppression studies. The upgraded facility will provide 0.3 MA plasmas with pulse lengths of 50-100 msec flattop, aspect ratio <1.25, and toroidal field up to 0.4 T. These research activities will be integrated into related efforts on DIII-D and NSTX-U. Work supported by US DOE grant DE-FG02-96ER54375.

  9. The upgraded WIYN bench spectrograph

    NASA Astrophysics Data System (ADS)

    Knezek, Patricia M.; Bershady, Matthew A.; Willmarth, Daryl; Glaspey, John; Poczulp, Gary; Blanco, Dan; Britanik, Lana; McDougall, Eugene; Corson, Charles; Liang, Ming; Keyes, Joe; Jacoby, George

    2010-07-01

    We present the as-built design overview and post-installation performance of the upgraded WIYN Bench Spectrograph. This Bench is currently fed by either of the general-use multi-fiber instruments at the WIYN 3.5m telescope on Kitt Peak, the Hydra multi-object positioner, and the SparsePak integral field unit (IFU). It is very versatile, and can be configured to accommodate low-order, echelle, and volume phase holographic gratings. The overarching goal of the upgrade was to increase the average spectrograph throughput by ~60% while minimizing resolution loss (< 20%). In order to accomplish these goals, the project has had three major thrusts: (1) a new CCD was provided with a nearly constant 30% increase is throughput over 320-1000 nm; (2) two Volume Phase Holographic (VPH) gratings were delivered; and (3) installed a new all-refractive collimator that properly matches the output fiber irradiance (EE90) and optimizes pupil placement. Initial analysis of commissioning data indicates that the total throughput of the system has increased 50-70% using the 600 l/mm surface ruled grating, indicating that the upgrade has achieved its goal. Furthermore, it has been demonstrated that overall image resolution meets the requirement of <20% loss.

  10. Making SPIFFI SPIFFIER: upgrade of the SPIFFI instrument for use in ERIS and performance analysis from re-commissioning

    NASA Astrophysics Data System (ADS)

    George, E. M.; Gräff, D.; Feuchtgruber, H.; Hartl, M.; Eisenhauer, F.; Buron, A.; Davies, R.; Genzel, R.; Huber, H.; Rau, C.; Plattner, M.; Wiezorrek, E.; Weisz, H.; Amico, P.; Glindemann, A.; Hau, G.; Kuntschner, H.

    2016-08-01

    SPIFFI is an AO-fed integral field spectrograph operating as part of SINFONI on the VLT, which will be upgraded and reused as SPIFFIER in the new VLT instrument ERIS. In January 2016, we used new technology developments to perform an early upgrade to optical subsystems in the SPIFFI instrument so ongoing scientific programs can make use of enhanced performance before ERIS arrives in 2020. We report on the upgraded components and the performance of SPIFFI after the upgrade, including gains in throughput and spatial and spectral resolution. We show results from re-commissioning, highlighting the potential for scientific programs to use the capabilities of the upgraded SPIFFI. Finally, we discuss the additional upgrades for SPIFFIER which will be implemented before it is integrated into ERIS.

  11. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    SciTech Connect

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  12. The iTPC upgrade for BES-II

    NASA Astrophysics Data System (ADS)

    Videbaek, Flemming; STAR Collaboration

    2015-10-01

    STAR has proposed to upgrade the inner sectors of the STAR TPC to increase the segmentation on the inner padplane and to renew the inner sector wires. The upgrade will provide better momentum resolution, better dE/dx resolution and, most importantly, it will provide improved acceptance at high rapidity to | η| <= 1.5 compared to the current TPC configuration of | η| <= 1 and to extend the pt coverage towards lower pt. The enhanced measurement capabilities of STAR after the iTPC upgrade are a vital part of the BES-II effort for 2019-2020. The expanded rapidity coverage provides a major benefit for many analyses, especially those sensitive to changes in correlation lengths near a critical point, like the net-proton Kurtosis which exhibits interesting energy trends that only appear near the edge of the current STAR acceptance. In the area of dielectron measurements it reduces hadron contamination from a dominant source of uncertainty to an expected statistical uncertainty of only 10%, and will enable significantly improved understanding of in-medium modifications. In this talk I will discuss the physics impact and give a technical overview of the detector upgrade. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science.

  13. Digital Beamforming Synthetic Aperture Radar (DBSAR) Polarimetric Upgrade

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Perrine, Martin; McLinden, Matthew; Valett, Susan

    2011-01-01

    The Digital Beamforming Synthetic Aperture Radar (DBSAR) is a state-of-the-art radar system developed at NASA/Goddard Space Flight Center for the development and implementation of digital beamforming radar techniques. DBSAR was recently upgraded to polarimetric operation in order to enhance its capability as a science instrument. Two polarimetric approaches were carried out which will be demonstrated in upcoming flight campaigns.

  14. Upgrade of the LHCb VELO detector

    NASA Astrophysics Data System (ADS)

    Williams, Mark

    2017-01-01

    The LHCb experiment is a single-arm forward spectrometer optimised for performing heavy-flavour physics analyses, using proton-proton collisions provided by the LHC machine. A major upgrade of the LHCb experiment will take place prior to the start of Run 3 operations in 2021. The upgraded Vertex Locator (VELO) is an essential component of this upgrade. Its main role is to enable high precision track and vertex reconstruction, with data-driven readout to the software trigger at 40 MHz, in the higher-luminosity environment of Run 3. To achieve this goal, significant improvements are planned with respect to the current detector, including a switch from microstrips to pixels, upgraded electronics, and a new cooling system. I will briefly motiviate the need for an upgrade, describe the main aspects of the VELO upgrade design, and show highlights of recent sensor characterisation studies using the CERN SPS test beam.

  15. LHC Status and Upgrade Challenges

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey

    2009-11-01

    The Large Hadron Collider has had a trying start-up and a challenging operational future lays ahead. Critical to the machine's performance is controlling a beam of particles whose stored energy is equivalent to 80 kg of TNT. Unavoidable beam losses result in energy deposition throughout the machine and without adequate protection this power would result in quenching of the superconducting magnets. A brief overview of the machine layout and principles of operation will be reviewed including a summary of the September 2008 accident. The current status of the LHC, startup schedule and upgrade options to achieve the target luminosity will be presented.

  16. Space Station Live: ISS Communications Unit Upgrade

    NASA Video Gallery

    NASA Public Affairs Officer Nicole Cloutier-Lemasters interviews International Space Station Flight Director Mike Lammers about the recent Ku communications unit upgrade work taking place aboard th...

  17. SOFIA Gets Avionics and Mission Systems Upgrades

    NASA Video Gallery

    NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, has received major upgrades to its telescope control and avionics systems that will significantly improve their efficiency and ope...

  18. Tritium Plasma Experiment Upgrade for Fusion Tritium and Nuclear Sciences

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.

    2015-11-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of tritium plasma-driven permeation and optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  19. The upgrade system of BESIII ETOF with MRPC technology

    NASA Astrophysics Data System (ADS)

    Wang, X. Z.; Sun, Y. J.; Li, C.; Heng, Y. K.; Wu, Z.; Cao, P.; Dai, H. L.; Ji, X. L.; Gong, W. X.; Liu, Z.; Luo, X. L.; Sun, W. J.; Wang, S. Y.; Wang, Y.; Yang, R. X.; Ye, M.; Zhao, J. L.

    2016-08-01

    An upgrade, based on Multigap Resistive Plate Chamber (MRPC) technology, of the endcap Time-Of-Flight (ETOF) detector of the Beijing Spectrometer III (BESIII) has been proposed for the replacement of the current scintillator + PMT based ETOF, with the aim of improving the time resolution down to 80 ps sigma. This improvement will enhance the particle identification capability to meet the higher precision requirements of physics. The ETOF system including MRPC modules, Front End Electronics (FEE), CLOCK module, fast control boards and Time to Digital modules (TDIG), has been designed, constructed and parts of the ETOF system have seperately tested. Aiming at examining the quality of entire ETOF system and training the operation of all participated instruments, a cosmic ray test system was built and tested in the laboratory for about three months to guarantee the performance. In this paper the results of the test are presented indicating that the entire ETOF system works well and satisfies the requirements of the upgrade.

  20. On-detector Electronics for the LHCb VELO Upgrade

    NASA Astrophysics Data System (ADS)

    Naik, S.

    2017-02-01

    The LHCb Experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. The experiment will be upgraded to a trigger-less system reading out the full detector at a 40 MHz event rate with all selection algorithms executed in a CPU farm. The upgraded Vertex Locator will be a hybrid pixel detector read out by the VeloPix ASIC with on-chip zero-suppression. The overview of the system and the design of the VELO on-detector electronics that include the front-end hybrid, the opto-conversion and power distribution boards will be summarised. The results from the evaluation of these prototypes and further enhancement techniques will be discussed.

  1. The D[O] upgrade silicon tracker

    SciTech Connect

    Heinson, A.P.

    1992-11-01

    A large silicon strip tracking detector is planned for the upgrade of the D0 experiment at Fermilab. This detector is designed to gag secondary vertices, to measure the momenta of charged particles and to operate in the high rate environment of the upgraded Tevatron. Details of the detector design are presented here.

  2. Conference on Upgrading and New Careers.

    ERIC Educational Resources Information Center

    National Manpower Policy Task Force, Washington, DC.

    This conference met to consider the political and financial problems in providing government-financed programs to improve upgrading in private and public jobs. The morning session was devoted to federal support of upgrading in industry. In the afternoon session, participants discussed new careers in the service sector, including civil service…

  3. Performance of the upgraded Orroral laser ranging system

    NASA Technical Reports Server (NTRS)

    Luck, John M.

    1993-01-01

    The topics discussed include the following: upgrade arrangements, system prior to 1991, elements of the upgrade, laser performance, timing system performance, pass productivity, system precision, system accuracy, telescope pointing and future upgrades and extensions.

  4. LHCb Upgrade: Scintillating Fibre Tracker

    NASA Astrophysics Data System (ADS)

    Tobin, Mark

    2016-07-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The evolution of the design since the Technical Design Report in 2014 and the latest R & D results are presented.

  5. Upgrade Summer Severe Weather Tool

    NASA Technical Reports Server (NTRS)

    Watson, Leela

    2011-01-01

    The goal of this task was to upgrade to the existing severe weather database by adding observations from the 2010 warm season, update the verification dataset with results from the 2010 warm season, use statistical logistic regression analysis on the database and develop a new forecast tool. The AMU analyzed 7 stability parameters that showed the possibility of providing guidance in forecasting severe weather, calculated verification statistics for the Total Threat Score (TTS), and calculated warm season verification statistics for the 2010 season. The AMU also performed statistical logistic regression analysis on the 22-year severe weather database. The results indicated that the logistic regression equation did not show an increase in skill over the previously developed TTS. The equation showed less accuracy than TTS at predicting severe weather, little ability to distinguish between severe and non-severe weather days, and worse standard categorical accuracy measures and skill scores over TTS.

  6. Energy Efficiency Through Lighting Upgrades

    SciTech Connect

    Berst, Kara; Howeth, Maria

    2013-02-26

    Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year's average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

  7. Superbend upgrade on the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Robin, D.; Krupnick, J.; Schlueter, R.; Steier, C.; Marks, S.; Wang, B.; Zbasnik, J.; Benjegerdes, R.; Biocca, A.; Bish, P.; Brown, W.; Byrne, W.; Chen, J.; Decking, W.; DeVries, J.; DeMarco, W. R.; Fahmie, M.; Geyer, A.; Harkins, J.; Henderson, T.; Hinkson, J.; Hoyer, E.; Hull, D.; Jacobson, S.; McDonald, J.; Molinari, P.; Mueller, R.; Nadolski, L.; Nishimura, H.; Nishimura, K.; Ottens, F.; Paterson, J. A.; Pipersky, P.; Portmann, G.; Ritchie, A.; Rossi, S.; Salvant, B.; Scarvie, T.; Schmidt, A.; Spring, J.; Taylor, C.; Thur, W.; Timossi, C.; Wandesforde, A.

    2005-02-01

    The Advanced Light Source (ALS) is a third generation synchrotron light source at Lawrence Berkeley National Laboratory (LBNL). There was an increasing demand for additional high brightness hard X-ray beamlines in the 7-40 keV range, so in August 2001, three 1.3 T normal conducting bending magnets were removed from the storage ring and replaced with 5 T superconducting magnets (Superbends). The radiation produced by these Superbends is an order of magnitude higher in photon brightness and flux at 12 keV, making them excellent sources of hard X-rays for protein crystallography and other hard X-ray applications. The Superbends did not compromise the performance of the facility in the VUV and soft X-ray regions of the spectrum. The Superbends will eventually feed 12 new beam lines, greatly enhancing the facility's capability and capacity in the hard X-ray region. The Superbend project is the biggest upgrade since the ALS storage ring was commissioned in 1993. In this paper we present an overview of the Superbend project, its challenges and the resulting impact on the ALS.

  8. MAPS application for the ITS upgrade

    NASA Astrophysics Data System (ADS)

    Lattuca, A.; Alice Collaboration

    2016-01-01

    The Monolithic Active Pixel Sensor (MAPS) technology is of central interest for the innermost tracking layers of particle physics experiments since they enhance the detector granularity and thus allow for very high spatial resolution with low material budget. This contribution will focus on the MAPS implementation for the ALICE ITS Upgrade. Within the ongoing R&D program, the ALPIDE chip is under development with a wide pixel matrix consisting of 512 rows and 1024 columns. With this high pixel granularity a fast read out is mandatory. For this purpose a high speed serial link, which works at the targeting speeds of 1.2Gbps/400Mbps, is integrated in the chip in order to send out data at the far end of a differential cable. To overcome the physical limitations imposed by the signal lines and properly reconstruct the signal, pre-emphasis technique is mandatory at such long distances. This contribution summarizes the ongoing studies on the data transmission quality and presents the first measurement of the first produced prototype.

  9. Screening of processing and upgrading schemes

    SciTech Connect

    Not Available

    1991-10-01

    The RFP was predicated on DOE's desire to enhance the development of advanced transportation fuels made from coal via a program to process mild coal gasification (MCG) liquids into high volumetric energy density (HEDF) test fuels. The desired product fuels were to be cost effectively manufactured, have high volumetric energy density, and be hydrocarbon-based for existing and prototype turbine and diesel engines. The sources for these special fuels consist of the abundant and secure indigenous energy resources of coal. Comparison studies were also to be made using other non-petroleum fossil fuels such as shale oil and tar sands bitumen. METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily skimmed'' from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in 1-, 2-, and 3-ring aromatics.

  10. DAΦNE status and upgrade plans

    NASA Astrophysics Data System (ADS)

    Zobov, M.; DAΦNE Collaboration Team

    2008-12-01

    The Frascati Φ-factory DAΦNE has successfully completed experimental runs for the three main detectors, KLOE, FINUDA and DEAR. The best peak luminosity achieved so far is 1.6 × 1032 cm-2 s-1, while the best daily integrated luminosity is 10 pb-1. At present the DAΦNE team is preparing an upgrade of the collider based on the novel crab waist collision scheme. The upgrade is aimed at pushing the luminosity towards 1033cm-2s-1. In this paper we describe present collider performance and discuss ongoing preparatory work for the upgrade.

  11. STAR Upgrade Plan for the Coming Decade

    NASA Astrophysics Data System (ADS)

    Huang, Huan Zhong

    2013-05-01

    The STAR Collaboration will complete the Heavy Flavor Tracker (HFT) and the Muon Telescope Detector (MTD) upgrades by 2014. STAR has also embarked on an upgrade plan to extend the capabilities for measuring jets, electron/photon and leading particles in the forward rapidity region in the coming decade. Planned detector upgrades include tracking detectors for charged particles, electro-magnetic and hadronic calorimeters and particle identification detector in the forward direction. We will present physics motivations, status of detector R&D and design considerations for the forward measurements focusing on p + p/p + A and polarized p + p collisions.

  12. Habitat Demonstration Unit Medical Operations Workstation Upgrades

    NASA Technical Reports Server (NTRS)

    Trageser, Katherine H.

    2011-01-01

    This paper provides an overview of the design and fabrication associated with upgrades for the Medical Operations Workstation in the Habitat Demonstration Unit. The work spanned a ten week period. The upgrades will be used during the 2011 Desert Research and Technology Studies (Desert RATS) field campaign. Upgrades include a deployable privacy curtain system, a deployable tray table, an easily accessible biological waste container, reorganization and labeling of the medical supplies, and installation of a retractable camera. All of the items were completed within the ten week period.

  13. Muon Physics at Run-I and its upgrade plan

    NASA Astrophysics Data System (ADS)

    Benekos, Nektarios Chr.

    2015-05-01

    The Large Hadron Collider (LHC) and its multi-purpose Detector, ATLAS, has been operated successfully at record centre-of-mass energies of 7 and TeV. After this successful LHC Run-1, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the data set from about few hundred fb-1 expected for LHC running to 3000 fb-1 by around 2030. To cope with the corresponding rate increase, the ATLAS detector needs to be upgraded. The upgrade will proceed in two steps: Phase I in the LHC shutdown 2018/19 and Phase II in 2023-25. The largest of the ATLAS Phase-1 upgrades concerns the replacement of the first muon station of the highrapidity region, the so called New Small Wheel. This configuration copes with the highest rates expected in Phase II and considerably enhances the performance of the forward muon system by adding triggering functionality to the first muon station. Prospects for the ongoing and future data taking are presented. This article presents the main muon physics results from LHC Run-1 based on a total luminosity of 30 fb^-1. Prospects for the ongoing and future data taking are also presented. We will conclude with an update of the status of the project and the steps towards a complete operational system, ready to be installed in ATLAS in 2018/19.

  14. Upgrade Rate and Imaging Features of Atypical Apocrine Lesions.

    PubMed

    Chang Sen, Lauren Q; Berg, Wendie A; Carter, Gloria J

    2017-03-23

    The purpose of our work was to identify imaging features of atypical apocrine lesions and determine the rate of upgrade to ductal carcinoma in situ (DCIS) or invasive carcinoma at excision after such a diagnosis on percutaneous breast biopsy. From January 1, 2006, through October 8, 2013, a total of 33,157 breast core biopsies were performed at University of Pittsburgh Medical Center. Of those, 58 (0.2%) showed atypical apocrine lesions. For 24, atypical apocrine adenosis (AAA) or atypical apocrine metaplasia (AAM) was the only risk lesion, with no known ipsilateral malignancy, and the results of excision were available. The median patient age was 58 years (range 43-88). Among 24 atypical apocrine lesions (20 AAA and 4 AAM), four (16.7%; 95% confidence interval: 4.7, 37.4) were upgraded at excision: one invasive ductal carcinoma (grade 2, 0.2 cm, estrogen receptor positive, progesterone receptor positive, HER2/Neu negative) and three DCIS (two grade 3, one grade 2). All four upgraded lesions were AAA (20%; 4/20). Twelve AAA were seen as an irregular (n = 9) or circumscribed (n = 3) mass on ultrasound; three masses had calcifications. Six of 20 (30%) AAA were seen on biopsy of calcifications only and calcifications were within two AAA lesions at histopathology. One AAA (1/20, 5%) was asymmetry only, and one (1/20, 5%) a persistently enhancing MR focus. All four malignancies were masses on ultrasound (three irregular, one circumscribed), and three malignancies had calcifications (two coarse heterogeneous, one amorphous). While concordant with an irregular or circumscribed mass on imaging, with or without amorphous or coarse heterogeneous calcifications, AAA merits excision with a 20% upgrade rate to malignancy. Further study of AAM is warranted.

  15. Upgrades to MINERVA control software

    NASA Astrophysics Data System (ADS)

    Wilson, Maurice; Eastman, Jason D.

    2017-01-01

    The MINiature Exoplanet Radial Velocity Array (MINERVA) is an array of four robotic telescopes located on Mt. Hopkins in Arizona that will find and characterize rocky planets around our nearest stars. We discuss the latest upgrades to the MINERVA robotic control software. Previously, our robotic control software was only capable of taking radial velocities or photometry for the entire night, but not both. We have recently increased the speed and ease of transitioning between photometry and radial velocity (RV) observations. We can now arbitrarily assign a subset of the telescopes to either photometric or spectroscopic observations. This capability enables us to monitor stellar activity while measuring the star’s RV, gather photometry on one star while continuing our RV survey of other targets and provide education and public outreach opportunities where others can observe with one or more telescopes while we continue using the remaining telescopes for research. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1144152.

  16. Pegasus power system facility upgrades

    NASA Astrophysics Data System (ADS)

    Lewicki, B. T.; Kujak-Ford, B. A.; Winz, G. R.

    2008-11-01

    Two key Pegasus systems have been recently upgraded: the Ohmic-transformer IGCT bridge control system, and the plasma-gun injector power system. The Ohmic control system contains two new microprocessor controlled components to provide an interface between the PWM controller and the IGCT bridges. An interface board conditions the command signals from the PWM controller. A splitter/combiner board routes the conditioned PWM commands to an array of IGCT bridges and interprets IGCT bridge status. This system allows for any PWM controller to safely control IGCT bridges. Future developments will include a transition to a polyphasic bridge control. This will allow for 3 to 4 times the present pulse length and provide a much higher switching frequency. The plasma gun injector system now includes active current feedback control on gun bias current via PWM buck type power supplies. Near term goals include a doubling or tripling of the applied bias voltage. Future arc bias system power supplies may include a simpler boost type system which will allow access to even higher voltages using existing low voltage energy storage systems.

  17. Safety upgrades plug car leaks

    SciTech Connect

    Not Available

    1993-08-01

    To lessen the chance of a chemical leak occurring during rail transport, some companies are improving tank car sturdiness and safety by adding such features as top-loading valves, on-board monitoring devices, and thicker, more impact-resistant hulls. Results include a dramatic drop in the number of rail incidents and leak tank cars. Chemicals Division of Olin Corporation (Stamford, Connecticut) has assigned its name to a new fleet of chlorine, caustic soda and toluene diisocyanate (TDI) tank cars. Each car carries the company's Care[trademark]Car registered trademark. The upgrade is part of a company-wide quality improvement process started in 1986. The company requires acoustic emissions (AE) testing on all hazardous materials tank cars. If an area has a defect, it expands and makes a slight sound when subjected to stress. In an AE test, cars are subject to simulated bumps and jolts as in rail shipment. Electronic sensors transfer any stress noises onto a computer screen, where an operator can pinpoint the trouble source.

  18. TMX Upgrade magnet-set geometry design

    SciTech Connect

    Wong, R.L.

    1981-09-24

    A magnet set, consisting of 24 coils, has been designed for the TMX Upgrade. Like the coil set designed for the TMX experiment, the coils for TMX Upgrade consist of a central-cell set with a minimum-B plug set on each end. Between the central cell and each end plug, there is a flux bundle recircularizing transition set. Physics considerations require that the TMX Upgrade magnet set be almost twice as long as the TMX magnet set (14 m between the outer mirrors). The central circular coils are the only coils used from TMX. The TMX transition set of two C-coils and an octupole is replaced by a C-coil and an Ioffe coil. The TMX plug composed of a baseball coil and two C-coils is replaced by an Ioffe coil, two C-coils and two circular coils. A comparison between the TMX and TMX Upgrade magnet sets is shown.

  19. Recovery Act. Tapoco project. Cheoah upgrade

    SciTech Connect

    Tran, Paul

    2013-10-02

    Under Funding Opportunity Announcement Number: DE-FOA-0000120, Recovery Act: Hydroelectric Facility Modernization, Alcoa Power Generating Inc. (APGI), a fully owned subsidiary of Alcoa Inc., implemented major upgrades at its Cheoah hydroelectric facility near Robbinsville, North Carolina.

  20. Facilities Upgrade and Retrofit. Strategies for Success.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2000-01-01

    Provides three articles on the subject of educational facility upgrading and retrofiting that address setting guidelines for classroom acoustics, making sports facilities brighter and more energy-efficient, and cutting energy bills and protecting interiors. (GR)

  1. The upgrade of the LHCb Vertex Locator

    NASA Astrophysics Data System (ADS)

    Bird, T.

    2014-12-01

    The LHCb experiment is set for a significant upgrade, which will be ready for Run 3 of the LHC in 2020. This upgrade will allow LHCb to run at a significantly higher instantaneous luminosity and collect an integrated luminosity of 50fb-1 by the end of Run 4. In this process the Vertex Locator (VELO) detector will be upgraded to a pixel-based silicon detector. The upgraded VELO will improve upon the current detector by being closer to the beams and having lower material modules with microchannel cooling and a thinner RF-foil. Simulations have shown that it will maintain its excellent performance, even after the radiation damage caused by collecting an integrated luminosity of 50fb-1.

  2. Completion of the ATLAS control system upgrade.

    SciTech Connect

    Munson, F. H.

    1998-11-30

    In the fall of 1992 at the SNEAP(Symposium of North Eastern Accelerator Personnel) a project to up grade the ATLAS (Argonne Tandem Linear Accelerator System) control system was first reported. Not unlike the accelerator it services the control system will continue to evolve. However, the first of this year has marked the completion of this most recent upgrade project. Since the control system upgrade took place during a period when ATLAS was operating at a record number of hours, special techniques were necessary to enable the development of the new control system ''on line'' while still saving the needs of normal operations. This paper reviews the techniques used for upgrading the ATLAS control system while the system was in use. In addition a summary of the upgrade project and final configuration, as well as some of the features of the new control system is provided.

  3. Advanced Photon Source Upgrade Project - Materials

    ScienceCinema

    Gibbson, Murray

    2016-07-12

    An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

  4. Space Station Live: Station Communications Upgrade

    NASA Video Gallery

    NASA Public Affairs Officer Nicole Cloutier-Lemasters recently spoke with Penny Roberts, one of the leads for the International Space Station Avionics and Software group, about the upgrade of the K...

  5. System and process for upgrading hydrocarbons

    SciTech Connect

    Bingham, Dennis N.; Klingler, Kerry M.; Smith, Joseph D.; Turner, Terry D.; Wilding, Bruce M.

    2015-08-25

    In one embodiment, a system for upgrading a hydrocarbon material may include a black wax upgrade subsystem and a molten salt gasification (MSG) subsystem. The black wax upgrade subsystem and the MSG subsystem may be located within a common pressure boundary, such as within a pressure vessel. Gaseous materials produced by the MSG subsystem may be used in the process carried out within the black wax upgrade subsystem. For example, hydrogen may pass through a gaseous transfer interface to interact with black wax feed material to hydrogenate such material during a cracking process. In one embodiment, the gaseous transfer interface may include one or more openings in a tube or conduit which is carrying the black wax material. A pressure differential may control the flow of hydrogen within the tube or conduit. Related methods are also disclosed.

  6. Initial performance of upgraded Tevatron cryogenic systems

    SciTech Connect

    Norris, B.L.

    1996-09-01

    Fermilab began operating a re-designed satellite refrigerator systems in November 1993. Upgrades were installed to operate the Tevatron at a magnet temperature of 3.5 K, approximately 1K lower than the original design. Refrigerator upgrades included new valve boxes, larger reciprocating expanders, the installation of cold vapor compressors, new sub-atmospheric instrumentation and an entirely new distributed controls system. Cryogenic system reliability data for Colliding Physics Run 1B is presented emphasizing a failure analysis for each aspect of the upgrade. Comparison to data for Colliding Physics Run 1A (previous to upgrade) is presented to show the impact of a major system overhaul. New operational problems and their solutions are presented in detail.

  7. Get a winning Oracle upgrade session using the quarterback approach

    NASA Technical Reports Server (NTRS)

    Anderson, G.

    2002-01-01

    Upgrades, upgrades... too much customer down time. Find out how we shrunk our production upgrade schedule 40% from our estimate of 10 days 12 hours to 6 days 2 hours using the quarterback approach. So your upgrade is not that complex, come anyway. This approach is scalable to any size project and will be extremely valuable.

  8. CDF central preshower and crack detector upgrade

    SciTech Connect

    Artikov, A.; Boudagov, J.; Chokheli, D.; Drake, G.; Gallinaro, M.; Giunta, M.; Grudzinski, J.; Huston, J.; Iori, M.; Kim, D.; Kim, M.; /Dubna, JINR /Argonne /Rockefeller U. /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore /Michigan State U. /INFN, Rome /Rome U. /CHEP, Taegu /Seoul Natl. U.

    2007-02-01

    The CDF Central Preshower and Crack Detector Upgrade consist of scintillator tiles with embedded wavelength-shifting fibers, clear-fiber optical cables, and multi-anode photomultiplier readout. A description of the detector design, test results from R&D studies, and construction phase are reported. The upgrade was installed late in 2004, and a large amount of proton-antiproton collider data has been collected since then. Detector studies using those data are also discussed.

  9. IPNS upgrade: A feasibility study

    SciTech Connect

    1995-04-01

    Many of Argonne National Laboratory`s (ANL`s) scientific staff members were very active in R&D work related to accelerator-based spoliation sources in the 1970s and early 1980s. In 1984, the Seitz/Eastman Panel of the National Academy of Sciences reviewed U.S. materials science research facilities. One of the recommendations of this panel was that the United States build a reactor-based steady-state source, the Advanced Neutron Source (ANS), at Oak Ridge National Laboratory. Subsequently, R&D activities related to the design of an accelerator-based source assumed a lower priority. The resumption of pulsed-source studies in this country started simultaneously with design activities in Europe aimed at the European Spallation Source (ESS). The European Community funded a workshop in September 1991 to define the parameters of the ESS. Participants in this workshop included both accelerator builders and neutron source users. A consortium of European countries has proposed to build a 5-MW pulsed source, and a feasibility study is currently under way. Soon after the birth of the ESS, a small group at ANL set about bringing themselves up to date on pulsed-source information since 1984 and studied the feasibility of upgrading ANL`s Intense Pulsed Neutron Source (IPNS) to 1 MW by means of a rapidly cycling synchrotron that could be housed, along with its support facilities, in existing buildings. In early 1993, the Kohn panel recommended that (1) design and construction of the ANS should be completed according to the proposed project schedule and (2) development of competitive proposals for cost-effective design and construction of a 1-MW pulsed spallation source should be authorized immediately.

  10. PSL Icing Facility Upgrade Overview

    NASA Technical Reports Server (NTRS)

    Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.

    2014-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.

  11. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Riedler, P.

    2016-12-01

    During the long shutdown of the Large Hadron Collider (LHC) in 2019-20 (LS2) the present Inner Tracking System (ITS) of the ALICE experiment based on silicon pixel, silicon drift and silicon strip detectors, will be entirely replaced by a new tracker using novel monolithic silicon pixel chips. This new tracker will significantly enhance heavy flavour measurements, which are out of reach for the present system, e.g. charmed baryons, such as the ΛC, and will allow studying hadrons containing a beauty quark. The new tracker will provide an improved pointing resolution in rϕ and z, decreasing the present values by a factor 3 and 5, respectively, to about 40 μm for a pT of 500 MeV/c. Each of the seven layers will be constructed using 50 μm, respectively 100 μm thin silicon chips on a very light weight carbon fibre based support structure for the innermost and the outer layers. The material budget for the first three layers corresponds to 0.3% X0/layer while the four outer layers will have an average material budget of 1% X0/layer. The innermost layer will be placed at 23 mm radius, compared to presently 39 mm. Furthermore, the readout rate of the new ITS will increase from presently 1 kHz to 50 kHz for Pb-Pb collisions and 400 kHz for p-p collisions, thus matching the expected event rate for Pb-Pb collisions after LS2. This contribution will provide an overview of the upgrade of the ALICE ITS and the expected performance improvement and will present the actual status of the R&D.

  12. Airborne Warning and Control System Block 40/45 Upgrade (AWACS Blk 40/45 Upgrade)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-277 Airborne Warning and Control System Block 40/45 Upgrade (AWACS Blk 40/45 Upgrade) As of...PEO - Program Executive Officer PM - Program Manager POE - Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected

  13. Internet2 Spurs Equipment Upgrades, but Use in Research Remains Limited.

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    1999-01-01

    Nearly three years after the beginning of the Internet2 project, designed to enhance research by building a superfast version of the Internet, few professors are finding it revolutionary. Most participating institutions have not upgraded local networks to take full advantage of the two interconnected high-speed networks used by the project.…

  14. Climate balance of biogas upgrading systems

    SciTech Connect

    Pertl, A.; Mostbauer, P.; Obersteiner, G.

    2010-01-15

    One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO{sub 2}.

  15. AN/ASQ-197 provides commonality to Recce systems and avionics upgrades

    NASA Astrophysics Data System (ADS)

    Regan, Brendan P.

    1993-02-01

    In an attempt to strike a balance between increases in multi-role tactical air reconnaissance mission tasking and simultaneous decreases in defense spending, many users are evaluating upgrades to existing sensors and reconnaissance systems. At the heart of any cost-effective reconnaissance system upgrade must be a flexible reconnaissance management system, capable of filling multiple rolls in today's film backed reconnaissance system, while enabling successful transition to the Electro-Optical (EO) system of tomorrow. As a case in point this paper describes enhanced effectiveness and growth potential that Fairchild's AN/ASQ-197 Sensor Control-Data Display Set (SC-DDS) can provide.

  16. High-rate hydrogenotrophic methanogenesis for biogas upgrading: the role of anaerobic granules.

    PubMed

    Xu, Heng; Gong, Shufen; Sun, Yuanzi; Ma, Hailing; Zheng, Mingyue; Wang, Kaijun

    2015-01-01

    Hydrogenotrophic methanogenesis has been proved to be a feasible biological method for biogas upgrading. To improve its performance, the feasibility of typical anaerobic granules as the inoculum was investigated in both batch and continuous experiments. The results from batch experiments showed that glucose-acclimated granules seemed to perform better than granules acclimated to acidified products (AP, i.e. acetate, propionate and ethanol) in in situ biogas upgrading systems and a slightly higher H2 consumption rate (1.5 mmol H2 g VSS(-1) h(-1)) was obtained for glucose-acclimated granules. For AP-acclimated granules, the inhibition on anaerobic digestion and pH increase (up to 9.55±0.16) took place, and the upgrading performance was adversely affected. In contrast, better performance for AP-acclimated granules was observed in ex situ systems, possibly due to their higher hydrogenotrophic methanogenic activities (HMA). Moreover, when gas-liquid mass transfer limitations were alleviated, the upgrading performance was significantly improved (three-fold) for both glucose-acclimated and AP-acclimated granules. The HMA of anaerobic granules could be further enhanced to improve biogas upgrading performance via continuous cultivation with H2/CO2 as the sole substrate. During the three months' cultivation, secondary granulation and microbial population shift were observed, but anaerobic granules still remained intact and their HMA increased from 0.2 to 0.6 g COD g VSS(-1) d(-1). It indicated that the formation of hydrogenotrophic methanogenic granules, a new type of anaerobic granules specialized for high-rate hydrogenotrophic methanogenesis and biogas upgrading, might be possible. Conclusively, anaerobic granules showed great potential for biogas upgrading.

  17. AN APPLICATION OF GAME THEORY: FUNDING INTERDEPENDENT MC and A UPGRADE DECISIONS

    SciTech Connect

    B. G. SCOTT

    2001-06-01

    Funding Material, Control and Accountability (MC&A) system upgrades has been identified as a partial solution for mitigating the diversion threat of weapons-grade nuclear material. Effective MC&A system upgrades are dependent on appropriate decisions based on based on funding, implementation, operation and oversight. Traditional MC&A upgrade decisions inherently assumed that all decision-makers possessed similar payoff vectors allowing for a fairly consistent and unified approach to MC&A system enhancements; however, MC&A upgrade projects in non-traditional environments may be required to take into account situations where the potential payoff vectors among decision-makers may be significantly different. Once a decision-maker is required to take into account the decisions of others, the process can be modeled as a game. Game theory has been previously be used to shed light on many aspects of social and economic behavior where a payoff from a set of strategies is dependent on the strategy of others. In this paper, the application of game theory in the context of MC&A upgrades is discussed. Various MC&A upgrades decision payoff matrices for relevant circumstances are evaluated for static (simultaneous) and dynamic (sequential decisions) games. Optimal strategies and equilibrium conditions for these payoff matrices are analyzed. Additional game factors (bargaining, uncertain outcomes, moral hazards) that may affect the outcome of the game are briefly discussed. By demonstrating the application of game theory to a nontraditional environment that may require MC&A upgrades, this work increases the understanding out how outcomes are logically connected to the respective value decision-makers assign to choices.

  18. New Hubble Servicing Mission to upgrade instruments

    NASA Astrophysics Data System (ADS)

    2006-10-01

    The history of the NASA/ESA Hubble Space Telescope is dominated by the familiar sharp images and amazing discoveries that have had an unprecedented scientific impact on our view of the world and our understanding of the universe. Nevertheless, such important contributions to science and humankind have only been possible as result of regular upgrades and enhancements to Hubble’s instrumentation. Using the Space Shuttle for this fifth Servicing Mission underlines the important role that astronauts have played and continue to play in increasing the Space Telescope’s lifespan and scientific power. Since the loss of Columbia in 2003, the Shuttle has been successfully launched on three missions, confirming that improvements made to it have established the required high level of safety for the spacecraft and its crew. “There is never going to be an end to the science that we can do with a machine like Hubble”, says David Southwood, ESA’s Director of Science. “Hubble is our way of exploring our origins. Everyone should be proud that there is a European element to it and that we all are part of its success at some level.” This Servicing Mission will not just ensure that Hubble can function for perhaps as much as another ten years; it will also increase its capabilities significantly in key areas. This highly visible mission is expected to take place in 2008 and will feature several space walks. As part of the upgrade, two new scientific instruments will be installed: the Cosmic Origins Spectrograph and Wide Field Camera 3. Each has advanced technology sensors that will dramatically improve Hubble’s potential for discovery and enable it to observe faint light from the youngest stars and galaxies in the universe. With such an astounding increase in its science capabilities, this orbital observatory will continue to penetrate the most distant regions of outer space and reveal breathtaking phenomena. “Today, Hubble is producing more science than ever before in

  19. Level-2 Calorimeter Trigger Upgrade at CDF

    SciTech Connect

    Flanagan, G.U.; /Purdue U.

    2007-04-01

    The CDF Run II Level-2 calorimeter trigger is implemented in hardware and is based on an algorithm used in Run I. This system insured good performance at low luminosity obtained during the Tevatron Run II. However, as the Tevatron instantaneous luminosity increases, the limitations of the current system due to the algorithm start to become clear. In this paper, we will present an upgrade of the Level-2 calorimeter trigger system at CDF. The upgrade is based on the Pulsar board, a general purpose VME board developed at CDF and used for upgrading both the Level-2 tracking and the Level-2 global decision crate. This paper will describe the design, hardware and software implementation, as well as the advantages of this approach over the existing system.

  20. Microbial biocatalyst developments to upgrade fossil fuels.

    PubMed

    Kilbane, John J

    2006-06-01

    Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts.

  1. Developments towards the LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Cid Vidal, Xabier

    2016-09-01

    The Vertex Locator (VELO) is a silicon strip detector surrounding the interaction region of the LHCb experiment. The upgrade of the VELO is planned to be installed in 2019-2020, and the current detector will be replaced by a hybrid pixel system equipped with electronics capable of reading out at a rate of 40 MHz. The new detector is designed to withstand the radiation dose expected at an integrated luminosity of 50 fb-1. The detector will be composed of silicon pixel sensors, read out by the VeloPix ASIC that is being developed based on the TimePix/MediPix family. The prototype sensors for the VELO upgrade are being irradiated in five different facilities and the post-irradiation performance is being measured with testbeams, and in the lab. These proceedings present the VELO upgrade and briefly discuss the results of the sensor testing campaign.

  2. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Belikov, Iouri

    2016-10-01

    A Large Ion Collider Experiment (ALICE) is built to study the properties of the strongly interacting matter created in heavy-ion collisions at the LHC. With the upgrade of its Inner Tracking System (ITS), the ALICE experiment is going to increase the rate of data taking by almost two orders of magnitude. At the same time, the precision of secondary vertex reconstruction will become by at least a factor 3 better than it currently is. In this talk, we briefly show some selected physics results motivating the upgrade of the ITS, describe the design goals and the layout of the new detector, and highlight a few important measurements that will be realized after the completion of this upgrade.

  3. Science Verification for the VISIR Upgrade

    NASA Astrophysics Data System (ADS)

    Asmus, D.; van den Ancker, M.; Ivanov, V.; Käufl, H.-U.; Kerber, F.; Leibundgut, B.; Mehner, A.; Momany, Y.; Pantin, E.; Tristram, K. R. W.

    2016-06-01

    The Very Large Telescope spectrometer and imager for the mid-infrared (VISIR) was upgraded in 2015 with new detectors and several new modes were added. Science Verification (SV) is carried out for new ESO instruments as well as for substantial upgrades to existing instruments. Sparse aperture masking and coronagraphy in the mid infrared have now been added to VISIR’s capabilities and during SV these new observational modes, together with the recommissioned burst mode, were used to demonstrate the observational capabilities of the instrument. The SV process for VISIR is briefly described and some results from the successful observations are presented. All SV data are publicly available.

  4. SPEAR 3 Upgrade Project: A Status Report

    SciTech Connect

    Corbett, William

    2001-07-07

    The SPEAR 3 upgrade project at SSRL will replace the original FODO lattice with a 234-m, 18-cell DBA lattice with gradient dipoles. The new hardware draws heavily on PEP-II B-Factory technology: a copper vacuum chamber, IGBT power supply technology, and mode-damped rf cavities to reach beam currents up to 500 mA at 3 GeV. First article magnets, supports, girders, vacuum chambers, pumps and RF components have been fabricated and a prototype girder assembly is nearing completion. I&C systems, radiation shielding and utility upgrades are in progress. In this paper we report on the status of the main accelerator subsystems.

  5. Next linear collider test accelerator injector upgrade

    SciTech Connect

    Yeremian, A.D.; Miller, R.H.

    1995-12-31

    The Next Linear Collider Test Accelerator (NLCTA) is being constructed at SLAC to demonstrate multibunch beam loading compensation, suppression of higher order deflecting modes and measure transverse components of the accelerating fields in X-band accelerating structures. Currently a simple injector which provides the average current necessary for the beam loading compensations studies is under construction. An injector upgrade is planned to produce bunch trains similar to that of the NLC with microbunch intensity, separation and energy spread, identical to that of NLC. We discuss the design of the NLCTA injector upgrade.

  6. Upgrading of an activated sludge wastewater treatment plant by adding a moving bed biofilm reactor as pre-treatment and ozonation followed by biofiltration for enhanced COD reduction: design and operation experience.

    PubMed

    Kaindl, Nikolaus

    2010-01-01

    A paper mill producing 500,000 ton of graphic paper annually has an on-site wastewater treatment plant that treats 7,240,000 m³ of wastewater per year, mechanically first, then biologically and at last by ozonation. Increased paper production capacity led to higher COD load in the mill effluent while production of higher proportions of brighter products gave worse biodegradability. Therefore the biological capacity of the WWTP needed to be increased and extra measures were necessary to enhance the efficiency of COD reduction. The full scale implementation of one MBBR with a volume of 1,230 m³ was accomplished in 2000 followed by another MBBR of 2,475 m³ in 2002. An ozonation step with a capacity of 75 kg O₃/h was added in 2004 to meet higher COD reduction demands during the production of brighter products and thus keeping the given outflow limits. Adding a moving bed biofilm reactor prior to the existing activated sludge step gives: (i) cost advantages when increasing biological capacity as higher COD volume loads of MBBRs allow smaller reactors than usual for activated sludge plants; (ii) a relief of strain from the activated sludge step by biological degradation in the MBBR; (iii) equalizing of peaks in the COD load and toxic effects before affecting the activated sludge step; (iv) a stable volume sludge index below 100 ml/g in combination with an optimization of the activated sludge step allows good sludge separation--an important condition for further treatment with ozone. Ozonation and subsequent bio-filtration pre-treated waste water provide: (i) reduction of hard COD unobtainable by conventional treatment; (ii) controllable COD reduction in a very wide range and therefore elimination of COD-peaks; (iii) reduction of treatment costs by combination of ozonation and subsequent bio-filtration; (iv) decrease of the color in the ozonated wastewater. The MBBR step proved very simple to operate as part of the biological treatment. Excellent control of the COD

  7. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 2, December 21, 1989--March 20, 1990

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  8. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 8, June 21, 1991--September 20, 1991

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will also be investigated.

  9. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 7, March 21, 1991--June 20, 1991

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  10. Colorado River Sewer System Joint Venture to Upgrade Wastewater System

    EPA Pesticide Factsheets

    SAN FRANCISCO -Today, the Colorado River Sewer System Joint Venture, located in Parker, Ariz. entered into an agreement with the EPA to upgrade their wastewater treatment system to meet stringent water quality standards. The cost of the upgrade is ap

  11. Healthy Indoor Environment Protocols for Home Energy Upgrades

    EPA Pesticide Factsheets

    This page contains the EPA-developed Healthy Indoor Environment Protocols for Home Energy Upgrades, a PDF guide that provides a set of best practices for improving indoor air quality in conjunction with energy upgrade work in homes.

  12. Chicago Initiative Aims to Upgrade Principal Pipeline

    ERIC Educational Resources Information Center

    Maxwell, Lesli A.

    2013-01-01

    Even with nearly 50 schools shutting down at the end of this month, Chicago education officials have been barreling ahead with plans to groom a large crop of high-performing principals that they say represents the most ambitious effort the city has undertaken to upgrade its school leadership ranks. The goal, said Chicago schools CEO Barbara…

  13. CMS: Present status, limitations, and upgrade plans

    SciTech Connect

    Cheung, H.W.K.; /Fermilab

    2011-09-01

    An overview of the CMS upgrade plans will be presented. A brief status of the CMS detector will be given, covering some of the issues we have so far experienced. This will be followed by an overview of the various CMS upgrades planned, covering the main motivations for them, and the various R&D efforts for the possibilities under study. The CMS detector has been working extremely well since the start of data-taking at the LHC as is evidenced by the numerous excellent results published by CMS and presented at this workshop and recent conferences. Less well documented are the various issues that have been encountered with the detector. In the spirit of this workshop I will cover some of these issues with particular emphasis on problems that motivate some of the upgrades to the CMS detector for this decade of data-taking. Though the CMS detector has been working extremely well and expectations are great for making the most of the LHC luminosity, there have been a number of issues encountered so far. Some of these have been described and while none currently presents a problem for physics performance, some of them are expected to become more problematic, especially at the highest Phase 1 luminosities for which the majority of the integrated luminosity will be collected. These motivate upgrades for various parts of the CMS detector so that the current excellent physics performance can be maintained or even surpassed in the realm of the highest Phase 1 luminosities.

  14. 32 CFR 881.7 - Discharge upgrade.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE MILITARY PERSONNEL DETERMINATION OF ACTIVE MILITARY SERVICE AND DISCHARGE FOR CIVILIAN OR CONTRACTUAL GROUPS § 881.7 Discharge upgrade. If... Force Board for Correction of Military Records under AFI 36-2603, Air Force Board for Correction...

  15. Preparation for upgrading western subbituminous coal

    SciTech Connect

    Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

    1990-11-01

    The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

  16. The BABAR detector: Upgrades, operation and performance

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; del Amo Sanchez, P.; Gaillard, J.-M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Robbe, P.; Tisserand, V.; Zghiche, A.; Grauges, E.; Garra Tico, J.; Lopez, L.; Martinelli, M.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, G. P.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Clark, A. R.; Day, C. T.; Furman, M.; Gill, M. S.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kral, J. F.; Kukartsev, G.; LeClerc, C.; Levi, M. E.; Lynch, G.; Merchant, A. M.; Mir, L. M.; Oddone, P. J.; Orimoto, T. J.; Osipenkov, I. L.; Pripstein, M.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Suzuki, A.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Zisman, M.; Barrett, M.; Bright-Thomas, P. G.; Ford, K. E.; Harrison, T. J.; Hart, A. J.; Hawkes, C. M.; Knowles, D. J.; Morgan, S. E.; O'Neale, S. W.; Penny, R. C.; Smith, D.; Soni, N.; Watson, A. T.; Watson, N. K.; Goetzen, K.; Held, T.; Koch, H.; Kunze, M.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schmuecker, H.; Schroeder, T.; Steinke, M.; Fella, A.; Antonioli, E.; Boyd, J. T.; Chevalier, N.; Cottingham, W. N.; Foster, B.; Mackay, C.; Walker, D.; Abe, K.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Khan, A.; Kyberd, P.; McKemey, A. K.; Randle-Conde, A.; Saleem, M.; Sherwood, D. J.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Korol, A. A.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Telnov, V. I.; Todyshev, K. Yu.; Yushkov, A. N.; Best, D. S.; Bondioli, M.; Bruinsma, M.; Chao, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; McMahon, S.; Mommsen, R. K.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Hartfiel, B. L.; Weinstein, A. J. R.; Atmacan, H.; Foulkes, S. D.; Gary, J. W.; Layter, J.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Wang, K.; Yasin, Z.; Zhang, L.; Hadavand, H. K.; Hill, E. J.; Paar, H. P.; Rahatlou, S.; Schwanke, U.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Kuznetsova, N.; Levy, S. L.; Lu, A.; Mazur, M. A.; Richman, J. D.; Verkerke, W.; Beck, T. W.; Beringer, J.; Eisner, A. M.; Flacco, C. J.; Grillo, A. A.; Grothe, M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Nesom, G.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Spencer, E.; Spradlin, P.; Turri, M.; Walkowiak, W.; Wang, L.; Wilder, M.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.; Chen, E.; Cheng, C. H.; Doll, D. A.; Dorsten, M. P.; Dvoretskii, A.; Echenard, B.; Erwin, R. J.; Fang, F.; Flood, K.; Hitlin, D. G.; Metzler, S.; Narsky, I.; Oyang, J.; Piatenko, T.; Porter, F. C.; Ryd, A.; Samuel, A.; Yang, S.; Zhu, R. Y.; Andreassen, R.; Devmal, S.; Geld, T. L.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Abe, T.; Antillon, E. A.; Barillari, T.; Becker, J.; Blanc, F.; Bloom, P. C.; Chen, S.; Clifton, Z. C.; Derrington, I. M.; Destree, J.; Dima, M. O.; Ford, W. T.; Gaz, A.; Gilman, J. D.; Hachtel, J.; Hirschauer, J. F.; Johnson, D. R.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Rankin, P.; Roy, J.; Ruddick, W. O.; Smith, J. G.; Ulmer, K. A.; van Hoek, W. C.; Wagner, S. R.; West, C. G.; Zhang, J.; Ayad, R.; Blouw, J.; Chen, A.; Eckhart, E. A.; Harton, J. L.; Hu, T.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q. L.; Altenburg, D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Brandt, T.; Brose, J.; Colberg, T.; Dahlinger, G.; Dickopp, M.; Eckstein, P.; Futterschneider, H.; Kaiser, S.; Kobel, M. J.; Krause, R.; Müller-Pfefferkorn, R.; Mader, W. F.; Maly, E.; Nogowski, R.; Otto, S.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Wilden, L.; Bernard, D.; Brochard, F.; Cohen-Tanugi, J.; Dohou, F.; Ferrag, S.; Latour, E.; Mathieu, A.; Renard, C.; Schrenk, S.; T'Jampens, S.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Anjomshoaa, A.; Bernet, R.; Clark, P. J.; Lavin, D. R.; Muheim, F.; Playfer, S.; Robertson, A. I.; Swain, J. E.; Watson, J. E.; Xie, Y.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Carassiti, V.; Cecchi, A.; Cibinetto, G.; Cotta Ramusino, A.; Evangelisti, F.; Fioravanti, E.; Franchini, P.; Garzia, I.; Landi, L.; Luppi, E.; Malaguti, R.; Negrini, M.; Padoan, C.; Petrella, A.; Piemontese, L.; Santoro, V.; Sarti, A.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; de Sangro, R.; Santoni, M.; Zallo, A.; Bagnasco, S.; Buzzo, A.; Capra, R.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M. M.; Minutoli, S.; Monge, M. R.; Musico, P.; Passaggio, S.; Pastore, F. C.; Patrignani, C.; Pia, M. G.; Robutti, E.; Santroni, A.; Tosi, S.; Bhuyan, B.; Prasad, V.; Bailey, S.; Brandenburg, G.; Chaisanguanthum, K. S.; Lee, C. L.; Morii, M.; Won, E.; Wu, J.; Adametz, A.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Klose, V.; Lacker, H. M.; Aspinwall, M. L.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Flack, R. L.; Gaillard, J. R.; Gunawardane, N. J. W.; Morton, G. W.; Nash, J. A.; Nikolich, M. B.; Panduro Vazquez, W.; Sanders, P.; Smith, D.; Taylor, G. P.; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Grenier, G. J.; Hamilton, R.; Lee, S.-J.; Mallik, U.; Meyer, N. T.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Fischer, P.-A.; Lamsa, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Schott, G.; Albert, J. N.; Arnaud, N.; Beigbeder, C.; Breton, D.; Davier, M.; Derkach, D.; Dû, S.; Firmino da Costa, J.; Grosdidier, G.; Höcker, A.; Laplace, S.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Nief, J. Y.; Petersen, T. C.; Plaszczynski, S.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Tocut, V.; Trincaz-Duvoid, S.; Wang, L. L.; Wormser, G.; Bionta, R. M.; Brigljević, V.; Lange, D. J.; Simani, M. C.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, M.; Hutchcroft, D. E.; Kay, M.; Parry, R. J.; Payne, D. J.; Schofield, K. C.; Sloane, R. J.; Touramanis, C.; Azzopardi, D. E.; Bellodi, G.; Bevan, A. J.; Clarke, C. K.; Cormack, C. M.; Di Lodovico, F.; Dixon, P.; George, K. A.; Menges, W.; Potter, R. J. L.; Sacco, R.; Shorthouse, H. W.; Sigamani, M.; Strother, P.; Vidal, P. B.; Brown, C. L.; Cowan, G.; Flaecher, H. U.; George, S.; Green, M. G.; Hopkins, D. A.; Jackson, P. S.; Kurup, A.; Marker, C. E.; McGrath, P.; McMahon, T. R.; Paramesvaran, S.; Salvatore, F.; Vaitsas, G.; Winter, M. A.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Allison, J.; Alwyn, K. E.; Bailey, D. S.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Forti, A. C.; Fullwood, J.; Hart, P. A.; Hodgkinson, M. C.; Jackson, F.; Jackson, G.; Kelly, M. P.; Kolya, S. D.; Lafferty, G. D.; Lyon, A. J.; Naisbit, M. T.; Savvas, N.; Weatherall, J. H.; West, T. J.; Williams, J. C.; Yi, J. I.; Anderson, J.; Farbin, A.; Hulsbergen, W. D.; Jawahery, A.; Lillard, V.; Roberts, D. A.; Schieck, J. R.; Simi, G.; Tuggle, J. M.; Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.; Staengle, H.; Willocq, S. Y.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Koeneke, K.; Lang, M. I.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Yi, M.; Zhao, M.; Zheng, Y.; Klemetti, M.; Lindemann, D.; Mangeol, D. J. J.; Mclachlin, S. E.; Milek, M.; Patel, P. M.; Robertson, S. H.; Biassoni, P.; Cerizza, G.; Lazzaro, A.; Lombardo, V.; Neri, N.; Palombo, F.; Pellegrini, R.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Godang, R.; Brunet, S.; Cote, D.; Nguyen, X.; Simard, M.; Taras, P.; Viaud, B.; Nicholson, H.; Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Onorato, G.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Allmendinger, T.; Benelli, G.; Brau, B.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Smith, D. S.; Ter-Antonyan, R.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Iwasaki, M.; Kolb, J. A.; Lu, M.; Potter, C. T.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Borsato, E.; Castelli, G.; Colecchia, F.; Crescente, A.; Dal Corso, F.; Dorigo, A.; Fanin, C.; Furano, F.; Gagliardi, N.; Galeazzi, F.; Margoni, M.; Marzolla, M.; Michelon, G.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Solagna, P.; Stevanato, E.; Stroili, R.; Tiozzo, G.; Voci, C.; Akar, S.; Bailly, P.; Ben-Haim, E.; Bonneaud, G.; Briand, H.; Chauveau, J.; Hamon, O.; John, M. J. J.; Lebbolo, H.; Leruste, Ph.; Malclès, J.; Marchiori, G.; Martin, L.; Ocariz, J.; Perez, A.; Pivk, M.; Prendki, J.; Roos, L.; Sitt, S.; Stark, J.; Thérin, G.; Vallereau, A.; Biasini, M.; Covarelli, R.; Manoni, E.; Pennazzi, S.; Pioppi, M.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Bucci, F.; Calderini, G.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Morsani, F.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Sandrelli, F.; Triggiani, G.; Walsh, J. J.; Haire, M.; Judd, D.; Biesiada, J.; Danielson, N.; Elmer, P.; Fernholz, R. E.; Lau, Y. P.; Lu, C.; Miftakov, V.; Olsen, J.; Lopes Pegna, D.; Sands, W. R.; Smith, A. J. S.; Telnov, A. V.; Tumanov, A.; Varnes, E. W.; Baracchini, E.; Bellini, F.; Bulfon, C.; Buccheri, E.; Cavoto, G.; D'Orazio, A.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Lamanna, E.; Leonardi, E.; Li Gioi, L.; Lunadei, R.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; del Re, D.; Renga, F.; Safai Tehrani, F.; Serra, M.; Voena, C.; Bünger, C.; Christ, S.; Hartmann, T.; Leddig, T.; Schröder, H.; Wagner, G.; Waldi, R.; Adye, T.; Bly, M.; Brew, C.; Condurache, C.; De Groot, N.; Franek, B.; Geddes, N. I.; Gopal, G. P.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.; Xella, S. M.; Aleksan, R.; Bourgeois, P.; Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; Giraud, P.-F.; Georgette, Z.; Graziani, G.; Hamel de Monchenault, G.; Kozanecki, W.; Langer, M.; Legendre, M.; London, G. W.; Mayer, B.; Micout, P.; Serfass, B.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Akre, R.; Aston, D.; Azemoon, T.; Bard, D. J.; Bartelt, J.; Bartoldus, R.; Bechtle, P.; Becla, J.; Benitez, J. F.; Berger, N.; Bertsche, K.; Boeheim, C. T.; Bouldin, K.; Boyarski, A. M.; Boyce, R. F.; Browne, M.; Buchmueller, O. L.; Burgess, W.; Cai, Y.; Cartaro, C.; Ceseracciu, A.; Claus, R.; Convery, M. R.; Coupal, D. P.; Craddock, W. W.; Crane, G.; Cristinziani, M.; DeBarger, S.; Decker, F. J.; Dingfelder, J. C.; Donald, M.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Ecklund, S.; Erickson, R.; Fan, S.; Field, R. C.; Fisher, A.; Fox, J.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Gaponenko, I.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hadig, T.; Halyo, V.; Haller, G.; Hamilton, J.; Hanushevsky, A.; Hasan, A.; Hast, C.; Hee, C.; Himel, T.; Hryn'ova, T.; Huffer, M. E.; Hung, T.; Innes, W. R.; Iverson, R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kharakh, D.; Kocian, M. L.; Krasnykh, A.; Krebs, J.; Kroeger, W.; Kulikov, A.; Kurita, N.; Langenegger, U.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Libby, J.; Lindquist, B.; Luitz, S.; Lüth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; McCulloch, M.; McDonald, J.; Melen, R.; Menke, S.; Metcalfe, S.; Messner, R.; Moss, L. J.; Mount, R.; Muller, D. R.; Neal, H.; Nelson, D.; Nelson, S.; Nordby, M.; Nosochkov, Y.; Novokhatski, A.; O'Grady, C. P.; O'Neill, F. G.; Ofte, I.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Petrak, S.; Piemontese, M.; Pierson, S.; Pulliam, T.; Ratcliff, B. N.; Ratkovsky, S.; Reif, R.; Rivetta, C.; Rodriguez, R.; Roodman, A.; Salnikov, A. A.; Schietinger, T.; Schindler, R. H.; Schwarz, H.; Schwiening, J.; Seeman, J.; Smith, D.; Snyder, A.; Soha, A.; Stanek, M.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Tanaka, H. A.; Teytelman, D.; Thompson, J. M.; Tinslay, J. S.; Trunov, A.; Turner, J.; van Bakel, N.; van Winkle, D.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Weinstein, A. J. R.; Weber, T.; West, C. A.; Wienands, U.; Wisniewski, W. J.; Wittgen, M.; Wittmer, W.; Wright, D. H.; Wulsin, H. W.; Yan, Y.; Yarritu, A. K.; Yi, K.; Yocky, G.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Singh, H.; Weidemann, A. W.; White, R. M.; Wilson, J. R.; Yumiceva, F. X.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Meyer, T. I.; Miyashita, T. S.; Petersen, B. A.; Roat, C.; Ahmed, M.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Liu, J.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Gorodeisky, R.; Guttman, N.; Peimer, D.; Soffer, A.; De Silva, A.; Lund, P.; Krishnamurthy, M.; Ragghianti, G.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Satpathy, A.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Ye, S.; Bianchi, F.; Bona, M.; Gallo, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Borean, C.; Bosisio, L.; Cossutti, F.; Della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Poropat, P.; Rashevskaya, I.; Vitale, L.; Vuagnin, G.; Manfredi, P. F.; Re, V.; Speziali, V.; Frank, E. D.; Gladney, L.; Guo, Q. H.; Panetta, J.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Agarwal, A.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Brown, C. M.; Choi, H. H. F.; Fortin, D.; Fransham, K. B.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Back, J. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E.; Band, H. R.; Chen, X.; Cheng, B.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Hollar, J. J.; Hu, H.; Johnson, J. R.; Kutter, P. E.; Li, H.; Liu, R.; Mellado, B.; Mihalyi, A.; Mohapatra, A. K.; Pan, Y.; Pierini, M.; Prepost, R.; Scott, I. J.; Tan, P.; Vuosalo, C. O.; von Wimmersperg-Toeller, J. H.; Wu, S. L.; Yu, Z.; Greene, M. G.; Kordich, T. M. B.

    2013-11-01

    The BABAR detector operated successfully at the PEP-II asymmetric e+e- collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.

  17. Results of the MTLRS-1 upgrade

    NASA Technical Reports Server (NTRS)

    Sperber, Peter; Amberg, L.; Blenski, G.; Etling, W.; Hessels, U.; Motz, R.; Beyer, L.

    1993-01-01

    In this report, the results of the upgrade of the German Modular Transportable Laser Ranging System MTLRS-1 are summarized. A short description of the new components and their influence on the system accuracy is given. It is shown, that the single shot accuracy of the MTLRS-1 has been improved from 5 cm to 1 cm.

  18. MR LLRF VXI upgrade beam study period

    SciTech Connect

    Mesiner, K.; /Fermilab

    1995-01-01

    AD/RFI/LLRF group personnel performed several studies with the MR LLRF VXI upgrade system during the evening of 7/29/95. The study period lasted about 4 hours. The MR operating conditions were a mixture of $29 and $2B cycles, with beam injected only on the $29. The author believes the $2B cycles were present for reasons unrelated to the study. The basic study period goal was to test the initial VXI version of MR LLRF finite state machine (FSM) execution. This goal represents what has been called MR LLRF VXI Upgrade Implementation Stage No.2 throughout presentations and documentation on the upgrade project. The test includes control of MR LLRF NIM hardware, the MR RF cavities, and beam via XVI TTL FSM outputs. Numerous MR LLRF VXI system objects, or components, must work together correctly for a successful test. Very briefly, the required objects include VXI Front End hardware, the ACNET/Front End interface code, and the VXI/NIM Interface chassis (the chassis solves VXI-CAMAC-NIM RF and FSM output connectivity and development problems). Though this initial FSM does not yet fully support Upgrade Implementation Stage 2 functionality, all code and hardware for the following basic functionality is tested.

  19. T-Farm complex alarm upgrades

    SciTech Connect

    Roberts, J.B.

    1995-01-01

    The alarm and controls associated with the T, TX, and TY farms are located in the 242-T control room. The design data for replacement and upgrades of the alarm panels is in this document. This task was canceled previous to the 90% design review point.

  20. Testing of FMI's Coal Upgrading Process

    SciTech Connect

    Vijay Sethi

    2009-03-21

    WRI and FMI have collaborated to develop and test a novel coal upgrading technology. Proprietary coal upgrading technology is a fluidized bed-based continuous process which allows high through-puts, reducing the coal processing costs. Processing is carried out under controlled oxidizing conditions at mild enough conditions that compared to other coal upgrading technologies; the produced water is not as difficult to treat. All the energy required for coal drying and upgrading is derived from the coal itself. Under the auspices of the Jointly Sponsored Research Program, Cooperative Agreement DE-FC26-98FT40323, a nominal 400 lbs/hour PDU was constructed and operated. Over the course of this project, several low-rank coals were successfully tested in the PDU. In all cases, a higher Btu, low moisture content, stable product was produced and subsequently analyzed. Stack emissions were monitored and produced water samples were analyzed. Product stability was established by performing moisture readsorption testing. Product pyrophobicity was demonstrated by instrumenting a coal pile.

  1. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Kushpil, Svetlana; ALICE Collaboration

    2016-02-01

    ALICE detector was constructed to study the properties of hot and dense hadronic matter formed in relativistic nuclear collisions. During the second long LHC shutdown in 2019-2020, the collaboration plans to upgrade the current vertex detector, the Inner Tracking System (ITS), in order to increase the reconstruction accuracy of secondary vertices and to lower the threshold of particle transverse momentum measurement. The upgrade strategy of ITS is based on the application of new Monolithic Active Pixel Sensors (MAPS) designed in 0.18 μm CMOS technology. The 50 μm thick chip consists of a single silicon die incorporating a 0.18 μm high-resistivity silicon epitaxial layer (sensor active volume) and matrix of charge collection diodes (pixels) with readout electronics. Radiation hardness of the upgraded ITS is one of the crucial moments in the overall performance of the system. A wide set of MAPS structures with different read-out circuits was produced and is being studied by the ALICE collaboration to optimize the pixel sensor functionality. An overview of the ALICE ITS upgrade and the expected performance improvement will be presented together with selected results from a campaign that includes several irradiation and beam tests.

  2. Filtration engineering study to upgrade the ETF

    SciTech Connect

    McDonald, F.N.N.

    1995-10-18

    Filtration technologies are evaluated which have potential to augment or upgrade the 200 Area Effluent Treatment Facility. The study was written in anticipation of treating future waste waters that have high fouling potentials. The Three ultrafilters judged to be capable of treating future waste waters are: hollow fiber, tubular, and centrifugal

  3. UPGRADES TO Monteburns, VERSION 3.0

    SciTech Connect

    Galloway, Jack D; Trellue, Holly R

    2012-06-22

    Monteburns VERSION 3.0 is an upgrade of the existing Monteburns code available through RSICC. The new version includes modern programming style, increased parallel computing, more accurate capture gamma calculations and an automated input generator. This capability was demonstrated through a small PWR core simulation.

  4. PC Made Easy: Upgrading Computer Collections.

    ERIC Educational Resources Information Center

    Hannigan, Matt

    1997-01-01

    Provides guidelines for ordering the best computer books, geared to the library's size. Covers series, articles, subjects, and publishers most useful to a broad audience, as well as the best places to seek information on new titles and where to find reviews. Offers time savers for upgrading a computer book collection and discusses weeding…

  5. Fuel Flexible Gas Turbine Combustor Flametube Facility Upgraded

    NASA Technical Reports Server (NTRS)

    Little, James E.; Nemets, Steve A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfeld, Bruce J.

    2004-01-01

    In fiscal year 2003, test cell 23 of the Research Combustion Laboratory (RCL 23) at the NASA Glenn Research Center was upgraded with the addition of gaseous hydrogen as a working propellant and the addition of a 450-psig air-supply system. Test flexibility was further enhanced by upgrades to the facility control systems. RCL 23 can now test with gaseous hydrogen flow rates up to 0.05 lbm/sec and jet fuel flow rates up to 0.62 lbm/sec. Research airflow rates up to 3 lbm/sec are possible with the 450-psig supply system over a range of inlet temperatures. Nonvitiated, heated air is supplied from a shell and tube heat exchanger. The maximum nonvitiated facility air temperature is 1100 F at 1.5 lbm/sec. Research-section exhaust temperatures are limited to 3200 F because of material and cooling capacity limits. A variety of support systems are available depending on the research hardware configuration. Test section ignition can be provided via either a hydrogen air torch system or an electronic spark system. Emissions measurements are obtained with either pneumatically or electromechanically actuated gas sample probes, and the electromechanical system allows for radial measurements at a user-specified axial location for measurement of emissions profiles. Gas analysis data can be obtained for a variety of species, including carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NO and NOx), oxygen (O2), unburnt hydrocarbons, and unburnt hydrogen. Facility control is accomplished with a programmable logic control system. Facility operations have been upgraded to a system based on graphical user interface control screens. A data system is available for real-time acquisition and monitoring of both measurements in engineering units and performance calculations. The upgrades have made RCL 23 a highly flexible facility for research into low emissions gas turbine combustor concepts, and the flame tube configuration inherently allows for a variety of fuel nozzle

  6. Analysis of NSTX Upgrade OH Magnet and Center Stack

    SciTech Connect

    A. Zolfaghari, P. Titus, J. Chrzanowski, A. Salehzadeh, F. Dahlgren

    2010-11-30

    The new ohmic heating (OH) coil and center stack for the National Spherical Torus Experiment (NSTX) upgrade are required to meet cooling and structural requirements for operation at the enhanced 1 Tesla toroidal field and 2 MA plasma current. The OH coil is designed to be cooled in the time between discharges by water flowing in the center of the coil conductor. We performed resistive heating and thermal hydraulic analyses to optimize coolant channel size to keep the coil temperature below 100 C and meet the required 20 minute cooling time. Coupled electromagnetic, thermal and structural FEA analyses were performed to determine if the OH coil meets the requirements of the structural design criteria. Structural response of the OH coil to its self-field and the field from other coils was analyzed. A model was developed to analyze the thermal and electromagnetic interaction of centerstack components such as the OH coil, TF inner legs and the Bellville washer preload mechanism. Torsional loads from the TF interaction with the OH and poloidal fields are transferred through the TF flag extensions via a torque transfer coupling to the rest of the tokamak structure. A 3D FEA analysis was performed to qualify this design. The results of these analyses, which will be presented in this paper, have led to the design of OH coil and centerstack components that meet the requirements of the NSTX-upgrade structural design criteria.

  7. THERMAL UPGRADING OF 9977 RADIOACTIVE MATERIAL (RAM) TYPE B PACKAGE

    SciTech Connect

    Gupta, N.; Abramczyk, G.

    2012-03-26

    The 9977 package is a radioactive material package that was originally certified to ship Heat Sources and RTG contents up to 19 watts and it is now being reviewed to significantly expand its contents in support of additional DOE missions. Thermal upgrading will be accomplished by employing stacked 3013 containers, a 3013 aluminum spacer and an external aluminum sleeve for enhanced heat transfer. The 7th Addendum to the original 9977 package Safety Basis Report describing these modifications is under review for the DOE certification. The analyses described in this paper show that this well-designed and conservatively analyzed package can be upgraded to carry contents with decay heat up to 38 watts with some simple design modifications. The Model 9977 package has been designed as a replacement for the Department of Transportation (DOT) Fissile Specification 6M package. The 9977 package is a very versatile Type B package which is certified to transport and store a wide spectrum of radioactive materials. The package was analyzed quite conservatively to increase its usefulness and store different payload configurations. Its versatility is evident from several daughter packages such as the 9978 and H1700, and several addendums where the payloads have been modified to suit the Shipper's needs without additional testing.

  8. Upgrading the Ward Beecher Planetarium for the 21st Century

    NASA Astrophysics Data System (ADS)

    Durrell, P. R.; Young, W.; Pirko, R.; Shanks, S. L.; Neiheisel, J.; Dean, M. E.; Kotel, R.; Schaefer, S.; Morlan, R.; Wilson, A.; Feldmeier, J. J.

    2005-12-01

    We report on recent progress and future public outreach plans in light of a significant upgrade of the Ward Beecher Planetarium at Youngstown State University. Over a period of 40 years, the facility has been a first-rate 150 seat planetarium and introductory astronomy classroom, and in its history has seen over 50 000 undergraduate students and over 750 000 visits from people in the surrounding area and beyond. Through a recent generous donation from the Ward Beecher Foundation, we have added the SciDome full-dome visualization system, and soon will be replacing our Spitz A3P planetarium star projector. These upgrades, in addition to new digital video projectors and a complete overhaul of our roof-top observatory, are being done in order to further enhance both the education of YSU students and our ability to continue numerous public outreach programs, including full-dome digital planetarium shows, public observing, shows for both elementary and high school students, and home-schooling programs.

  9. Guidelines for Home Energy Upgrade Professionals: Standard Work Specifications for Multifamily Energy Upgrades (Fact Sheet)

    SciTech Connect

    Not Available

    2011-08-01

    This fact sheet provides essential information about the 2011 publication of the Workforce Guidelines for Multifamily Home Energy Upgrades, including their origin, their development with the help of industry leaders to create the standard work specifications for retrofit work.

  10. The JLAB 12 GeV Energy Upgrade of CEBAF

    SciTech Connect

    Harwood, Leigh H.

    2013-12-01

    This presentation should describe the progress of the 12GeV Upgrade of CEBAF at Jefferson Lab. The status of the upgrade should be presented as well as details on the construction, procurement, installation and commissioning of the magnet and SRF components of the upgrade.

  11. First Results From the (Multibeam) Hydrosweep DS2 Upgrade on the R/V Maurice Ewing

    NASA Astrophysics Data System (ADS)

    Chayes, D. N.; Slagle, A.; Caress, D. W.; Arko, R. A.

    2001-12-01

    The ATLAS Hydrosweep DS multibeam swath mapping sonar system on the R/V Maurice Ewing was upgraded to a DS2 in May 2000. This upgrade increased the effective swath width from 59 beams over about 89 degrees to as many as 140 beams over approximately 118 degrees, added sidescan image as well as data records from which backscatter can be extracted. The upgrade replaced the outdated processing computer, half-inch tape drive and console with modern workstations and 4mm tape. The upgrade did not require changes to the under hull transducer arrays or transceivers so it was relatively inexpensive and was accomplished in a few days during a transit of the Panama Canal. Evaluation and software enhancements were done during subsequent transits. MB-System was enhanced to support the native, raw data format of the Hydrosweep DS2. We also expect to be able to support the more general SURF format that is also generated by new ATLAS sonar systems in the near future. In addition to the hardware and software upgrades to the multibeam, we installed a POS/MV-320 vertical reference system to take over from our venerable HIPPY-120 as the primary attitude reference for the Hydrosweep on the Ewing. The attitude data from the POS has allowed us to eliminate the turn rate restrictions and to improve the data quality. As an additional benefit the P-Code aided position data produced by the POS is significantly more stable and better behaved than our other navigation sources. The upgraded sonar was used during EW0108 (Taylor) in the Gulf of Corinth. As is usually the case with new implementations or modifications of complex systems, some unexpected behaviors were observed and carefully documented. Good remote support from the manufacturer enabled us to implement fixes and to generate very good quality bathymetry and sidescan images on board and in shore-side post processing. Two related software prototypes are currently being evaluated as part of this upgrade package. One is a web-based real

  12. Canted Undulator Upgrade for GeoSoilEnviroCARS Sector 13 at the Advanced Photon Source

    SciTech Connect

    Sutton, Stephen

    2013-02-02

    Support for the beamline component of the canted undulator upgrade of Sector 13 (GeoSoilEnviroCARS; managed and operated by the University of Chicago) at the Advanced Photon Source (APS; Argonne National Laboratory) was received from three agencies (equally divided): NASA-SRLIDAP (now LARS), NSF-EAR-IF (ARRA) and DOE-Single Investigator Small Group (SISGR). The associated accelerator components (undulators, canted front end) were provided by the APS using DOE-ARRA funding. The intellectual merit of the research enabled by the upgrade lies in advancing our knowledge of the composition, structure and properties of earth materials; the processes they control; and the processes that produce them. The upgrade will facilitate scientific advances in the following areas: high pressure mineral physics and chemistry, non-crystalline and nano-crystalline materials at high pressure, chemistry of hydrothermal fluids, reactions at mineral-water interfaces, biogeochemistry, oxidation states of magmas, flow dynamics of fluids and solids, and cosmochemistry. The upgrade, allowing the microprobe to operate 100% of the time and the high pressure and surface scattering and spectroscopy instruments to receive beam time increases, will facilitate much more efficient use of the substantial investment in these instruments. The broad scientific community will benefit by the increase in the number of scientists who conduct cutting-edge research at GSECARS. The user program in stations 13ID-C (interface scattering) and 13ID-D (laser heated diamond anvil cell and large volume press) recommenced in June 2012. The operation of the 13ID-E microprobe station began in the Fall 2012 cycle (Oct.-Dec 2012). The upgraded canted beamlines double the amount of undulator beam time at Sector 13 and provide new capabilities including extended operations of the X-ray microprobe down to the sulfur K edge and enhanced brightness at high energy. The availability of the upgraded beamlines will advance the

  13. Upgrading of Intermediate Bio-Oil Produced by Catalytic Pyrolysis

    SciTech Connect

    Abdullah, Zia; Chadwell, Brad; Taha, Rachid; Hindin, Barry; Ralston, Kevin

    2015-06-30

    The objectives of this project were to (1) develop a process to upgrade catalytic pyrolysis bio-oil, (2) investigate new upgrading catalysts suited for upgrading catalytic pyrolysis bio-oil, (3) demonstrate upgrading system operation for more than 1,000 hours using a single catalyst charge, and (4) produce a final upgraded product that can be blended to 30 percent by weight with petroleum fuels or that is compatible with existing petroleum refining operations. This project has, to the best of our knowledge, for the first time enabled a commercially viable bio-oil hydrotreatment process to produce renewable blend stock for transportation fuels.

  14. Charge breeder for the SPIRAL1 upgrade: Preliminary results

    SciTech Connect

    Maunoury, L. Delahaye, P.; Dubois, M.; Bajeat, O.; Frigot, R.; Jeanne, A.; Jardin, P.; Kamalou, O.; Lecomte, P.; Osmond, B.; Peschard, G.; Savalle, A.; Angot, J.; Sole, P.; Lamy, T.

    2016-02-15

    In the framework of the SPIRAL1 upgrade under progress at the GANIL lab, the charge breeder based on a LPSC Phoenix ECRIS, first tested at ISOLDE has been modified to benefit of the last enhancements of this device from the 1+/n+ community. The modifications mainly concern the 1 + optics, vacuum techniques, and the RF—buffer gas injection into the charge breeder. Prior to its installation in the midst of the low energy beam line of the SPIRAL1 facility, it has been decided to qualify its performances and several operation modes at the test bench of LPSC lab. This contribution shall present preliminary results of experiments conducted at LPSC concerning the 1 + to n+ conversion efficiencies for noble gases as well as for alkali elements and the corresponding transformation times.

  15. A poloidal section neutron camera for MAST upgrade

    SciTech Connect

    Sangaroon, S.; Weiszflog, M.; Cecconello, M.; Conroy, S.; Ericsson, G.; Wodniak, I.; Keeling, D.; Turnyanskiy, M. [EURATOM Collaboration: MAST Team

    2014-08-21

    The Mega Ampere Spherical Tokamak Upgrade (MAST Upgrade) is intended as a demonstration of the physics viability of the Spherical Tokamak (ST) concept and as a platform for contributing to ITER/DEMO physics. Concerning physics exploitation, MAST Upgrade plasma scenarios can contribute to the ITER Tokamak physics particularly in the field of fast particle behavior and current drive studies. At present, MAST is equipped with a prototype neutron camera (NC). On the basis of the experience and results from previous experimental campaigns using the NC, the conceptual design of a neutron camera upgrade (NC Upgrade) is being developed. As part of the MAST Upgrade, the NC Upgrade is considered a high priority diagnostic since it would allow studies in the field of fast ions and current drive with good temporal and spatial resolution. In this paper, we explore an optional design with the camera array viewing the poloidal section of the plasma from different directions.

  16. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 12, June 21, 1992--September 20, 1992

    SciTech Connect

    Tsotsis, T.T.

    1992-12-31

    In this project we intend to study a novel process concept, i.e.,the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we wig evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  17. High temperature ceramic membrane reactors for coal liquid upgrading. Quarter report No. 9, September 21, 1991--December 20, 1991

    SciTech Connect

    Tsotsis, T.T.

    1992-07-01

    In this project we intend to study a novel process concept, i.e, the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  18. Biorefining compounds and organocatalytic upgrading methods

    DOEpatents

    Chen, Eugene Y.; Liu, Dajiang

    2016-10-18

    The invention provides new methods for the direct umpolung self-condensation of 5-hydroxymethylfurfural (HMF) by organocatalysis, thereby upgrading the readily available substrate into 5,5'-di(hydroxymethyl)furoin (DHMF). While many efficient catalyst systems have been developed for conversion of plant biomass resources into HMF, the invention now provides methods to convert such nonfood biomass directly into DHMF by a simple process as described herein. The invention also provides highly effective new methods for upgrading other biomass furaldehydes and related compound to liquid fuels. The methods include the organocatalytic self-condensation (umpolung) of biomass furaldehydes into (C.sub.8-C.sub.12)furoin intermediates, followed by hydrogenation, etherification or esterification into oxygenated biodiesel, or hydrodeoxygenation by metal-acid tandem catalysis into premium hydrocarbon fuels.

  19. Upgrading Reference Set — EDRN Public Portal

    Cancer.gov

    We are proposing a multi-institutional study to identify molecular biomarkers and clinical measures that will predict presence of Gleason 7 or higher cancer (as evidence in the radical prostatectomy specimen) among patients with a biopsy diagnosis of Gleason score ≤ 6 prostate cancer. This proposal will be conducted in two phases. The first phase will assemble an “Upgrading Reference Set” that will include clinical information as well as biologics on a cohort of 600 men. The first phase will also assess the clinical parameters associated with upgrading, as well as, perform a central pathology review of both biopsies and prostatectomy specimens to confirm tumor grade. The second phase will use the biologics collected in phase 1 to evaluate a series of biomarkers to further refine the prediction of Gleason 7-10 cancer at radical prostatectomy.

  20. Jefferson Lab 12 GEV Cebaf Upgrade

    NASA Astrophysics Data System (ADS)

    Rode, C. H.

    2010-04-01

    The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at ˜6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a 310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

  1. Upgrade of the Photon Factory Control System

    NASA Astrophysics Data System (ADS)

    Obina, T.; Pak, C. O.; Sato, Y.; Mishina, A.; Harada, K.; Kobayashi, Y.; Myajima, T.; Nagahashi, S.; Nogami, T.; Sakanaka, S.; Shioya, T.; Tadano, M.; Takahashi, T.; Tanimoto, Y.; Umemori, K.

    2007-01-01

    The Photon Factory control system was originally developed more than 20 years ago and has been upgraded several times. As a part of the straight-sections upgrade, which started in March, 2005, we renewed the control system incorporating modern technologies in both low-level and high-level control layers. In the low-level layer, a PLC (Programmable Logic Controller) is now intensively used for title safety control system, for RF klystron control boards and for the vacuum control system. In the middle-level and high-level layers, the EPICS (Experimental Physics and Industrial Control System) software toolkit was adopted. We also replaced VME-board computers with HP-RT operating system by Linux-based computers, which are now used as input/output controllers (IOCs) for the EPICS. The new system has been running without any serious problems since its commissioning in September, 2005.

  2. CHALLENGES FOR THE SNS RING ENERGY UPGRADE

    SciTech Connect

    Plum, Michael A; Gorlov, Timofey V; Holmes, Jeffrey A; Hunter, W Ted; Roseberry, Jr., R Tom; Wang, Jian-Guang

    2012-01-01

    The Oak Ridge Spallation Neutron Source accumulator ring presently operates at a beam power of about 1 MW with a beam energy of about 910 MeV. A power upgrade is planned to increase the beam energy to 1.3 GeV. For the accumulator ring this mostly involves modifications to the injection and extraction sections. A variety of modifications to the existing injection section were necessary to achieve 1 MW, and the tools developed and the lessons learned from this work are now being applied to the design of the new injection section. This paper will discuss the tools and the lessons learned, and also present the design and status of the upgrades to the accumulator ring.

  3. An Upgrade for the Advanced Light Source

    SciTech Connect

    Chemla, Daniel S.; Feinberg, Benedict; Hussain, Zahid; Kirz, Janos; Krebs, Gary F.; Padmore, Howard A.; Robin, David S.; Robinson, Arthur L.; Smith, Neville V.

    2004-09-01

    One of the first third-generation synchrotron light sources, the ALS, has been operating for almost a decade at Berkeley Lab, where experimenters have been exploiting its high brightness for forefront science. However, accelerator and insertion-device technology have significantly changed since the ALS was designed. As a result, the performance of the ALS is in danger of being eclipsed by that of newer, more advanced sources. The ALS upgrade that we are planning includes full-energy, top-off injection with higher storage-ring current and the replacement of five first-generation insertion devices with nine state-of-the art insertion devices and four new application-specific beamlines now being identified in a strategic planning process. The upgrade will help keep the ALS at the forefront of soft x-ray synchrotron light sources for the next two decades.

  4. The Sandia Lightning Simulator Recommissioning and upgrades.

    SciTech Connect

    Martinez, Leonard E.; Caldwell, Michele

    2005-08-01

    The Sandia lightning simulator at Sandia National Laboratories can provide up to 200 kA for a simulated single lightning stroke, 100 kA for a subsequent stroke, and hundreds of Amperes of continuing current. It has recently been recommissioned after a decade of inactivity and the single-stroke capability demonstrated. The simulator capabilities, basic design components, upgrades, and diagnostic capabilities are discussed in this paper.

  5. Upgrade of the ATLAS Tile Calorimeter Electronics

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Tile Calorimeter System, ATLAS

    2015-02-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase-II) where the peak luminosity will increase 5 times compared to the design luminosity (1034 cm-2s-1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expected to happen around 2024. The TileCal upgrade aims at replacing the majority of the on- and off- detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, configuration and detector control. For the off-detector electronics a pre-processor (sROD) is being developed, which takes care of the initial trigger processing while temporarily storing the main data flow in pipeline and derandomizer memories. One demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, is planned to be inserted in ATLAS this year.

  6. Fast sweeping reflectometry upgrade on Tore Supra

    SciTech Connect

    Clairet, F.; Bottereau, C.; Molina, D.; Ducobu, L.; Leroux, F.; Barbuti, A.; Heuraux, S.

    2010-10-15

    In order to study the temporal dynamics of turbulence, the sweep time of our reflectometry has been shortened from 20 to 2 {mu}s with 1 {mu}s dead time. Detailed technical aspects of the upgrade are given, namely, about the stability of the ramp generation, the detection setup, and the fast acquisition module. A review of studies (velocity measurement of the turbulence, modifications of the wavenumber spectrum, radial mapping of correlation time, etc.) offered by such improvements is presented.

  7. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four

  8. Seamounts, Direct Blast and Volume Reverberation Upgrades

    DTIC Science & Technology

    1988-11-30

    Highway. Suits 1204. Arlington, VA 22202-4302. "n to the Office of Management and Budget. Peperworik Reduction Project (0704-0188). Washington. DC 2050M. 1...Subtitle. 5. Funding Numbers. Seamounts, Direct Blast And Volume Reverberation Upgrades proram Eemen No 3 7 85N Project No R02017 6. Author(s). L...Section Pae 1 INTRODUCTION ................................. 1-1 2 ASERT: DATA PREPARATION FOR ASTRAL ........... 2-1 2.1 Overview and Purpose of

  9. Upgrade of the mini spectrum analyzer

    NASA Astrophysics Data System (ADS)

    Montebugnoli, Stelio; Bortolotti, Claudio; Buttaccio, Salvo; Cattani, Alessandro; Maccaferri, Andrea; Maccaferri, Giuseppe; Miani, Cristiano; Orfei, Alessandro; Roma, Mauro; Tuccari, Gino; Amico, Nicola D.; Grueff, Gavril

    1997-01-01

    The upgrade of the mini spectrum analyzer, built at the Medicina radiotelescope station laboratories and devoted to the Jupiter-SL9 crash on July 94, is presented. The new version of the spectrometer allows precise spectroscopy measurements and it has just been used for the Comet Hyakutake observations (May 1996) with very promising results. The same system could be used in small SETI activities with a possible future involvement of the Medicina/Noto antennas in this program.

  10. Upgrading physics packages for LAHET/MCNPX

    SciTech Connect

    Prael, R.E.

    1998-12-31

    A number of the physics capabilities have been upgraded in the development version of LAHET for the eventual use in MCNPX. These include a high-energy generator for particle interactions, complete definition for particle reaction and elastic scattering cross sections, a current mass excess tabulation, and an improved stopping power formulation. These developments are reported in this paper, along with some identification of the areas of continuing effort.

  11. Mobile Telemetry Van Remote Control Upgrade

    DTIC Science & Technology

    2012-05-17

    Advantages of Remote Control System Upgrade • Summary Overview • Remote control of Telemetry Mobile Ground Support ( TMGS ) Van proposed to allow...NWC) personnel provided valuable data for full-function remote control of telemetry tracking vans Background • TMGS Vans support Flight Test...control capability from main TM site at Building 5790 currently allows support via TMGS Van at nearby C- 15 Site, Plant 42 in Palmdale, and as far

  12. Progress on the NSTX Center Stack Upgrade

    SciTech Connect

    L. Dudek, J. Chrzanowski, P. Heitzenroeder, D. Mangra, C. Neumeyer, M. Smith, R. Strykowsky, P. Titus, T. Willard

    2010-09-22

    The National Spherical Torus Experiment (NSTX) will be upgraded to provide increased toroidal field, plasma current and pulse length. This involves the replacement of the so-called center stack, including the inner legs of the Toroidal Field (TF) coil, the Ohmic Heating (OH) coil, and the inner Poloidal Field (PF) coils. In addition the increased performance of the upgrade requires qualification of remaining existing components for higher loads. Initial conceptual design efforts were based on worst-case combinations of possible currents that the power supplies could deliver. This proved to be an onerous requirement and caused many of the outer coils support structures to require costly heavy reinforcement. This has led to the planned implementation of a Digital Coil Protection System (DCPS) to reduce design-basis loads to levels that are more realistic and manageable. As a minimum, all components must be qualified for the increase in normal operating loads with headroom. Design features and analysis efforts needed to meet the upgrade loading are discussed. Mission and features of the DCPS are presented.

  13. Title I Design Report: Fermilab Linac Upgrade

    SciTech Connect

    Fermilab,

    1990-02-01

    The Fermilab Linac Upgrade Project is motivated by the requirement to increase Collider luminosity which will increase the physics discovery potential of the Tevatron Collider. The Linac Upgrade is one of several steps which will increase the Collider luminosity. The basic accelerator physics motivation for the project is the following chain of logic. The existing Main Ring Accelerator has a fixed, relatively small admittance for 8 GeV protons injected from the Booster Accelerator. While it is demonstrably p088ible to increase the number of protons accelerated in the Booster, space charge effects at injection into the Booster from the Linac increase the emittance of the beam delivered from the Booster to the Main Ring beyond the available admittance of the Main Ring. An increase in the energy of the protons injected into the Booster, however, will reduce the emittance growth due to the space charge effects at injection. Therefore, for a given admittance into the Main Ring, a greater number of protons will be accelerated in the Booster with a matching emittance if the injection energy is raised. The goal of the Linac Upgrade is to double the output energy of the Linac from 200MeV to 400MeV.

  14. Upgrading of raw oil into advanced fuel

    SciTech Connect

    Not Available

    1991-10-01

    The overall objective of the research effort is the determination of the minimum processing requirements to produce high energy density fuels (HEDF) having acceptable fuel specifications. The program encompasses assessing current technology capability; selecting acceptable processing and refining schemes; and generating samples of advanced test fuels. The Phase I Baseline Program is intended to explore the processing alternatives for producing advanced HEDF from two raw synfuel feedstocks, one from Mild Coal Gasification as exemplified by the COALITE process and one from Colorado shale oil. Eight key tasks have been identified as follows: (1) Planning and Environmental Permitting; (2) Transporting and Storage of Raw Fuel Sources and Products; (3) Screening of Processing and Upgrading Schemes; (4) Proposed Upgrading Schemes for Advanced Fuel; (5) Upgrading of Raw Oil into Advanced Fuel (6) Packaging and Shipment of Advanced Fuels; (7) Updated Technical and Economic Assessment; and, (8) Final Report of Phase I Efforts. This topical report summarizes the operations and results of the Phase I Task 5 sample preparation program. The specific objectives of Task 5 were to: Perform laboratory characterization tests on the raw COALITE feed, the intermediate liquids to the required hydroprocessing units and final advanced fuels and byproducts; and produce a minimum of 25-gal of Category I test fuel for evaluation by DOE and its contractors.

  15. Criteria development for upgrading computer networks

    NASA Technical Reports Server (NTRS)

    Efe, Kemal

    1995-01-01

    Being an infrastructure system, the computer network has a fundamental role in the day to day activities of personnel working at KSC. It is easily appreciated that the lack of 'satisfactory' network performance can have a high 'cost' for KSC. Yet, this seemingly obvious concept is quite difficult to demonstrate. At what point do we say that performance is below the lowest tolerable level? How do we know when the 'cost' of using the system at the current level of degraded performance exceeds the cost of upgrading it? In this research, we consider the cost and performance factors that may have an effect in decision making in regards to upgrading computer networks. Cost factors are detailed in terms of 'direct costs' and 'subjective costs'. Performance factors are examined in terms of 'required performance' and 'offered performance.' Required performance is further examined by presenting a methodology for trend analysis based on applying interpolation methods to observed traffic levels. Offered performance levels are analyzed by deriving simple equations to evaluate network performance. The results are evaluated in the light of recommended upgrade policies currently in use for telephone exchange systems, similarities and differences between the two types of services are discussed.

  16. Proposal to upgrade the MIPP experiment

    SciTech Connect

    Isenhower, D.; Sadler, M.; Towell, R.; Watson, S.; Peterson, R.J.; Baker, W.; Carey, D.; Christian, D.; Demarteau, M.; Jensen, D.; Johnstone, C.; Meyer, H.; Raja, R.; Ronzhin, A.; Solomey, N.; Wester, W.; Gutbrod, H.; Peters, K.; Feldman, G.; Torun, Y.; Messier, M.D.; /Indiana U. /Iowa U. /Dubna, JINR /Kent State U. /Groningen, KVI /Michigan U. /St. Petersburg, INP /Purdue U. /South Carolina U. /Virginia U. /Wisconsin U., Madison

    2006-09-01

    The upgraded MIPP physics results are needed for the support of NuMI projects, atmospheric cosmic ray and neutrino programs worldwide and will permit a systematic study of non-perturbative QCD interactions. The MIPP TPC is the largest contributor to the MIPP event size by far. Its readout system and electronics were designed in the 1990's and limit it to a readout rate of 60 Hz in simple events and {approx} 20 Hz in complicated events. With the readout chips designed for the ALICE collaboration at the LHC, we propose a low cost scheme of upgrading the MIPP data acquisition speed to 3000 Hz. This will also enable us to measure the medium energy numi target to be used for the NOvA/MINERvA experiments. We outline the capabilities of the upgraded MIPP detector to obtain high statistics particle production data on a number of nuclei that will help towards the understanding and simulation of hadronic showers in matter. Measurements of nitrogen cross sections will permit a better understanding of cosmic ray shower systematics in the atmosphere. In addition, we explore the possibilities of providing tagged neutral beams using the MIPP spectrometer that may be crucial for validating the Particle Flow Algorithm proposed for calorimeters for the International Linear Collider detectors. Lastly, we outline the physics potential of such a detector in understanding non-perturbative QCD processes.

  17. VISIR upgrade overview: all's well that ends well

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Käufl, Hans Ulrich; Tristram, Konrad; Asmus, Daniel; Baksai, Pedro; Di Lieto, Nicola; Dobrzycka, Danuta; Duhoux, Philippe; Finger, Gert; Hummel, Christian; Ives, Derek; Jakob, Gerd; Lundin, Lars; Mawet, Dimitri; Mehrgan, Leander; Pantin, Eric; Riquelme, Miguel; Sanchez, Joel; Sandrock, Stefan; Siebenmorgen, Ralf; Stegmeier, Jörg; Smette, Alain; Taylor, Julian; van den Ancker, Mario; Valdes, Guillermo; Venema, Lars

    2016-08-01

    We present an overview of the VISIR instrument after its upgrade and return to science operations. VISIR is the midinfrared imager and spectrograph at ESO's VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan was based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As AQUARIUS detector array manufactured by Raytheon. In addition, a new prism spectroscopic mode covers the whole N-band in a single observation. Finally, new scientific capabilities for high resolution and high-contrast imaging are offered by sub-aperture mask and coronagraphic modes. In order to make optimal use of favourable atmospheric conditions, a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a user-defined constraint on water vapour. During the commissioning in 2012, it was found that the on-sky sensitivity of the AQUARIUS detector was significantly below expectations. Extensive testing of the detector arrays in the laboratory and on-sky enabled us to diagnose the cause for the shortcoming of the detector as excess low frequency noise. It is inherent to the design chosen for this detector and cannot be remedied by changing the detector set-up. Since this is a form of correlated noise, its impact can be limited by modulating the scene recorded by the detector. After careful analysis, we have implemented fast (up to 4 Hz) chopping with field stabilization using the secondary mirror of the VLT. During commissioning, the upgraded VISIR has been confirmed to be more sensitive than the old instrument, and in particular for low-resolution spectroscopy in the N-band, a gain of a factor 6 is realized in observing efficiency

  18. Upgrade of the LHCb Vertex Locator

    NASA Astrophysics Data System (ADS)

    Leflat, A.

    2014-08-01

    The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a trigger-less system operating at 40 MHz. All data reduction algorithms will be executed in a high-level software farm, with access to all event information. This will enable the detector to run at luminosities of 1-2 × 1033/cm2/s and probe physics beyond the Standard Model in the heavy sector with unprecedented precision. The upgraded VELO must be low mass, radiation hard and vacuum compatible. It must be capable of fast pattern recognition and track reconstruction and will be required to drive data to the outside world at speeds of up to 2.5 Tbit/s. This challenge is being met with a new Vertex Locator (VELO) design based on hybrid pixel detectors positioned to within 5 mm of the LHC colliding beams. The sensors have 55 × 55 μm square pixels and the VELOPix ASIC which is being developed for the readout is based on the Timepix/Medipix family of chips. The hottest ASIC will have to cope with pixel hit rates of up to 900 MHz. The material budget will be optimised with the use of evaporative CO2 coolant circulating in microchannels within a thin silicon substrate. Microchannel cooling brings many advantages: very efficient heat transfer with almost no temperature gradients across the module, no CTE mismatch with silicon components, and low material contribution. This is a breakthrough technology being developed for LHCb. LHCb is also focussing effort on the construction of a lightweight foil to separate the primary and secondary LHC vacua, the development of high speed cables and radiation qualification of the module. The 40 MHz readout will also bring significant conceptual changes to the way in which the upgrade trigger is operated. Work is in progress to incorporate momentum and impact parameter information into the trigger at the earliest possible stage, using the fast pattern recognition capabilities of the upgraded detector. The current status of the VELO upgrade will

  19. On optimal strategies for upgrading networks

    SciTech Connect

    Krumke, S.O.; Noltemeier, H.; Marathe, M.V.; Ravi, S.S.; Ravi, R.; Sundaram, R.

    1996-07-02

    We study {ital budget constrained optimal network upgrading problems}. Such problems aim at finding optimal strategies for improving a network under some cost measure subject to certain budget constraints. Given an edge weighted graph {ital G(V,E)}, in the {ital edge based upgrading model}, it is assumed that each edge {ital e} of the given network has an associated function {ital c(e)} that specifies for each edge {ital e} the amount by which the length {ital l(e)} is to be reduced. In the {ital node based upgrading model} a node {ital v} can be upgraded at an expense of cost {ital (v)}. Such an upgrade reduces the cost of each edge incident on {ital v} by a fixed factor {rho}, where 0 < {rho} < 1. For a given budget, {ital B}, the goal is to find an improvement strategy such that the total cost of reduction is a most the given budget {ital B} and the cost of a subgraph (e.g. minimum spanning tree) under the modified edge lengths is the best over all possible strategies which obey the budget constraint. Define an ({alpha},{beta})-approximation algorithm as a polynomial-time algorithm that produces a solution within {alpha} times the optimal function value, violating the budget constraint by a factor of at most {Beta}. The results obtained in this paper include the following 1. We show that in general the problem of computing optimal reduction strategy for modifying the network as above is {bold NP}-hard. 2. In the node based model, we show how to devise a near optimal strategy for improving the bottleneck spanning tree. The algorithms have a performance guarantee of (2 ln {ital n}, 1). 3. for the edge based improvement problems we present improved (in terms of performance and time) approximation algorithms. 4. We also present pseudo-polynomial time algorithms (extendible to polynomial time approximation schemes) for a number of edge/node based improvement problems when restricted to the class of treewidth-bounded graphs.

  20. A review on optimization production and upgrading biogas through CO2 removal using various techniques.

    PubMed

    Andriani, Dian; Wresta, Arini; Atmaja, Tinton Dwi; Saepudin, Aep

    2014-02-01

    Biogas from anaerobic digestion of organic materials is a renewable energy resource that consists mainly of CH4 and CO2. Trace components that are often present in biogas are water vapor, hydrogen sulfide, siloxanes, hydrocarbons, ammonia, oxygen, carbon monoxide, and nitrogen. Considering the biogas is a clean and renewable form of energy that could well substitute the conventional source of energy (fossil fuels), the optimization of this type of energy becomes substantial. Various optimization techniques in biogas production process had been developed, including pretreatment, biotechnological approaches, co-digestion as well as the use of serial digester. For some application, the certain purity degree of biogas is needed. The presence of CO2 and other trace components in biogas could affect engine performance adversely. Reducing CO2 content will significantly upgrade the quality of biogas and enhancing the calorific value. Upgrading is generally performed in order to meet the standards for use as vehicle fuel or for injection in the natural gas grid. Different methods for biogas upgrading are used. They differ in functioning, the necessary quality conditions of the incoming gas, and the efficiency. Biogas can be purified from CO2 using pressure swing adsorption, membrane separation, physical or chemical CO2 absorption. This paper reviews the various techniques, which could be used to optimize the biogas production as well as to upgrade the biogas quality.

  1. Capability Set 13: Blue Force Tracking Upgrades Offer Greater Situational Awareness

    DTIC Science & Technology

    2012-01-01

    situational awareness picture. Prior to and as part of Capability Set 13, JCR is being fielded to Afghanistan. The system allows Soldiers in battle...Soldier experience and feedback. While JCR is being fielded to troops in Afghan- istan through CS 13, JBC-P, which will bring enhanced on-the-move command...Among the upgrades JCR brings is JCR -Logis- tics, which integrates FBCB2/BFT capability with Movement Tracking System for Army logisticians. The

  2. Methods and apparatuses for preparing upgraded pyrolysis oil

    DOEpatents

    Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

    2013-10-01

    Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

  3. Status of the Cyclotron Institute Upgrade Project

    NASA Astrophysics Data System (ADS)

    Melconian, Dan

    2016-09-01

    The Texas A&M University Re-accelerated EXotics (T-REX) project, an upgrade to the Cyclotron Institute, will provide high-quality re-accelerated secondary beams of a unique energy range and the ability to provide primary beams to two experiments concurrently. The upgrade is nearing completion of its three major tasks: re-commissioning of the existing K150 cyclotron; construction of light- and heavy-ion guide transport systems; and charge-boosting the K150 RIB for re-acceleration using the K500 cyclotron. The light-ion guide transport system will utilize the high intensity (>= 10 μ A) proton beam from the K150 to produce rare ions via fusion-evapouration reactions or proton-induced fission fragments. These ions will be transported to an ECR charge breeder prior to injection in the K500. The heavy-ion guide will use deep inelastic, transfer and fragmentation reactions using the up to 25 MeV/u primary beams from the K150. The products will be separated by a superconducting solenoid and collected in a large gas-catcher, after which a multi-RFQ system will transport the RIB to any of: the charge-breeder and K500; the TAMU Penning Trap beamline; or an MR-TOF for beam analysis. The status of the T-REX upgrade and an overview of its capabilities will be presented Supported by DOE Grant Number DE-FG03-93ER40773 and the Robert A. Welch Foundation Grant Number H-A-0098.

  4. REVIVING AND UPGRADING OF THE EP DEVICE

    SciTech Connect

    Rodriquez, I.; Higinbotham, D.W.

    2008-01-01

    At Thomas Jefferson National Accelerator Facility, an electron beam is used to probe the fundamental properties of the nucleus. In these experiments, it is essential to know the precise energy of the beam. An important instrument along the beamline to measure the beam energy is the eP device. The device measures the scattered electron angle and the recoil proton angle of an elastic collision. From these angle measurements, the beam energy can be calculated. Many eP device components such as computer software, controls, and mechanical parts needed to be upgraded and/or replaced in order for the eP device to be operational again. A research study was conducted of the current hydrogen target and its properties as well as alternate targets for better performance. As the maximum electron beam energy incident on the eP device will soon be upgraded from 6 GeV to 12 GeV, an analysis was also done on potential changes to the position of the electron and proton detectors in order to accommodate this change. Calculations show that for the new energy upgrade, electron detectors need to be positioned at 5° above and below the beamline to measure the energy of 12 GeV. New proton detectors need to be placed at an angle of 49.2° above and below the beamline to measure energies of 6.6 GeV and 8.8 GeV. With these changes the eP device will measure the range of new energies from 2.2 GeV to 12 GeV. From the target research studies it was found that a carbon nanotube mixture with polypropylene could be the ideal target for the eP device because of its high thermal conductivity and its high hydrogen content. The changes made to the eP device demonstrate the importance of continued research and new technologies.

  5. Upgrading the Northern Finland Seismological Network

    NASA Astrophysics Data System (ADS)

    Narkilahti, Janne; Kozlovskaya, Elena; Silvennoinen, Hanna; Hurskainen, Riitta; Nevalainen, Jouni

    2016-04-01

    The Finnish National Seismic Network (FNSN) comprises national Helsinki University Seismological network (HE) ISUH and the Northern Finland Seismological Network (FN) hosted by the Sodankylä Geophysical Observatory (SGO) of the University of Oulu. The FN network currently consists of four real-time permanent stations equipped with Streckeisen STS-2 broad band seismometers that are recording continuous digital seismic data. At present, the network is a part of GEOFON Extended Virtual Network and of the ORFEUS Virtual European Broadband Seismograph Network. In the future, the network will be the part of EPOS-European Plate Observing System research infrastructure. As a part of EPOS project activities, the SGO started to upgrade their own network in 2014. The main target of the network upgrade is to increase the permanent station coverage in the European Arctic region, particularly behind the Polar Circle. Another target is to transform the network into a broadband seismic array capable to detect long-period seismic signals originating from seismic events in the Arctic. The first upgrade phase started in 2014, when two new stations were installed and now are working in the test regime. These stations are used as prototypes for testing seismic equipment and technical solutions for real-time data transmission and vault construction under cold climate conditions. The first prototype station is installed in a surface vault and equipped with Nanometrics Trillium 120P sensor, while the other one is installed in a borehole and equipped with Trillium Posthole seismometer. These prototype stations have provided to us valuable experience on the downhole and surface deployment of broadband seismic instruments. We also have been able to compare the capabilities and performance of high sensitivity broadband sensor deployed in borehole with that deployed in surface vault. The results of operation of prototype stations will be used in site selection and installation of four new

  6. Successful Strategies for Rapidly Upgrading PTC Windchill 9.1 to Windchill 10.1 on a Light Budget

    NASA Technical Reports Server (NTRS)

    Shearrow, Charles A.

    2013-01-01

    Topics covered include: The Frugal Times Historical Upgrade Process; Planning for Possible Constraints; PTC Compatibility Matrix; In-Place Upgrade Process; Pre-Upgrade Activities; Upgrade Activities; Post Upgrade Activities; Results of the Upgrade; Tips for an Upgrade On a Shoestring Budget.

  7. Operation and Upgrades of the LCLS*

    SciTech Connect

    Frisch, J.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Emma, P.; Fisher, A.; Gilevich, S.; Hastings, J.; Hays, G.; Hering, P.; Huang, Z.; Iverson, R.; /SLAC /Argonne /SLAC

    2010-10-27

    The LCLS FEL began user operations in September 2009 with photon energies from 800eV to 2 KeV and pulse energies above 2 mJ. Both long pulse (50-200 femtosecond FWHM) and short pulse (<10 femtosecond FWHM at 150 uJ) pulses were delivered at user request. In addition the FEL was operated at fundamental photon energies up to 10 KeV in preparation for hard X-ray experiments. FEL operating parameters, performance and reliability results will be presented, in addition to plans for upgrades to the facility.

  8. Upgrade of the area II spectrograph

    SciTech Connect

    Rehm, K.E.; Bolduc, C.

    1995-08-01

    Because of the low beam energies required for experiments of astrophysical interest, the first test experiments with radioactive {sup 18}F beams can be performed in Area II. Because of the shorter distances between ion source and detector this also results in higher transmission efficiencies. The Enge split-pole spectrograph, which was not used during the last 8 years, was equipped with a new cryopump system, upgrades to the magnet power supply and the NMR system were performed. A rotating target system was built which should alleviate target deterioration effects that were observed in first test experiments.

  9. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect

    Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

  10. Commissioning Simulations for the APS Upgrade Lattice

    SciTech Connect

    Sajaev, V.; Borland, M.

    2015-01-01

    A hybrid seven-bend-achromat lattice that features very strong focusing elements and a relatively small vacuum chamber has been proposed for the APS upgrade. Achieving design lattice parameters during commissioning will need to be accomplished quickly in order to minimize dark time for APS users. The paper will describe start-to-end simulation of the machine commissioning beginning from first-turn trajectory correction, progressing to orbit and lattice correction, and culminating in evaluation of the nonlinear performance of the corrected lattice

  11. Alaska Seismic Network Upgrade and Expansion

    NASA Astrophysics Data System (ADS)

    Sandru, J. M.; Hansen, R. A.; Estes, S. A.; Fowler, M.

    2009-12-01

    AEIC (Alaska Earthquake Information Center) has begun the task of upgrading the older regional seismic monitoring sites that have been in place for a number of years. Many of the original sites (some dating to the 1960's) are still single component analog technology. This was a very reasonable and ultra low power reliable system for its day. However with the advanced needs of today's research community, AEIC has begun upgrading to Broadband and Strong Motion Seismometers, 24 bit digitizers and high-speed two-way communications, while still trying to maintain the utmost reliability and maintaining low power consumption. Many sites have been upgraded or will be upgraded from single component to triaxial broad bands and triaxial accerometers. This provided much greater dynamic range over the older antiquated technology. The challenge is compounded by rapidly changing digital technology. Digitizersand data communications based on analog phone lines utilizing 9600 baud modems and RS232 are becoming increasingly difficult to maintain and increasingly expensive compared to current methods that use Ethernet, TCP/IP and UDP connections. Gaining a reliable Internet connection can be as easy as calling up an ISP and having a DSL connection installed or may require installing our own satellite uplink, where other options don't exist. LANs are accomplished with a variety of communications devices such as spread spectrum 900 MHz radios or VHF radios for long troublesome shots. WANs are accomplished with a much wider variety of equipment. Traditional analog phone lines are being used in some instances, however 56K lines are much more desirable. Cellular data links have become a convenient option in semiurban environments where digital cellular coverage is available. Alaska is slightly behind the curve on cellular technology due to its low population density and vast unpopulated areas but has emerged into this new technology in the last few years. Partnerships with organizations

  12. RHIC BPM SYSTEM PERFORMANCE, UPGRADES, AND TOOLS.

    SciTech Connect

    SATOGATA,T.; CAMERON,P.; CERNIGLIA,P.; CUPOLO,J.; DAWSON,C.; DEGEN,C.; MEAD,J.; PTITSYN,V.; SIKORA,R.

    2002-06-02

    During the RHIC 2001-2 run, the beam position monitor (BPM) system provided independent average orbit and turn-by-turn (TBT) position measurements at 162 locations in each measurement plane and RHIC ring. TBT acquisition was successfully upgraded from 128 turns to 1024 turns per trigger, including injection. Closed orbits were acquired and automatically archived every two seconds through each acceleration ramp for orbit analysis and feed-forward orbit correction. This paper presents the overall system performance during this run, including precision, reproducibility, radiation damage, and analysis tools. We also summarize future plans, including million-turn TBT acquisition for nonlinear dynamics studies.

  13. Electron cyclotron heating in TMX-Upgrade

    SciTech Connect

    Stallard, B.W.; Hooper, E.B. Jr.

    1981-01-01

    TMX-Upgrade, an improved tandem mirror experiment under construction at LLNL, will use electron cyclotron resonance heating (ECRH) to create thermal barriers and to increase the center cell ion confining potential. Gyrotron oscillators (200 kW, 28 GHz) supply the heating power for the potential confined electron (fundamental heating) and the mirror-confined electrons (harmonic heating) in the thermal barriers. Important issues are temperature limitation and microstability for the hot electrons. Off-midplane heating can control anisotropy-driven microstability. Spacially restricting heating offers the possibility of temperature control by limiting the energy for resonant interaction.

  14. An upgraded SCUBA-2 for JCMT

    NASA Astrophysics Data System (ADS)

    Bintley, Dan; Dempsey, Jessica T.; Friberg, Per; Holland, Wayne S.; MacIntosh, Michael J.

    2016-07-01

    SCUBA-2 is a state of the art wide field camera on the JCMT. SCUBA-2 has been fully operational since November 2011, producing a wide range of science results, including a unique series of survey programs. A new large survey programme commenced in 2015, which included for the first time, polarisation sensitive measurements using POL-2, the polarimeter ancillary instrument. We discuss proposals and the science case for upgrading SCUBA-2 with new detector arrays that will keep SCUBA-2 and the JCMT at the forefront of continuum submillimetre science.

  15. Upgrading of existing structures. Final report on phase 2

    SciTech Connect

    Gabrielsen, B.L.; Tansely, R.S.; Cuzner, G.

    1980-06-01

    This report presents the results of an investigation of blast upgrading of existing structures, which consisted of developing failure prediction methodologies for various structure types, both in 'as built' and in upgraded configurations, and verifying these prediction techniques with full-scale load tests. These upgrading schemes were developed for use as shelters in support of Civil Defense crisis relocation planning. Structure types investigated included wood, steel, and concrete floor and roof systems. The results of this study are being used in the development of a shelter manual presenting the various upgrading concepts in an illustrative workbook form for use in the field.

  16. Efficient carbon rejection upgrades Mexico's Maya crude oil

    SciTech Connect

    Suchanek, A.J.; Moore, A.S.

    1986-08-01

    Poor-quality crude oils and resids can be effectively upgraded by a chemically efficient carbon-rejection process followed by hydrotreating. The effectiveness is demonstrated by utilizing the asphalt residual treating (ART) process to upgrade whole Maya crude oil from Mexico, in a 100,000-b/d refinery. Maya was chosen because it represents most of the world's poor-quality crude oils and resids, and because the results of processing Maya will be similar for other poor-quality feed stocks. Here is a review of the upgrade process, along with investment and operating economics of the Maya upgrade.

  17. FPGA-based algorithms for the new trigger system for the phase 2 upgrade of the CMS drift tubes detector

    NASA Astrophysics Data System (ADS)

    Cela-Ruiz, J.-M.

    2017-01-01

    The new luminosity conditions imposed after the LHC upgrade will require a dedicated upgrade of several subdetectors. To cope with the new requirements, CMS drift tubes subdetector electronics will be redesigned in order to achieve the new foreseen response speed. In particular, it is necessary to enhance the first stage of the trigger system (L1A). In this document we present the development of a software algorithm, based on the mean timer paradigm, capable of reconstructing muon trajectories and rejecting spurious signals. It has been initially written in C++ programming language, but designed with its portability to a FPGA VHDL code in mind.

  18. Upgrade of the Dow TRIGA research reactor

    SciTech Connect

    Kocher, C.W.

    1991-11-01

    Useful operation of the Dow TRIGA{sup a} research reactor over a period of >20 years has led to a commitment to upgrades enabling another two decades of use with increased capabilities. The reactor utilization program and the upgrades are described in this paper. These included requesting a 20-yr license instead of the 10-yr license, which had been used previously; changing the license to allow operation at power levels of up to 300 kW, which provided improved analytical sensitivity; adding fuel elements to the core, which allowed better performance at the higher power levels; renovating the laboratories, which included consolidating the radioactive materials handling areas and improving the sample preparation areas; installing new shielding, detectors, computers, and sample-handling robots for greater productivity and sensitivity; replacing the 1967-1974 era control console and renovating the control rod drives to provide greater safety, reliability, and maintenance capabilities; and identifying, training, and licensing more senior reactor operators to allow the staff to continue operating and improving this system well past the turn of the century.

  19. The COMPASS RICH-1 detector upgrade

    NASA Astrophysics Data System (ADS)

    Abbon, P.; Alekseev, M.; Angerer, H.; Apollonio, M.; Birsa, R.; Bordalo, P.; Bradamante, F.; Bressan, A.; Busso, L.; Chiosso, M.; Ciliberti, P.; Colantoni, M. L.; Costa, S.; Dalla Torre, S.; Dafni, T.; Delagnes, E.; Deschamps, H.; Diaz, V.; Dibiase, N.; Duic, V.; Eyrich, W.; Faso, D.; Ferrero, A.; Finger, M.; Finger, M., Jr.; Fischer, H.; Gerassimov, S.; Giorgi, M.; Gobbo, B.; Hagemann, R.; von Harrach, D.; Heinsius, F. H.; Joosten, R.; Ketzer, B.; Königsmann, K.; Kolosov, V. N.; Konorov, I.; Kramer, D.; Kunne, F.; Lehmann, A.; Levorato, S.; Maggiora, A.; Magnon, A.; Mann, A.; Martin, A.; Menon, G.; Mutter, A.; Nähle, O.; Nerling, F.; Neyret, D.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pesaro, G.; Polak, J.; Rebourgeard, P.; Robinet, F.; Rocco, E.; Schiavon, P.; Schill, C.; Schröder, W.; Silva, L.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Svec, M.; Tessarotto, F.; Teufel, A.; Wollny, H.

    2008-08-01

    The COMPASS experiment at CERN provides hadron identification in a wide momentum range employing a large size gaseous Ring Imaging CHerenkov detector (RICH). The presence of large uncorrelated background in the COMPASS environment was limiting the efficiency of COMPASS RICH-1 in the very forward regime. A major upgrade of RICH-1 required a new technique for Cherenkov photon detection at count rates of several 106/s per channel in the central detector part, and a read-out system allowing for trigger rates of up to 100 kHz. To cope with these requirements, the photon detectors of the central region have been replaced with a fast photon detection system described here, while, in the peripheral regions, the existing multi-wire proportional chambers with CsI photo-cathodes have been equipped with a new read-out system based on APV preamplifiers and flash ADC chips. The new system consists of multi-anode photomultiplier tubes (MAPMTs) coupled to individual fused silica lens telescopes, and fast read-out electronics based on the MAD4 amplifier-discriminator and the dead-time free F1 TDC chip. The project was completely designed and implemented in less than two years: The upgraded detector is in operation since the 2006 CERN SPS run. We present the photon detection design, constructive aspects and test studies to characterise the single photon response of the MAPMTs coupled to the read-out system as well as the detector performance based on the 2006 data.

  20. APS deposition facility upgrades and future plans

    NASA Astrophysics Data System (ADS)

    Conley, Ray; Shi, Bing; Erdmann, Mark; Izzo, Scott; Assoufid, Lahsen; Goetze, Kurt; Mooney, Tim; Lauer, Kenneth

    2014-09-01

    The Advanced Photon Source (APS) has recently invested resources to upgrade or replace aging deposition systems with modern equipment. Of the three existing deposition systems, one will receive an upgrade, while two are being replaced. A design which adds a three-substrate planetary for the APS rotary deposition system is almost complete. The replacement for the APS large deposition system, dubbed the "Modular Deposition System", has been conceptually designed and is in the procurement process. Eight cathodes will sputter horizontally on mirrors up to 1.5 meters in length. This new instrument is designed to interface with ion-milling instruments and various metrology equipment for ion-beam figuring. A third linear machine, called the APS Profile Coating System, has two cathodes and is designed to accept substrates up to 200mm in length. While this machine is primarily intended for fabrication of figured KB mirrors using the profile-coating technique, it has also been used to produce multilayer monochromators for beamline use.

  1. On-line upgrade of program modules

    NASA Technical Reports Server (NTRS)

    Waldrop, Raymond S.; Volz, Richard A.; Smith, Gary W.; Holzbacher-Valero, A. A.; Goldsack, S. J.

    1993-01-01

    This paper presents a taxonomy of problems that must be solved in order to achieve on-line upgradability of long-lived programs, and presents a solution to the fundamental problems in the taxonomy. The solutions are based upon AdaPT, a set of language extensions designed to aid in the distribution of a single Ada program. AdaPT introduces three major units, the public, the partition, and the node. Publics are primarily used to share type information. Partitions are the basic units of distribution while nodes are used to control the configuration of the program. Nodes and partitions can be created dynamically via the allocator. A node-level routine controls the replacement process. The controlling node creates a new instance of the routine being replaced; the run-time system must ensure that the new instance is the updated one. Once access to the new version has been established, all further calls to the module are redirected to the new version and the caller is informed of the change so that it may make subsequent calls directly. When a module is being upgraded, there is a transition period during which both the old and new versions are present. We require that clients of a potentially replaceable module 'check in' with the controlling node. The controlling node keeps track of the number of clients that have been redirected to the replacement. When all have been redirected, the old version can be deallocated.

  2. Leak detection system upgrades Cochin pipeline

    SciTech Connect

    Wray, B.; O`Leary, C.

    1996-02-01

    Amoco Canada`s Cochin pipeline system consists of 1,900 miles of 12-inch pipeline, 31 pump stations, eight injection/delivery stations and five propane terminals. It originates just northeast of Edmonton and crosses into the US in North Dakota, runs south of Lake Michigan, turns northeast to pass through Detroit and terminates in Sarnia, Ontario. In 1991, it was decided to significantly upgrade facilities for operating the Cochin pipeline. The control center hardware was obsolete, including parts and components no longer available. Also, SCADA and modeling software was no longer supported by outside vendors or consultants and there was only limited in-house support available. The land-based communications system was unreliable and expensive. Goals for the upgrade project included maintaining (improving) reliability and minimizing operating risks. Amoco Canada wanted to ensure reliable operations and support, provide reliable and effective leak detection, establish dependable communications, have the capability to respond to market additions or changes and maintain customer and regulatory confidence. Another important goal was to minimize operating costs. Specifically, methods were sought to minimize power costs, communications expense and support and maintenance expenditures while eliminating non-productive work. This paper reviews the resulting design and performance of this system.

  3. Upgrades to the TPSX Material Properties Database

    NASA Technical Reports Server (NTRS)

    Squire, T. H.; Milos, F. S.; Partridge, Harry (Technical Monitor)

    2001-01-01

    The TPSX Material Properties Database is a web-based tool that serves as a database for properties of advanced thermal protection materials. TPSX provides an easy user interface for retrieving material property information in a variety of forms, both graphical and text. The primary purpose and advantage of TPSX is to maintain a high quality source of often used thermal protection material properties in a convenient, easily accessible form, for distribution to government and aerospace industry communities. Last year a major upgrade to the TPSX web site was completed. This year, through the efforts of researchers at several NASA centers, the Office of the Chief Engineer awarded funds to update and expand the databases in TPSX. The FY01 effort focuses on updating correcting the Ames and Johnson thermal protection materials databases. In this session we will summarize the improvements made to the web site last year, report on the status of the on-going database updates, describe the planned upgrades for FY02 and FY03, and provide a demonstration of TPSX.

  4. Compression station upgrades include advanced noise reduction

    SciTech Connect

    Dunning, V.R.; Sherikar, S.

    1998-10-01

    Since its inception in the mid-`80s, AlintaGas` Dampier to Bunbury natural gas pipeline has been constantly undergoing a series of upgrades to boost capacity and meet other needs. Extending northward about 850 miles from near Perth to the northwest shelf, the 26-inch line was originally served by five compressor stations. In the 1989-91 period, three new compressor stations were added to increase capacity and a ninth station was added in 1997. Instead of using noise-path-treatment mufflers to reduce existing noise, it was decided to use noise-source-treatment technology to prevent noise creation in the first place. In the field, operation of these new noise-source treatment attenuators has been very quiet. If there was any thought earlier of guaranteed noise-level verification, it is not considered a priority now. It`s also anticipated that as AlintaGas proceeds with its pipeline and compressor station upgrade program, similar noise-source treatment equipment will be employed and retrofitted into older stations where the need to reduce noise and potential radiant-heat exposure is indicated.

  5. The Phase1 CMS Pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Tavolaro, V. R.

    2016-12-01

    The pixel detector of the CMS experiment will be replaced in an extended end-of-year shutdown during winter 2016/2017 with an upgraded one able to cope with peak instantaneous luminosities beyond the nominal LHC instantaneous luminosity of 1 × 1034 cm-2 s-1. Under the conditions expected in the coming years, which will see an increase of a factor two in instantaneous luminosity, the present system would experience a dynamic inefficiency caused mainly by data losses due to buffer overflows. The Phase I upgrade of the CMS pixel detector, described in this paper, will operate at full efficiency at an instantaneous luminosity of 2 × 1034 cm-2 s-1 and beyond, thanks to a new readout chip. The new detector will feature one additional tracking point both in the barrel and in the forward regions, while reducing the material budget as a result of a new CO2 cooling system and optimised layout of the services. In this paper, the design and the technological choices of the Phase I detector will be reviewed and the status of the construction of the detector and the performance of its components will be discussed.

  6. CEBAF Upgrade: Cryomodule Performance And Lessons Learned

    SciTech Connect

    Drury, Michael A.; Davis, G. Kirk; Hogan, John P.; Hovater, J. Curt; King, Lawrence; Marhauser, Frank; Park, HyeKyoung; Preble, Joe; Reece, Charles E.; Rimmer, Robert A.; Wang, Haipeng; Wiseman, Mark A.

    2014-02-01

    The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the 12 GeV Upgrade is a doubling of the available beam energy of the Continuous Electron Beam Accelerator Facility (CEBAF) from 6 GeV to 12 GeV. This increase in beam energy will be due in large part to the addition of ten C100 cryomodules plus associated new RF in the CEBAF linacs. The C100 cryomodules are designed to deliver 100 MeV per installed cryomodule. Each C100 cryomodule is built around a string of eight seven-cell, electro-polished, superconducting RF cavities. While an average performance of 100MV per cryomodule is needed to achieve the overall 12 GeV beam energy goal, the actual performance goal for the cryomodules is an average energy gain of 108 MV to provide operational headroom. Cryomodule production started in December 2010. All ten of the C100 cryomodules are installed in the linac tunnels and are on schedule to complete commissioning by September 2013. Performance during Commissioning has ranged from 104 MV to 118 MV. In May, 2012 a test of an early C100 achieved 108 MV with full beam loading. This paper will discuss the performance of the C100 cryomodules along with operational challenges and lessons learned for future designs.

  7. Readout of the upgraded ALICE-ITS

    NASA Astrophysics Data System (ADS)

    Szczepankiewicz, A.

    2016-07-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb-Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  8. Simulating Avionics Upgrades to the Space Shuttles

    NASA Technical Reports Server (NTRS)

    Deger, Daniel; Hill, Kenneth; Braaten, Karsten E.

    2008-01-01

    Cockpit Avionics Prototyping Environment (CAPE) is a computer program that simulates the functions of proposed upgraded avionics for a space shuttle. In CAPE, pre-existing space-shuttle-simulation programs are merged with a commercial-off-the-shelf (COTS) display-development program, yielding a package of software that enables high-fi46 NASA Tech Briefs, September 2008 delity simulation while making it possible to rapidly change avionic displays and the underlying model algorithms. The pre-existing simulation programs are Shuttle Engineering Simulation, Shuttle Engineering Simulation II, Interactive Control and Docking Simulation, and Shuttle Mission Simulator playback. The COTS program Virtual Application Prototyping System (VAPS) not only enables the development of displays but also makes it possible to move data about, capture and process events, and connect to a simulation. VAPS also enables the user to write code in the C or C++ programming language and compile that code into the end-product simulation software. As many as ten different avionic-upgrade ideas can be incorporated in a single compilation and, thus, tested in a single simulation run. CAPE can be run in conjunction with any or all of four simulations, each representing a different phase of a space-shuttle flight.

  9. Status and Physics Opportunities of the STAR Heavy Flavor Tracker and the Muon Telescope Detector Upgrades

    NASA Astrophysics Data System (ADS)

    Hao, Qiu; Star Collaboration

    2014-05-01

    The STAR Collaboration will complete the Heavy Flavor Tracker (HFT) and the Muon Telescope Detector (MTD) upgrades by 2014. HFT utilizes the state-of-art active pixel detector technology, which will greatly enhance the STAR physics capabilities by measuring heavy quark yield, collectivity and correlations via the topological reconstruction of charmed hadrons over a wide momentum range. The MTD is based on the long Multi-Gap Resistive Plate Chamber detector technology designed to measure muons penetrating the bulk of other detectors and the magnet yoke. It will enable STAR to study di-muon and electron-muon correlations and enhance heavy quarkonium studies. With the addition of these upgrades, STAR is well suited to perform precise measurements of production as well as correlations of rare probes (heavy flavors, dileptons) to systematically investigate the quark-gluon plasma properties at RHIC. For Run 13 63% of the MTD has been installed and data have been taken. Prototype PXL sectors (30% coverage) have also been installed and commissioned. Anticipated physics results and current status of these upgrades is reported.

  10. Benefits of Advanced Control Room Technologies: Phase One Upgrades to the HSSL, Research Plan, and Performance Measures

    SciTech Connect

    Le Blanc, Katya; Joe, Jeffrey; Rice, Brandon; Ulrich, Thomas; Boring, Ronald

    2015-05-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control room. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes the initial upgrades to the HSSL and outlines the methodology for a pilot test of the HSSL configuration.

  11. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 11, March 21, 1992--June 20, 1992

    SciTech Connect

    Tsotsis, T.T.

    1992-12-31

    Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. Having the inherent capability for combining reaction and separation in a single step, they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, such as these typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. This project will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. Development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  12. Initial results of the high resolution edge Thomson scattering upgrade at DIII-Da)

    NASA Astrophysics Data System (ADS)

    Eldon, D.; Bray, B. D.; Deterly, T. M.; Liu, C.; Watkins, M.; Groebner, R. J.; Leonard, A. W.; Osborne, T. H.; Snyder, P. B.; Boivin, R. L.; Tynan, G. R.

    2012-10-01

    Validation of models of pedestal structure is an important part of predicting pedestal height and performance in future tokamaks. The Thomson scattering diagnostic at DIII-D has been upgraded in support of validating these models. Spatial and temporal resolution, as well as signal to noise ratio, have all been specifically enhanced in the pedestal region. This region is now diagnosed by 20 view-chords with a spacing of 6 mm and a scattering length of just under 5 mm sampled at a nominal rate of 250 Hz. When mapped to the outboard midplane, this corresponds to ˜3 mm spacing. These measurements are being used to test critical gradient models, in which pedestal gradients increase in time until a threshold is reached. This paper will describe the specifications of the upgrade and present initial results of the system.

  13. Overview of large area triple-GEM detectors for the CMS forward muon upgrade

    NASA Astrophysics Data System (ADS)

    Abbaneo, D.; Abbas, M.; Abbrescia, M.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Aleksandrov, A.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F. R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Garcia, A. Conde; Czellar, S.; Dabrowski, M. M.; De Lentdecker, G.; De Oliveira, R.; de Robertis, G.; Dildick, S.; Dorney, B.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R. M.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y. G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P. K.; Mandal, K.; Marchioro, A.; Marinov, A.; Majumdar, N.; Merlin, J. A.; Mitselmakher, G.; Mohanty, A. K.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L. M.; Paolucci, P.; Park, I.; Passeggio, G.; Pavlov, B.; Philipps, B.; Piccolo, D.; Postema, H.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Ryu, G.; Ryu, M. S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Shah, A. H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S. K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Vai, I.; Stenis, M. Van; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2017-02-01

    In order to cope with the harsh environment expected from the high luminosity LHC, the CMS forward muon system requires an upgrade. The two main challenges expected in this environment are an increase in the trigger rate and increased background radiation leading to a potential degradation of the particle ID performance. Additionally, upgrades to other subdetectors of CMS allow for extended coverage for particle tracking, and adding muon system coverage to this region will further enhance the performance of CMS. Following an extensive R&D program, CMS has identified triple-foil gas electron multiplier (GEM) detectors as a solution for the first muon station in the region 1.6 < | η | < 2.2, while continuing R&D is ongoing for additional regions.

  14. Electron cyclotron emission radiometer upgrade on the Joint European Torus (JET) tokamak

    SciTech Connect

    Luna, E. de la; Sanchez, J.; Tribaldos, V.; Conway, G.; Suttrop, W.; Fessey, J.; Prentice, R.; Gowers, C.; Chareau, J. M.

    2004-10-01

    The capabilities of the Joint European Torus (JET) electron cyclotron emission (ECE) diagnostics have recently been extended with an upgrading of the heterodyne radiometer. The number of channels has been doubled to 96 channels, with a frequency separation corresponding to <1 cm for JET magnetic field gradient, and with a frequency response of 1 MHz. This enhancement has increased the radial coverage of the ECE electron temperature measurements in JET to approximately the full plasma column (limited at R>2.6 m for the X-mode due to harmonic overlap) at almost all magnetic field values used at JET (1.7 Tupgraded radiometer is presented along with some results showing its performance.

  15. The CDF II eXtremely fast tracker upgrade

    SciTech Connect

    Abulencia, A.; Azzurri, P.; Cochran, E.; Dittmann, J.; Donati, S.; Efron, J.; Erbacher, R.; Errede, D.; Fedorko, I.; Flanagan, G.; Forrest, R.; /Illinois U., Urbana /INFN, Pisa /Pisa U. /Ohio State U. /Baylor U. /UC, Davis /Athens Natl. Capodistrian U. /Purdue U. /Fermilab

    2006-09-01

    The CDF II Extremely Fast Tracker is the trigger track processor which reconstructs charged particle tracks in the transverse plane of the CDF II central outer tracking chamber. The system is now being upgraded to perform a three dimensional track reconstruction. A review of the upgrade is presented here.

  16. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, R.; Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  17. TMX-Upgrade neutral-beam injection system

    SciTech Connect

    Felker, B.; Kane, R.J.; Wong, R.L.; Calderon, M.O.; Moore, T.L.

    1981-10-05

    The TMX experiment proved that axial confinement of central-cell ions is improved ninefold by the electrostatic potential of end-cell plasmas. The TMX Upgrade task is to improve this confinement further. This paper discusses the injector system aspects of the TMX Upgrade.

  18. 40 CFR 280.21 - Upgrading of existing UST systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Upgrading of existing UST systems. 280.21 Section 280.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... STORAGE TANKS (UST) UST Systems: Design, Construction, Installation and Notification § 280.21 Upgrading...

  19. 40 CFR 280.21 - Upgrading of existing UST systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Upgrading of existing UST systems. 280.21 Section 280.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... STORAGE TANKS (UST) UST Systems: Design, Construction, Installation and Notification § 280.21 Upgrading...

  20. 40 CFR 280.21 - Upgrading of existing UST systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Upgrading of existing UST systems. 280.21 Section 280.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... STORAGE TANKS (UST) UST Systems: Design, Construction, Installation and Notification § 280.21 Upgrading...

  1. Operational test report integrated system test (ventilation upgrade)

    SciTech Connect

    HARTY, W.M.

    1999-10-05

    Operational Final Test Report for Integrated Systems, Project W-030 (Phase 2 test, RECIRC and HIGH-HEAT Modes). Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks, including upgraded vapor space cooling and filtered venting of tanks AY101, Ay102, AZ101, AZ102.

  2. 25 CFR 175.40 - Financing of extensions and upgrades.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Financing of extensions and upgrades. 175.40 Section 175.40 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER... extend or upgrade its electric system to serve additional loads (new or increased loads). (b) If...

  3. 25 CFR 175.40 - Financing of extensions and upgrades.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Financing of extensions and upgrades. 175.40 Section 175.40 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER... extend or upgrade its electric system to serve additional loads (new or increased loads). (b) If...

  4. 25 CFR 175.40 - Financing of extensions and upgrades.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Financing of extensions and upgrades. 175.40 Section 175.40 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER... extend or upgrade its electric system to serve additional loads (new or increased loads). (b) If...

  5. 25 CFR 175.40 - Financing of extensions and upgrades.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Financing of extensions and upgrades. 175.40 Section 175.40 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER... extend or upgrade its electric system to serve additional loads (new or increased loads). (b) If...

  6. 25 CFR 175.40 - Financing of extensions and upgrades.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Financing of extensions and upgrades. 175.40 Section 175.40 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER... extend or upgrade its electric system to serve additional loads (new or increased loads). (b) If...

  7. Upgrade of the ALICE muon trigger electronics

    NASA Astrophysics Data System (ADS)

    Dupieux, P.; Joly, B.; Jouve, F.; Manen, S.; Vandaële, R.

    2014-09-01

    The ALICE muon trigger is a large scale detector based on single gap bakelite RPCs. An upgrade of the electronics is needed in order to withstand the increase of luminosity after the LHC Long Shutdown-2 in 2018-2019. The detector will be read out at the minimum bias rate of 100 kHz in Pb-Pb collisions (including a safety factor of 2), two orders of magnitude above the present design. For the most exposed RPCs and in the present conditions of operation, the total integrated charge could be as high as 100 mC/cm2 with rates up to 100 Hz/cm2, which is above the present limit for safe operation. In order to overcome these limitations, upgrade projects of the Front-End (FE) and Readout Electronics are scheduled. The readout upgrade at high rate with low dead time requires changing most of the present electronics. It involves a new design for the 234 Local cards receiving the LVDS signals from the FE electronics and the 16 Regional concentrator cards. The readout chain is completed by a single Common Readout Unit developed for most ALICE sub-detectors. The new architecture of the muon trigger readout will be briefly presented. The present FE electronics, designed for the streamer mode, must be replaced to prevent ageing of the RPCs in the future operating conditions. The new FE called FEERIC (for Front-End Electronics Rapid Integrated Circuit) will have to perform amplification of the analog input signals. This will allow for RPC operation in a low-gain avalanche mode, with a much smaller charge deposit (factor 3-5) in the detector as compared to the present conditions. The purpose is to discriminate RPC signals with a charge threshold around 100 fC, in both polarities, and with a time jitter below 1 ns. We will describe the FE card and FEERIC ASIC features and first prototype performance, report on test results obtained on a cosmic test bench and discuss ongoing developments.

  8. The 12 GeV Energy Upgrade at Jefferson Laboratory

    SciTech Connect

    Pilat, Fulvia C.

    2012-09-01

    Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

  9. Steam turbine upgrading: low-hanging fruit

    SciTech Connect

    Peltier, R.

    2006-04-15

    The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

  10. Online track processor for the CDF upgrade

    SciTech Connect

    E. J. Thomson et al.

    2002-07-17

    A trigger track processor, called the eXtremely Fast Tracker (XFT), has been designed for the CDF upgrade. This processor identifies high transverse momentum (> 1.5 GeV/c) charged particles in the new central outer tracking chamber for CDF II. The XFT design is highly parallel to handle the input rate of 183 Gbits/s and output rate of 44 Gbits/s. The processor is pipelined and reports the result for a new event every 132 ns. The processor uses three stages: hit classification, segment finding, and segment linking. The pattern recognition algorithms for the three stages are implemented in programmable logic devices (PLDs) which allow in-situ modification of the algorithm at any time. The PLDs reside on three different types of modules. The complete system has been installed and commissioned at CDF II. An overview of the track processor and performance in CDF Run II are presented.

  11. BESIII ETOF upgrade readout electronics commissioning

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Zhuang; Dai, Hong-Liang; Wu, Zhi; Heng, Yue-Kun; Zhang, Jie; Cao, Ping; Ji, Xiao-Lu; Li, Cheng; Sun, Wei-Jia; Wang, Si-Yu; Wang, Yun

    2017-01-01

    It is proposed to upgrade the endcap time-of-flight (ETOF) of the Beijing Spectrometer III (BESIII) with a multi-gap resistive plate chamber (MRPC), aiming at an overall time resolution of about 80 ps. After completing the entire readout electronics system, some experiments, such as heat radiation, radiation hardness and large-current beam tests, have been carried out to confirm the reliability and stability of the readout electronics. An on-detector test of the readout electronics has also been performed with the beam at the BEPCII E3 line. The test results indicate that the readout electronics system fulfills its design requirements. Supported by Chinese Academy of Sciences (1G201331231172010)

  12. RICH upgrade: Current status and future perspectives

    NASA Astrophysics Data System (ADS)

    Pistone, A.; LHCb RICH Collaboration

    2016-01-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The second long shutdown of the LHC is currently scheduled to begin in 2018. During this period the LHCb experiment with all its sub-detectors will be upgraded in order to run at an instantaneous luminosity of 2 × 10^{33} cm-2s-1 and to read out data at a rate of 40MHz into a flexible software-based trigger. The Ring Imaging CHerenkov (RICH) system will require new photon detectors and modifications of the optics of the upstream detector. Tests of the prototype of the smallest constituent of the new RICH system have been performed during testbeam sessions at the Test Beam Facility SPS North Area (CERN) in Autumn 2014.

  13. CDF End Plug calorimeter Upgrade Project

    SciTech Connect

    Apollinari, G.; de Barbaro, P.; Mishina, M.

    1994-01-01

    We report on the status of the CDF End Plug Upgrade Project. In this project, the CDF calorimeters in the end plug and the forward regions will be replaced by a single scintillator based calorimeter. After an extensive R&D effort on the tile/fiber calorimetry, we have now advanced to a construction phase. We review the results of the R&D leading to the final design of the calorimeters and the development of tooling devised for this project. The quality control program of the production of the electromagnetic and hadronic calorimeters is described. A shower maximum detector for the measurement of the shower centroid and the shower profile of electrons, {gamma} and {pi}{sup 0} has been designed. Its performance requirements, R&D results and mechanical design are discussed.

  14. UPGRADING NATURAL GAS VIA MEMBRANE SEPARATION PROCESSES

    SciTech Connect

    S.A.Stern; P.A. Rice; J. Hao

    2000-03-01

    The objective of the present study is to assess the potential usefulness of membrane separation processes for removing CO{sub 2} and H{sub 2}S from low-quality natural gas containing substantial amounts of both these ''acid'' gases, e.g., up to 40 mole-% CO{sub 2} and 10 mole-% H{sub 2}S. The membrane processes must be capable of upgrading the crude natural gas to pipeline specifications ({le} 2 mole-% CO{sub 2}, {le} 4 ppm H{sub 2}S). Moreover, these processes must also be economically competitive with the conventional separation techniques, such as gas absorption, utilized for this purpose by the gas industry.

  15. Upgrading and refurbishing coal-handling systems

    SciTech Connect

    Strauss, S.D.

    1983-03-01

    Case histories presented at the Coal Technology '82 meetings are singled out in this article as examples of integrated attacks on coal-handling problems. At the Ohio Edison Co. Sammis Plant the conveyor passed over a public highway, and fugitive coal rained on passing vehicles. Four belt cleaners and a modified gas reducer were installed. Belt-cleaning systems were then installed throughout the plant. At the Con Edison Arthur Kill station coal-receiving facilities, coal conveyors, and ash-handling systems were upgraded. The rotary dumper was modified, the coal-thawing equipment modernized. In the breaker house a rotary breaker was replaced by a ring-type coal crusher. The outmoded pneumatic type ash-handling system was replaced by a drag-chain conveyor. Such concerted plantwide efforts are still the exception, where coal-handling equipment is cared for on a day-to-day patchwork basis.

  16. D{O} upgrade muon electronics design

    SciTech Connect

    Baldin, B.; Green, D.; Haggerty, H.; Hansen, S.

    1994-11-01

    The planned luminosity for the upgrade is ten times higher than at present (L {approximately} 10{sup 32}cm{sup {minus}2}s{sup {minus}1}) and involves a time between collisions as small as 132 ns. To operate in this environment, completely new electronics is required for the 17,500 proportional drift tubes of the system. These electronics include a deadtimeless readout, a digital TDC with about 1 ns binning for the wire signals, fast charge integrators and pipelined ADCs for digitizing the pad electrode signals, a new wire signal triggering scheme and its associated trigger logic, and high level DSP processing. Some test results of measurements performed on prototype channels and a comparison with the existing electronics are presented.

  17. Naphthene upgrading with pillared synthetic clay catalysts

    SciTech Connect

    Sharma, R.K.; Olson, E.S.

    1995-12-31

    Catalytic hydrotreatment of methylcyclohexane was investigated to model upgrading of coal-derived naphthenes. Nickel-substituted synthetic mica montmorillonite (NiSMM), alumina-pillared NiSMM, and zirconia-pillared NiSMM were prepared and tested for hydrocracking and hydroisomerization of mediylcyclohexane. Infrared and thermal desorption studies of the pyridine-adsorbed catalysts indicated the presence of Lewis as well as Bronsted acid sites. Total acidity and surface area increased with pillaring of NiSMM with polyoxy aluminum and polyoxy zirconium cations. Most of the products were branched alkanes (isoparaffins). These compositions are highly desirable for environmentally acceptable transportation fuels. Furthermore, dehydrogenation was not a major pathway, as indicated by the minimal formation of aromatic hydrocarbons, coke, or other oligomeric materials. This paper describes the effect of various operating conditions, which included reaction temperature, contact time, hydrogen pressure, and catalyst on the product distribution.

  18. The LHCb trigger and its upgrade

    NASA Astrophysics Data System (ADS)

    Dziurda, A.

    2016-07-01

    The current LHCb trigger system consists of a hardware level, which reduces the LHC inelastic collision rate of 30 MHz, at which the entire detector is read out. In a second level, implemented in a farm of 20 k parallel-processing CPUs, the event rate is reduced to about 5 kHz. We review the performance of the LHCb trigger system during Run I of the LHC. Special attention is given to the use of multivariate analyses in the High Level Trigger. The major bottleneck for hadronic decays is the hardware trigger. LHCb plans a major upgrade of the detector and DAQ system in the LHC shutdown of 2018, enabling a purely software based trigger to process the full 30 MHz of inelastic collisions delivered by the LHC. We demonstrate that the planned architecture will be able to meet this challenge.

  19. INSERTION DEVICE UPGRADE PLANS AT THE NSLS.

    SciTech Connect

    TANABE, T.; BLEDNYKH, A.; HARDER, D.; LEHECKA, M.; RAKOWSKY, G.; SKARITKA, J.

    2005-05-16

    This paper describes plans to upgrade insertion devices (IDs) at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, U.S.A. The aging wiggler (W120) at X25 is being replaced by a 1 m long in-vacuum mini-gap undulator (MGU-X25) optimized for a dedicated macromolecular crystallography program. A new, 1/3 m long, undulator (MGU or SCU-X9), will be installed between a pair of RF cavities at X9, and will serve a new beamline dedicated for small angle x-ray scattering (SAXS). Both IDs will have provision for cryocooling the NdFeB hybrid arrays to 150K to raise the field and K-value and to obtain better spectral coverage. Design issues of the devices and other considerations, especially magnetic measurement at low temperature, will be discussed.

  20. LLRF System for the CEBAF Separator Upgrade

    SciTech Connect

    Plawski, Tomasz E.; Bachimanchi, Ramakrishna; Hovater, J. Curt; Seidman, David J.; Wissmann, Mark J.

    2014-12-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of four new 748.5 MHz normal conducting deflecting cavities in the 5th pass extraction region. This system will work together with the existing 499 MHz RF Separator in order to allow simultaneous delivery of the beam to four CEBAF experimental halls. The RF system employs two digital LLRF systems controlling four cavities in a vector sum. Cavity tune information of the individual cavities is also obtained using a multiplexing scheme of the forward and reflected RF signals. In this paper we will present detailed LLRF design and the current status of the CEBAF 748.5/499 MHz beam extraction system.

  1. Upgrading the TFTR Transrex Power Supplies

    SciTech Connect

    J. E. Lawson, R. Marsala, S. Ramakrishnan, X. Zhao, P. Sichta

    2009-05-29

    In order to provide improved and expanded experimental capabilities, the existing Transrex power supplies at PPPL are to be upgraded and modernized. Each of the 39 power supplies consists of two six pulse silicon controlled rectifier sections forming a twelve pulse power supply. The first modification is to split each supply into two independent six pulse supplies by replacing the existing obsolete twelve pulse firing generator with two commercially available six pulse firing generators. The second change replaces the existing control link with a faster system, with greater capacity, which will allow for independent control of all 78 power supply sections. The third change replaces the existing Computer Automated Measurement and Control (CAMAC) based fault detector with an Experimental Physics and Industrial Control System (EPICS) compatible unit, eliminating the obsolete CAMAC modules. Finally the remaining relay logic and interfaces to the "Hardwired Control System" will be replaces with a Programmable Logic Controller (PLC).

  2. A major upgrade of the VALD database

    NASA Astrophysics Data System (ADS)

    Ryabchikova, T.; Piskunov, N.; Kurucz, R. L.; Stempels, H. C.; Heiter, U.; Pakhomov, Yu; Barklem, P. S.

    2015-05-01

    Vienna atomic line database (VALD) is a collection of critically evaluated laboratory parameters for individual atomic transitions, complemented by theoretical calculations. VALD is actively used by astronomers for stellar spectroscopic studies—model atmosphere calculations, atmospheric parameter determinations, abundance analysis etc. The two first VALD releases contained parameters for atomic transitions only. In a major upgrade of VALD—VALD3, publically available from spring 2014, atomic data was complemented with parameters of molecular lines. The diatomic molecules C2, CH, CN, CO, OH, MgH, SiH, TiO are now included. For each transition VALD provides species name, wavelength, energy, quantum number J and Landé-factor of the lower and upper levels, radiative, Stark and van der Waals damping factors and a full description of electronic configurarion and term information of both levels. Compared to the previous versions we have revised and verify all of the existing data and added new measurements and calculations for transitions in the range between 20 Å and 200 microns. All transitions were complemented with term designations in a consistent way and electron configurations when available. All data were checked for consistency: listed wavelength versus Ritz, selection rules etc. A new bibliographic system keeps track of literature references for each parameter in a given transition throughout the merging process so that every selected data entry can be traced to the original source. The query language and the extraction tools can now handle various units, vacuum and air wavelengths. In the upgrade process we had an intensive interaction with data producers, which was very helpful for improving the quality of the VALD content.

  3. Upgraded HFIR Fuel Element Welding System

    SciTech Connect

    Sease, John D

    2010-02-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  4. C-2-Upgrade Field Reversed Configuration Experiment

    NASA Astrophysics Data System (ADS)

    Smirnov, Artem

    2016-10-01

    In the C-2 field-reversed configuration (FRC) experiment, tangential neutral beam injection (20 - 40 keV hydrogen, 4 MW total), coupled with electrically-biased plasma guns at the plasma ends, magnetic end plugs, and advanced surface conditioning, led to dramatic reductions in turbulence-driven losses and greatly improved plasma stability. Under such conditions, highly reproducible FRCs with a significant fast-ion population and total plasma temperature of about 1 keV were achieved. The FRC's were macroscopically stable and decayed on characteristic transport time scales of a few milliseconds. In order to sustain an FRC configuration, the C-2 device was upgraded with a new neutral beam injection (NBI) system, which can deliver a total of 10 + MW of hydrogen beam power, by far the largest ever used in a compact toroid plasma experiment. Compared to C-2, the beam energy was lowered to 15 keV and angled injection geometry was adopted to provide better beam coupling to the FRC. The upgraded neutral beams produce a dominant fast ion population that makes a dramatic beneficial impact on the overall plasma performance. Specifically: (1) high-performance, advanced beam-driven FRCs were produced and sustained for times significantly longer (5 + ms) than all characteristic plasma decay times without the beams, (2) the sustainment is fully correlated with neutral beam injection, (3) confinement of fast ions is close to the classical limit, and (4) new, benign collective fast ion effects were observed. Collectively, these accomplishments represent a dramatic advance towards the scientific validation of the FRC-based approach to fusion. This talk will provide a comprehensive overview of the C-2U device and recent experimental advances.

  5. A Neutral Beam Injector Upgrade for NSTX

    SciTech Connect

    T. Stevenson; B McCormack; G.D. Loesser; M. Kalish; S. Ramakrishnan; L. Grisham; J. Edwards; M. Cropper; G. Rossi; A. von Halle; M. Williams

    2002-01-18

    The National Spherical Torus Experiment (NSTX) capability with a Neutral Beam Injector (NBI) capable of 80 kiloelectronvolt (keV), 5 Megawatt (MW), 5 second operation. This 5.95 million dollar upgrade reused a previous generation injector and equipment for technical, cost, and schedule reasons to obtain these specifications while retaining a legacy capability of 120 keV neutral particle beam delivery for shorter pulse lengths for possible future NSTX experiments. Concerns with NBI injection included power deposition in the plasma, aiming angles from the fixed NBI fan array, density profiles and beam shine through, orbit losses of beam particles, and protection of the vacuum vessel wall against beam impingement. The upgrade made use of the beamline and cryo panels from the Neutral Beam Test Stand facility, existing power supplies and controls, beamline components and equipment not contaminated by tritium during DT [deuterium-tritium] experiments, and a liquid Helium refrigerator plant to power and cryogenically pump a beamline and three ion sources. All of the Tokamak Fusion Test Reactor (TFTR) ion sources had been contaminated with tritium, so a refurbishment effort was undertaken on selected TFTR sources to rid the three sources destined for the NSTX NBI of as much tritium as possible. An interconnecting duct was fabricated using some spare and some new components to attach the beamline to the NSTX vacuum vessel. Internal vacuum vessel armor using carbon tiles was added to protect the stainless steel vacuum vessel from beam impingement in the absence of plasma and interlock failure. To date, the NBI has operated to 80 keV and 5 MW and has injected requested power levels into NSTX plasmas with good initial results, including high beta and strong heating characteristics at full rated plasma current.

  6. The DIII-D cryogenic system upgrade

    SciTech Connect

    Schaubel, K.M.; Laughon, G.J.; Campbell, G.L.; Langhorn, A.R.; Stevens, N.C.; Tupper, M.L.

    1993-10-01

    The original DIII-D cryogenic system was commissioned in 1981 and was used to cool the cryopanel arrays for three hydrogen neutral beam injectors. Since then, new demands for liquid helium have arisen including: a fourth neutral beam injector, ten superconducting magnets for the electron cyclotron heating gyrotrons, and more recently, the advanced diverter cryopump which resides inside the tokamak vacuum vessel. The original cryosystem could not meet these demands. Consequently, the cryosystem was upgraded in several phases to increase capacity, improve reliability, and reduce maintenance. The majority of the original system has been replaced with superior equipment. The capacity now exists to support present as well as future demands for liquid helium at DIII-D including a hydrogen pellet injector, which is being constructed by Oak Ridge National Laboratory. Upgrades to the cryosystem include: a recently commissioned 150 {ell}/hr helium liquefier, two 55 g/sec helium screw compressors, a fully automated 20-valve cryogen distribution box, a high efficiency helium wet expander, and the conversion of equipment from manual or pneumatic to programmable logic controller (PLC) control. The distribution box was designed and constructed for compactness due to limited space availability. Overall system efficiency was significantly improved by replacing the existing neutral beam reliquefier Joule-Thomson valve with a reciprocating wet expander. The implementation of a PLC-based automatic control system has resulted in increased efficiency and reliability. This paper will describe the cryosystem design with emphasis on newly added equipment. In addition, performance and operational experience will be discussed.

  7. CWM production from upgraded young low rank coals

    SciTech Connect

    Tsurui, Masao; Katagiri, Tsutomu; Yanagimachik, Harumitsu; Tokuda, Shinichi; Hashimoto, Noboru; Yui, Masayuki; Sugiyama, Takeshi

    1997-12-31

    CWM is a mixture of pulverized coal (60 to 70%) and water (30 to 40%) with a very small quantity of dispersant. It is stable under storage conditions and is sufficiently fluid to be transported by means of long-distance pipelines, and ocean going tankers. In order to overcome the economic difficulties of CWM, the authors started the development of a new type of CWM based on abundant non-utilized young low grade coal. This R and D aims at developing and demonstrating an economical clean coal fuel manufacturing technology to ensure safe transportation and storage. To this end, it is necessary to develop a technology to irreversibly dewater coals while maintaining volatility as far as possible, and to convert dewatered coals to high-concentration coal water mixtures (CWM). Japan COM Company Limited and JGC Corporation have been jointly conducting research and development of low rank coals upgrading technology to establish CWM production and utilization technologies from upgraded coals at lower cost and higher quality. In the first phase, the authors investigated available low rank coals upgrading technologies and selected the hot water drying (HWD) process as suited for the conversion of coals to CWM. In the second phase, they conducted HWD upgrading tests using an autoclave and a continuous type bench plant for laboratory-scale tests to convert upgraded coals to CWM, and thus confirmed upgrading effects. In the third phase, they constructed an upgrading pilot plant of 8.4 t/d (dry coal) processing capacity and have conducted upgrading tests. They have also conducted CWM production tests using a CWM production facility of 500 kg/h, and assessed the combustibility of upgraded coal CWM. The operation is carried out using three coals, two Indonesian sub-bituminous coals and one Australian brown coal, which were selected through the bench-scale testing. The following tests were carried out from Dec. of 1994 to March 1996: (1) Continuous upgrading tests by newly

  8. Maintenance and Upgrading of the Richmond Physics Supercomputing Cluster

    NASA Astrophysics Data System (ADS)

    Davda, Vikash

    2003-10-01

    The supercomputing cluster in Physics has been upgraded. It supports nuclear physics research at Jefferson Lab, which focuses on probing the quark-gluon structure of atomic nuclei. We added new slave nodes, increased storage, raised a firewall, and documented the e-mail archive relating to the cluster. The three new slave nodes were physically mounted and configured to join the cluster. A RAID for extra storage was moved from a prototype cluster and configured for this cluster. A firewall was implemented to enhance security using a separate node from the prototype cluster. The software Firewall Builder was used to set communication rules. Documentation consists primarily of e-mails exchanged with the vendor. We wanted web-based, searchable documentation. We used SWISH-E, non-proprietary indexing software designed to search through file collections such as e-mails. SWISH-E works by first creating an index. A built-in module then sets up a Perl interface for the user to define the search; the files in the index are then sorted.

  9. Control and data acquisition upgrades for NSTX-U

    SciTech Connect

    Davis, W. M.; Tchilinguirian, G. J.; Carroll, T.; Erickson, K. G.; Gerhardt, S. P.; Henderson, P.; Kampel, S. H.; Sichta, P.; Zimmer, G. N.

    2016-06-06

    The extensive NSTX Upgrade (NSTX-U) Project includes major components which allow a doubling of the toroidal field strength to 1 T, of the Neutral Beam heating power to 12 MW, and the plasma current to 2 MA, and substantial structural enhancements to withstand the increased electromagnetic loads. The maximum pulse length will go from 1.5 to 5 s. The larger and more complex forces on the coils will be protected by a Digital Coil Protection System, which requires demanding real-time data input rates, calculations and responses. The amount of conventional digitized data for a given pulse is expected to increase from 2.5 to 5 GB per second of pulse. 2-D Fast Camera data is expected to go from 2.5 GB/pulse to 10, and another 2 GB/pulse is expected from new IR cameras. Our network capacity will be increased by a factor of 10, with 10 Gb/s fibers used for the major trunks. 32-core Linux systems will be used for several functions, including between-shot data processing, MDSplus data serving, between-shot EFIT analysis, real-time processing, and for a new capability, between-shot TRANSP. As a result, improvements to the MDSplus events subsystem will be made through the use of both UDP and TCP/IP based methods and the addition of a dedicated “event server”.

  10. Control and data acquisition upgrades for NSTX-U

    DOE PAGES

    Davis, W. M.; Tchilinguirian, G. J.; Carroll, T.; ...

    2016-06-06

    The extensive NSTX Upgrade (NSTX-U) Project includes major components which allow a doubling of the toroidal field strength to 1 T, of the Neutral Beam heating power to 12 MW, and the plasma current to 2 MA, and substantial structural enhancements to withstand the increased electromagnetic loads. The maximum pulse length will go from 1.5 to 5 s. The larger and more complex forces on the coils will be protected by a Digital Coil Protection System, which requires demanding real-time data input rates, calculations and responses. The amount of conventional digitized data for a given pulse is expected to increasemore » from 2.5 to 5 GB per second of pulse. 2-D Fast Camera data is expected to go from 2.5 GB/pulse to 10, and another 2 GB/pulse is expected from new IR cameras. Our network capacity will be increased by a factor of 10, with 10 Gb/s fibers used for the major trunks. 32-core Linux systems will be used for several functions, including between-shot data processing, MDSplus data serving, between-shot EFIT analysis, real-time processing, and for a new capability, between-shot TRANSP. As a result, improvements to the MDSplus events subsystem will be made through the use of both UDP and TCP/IP based methods and the addition of a dedicated “event server”.« less

  11. Screening of processing and upgrading schemes. Task 3

    SciTech Connect

    Not Available

    1991-10-01

    The RFP was predicated on DOE`s desire to enhance the development of advanced transportation fuels made from coal via a program to process mild coal gasification (MCG) liquids into high volumetric energy density (HEDF) test fuels. The desired product fuels were to be cost effectively manufactured, have high volumetric energy density, and be hydrocarbon-based for existing and prototype turbine and diesel engines. The sources for these special fuels consist of the abundant and secure indigenous energy resources of coal. Comparison studies were also to be made using other non-petroleum fossil fuels such as shale oil and tar sands bitumen. METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily ``skimmed`` from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in 1-, 2-, and 3-ring aromatics.

  12. Upgrade of the DIII-D RF systems

    SciTech Connect

    Callis, R.W.; Cary, W.P.; O`Neill, R.C.

    1995-10-01

    The DIII-D Advanced Tokamak Program requires the ability to modify the current density profile for extended time periods in order to achieve the improved plasma conditions now achieved with transient means. To support this requirement DIII-D has just completed a major addition to its ion cyclotron range of frequency (ICRF) systems. This upgrade project added two new fast wave current drive (FWCD) systems, with each system consisting of a 2 MW, 30 to 120 MHz transmitter, an all ceramic insulated transmission line, and water-cooled four-strap antenna. With this addition of 4 MW of FWCD power to the original 2 MW, 30 to 60 MHz capability, experiments can be performed with centrally localized current drive enhancement. For off-axis current modification, plans are in place to add 110 GHz electron cyclotron heating (ECH) power to DIII-D. Initially, 3 MW of power will be available with plans to increase the power to 6 MW and to 10 MW.

  13. A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems.

    PubMed

    Rittmann, Simon K-M R

    2015-01-01

    Microbiological biogas upgrading could become a promising technology for production of methane (CH(4)). This is, storage of irregular generated electricity results in a need to store electricity generated at peak times for use at non-peak times, which could be achieved in an intermediate step by electrolysis of water to molecular hydrogen (H(2)). Microbiological biogas upgrading can be performed by contacting carbon dioxide (CO(2)), H(2) and hydrogenotrophic methanogenic Archaea either in situ in an anaerobic digester, or ex situ in a separate bioreactor. In situ microbiological biogas upgrading is indicated to require thorough bioprocess development, because only low volumetric CH(4) production rates and low CH(4) fermentation offgas content have been achieved. Higher volumetric production rates are shown for the ex situ microbiological biogas upgrading compared to in situ microbiological biogas upgrading. However, the ex situ microbiological biogas upgrading currently suffers from H(2) gas liquid mass transfer limitation, which results in low volumetric CH(4) productivity compared to pure H(2)/CO(2) conversion to CH(4). If waste gas utilization from biological and industrial sources can be shown without reduction in volumetric CH(4) productivity, as well as if the aim of a single stage conversion to a CH(4) fermentation offgas content exceeding 95 vol% can be demonstrated, ex situ microbiological biogas upgrading with pure or enrichment cultures of methanogens could become a promising future technology for almost CO(2)-neutral biomethane production.

  14. The upgrade of the Brookhaven Linac Isotope Producer (BLIP) and the BNL Linac

    SciTech Connect

    Mausner, L.F.; Alessi, J.G.

    1996-12-31

    An upgrade project was recently completed on the 200 MeV H{sup -} linac and the Brookhaven Linac Isotope Producer (BLIP) in order to improve radioisotope production capacity and reliability. The average beam current has increased from 60 {mu}A to 150 {mu}A. The increased average current is the result of increases in peak current, from 25 mA to 37 mA, pulse repetition rate, from 5 to 7.5 Hz, and pulse width, from 500 to 530 ps. To achieve this performance the 35 keV, 750 keV and 200 MeV beam transport were improved, the RF transmission lines and RF power supplies replaced. Improvements to the linac control system, and the optics and vacuum system of the 200 MeV transport were implemented. A BLIP the target cooling system was upgraded to 35 kW and automated, the targets, and target mechanical systems replaced with a more robust design, and the control system upgraded. With these enhancements BLIP is ready to address the lack of availability of accelerator produced medical and research isotopes.

  15. Upgrades for an improved measurement of the EDM of 225Ra

    NASA Astrophysics Data System (ADS)

    Rabga, Tenzin; Bailey, Kevin; Dietrich, Matthew R.; Greene, John P.; Holt, Roy J.; Korsch, Wolfgang; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Tom P.; Fromm, Steven; Ready, Roy; Singh, Jaideep T.

    2016-09-01

    Electric Dipole Moment (EDM) searches provide a sensitive way for probing time-reversal symmetry (T) violation in the Universe that might explain the abundance of matter over anti-matter. The 225Ra atom (t1 / 2 = 15 days, I = 1 / 2) is a particularly attractive candidate for an EDM experiment in diamagnetic atoms due to its octupole deformation, nearly degenerate parity doublet ground state, and large mass, that make it sensitive to T-violating interactions in the nuclear sector. Since our first measurement in 2015, we have improved the sensitivity of our apparatus by more than an order of magnitude to 1 . 4 ×10-23 e-cm (95% C.L), due to improvements in the atom lifetime. Further experimental upgrades are being implemented including an electric field upgrade to enhance the EDM sensitivity and STIRAP for an improved spin precession detection scheme. With these upgrades in place our EDM sensitivity should increase by nearly two orders of magnitude and allow us to substantially improve constraints on certain T-violating processes within the nucleus. This work is supported by the U.S. DOE, Office of Science, Office of Nuclear Physics, under Contract DE-AC02-06CH11357 and the Michigan State University.

  16. Technical design report for the upgrade of the ICD for D-Zero Run II

    SciTech Connect

    Sawyer, L.; De, K. , Draper, P. , Gallas, E. , Li, J. , Sosebee, M. , Stephens, R.W. , White, A.

    1998-01-01

    The Inter Cryostat Detector (ICD) used in Run I of the D0 Experiment will be inoperable in the central, high magnetic field planned for Run II. In Run I, the ICD enhanced the hermeticity and uniformity of the D0 calorimeter system, improving both missing transverse energy and jet energy resolution. The goals for the Run II ICD are the same. In this document, the physics arguments for maintaining the ICD are presented, followed by a detailed description of the planned design changes, prototype tests, construction, installation, and commissioning of the device for the Run II D0 detector. Estimates of costs and schedule can be found on //DOSERVER2/Operations/Upgrade Project/ subareas available via DZERO`s WinFrame Program Manager. This detector is not intended to provide any ``L0`` capabilities (for luminosity monitoring), or to provide any EM coverage in the intermediate region, or to provide additional coverage in the intermediate regions, unlike previous upgrades proposed in this detector region. The ICD upgrade described here maintains most of the Run I capabilities in a high magnetic field environment.

  17. Upgrades for an improved measurement of the EDM of 225Ra

    NASA Astrophysics Data System (ADS)

    Rabga, Tenzin; Bailey, Kevin; Dietrich, Matthew R.; Greene, John P.; Holt, Roy J.; Korsch, Wolfgang; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Tom P.; Fromm, Steven; Ready, Roy; Singh, Jaideep T.

    2017-01-01

    If charge conjugation (C), parity (P) and time-reversal (T) symmetries, collectively form a good symmetry of nature, CPT, then T-violating phenomena would also violate CP. An Electric Dipole Moment (EDM) would violate time-reversal symmetry, and therefor EDMs provide a sensitive way for probing CP-violation that might explain the abundance of matter over anti-matter in the Universe. The 225Ra atom (t1/2 = 15 days, I = 1/2) is a particularly attractive candidate for an EDM search in diamagnetic atoms due to its octupole deformed nuclear structure, nearly degenerate parity doublet ground state, and a large mass, that make it sensitive to T-violating interactions in the nuclear sector. Our latest measurement limits the atomic EDM of 225Ra to be less than 1.4x10-23 e-cm (95% C.L). Further experimental upgrades are being implemented including an electric field upgrade to enhance the EDM sensitivity and STIRAP for an improved spin precession detection scheme. With these upgrades in place our EDM sensitivity should increase by nearly two orders of magnitude and allow us to substantially improve constraints on certain T-violating processes within the nucleus. This work is supported by the U.S. DOE, Office of Science, Office of Nuclear Physics, under contract DE-AC02-06CH11357 and the Michigan State University.

  18. Development of CMOS pixel sensors for the upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Molnar, L.

    2014-12-01

    The ALICE Collaboration is preparing a major upgrade of the current detector, planned for installation during the second long LHC shutdown in the years 2018-19, in order to enhance its low-momentum vertexing and tracking capability, and exploit the planned increase of the LHC luminosity with Pb beams. One of the cornerstones of the ALICE upgrade strategy is to replace the current Inner Tracking System in its entirety with a new, high resolution, low-material ITS detector. The new ITS will consist of seven concentric layers equipped with Monolithic Active Pixel Sensors (MAPS) implemented using the 0.18 μm CMOS technology of TowerJazz. In this contribution, the main key features of the ITS upgrade will be illustrated with emphasis on the functionality of the pixel chip. The ongoing developments on the readout architectures, which have been implemented in several fabricated prototypes, will be discussed. The operational features of these prototypes as well as the results of the characterisation tests before and after irradiation will also be presented.

  19. Technical Design Report for the Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    ALICE Collaboration; Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Masoodi, A. Ahmad; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Anderssen, E. C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badala, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J..; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastian Van Beelen, J.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Battistin, M.; Batyunya, B.; Batzing, P. C.; Baudot, J.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Benettoni, M.; Benotto, F.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Besson, A.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhatti, A.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Boehmer, F. V.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Borshchov, V. N.; Bortolin, C.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Caudron, T.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Claus, G.; Cleymans, J.; Colamaria, F.; Colella, D.; Coli, S.; Colledani, C.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Da Riva, E.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Decosse, C.; DelagrangeI, H.; Deloff, A.; Déenes, E.; D'Erasmo, G.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Robertis, G.; De Roo, K.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Divia, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dorheim, S.; Dorokhov, A.; Doziere, G.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dulinski, W.; Dupieux, P.; Dutta Majumdar, A. K.; Ehlers, R. J., III; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernádez Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fiorenza, G.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Franco, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gajanana, D.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubilato, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Gomez Marzoa, M.; Gonzáalez-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Greiner, L. C.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grondin, D.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Hennes, E.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hillemanns, H.; Himmi, A.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Hu-Guo, C.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Igolkin, S.; Ijzermans, P.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Ivanytskyi, O.; Jachołkowski, A.; Jadlovsky, J.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Junique, A.; Jusko, A.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keil, M.; Ketzer, B.; Khan, M. Mohisin.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Krymov, E. B.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kweon, M. J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenhardt, M.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lesenechal, Y.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Listratenko, O. M.; Ljunggren, H. M.; Lodato, D. F.; Loddo, F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Gago, A. M.; Jacobs, P. M.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'kevich, D.; Maltsev, N. A.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Mapelli, A.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Marin Tobon, C. A.; Markert, C.; Marquard, M.; Marras, D.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Blanco, J. Martin; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Maslov, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Mattiazzo, S.; Matyja, A.; Mayer, C.; Mazer, J.; Mazumder, R.; Mazza, G.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mongelli, M.; Montanõ Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Morel, F.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Bhopal, F. Muhammad; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paíc, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Panati, S.; Pant, D.; Pantano, D.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Pastore, C.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peryt, I. W.; Pesci, A.; Pestov, Y.; Petagna, P.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Pham, H.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Pohjoisaho, E. H. O.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Protsenko, M. A.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Puggioni, C.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rasson, J. E.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossegger, S.; Rossewij, M. J.; Rossi, A.; Roudier, S.; Rousset, J.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sacchetti, M.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schipper, J. D.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Senyukhov, S.; Seo, J.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Snoeys, W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, V. Sooden F.; Sorensen, S.; Spacek, M.; Špalek, J.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Subieta Vasquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Šuljić, M.; Sultanov, R.; Šumbera, M.; Sun, X.; Susa, T.; Symons, T. J. M.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turchetta, R.; Turrisi, R.; Tveter, T. S.; Tymchuk, I. T.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Palomo, L. Valencia; Valentino, V.; Valin, I.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vasta, P.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Verlaat, B.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Winter, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, F.; Zhang, H.; Zhang, X.

    2014-08-01

    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018-2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30×30 μm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance.

  20. Kongiganak Wind Turbine Replacement and System Upgrade Project

    SciTech Connect

    Boonstra, Patrick

    2016-12-13

    The Native Village of Kongiganak, Alaska was awarded a grant to upgrade the braking systems on five wind turbines and upgrade the monitoring and data collection unit to insure that enough energy is available to power the utility. The project manager for this award is Intelligent Energy Systems, LLC located in Anchorage, Alaska. In addition to accomplishing these upgrades, it was the intent for a local wind tech crew to be trained in Kongiganak so that routine maintenance and future repairs will be made by local workers.

  1. Phase 1 upgrade of the CMS forward hadronic calorimeter

    NASA Astrophysics Data System (ADS)

    Noonan, D.

    2017-02-01

    The CMS experiment at the Large Hadron Collider at CERN is upgrading the photo-detection and readout system of the forward hadronic calorimeter. The phase 1 upgrade of the CMS forward calorimeter requires the replacement of the current photomultiplier tubes, as well as the installation of a new front-end readout system. The new photomultiplier tubes contain a thinner window as well as multi-anode readout. The front-end electronics will use the QIE10 ASIC which combines signal digitization with timing information. The major components of the upgrade as well as the current status are described in this paper.

  2. Taming the Viper: Software Upgrade for VFAUser and Viper

    SciTech Connect

    DORIN,RANDALL T.; MOSER III,JOHN C.

    2000-08-08

    This report describes the procedure and properties of the software upgrade for the Vibration Performance Recorder. The upgrade will check the 20 memory cards for proper read/write operation. The upgrade was successfully installed and uploaded into the Viper and the field laptop. The memory checking routine must run overnight to complete the test, although the laptop need only be connected to the Viper unit until the downloading routine is finished. The routine has limited ability to recognize incomplete or corrupt header and footer files. The routine requires 400 Megabytes of free hard disk space. There is one minor technical flaw detailed in the conclusion.

  3. The Jefferson Lab 12 GeV Upgrade

    SciTech Connect

    R.D. McKeown

    2011-10-01

    A major upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility is in progress. Construction began in 2008 and the project should be completed in 2015. The upgrade includes doubling the energy of the electron beam to 12 GeV, the addition of a new fourth experimental hall, and new experimental equipment in three of the experimental halls. A brief overview of this upgrade project is presented along with some highlights of the anticipated experimental program.

  4. Integrated oil production and upgrading using molten alkali metal

    DOEpatents

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  5. Upgrades to the Fermilab NuMI beamline

    SciTech Connect

    Martens, Michael A.; Childress, Sam; Grossman, Nancy; Hurh, Patrick; Hylen, James; Marchionni, Alberto; McCluskey, Elaine; Moore, Craig Damon; Reilly, Robert; Tariq, Salman; Wehmann, Alan; /Fermilab

    2007-06-01

    The NuMI beamline at Fermilab has been delivering high-intensity muon neutrino beams to the MINOS experiment since the spring of 2005. A total of 3.4 x 10{sup 20} protons has been delivered to the NuMI target and a maximum beam power of 320 kW has been achieved. An upgrade of the NuMI facility increasing the beam power capability to 700 kW is planned as part of the NOvA experiment. The plans for this upgrade are presented and the possibility of upgrading the NuMI beamline to handle 1.2 MW is considered.

  6. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    DOEpatents

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  7. Upgrade of Instrumentation for Purdue Reactor PUR-1

    SciTech Connect

    Revankar, S.T.; Merritt, E.; Bean, R.

    2000-08-28

    The major objective of this program was to upgrade and replace instruments and equipment that significantly improve the performance, control and operational capability of the Purdue University nuclear reactor (PUR-1). Under this major objective two projects on instrument upgrade were implemented. The first one was to convert the vacuum tube control and safety amplifiers (CSA) to solid state electronics, and the other was to upgrade the electrical and electronic shielding. This report is the annual report and gives the efforts and progress achieved on these two projects from July 1999 to June 2000.

  8. Upgrade of VISIR the mid-infrared instrument at the VLT

    NASA Astrophysics Data System (ADS)

    Kerber, F.; Kaeufl, H. U.; van den Ancker, M.; Baksai, P.; Dubreuil, D.; Durand, G.; Dobrzycka, D.; Finger, G.; Hummel, Ch.; Ives, D.; Jakob, G.; Lagadec, E.; Lundin, L.; Marconi, G.; Moerchen, M.; Momany, Y.; Nuernberger, D.; Pantin, E.; Riquelme, M.; Siebenmorgen, R.; Smette, A.; Venema, L.; Weilenmann, U.; Yegorova, I.

    2010-07-01

    The European Southern Observatory (ESO) is preparing to upgrade VISIR, the mid-IR imager and spectrograph at the VLT. The project team is comprised of ESO staff and members of the original consortium that built VISIR: CEA Saclay and ASTRON. The goal is to enhance the scientific performance of VISIR and to facilitate its use by the ESO community. In order to capture the needs of the user community, we collected input from the users by means of a webbased questionnaire. In line with the results of the internal study and the input from the user community, the upgrade plan calls for a combination measures: installation of improved hardware, optimization of instrument operations and software support. The limitations of the current detector (sensitivity, cosmetics, artifacts) have been known for some time and a new 1k x 1k Si:As Aquarius array (Raytheon) will be the cornerstone of the VISIR upgrade project. A modified spectroscopic mode will allow covering the N-band in a single observation. Several new scientific modes (e.g., polarimetry, coronagraphy) will be implemented on a best effort basis. In addition, the VISIR operational scheme will be enhanced to ensure that optimal use of the observing conditions will be made. Specifically, we plan to provide a means to monitor precipitable water vapour (PWV) and enable the user to specify it as a constraint set for service mode observations. In some regions of the mid-IR domain, the amount of PWV has a fundamental effect on the quality of a given night for mid-IR astronomy. The plan also calls for full support by ESO pipelines that will deliver science-ready data products. Hence the resulting files will provide physical units and error information and all instrumental signatures will have been removed. An upgraded VISIR will be a powerful instrument providing diffraction-limited performance at an 8-m telescope. Its improved performance and efficiency as well as new science capabilities will serve the needs of the ESO

  9. Upgrade of the NSTX Plasma Control System*

    NASA Astrophysics Data System (ADS)

    Mueller, D.; Gates, D.; Isaacs, M.; Lawson, J.; Ludescher-Furth, C.; Marsala, R.; Matrovito, D.; Sichta, P.

    2007-11-01

    The plasma control system for the National Spherical Torus Experiment (NSTX) has been upgraded to replace the obsolete SKY computer system. The three main improvements with the new system are 1) higher computer speed, 2) lower latency and 3) a recordable absolute time during the discharge. The eight 333 MHz G4 processors in the Sky system were replaced with four dual core AMD Opteron 880 2.4 GHz processors. This provides approximately 7 times the speed for computationally intensive parts of the control system. The data acquisition and control were previously shared between VME and front panel dataport (FPDP) hardware. Two PCI FPDP cards, one each for data input and output made elimination of the VME hardware possible. Presently, the input data is read directly from the FIFO, this results in a loss of speed compared to the full potential of the vmetro FPDP DPIO2 boards using DMA, nevertheless, the present latency is about 2/3 that of the old system. In the old system, time was computed relative to a start trigger and was calculated based on input data frequency and the real-time cpu clock frequency. A digital input and time stamp module (DITS) was developed to provide a 48 bit absolute timestamp for each input data sample. *This work supported by U.S. DOE Contract # DE-AC02-76CH03073.

  10. Process for upgrading tar sand bitumen

    SciTech Connect

    Bartholic, D.B.; Reagan, W.J.

    1989-02-14

    A process is described for upgrading a charge of a tar sand bitumen concentrate containing metal impurities, colloidal calcium-containing clay and water. It consists of contacting the charge in a riser contacting zone in the presence of a low boiling organic solvent with hot fluidizable attrition-resistant substantially catalytically-inert microspheres, which are 20 to 150 microns in diameter and are composed of previously calcined kaolin clay. The contact takes place at high temperature and short contact time, which permits vaporization of the high hydrogen containing components of the bitumen. The period of time is less than that which induces substantial thermal cracking of the charge. At the end of the time the vaporized produce is separated from the microspheres of calcined kaolin clay, the microspheres of calcined kaolin clay now bearing a deposit of combustible solid, metal impurities and adherent particles of colloidal calcium-containing clay originally contained in the bitumen concentrate, immediately reducing the temperature of the vaporized product to minimize thermal cracking and recovering the product for further refining to produce one or more premium products.

  11. Component Database for the APS Upgrade

    SciTech Connect

    Veseli, S.; Arnold, N. D.; Jarosz, D. P.; Carwardine, J.; Decker, G.; Schwarz, N.

    2016-01-01

    The Advanced Photon Source Upgrade (APS-U) project will replace the existing APS storage ring with a multi-bend achromat (MBA) lattice to provide extreme transverse coherence and extreme brightness x-rays to its users. As the time to replace the existing storage ring accelerator is of critical concern, an aggressive one-year removal/installation/testing period is being planned. To aid in the management of the thousands of components to be installed in such a short time, the Component Database (CDB) application is being developed with the purpose to identify, document, track, locate, and organize components in a central database. Three major domains are being addressed: Component definitions (which together make up an exhaustive "Component Catalog"), Designs (groupings of components to create subsystems), and Component Instances (“Inventory”). Relationships between the major domains offer additional "system knowledge" to be captured that will be leveraged with future tools and applications. It is imperative to provide sub-system engineers with a functional application early in the machine design cycle. Topics discussed in this paper include the initial design and deployment of CDB, as well as future development plans.

  12. Upgrade of the Martian iron mineralogy maps

    NASA Astrophysics Data System (ADS)

    Carrozzo, F. G.; Altieri, F.; Vincendon, M.; Daydou, Y.; Bellucci, G.; D'Aversa, E.; Bibring, J.-P.

    2013-09-01

    The goal of this paper is the mapping the 1 μm in order to study the Martian mineralogy on a global scale using the OMEGA spectrometer on board of Mars Express. OMEGA [2] is the imaging spectrometer on board of Mars Express probe. It consists of three spectral channels: the VNIR channel working in the visible-near infrared wavelengths (0.35-1.05 μm), the SWIR channel operating in the 0.92-2.7 μm range and the LWIR channel covering the 2.7-5.1 μm one. An automatic method to co-register the VNIR and SWIR channels to recover the whole spectral range where they overlap has been implemented, thus allowing the study of the 1 μm band. This work is an upgrade of Carrozzo et al. [1] where a gap in the data coverage existed. The previous maps were based on the data coverage until December 2005, while now they are built using the data acquired up to August 2010. The extended maps are based on the nine spectral indices reported in Table 1. The method used to co-register the VNIR and SWIR channels has been also implemented with a new algorithm that allow a better spatial and spectral alignment. This work, together with the results of other authors [3, 4, 5], completes the global mapping of the Martian mineralogy.

  13. Advances in boronization on NSTX-Upgrade

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Blanchard, W.; Cai, D.; Jaworski, M.; Bedoya, F.; Allain, J. P.; Scotti, F.; Koel, B. E.

    2016-10-01

    Boronization has been effective in reducing plasma impurities and enabling access to higher density, higher confinement plasmas in many magnetic fusion devices. The National Spherical Torus eXperiment, NSTX, has recently undergone a major upgrade to NSTX-U in order to develop the physics basis for a ST-based Fusion Nuclear Science Facility (FNSF) with capability for double the toroidal field, plasma current, and NBI heating power and increased pulse duration from 1 - 1.5 s to 5 - 8 s. A new deuterated tri-methyl boron conditioning system was implemented together with a novel surface analysis diagnostic (MAPP). We report on the spatial distribution of the boron deposition versus discharge pressure, gas injection and electrode location. The oxygen concentration of the plasma facing surface was measured by in-vacuo XPS and increased both with plasma exposure and with exposure to trace residual gases. This increase was correlated with the rise of oxygen emission from the plasma. A dedicated experiment is planned to optimize the boronization process including XPS measurements of the plasma facing surface under specific plasma conditions. We will report on the results. Support was provided through DOE Contract Number DE-AC02-09CH11466.

  14. Los Alamos upgrade in metallographic capabilities

    SciTech Connect

    Ledbetter, J.M.; Dowler, K.E.; Cook, J.H.

    1985-01-01

    The Los Alamos Wing 9 Hot Cell Facility is in the process of upgrading their metallographic sample preparation and examination capability. The present capability to grind, polish and etch samples from reactor fuels and materials has been in operation for 18 years. Macro photography and alpha and beta-gamma autoradiography are an important part of this capability. Some of the fast breeder reactor experiments have contained sodium as a coolant. Therefore, the capability to distill sodium from some samples scheduled for microstructural examinations is a requirement. Since the reactor fuel samples are highly radioactive and contain plutonium, either as fabricated or as a result of breeding during reactor service, these samples must be handled in shielded hot cells containing alpha boxes to isolate the plutonium and hazardous fission products from personnel and the environment. The present equipment that was designed and built into those alpha boxes has functioned very well for the past 18 years. During that time the technicians have thought of ways to improve the equipment to do the work faster and safer. These ideas and ideas that have been developed during the design of new alpha boxes and new equipment for microstructural sample preparation have provided the concepts for the capability to perform the work faster and maintain the equipment in a safer manner.

  15. Hurricane tested, underwater platform structural upgrade

    SciTech Connect

    Couch, W.J.

    1995-10-01

    In 1991 Conoco performed a reservoir re-evaluation of the Grand Isle 41``B`` platform. The decision was made to work over the existing wells to extend the production life. A drilling rig mounted on the jacket was selected as the desired method to work over the wells. The condition of the jacket was considered to be inadequate for the workover drilling operations and the anticipated extended well life based on a 100 year storm criteria. Upgrading the structural integrity of the platform was divided into three phases. During Phase 1, a complete subsea inspection was performed to investigate each of the proposed sites for new bracing. An Ultrasonic flooded member check of all existing structural bracing was performed. On the bottom elevation of the platform near the mudline, each site for the new bracing was inspected for burial by mud and debris. The final task of Phase 1 was to remove metal samples from each of the existing braces that required wet welding. Samples were given identification labels to allow traceability to specific members and location of removal. Samples were analyzed to ensure that the carbon equivalent did not exceed the maximum allowable for normal wet welding operations.

  16. Tritium related safety considerations for mirror upgrades

    SciTech Connect

    Ghose, S.K.

    1983-11-30

    One of the primary objectives of the MFTF-B upgrades is to demonstrate the technology of tritium breeding in a reactor-like configuration. This requires use and processing of tritium, involving an inventory of several hundred grams at the plant. This paper reviews the results of a preliminary assessment of the radiation hazard associated with the handling of tritium. The radiation dose consequences due to tritium release from normal operation and due to postulated accidents on plant personnel and the public were assessed. Maximum credible (probability < 10/sup -3/, but > 10/sup -7//yr) accidental releases were estimated to be 10 gm in the reactor building and 100 gm in the tritium-processing building. Higher probability (> 10/sup -3//yr) accidents or component failures would result in much smaller releases. In the reactor building, the most severe accident would result from the rupture of a plasma exhaust duct from the end cell or the tritium feed pipe to the neutral beam injector, accompanied by a fire. In the tritium processing building, the most severe accident would be the rupture of the Isotope Separation System (ISS) distillation columns and vacuum jackets accompanied by a fire.

  17. An Upgrade of the Aeroheating Software "MINIVER"

    NASA Technical Reports Server (NTRS)

    Louderback, Pierce M.

    2013-01-01

    Many software packages assist engineers with performing flight vehicle analysis, but some of these packages have gone many years without updates or significant improvements to their workflows. One such software, known as MINIVER, is a powerful yet lightweight tool that is used for aeroheating analyses. However, it is an aging program that has not seen major improvements within the past decade. As part of a collaborative effort with Florida Institute of Technology, MINIVER has received a major user interface overhaul, a change in program language, and will be continually receiving updates to improve its capabilities. The user interface update includes a migration from a command-line interface to that of a graphical user interface supported in the Windows operating system. The organizational structure of the preprocessor has been transformed to clearly defined categories to provide ease of data entry. Helpful tools have been incorporated, including the ability to copy sections of cases as well as a generalized importer which aids in bulk data entry. A visual trajectory editor has been included, as well as a CAD Editor which allows the user to input simplified geometries in order to generate MINIVER cases in bulk. To demonstrate its continued effectiveness, a case involving the JAXA OREX flight vehicle will be included, providing comparisons to captured flight data as well as other computational solutions. The most recent upgrade effort incorporated the use of the CAD Editor, and current efforts are investigating methods to link MINIVER projects with SINDA/Fluint and Thermal Desktop.

  18. CUPID: CUORE Upgrade with Particle IDentification

    NASA Astrophysics Data System (ADS)

    Kolomensky, Yury; Cupid Interest Group Team

    2016-09-01

    CUPID is a proposed future tonne-scale bolometric neutrinoless double beta decay experiment to probe the MAJORANA nature of neutrinos and discover Lepton Number Violation in the so-called inverted hierarchy region of the neutrino mass. CUPID builds on experience, expertise and lessons learned in CUORE (Cryogenic Underground Observatory for Rare Events), which is about to start operations at Gran Sasso National Laboratories (LNGS) in Italy. CUPID will exploit the current CUORE infrastructure as much as possible. In order to achieve its ambitious science goals, CUPID aims to increase the source mass and dramatically reduce the backgrounds in the region of interest. This requires isotopic enrichment, upgraded purification and crystallization procedures, new detector technologies, a stricter material selection, and possibly new shielding concepts with respect to the state of the art deployed in CUORE. We will discuss the science goals of CUPID and will focus on the near-term R&D goals, aiming to demonstrate its ultimate sensitivity. Speaker TBC by the CUORE Speakers Board.

  19. Fermilab Main Injector Beam Position Monitor Upgrade

    NASA Astrophysics Data System (ADS)

    Banerjee, B.; Barker, W.; Bledsoe, S.; Boes, T.; Briegel, C.; Capista, D.; Deuerling, G.; Dysert, R.; Forster, R.; Foulkes, S.; Haynes, W.; Hendricks, B.; Kasza, T.; Kutschke, R.; Marchionni, A.; Olson, M.; Pavlicek, V.; Piccoli, L.; Prieto, P.; Rapisarda, S.; Saewert, A.; Van Bogaert, J.; Votava, M.; Webber, R.; Wendt, M.; Wilcer, N.; Wolbers, S.

    2006-11-01

    An upgrade of the Beam Position Monitor (BPM) signal processing and data acquisition system for the Fermilab Main Injector is described. The Main Injector is a fast cycling synchrotron that accelerates protons or antiprotons from 8 to 150 GeV, Each Main Injector cycle can have a totally different magnet ramp, RF frequency configuration, beam bunch structure, and injection/extraction pattern from the previous cycle. The new BPM system provides the capabilities and flexibility required by the dynamic and complex machine operations. The system offers measurement capability in the 2.5 MHz and 53 MHz channels to detect the range of bunch structures for protons and antiprotons in both wideband (turn-by-turn) and narrowband (closed-orbit) modes. The new BPM read-out system is based on the digital receiver concept and is highly configurable, allowing the signal processing of nearly all Main Injector beam conditions, including the detection of individual batches. An overview of the BPM system in the Main Injector operating environment, some technology details and first beam measurements are presented.

  20. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect

    Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (‘syngas’) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  1. Diamond detectors for the TOTEM timing upgrade

    NASA Astrophysics Data System (ADS)

    Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; Broulím, P.; Buzzo, A.; Cafagna, F. S.; Catanesi, M. G.; Csanád, M.; Csörgő, T.; Deile, M.; De Leonardis, F.; D'Orazio, A.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Georgiev, V.; Giani, S.; Grzanka, L.; Guaragnella, C.; Hammerbauer, J.; Heino, J.; Karev, A.; Kašpar, J.; Kopal, J.; Kundrát, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Linhart, R.; Lokajíček, M. V.; Losurdo, L.; Lo Vetere, M.; Rodríguez, F. Lucas; Lucsanyi, D.; Macrí, M.; Mercadante, A.; Minafra, N.; Minutoli, S.; Naaranoja, T.; Nemes, F.; Niewiadomski, H.; Novak, T.; Oliveri, E.; Oljemark, F.; Oriunno, M.; Österberg, K.; Palazzi, P.; Paločko, L.; Passaro, V.; Peroutka, Z.; Petruzzelli, V.; Politi, T.; Procházka, J.; Prudenzano, F.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Royon, C.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Smajek, J.; Snoeys, W.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Welti, J.; Wyszkowski, P.; Zielinski, K.

    2017-03-01

    This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC . The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons TOF with about 50 ps time precision. This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed by sampling the waveform. After introducing the physics studies that will most profit from the addition of these new detectors, we discuss in detail the optimization and the performance of the first TOF detector installed in the LHC in November 2015.

  2. Upgrade for the NSTX Control Computer

    SciTech Connect

    D. Mueller; D.A. Gates; J.R. Ferron

    1999-06-01

    The National Spherical Torus Experiment (NSTX) is a proof of scientific principle experiment as a magnetic fusion containment device. A primary goal of NSTX operations is control of the plasma current, position and shape in real time for a wide range of plasma pressure and current density profiles. In order to employ the best calculation of the plasma current, position and shape, it is planned to implement the equilibrium analysis code, EFIT, in real-time, RTEFIT. EFIT inverts the Grad-Shafranov equation and performs a least squares fit to the magnetics data. RTEFIT is also capable of providing the plasma current profile and the plasma pressure profile from analysis of diagnostic data. The calculation time for RTEFTI using the present NSTX control computer system is comparable to the expected energy confinement time on NSTX and is thus slower than desired. A computer upgrade based upon 604e processors will permit the RTEFIT calculation loop to complete in about 3 ms. The presence of the passive plates further complicates the control algorithm to be used in conjunction with RTEFIT. The planned approach is to measure the eddy currents in the passive plates and to use the transient response of the coils to minimize the total shell current effect.

  3. A Upgrade of the Aeroheating Software "MINIVER"

    NASA Technical Reports Server (NTRS)

    Louderback, Pierce

    2013-01-01

    Many software packages assist engineers with performing flight vehicle analysis, but some of these packages have gone many years without updates or significant improvements to their workflows. One such software package, known as MINIVER, is a powerful yet lightweight tool used for aeroheating analyses. However, it is an aging program that has not seen major improvements within the past decade. As part of a collaborative effort with the Florida Institute of Technology, MINIVER has received a major user interface overhaul, a change in program language, and will be continually receiving updates to improve its capabilities. The user interface update includes a migration from a command-line interface to that of a graphical user interface supported in the Windows operating system. The organizational structure of the pre-processor has been transformed to clearly defined categories to provide ease of data entry. Helpful tools have been incorporated, including the ability to copy sections of cases as well as a generalized importer which aids in bulk data entry. A visual trajectory editor has been included, as well as a CAD Editor which allows the user to input simplified geometries in order to generate MINIVER cases in bulk. To demonstrate its continued effectiveness, a case involving the JAXA OREX flight vehicle will be included, providing comparisons to captured flight data as well as other computational solutions. The most recent upgrade effort incorporated the use of the CAD Editor, and current efforts are investigating methods to link MINIVER projects with SINDA/Fluint and Thermal Desktop.

  4. Naphthene upgrading with pillared synthetic clay catalysts

    SciTech Connect

    Sharma, R.K.; Olson, E.S.

    1995-12-31

    Catalytic hydrotreatment of methylcyclohexane was investigated to model upgrading of coal-derived naphthenes. Nickel-substituted synthetic mica montmorillonite (NiSMM), alumina-pillared NiSMM and Zirconia-pillared NiSMM were prepared and tested for hydrocracking and hydroisomerization of methylcyclohexane. Infrared and thermal desorption studies of the pyridine-adsorbed catalysts indicated the presence of Lewis and Bronsted acid sites. Total acidity and surface area increased with pillaring of NiSMM with polyoxy aluminum and polyoxy zirconium cations. Methylcyclohexane was reacted with these catalysts under a variety of conditions. Pillared clays gave higher gas yields and higher hydrocracking but lower hydroisomerization activity than nonpillared clay. The majority of the products were branched alkanes (isoparaffinic). These catalysts effectively use hydrogen as indicated by the minimal formation of aromatic hydrocarbons, coke, or other oligomeric materials. The effect of various operating conditions, i.e., reaction temperature, contact time, H{sub 2} pressure, and catalyst, on the product distribution will be described.

  5. Catalytic hydrothermal upgradation of wheat husk.

    PubMed

    Singh, Rawel; Bhaskar, Thallada; Dora, Sambha; Balagurumurthy, Bhavya

    2013-12-01

    Catalytic hydrothermal upgradation of wheat husk was performed at 280°C for 15 min in the presence of alkaline catalysts (KOH and K2CO3). The effect of alkaline catalysts on the yield of bio-oil products and composition of bio-oils obtained were discussed. Total bio-oil yield (31%) comprising of bio-oil1 (ether fraction) and bio-oil2 (acetone fraction) was maximum with K2CO3 solution. Powder XRD (X-ray diffraction) analysis of wheat husk as well as bio-residue samples show that the peaks due to cellulose, hemicellulose and lignin become weak in bio-residue samples which suggest that these components have undergone hydrolytic cleavage/decomposition. The FTIR spectra of bio-oils indicate that the lignin in the wheat husk samples was decomposed to low molecular weight phenolic compounds. (1)H Nuclear Magnetic Resonance (NMR) spectrum of bio-oil1 shows more than 50% of the protons resonate in the up field region from 0.5 ppm to 3.0 ppm.

  6. Upgrade Summer Severe Weather Tool in MIDDS

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark M.

    2010-01-01

    The goal of this task was to upgrade the severe weather database from the previous phase by adding weather observations from the years 2004 - 2009, re-analyze the data to determine the important parameters, make adjustments to the index weights depending on the analysis results, and update the MIDDS GUI. The added data increased the period of record from 15 to 21 years. Data sources included local forecast rules, archived sounding data, surface and upper air maps, and two severe weather event databases covering east-central Florida. Four of the stability indices showed increased severe weather predication. The Total Threat Score (TTS) of the previous work was verified for the warm season of 2009 with very good skill. The TTS Probability of Detection (POD) was 88% and the False alarm rate (FAR) of 8%. Based on the results of the analyses, the MIDDS Severe Weather Worksheet GUI was updated to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters and synoptic-scale dynamics.

  7. Upgrade to the Birmingham Irradiation Facility

    NASA Astrophysics Data System (ADS)

    Dervan, P.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Wilson, J.; Baca, M.

    2015-10-01

    The Birmingham Irradiation Facility was developed in 2013 at the University of Birmingham using the Medical Physics MC40 cyclotron. It can achieve High Luminosity LHC (HL-LHC) fluences of 1015 (1 MeV neutron equivalent (neq)) cm-2 in 80 s with proton beam currents of 1 μA and so can evaluate effectively the performance and durability of detector technologies and new components to be used for the HL-LHC. Irradiations of silicon sensors and passive materials can be carried out in a temperature controlled cold box which moves continuously through the homogenous beamspot. This movement is provided by a pre-configured XY-axis Cartesian robot scanning system. In 2014 the cooling system and cold box were upgraded from a recirculating glycol chiller system to a liquid nitrogen evaporative system. The new cooling system achieves a stable temperature of -50 °C in 30 min and aims to maintain sub-0 °C temperatures on the sensors during irradiations. This paper reviews the design, development, commissioning and performance of the new cooling system.

  8. Upgrade of Vacuum Control System on EAST

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Zhang, Y.; Yang, D. W.; Wang, L.; Hu, J. S.; Li, J. H.; Wu, J. H.; Wang, X. M.; EAST vacuum Group

    Experimental Advanced Superconducting Tokamak (EAST) is the first whole superconducting tokamak with divertor configuration in the world [3]. Vacuum system is one of the most important sub-systems of Tokmak device. Therefore, a stable and reliable control system for vacuum operation is required essentially during the plasma discharges. The vacuum control system (VCS) was built preliminarily in 2006. As the new requirements for the vacuum operation is proposed, it is developed and expanded continually. At present the control system has consisted of gas sub-system, pump sub-system, measurement sub-system, wall conditioning sub-system, operator workstation, monitor workstation, database and web publish platform. Comparing to the preliminary one, the whole VCS have been restored and expanded except for reserving the PLCs hardware on the basic level. This paper will present the improvement on the VCS of 2006 and the advantages of the upgrade version, Meanwhile, the new techniques of AJAX (Asynchronous JavaScript and XML) and SVG (Scalable Vector Graphics) will be introduced, which is applied to the user interface at the first time.

  9. The upgrade of the CMS hadron calorimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Strobbe, N.

    2017-01-01

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. This paper discusses the motivation for the upgrade and provides a description of the new system, including the SiPMs with associated control electronics and the front-end readout cards.

  10. Berkeley Accelerator Space Effects (BASE) Light Ion FacilityUpgrade

    SciTech Connect

    Johnson, Michael B.; McMahan, Margaret A.; Gimpel, Thomas L.; Tiffany, William S.

    2006-07-07

    The BASE Light Ion Facility upgrades have been completed. All proton beams are now delivered to Cave 4A. New control software, a larger diameter beam window, and improved quality assurance measures have been added.

  11. Project W-030 safety class upgrade summary report

    SciTech Connect

    Kriskovich, J.R.

    1998-02-13

    This document presents a summary of safety class criteria for the 241-AY/AZ Tank Farm primary ventilation system upgrade under Project W-030, and recommends acceptance of the system as constructed, based on a review of supporting documentation.

  12. The Idaho Chemical Processing Plant Product Denitrator Upgrade

    SciTech Connect

    N /A

    1982-05-01

    The upgrade and redesign of a fluidized-bed denitrator for production of uranium trioxide from uranyl nitrate solution is discussed. The success of the project in improving process efficiency and personnel safety is also addressed based on subsequent operation.

  13. FIRE SAFETY UPGRADING FOR FALLOUT SHELTERS IN BUILDINGS

    DTIC Science & Technology

    building. Specifically, thermal barriers for window openings, automatic smoke detectors with manual response by fire fighting shelter personnel, and environmental seals for shelter areas are recommended as feasible upgrading remedies.

  14. The trigger readout electronics for the Phase-I upgrade of the ATLAS Liquid Argon calorimeters

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    2017-03-01

    For the Phase-I luminosity upgrade of the LHC a higher granularity trigger readout of the ATLAS Liquid Argon (LAr) Calorimeters is foreseen to enhance the trigger feature extraction and background rejection. The new readout system digitizes the detector signals, grouped into 34000 so-called Super Cells, with 12-bit precision at 40 MHz and transfers the data on optical links to the digital processing system, which computes the Super Cell transverse energies. In this paper, development and test results of the new readout system are presented.

  15. JouFLU: an upgraded FLUOR beam combiner at the CHARA Array

    NASA Astrophysics Data System (ADS)

    Lhomé, E.; Scott, N.; ten Brummelaar, T.; Mollier, B.; Reess, J. M.; Chapron, F.; Buey, T.; Sevin, A.; Sturmann, J.; Sturmann, L.; Coudé du Foresto, V.

    2012-07-01

    FLUOR, which has been operational on CHARA since 2002, is an infrared fiber beam combiner. The telescope array will soon be fitted with an adaptive optics system, which will enhance the interferometer performance. In this framework, FLUOR has been entirely redeveloped and will be able to measure visibilities with higher accuracy and better sensitivity. The technical upgrades consist of improving some existing systems and developing new features. The bench, which is now remotely operable, primarily offers spectral dispersion (long fringes scanning), a more sensitive camera and a Fourier Transform Spectrometer mode. This paper presents the detailed opto-mechanical design of JouFLU (FLUOR rejuvenation), and the current instrument status.

  16. Eye evolution: lens and cornea as an upgrade of animal visual system.

    PubMed

    Jonasova, Kristyna; Kozmik, Zbynek

    2008-04-01

    Lens-containing eyes are a feature of surprisingly broad spectrum of organisms across the animal kingdom that represent a significant improvement of simple eye composed of just photoreceptor cells and pigment cells. It is apparent that such an upgrade of animal visual system has originated numerous times during evolution since many distinct strategies to enhance light refraction through the use of lens and cornea have been utilized. In addition to having an ancient role in prototypical eye formation Pax transcription factors were convergently recruited for regulation of structurally diverse crystallins and genes affecting morphogenesis of various lens-containing eyes.

  17. Prostate Upgrading Team Project — EDRN Public Portal

    Cancer.gov

    Aim 1: We will develop a risk assessment tool using commonly-collected clinical information from a series of contemporary radical prostatectomies to predict the risk of prostate cancer upgrading to high grade cancer at radical prostatectomy. These data will be combined as a part of our Early Detection Research Network (EDRN) GU Working Group into a risk assessment tool; this tool will be named the EDRN Prostatectomy Upgrading Calculator or (EPUC).

  18. Status of the SPIRAL I upgrade at GANIL

    SciTech Connect

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Feierstein, C.; Pellemoine, F.; Lecomte, P.; Leherissier, P.; Maunoury, L.; Saint-Laurent, M. G.; Traykov, E.

    2012-02-15

    The upgrade of the ''Systeme de Production d'Ions Radioactifs en Ligne'' phase I (SPIRAL I) installed at the ''Grand Accelerateur National d'Ions Lourds'' (GANIL) situated at Caen, France, is in progress and should be ready by 2014. In parallel, the first part of SPIRAL II facility is currently under construction. The global status of the upgrade is presented: goal, radioactive ion production systems, modification of the production cave and impact of the current safety re-evaluation of GANIL.

  19. Environmental Assessment: Security and Traffic Upgrades at Peterson AFB, Colorado

    DTIC Science & Technology

    2004-11-01

    jumping mouse Zapus hudsonius preblei Listed Threatened Arkansas darter Etheostoma cragini Candidate for Listing Greenback cutthroat trout Oncorhynchus...Final November 2004 Security and Traffic Upgrades Environmental Assessment Peterson AFB, Colorado Report Documentation Page Form ApprovedOMB No. 0704...2004 to 00-00-2004 4. TITLE AND SUBTITLE Final Environmental Assessment: Security and Traffic Upgrades at Peterson AFB, Colorado 5a. CONTRACT NUMBER

  20. Commissioning results from the recently upgraded RHIC LLRF system

    SciTech Connect

    Smith, K.S.; Harvey, M.; Hayes, T.; Narayan, G.; Severino, F.; Yuan, S.; Zaltsman, A.

    2011-03-28

    During RHIC Run 10, the first phase of the LLRF Upgrade was successfully completed. This involved replacing the aging VME based system with a modern digital system based on the recently developed RHIC LLRF Upgrade Platform, and commissioning the system as part of the normal RHIC start up process. At the start of Run 11, the second phase of the upgrade is underway, involving a significant expansion of both hardware and functionality. This paper will review the commissioning effort and provide examples of improvements in system performance, flexibility and scalability afforded by the new platform. The RHIC LLRF upgrade is based on the recently developed RHIC LLRF Upgrade Platform. The major design goals of the platform are: (1) Design a stand alone, generic, digital, modular control architecture which can be configured to satisfy all of the application demands we currently have, and which will be supportable and upgradeable into the foreseeable future; and (2) It should integrate seamlessly into existing controls infrastructure, be easy to deploy, provide access to all relevant control parameters (eliminate knobs), provide vastly improved diagnostic data capabilities, and permit remote reconfiguration. Although the system is still in its infancy, we think the initial commissioning results from RHIC indicate that these goals have been achieved, and that we've only begun to realize the benefits the platform provides.

  1. Upgrading the Space Shuttle Caution and Warning System

    NASA Technical Reports Server (NTRS)

    McCandless, Jeffrey W.; McCann, Robert S.; Hilty, Bruce T.

    2005-01-01

    A report describes the history and the continuing evolution of an avionic system aboard the space shuttle, denoted the caution and warning system, that generates visual and auditory displays to alert astronauts to malfunctions. The report focuses mainly on planned human-factors-oriented upgrades of an alphanumeric fault-summary display generated by the system. Such upgrades are needed because the display often becomes cluttered with extraneous messages that contribute to the difficulty of diagnosing malfunctions. In the first of two planned upgrades, the fault-summary display will be rebuilt with a more logical task-oriented graphical layout and multiple text fields for malfunction messages. In the second upgrade, information displayed will be changed, such that text fields will indicate only the sources (that is, root causes) of malfunctions; messages that are not operationally useful will no longer appear on the displays. These and other aspects of the upgrades are based on extensive collaboration among astronauts, engineers, and human-factors scientists. The report describes the human-factors principles applied in the upgrades.

  2. The ESO astronomical site monitor upgrade

    NASA Astrophysics Data System (ADS)

    Chiozzi, Gianluca; Sommer, Heiko; Sarazin, Marc; Bierwirth, Thomas; Dorigo, Dario; Vera Sequeiros, Ignacio; Navarrete, Julio; Del Valle, Diego

    2016-08-01

    Monitoring and prediction of astronomical observing conditions are essential for planning and optimizing observations. For this purpose, ESO, in the 90s, developed the concept of an Astronomical Site Monitor (ASM), as a facility fully integrated in the operations of the VLT observatory[1]. Identical systems were installed at Paranal and La Silla, providing comprehensive local weather information. By now, we had very good reasons for a major upgrade: • The need of introducing new features to satisfy the requirements of observing with the Adaptive Optics Facility and to benefit other Adaptive Optics systems. • Managing hardware and software obsolescence. • Making the system more maintainable and expandable by integrating off-the-shelf hardware solutions. The new ASM integrates: • A new Differential Image Motion Monitor (DIMM) paired with a Multi Aperture Scintillation Sensor (MASS) to measure the vertical distribution of turbulence in the high atmosphere and its characteristic velocity. • A new SLOpe Detection And Ranging (SLODAR) telescope, for measuring the altitude and intensity of turbulent layers in the low atmosphere. • A water vapour radiometer to monitor the water vapour content of the atmosphere. • The old weather tower, which is being refurbished with new sensors. The telescopes and the devices integrated are commercial products and we have used as much as possible the control system from the vendors. The existing external interfaces, based on the VLT standards, have been maintained for full backward compatibility. All data produced by the system are directly fed in real time into a relational database. A completely new web-based display replaces the obsolete plots based on HP-UX RTAP. We analyse here the architectural and technological choices and discuss the motivations and trade-offs.

  3. Instrumentation Upgrades to TITAN's Cooler Penning Trap

    NASA Astrophysics Data System (ADS)

    Lascar, Daniel; Titan Collaboration

    2016-09-01

    The use of Highly Charged Ions (HCIs) is critical to improving the precision of Penning trap mass measurements of nuclides with half-lives substantially less than 100 ms, but the process of charge breeding imparts an unacceptably high energy spread to the ion bunch sent to TITAN's precision Penning trap for mass measurement. TITAN's Cooler PEnning Trap (CPET) at TRIUMF in Vancouver, Canada was designed to cool HCIs with a plasma of simultaneously trapped electrons. CPET is currently undergoing commissioning offline at TRIUMF. In order to prepare CPET for full operation, several technical challenges associated with the use of electrons in a strong magnetic field had to be overcome. First among these was the detection of electrons outside of CPET. A novel, thin charge-collecting detector was successfully developed. Known as the mesh detector, it is charge-agnostic and can be made effectively transparent to allow for the passage of any charged particle at the user's request. The second challenge, moving CPET's electron source off the central beam axis was overcome by the creation of an electron source which would allow for electron injection into CPET and the passage of cooled ions out of CPET. CPET's 7 T solenoid generates a stray field far outside of the magnet's central bore that forced the design of a set of electron injection optics that bend, steer and focus the beam in three dimensions. Results from the successful installation of these upgrades as well as a report on future work will be discussed. This work was partially supported by NSERC, the CFI and the DFG.

  4. The NASA fuel cell upgrade program for the Space Shuttle Orbiter

    SciTech Connect

    Warshay, M.; Prokopius, P.; Le, M.; Voecks, G.

    1997-12-31

    As part of NASA`s overall efforts to improve the Space Shuttle operations, a program to upgrade the existing fuel cell powerplant has begun. The upgrade will involve replacing the alkaline fuel cell (AFC) system with a proton exchange membrane (PEM) fuel cell system, resulting in a much lower life cycle cost of the powerplant. The program is being implemented by a team comprised of NASA/JSC, NASA/LeRC, and JPL personnel, with support from NASA/KSC. With extremely high annual maintenance costs and subsystem replacement costs, the need for a lower cost Orbiter fuel cell powerplant is obvious. Earlier NASA plant to upgrade the shuttle fuel cell were not adequately funded and only focused upon upgrading the existing AFC. For the current program, the PEM fuel cell system will be implemented because the projected long life (10,000 hrs. vs. 2,000 hrs. for AFC), high power density (PEM projected to produce 50% more power), and enhanced system reliability and safety all lead to significantly lower life cycle powerplant costs. And in addition to the Orbiter application, PEM fuel cell development would support a number of important space applications that the AFC would not, such as Lunar/Mars transportation, the Reusable Launch Vehicle (RLV), Space Station emergency power and/or future energy storage applications, and various portable applications. NASA is also leveraging all of the large scale PEM fuel cell development activities that are ongoing for DOE, DOD, and commercial applications. There is no activity in the AFC area. The Shuttle Fuel Cell Upgrade plan of the JSC/LeRC/JPL team includes the following key elements: (1) Systems Analyses to assure compatibility/maximum utilization by shuttle of the best PEM fuel cell characteristics; (2) Short Stack Testing of the leading PEM fuel cell contractors` hardware; (3) Detailed Task Objective (DTO) Flight Experiment to verify PEM system water management and thermal management under zero-g operation; (4) A Downselect to the best

  5. Role of shielding in modelling cryogenic deuterium pellet ablation

    NASA Astrophysics Data System (ADS)

    Gál, K.; Belonohy, É.; Kocsis, G.; Lang, P. T.; Veres, G.; ASDEX Upgrade Team

    2008-08-01

    For the better characterization of pellet ablation, the numerical LLP code has been enhanced by combining two relevant shielding mechanisms: that of the spherically expanding neutral cloud surrounding the pellet and that of the field elongated ionized material forming a channel flow. In contrast to our expectation the presence of the channel flow can increase the ablation rate although it reduces the heat flux travelling through it. The contribution of the different shielding effect in the ablation process is analysed for several pellet and plasma parameters and an ablation rate scaling is presented based on simple regression in the ASDEX Upgrade pellet and plasma parameter range. Finally the simulated results are compared with experimental data from typical ASDEX Upgrade discharges.

  6. Cobra Fiber-Optic Positioner Upgrade

    NASA Technical Reports Server (NTRS)

    Fisher, Charles D.; Braun, David F.; Kaluzny, Joel V.

    2013-01-01

    the time of this reporting, there are still many tests to be performed that will validate system level performance, but on an individual level, the Cobra positioner demonstrates excellent performance and will enable the PFS instrument to make unprecedented measurements of the universe. What is unique about the upgrades made to the Cobra positioner is the improved performance due to the design changes in the hard stops and the ceramic end caps of the motors. Other changes were made to reduce the unit cost of a Cobra positioner without affecting the performance, since thousands of these devices will have to be built for the PFS instrument.

  7. Automation and Upgrade of Thermal System for Large 38-Year Young Test Facility

    NASA Technical Reports Server (NTRS)

    Webb, Andrew

    2000-01-01

    The Goddard Space Flight Center's Space Environment Simulator (SES) facility has been improved by the upgrade of its thermal control hardware and software. This paper describes the preliminary design process, funding constraints, and the proposed enhancements as well as the installation details, the testing difficulties, and the overall benefits realized from this upgrade. The preliminary design process was discussed in a paper presented in October 1996 and will be recapped in this paper to provide background and comparison to actual product. Structuring the procurement process to match the funding constraints allowed Goddard to enhance its capabilities in an environment of reduced budgets. The installation of the new system into a location that has been occupied for over 38-years was one of the driving design factors for the size of the equipment. The installation was completed on-time and under budget. The tuning of the automatic sequences for the new thermal system to the existing shroud system required more time and ultimately presented some setbacks to the vendor and the final completion of the system. However, the end product and its benefits to Goddard's thermal vacuum test portfolio will carry the usefulness of this facility well into the next century.

  8. Automation and Upgrade of Thermal System for Large 38-Year-Young Test Facility

    NASA Technical Reports Server (NTRS)

    Webb, Andrew T.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center's Space Environment Simulator (SES) facility has been improved by the upgrade of its thermal control hardware and software. This paper describes the preliminary design process, funding constraints, and the proposed enhancements as well as the installation details, the testing difficulties, and the overall benefits realized from this upgrade. The preliminary design process was discussed in a paper presented in October 1996 and will be recapped in this paper to provide background and comparison to actual product. Structuring the procurement process to match the funding constraints allowed Goddard to enhance its capabilities in an environment of reduced budgets. The installation of the new system into a location that has been occupied for over 38 years was one of the driving design factors for the size of the equipment. The installation was completed on time and under budget. The tuning of the automatic sequences for the new thermal system to the existing shroud system required more time and ultimately presented some setbacks to the vendor and the final completion of the system. However, the end product and its benefits to Goddard's thermal vacuum test portfolio will carry the usefulness of this facility well into the next century.

  9. Options to upgrade the Mirror Fusion Test Facility

    SciTech Connect

    Thomassen, K.I.; Doggett, J.N.

    1983-04-01

    In this document we describe three options for upgrading MFTF-B, and the nomenclature used for these options is shown on the chart, MFTF-B Upgrade Options. We propose to add a 4-m-long reactor-like insert to the central cell, or to change the end plugs to the new MARS-type configuration, or both. LLNL prefers the third option, labeled MFTF-..cap alpha../sup +/T in the chart, in which both the central cell insert is added and the end plugs are modified. All options are long-pulse or steady-state DT burning experiments. Those upgrades with the insert would be constructed beginning in FY 86, with operation beginning in mid-FY 92. Confirmation of our intent to modify the end plugs would be sought in FY 88 based on positive results from MFTF-B experiments. The upgrade with only the end plug modification would not start until MFTF-B data are available. The timeline for constructing and operating the MFTF-B Upgrade included at the end of this preface is for reference while reading the text. The various modes of operation shown on the chart are described later.

  10. Parris Island Wastewater Treatment Plant SCADA Upgrades Final Report

    SciTech Connect

    Meador, Richard J.; Hatley, Darrel D.

    2004-03-18

    Marine Corp Recruit Depot (MCRD), Parris Island, SC, home of the Easter Recruiting Region Marine Corp Boot Camp, found itself in a situation common to Department of Defense (DOD) facilities. It had to deal with several different types of installed energy-related control systems that could not talk to each other. This situation was being exacerbated by the installation of a new and/or unique type of control system for every new building being constructed or older facility that was being upgraded. The Wastewater Treatment Facility (WWTF) and lift station controls were badly in need of a thorough inspection and a new Supervisory Control and Data Acquisition (SCADA) system upgrade to meet environmental, safety, manpower, and maintenance concerns. A project was recently completed to implement such a wastewater treatment SCADA upgrade, which is compatible with other upgrades to the energy monitoring and control systems for Parris Island buildings and the Pacific Northwest National Laboratory (PNNL) Decision Support for Operations and Maintenance (DSOM) system installed at the Central Energy Plant (CEP). This project included design, specification, procurement, installation, and testing an upgraded SCADA alarm, process monitoring, and display system; and training WWTF operators in its operation. The ultimate goal of this and the other PNNL projects at Parris Island is to allow monitoring and control of energy and environmental components from a central location.

  11. JCMT Telescope Control System upgrades for SCUBA-2

    NASA Astrophysics Data System (ADS)

    Kackley, Russell; Scott, Douglas; Chapin, Edward; Friberg, Per

    2010-07-01

    The James Clerk Maxwell Telescope (JCMT) Telescope Control System (TCS) received significant upgrades to provide new observing capabilities to support the requirements of the SCUBA-2 instrument. The core of the TCS is the Portable Telescope Control System (PTCS), which was developed through collaboration between the Joint Astronomy Centre and the Anglo-Australian Observatory. The PTCS provides a well-designed virtual telescope function library that simplifies these sorts of upgrades. The TCS was previously upgraded to provide the required scanning modes for the JCMT heterodyne instruments. The heterodyne instruments required only relatively simple raster or boustrophedon patterns, which are basically composed of multiple straight-line scans to cover a rectangular area. The most recent upgrades built upon those heterodyne scanning modes to satisfy the SCUBA-2 requirements. With these upgrades, the TCS can scan the telescope in any pattern that can be described as a continuous function of time. This new capability has been utilized during the current SCUBA-2 on-sky commissioning phase to scan the telescope in a variety of patterns (Lissajous, pong, ellipse, and daisy) on the sky. This paper will give a brief description of the PTCS, provide information on the selection of the SCUBA-2 scanning modes, describe the changes to the TCS that were necessary to implement the new scanning modes, and show the performance of the telescope during SCUBA-2 commissioning.

  12. Lobular neoplasia detected in MRI-guided core biopsy carries a high risk for upgrade: a study of 63 cases from four different institutions.

    PubMed

    Khoury, Thaer; Kumar, Prasanna R; Li, Zaibo; Karabakhtsian, Rouzan G; Sanati, Souzan; Chen, Xiwei; Wang, Dan; Liu, Song; Reig, Beatriu

    2016-01-01

    There are certain criteria to recommend surgical excision for lobular neoplasia diagnosed in mammographically detected core biopsy. The aims of this study are to explore the rate of upgrade of lobular neoplasia detected in magnetic resonance imaging (MRI)-guided biopsy and to investigate the clinicopathological and radiological features that could predict upgrade. We reviewed 1655 MRI-guided core biopsies yielding 63 (4%) cases of lobular neoplasia. Key clinical features were recorded. MRI findings including mass vs non-mass enhancement and the reason for biopsy were also recorded. An upgrade was defined as the presence of invasive carcinoma or ductal carcinoma in situ in subsequent surgical excision. The overall rate of lobular neoplasia in MRI-guided core biopsy ranged from 2 to 7%, with an average of 4%. A total of 15 (24%) cases had an upgrade, including 5 cases of invasive carcinoma and 10 cases of ductal carcinoma in situ. Pure lobular neoplasia was identified in 34 cases, 11 (32%) of which had upgrade. In this group, an ipsilateral concurrent or past history of breast cancer was found to be associated with a higher risk of upgrade (6/11, 55%) than contralateral breast cancer (1 of 12, 8%; P=0.03). To our knowledge, this is the largest series of lobular neoplasia diagnosed in MRI-guided core biopsy. The incidence of lobular neoplasia is relatively low. Lobular neoplasia detected in MRI-guided biopsy carries a high risk for upgrade warranting surgical excision. However, more cases from different types of institutions are needed to verify our results.

  13. Reactive plasma upgrade of squalane - a heavy oil simulant

    SciTech Connect

    Kong, P.C.; Watkins, A.D.; Detering, B.A.; Thomas, C.P.

    1995-10-01

    U.S. light crude oil production has steadily declined over the last two decades. However, huge known heavy oil deposits in the North American continent remain largely untapped. In the past 10 years, the API gravity of crude oils has been decreasing by about 0.17% per year, and the sulfur content has been increasing by about 0.027% per year. As the API gravity of crude oil decreases, there will be an urgent need for economically viable new technologies to upgrade the heavy oil to a high API gravity feed stock for the refineries. The Idaho National Engineering Laboratory is investigating an innovative plasma process to upgrade heavy oil and refinery residuum. This paper will present some of the results and the implications of this technology for heavy oil upgrade and conversion.

  14. Upgrading of crude algal bio-oil in supercritical water.

    PubMed

    Duan, Peigao; Savage, Phillip E

    2011-01-01

    We determined the influence of a Pt/C catalyst, high-pressure H2, and pH on the upgrading of a crude algal bio-oil in supercritical water (SCW). The SCW treatment led to a product oil with a higher heating value (∼42 MJ/kg) and lower acid number than the crude bio-oil. The product oil was also lower in O and N and essentially free of sulfur. Including the Pt/C catalyst in the reactor led to a freely flowing liquid product oil with a high abundance of hydrocarbons. Overall, many of the properties of the upgraded oil obtained from catalytic treatment in SCW are similar to those of hydrocarbon fuels derived from fossil fuel resources. Thus, this work shows that the crude bio-oil from hydrothermal liquefaction of a microalga can be effectively upgraded in supercritical water in the presence of a Pt/C catalyst.

  15. Upgrade of absolute extreme ultraviolet diagnostic on J-TEXT.

    PubMed

    Zhang, X L; Cheng, Z F; Hou, S Y; Zhuang, G; Luo, J

    2014-11-01

    The absolute extreme ultraviolet (AXUV) diagnostic system is used for radiation observation on J-TEXT tokamak [J. Zhang, G. Zhuang, Z. J. Wang, Y. H. Ding, X. Q. Zhang, and Y. J. Tang, Rev. Sci. Instrum. 81, 073509 (2010)]. The upgrade of the AXUV system is aimed to improve the spatial resolution and provide a three-dimensional image on J-TEXT. The new system consists of 12 AXUV arrays (4 AXUV16ELG arrays, 8 AXUV20ELG arrays). The spatial resolution in the cross-section is 21 mm for the AXUV16ELG arrays and 17 mm for the AXUV20ELG arrays. The pre-amplifier is also upgraded for a higher signal to noise ratio. By upgrading the AXUV imaging system, a more accurate observation on the radiation information is obtained.

  16. Prototype sector production for the STAR inner TPC upgrade

    NASA Astrophysics Data System (ADS)

    Yang, Chi; STAR Collaboration

    2017-01-01

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is upgrading the Inner TPC sectors (iTPC). By increasing the number of inner pad rows from 13 to 40 and renewing the inner sector wires, this major detector upgrade will improve the rapidity coverage from |η| < 1 to |η| < 1.5, provide better momentum resolution, and better energy loss (dE/dx) resolution. The iTPC upgrade is crucial to STAR Beam Energy Scan Phase II (BES- II) program, which will provide in-depth understanding on QCD phase diagram and in-medium modification. In this paper we report on progress on the iTPC sector construction. The iTPC module fabrication techniques and testing results from the first full size prototype are presented.

  17. Status of the CMS Phase I pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Spannagel, S.

    2016-09-01

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  18. Upgrade of absolute extreme ultraviolet diagnostic on J-TEXT

    SciTech Connect

    Zhang, X. L.; Cheng, Z. F. Hou, S. Y.; Zhuang, G.; Luo, J.

    2014-11-15

    The absolute extreme ultraviolet (AXUV) diagnostic system is used for radiation observation on J-TEXT tokamak [J. Zhang, G. Zhuang, Z. J. Wang, Y. H. Ding, X. Q. Zhang, and Y. J. Tang, Rev. Sci. Instrum. 81, 073509 (2010)]. The upgrade of the AXUV system is aimed to improve the spatial resolution and provide a three-dimensional image on J-TEXT. The new system consists of 12 AXUV arrays (4 AXUV16ELG arrays, 8 AXUV20ELG arrays). The spatial resolution in the cross-section is 21 mm for the AXUV16ELG arrays and 17 mm for the AXUV20ELG arrays. The pre-amplifier is also upgraded for a higher signal to noise ratio. By upgrading the AXUV imaging system, a more accurate observation on the radiation information is obtained.

  19. 3D vision upgrade kit for TALON robot

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Vaden, Justin; Hyatt, Brian; Morris, James; Pezzaniti, J. Larry; Chenault, David B.; Tchon, Joe; Barnidge, Tracy; Kaufman, Seth; Pettijohn, Brad

    2010-04-01

    In this paper, we report on the development of a 3D vision field upgrade kit for TALON robot consisting of a replacement flat panel stereoscopic display, and multiple stereo camera systems. An assessment of the system's use for robotic driving, manipulation, and surveillance operations was conducted. The 3D vision system was integrated onto a TALON IV Robot and Operator Control Unit (OCU) such that stock components could be electrically disconnected and removed, and upgrade components coupled directly to the mounting and electrical connections. A replacement display, replacement mast camera with zoom, auto-focus, and variable convergence, and a replacement gripper camera with fixed focus and zoom comprise the upgrade kit. The stereo mast camera allows for improved driving and situational awareness as well as scene survey. The stereo gripper camera allows for improved manipulation in typical TALON missions.

  20. SLHC, the High-Luminosity Upgrade (public event)

    ScienceCinema

    None

    2016-07-12

    In the morning of June 23rd a public event is organised in CERN's Council Chamber with the aim of providing the particle physics community with up-to-date information about the strategy for the LHC luminosity upgrade and to describe the current status of preparation work. The presentations will provide an overview of the various accelerator sub-projects, the LHC physics prospects and the upgrade plans of ATLAS and CMS. This event is organised in the framework of the SLHC-PP project, which receives funding from the European Commission for the preparatory phase of the LHC High Luminosity Upgrade project. Informing the public is among the objectives of this EU-funded project. A simultaneous transmission of this meeting will be broadcast, available at the following address: http://webcast.cern.ch/

  1. The systems engineering upgrade intiative at NASA's Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2005-01-01

    JPL is implementing an initiative to significantly upgrade our systems engineering capabilities. This Systems Engineering Upgrade Initiative [SUI] has been authorized by the highest level technical management body of JPL and is sponsored with internal funds. The SUI objective is to upgrade system engineering at JPL to a level that is world class, professional and efficient compared to the FY04/05 baseline. JPL system engineering, along with the other engineering disciplines, is intended to support optimum designs; controlled and efficient implementations; and high quality, reliable, cost effective products. SUI technical activities are categorized into those dealing with people, process and tools. The purpose of this paper is to describe the rationale, objectives/plans and current status of the JPL SUI.

  2. Deployment of the Hobby-Eberly Telescope wide field upgrade

    NASA Astrophysics Data System (ADS)

    Hill, Gary J.; Drory, Niv; Good, John; Lee, Hanshin; Vattiat, Brian; Kriel, Herman; Bryant, Randy; Elliot, Linda; Landriau, Martin; Leck, Ron; Perry, David; Ramsey, Jason; Savage, Richard; Allen, Richard D.; Damm, George; DePoy, D. L.; Fowler, Jim; Gebhardt, Karl; Haeuser, Marco; MacQueen, Phillip; Marshall, J. L.; Martin, Jerry; Prochaska, Travis; Ramsey, Lawrence W.; Rheault, Jean-Philippe; Shetrone, Matthew; Schroeder Mrozinski, Emily; Tuttle, Sarah E.; Cornell, Mark E.; Booth, John; Moreira, Walter

    2014-07-01

    The Hobby-Eberly Telescope (HET) is an innovative large telescope located in West Texas at the McDonald Observatory. The HET operates with a fixed segmented primary and has a tracker, which moves the four-mirror optical corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. A major upgrade of the HET is in progress that will substantially increase the pupil size to 10 meters (from 9.2 m) and the field of view to 22 arcminutes (from 4 arcminutes) by replacing the corrector, tracker, and prime focus instrument package. In addition to supporting existing instruments, and a new low resolution spectrograph, this wide field upgrade will feed a revolutionary new integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX§). The upgrade is being installed and this paper discusses the current status.

  3. High voltage multiplexing for the ATLAS Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Villani, E. G.; Phillips, P.; Matheson, J.; Lynn, D.; Hommels, L. B. A.; Gregor, I.; Bessner, M.; Tackmann, K.; Newcomer, F. M.; Spencer, E.; Greenall, A.

    2014-01-01

    The increased luminosity of the HL-LHC will require more channels in the upgraded ATLAS Tracker, as a result of the finer detector segmentation, stemming from the otherwise too high occupancy. Among the many technological challenges facing the ATLAS Tracker Upgrade there is more an efficient power distribution and HV biasing of the sensors. The solution adopted in the current ATLAS detector uses one HV conductor for each sensor, which makes it easy to disable malfunctioning sensors without affecting the others, but space constraints and material budget considerations renders this approach impractical for the Upgraded detector. A number of approaches, including the use of the same HV line to bias several sensors and suitable HV switches, along with their control circuitry, are currently being investigated for this purpose. The proposed solutions along with latest test results and measurements will be described.

  4. Soft- and Hardware Upgrade of the Mobile Coil Facility

    NASA Astrophysics Data System (ADS)

    Engelke, S.; Bubeck, K.; Kistner, A.; Trougnou, L.

    2016-05-01

    The Mobile Coil Facility (MCF) is a measurement facility for magnetic characterization. Within the ESA contract 4000103913 the MCF was upgraded in order to improve the measurement process as well as to extend the modelling capabilities. This paper summarizes the upgraded aspects of the facility with a focus on the new algorithms implemented for model fitting, including a Deterministic Optimization Method (DOM) based on the Levenberg-Marquardt algorithm, a Random Search Method (RSM) based on a particle swarm optimization and a RSM based on evolutionary strategy.The following section starts with a general overview of the facility, followed by a brief summary of the mechanical, electrical and general software upgrades. Afterwards the new fitting algorithms are presented and discussed, followed by a comparison of the algorithms for a simulated test case.

  5. Upgrade of absolute extreme ultraviolet diagnostic on J-TEXTa)

    NASA Astrophysics Data System (ADS)

    Zhang, X. L.; Cheng, Z. F.; Hou, S. Y.; Zhuang, G.; Luo, J.

    2014-11-01

    The absolute extreme ultraviolet (AXUV) diagnostic system is used for radiation observation on J-TEXT tokamak [J. Zhang, G. Zhuang, Z. J. Wang, Y. H. Ding, X. Q. Zhang, and Y. J. Tang, Rev. Sci. Instrum. 81, 073509 (2010)]. The upgrade of the AXUV system is aimed to improve the spatial resolution and provide a three-dimensional image on J-TEXT. The new system consists of 12 AXUV arrays (4 AXUV16ELG arrays, 8 AXUV20ELG arrays). The spatial resolution in the cross-section is 21 mm for the AXUV16ELG arrays and 17 mm for the AXUV20ELG arrays. The pre-amplifier is also upgraded for a higher signal to noise ratio. By upgrading the AXUV imaging system, a more accurate observation on the radiation information is obtained.

  6. The LHCb Vertex Locator (VELO) Pixel Detector Upgrade

    NASA Astrophysics Data System (ADS)

    Buchanan, E.

    2017-01-01

    The LHCb experiment is designed to perform high-precision measurements of CP violation and the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. There is a planned upgrade during Long Shutdown 2 (LS2), expected in 2019, which will allow the detector to run at higher luminosities by transforming the entire readout to a trigger-less system. This will include a substantial upgrade of the Vertex Locator (VELO), the silicon tracker that surrounds the LHCb interaction region. The VELO is moving from silicon strip technology to hybrid pixel sensors, where silicon sensors are bonded to VeloPix ASICs. Sensor prototypes have undergone rigorous testing using the Timepix3 Telescope at the SPS, CERN. The main components of the upgrade are summarised and testbeam results presented.

  7. Upgrades of the CMS Outer Tracker for HL-LHC

    NASA Astrophysics Data System (ADS)

    Sguazzoni, Giacomo

    2017-02-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 5 ×1034cm-2s-1 around 2028, to possibly reach an integrated luminosity of 3000 fb-1 in the following decade. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 upgrade. The current CMS Outer Tracker, already running close to its design limits, will not be able to survive HL-LHC radiation conditions and CMS will need a completely new device, in order to fully exploit the highly demanding operating conditions and the delivered luminosity. The new Tracker should have also L1 trigger capabilities. To achieve such goals, R&D activities are ongoing to explore options and develop solutions that would allow including tracking information at Level-1. The design choices for the CMS Outer Tracker upgrades are discussed along with some highlights of the R&D activities.

  8. Upgrading Fermi Without Traveling to Space

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope has received an upgrade that increased its sensitivity by a whopping 40% and nobody had to travel to space to make it happen! The difference instead stems from remarkable improvement to the software used to analyze Fermi-LATs data, and it has resulted in a new high-energy map of our sky.Animation (click to watch!) comparing the Pass 7 to the Pass 8 Fermi-LAT analysis, in a region in the constellation Carina. Pass 8 provides more accurate directions for incoming gamma rays, so more of them fall closer to their sources, creating taller spikes and a sharper image. [NASA/DOE/Fermi LAT Collaboration]Pass 8Fermi-LAT has been surveying the whole sky since August 2008. It detects gamma-ray photons by converting them into electron-positron pairs and tracking the paths of these charged particles. But differentiating this signal from the charged cosmic rays that also pass through the detector with a flux that can be 10,000 times larger! is a challenging process. Making this distinction and rebuilding the path of the original gamma ray relies on complex analysis software.Pass 8 is a complete reprocessing of all data collected by Fermi-LAT. The software has gone through many revisions before now, but this is the first revision that has taken into account all of the experience that the Fermi team has gained operating the LAT in its orbital environment.The improvements made in Pass 8 include better background rejection of misclassified charged particles, improvements to the point spread function and effective area of the detector, and an extension of the effective energy range from below 100 MeV to beyond a few hundred GeV. The changes made in Pass 8 have increased the sensitivity of Fermi-LAT by an astonishing 40%.Map of the High-Energy SkySky map of the sources in the 2FHL catalog, classified by their most likely association. Click for a better look! [Ackermann et al. 2016]The first result from the

  9. Prototype readout electronics for the upgraded ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Sielewicz, K. M.; Aglieri Rinella, G.; Bonora, M.; Ferencei, J.; Giubilato, P.; Rossewij, M. J.; Schambach, J.; Vanat, T.

    2017-01-01

    The ALICE Collaboration is preparing a major upgrade to the experimental apparatus. A key element of the upgrade is the construction of a new silicon-based Inner Tracking System containing 12 Gpixels in an area of 10 m2. Its readout system consists of 192 readout units that control the pixel sensors and the power units, and deliver the sensor data to the counting room. A prototype readout board has been designed to test: the interface between the sensor modules and the readout electronics, the signal integrity and reliability of data transfer, the interface to the ALICE DAQ and trigger, and the susceptibility of the system to the expected radiation level.

  10. Research of TREETOPS Structural Dynamics Controls Simulation Upgrade

    NASA Technical Reports Server (NTRS)

    Yates, Rose M.

    1996-01-01

    Under the provisions of contract number NAS8-40194, which was entitled 'TREETOPS Structural Dynamics and Controls Simulation System Upgrade', Oakwood College contracted to produce an upgrade to the existing TREETOPS suite of analysis tools. This suite includes the main simulation program, TREETOPS, two interactive preprocessors, TREESET and TREEFLX, an interactive post processor, TREEPLOT, and an adjunct program, TREESEL. A 'Software Design Document', which provides descriptions of the argument lists and internal variables for each subroutine in the TREETOPS suite, was established. Additionally, installation guides for both DOS and UNIX platforms were developed. Finally, updated User's Manuals, as well as a Theory Manual, were generated.

  11. High resolution upgrade of the ATF damping ring BPM system

    SciTech Connect

    Terunuma, N.; Urakawa, J.; Frisch, J.; May, J.; McCormick, D.; Nelson, J.; Seryi, A.; Smith, T.; Woodley, M.; Briegel, C.; Dysert, R.; /Fermilab

    2008-05-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.

  12. Proposed FNAL 750 KeV Linac Injector Upgrade

    SciTech Connect

    Tan, C.Y.; Bollinger, D.S.; Schmidt, C.W.; /Fermilab

    2009-04-01

    The present FNAL linac H{sup -} injector has been operational since 1978 and consists of a magnetron H{sup -} source and a 750 keV Cockcroft-Walton Accelerator. The proposed upgrade to this injector is to replace the present magnetron source having a rectangular aperture with a circular aperture, and to replace the Cockcroft-Walton with a 200 MHz RFQ. Operational experience at other laboratories has shown that the upgraded source and RFQ will be more reliable and require less manpower than the present system.

  13. The CDF and D-zero B physics upgrades

    SciTech Connect

    Maciel, A.K.A.

    1997-06-01

    The CDF and D0 detector upgrades are reviewed with an emphasis on their B physics capabilities. Projections for the observability of CP- violation and for the resolution of rapid B{sub s} oscillations are made, based on upgrade simulations and on CDF performance from the last run. It is shown that measurements of sin(2{beta}) and sin(2{alpha}) can be achieved with uncertainties less than 0.15. For fully reconstructed (non-leptonic) B{sub s} decays, both detectors have vertexing and momentum determination able to resolve x{sub s}{approximately}20.

  14. HOM Survey of the First CEBAF Upgrade Style Cavity Pair

    SciTech Connect

    Marhauser, Frank; Davis, G; Drury, Michael; Grenoble, Christiana; Hogan, John; Manus, Robert; Preble, Joseph; Reece, Charles; Rimmer, Robert; Tian, Kai; Wang, Haipeng

    2009-05-01

    The planned upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Laboratory (JLab) requires ten new superconducting rf (SRF) cavity cryomodules to double the beam energy to the envisaged 12 GeV. Adequate cavity Higher Order Mode (HOM) suppression is essential to avoid multipass, multibunch beam break-up (BBU) instabilities of the recirculating beam. We report on detailed HOM surveys performed for the first two upgrade style cavities tested in a dedicated cavity pair cryomodule at 2K. The safety margin to the BBU threshold budget at 12 GeV has been assessed.

  15. The upgrade of the ATLAS first-level calorimeter trigger

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shimpei

    2016-07-01

    The first-level calorimeter trigger (L1Calo) had operated successfully through the first data taking phase of the ATLAS experiment at the CERN Large Hadron Collider. Towards forthcoming LHC runs, a series of upgrades is planned for L1Calo to face new challenges posed by the upcoming increases of the beam energy and the luminosity. This paper reviews the ATLAS L1Calo trigger upgrade project that introduces new architectures for the liquid-argon calorimeter trigger readout and the L1Calo trigger processing system.

  16. The sROD module for the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Castillo, V.; Ferrer, A.; Fiorini, L.; Hernández, Y.; Higón, E.; Mellado, B.; March, L.; Moreno, P.; Reed, R.; Solans, C.; Valero, A.; Valls, J. A.

    2014-02-01

    TileCal is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. The main upgrade of the LHC to increase the instantaneous luminosity is scheduled for 2022. The High Luminosity LHC, also called upgrade Phase-II, will imply a complete redesign of the read-out electronics in TileCal. In the new read-out architecture, the front-end electronics aims to transmit full digitized information to the back-end system in the counting rooms. Thus, the back-end system will also provide digital calibrated information with enhanced precision and granularity to the first level trigger to improve the trigger efficiencies. The demonstrator project is envisaged to qualify this new proposed architecture. A reduced part of the detector, 1/256 of the total, will be equipped with the new electronics during 2014 to evaluate the proposed architecture in real conditions. The upgraded Read-Out Driver (sROD) will be the core element of the back-end electronics in Phase-II. The sROD module is designed on a double mid-size AMC format and will operate under an AdvancedTCA framework. The module includes two Xilinx Series 7 Field Programmable Gate Arrays (FPGAs) for data receiving and processing, as well as the implementation of embedded systems. Related to optical connectors, the sROD uses 4 QSFPs to receive and transmit data from the front-end electronics and 1 Avago MiniPOD to send preprocessed data to the first level trigger system. An SFP module maintains the compatibility with the existing hardware. A complete description of the sROD module for the demonstrator including the main functionalities, circuit design and the control software and firmware will be presented.

  17. Application of the general model 'biological nutrient removal model no. 1' to upgrade two full-scale WWTPs.

    PubMed

    Ruano, M V; Serralta, J; Ribes, J; Garcia-Usach, F; Bouzas, A; Barat, R; Seco, A; Ferrer, J

    2012-01-01

    In this paper, two practical case studies for upgrading two wastewater treatment plants (WWTPs) using the general model BNRM 1 (Biological Nutrient Removal Model No. 1) are presented. In the first case study, the Tarragona WWTP was upgraded by reducing the phosphorus load to the anaerobic digester in order to minimize the precipitation problems. Phosphorus load reduction was accomplished by mixing the primary sludge and the secondary sludge and by elutriating the mixed sludge. In the second case study, the Alcantarilla WWTP, the nutrient removal was enhanced by maintaining a relatively low dissolved oxygen concentration in Stage A to maintain the acidogenic bacteria activity. The VFA produced in Stage A favour the denitrification process and biological phosphorus removal in Stage B. These case studies demonstrate the benefits of using the general model BNRMI to simulate settling processes and biological processes related to both anaerobic and aerobic bacteria in the same process unit.

  18. Current understanding of divertor detachment: experiments and modelling

    SciTech Connect

    Wischmeier, W; Groth, M; Kallenbach, A; Chankin, A; Coster, D; Dux, R; Herrmann, A; Muller, H; Pugno, R; Reiter, D; Scarabosio, A; Watkins, J; Team, T D; Team, A U

    2008-05-23

    A qualitative as well as quantitative evaluation of experimentally observed plasma parameters in the detached regime proves to be difficult for several tokamaks. A series of ohmic discharges have been performed in ASDEX Upgrade and DIII-D at similar as possible plasma parameters and at different line averaged densities, {bar n}{sub e}. The experimental data represent a set of well diagnosed discharges against which numerical simulations are compared. For the numerical modeling the fluid-code B2.5 coupled to the Monte Carlo neutrals transport code EIRENE is used. Only the combined enhancement of effects, such as geometry, drift terms, neutral conductance, increased radial transport and divertor target composition, explains a significant fraction of the experimentally observed asymmetries of the ion fluxes as a function of {bar n}{sub e} to the inner and outer target plates in ASDEX Upgrade. The relative importance of the mechanisms leading to detachment are different in DIII-D and ASDEX Upgrade.

  19. Catalytic upgrading of bio-oil by HZSM-5 in sub- and super-critical ethanol.

    PubMed

    Peng, Jun; Chen, Ping; Lou, Hui; Zheng, Xiaoming

    2009-07-01

    The pyrolysis bio-oil from rice husk was upgraded in sub- and super-critical ethanol using HZSM-5 as catalyst. The results showed that super-critical upgrading process performed more effectively than sub-critical upgrading process. Acidic HZSM-5 facilitates esterification in super-critical ethanol to convert acids contained in crude bio-oil into various kinds of esters. Stronger acidic HZSM-5 (low Si/Al ratio) can facilitate cracking of heavy components of crude bio-oil more effectively in super-critical upgrading process. The residue of distillated upgraded bio-oil from super-critical upgrading process decreased evidently, compared with that of distillated crude bio-oil. This work proved that crude bio-oil can be effectively upgraded in super-critical upgrading process with the aid of acidic catalyst.

  20. Incremental Upgrade of Legacy Systems (IULS)

    DTIC Science & Technology

    2001-04-01

    Inputs S p e c i a l 2 0 H z MUX I /O S u b 2 0 H z M U X Outpu ts S u b 2 0 H z U n p a c k i n g P I M s S imu la t i on & D isp lay P r o c e s...processing to be "wrapped" into the mission processor was selected from candidates including blended radar processing, data fusion , and enhanced situation...Following • Blended Radar Processing • Situation Awareness • Fusion Legacy JASS OFP Bold Stroke Infrastructure MIPS Processor Advanced Mission