Science.gov

Sample records for ash belite cement

  1. Mechanical properties, pore size distribution, and pore solution of fly ash-belite cement mortars

    SciTech Connect

    Guerrero, A.; Goni, S.; Macias, A.; Luxan, M.P.

    1999-11-01

    The mechanical properties, pore size distribution, and extracted pore solution of fly ash-belite cement (FABC) mortars were studied for a period of 200 days. The influence of the calcination temperature, which ranged from 700 to 900 C, of the fly ash-belite cement was discussed. The evolution with hydration time of the pore size distribution was followed by mercury intrusion porosimetry, and the results correlated with those of flexural and compressive strength. The pore solution was expressed and analyzed at different times of hydration.

  2. Synthesis of belite cement from nano-silica extracted from two rice husk ashes.

    PubMed

    Sinyoung, Suthatip; Kunchariyakun, Kittipong; Asavapisit, Suwimol; MacKenzie, Kenneth J D

    2017-04-01

    Nano-silicas extracted from a pure rice husk ash calcined in the laboratory (RHA) and ash from an impure industrial rice husk waste (BRHA), were used to form belite cement by firing with two different calcium sources (calcium carbonate and calcium nitrate). The nano-silica extracted from RHA was highly reactive due to its high pore volume and low activation energy of dehydration. The formation of belite cement from both nano-silicas was studied by firing with two different calcium sources, Ca(NO3)2 and CaCO3 at 800-1100 °C. Both nano-silicas formed the principal phase in belite cement (larnite or β-C2S) at temperatures as low as 800 °C, especially with calcium nitrate as the calcium source. Thus, highly impure BRHA is shown to be very suitable as a starting material for the low-temperature production of belite cement, especially in conjunction with calcium nitrate as the calcium source.

  3. Belite cement clinker from coal fly ash of high Ca content. Optimization of synthesis parameters.

    PubMed

    Guerrero, A; Goñi, S; Campillo, I; Moragues, A

    2004-06-01

    The optimization of parameters of synthesis of belite cement clinker from coal fly ash of high Ca content is presented in this paper. The synthesis process is based on the hydrothermal-calcination-route of the fly ash without extra additions. The hydrothermal treatment was carried out in demineralized water and a 1 M NaOH solution for 4 h at the temperatures of 100 degrees C, 150 degrees C, and 200 degrees C. The precursors obtained during the hydrothermal treatmentwere heated at temperatures of 700 degrees C, 800 degrees C, 900 degrees C, and 1000 degrees C. The changes of fly ash composition after the different treatments were characterized by X-ray diffraction (XRD), FT infrared (FTIR) spectroscopy, surface area (BET-N2), and thermal analyses. From the results obtained we concluded that the optimum temperature of the hydrothermal treatment was 200 degrees C, and the optimum temperature for obtaining the belite cement clinker was 800 degrees C.

  4. Efficiency of fly ash belite cement and zeolite matrices for immobilizing cesium.

    PubMed

    Goñi, S; Guerrero, A; Lorenzo, M P

    2006-10-11

    The efficiency of innovative matrices for immobilizing cesium is presented in this work. The matrix formulation included the use of fly ash belite cement (FABC-2-W) and gismondine-type Na-P1 zeolite, both of which are synthesized from fly ash of coal combustion. The efficiency for immobilizing cesium is evaluated from the leaching test ANSI/ANS 16.1-1986 at the temperature of 40 degrees C, from which the apparent diffusion coefficient of cesium is obtained. Matrices with 100% of FABC-2-W are used as a reference. The integrity of matrices is evaluated by porosity and pore-size distribution from mercury intrusion porosimetry, X-ray diffraction and nitrogen adsorption analyses. Both matrices can be classified as good solidify systems for cesium, specially the FABC-2-W/zeolite matrix in which the replacement of 50% of belite cement by the gismondine-type Na-P1 zeolite caused a decrease of two orders of magnitude of cesium mean Effective Diffusion Coefficient (D(e)) (2.8e-09 cm(2)/s versus 2.2e-07 cm(2)/s, for FABC-2-W/zeolite and FABC-2-W matrices, respectively).

  5. Microstructure and mechanical performance of belite cements from high calcium coal fly ash

    SciTech Connect

    Guerrero, A.; Goni, S.; Moragues, A.; Dolado, J.S.

    2005-07-01

    The microstructure and mechanical performance of two low energy fly ash belite cements (FABC-1-W and FABC-1-N) obtained from high calcium-coal fly ash as raw material is studied in this work. The FABC were obtained after a previous hydrothermal treatment of the fly ash in demineralized water and NaOH 1M solution. The hydration of both FABC-1-W and FABC-1-N during 180 days was followed by thermal analysis, X-ray diffraction, FT infrared spectroscopy, scanning electron microscopy and Brunauer-Emmett and Teller-N2 surface area measurements. The mechanical properties were studied under different curing conditions: normal (21 degrees C and {lt} 95% RH) and accelerated (40{sup o}C and {lt} 95% RH). Porosity and pore-size distribution were also studied. The results showed a better mechanical performance for FABC-1-N when the curing was normal and a better mechanical performance for FABC-1-W when the curing was accelerated.

  6. Resistance of class C fly ash belite cement to simulated sodium sulphate radioactive liquid waste attack.

    PubMed

    Guerrero, A; Goñi, S; Allegro, V R

    2009-01-30

    The resistance of class C fly ash belite cement (FABC-2-W) to concentrated sodium sulphate salts associated with low level wastes (LLW) and medium level wastes (MLW) is discussed. This study was carried out according to the Koch and Steinegger methodology by testing the flexural strength of mortars immersed in simulated radioactive liquid waste rich in sulphate (48,000 ppm) and demineralised water (used as a reference), at 20 degrees C and 40 degrees C over a period of 180 days. The reaction mechanisms of sulphate ion with the mortar was carried out through a microstructure study, which included the use of Scanning electron microscopy (SEM), porosity and pore-size distribution and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated sulphate radioactive liquid waste (SSRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive ettringite inside the pores and an alkaline activation of the hydraulic activity of cement promoted by the ingress of sulphate. Accordingly, the microstructure was strongly refined.

  7. Durability of class C fly ash belite cement in simulated sodium chloride radioactive liquid waste: influence of temperature.

    PubMed

    Guerrero, A; Goñi, S; Allegro, V R

    2009-03-15

    This work is a continuation of a previous durability study of class C fly ash belite cement (FABC-2-W) in simulated radioactive liquid waste (SRLW) that is very rich in sulphate salts. The same experimental methodology was applied in the present case, but with a SRLW rich in sodium chloride. The study was carried out by testing the flexural strength of mortars immersed in simulated radioactive liquid waste that was rich in chloride (0.5M), and demineralised water as a reference, at 20 and 40 degrees C over a period of 180 days. The reaction mechanism of chloride ions with the mortar was evaluated by scanning electron microscopy (SEM), porosity and pore-size distribution, and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated chloride radioactive liquid waste (SCRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive Friedel's salt inside the pores; accordingly, the microstructure was refined.

  8. Synthesis of Portland cement and calcium sulfoaluminate-belite cement for sustainable development and performance

    NASA Astrophysics Data System (ADS)

    Chen, Irvin Allen

    Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, (1) incorporation of waste materials in portland cement synthesis, and (2) optimization of an alternative environmental friendly binder, calcium sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S--C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate-belite

  9. Effect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste: synergy of chloride and sulphate ions.

    PubMed

    Guerrero, A; Goñi, S; Allegro, V R

    2009-06-15

    The durability of class C fly ash belite cement (FABC-2-W) in simulated radioactive liquid waste (SRLW) rich in a mixed sodium chloride and sulphate solution is presented here. The effect of the temperature and potential synergic effect of chloride and sulfate ions are discussed. This study has been carried out according to the Koch-Steinegger test, at the temperature of 20 degrees C and 40 degrees C during a period of 180 days. The durability has been evaluated by the changes of the flexural strength of mortar, fabricated with this cement, immersed in a simulated radioactive liquid waste rich in sulfate (0.5M), chloride (0.5M) and sodium (1.5M) ions--catalogued like severely aggressive for the traditional Portland cement--and demineralised water, which was used as reference. The reaction mechanism of sulphate, chloride and sodium ions with the mortar was evaluated by scanning electron microscopy (SEM), porosity and pore-size distribution, and X-ray diffraction (XRD). The results showed that the chloride binding and formation of Friedel's salt was inhibited by the presence of sulphate. Sulphate ion reacts preferentially with the calcium aluminate hydrates forming non-expansive ettringite which precipitated inside the pores; the microstructure was refined and the mechanical properties enhanced. This process was faster and more marked at 40 degrees C.

  10. Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products

    SciTech Connect

    Arjunan, P.; Silsbee, M.R.; Roy, D.M.

    1999-08-01

    The study describes the preparation and characterization of an environmentally friendly cement with performance characteristics similar to those of Portland cement, from a lime kiln bag house dust, a low-calcium fly ash, and a scrubber sludge. Promising preliminary results show the formation of relatively low-temperature phases calcium sulfoaluminate (4CaO{center{underscore}dot}3Al{sub 2}O{sub 3}{center{underscore}dot}SO{sub 3}) and dicalcium silicate (2CaO{center{underscore}dot}SiO{sub 2}) at {approximately} 1,250 C if nodulized raw means used for clinker preparation and at 1,175 C if powdered raw meal is used as compared to the {approximately} 1,500 C sintering temperature required for Portland cement. Phases of the developed cements were predicted using modified Bogue calculations. Isothermal calorimetric measurements indicate the hydration properties of the cements are comparable to ordinary Portland cement. Mechanical properties and microstructural evaluations also were carried out.

  11. Active iron-rich belite sulfoaluminate cements: clinkering and hydration.

    PubMed

    Cuberos, Antonio J M; De la Torre, Angeles G; Alvarez-Pinazo, G; Martín-Sedeño, M Carmen; Schollbach, Katrin; Pöllmann, Herbert; Aranda, Miguel A G

    2010-09-01

    Ordinary Portland cement (OPC) is an environmentally contentious material, as for every ton of OPC produced, on average, 0.97 tons of CO2 are released. Conversely, belite sulfoaluminate (BSA) cements are promising eco-friendly building materials, as their production may deplete CO2 emissions up to 35% (compared to OPC). However, the hydration rate of belite is slow. Here, we report the clinkering of iron-rich BSA materials, their activation with B2O3, and establishing a methodology to measure their improved reactivities. Nonactivated BSA clinker contained only beta belite phase, 52 wt %. Meanwhile, BSA clinkers activated with 1 and 2 wt % of B2O3 contained 28 wt % of beta and 25 wt % of alpha'H; and 54 wt % of alpha'H phase, respectively. Therefore, activation of BSA has been proved as alpha'H-belite is stabilized. The hydration of the cements has been studied by laboratory and synchrotron X-ray powder diffraction (using Rietveld method and chemical constraints), calorimetry, and environmental scanning electron microscopy. Cement pastes have different hydration rates. For nonactivated BSA cement, 20 and 48% of the belite reacted after one and three months, respectively. Conversely, 37-49% after one month and 52-62% after three months of overall belite reactivities have been measured for BSA cements activated with B2O3.

  12. Synthesis of belite cement clinker of high hydraulic reactivity

    SciTech Connect

    Kacimi, Larbi Simon-Masseron, Angelique Salem, Souria Ghomari, Abdelhamid Derriche, Zoubir

    2009-07-15

    This study is concerned with the increase of the cooling rate of belite clinker, by using the water quenching for the chemical stabilization of reactive belite, which improves the hydraulic properties of this clinker. The addition of adequate mineralizers, as NaF and Fe{sub 2}O{sub 3}, contributes to the improvement of the clinker properties obtained at low burning temperature. X-ray fluorescence spectroscopy, X-ray diffraction analysis and optical microscopy were used to determine the chemical and mineralogical compositions of this clinker. The samples were analyzed by means of a scanning electronic microscope connected with an energy-dispersive X-ray spectrometer to detect the composition of the belite phase and its morphology. Physical and mechanical properties of this clinker cement were determined. The results show that the belite clinker obtained at 1150 {sup o}C, with lime saturation factor 0.67, is characterized by a great hydraulic reactivity, similar to that of the ordinary alite clinker. The addition of 2% of NaF and the water quenching improved the chemical, mineralogical and structural properties, while improving the cement hydraulic properties.

  13. Valorisation of electric arc furnace steel slag as raw material for low energy belite cements.

    PubMed

    Iacobescu, R I; Koumpouri, D; Pontikes, Y; Saban, R; Angelopoulos, G N

    2011-11-30

    In this paper, the valorisation of electric arc furnace steel slag (EAFS) in the production of low energy belite cements is studied. Three types of clinkers were prepared with 0 wt.% (BC), 5 wt.% (BC5) and 10 wt.% (BC10) EAFS, respectively. The design of the raw mixes was based on the compositional indices lime saturation factor (LSF), alumina ratio (AR) and silica ratio (SR). The clinkering temperature was studied for the range 1280-1400°C; firing was performed at 1380°C based on the results regarding free lime and the evolution of microstructure. In order to activate the belite, clinkers were cooled fast by blown air and concurrent crushing. The results demonstrate that the microstructure of the produced clinkers is dominated by belite and alite crystals, with tricalcium aluminate and tetracalcium-alumino-ferrite present as micro-crystalline interstitial phases. The prepared cements presented low early strength development as expected for belite-rich compositions; however the 28-day results were 47.5 MPa, 46.6 MPa and 42.8 MPa for BC, BC5 and BC10, respectively. These values are comparable with OPC CEMI 32.5 N (32.5-52.5 MPa) according to EN 197-1. A fast setting behaviour was also observed, particularly in the case of BC10, whereas soundness did not exceed 1mm.

  14. Aluminum-rich belite sulfoaluminate cements: Clinkering and early age hydration

    SciTech Connect

    Martin-Sedeno, M. Carmen; Cuberos, Antonio J.M.; De la Torre, Angeles G.; Alvarez-Pinazo, Gema; Ordonez, Luis M.; Gateshki, Milen; Aranda, Miguel A.G.

    2010-03-15

    Belite sulfoaluminate (BSA) cements have been proposed as environmentally friendly building materials, as their production may release up to 35% less CO{sub 2} into the atmosphere when compared to ordinary Portland cements. Here, we discuss the laboratory production of three aluminum-rich BSA clinkers with nominal mineralogical compositions in the range C{sub 2}S (50-60%), C{sub 4}A{sub 3}$ (20-30%), CA (10%) and C{sub 12}A{sub 7} (10%). Using thermogravimetry, differential thermal analysis, high temperature microscopy, and X-ray powder diffraction with Rietveld quantitative phase analysis, we found that burning for 15 min at 1350 deg. C was the optimal procedure, in these experimental conditions, for obtaining the highest amount of C{sub 4}A{sub 3}$, i.e. a value as close as possible to the nominal composition. Under these experimental conditions, three different BSA clinkers, nominally with 20, 30 and 30 wt.% of C{sub 4}A{sub 3}$, had 19.6, 27.1 and 27.7 wt.%, C{sub 4}A{sub 3}$ respectively, as determined by Rietveld analysis. We also studied the complex hydration process of BSA cements prepared by mixing BSA clinkers and gypsum. We present a methodology to establish the phase assemblage evolution of BSA cement pastes with time, including amorphous phases and free water. The methodology is based on Rietveld quantitative phase analysis of synchrotron and laboratory X-ray powder diffraction data coupled with chemical constraints. A parallel calorimetric study is also reported. It is shown that the beta-C{sub 2}S phase is more reactive in aluminum-rich BSA cements than in standard belite cements. On the other hand, C{sub 4}A{sub 3}$ reacts faster than the belite phases. The gypsum ratio in the cement is also shown to be an important factor in the phase evolution.

  15. Microstructure of amorphous aluminum hydroxide in belite-calcium sulfoaluminate cement

    SciTech Connect

    Song, Fei; Yu, Zhenglei; Yang, Fengling; Lu, Yinong Liu, Yunfei

    2015-05-15

    Belite-calcium sulfoaluminate (BCSA) cement is a promising low-CO{sub 2} alternative to ordinary Portland cement. Herein, aluminum hydroxide (AH{sub 3}), the main amorphous hydration product of BCSA cement, was investigated in detail. The microstructure of AH{sub 3} with various quantities of gypsum was investigated via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The AH{sub 3} with various morphologies were observed and confirmed in the resulting pastes. Particular attention was paid to the fact that AH{sub 3} always contained a small amount of Ca according to the results of EDS analysis. The AH{sub 3} was then characterized via high resolution transmission electron microscopy (HRTEM). The results of HRTEM indicated that Ca arose from nanosized tricalcium aluminate hexahydrate which existed in the AH{sub 3}.

  16. Effect of Calcium Carbonate Fineness on Calcium Sulfoaluminate-Belite Cement.

    PubMed

    Jeong, Yeonung; Hargis, Craig W; Chun, Sungchul; Moon, Juhyuk

    2017-08-03

    This study investigated the hydration characteristics and strength development of calcium sulfoaluminate-belite (CSAB) cements incorporating calcium carbonate (CC) powders with various particle size distributions and different gypsum amounts. In general, the CSAB hydration was accelerated by the CC powder, but the acceleration and resulting strength improvement were more effective with finer CC powder. Regardless of the fineness of the CC powder, it took part in the hydration of CSAB cement, forming hemicarboaluminate and monocarboaluminate phases. These hydration and nucleation effects compensated for the strength reduction from decreased cementing components (i.e., dilution effect) when finer CC powders were used, while they did not overcome the strength reduction when coarser CC powder was used. On the other hand, increasing the amount of gypsum for a given CC content improved the strength. The strength of CSAB cement had a clear inverse relationship with its total pore volume measured by mercury intrusion porosimetry (MIP). Thermodynamic modeling for CSAB cement hydration showed that the use of CC powder increased total volume of solid phases up to 6 wt % at a given amount of gypsum.

  17. Effect of Calcium Carbonate Fineness on Calcium Sulfoaluminate-Belite Cement

    PubMed Central

    Hargis, Craig W.; Chun, Sungchul; Moon, Juhyuk

    2017-01-01

    This study investigated the hydration characteristics and strength development of calcium sulfoaluminate-belite (CSAB) cements incorporating calcium carbonate (CC) powders with various particle size distributions and different gypsum amounts. In general, the CSAB hydration was accelerated by the CC powder, but the acceleration and resulting strength improvement were more effective with finer CC powder. Regardless of the fineness of the CC powder, it took part in the hydration of CSAB cement, forming hemicarboaluminate and monocarboaluminate phases. These hydration and nucleation effects compensated for the strength reduction from decreased cementing components (i.e., dilution effect) when finer CC powders were used, while they did not overcome the strength reduction when coarser CC powder was used. On the other hand, increasing the amount of gypsum for a given CC content improved the strength. The strength of CSAB cement had a clear inverse relationship with its total pore volume measured by mercury intrusion porosimetry (MIP). Thermodynamic modeling for CSAB cement hydration showed that the use of CC powder increased total volume of solid phases up to 6 wt % at a given amount of gypsum. PMID:28771217

  18. Low Temperature Synthesis of Belite Cement Based on Silica Fume and Lime

    PubMed Central

    Tantawy, M. A.; Shatat, M. R.; El-Roudi, A. M.; Taher, M. A.; Abd-El-Hamed, M.

    2014-01-01

    This paper describes the low temperature synthesis of belite (β-C2S) from silica fume. Mixtures of lime, BaCl2, and silica fume with the ratio of (Ca + Ba)/Si = 2 were hydrothermally treated in stainless steel capsule at 110–150°C for 2–5 hours, calcined at 600–700°C for 3 hours, and analyzed by FTIR, XRD, TGA/DTA, and SEM techniques. Dicalcium silicate hydrate (hillebrandite) was prepared by hydrothermal treatment of lime/silica fume mixtures with (Ca + Ba)/Si = 2 at 110°C for 5 hours. Hillebrandite partially dehydrates in two steps at 422 and 508°C and transforms to γ-C2S at 734°C which in turn transforms to α′-C2S at 955°C which in turn transforms to β-C2S when cooled. In presence of Ba2+ ions, β-C2S could be stabilized with minor transformation to γ-C2S. Mixture of silica fume, lime, and BaCl2 with the ratio of (Ca + Ba)/Si = 2 was successfully utilized for synthesis of β-C2S by hydrothermal treatment at 110°C for 5 hours followed by calcination of the product at 700°C for 3 hours. PMID:27437495

  19. Synthesis of alpha'L-C2S cement from fly-ash using the hydrothermal method at low temperature and atmospheric pressure.

    PubMed

    Kacimi, Larbi; Cyr, Martin; Clastres, Pierre

    2010-09-15

    The objective of this study was the synthesis of alpha'(L)-C(2)S (Ca(2)SiO(4)) belite cement, starting from fly-ash of system CaO-SiO(2)-Al(2)O(3)-SO(3), and using the hydrothermal method in alkaline solution. The lime deficit in these ashes was compensated by the addition of slaked lime from lime bagging workshops. The hydrothermal treatment of the mixture was carried out in demineralized water, NaOH or KOH solution, continually stirred at a temperature below 100 degrees C and atmospheric pressure. The dehydration and calcination of the mixtures at temperatures between 800 and 1100 degrees C allowed alpha'(L)-C(2)S-rich cement to be obtained. The optimization of the synthesis parameters (temperature and time of stirring, pH of solution, temperature and duration of mixture burning) was also studied. The phase formation during various synthesis stages was studied by X-ray diffraction (XRD). Other techniques, such as SEM and EDX, were used to characterize the cement minerals. The results obtained showed that these ashes could form belite cement composed of only one dicalcium silicate phase (alpha'(L)-C(2)S).

  20. Alkali ash material: a novel fly ash-based cement.

    PubMed

    Rostami, Hossein; Brendley, William

    2003-08-01

    The United States generates 110 million t of coal ash annually. Approximately 70 million t of this coal ash is fly ash, of which 27% is recycled and the remaining 73% is landfilled. Disposal of such a huge quantity of ash poses a significant environmental problem. A new cementitious material has been developed, called alkali ash material (AAM), which is used to produce concrete for construction. AAM can be used to create a variety of concrete strengths and could revolutionize the concrete product manufacturing industry due to its economic advantage. AAM contains 40-95% Class F fly ash and is used as cement to bind sand, stone, and fibers creating concrete. AAM concrete has been tested for strength, durability, mechanical properties, and, most importantly, economic viability. AAM concrete is economically and technically viable for many construction applications. Some properties include rapid strength gain (90% of ultimate in 1 d), high ultimate strengths (110 MPa or 16,000 psi in 1 d), excellent acid resistance, and freeze-thaw durability. AAM's resistance to chemical attack, such as sulfuric (H2SO4), nitric (HNO3), hydrochloric (HCl), and organic acids, is far better than portland cement concrete. AAM is resistant to freeze-thaw attack based on ASTM C-666 specifications. Potential immediate applications of AAM are blocks, pipe, median barriers, sound barriers, and overlaying materials. Eventual markets are high strength construction products, bridge beams, prestressed members, concrete tanks, highway appurtenances, and other concrete products.

  1. Use of Incineration Solid Waste Bottom Ash as Cement Mixture in Cement Production

    NASA Astrophysics Data System (ADS)

    Jun, N. H.; Abdullah, M. M. A. B.; Jin, T. S.; Kadir, A. A.; Tugui, C. A.; Sandu, A. V.

    2017-06-01

    Incineration solid waste bottom ash was use to examine the suitability as a substitution in cement production. This study enveloped an innovative technology option for designing new equivalent cement that contains incineration solid waste bottom ash. The compressive strength of the samples was determined at 7, 14, 28 and 90 days. The result was compared to control cement with cement mixture containing incineration waste bottom ash where the result proved that bottom ash cement mixture able achieve its equivalent performance compared to control cement which meeting the requirement of the standards according to EN 196-1. The pozzolanic activity index of bottom ash cement mixture reached 0.92 at 28 days and 0.95 at 90 and this values can be concluded as a pozzolanic material with positive pozzolanic activity. Calcium hydroxide in Portland cement decreasing with the increasing replacement of bottom ash where the reaction occur between Ca(OH)2 and active SiO2.

  2. Radioactive wastes dispersed in stabilized ash cements

    SciTech Connect

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.

    1997-12-31

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO{sub 2}) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO{sub 2} to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO{sub 2} to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms.

  3. Cementation and solidification of Rocky Flats Plant incinerator ash

    SciTech Connect

    Phillips, J.A.; Semones, G.B.

    1994-04-01

    Cementation studies on various aqueous waste streams at Rocky Flats have shown this technology to be effective for immobilizing the RCRA constituents in the waste. Cementation is also being evaluated for encapsulation of incinerator ash. Experiments will initially evaluate a surrogate ash waste using a Taguchi experimental design to optimize the cement formulation and waste loading levels for this application. Variables of waste loading, fly ash additions, water/cement ratio, and cement type will be tested at three levels each during the course of this work. Tests will finally be conducted on actual waste using the optimized cement formulation developed from this testing. This progression of tests will evaluate the effectiveness of cement encapsulation for this waste stream without generating any additional wastes.

  4. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    NASA Astrophysics Data System (ADS)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  5. The influence of sugarcane bagasse ash as fly ash on cement quality

    NASA Astrophysics Data System (ADS)

    Rauf, N.; Damayanti, M. C.; Pratama, S. W. I.

    2017-01-01

    Fly ash often is used as the third material for cement. The fly ash from sugarcane bagasse is usually considered as industrial waste material that can be added to the base material of cement (clinker, trash, gypsum and lime stone) for economic and environment reason. The amount of fly ash usually up to 30 % of cement material, but in this research the percentage of sugarcane bagasse ash (SBA) is added to cement material is up to 15% total weight. Then the x-rays fluorescence (XRF) was used to determine its chemical composition of raw material and cement samples. The physical properties of cement such as fineness, setting time, expansion, and compressive strength were measured using Automatic Blaine, Vicat, Autoclave, respectively. The result show that the percentage of sugarcane bagasse ash influences the quality of cement and concrete, and this is confirmed with Indonesia National Standard (SNI). It is showed that the sugarcane bagasse ash could be use as material to improve the quality of cement and will solve the environment waste material

  6. Processing of Sugarcane Bagasse ash and Reactivity of Ash-blended Cement Mortar

    NASA Astrophysics Data System (ADS)

    Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad

    Sugarcane bagasse ash (SCBA), a sugar-mill waste, has the potential of a partial cement replacement material if processed and obtained under controlled conditions. This paper discusses the reactivity of SCBA obtained by control burning of sugarcane bagasse procured from Punjab province of India. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were employed to ascertain the amorphousness and morphology of the minerals ash particles. Destructive and non-destructive tests were conducted on SCBA-blended mortar specimens. Ash-blended cement paste specimens were analyzed by XRD, thermal analysis, and SEM methods to evaluate the hydration reaction of SCBA with cement. Results showed that the SCBA processed at 600°C for 5 hours was reactive as ash-blended mortar specimens with up to 15% substitution of cement gave better strength than control specimens.

  7. Hydration reactions of cement combinations containing vitrified incinerator fly ash

    SciTech Connect

    Dyer, Thomas D.; Dhir, Ravindra K

    2004-05-01

    One treatment option for municipal solid waste incinerator fly ash (IFA) is vitrification. The process yields a material containing reduced levels of trace metals relative to the original ash. The material is glassy and potentially suitable as a cement component in concrete. This paper examines the vitrification of an IFA and studies the hydration reactions of combinations of this vitrified material and Portland cement (PC). Isothermal conduction calorimetry, powder X-ray diffraction (XRD), thermogravimetry (TG) and scanning electron microscopy were employed to study the hydration reactions. As the levels of vitrified ash increase, the quantities of AFt phase produced decrease, whilst quantities of AFm phase increase, due to the reduced levels of sulfate in the vitrified ash. The levels of calcium silicate hydrate (CSH) gel (inferred from estimates of quantities of gel-bound water) remain constant at 28 days regardless of vitrified ash content, indicating that the material is contributing toward the formation of this product.

  8. Rheology and Extrusion of Cement-Fly Ashes Pastes

    NASA Astrophysics Data System (ADS)

    Micaelli, F.; Lanos, C.; Levita, G.

    2008-07-01

    The addition of fly ashes in cement pastes is tested to optimize the forming of cement based material by extrusion. Two sizes of fly ashes grains are examinated. The rheology of concentrated suspensions of ashes mixes is studied with a parallel plates rheometer. In stationary flow state, tested suspensions viscosities are satisfactorily described by the Krieger-Dougherty model. An "overlapped grain" suspensions model able to describe the bimodal suspensions behaviour is proposed. For higher values of solid volume fraction, Bingham viscoplastic behaviour is identified. Results showed that the plastic viscosity and plastic yield values present minimal values for the same optimal formulation of bimodal mixes. The rheological study is extended to more concentrated systems using an extruder. Finally it is observed that the addition of 30% vol. of optimized ashes mix determined a significant reduction of required extrusion load.

  9. Fly ash as replacement for cement in extruded fiber-reinforced cement composites

    SciTech Connect

    Peled, A.; Akkaya, Y.; Shah, S.P.

    1999-11-01

    The objective of this work was to develop extrudable compositions of fiber-reinforced cement composites that contain high content of fly ash. For that purpose specimens containing different ratio of fly ash as replacement for cement were extruded, with different fiber types: acrylic, PVA, glass and cellulose. Composites produced with the conventional cast process were also examined for comparison. It was found that fly ash improves the flexural strength and ductility of the extruded composite compared to composites without fly ash, for all fiber types. In the cast composites fly ash improved the composite ductility but reduced the flexural strength of the composite. Differences in matrix properties and fiber-matrix interface between the cast and extrusion composites can explain the differences in the flexural performances.

  10. Reactive belite stabilization mechanisms by boron-bearing dopants

    SciTech Connect

    Cuesta, Ana; Losilla, Enrique R.; Aranda, Miguel A.G.; Sanz, Jesus; De la Torre, Angeles G.

    2012-04-15

    Belite-rich cements hold promise for reduced energy consumption and CO{sub 2} emissions, but their use is hindered by the slow hydration rates of ordinary belites. This drawback may be overcome by activation of belite by doping. Here, the doping mechanism of B and Na/B in belites is reported. For B-doping, three solid solutions have been tested: Ca{sub 2-x/2{open_square}x/2}(SiO{sub 4}){sub 1-x}(BO{sub 3}){sub x}, Ca{sub 2}(SiO{sub 4}){sub 1-x}(BO{sub 3}){sub x}O{sub x/2} and Ca{sub 2-x}B{sub x}(SiO{sub 4}){sub 1-x}(BO{sub 4}){sub x}. The experimental results support the substitution of silicate groups by tetrahedral borate groups with the concomitant substitution of calcium by boron for charge compensation, Ca{sub 2-x}B{sub x}(SiO{sub 4}){sub 1-x}(BO{sub 4}){sub x}. Otherwise, the coupled Na/B-doping of belite has also been investigated and Ca{sub 2-x}Na{sub x}(SiO{sub 4}){sub 1-x}(BO{sub 3}){sub x} series is confirmed to exist for a large range of x values. Along this series, {alpha}'{sub H}-C{sub 2}S is the main phase (for x {>=} 0.10) and is single phase for x = 0.25. Finally, a new structural description for borax doping in belite has been developed for {alpha}'{sub H}-Ca{sub 1.85}Na{sub 0.15}(SiO{sub 4}){sub 0.85}(BO{sub 3}){sub 0.15}, which fits better borax activated belite cements in Rietveld mineralogical analysis.

  11. Durability of incinerator ash waste encapsulated in modified sulfur cement

    SciTech Connect

    Kalb, P.D.; Heiser, J.H. III; Pietrzak, R.; Colombo, P.

    1991-01-01

    Waste form stability under anticipated disposal conditions is an important consideration for ensuring continued isolation of contaminants from the accessible environment. Modified sulfur cement is a relatively new material and has only recently been applied as a binder for encapsulation of mixed wastes. Little data are available concerning its long-term durability. Therefore, a series of property evaluation tests for both binder and waste-binder combinations have been conducted to examine potential waste form performance under storage and disposal conditions. These tests include compressive strength, biodegradation, radiation stability, water immersion, thermal cycling, and leaching. Waste form compressive strength increased with ash waste loadings to 30.5 MPa at a maximum incinerator ash loading of 43 wt %. Biodegradation testing resulted in no visible microbial growth of either bacteria or fungi. Initial radiation stability testing did not reveal statistically significant deterioration in structural integrity. Results of 90 day water immersion tests were dependent on the type of ash tested. There were no statistically significant changes in compressive strength detected after completion of thermal cycle testing. Radionuclides from ash waste encapsulated in modified sulfur cement leached between 5 and 8 orders of magnitude slower than the leach index criterion established by the Nuclear Regulatory Commission (NRC) for low-level radioactive waste. Modified sulfur cement waste forms containing up to 43 wt % incinerator fly ash passed EPA Toxicity Characteristic Leaching Procedure (TCLP) criteria for lead and cadmium leachability. 11 refs., 2 figs., 5 tabs.

  12. Formation of cement mortar with incineration municipal solid waste bottom ash

    NASA Astrophysics Data System (ADS)

    Jun, Ng Hooi; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Jin, Tan Soo

    2017-04-01

    Product of incineration municipal solid waste bottom ash was substitute to Portland cement in construction industry. This study investigated the changes of bottom ash in Portland cement by chemical and mineralogical testing. Various substitution of bottom ash (10%, 20%, 30%, and 40%) to Portland cement was investigated. The main purpose was to clarify the mechanisms behind the formation of the cement mortar with bottom ash particles. The result indicated that the chemical and mineralogical of the cement mortar incorporating bottom ash was not significantly changed with the substitution of 10-40% bottom ash. However, the use of bottom ash minimizes the main composition of cement mortar. Overall, it was found that there is significant potential to increase the utilization of bottom ash.

  13. Zeolite synthesis from fly ash and cement kiln dust

    SciTech Connect

    Grutzeck, M.W.

    1996-12-31

    Zeolites added to portland cement paste normally undergo a pozzolanic reaction. However, if the composition of the cement is modified by blending it with fly ash, the calcium silicate hydrate (C-S-H) that forms has a low CaO/SiO{sub 2} ratio which allows it to coexist with a zeolite. In fact, if one adds alkali to the system, it then becomes possible to nucleate and grow a zeolitic phase with C-S-H. Normally zeolites that form from fly ash and NaOH include NaP-1 and analcime. But when the fly ash and NaOH are mixed with cement kiln dust, cancrinite-like phases and tobermorite form instead. This implies that a zeolite-containing monolith could be produced that would exhibit both the cation-exchange and adsorptive properties of zeolites while retaining the characteristic strength and ease of use attributable to cement based materials. These composites show promise as a new class of inexpensive cation exchange and/or chemical adsorbents that can be used for large scale applications.

  14. Properties of Cement Mortar Containing Rubber Ash as Sand Replacement

    NASA Astrophysics Data System (ADS)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Syazani Leman, Alif; Izzati Raihan Ramzi Hannan, Nurul

    2016-11-01

    Discarded scrap tyres have become one of the major environmental problems nowadays. There has been increasing public worry about the mining of natural resources in recent years. In order to minimize the consumption of natural resources, rubber ash has been postulated as a potential material for partial replacement of sand in concrete materials especially for applications which are subjected to impact and vibration such as road and bridge construction. Thus, it contributes to the development of the construction industry in a sustainable way. This paper mainly emphasizes on the use of rubber ash from waste tyres in cement mortar. 100mm cubic specimens were produced by adding rubber ash volume ratios of 0%, 3%, 5% and 7% as sand replacement in M30 quality cement mortar. A compressive stress test and a density test were conducted at the end of 7, 14, and 28 days. The result shows that 5% is the optimum value for sand replacement in the cement mortar. Therefore, rubber ash is acceptable to be used as sand replacement.

  15. Effects of nano-SiO(2) and different ash particle sizes on sludge ash-cement mortar.

    PubMed

    Lin, K L; Chang, W C; Lin, D F; Luo, H L; Tsai, M C

    2008-09-01

    The effects of nano-SiO(2) on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO(2) was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash-cement mortar increased as more nano-SiO(2) was added. Additionally, with 2% nano-SiO(2) added and a cure length of 7 days, the compressive strength of the ash-cement mortar with 1 microm ash particle size was about 1.5 times better that of 75microm particle size. Further, nano-SiO(2) functioned to fill pores for ash-cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO(2) better influenced the ash-cement mortar with larger ash particle sizes.

  16. Stabilization of fly ash using cementing bacteria. Assessment of cementation and trace element mobilization.

    PubMed

    González, Isabel; Vázquez, María Auxiliadora; Romero-Baena, Antonio J; Barba-Brioso, Cinta

    2017-01-05

    Fly ash from municipal solid waste incineration (MSWI) was treated with microorganisms (Sporosarcina pasteurii and Myxococcus xanthus) to assess their capacity for cementing this waste material. Leaching tests on the samples treated with bacteria were also performed to assess the possibility of recovering and recycling trace elements from the fly ash. Sequential extractions combined with mineralogical studies demonstrated that Pb is mobile in water when associated with portlandite. Also, Cd, Pb, and Zn are primarily associated with carbonates and are mobile in acidic environments (up to 4.8, 13.9 and 248mg/l of Cd, Pb and Zn, respectively, extracted with acetic acid). Microbial treatment of the fly ash, especially with Sporosarcina pasteurii, led to its cementation and stabilization, preventing its dispersion into the environment. But samples treated with bacteria exhibited a higher capacity for trace element leaching than did untreated fly ash. The ability of these bacteria to mobilize metals can be applied to recover those of economic interest. The use of low cost biotechnologies can be an alternative to chemical treatments currently utilized for the recovery and reuse of these wastes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Characterization of Slag, Fly Ash and Portland Cement for Saltstone

    SciTech Connect

    Harbour, J

    2006-02-01

    Batch-to-batch variability in the chemical and physical properties of the fly ash, slag and portland cement (binders) will be an ongoing concern over the many years that salt waste from Tank 50 will be processed into grout at the Saltstone Processing Facility. This batch-to-batch variability in the properties of the binder materials translates to variability in the fresh and cured properties of Saltstone. Therefore, it is important to quantify the batch-to-batch variability of the binder materials and the resultant variation in grout properties. This report is the starting point for that process by providing the baseline (reference point) binder properties to which future batches of binder materials can be compared. For this characterization effort, properties of fly ash, slag and portland cement were obtained and documented in this report. These properties included particle size distribution by laser light scattering and dry sieving, particle size and morphology by scanning electron microscopy, true, aerated and tapped densities, chemical composition, rheological properties of the water based slurries made from individual binder material, and volatility through thermogravimetric analysis and differential thermal analysis. The properties presented in this report also provide a baseline data set to assist in problem solving efforts when or if unanticipated and/or unwanted processing events occur at the Saltstone Processing Facility.

  18. Soil stabilization and pavement recycling with self-cementing coal fly ash

    SciTech Connect

    2008-01-15

    This manual provides design information for self-cementing coal fly ash as the sole stabilizing agent for a wide range of engineering applications. As in any process, the application of sound engineering practices, appropriate testing, and evaluation of fly ash quality and characteristics will lend themselves to successful projects using the guidelines in this manual. Topics discussed include: self-cementing coal fly ash characteristics; laboratory mix design; stabilization of clay soils; stabilisation of granular materials; construction considerations; high sulfate ash; environmental considerations for fly ash stabilization; design considerations; state specification/guidelines/standards; and a sample of a typical stabilization specification.

  19. Development of strength in cements

    NASA Astrophysics Data System (ADS)

    Matkovic, B.

    1981-04-01

    The production of doped belite (dicalcium silicate) clinkers as a prospective means for saving energy in Portland cement production is described. This is accomplished by small additions of either barium sulfate (BaSO4), calcium tribasic phosphate (Ca5(PO4)3OH), or vanadium oxide (V2O5) to belite (Ca2SiO4) clinker. In addition to conserving energy, doping the belite with barium sulfate imparts greater strength to the resulting modified belite. Reactants, additives, and factors contributing to the fabrication of Sorel cement are described.

  20. Properties of Portland cement mortars incorporating high amounts of oil-fuel ashes

    SciTech Connect

    Paya, J.; Borrachero, M.V.; Monzo, J.; Bonilla, M.

    1999-06-01

    The residue of oil-fuel burned at the electrical power plant of Grao de Castellon (Spain) has been incorporated in Portland cement mortar and concrete. The used oil-fuel ash (OFA) had a high percentage of magnesium compounds because of magnesium oxide addition for removing slag and ashes from boilers and pipes. Several studies had been carried out on stabilization of toxic metals also occurring in oil-fuel ashes (particularly vanadium and nickel), by mixing with coal fly ashes and cement. In this case, the presence of magnesium compounds in the composition of the studied oil-fuel ashes could alter the mechanical and chemical properties of the cement matrix in fresh and hardened mortar and concrete. The authors present here the chemical, physical and mineralogical characterization of oil-fuel ashes and the behavior of Portland cement mortars incorporating high amounts of these oil-fuel ashes. The study includes workability, water demand, setting time, expansion and compressive strength developments. Preliminary results demonstrate a high absorption of water by oil-fuel ash particles, which promotes an increase in the water/cement ratio for a given workability. Acceleration of Portland cement/oil-fuel ash particles, which promotes an increase in the water/cement ratio for a given workability. Acceleration of Portland cement/oil-fuel ash pastes setting times was observed, due to the presence of carbonates. On the other hand, no significant expansion in specimens due to the presence of magnesium compounds was detected and, consequently, mechanical properties of hardened mortars containing oil-fuel ashes did not decrease with curing time. Compressive strengths for mortars containing OFA were much lower, however, than control mortar samples.

  1. Research Of The Influence Of Reftinskii SDPP’S Ash On The Processes Of Cement Stone’S Structure Forming

    NASA Astrophysics Data System (ADS)

    Zimakova, G. A.; Solonina, V. A.; Zelig, M. P.

    2017-01-01

    The article describes the experimental research of cement stone. Cement stone forming involves highly dispersive mineral additive - ground ash. It is stated that the substitution of some part of cement with activated ash leaves cement strength high. This is possible due to the activity of ash in structure forming processes. Activation of ash provides the increase in its puzzolanic activity, complete hydration processes. it is stated that ash grinding leads to a selective crystallization hydrated neoformations. Their morthology is different on outer and inner surfaces of ash spheres. The usage of ash can provide cement economy on condition that rheological characteristics of concrete stay constant. Besides, the usage of ash will improve physical and mechanic characteristics of cement stone and concrete.

  2. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    SciTech Connect

    García-Maté, M.; De la Torre, A.G.; León-Reina, L.; Aranda, M.A.G.; Santacruz, I.

    2013-12-15

    The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 months of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 ± 2 and 72 ± 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits.

  3. Influence of fly ash fineness and shape on the porosity and permeability of blended cement pastes

    NASA Astrophysics Data System (ADS)

    Sinsiri, Theerawat; Chindaprasirt, Prinya; Jaturapitakkul, Chai

    2010-12-01

    The effects of the fineness and shape of fly ash on the porosity and air permeability of cement pastes were investigated. Pulverized coal combustion (PCC) fly ash and fluidized bed coal combustion (FBC) fly ash classified into three different finenesses were used. River sand with particle size distribution similar to that of fly ash was also used for comparison. Portland cement was replaced with fly ash and ground sand at the dosages of 0, 20wt%, and 40wt%. A water-to-binder ratio (w/b) of 0.35 was used throughout the experiment. The results show that the porosity and air permeability of the pastes are influenced by the shape, fineness, and replacement level of fly ash. The porosity and air permeability of FBC fly ash pastes are higher than those of PCC fly ash pastes. This is due to the higher irregular shape and surface of FBC fly ash compared to the spherical shape and relatively smooth surface of PCC fly ash. The porosity increases with the increase in fly ash replacement level and decreases with the increase in its fineness. The permeability of PCC fly ash pastes decreases with the increase in replacement level and fineness, while for FBC fly ash, the permeability increases with the increase in replacement level. Decreases in porosity and permeability are due to a combined effect of the packing of fine particles and the reaction of fly ash.

  4. Bonding material containing ashes after domestic waste incineration for cementation of radioactive waste

    SciTech Connect

    Dmitriev, S.A.; Varlakov, A.P.; Gorbunova, O.A.; Arustamov, A.E.; Barinov, A.S.

    2007-07-01

    It is known that cement minerals hydration is accompanied with heat emission. Heat of hardening influences formation of a cement compound structure and its properties. It is important to reduce the heat quantity at continuous cementation of waste and filling of compartments of a repository or containers by a cement grout. For reduction of heating, it is necessary to use cement of mineral additives (fuel ashes, slag and hydraulic silica). Properties of ashes after domestic waste incineration can be similar to ones of fly fuel ashes. However, ash after domestic waste incineration is toxic industrial waste as it contains toxic elements (As, Cd, Hg, Pb, Sb, Zn). Utilization of secondary waste (slag and ash) of combustion plants is an important environmental approach to solving cities' issues. Results of the research have shown that ashes of combustion plants can be used for radioactive waste conditioning. Co-processing of toxic and radioactive waste is ecologically and economically effective. At SIA 'Radon', experimental batches of cement compositions are used for cementation of oil containing waste. (authors)

  5. Prompt gamma analysis of fly ash, silica fume and Superpozz blended cement concrete specimen.

    PubMed

    Naqvi, A A; Garwan, M A; Maslehuddin, M; Nagadi, M M; Al-Amoudi, O S B; Khateeb-ur-Rehman; Raashid, M

    2009-09-01

    Preventive measures against corrosion of reinforcing steel require making the concrete dense by adding pozzolanic materials, such as fly ash, silica fume, Superpozz, blast furnace slag, etc. to Portland cement. In order to obtain the desired strength and durability of concrete, it is desirable to monitor the concentration of the pozzolan in the blended cement concrete. Addition of pozzolan to blended cement changes the overall concentration of calcium and silicon in the blended cement concrete. The resulting variation in calcium and silicon gamma-ray yield ratio from blended cement concrete has found to have an inverse correlation with concentration of fly ash, silica fume, Superpozz, blast furnace slag in the blended cement concrete. For experimental verification of the correlation, intensities of calcium and silicon prompt gamma-ray due to capture of thermal neutrons in blended cement concrete samples containing 5-80% (by weight of cement) silica fume, fly ash and Superpozz were measured. The gamma-ray intensity ratio was measured from 6.42 MeV gamma-rays from calcium and 4.94 MeV gamma-ray from silicon. The experimentally measured values of calcium to silicon gamma-ray yield ratio in the fly ash, silica fume and Superpozz cement concrete specimens agree very well with the results of the Monte Carlo simulations.

  6. Fan System Optimization Improves Production and Saves Energy at Ash Grove Cement Plant

    SciTech Connect

    2002-05-01

    This case study describes an optimization project implemented on a fan system at Ash Grove Cement Company, which led to annual energy and maintenance savings of $16,000 and 175,000 kilowatt-hours (kWh).

  7. Characterisation and use of biomass fly ash in cement-based materials.

    PubMed

    Rajamma, Rejini; Ball, Richard J; Tarelho, Luís A C; Allen, Geoff C; Labrincha, João A; Ferreira, Victor M

    2009-12-30

    This paper presents results about the characterisation of the biomass fly ashes sourced from a thermal power plant and from a co-generation power plant located in Portugal, and the study of new cement formulations incorporated with the biomass fly ashes. The study includes a comparative analysis of the phase formation, setting and mechanical behaviour of the new cement-fly ash formulations based on these biomass fly ashes. Techniques such as X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), thermal gravimetric and differential thermal analysis (TG/DTA), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and environmental scanning electron spectroscopy (ESEM) were used to determine the structure and composition of the formulations. Fly ash F1 from the thermal power plant contained levels of SiO(2), Al(2)O(3) and Fe(2)O(3) indicating the possibility of exhibiting pozzolanic properties. Fly ash F2 from the co-generation plant contained a higher quantity of CaO ( approximately 25%). The fly ashes are similar to class C fly ashes according to EN 450 on the basis of chemical composition. The hydration rate and phase formation are greatly dependant on the samples' alkali content and water to binder (w/b) ratio. In cement based mortar with 10% fly ash the basic strength was maintained, however, when 20% fly ash was added the mechanical strength was around 75% of the reference cement mortar. The fly ashes contained significant levels of chloride and sulphate and it is suggested that the performance of fly ash-cement binders could be improved by the removal or control of these chemical species.

  8. Stabilization and solidification of waste phosphate sludge using Portland cement and fly ash as cement substitute

    SciTech Connect

    Vedat Pinarli; Gizem Karaca; Guray Salihoglu; Nezih Kamil Salihoglu

    2005-07-01

    Stabilization and solidification of the waste phosphate sludge (WPS) using Portland cement (PC) and fly ash (FA) were studied in the present work. The WPS content in the cement mortars varied from 5% to 15%. Setting times were measured, and unconfined compressive strengths (UCS) were determined for the mortars cured in water for 3, 7, 28, 56, and 90 days. Zinc and nickel leaching of the solidified products were measured according to the Toxicity Characteristic Leaching Procedure. Setting times were extended as the WPS content in the paste samples increased. The UCS values of the mortar containing 5% WPS solidified by using 95% PC were similar to the reference sample. Use of 10% FA as cement substitute increased the UCS values by 10% at the end of curing period of 56 days. The WPS contained initially 130.2 mg L{sup -1} of zinc and 22.7 mg L{sup -1} of nickel. The zinc and nickel leached from the 5% WPS solidified by using 95% PC were measured as 3.8 mg L{sup -1} and 0.4 mg L{sup -1}, respectively. These metal concentrations were below the limits given by the U.S. Environmental Protection Agency for landfilling the solidified wastes.

  9. Optimization of fly ash as sand replacement materials (SRM) in cement composites containing coconut fiber

    NASA Astrophysics Data System (ADS)

    Nadzri, N. I. M.; Jamaludin, S. B.; Mazlee, M. N.; Jamal, Z. A. Z.

    2016-07-01

    The need of utilizing industrial and agricultural wastes is very important to maintain sustainability. These wastes are often incorporated with cement composites to improve performances in term of physical and mechanical properties. This study presents the results of the investigation of the response of cement composites containing coconut fiber as reinforcement and fly ash use as substitution of sand at different hardening days. Hardening periods of time (7, 14 and 28 days) were selected to study the properties of cement composites. Optimization result showed that 20 wt. % of fly ash (FA) is a suitable material for sand replacement (SRM). Meanwhile 14 days of hardening period gave highest compressive strength (70.12 MPa) from the cement composite containing 9 wt. % of coconut fiber and fly ash. This strength was comparable with the cement without coconut fiber (74.19 MPa) after 28 days of curing.

  10. Influence of curing temperature on cement hydration and mechanical strength development of fly ash mortars

    SciTech Connect

    Maltais, Y.; Marchand, J.

    1997-07-01

    The influence of fly ash and curing temperature on cement hydration and compressive strength development of mortars was investigated. Test parameters included type of fly ash (two different Class F fly ashes were tested), the level of cement replacement (10, 20 and 30% by mass), and curing temperature (20 C and 40 C). The mortar physical and microstructural properties were determined by means of thermal analyses, compressive strength measurements and SEM observations. Test results confirm that fly ash tends to increase significantly the rate of cement hydration at early age. Data also demonstrate that an elevation of the curing temperature reduces the long-term compressive strength of the reference mortar mixture. In contrast, an increase of the curing temperature seems to have no detrimental effect on the long-term compressive strength of the fly ash mixtures.

  11. An assessment of Mercury immobilisation in alkali activated fly ash (AAFA) cements.

    PubMed

    Donatello, Shane; Fernández-Jiménez, Ana; Palomo, Angel

    2012-04-30

    This paper presents total and soluble Mercury contents for three coal fly ashes and alkali-activated fly ash (AAFA) cements consisting of 100% fly ash as starting material. To evaluate the potential of the AAFA cement matrix to immobilise Hg from an external source, another batch of cements, doped with 5000 mg/kg Hg as highly soluble HgCl(2), was prepared. The ashes and control AAFA cements complied with Mercury leaching criteria for non-hazardous wastes according to both TCLP and EN 12457 tests. Fly ash activated cements doped with 5000 mg/kg Hg and aged for 2 days immobilised 98.8-99.6% and 97.3-98.8% of Hg according to TCLP and EN 12457 tests respectively. Evidence from SEM-EDX suggests that Hg was immobilised by precipitation as highly insoluble HgS or Hg(2)S, although partial precipitation as less insoluble HgO or Hg silicates could not be entirely ruled out based on data presented. The results for Hg-doped cements contribute to the growing body of evidence that shows AAFA cement as a useful material for immobilizing elevated concentrations of toxic and hazardous elements.

  12. Cement-based materials as containment systems for ash from hospital waste incineration.

    PubMed

    Genazzini, C; Giaccio, G; Ronco, A; Zerbino, R

    2005-01-01

    Waste generation has increased considerably worldwide in the last decades. As a consequence, incineration became an alternative for reducing waste volume, leading to the generation of ash as a new type of waste. The new cement-ash composite systems have been tested for future applications in building materials. Having in mind the previous data and scientific reports, the objective of the present study is oriented to evaluate the additions of hospital waste ash in cement matrices to be potentially used as construction elements. This involved the assessment of the effect of the additions (different proportions of ash and metal-spiked ash) on the physico-mechanical properties of the building materials and the leachability of metals. The experiences show the feasibility of including hospital waste ashes in masonry blocks or other similar products.

  13. Performance evaluation of cement stabilized fly ash-GBFS mixes as a highway construction material.

    PubMed

    Singh, S P; Tripathy, D P; Ranjith, P G

    2008-01-01

    Fly ash and granulated blast furnace slag (GBFS) are major by-products of thermal and steel plants, respectively. These materials often cause disposal problems and environmental pollution. Detailed laboratory investigations were carried out on cement stabilized fly ash-(GBFS) mixes in order to find out its suitability for road embankments, and for base and sub-base courses of highway pavements. Proctor compaction test, unconfined compressive strength (UCS) test and California Bearing Ratio (CBR) test were conducted on cement stabilized fly ash-GBFS mixes as per the Indian Standard Code of Practice. Cement content in the mix was varied from 0% to 8% at 2% intervals, whereas the slag content was varied as 0%, 10%, 20%, 30% and 40%. Test results show that an increase of either cement or GBFS content in the mixture, results in increase of maximum dry density (MDD) and decrease of optimum moisture content (OMC) of the compacted mixture. The MDD of the cement stabilized fly ash-GBFS mixture is comparably lower than that of similarly graded natural inorganic soil of sand to silt size. This is advantageous in constructing lightweight embankments over soft, compressible soils. An increase in percentage of cement in the fly ash-GBFS mix increases enormously the CBR value. Also an increase of the amount of GBFS in the fly ash sample with fixed cement content improves the CBR value of the stabilized mix. In the present study, the maximum CBR value of compacted fly ash-GBFS-cement (52:40:8) mixture obtained was 105%, indicating its suitability for use in base and sub-base courses in highway pavements with proper combinations of raw materials.

  14. Power plant fly ash as a resource for alumina and cement

    SciTech Connect

    Murtha, M.J.; Burnet, G.

    1980-01-01

    A sinter process has been developed to form soluble aluminate compounds from mixtures of fly ash, limestone, and soda ash. The aluminates are extracted, treated to remove silicates, and precipitated; the precipitate is calcined to metallurgical grade alumina. The extract residue shows promise as a raw material for the production of Portland cement. Process economics are presented, and the effects of alumina and silica contents of the fly ash, sintering temperatures and time, and sales credits for by-products are discussed.

  15. The influence of fly ash and shell-fish on physical property of concrete cement

    NASA Astrophysics Data System (ADS)

    Rauf, Nurlaela; Hasruddin, M.

    2012-06-01

    The waste fly ash and shell fish are added to base material of cement (clinker, gypsum, trash and lime stone), for environmental reason. The ratio fly ash and shell fish was varied respectively 375:125; 250:250; 125:375, in grams weight for 2500 grams of total material. The chemical composition of raw material was determined by using x-rays fluorescence (XRF). Physical properties of sample match with Standar Nasional Indonesia (SNI). The physical properties of the best sample is made from composition of fly ash and shell fish as a substitution material on cement was 10% in weight, with ratio 250:250 in grams weight.

  16. Formulation of geopolymer cement using mixture of slag and class f fly ash for oil well cementing

    NASA Astrophysics Data System (ADS)

    Kanesan, Dinesh; Ridha, Syahrir; Rao, Prasath

    2017-05-01

    The increase in greenhouse gas emissions has been a factor for the increase in global temperature. Geopolymer cement has been intensively studied to replace conventional ordinary Portland cement, however the focus is limited to civil purposes under atmospheric conditions. This research focuses on the formulation of geopolymer cement to be used in oil well cementing application by taking account the effect of sodium hydroxide (NaoH) molarity, ratio of alkali binder and fly ash, amount of dispersant for oilwell operation under temperature ranging of 80°C and 90C° and pressure of 1000 and 3000psi. The formulated composition is tested for fluid loss where the standard has been from 60 to 80 ml. The cement slurry is cured in a 50mm x 50mm x 50mm mold for period of 24 hours. Four manipulating variables were set in formulating the cement slurry namely, the ratio between fly ash and slag to alkali binder, ratio of sodium hydroxide (NaoH) to sodium silicate, molarity of NaoH and amount of dispersant added. After running a set of 16 experiment, sample (12) was found to possess the best rheological properties and fluid loss according to API RP10B. It was found that as the curing temperature and pressure increase, the compressive strength of the formulated geopolymer cement also increased.

  17. Effect of cement types, mineral admixtures, and bottom ash on the curing sensitivity of concrete

    NASA Astrophysics Data System (ADS)

    Hussain, Kinaanath; Choktaweekarn, Pongsak; Saengsoy, Warangkana; Srichan, Theerati; Tangtermsirikul, Somnuk

    2013-01-01

    The curing sensitivity of concrete with cement Types 1, 3, and 5 as well as multiple powders consisting of cement, fly ash, and limestone powder was studied. Bottom ash was also used in the study as an internal curing agent and a partial substitution of fine aggregate. The curing sensitivity index was calculated by considering the performances of compressive strength and carbonation depth. Specimens were subjected to two curing conditions: continuously water-cured and continuously air-cured. The results show that cement Type 3 has a lower curing sensitivity, while cement Type 5 increases the curing sensitivity. For the mixes without bottom ash, the use of fly ash increases the curing sensitivity, while limestone powder reduces the curing sensitivity of concrete. The use of bottom ash in concrete reduces the curing sensitivity, especially at a lower mass ratio of water to binder. Concrete with limestone powder, together with bottom ash, is least sensitive to curing. The curing sensitivity calculated from carbonation depth also has a similar tendency as that derived by considering compressive strength. From the test results of compressive strength and curing sensitivity, bottom ash has been proven to be an effective internal curing agent.

  18. Effect of Selected Alternative Fuels and Raw Materials on the Cement Clinker Quality

    NASA Astrophysics Data System (ADS)

    Strigáč, Július

    2015-11-01

    The article deals with the study of the effects of alternative fuels and raw materials on the cement clinker quality. The clinker quality was expressed by the content of two principal minerals alite C3S and belite C2S. The additions of alternative fuels ashes and raw materials, in principle, always increased the belite content and conversely reduced the amount of alite. The alternative fuels with high ash content were used such as the meat-bone meal, sewage sludge from sewage treatment plants and paper sludge and the used alternative raw materials were metallurgical slags - granulated blastfurnace slag, air cooled blastfurnace slag and demetallized steel slag, fluidized bed combustion fly ash and waste glass. Meat-bone meal, sewage sludge from sewage treatment plants and paper sludge were evaluated as moderately suitable alternative fuels which can be added in the amounts of 2.8 wt. % addition of meat-bone meals ash, 3.64 wt. % addition of sewage sludge ash and 3.8 wt. % addition of paper sludge ash to the cement raw mixture. Demetallised steel slag is suitable for production of special sulphate resistant cement clinker for CEM I -SR cement with addition up to 5 wt. %. Granulated blastfurnace slag is a suitable alternative raw material with addition 4 wt. %. Air cooled blastfurnace slag is a suitable alternative raw material with addition 4.2 wt. %. Waste glass is not very appropriate alternative raw material with addition only 1.16 wt. %. Fluidized bed combustion fly ash appears not to be equally appropriate alternative raw material for cement clinker burning with less potential utilization in the cement industry and with addition 3.41 wt. %, which forms undesired anhydrite CaSO4 in the cement clinker.

  19. Study on cement mortar and concrete made with sewage sludge ash.

    PubMed

    Chang, F C; Lin, J D; Tsai, C C; Wang, K S

    2010-01-01

    This study investigated the feasibility of reusing wastewater sludge ash in construction materials to replace partial materials. Wastewater sludge sampled from thermal power plant was burned into sludge ash at 800°C in the laboratory. The sludge incineration ash has low heavy metal including Pb, Cd, Cr and Cu, so it belongs to general enterprise waste. The chemical composition of sludge incineration ash was summed up in SiO₂, CaO, Fe₂O₃ and MgO. Then the wastewater sludge ash is also found to be a porous material with irregular surface. When the sludge ash was used to replace mortar or concrete cement, its water-adsorption capability will result in the reduction of mortar workability and compressive strength. Cement is being substituted for sludge ash, and 10 percent of sludge ash is more appropriate. Sludge ash is reused to take the place of construction materials and satisfies the requests of standard specification except for higher water absorption.

  20. Comparative Effect of Bio-waste Ashes on Strength Properties of Cement Mortar

    NASA Astrophysics Data System (ADS)

    Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad; Ahmed, Mohamed Anwar

    Biomass fuels produce about 400 million tonnes of ashes as waste material. This paper discusses the pozzolanic character of bio-waste ashes obtained from dry tree leaves (AML), Korai grass (KRI) and Tifton grass (TFT). Ashes were obtained by control incineration of the wastes at 600°C for 5 hours and mortar specimens were prepared by substituting cement with 10, 20 and 30% ash. Strength development of ash-blended mortar specimens was evaluated by conducting destructive tests as well as non-destructive tests till 91 days. X-ray diffraction, scanning electron microscopic and thermo-gravimetric techniques were used to analyze the influence of ash substitution on strength properties of blended-mortar. Pozzolanic reactivity of AML- and KRI-ash was confirmed, but TFT-ash did not show enough reactivity. Overall results confirmed that up to 20% substitution of cement can be made with AML- or KRI-ash with strength approaching 90% of that of control.

  1. Mechanical and physical properties of cement blended with sewage sludge ash.

    PubMed

    Garcés, P; Pérez Carrión, M; García-Alcocel, E; Payá, J; Monzó, J; Borrachero, M V

    2008-12-01

    The aim of this paper is to evaluate the compatibility of sewage sludge ash (SSA) with various types of commercially available cements (CEM I and CEM II types, cements with several proportions of clinker). The behaviour of mortars fabricated with various percentages (10-30% by weight) of the cement replaced by SSA has been analyzed in terms of workability, mechanical strength, porosity and shrinkage/expansion. SSA exhibits moderate pozzolanic activity; the highest compressive strengths were obtained with 10% of the cement replaced by SSA. The CEM II/B-M (V-LL) 42.5R cement is considered ideal for preparing mortars containing SSA. Shrinkage data demonstrate that sulphates present in SSA are not reactive towards cement.

  2. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash

    SciTech Connect

    De Weerdt, K.; Haha, M. Ben; Le Saout, G.; Kjellsen, K.O.; Justnes, H.; Lothenbach, B.

    2011-03-15

    The effect of minor additions of limestone powder on the properties of fly ash blended cements was investigated in this study using isothermal calorimetry, thermogravimetry (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) techniques, and pore solution analysis. The presence of limestone powder led to the formation of hemi- and monocarbonate and to a stabilisation of ettringite compared to the limestone-free cements, where a part of the ettringite converted to monosulphate. Thus, the presence of 5% of limestone led to an increase of the volume of the hydrates, as visible in the increase in chemical shrinkage, and an increase in compressive strength. This effect was amplified for the fly ash/limestone blended cements due to the additional alumina provided by the fly ash reaction.

  3. Properties of cement-fly ash grout admixed with bentonite, silica fume, or organic fiber

    SciTech Connect

    Huang, W.H.

    1997-03-01

    A detailed laboratory study was conducted to investigate the properties of cement-fly ash grout mixtures as barriers for isolation of hazardous and low-level radioactive wastes. In the grout studied, fly ash was used to replace 30 percent by mass of cement. Three additives including bentonite, silica fume, and polypropylene fiber were used individually in the grout mixes to improve the properties of the grouts in different aspects. The flowability, bleeding, and setting time of freshly mixed grouts were determined; and the unconfined compressive strength, pore size distribution, and water permeability were determined for hardened grouts at various curing durations up to 120 days. Finally, the durability of cement-fly ash grouts was carefully examined in terms of the changes in their physical properties after different levels of exposure to sulfate attack and wet-dry cycles.

  4. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria.

    PubMed

    Lederer, Jakob; Trinkel, Verena; Fellner, Johann

    2017-02-01

    A number of studies present the utilization of fly ashes from municipal solid waste incineration (MSWI) in cement production as a recycling alternative to landfilling. While there is a lot of research on the impact of MSWI fly ashes utilization in cement production on the quality of concrete or the leaching of heavy metals, only a few studies have determined the resulting heavy metal content in cements caused by this MSWI fly ashes utilization. Making use of the case of Austria, this study (1) determines the total content of selected heavy metals in cements currently produced in the country, (2) designs a scenario and calculates the resulting heavy metal contents in cements assuming that all MSWI fly ashes from Austrian grate incinerators were used as secondary raw materials for Portland cement clinker production and (3) evaluates the legal recyclability of demolished concretes produced from MSWI fly ash amended cements based on their total heavy metal contents. To do so, data from literature and statistics are combined in a material flow analysis model to calculate the average total contents of heavy metals in cements and in the resulting concretes according to the above scenario. The resulting heavy metal contents are then compared (i) to their respective limit values for cements as defined in a new technical guideline in Austria (BMLFUW, 2016), and (ii) to their respective limit values for recycling materials from demolished concrete. Results show that MSWI fly ashes utilization increases the raw material input in cement production by only +0.9%, but the total contents of Cd by +310%, and Hg, Pb, and Zn by +70% to +170%. However these and other heavy metal contents are still below their respective limit values for Austrian cements. The same legal conformity counts for recycling material derived from concretes produced from the MSWI fly ash cements. However, if the MSWI fly ash ratio in all raw materials used for cement production were increased from 0.9% to 22

  5. Preparation of the saving-energy sulphoaluminate cement using MSWI fly ash.

    PubMed

    Shi, Hui-sheng; Deng, Kai; Yuan, Feng; Wu, Kai

    2009-09-30

    MSWI fly ash was used as a major cement raw material in sintering sulphoaluminate cement clinker successfully in the laboratory. Sintering system, mechanical performance, hydration process and microstructure of the clinker was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence spectrometry (XRF), etc. The result shows that the clinker can be sintered properly under the temperature of 1200-1300 degrees C and sintered time of 120 min. Cl(-) content in the clinker made with MSWI fly ash is about 1.08%. However most Cl(-) cannot leach out in water solution from the hardened cement paste during curing age between 1d and 28d because of the Cl(-) being combined in clinker minerals and its hydrates. The compressive strength of the sulphoaluminate cement was high in early age while that developed smoothly in later age.

  6. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures.

    PubMed

    Glinicki, Michał A; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-02

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement-ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  7. Preparation of special cements from red mud

    SciTech Connect

    Singh, M.; Upadhayay, S.N.; Prasad, P.M.

    1996-12-31

    Red mud from HINDALCO (Hindustan Aluminium Corporation) Industries Limited, Renukoot, India, contains significant quantities of alumina, iron oxide and silica. Presence of the said constituents makes it a suitable ingredient for the preparation of special cements. Preparation of three varieties of cements was investigated, namely: (a) aluminoferrite (C{sub 4}AF)-belite ({beta}-C{sub 2}S) using lime + red mud + fly ash; (b) aluminoferrite-ferrite (C{sub 2}F)-aluminates (C{sub 3}A and C{sub 12}A{sub 7}) utilizing lime + red mud + bauxite; and (c) sulfoaluminate (C{sub 4}A{sub 3}{bar S})-aluminoferrite-ferrite using lime + red mud + bauxite + gypsum. The effects of composition (proportions of lime, red mud, fly ash, bauxite and gypsum), firing temperature and duration on the properties of cements produced were studied in detail. Cements made from lime + red mud + bauxite or lime + red mud + bauxite + gypsum exhibit strengths comparable or superior to ordinary Portland cement (OPC). On the other hand, those prepared using lime + red mud + fly ash did not have sufficient strength. Moreover, it was not possible to replace bauxite by fly ash (as a source of alumina) in any significant quantity.

  8. Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash.

    PubMed

    Saikia, Nabajyoti; Kato, Shigeru; Kojima, Toshinori

    2007-01-01

    This communication reports the laboratory scale study on the production of cement clinkers from two types of municipal solid waste incineration fly ash (MSW ash) samples. XRD technique was used to monitor the phase formation during the burning of the raw mixes. The amount of trace elements volatilized during clinkerization and hydration, as well as leaching behaviours of the clinkers obtained from optimum compositions, were also evaluated. From the results it is observed that all of the major components of ordinary Portland cement (OPC) clinkers are present in the produced clinkers. Results also show the volatilization of considerable amounts of Na, K, Pb, Zn and Cd during the production of clinkers. However, major parts of the toxic elements remaining in the clinkers appear to be immobilized in the clinkers phases. Hydration studies of the clinkers obtained from optimum compositions show that the clinkers prepared from raw MSW ash are more reactive than the washed MSW ash based clinkers. TG/DTA analyses of the hydrated pastes show the formation of hydration products, which are generally found in OPC and OPC derived cements. The initial study, therefore, shows that more than 44% of MSW ash with the addition of very small amounts of silica and iron oxide can be used to produce cement clinkers. The amount of CaCO3 necessary to produce clinkers (approximately 50%) is also smaller than the same required for the conventional process (more than 70%).

  9. Characterization and conditioning by cementation and compaction of ashes coming from simulated radwastes

    SciTech Connect

    Canadas, L.; Vale, J.; Salvador, L.

    1994-12-31

    The statement and the results of a systematic program of characterization and evaluation of conditioning by cementation and supercompaction of ashes coming from different simulated radwastes are presented. The main program objectives are to define the influence of the most important operating parameters of conditioning methods on the mechanical properties of the conditioned products and to obtain the guidelines for the optimization of their final storage, evaluating the achievable volume reduction and its relation with mechanical strength. The study is based on the physical and chemical characterization of the ashes and the determination of their behavior with respect to two conditioning methods: cementation and high pressure compaction, to determine the strength development, the mechanical stability, and the volume reduction achieved. The ashes are obtained by incineration of low activity simulated radwastes, which represent different real wastes with high volume to activity ratio. The conditioning by cementation is tested over a series of cementitious pastes made with two cement types, changing in ash and water content. Products are controlled by measuring volume, setting time, expansion, and strength. High pressure compaction tests are made at laboratory scale, measuring the ash volume reduction as a function of compacting pressure.

  10. Effect of fly ash on the optimum sulfate of Portland Cement

    NASA Astrophysics Data System (ADS)

    Niemuth, Mark D.

    Calcium sulfate is typically added to ordinary portland cement (OPC) clinker during grinding to prevent flash set and to improve early-age strength development without causing volume instabilities. Recent changes to ASTM C150, Standard Specification for Portland Cement, have enabled greater flexibility in determining optimum sulfate levels in portland cement by not requiring ASTM C563, Approximation of Optimum SO3 in Hydraulic Cement Using Compressive Strength, to be used in setting sulfate target levels. ASTM C563 requires strength testing using only the hydraulic cement, which is not always indicative of the optimum sulfate for field use, since supplementary materials (e.g., fly ash) may be used by the concrete producer. Adding additional sulfate to account for the sulfate demand of fly ashes can enable an improvement in the early age strength for cement-fly ash systems and decrease in problems that may be attributed to OPC-admixture-fly ash incompatibility such as abnormal setting and slow strength gain. This thesis provides experimental data on the strength development and heat release during early hydration for cement-fly ash systems with different sulfate levels. The thesis focused on high calcium fly ashes, but low calcium fly ash was also tested. It is demonstrated that some fly ashes have their own sulfate demand and when these ashes are used in cement-fly ash blends there is effectively an increase in the optimal sulfate level that could be used for the OPC. It is also shown that optimum sulfate determined by heat of hydration measured with isothermal calorimetry is similar to the optimum sulfate determined by compressive strength at 1 day. Using isothermal calorimetry can result in substantial time and cost savings at plants for determining the optimal sulfate content. Theories for the mechanisms that drive the differences in sulfate demand in OPC are reviewed. These theories are adapted for OPC-fly ash blends and are outlined, tested and discussed. The

  11. Hydration of Hybrid Alkaline Cement Containing a Very Large Proportion of Fly Ash: A Descriptive Model

    PubMed Central

    Garcia-Lodeiro, Inés; Donatello, Shane; Fernández-Jiménez, Ana; Palomo, Ángel

    2016-01-01

    In hybrid alkaline fly ash cements, a new generation of binders, hydration, is characterized by features found in both ordinary portland cement (OPC) hydration and the alkali activation of fly ash (AAFA). Hybrid alkaline fly ash cements typically have a high fly ash (70 wt % to 80 wt %) and low clinker (20 wt % to 30 wt %) content. The clinker component favors curing at ambient temperature. A hydration mechanism is proposed based on the authors’ research on these hybrid binders over the last five years. The mechanisms for OPC hydration and FA alkaline activation are summarized by way of reference. In hybrid systems, fly ash activity is visible at very early ages, when two types of gel are formed: C–S–H from the OPC and N–A–S–H from the fly ash. In their mutual presence, these gels tend to evolve, respectively, into C–A–S–H and (N,C)–A–S–H. The use of activators with different degrees of alkalinity has a direct impact on reaction kinetics but does not modify the main final products, a mixture of C–A–S–H and (N,C)–A–S–H gels. The proportion of each gel in the mix does, however, depend on the alkalinity generated in the medium. PMID:28773728

  12. Hydration of Hybrid Alkaline Cement Containing a Very Large Proportion of Fly Ash: A Descriptive Model.

    PubMed

    Garcia-Lodeiro, Inés; Donatello, Shane; Fernández-Jiménez, Ana; Palomo, Ángel

    2016-07-22

    In hybrid alkaline fly ash cements, a new generation of binders, hydration, is characterized by features found in both ordinary portland cement (OPC) hydration and the alkali activation of fly ash (AAFA). Hybrid alkaline fly ash cements typically have a high fly ash (70 wt % to 80 wt %) and low clinker (20 wt % to 30 wt %) content. The clinker component favors curing at ambient temperature. A hydration mechanism is proposed based on the authors' research on these hybrid binders over the last five years. The mechanisms for OPC hydration and FA alkaline activation are summarized by way of reference. In hybrid systems, fly ash activity is visible at very early ages, when two types of gel are formed: C-S-H from the OPC and N-A-S-H from the fly ash. In their mutual presence, these gels tend to evolve, respectively, into C-A-S-H and (N,C)-A-S-H. The use of activators with different degrees of alkalinity has a direct impact on reaction kinetics but does not modify the main final products, a mixture of C-A-S-H and (N,C)-A-S-H gels. The proportion of each gel in the mix does, however, depend on the alkalinity generated in the medium.

  13. SODIUM POLYPHOSPHATE-MODIFIED CLASS C/CLASS F FLY ASH BLEND CEMENTS FOR GEOTHERMAL WELLS.

    SciTech Connect

    SUGAMA, T.; BROTHERS, L.E.; KASPEREIT, D.

    2006-02-01

    The authors investigated the usefulness of the coal combustion by-products, Class C fly ash (C) and Class F fly ash (F), in developing cost-effective acid-resistant phosphate-based cements for geothermal wells. In the temperature range of 20-100 C, sodium polyphosphate (NaP) as the acidic cement-forming solution preferentially reacted with calcium sulfate and lime in the C as the base solid reactant through the exothermic acid-base reaction route, rather than with the tricalcium aluminate in C. This reaction led to the formation of hydroxyapatite (HOAp). In contrast, there was no acid-base reaction between the F as the acidic solid reactant and NaP. After autoclaving the cements at 250 C, a well-crystallized HOAp phase was formed in the NaP-modified C cement that was responsible for densifying the cement's structure, thereby conferring low water permeability and good compressive strength on the cement. however, the HOAp was susceptible to hot CO{sub 2}-laden H{sub 2}SO{sub 4} solution (pH 1.1), allowing some acid erosion of the cement. On the other hand, the mullite in F hydrothermally reacted with the Na from NaP to form the analcime phase. Although this phase played a pivotal role in abating acid erosion, its generation created an undesirable porous structure in the cement. They demonstrated that blending fly ash with a C/F ratio of 70/30 resulted in the most suitable properties for acid-resistant phosphate-based cement systems.

  14. Effect of Fly Ash and Silica Fume on the Mechanical Properties of Cement Paste at Different Stages of Hydration

    DTIC Science & Technology

    2015-08-10

    Different Stages of Hydration Report Title This thesis investigates the effect of fly ash and silica fume on cement paste hydration. Percentages of each...Additional figures were created to compare the different curing days against the change in fly ash percentages that can be found in Appendix D. Figure 4.4...cured samples. The controlled cement paste was used as a reference in comparing fly ash or silica fume percentages and the different methods of curing

  15. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures

    PubMed Central

    Glinicki, Michał A.; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-01

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement—ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash. PMID:28787821

  16. Production of cements from Illinois coal ash. Technical report, September 1, 1995--November 30, 1995

    SciTech Connect

    Wagner, J.C.; Bhatty, J.I.; Mishulovich, A.

    1995-12-31

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. Currently only about 30% of the 5 million tons of these coal combustion residues generated in Illinois each year are utilized, mainly as aggregate. These residues are composed largely Of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. The process being developed in this program will use the residues directly in the manufacture of cement products. Therefore, a much larger amount of residues can be utilized. To achieve the above objective, in the first phase (current year) samples of coal combustion residues will be blended and mixed, as needed, with a lime or cement kiln dust (CKD) to adjust the CaO composition. Six mixtures will be melted in a laboratory-scale furnace at CTL. The resulting products will then be tested for cementitious properties. Two preliminary blends have been tested. One blend used fly ash with limestone, while the other used fly ash with CKD. Each blend was melted and then quenched, and the resulting product samples were ground to a specific surface area similar to portland cement. Cementitious properties of these product samples were evaluated by compression testing of 1-inch cube specimens. The specimens were formed out of cement paste where a certain percentage of the cement paste is displaced by one of the sample products. The specimens were cured for 24 hours at 55{degrees}C and 100% relative humidity. The specimens made with the product samples obtained 84 and 89% of the strength of a pure portland cement control cube. For comparison, similar (pozzolanic) materials in standard concrete practice are required to have a compressive strength of at least 75% of that of the control.

  17. Improvement, characterization and use of waste corn cob ash in cement-based materials

    NASA Astrophysics Data System (ADS)

    Suwanmaneechot, P.; Nochaiya, T.; Julphunthong, P.

    2015-12-01

    This work investigates the development of waste corn cob ash as supplementary cement replacement materials. The study focused on the effects of heat treatment on chemical composition, physical properties and engineering properties of corn cob ash. The results suggest corn cob ash that was heat treated at 600°C for 4 h shows percentage of SiO2 + Al2O3 + Fe2O3 around 72%, which can be classified as Class N calcined natural pozzolan, as prescribed by ASTM C618. The X-ray diffraction patterns indicated that the amorphous silica phase increased with increasing calcining temperatures. The water requirement, initial setting time and final setting time of specimens increased with increasing replacement percentage of raw or treated corn cob ash. The morta cubes which used 20% of treated corn cob ash replaced cement showed 103% of the 28 days compressive strength as compared to reference samples. The corn cob ash that was treated at 600°C for 4 h samples shows slightly higher effectiveness for improving the splitting tensile strength and compressive strength of concrete when compared to the untreated corn cob ash.

  18. Hot alkali carbonation of sodium metaphosphate modified fly ash/calcium aluminate blend hydrothermal cements

    SciTech Connect

    Sugama, T.

    1996-11-01

    Sodium metaphosphate-modified fly ash/calcium aluminate blend (SFCB) cements were prepared by autoclaving for 1 day at 300 C and their resistance was evaluated in a highly concentrated Na{sub 2}CO{sub 3} solution at 300 C. The hydroxyapatite and analcime phases formed in the autoclaved SFCB cements played an essential role in conferring resistance to the degradation of cements caused by alkali carbonation. Although the carbonating reaction of the analcime phase led to the formation of cancrinite, this analcime cancrinite transformation did not show any influence on the changes in the mechanical and physical properties of the cements. Additionally, there was no formation of the water-soluble calcium bicarbonate in the cements exposed for 28 days. Contrarily, the conventional class G cement systems were very vulnerable to a hot alkali carbonation. The major reason for the damage caused by carbonation of the cements was the fact that the xonotlite phase formed in the 300{degree} autoclaved cements was converted into two carbonation products, calcite and pectolite. Furthermore, the reaction between calcite and carbonic acid derived from Na{sub 2}CO{sub 3} led to the formation of water-soluble calcium bicarbonate, thereby causing the alteration of dense structures into porous ones and the loss of strength of cements.

  19. Characterization of high-calcium fly ash and its influence on ettringite formation in portland cement pastes

    NASA Astrophysics Data System (ADS)

    Tishmack, Jody Kathleen

    High-calcium Class C fly ashes derived from Powder River Basin coal are currently used as supplementary cementing materials in portland cement concrete. These fly ashes tend to contain significant amounts of sulfur, calcium, and aluminum, thus they are potential sources of ettringite. Characterization of six high-calcium fly ashes originating from Powder River Basin coal have been carried out. The hydration products formed in pastes made from fly ash and water were investigated. The principal phases produced at room temperature were ettringite, monosulfate, and stratlingite. The relative amounts formed varied with the specific fly ash. Removal of the soluble crystalline sulfur bearing minerals indicated that approximately a third of the sulfur is located in the fly ash glass. Pore solution analyses indicated that sulfur concentrations increased at later ages. Three fly ashes were selected for further study based on their ability to form ettringite. Portland cement-fly ash pastes made with the selected fly ashes were investigated to evaluate ettringite and monosulfate formation. Each of the fly ashes were mixed with four different types of portland cements (Type I, I/II, II, and III) as well as three different Type I cements exhibiting a range of C3A and sulfate contents. The pastes had 25% or 35% fly ash by total weight of solids and a water:cement-fly ash ratio of 0.45. The samples were placed in a curing room (R.H. = 100, 23°C) and were then analyzed at various ages by x-ray diffraction (XRD) and differential scanning calorimetry (DSC) to determine the principal hydration products. The hydration products identified by XRD were portlandite, ettringite (an AFt phase), monosulfate, and generally smaller amounts of hemicarboaluminate and monocarboaluminate (all AFm phases). Although the amount of ettringite formed varied with the individual cement, only a modest correlation with cement sulfate content and no correlation with cement C3A content was observed. DSC

  20. Radon resistant potential of concrete manufactured using Ordinary Portland Cement blended with rice husk ash

    NASA Astrophysics Data System (ADS)

    Chauhan, R. P.; Kumar, Amit

    2013-12-01

    The emission of radon from building materials and soil depends upon the radium content, porosity, moisture content and radon diffusion length of materials. Several techniques have been used to reduce the radon emission from the soil using different flooring materials. But the effectiveness of radon shielding depends upon the diffusion of radon through these materials. The present study proposes a method for producing a radon resistant material for decreasing radon diffusion through it. The method involves rice husk ash (RHA) in addition to cement for the preparation of concrete used for flooring and walls. The radon diffusion, exhalation and mechanical property of concrete prepared by rice husk ash blended cement were studied. The addition of RHA caused the reduction in radon diffusion coefficient, exhalation rates, porosity and enhanced the compressive strength of concrete. The bulk radon diffusion coefficient of cementitious concrete was reduced upto 69% by addition of rice husk ash as compare to that of control concrete.

  1. Feasibility of using reject fly ash in cement-based stabilization/solidification processes

    SciTech Connect

    Poon, C.S.; Qiao, X.C.; Cheeseman, C.R.; Lin, Z.S.

    2006-01-15

    Stabilization/solidification (s/s) has been routinely used for the final treatment of hazardous wastes prior to land disposal. These processes involve adding one or more solidifying reagents into the waste to transform it into a monolithic solid with improved structural integrity. Cement-based systems with partial replacement by pulverized fuel ash (PFA) have been widely used to minimize leaching of contaminants from hazardous wastes. The finer fraction of PFA ({lt}45 {mu} m, fine fly ash, MA), produced by passing the raw ash through a classifying process is commonly used in s/s processes. Low-grade fly ash is rejected (rFA) from the ash classifying process, and is largely unused due to high carbon content and large particle size but represents a significant proportion of PFA. This paper presents experimental results of a study that has assessed the feasibility of using rFA in the cement-based s/s of a synthetic heavy metal waste. Results were compared to mixes containing fFA. The strength results show that cement-based waste forms with rFA replacement are suitable for disposal at landfill and that the addition of heavy metal sludge can increase the degree of hydration of fly ash and decrease the porosity of samples. Adding Ca(OH){sub 2} and flue gas desulphurization sludge reduces the retarding effect of heavy metals on strength development. The results of the Toxicity Characteristic Leaching Procedure and Dynamic Leach Test show that rFA can be used in cement-based s/s wastes without compromising performance of the product.

  2. Role of aluminous component of fly ash on the durability of Portland cement-fly ash pastes in marine environment

    SciTech Connect

    Lorenzo, MaP.; Goni, S.; Guerrero, A

    2003-07-01

    The durability, of mixtures of two kinds of Spanish fly ashes from coal combustion (ASTM class F) with 0, 15 and 35% replacement of Portland cement by fly ash, in a simulated marine environment (Na{sub 2}SO{sub 4}+NaCl solution of equivalent concentration to that of sea water: 0.03 and 0.45 M for sulphate and chloride, respectively), has been studied for a period of 90 days. The resistance of the different mixtures to the attack was evaluated by means of the Koch-Steinegger test. The results showed that all the mixtures were resistant, in spite of the great amount of Al{sub 2}O{sub 3} content of the fly ash. The diffusion of SO{sub 4}{sup 2-}, Na{sup +} and Cl{sup -} ions through the pore solution activated the pozzolanic reactivity of the fly ashes causing the corresponding microstructure changes, which were characterized by X-ray diffraction (XRD), mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). As a result, the flexural strength of the mixtures increased, principally for the fly ash of a lower particle size and 35% of addition.

  3. Possibility of using waste tire rubber and fly ash with Portland cement as construction materials.

    PubMed

    Yilmaz, Arin; Degirmenci, Nurhayat

    2009-05-01

    The growing amount of waste rubber produced from used tires has resulted in an environmental problem. Recycling waste tires has been widely studied for the last 20 years in applications such as asphalt pavement, waterproofing systems and membrane liners. The aim of this study is to evaluate the feasibility of utilizing fly ash and rubber waste with Portland cement as a composite material for masonry applications. Class C fly ash and waste automobile tires in three different sizes were used with Portland cement. Compressive and flexural strength, dry unit weight and water absorption tests were performed on the composite specimens containing waste tire rubber. The compressive strength decreased by increasing the rubber content while increased by increasing the fly ash content for all curing periods. This trend is slightly influenced by particle size. For flexural strength, the specimens with waste tire rubber showed higher values than the control mix probably due to the effect of rubber fibers. The dry unit weight of all specimens decreased with increasing rubber content, which can be explained by the low specific gravity of rubber particles. Water absorption decreased slightly with the increase in rubber particles size. These composite materials containing 10% Portland cement, 70% and 60% fly ash and 20% and 30% tire rubber particles have sufficient strength for masonry applications.

  4. Volume stabilization of high MgO cement: Effect of curing conditions and fly ash addition

    SciTech Connect

    Ali, M.M.; Mullick, A.K.

    1998-11-01

    Hydration of high MgO cement paste under autoclave condition causes the rapid formation and crystallization of magnesium hydroxide and leads to the creation of larger pore sizes. This results in the loss of mechanical strength and higher expansion values. Under ambient water curing, precipitation and distribution of gelatinous calcium silicate hydrates into the finer network causes a homogeneous morphology and the development of smaller pores. The resultant higher mechanical strength associated with partial hydration of MgO yields reduced expansion. High MgO cement paste containing fly ash also showed considerable pore refinement and improved hydrate morphology favoring volume stability under both autoclave and ambient water curing.

  5. Suppression of phosphate liberation from eutrophic lake sediment by using fly ash and ordinary Portland cement

    SciTech Connect

    Heng-Peng Ye; Fan-Zhong Chen; Yan-Qing Sheng; Guo-Ying Sheng; Jia-Mo Fu

    2006-08-15

    In this study, the effect of suppression on phosphate liberation from eutrophic lake sediment by using fly ash and ordinary Portland cement (OPC) was investigated by small scale experiment. A system including sediment, lake water, and several kinds of capping materials was designed to clarify the suppression of phosphate liberation from sediment under the anaerobic condition. The suppression efficiencies of fly ash, OPC and glass bead used as control material were also determined, and these effects were discussed. The suppression efficiency of glass bead was 44.4%, and those of fly ash and OPC were 84.4%, 94.9%, respectively. The suppression by fly ash and OPC was mainly carried out by the adsorption effect, in addition to the covering effect. The suppression efficiency depended on the amounts of the material used, and about 90% of liberated phosphate was suppressed by fly ash of 10.0 Kg m{sup -2}, and OPC of 6.0 Kg m{sup -2}. The concentrations of heavy metals, such as mercury, cadmium, lead, copper, zinc, chromium, silver, arsenic and nickel, in fly ash and OPC were lower than those in the environmental materials. And it was considered that the concentrations of heavy metals in fly ash and OPC were too low to influence the ecosystem in natural water region.

  6. Use of sewage sludge ash (SSA)-cement admixtures in mortars

    SciTech Connect

    Monzo, J.; Paya, J.; Borrachero, M.V.; Corcoles, A.

    1996-09-01

    The chemical composition of sewage sludge ash (SSA) and their sized fractions are studied; some differences in chemical composition are observed. SEM studies show irregular shape of SSA particles and sized fractions, this shape has a decisive influence on workability of mortars. The effect of replacing 15% of portland cement by SSA and their sized fractions: coarse (SSAC) and medium (SSAM) obtained by sieving on compressive (R{sub c}) and flexural (R{sub f}) strength of mortars was investigated. The study reveals an enhancement of strength when ashes are used, due to probably, pozzolanic properties of SSA.

  7. New waste based clinkers: Belite and lime formulations

    SciTech Connect

    Raupp-Pereira, Fabiano; Ball, Richard James Rocha, Joao; Labrincha, Joao A.; Allen, Geoffrey C.

    2008-04-15

    This work describes the formulation of new belite-based (CR2) and lime-based (CR3) cementitious materials derived from industrial wastes, such as sludges (generated in the Al-anodising and surface coating industrial processes, potable water filtration/cleaning operations and in marble sawing processes) and foundry sand. Powder mixtures were prepared and fired at different temperatures. For comparison, similar formulations were prepared with pre-treated and commercially available natural raw materials and processed in similar conditions. The thermal process was followed by differential scanning calorimetry (DSC) and high-temperature powder X-ray diffraction (HT-XRD) studies. The CR2 clinker was found to contain belite as the main cementitious phase, the main polymorph being identified by NMR. The CR3 clinker contained common cementitious phases, such as C{sub 3}A and C{sub 3}S, but free lime and calcium aluminium oxide sulphates were also identified by high temperature XRD and NMR. Then the corresponding cement was prepared and the evolution of the mechanical strength with time was evaluated. The lime-based cement obtained from wastes shows a stronger hardening character than the standard material, which tends to show dusting phenomena due to the presence of a reasonable amount of free lime (as the result of its expansive reaction with ambient moisture). Some fluxing impurities (e.g. alkalis) present in the waste materials improve the overall reactivity of the mixture and induces the combination of the lime in CR3. Raman, XPS and FIB techniques were used to fully characterise the aged cements.

  8. Physical and mechanical properties of cement-based products containing incineration bottom ash.

    PubMed

    Filipponi, P; Polettini, A; Pomi, R; Sirini, P

    2003-01-01

    This paper presents the results of a wider experimental programme conducted in the framework of the NNAPICS ("Neural Network Analysis for Prediction of Interactions in Cement/Waste Systems") project funded by the European Commission and a number of industrial partners under Brite-EuRamIII. Based on the fact that bottom ashes from waste incineration are classified as non-hazardous wastes according to the European Waste Catalogue, the aim of the present work was to investigate the feasibility of addressing the potential use of such residues in cement-based mixtures. This issue was suggested by the analysis of the properties of different bottom ashes coming from Italian municipal and hospital solid waste incinerators, which showed a chemical composition potentially suitable for such applications. Different mixes were prepared by blending bottom ash with ordinary Portland cement in different proportions and at different water dosages. The solidified products were tested for setting time and bulk density, unconfined compressive strength and evaporable water content at different curing times. The results of the experimental campaign were analysed through a statistical procedure (analysis of variance), in order to investigate the effect of mixture composition (waste replacement level and water dosage) on the product properties.

  9. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    SciTech Connect

    Deschner, Florian; Lothenbach, Barbara; Winnefeld, Frank; Neubauer, Jürgen

    2013-10-15

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H.

  10. Comparing the use of sewage sludge ash and glass powder in cement mortars.

    PubMed

    Chen, Zhen; Poon, Chi Sun

    2016-09-23

    This study explored the suitability of using sewage sludge ash (SSA) and mixed-colored glass powder (MGP) as construction materials in cement mortars. Positive findings from this study may help promote the recycling of waste SSA and MGP in construction works. The results indicated that the SSA decreased while MGP improved the mortar workability. The SSA exhibited very low pozzolanic activity, but the cement mortar prepared with 20% SSA yielded strength values slightly superior to those of the glass mortars due to its water absorption ability. MGP can serve as a pozzolan and when 20% of cement was replaced by MGP, apparent compressive strength gains were found at later curing ages. The SSA could be used to mitigate ASR expansion while the MGP was superior in resisting drying shrinkage.

  11. Study on concrete with partial replacement of cement by rice husk ash

    NASA Astrophysics Data System (ADS)

    Kaarthik Krishna, N.; Sandeep, S.; Mini, K. M.

    2016-09-01

    Increase in the demand of conventional construction materials and the need for providing a sustainable growth in the construction field has prompted the designers and developers to opt for ‘alternative materials’ feasible for use in construction. For this objective, the use of industrial waste products and agricultural byproducts are very constructive. These industrial wastes and agricultural by products such as Fly Ash, Rice Husk Ash, Silica Fume, and Slag can be replaced instead of cement because of their pozzolanic behavior, which otherwise requires large tract of lands for dumping. In the present investigation, Rice Husk Ash has been used as an admixture to cement in concrete and its properties has been studied. An attempt was also done to examine the strength and workability parameters of concrete. For normal concrete, mix design is done based on Indian Standard (IS) method and taking this as reference, mix design has been made for replacement of Rice Husk Ash. Four different replacement levels namely 5%, 10%, 15% and 20% are selected and studied with respect to the replacement method.

  12. Recycling seal-coat pavements with self-cementing fly ash. Phase 1 final report

    SciTech Connect

    Ferguson, E.G.

    1985-08-01

    It is proposed that existing pavements can be pulverized in place, sufficient quantities of Class C fly ash and water added, and the resulting mixture compacted to produce a stabilized pavement base section. A laboratory study was conducted to evaluate the degree of stabilization that could be attained and the physical factors influencing the degree of stabilization. Amount and maximum diameter of hydrocarbon-bound particles, gradation of mineral aggregate, fly-ash content and use of a retarder were studied. The laboratory study was supplemented by information obtained from construction of a field-test section. Influence of the self-cementing fly ash on the recycled mixtures was evaluated on the basis of compressive strength, CBR and durability as evaluated by vacuum saturation in accordance with ASTM C-593. The study indicates that the proposed recycling procedure is both technically and economically feasible.

  13. Recycling seal-coat pavements with self-cementing fly ash. Phase 2, final report

    SciTech Connect

    Ferguson, E.G.

    1989-09-05

    The study evaluated the feasibility of recycling existing chip-seal pavements through stabilization with self-cementing fly ash. It was proposed that an existing pavement could be pulverized in place, sufficient quantities of Class C fly ash added, and the resulting mixture be compacted, providing a stabilized base having greater support capacity than the original pavement section. The Phase II program expanded the Phase I laboratory evaluation of stabilized, recycled material, with the focus of the testing being directed at three field projects. The field test sections were selected in regions having different sources of Class C fly ash; the three sources selected were conventional fossil fuel plants using subbituminous, low sulfur coal. The amount of gravel and asphaltic bound particles in the recycled material influenced the degree of stabilization achieved but to a lesser degree than the condition and amount of fines.

  14. Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits.

    PubMed

    Fairbairn, Eduardo M R; Americano, Branca B; Cordeiro, Guilherme C; Paula, Thiago P; Toledo Filho, Romildo D; Silvoso, Marcos M

    2010-09-01

    This paper presents a study of cement replacement by sugar cane bagasse ash (SCBA) in industrial scale aiming to reduce the CO(2) emissions into the atmosphere. SCBA is a by-product of the sugar/ethanol agro-industry abundantly available in some regions of the world and has cementitious properties indicating that it can be used together with cement. Recent comprehensive research developed at the Federal University of Rio de Janeiro/Brazil has demonstrated that SCBA maintains, or even improves, the mechanical and durability properties of cement-based materials such as mortars and concretes. Brazil is the world's largest sugar cane producer and being a developing country can claim carbon credits. A simulation was carried out to estimate the potential of CO(2) emission reductions and the viability to issue certified emission reduction (CER) credits. The simulation was developed within the framework of the methodology established by the United Nations Framework Convention on Climate Change (UNFCCC) for the Clean Development Mechanism (CDM). The State of São Paulo (Brazil) was chosen for this case study because it concentrates about 60% of the national sugar cane and ash production together with an important concentration of cement factories. Since one of the key variables to estimate the CO(2) emissions is the average distance between sugar cane/ethanol factories and the cement plants, a genetic algorithm was developed to solve this optimization problem. The results indicated that SCBA blended cement reduces CO(2) emissions, which qualifies this product for CDM projects. 2010 Elsevier Ltd. All rights reserved.

  15. Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment

    SciTech Connect

    Hossain, K.M.A. . E-mail: ahossain@ryerson.ca; Lachemi, M.

    2006-06-15

    The deterioration of concrete structures due to the presence of mixed sulfate in soils, groundwater and marine environments is a well-known phenomenon. The use of blended cements incorporating supplementary cementing materials and cements with low C{sub 3}A content is becoming common in such aggressive environments. This paper presents the results of an investigation on the performance of 12 volcanic ash (VA) and finely ground volcanic pumice (VP) based ASTM Type I and Type V (low C{sub 3}A) blended cement concrete mixtures with varying immersion period of up to 48 months in environments characterized by the presence of mixed magnesium-sodium sulfates. The concrete mixtures comprise a combination of two Portland cements (Type I and Type V) and four VA/VP based blended cements with two water-to-binder ratio of 0.35 and 0.45. Background experiments (in addition to strength and fresh properties) including X-ray diffraction (XRD), Differential scanning calorimetry (DSC), mercury intrusion porosimetry (MIP) and rapid chloride permeability (RCP) were conducted on all concrete mixtures to determine phase composition, pozzolanic activity, porosity and chloride ion resistance. Deterioration of concrete due to mixed sulfate attack and corrosion of reinforcing steel were evaluated by assessing concrete weight loss and measuring corrosion potentials and polarization resistance at periodic intervals throughout the immersion period of 48 months. Plain (Type I/V) cement concretes, irrespective of their C{sub 3}A content performed better in terms of deterioration and corrosion resistance compared to Type I/V VA/VP based blended cement concrete mixtures in mixed sulfate environment.

  16. A novel method for immobilization of heavy metals from MSW incinerator fly ash via use of Sorel cement

    SciTech Connect

    Macakova, S.; Hepworth, M.H.

    1996-12-31

    Since fly ash contains a higher concentration of toxic elements than bottom ash, it is not usually possible to deposit it in ordinary landfills. The special landfill sites (ash monofills) for ash, which do not endanger ground water supplies are both temporary and an expensive solution and are not acceptable by people who live adjacent to them. According to the United States Supreme Court decision ruling on May 2, 1994, incinerator ash from municipal combustion facilities are subject to the Resource Conservation and Recovery Act as potentially hazardous waste. In the autumn of 1993, a research program was initiated by one of the authors to employ a novel method for stabilization of the fly ash from electrostatic precipitators. The novelty of this method is that it used by-products from magnesium processing plants to prepare magnesia cement, so called Sorel cement, to stabilize fly ash from MSWI. Sorel cement is a combination of magnesium oxide and magnesium chloride, currently by-products of a combination of magnesium oxide and magnesium chloride, currently by-products of magnesium processing operations. The main goal of this research program was to treat fly ash prior to its disposal and to investigate the possibility of utilizing a new ash-concrete product.

  17. Stabilization treatment of soft subgrade soil by sewage sludge ash and cement.

    PubMed

    Chen, Li; Lin, Deng-Fong

    2009-02-15

    In this study, incinerated sewage sludge ash (ISSA) is mixed with cement in a fixed ratio of 4:1 for use as a stabilizer to improve the strength of soft, cohesive, subgrade soil. Five different ratios (in wt%: 0%, 2%, 4%, 8%, and 16%) of ISSA/cement admixture are mixed with cohesive soil to make soil samples. In order to understand the influences of admixtures on the soil properties, tests of the pH value, Atterberg limits, compaction, California bearing ratio (CBR), unconfined compressive strength, and triaxial compression were performed on those samples. The study shows that the unconfined compressive strength of specimens with the ISSA/cement addition was improved to approximately 3-7 times better than that of the untreated soil; furthermore, the swelling behavior was also effectively reduced as much as 10-60% for those samples. In some samples, the ISSA/cement additive improved the CBR values by up to 30 times that of untreated soil. This suggests that ISSA/cement has many potential applications in the field of geotechnical engineering.

  18. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.

    PubMed

    Saikia, Nabajyoti; Cornelis, Geert; Mertens, Gilles; Elsen, Jan; Van Balen, Koenraad; Van Gerven, Tom; Vandecasteele, Carlo

    2008-06-15

    Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such.

  19. Mechanical treatment of fly ashes. Part 2: Particle morphologies in ground fly ashes (GFA) and workability of GFA-cement mortars

    SciTech Connect

    Paya, J.; Monzo, J.; Borrachero, M.V.; Peris-Mora, E.; Gonzalez-Lopez, E.

    1996-02-01

    Mechanical treatment (by grinding) effects on particle morphology and specific gravity of fly ashes, and workability of ground fly ash (GFA) cement mortars have been studied. Different shape morphologies of GFA particles have been established: shell shaped and irregular solid fragments. Real and bulk specific gravity values were measured, proving that grinding process increased the content of poor shape particles. Particle Packing Factor (PPF) for GFA decreased below 50%. Workability of GFA-cement mortars is negatively affected. Good correlations between flow table spread (FTS) values per water volume unit and fly ash replacing percentage have been obtained, and a relative workability factor W{sub r} is established. Determination of W{sub r} value permits comparison of the effect of grinding or other fly ash processing methods on workability of mortars. Finally, good linear relationships between W{sub r} values and the inverse of mean diameter particle or calculated specific surface area were found.

  20. Production of cements from Illinois coal ash. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect

    Wagner, J.C.; Bhatty, J.L.; Mishulovich, A.

    1997-05-01

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. These residues are composed largely of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. Since the residues are used as an integral component of the cement and not just as additives to concrete, larger amounts of the residues can be utilized. The process uses submerged combustion to melt blends of coal combustion residues with lime, clay, and/or sand. The submerged combustion melter utilizes natural gas-oxidant firing directly into a molten bath to provide efficient melting of mineral-like materials. Use of this melter for cement production has many advantages over rotary kilns including very little, if any, grinding of the feed material, very low emissions, and compact size. During the first year of the program, samples of coal combustion residues were blended and mixed, as needed; with lime, clay, and/or sand to adjust the composition. Six mixtures, three with fly ash and three with bottom ash, were melted in a laboratory-scale furnace. The resultant products were used in mortar cubes and bars which were subjected to ASTM standard tests of cementitious properties. In the hydraulic activity test, mortar cubes were found to have a strength comparable to standard mortar cements. In the compressive strength test, mortar cubes were found to have strengths that exceeded ASTM blended cement performance specifications. In the ASR expansion test, mortar bars were subjected to alkali-silica reaction-induced expansion, which is a problem for siliceous aggregate-based concretes that are exposed to moisture. The mortar bars made with the products inhibited 85 to 97% of this expansion. These results show that residue-based products have an excellent potential as ASR-preventing additions in concretes.

  1. Detrimental effects of cement mortar and fly ash mortar on asthma progression.

    PubMed

    Cho, Ara; Jang, Hong-Seok; Roh, Yoon Seok; Park, Hee Jin; Talha, A F S M; So, Seung-Young; Lim, Chae Woong; Kim, Bumseok

    2013-11-01

    Currently, concrete additive materials are used worldwide to improve properties of concrete production and to reduce the total cost of the materials used in the concrete. However, the effects of exposure to various gases emitted from mortar mixed with additive materials are poorly understood. To evaluate the pattern of gas emission from cement mortar and additives, the emission levels of gas including ammonia (NH3) and volatile organic compounds (VOCs) were measured from two different mortar types, Ordinary Portland Cement (OPC), and OPC with fly ash on various time points after manufacture. On days 1, 3, 10 and 30 after manufacture, moderate concentrations of NH3 (4, 9, 12 and 5 ppm) were measured in OPC mortar (24h, 150 mm × 150 mm × 50 mm), whereas higher concentrations of NH3 (73, 55, 20 and 5 ppm) were measured in OPC mortar with fly ash (24h, 150 mm × 150 mm × 50 mm). Furthermore, the concentration of VOCs was more than 10 ppm on 1, 3, and 10 days of age in OPC and OPC with fly ash mortars. To examine the mortars' allergic effects on the respiratory system, mice were sensitized with ovalbumin (OVA) and divided into four groups: normal, asthma control, OPC mortar and OPC mortar with fly ash. The mice were housed in corresponding group cage for 10 days with OVA challenges to induce asthma. Histopathologically, increased infiltration of lymphocytes was observed in the lung perivascular area of mice housed in OPC mortar and OPC mortar with fly ash cages compared to lungs of asthma control mice. Moreover, severe bronchial lumen obstruction and increased hypertrophy of bronchial epithelial cells (p<0.05) were observed in the OPC mortar with fly ash group compared to OPC mortar or asthma control groups. Lungs of the two mortar groups generally expressed higher levels of genes related with asthma, including IL-4, eotaxin and epidermal growth factor (EGF) compared to lungs of asthma control mice. Additionally, the OPC mortar with fly ash group showed higher

  2. Influence of the composition of cement kiln dust on its interaction with fly ash and slag

    SciTech Connect

    Chaunsali, Piyush; Peethamparan, Sulapha

    2013-12-15

    Cement kiln dust (CKD), a by-product of the cement industry, contains significant amounts of alkali, free lime, chloride and sulfate. Wide variation reported in the chemical composition of CKDs limits their potential application as a sustainable binder component in concrete. In the current study, the performance of two different CKDs as components in a novel binder is evaluated. Several binders are developed by blending CKDs with fly ash or slag. Binders with 70% CKD were prepared at a water-to-binder ratio of 0.4, and heat-cured at 75 °C to accelerate the strength development. The hydration progress was monitored using X-ray diffraction, and morphological examination was performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Ettringite and calcium aluminosilicate hydrate (C-A-S-H) were identified as the main hydration products in the hardened binder system. Strength development of CKD-based binder was found to be significantly influenced by its free lime and sulfate contents. -- Highlights: •Interaction of cement kiln dust with fly ash and slag was explored. •CKD with higher free lime and sulfate content increased the strength of binder. •C-S-H like reaction gel with fibrillar morphology is observed in CKD-based binders.

  3. Mechanical performance and ultrasonic properties of cemented gangue backfill with admixture of fly ash.

    PubMed

    Wu, Di; Zhang, Yongliang; Liu, Yucheng

    2016-01-01

    Cemented gangue backfill (CGB) is prepared by mixing cement, coal gangue and water. Fly ash from the combustion of coal is commonly utilized as admixture to improve the mechanical performance and fluidity of CGB, as well as to reduce cost of preparing CGB. Uniaxial compressive strength (UCS) is one of the most commonly used indicators for evaluating the mechanical performance of CGB. Ultrasonic testing, which is a non-destructive measurement, can also be applied to determine the mechanical properties of cementitious materials such as CGB. So this paper investigates the UCS and ultrasonic pulse velocity (UPV) of CGB prepared at different fly ash dosage (19, 20 and 21 wt.%) and solid content (76.5, 77.5 and 78.5 wt.%), versus curing periods of 3-28 days. The UCS and UPV values of CGB increase with increasing fly ash dosage and solid content. In order to find out the correlation between the UCS and UPV values of CGB, different types (linear, logarithmic, exponential and power) of curve fitting are conducted on the CGB samples made at different solid content. An exponential relationship with the correlation coefficient of 0.959 appears to exist between the UCS and UPV for CGB samples. This obtained exponential relationship is validated to be available by performing the t- and F- tests. The results acquired by this paper are capable of providing guidance for utilizing UPV test to estimate the strength of underground CGB structures.

  4. Recycling of Sustainable Co-Firing Fly Ashes as an Alkali Activator for GGBS in Blended Cements

    PubMed Central

    Wu, Yann-Hwang; Huang, Ran; Tsai, Chia-Jung; Lin, Wei-Ting

    2015-01-01

    This study investigates the feasibility of co-firing fly ashes from different boilers, circulating fluidized beds (CFB) or stokers as a sustainable material in alkali activators for ground granulated blast-furnace slag (GGBS). The mixture ratio of GGBS and co-firing fly ashes is 1:1 by weight. The results indicate that only CF fly ash of CFB boilers can effectively stimulate the potential characteristics of GGBS and provide strength as an alkali activator. CF fly ash consists of CaO3 (48.5%), SiO2 (21.1%), Al2O3 (13.8%), SO3 (10.06%), Fe2O3 (2.25%) and others (4.29%). SA fly ash consists of Al2O3 (19.7%), SiO2 (36.3%), Fe2O3 (28.4%) and others (15.6%). SB fly ash consists of Al2O3 (15%), SiO2 (25.4%), Zn (20.6%), SO3 (10.9%), Fe2O3 (8.78%) and others (19.32%). The mixtures of SA fly ash and SB fly ash with GGBS, respectively, were damaged in the compressive strength test during seven days of curing. However, the built up strength of the CF fly ash and GGBS mixture can only be maintained for 7–14 days, and the compressive strength achieves 70% of that of a controlled group (cement in hardening cement paste). The strength of blended CF fly ash and GGBS started to decrease after 28 days, and the phenomenon of ettrigite was investigated due to the high levels of sulfur content. The CaO content in sustainable co-firing fly ashes must be higher than a certain percentage in reacting GGBS to ensure the strength of blended cements. PMID:28787970

  5. Recycling of Sustainable Co-Firing Fly Ashes as an Alkali Activator for GGBS in Blended Cements.

    PubMed

    Wu, Yann-Hwang; Huang, Ran; Tsai, Chia-Jung; Lin, Wei-Ting

    2015-02-16

    This study investigates the feasibility of co-firing fly ashes from different boilers, circulating fluidized beds (CFB) or stokers as a sustainable material in alkali activators for ground granulated blast-furnace slag (GGBS). The mixture ratio of GGBS and co-firing fly ashes is 1:1 by weight. The results indicate that only CF fly ash of CFB boilers can effectively stimulate the potential characteristics of GGBS and provide strength as an alkali activator. CF fly ash consists of CaO₃ (48.5%), SiO₂ (21.1%), Al₂O₃ (13.8%), SO₃ (10.06%), Fe₂O₃ (2.25%) and others (4.29%). SA fly ash consists of Al₂O₃ (19.7%), SiO₂ (36.3%), Fe2O3 (28.4%) and others (15.6%). SB fly ash consists of Al₂O₃ (15%), SiO₂ (25.4%), Zn (20.6%), SO₃ (10.9%), Fe₂O₃ (8.78%) and others (19.32%). The mixtures of SA fly ash and SB fly ash with GGBS, respectively, were damaged in the compressive strength test during seven days of curing. However, the built up strength of the CF fly ash and GGBS mixture can only be maintained for 7-14 days, and the compressive strength achieves 70% of that of a controlled group (cement in hardening cement paste). The strength of blended CF fly ash and GGBS started to decrease after 28 days, and the phenomenon of ettrigite was investigated due to the high levels of sulfur content. The CaO content in sustainable co-firing fly ashes must be higher than a certain percentage in reacting GGBS to ensure the strength of blended cements.

  6. Evaluation of Strength Characteristics of Laterized Concrete with Corn Cob Ash (CCA) Blended Cement

    NASA Astrophysics Data System (ADS)

    Ikponmwosa, E. E.; Salau, M. A.; Kaigama, W. B.

    2015-11-01

    Agricultural wastes are dumped in landfills or left on land in which they constitute nuisance. This study presents the results of investigation of strength characteristics of reinforced laterized concrete beams with cement partially replaced with corn cob (agricultural wastes) ash (CCA). Laterized concrete specimen of 25% laterite and 75% sharp sand were made by blending cement with corn cob ash at 0 to 40% in steps of 10%. A concrete mix ratio of 1:2:4 was used to cast 54 cubes of 150×150×150mm size and 54 beams of dimension 750×150×150mm. The results show that the consistency and setting time of cement increased as the percentage replacement of cement with CCA increased while the workability and density of concrete decreased as the percentage of CCA increased. There was a decrease in compressive strength when laterite was introduced to the concrete from 25.04 to 22.96N/mm2 after 28 days and a continual reduction in strength when CCA was further added from 10% to 40% at steps of 10%. Generally, the beam specimens exhibited majorly shear failure with visible diagonal cracks extending from support points to the load points. The corresponding central deflection in beams, due to two points loading, increased as the laterite was added to the concrete mix but reduced and almost approaching that of the control as 10% CCA was added. The deflection then increased as the CCA content further increased to 20%, 30% and 40% in the mix. It was also noted that the deflection of all percentage replacement including 40% CCA is less than the standard recommended maximum deflection of the beam. The optimal flexural strength occurred with 10% CCA content.

  7. The Impact of Coal Combustion Fly Ash Used as a Supplemental Cementitious Material on the Leaching of Constituents from Cements and Concretes

    EPA Science Inventory

    The objective of this report is to compare the leaching of portland cement-based materials that have been prepared with and without coal combustion fly ash to illustrate whether there is evidence that the use of fly ash in cement and concrete products may result in increased leac...

  8. The Impact of Coal Combustion Fly Ash Used as a Supplemental Cementitious Material on the Leaching of Constituents from Cements and Concretes

    EPA Science Inventory

    The objective of this report is to compare the leaching of portland cement-based materials that have been prepared with and without coal combustion fly ash to illustrate whether there is evidence that the use of fly ash in cement and concrete products may result in increased leac...

  9. Self-cementing properties of oil shale solid heat carrier retorting residue.

    PubMed

    Talviste, Peeter; Sedman, Annette; Mõtlep, Riho; Kirsimäe, Kalle

    2013-06-01

    Oil shale-type organic-rich sedimentary rocks can be pyrolysed to produce shale oil. The pyrolysis of oil shale using solid heat carrier (SHC) technology is accompanied by large amount of environmentally hazardous solid residue-black ash-which needs to be properly landfilled. Usage of oil shale is growing worldwide, and the employment of large SHC retorts increases the amount of black ash type of waste, but little is known about its physical and chemical properties. The objectives of this research were to study the composition and self-cementing properties of black ash by simulating different disposal strategies in order to find the most appropriate landfilling method. Three disposal methods were simulated in laboratory experiment: hydraulic disposal with and without grain size separation, and dry dumping of moist residue. Black ash exhibited good self-cementing properties with maximum compressive strength values of >6 MPa after 90 days. About 80% of strength was gained in 30 days. However, the coarse fraction (>125 µm) did not exhibit any cementation, thus the hydraulic disposal with grain size separation should be avoided. The study showed that self-cementing properties of black ash are governed by the hydration of secondary calcium silicates (e.g. belite), calcite and hydrocalumite.

  10. A novel way to upgrade the coarse part of a high calcium fly ash for reuse into cement systems.

    PubMed

    Antiohos, S K; Tsimas, S

    2007-01-01

    Reject fly ash (rFA) represents a significant portion of the fly ashes produced from coal-fired power plants. Due to the high carbon content and large particle mean diameter, rFA is not utilized in the construction sector (for example, as supplementary cementing material) and is currently dumped into landfills, thus representing an additional environmental burden. Recently, the feasibility of using rFA in a relatively small number of applications, like solidification/stabilization of other wastes, has been investigated by different researchers. However, as the overall amount of fly ash utilized in such applications is still limited, there is a need to investigate other possibilities for rFA utilization starting from a deeper understanding of its properties. In the work presented herein, mechanical and hydration properties of cementitious materials prepared by blending the coarse fraction of a lignite high-calcium fly ash with ordinary cement were monitored and compared with the respective ones of a good quality fly ash-cement mixture. The results of this work reveal that a relatively cheap, bilateral classification-grinding method is able to promote the pozzolanic behavior of the rFAs, so that the overall performances of rFA containing cements are drastically improved. The evaluation of these results supports the belief that appropriate utilization of non-standardized materials may lead to new environmental-friendly products of superior quality.

  11. Mechanical properties and leaching modeling of activated incinerator bottom ash in Portland cement blends

    SciTech Connect

    Onori, Roberta; Polettini, Alessandra; Pomi, Raffaella

    2011-02-15

    In the present study the evolution of mechanical strength and the leaching behavior of major and trace elements from activated incinerator bottom ash/Portland cement mixtures were investigated. Chemical and mechanical activation were applied with the purpose of improving the reactivity of bottom ash in cement blends. Chemical activation made use of NaOH, KOH, CaCl{sub 2} or CaSO{sub 4}, which were selected for the experimental campaign on the basis of the results from previous studies. The results indicated that CaCl{sub 2} exhibited by far the best effects on the evolution of the hydration process in the mixtures; a positive effect on mechanical strength was also observed when CaSO{sub 4} was used as the activator, while the gain in strength produced by KOH and NaOH was irrelevant. Geochemical modeling of the leaching solutions provided information on the mineral phases responsible for the release of major elements from the hardened materials and also indicated the important role played by surface sorption onto amorphous Fe and Al minerals in dictating the leaching of Pb. The leaching of the other trace metal cations investigated (Cu, Ni and Zn) could not be explained by any pure mineral included in the thermodynamic database used, suggesting they were present in the materials in the form of complex minerals or phase assemblages for which no consistent thermodynamic data are presently available in the literature.

  12. Experimental studies on effect of Date Seed Ash (DSA) on strength properties of cement sand mortar

    NASA Astrophysics Data System (ADS)

    Gunarani, G. I.; Chakkravarthy, S. P.

    2017-07-01

    The need for alternative material for the cement is arising and being compromised by many engineering researchers. However, the growing demand and surging prices of raw materials challenges the constructional field. India, being one of the largest agricultural economy, produces a quantitative volume of agro-waste that is being dumped. In the conventional concrete production, coarse aggregate (CA) plays an important filler material. The initial study on date seed as a replacement for CA was not successful. This study primarily focuses on Date seed ash as a replacement material for ordinary Portland cement. OPC was replaced by Date Palm Seed Ash (DPSA) in the ratio up to 10% in terms of 2% interval. The main objective of this paper was to study the variation of strength properties of mortar by DPSA in specified ratio along with curing period of 3,7,14 and 28 days. The stress strain behavior has indicated a significant improvement. The overall results indicated the increase in replacing ratio, decreases the strength properties. However the physical, chemical and mechanical properties increased gradually in strength in minimal ratio.

  13. Stabilized phosphogypsum: class C fly ash: Portland type II cement composites for potential marine application.

    PubMed

    Guo, T; Malone, R F; Rusch, K A

    2001-10-01

    Phosphogypsum (PG, CaSO4 x H20), a byproduct of phosphoric acid manufacturing, contains low levels of Ra226. PG can be stabilized with portland type II cement and class C fly ash for use in marine environments, thus eliminating the airborne vector of transmission for radon gas. An augmented simplex centroid design with pseudocomponents was used to select 10 PG:class C fly ash:portland type II cement compositions. The 43 cm3 blocks were fabricated and subjected to a 1.5-yr field submergence test and a 28-d saltwater dynamic leaching study. All field composites survived with no signs of degradation. Dynamic leaching resulted in effective calcium diffusion coefficients ranging from 0.21 to 7.5 x 10(-14)m2 s(-1). Effective diffusion depths, calculated for t=1 and 30 yr, ranged from 0.4 to 2.2 mm and from 2.0 to 11.9 mm, respectively. Scanning electron microscopy and wavelength dispersive microprobe and X-ray diffraction analyses of the leached composites identified a 40-60-microm calcite layer that was absent in the control composites. This suggests that a reaction between the composites and the saltwater results in the precipitation of calcite onto the block surface, encapsulating the composites and protecting them from saltwater attack and dissolution.

  14. Recycling ash into the first stage of cyclone pre-heater of cement kiln.

    PubMed

    Zhan, Ming-Xiu; Fu, Jian-Ying; Havukainen, Jouni; Chen, Tong; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-10-01

    Fly ash collected from the bag filter could be recycled into the first stage of the cyclone pre-heater of the cement kiln, resulting in the possible enrichment of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). In this study, soxhlet fly ash (SFA) and raw meal (RM) were selected as the basis for the PCDD/F formation experiments. The levels of 2,3,7,8-PCDD/Fs formed on the SFA and RM were observed to be 2550pg/g (157pg I-TEQ/g) and 1142pg/g (55pg I-TEQ/g), respectively. While less 2,3,7,8-PCDD/Fs was detected when SFA was mixed with RM, suggesting that recycling cement kiln ash would not largely increase the concentration of PCDD/Fs in flue gas. Furthermore, the possible influencing factors on the PCDD/F formation were also investigated. The formation of 2,3,7,8-PCDD/Fs was up to 10,871pg/g (380pg I-TEQ/g) with the adding of CuCl2, which was much higher than the results of CuO and activated carbon. Most importantly, the homologue, congener and gas/particle distribution of PCDD/Fs indicated that de novo synthesis was the dominant PCDD/F formation pathway for SFA. Lastly, principal component analysis (PCA) was also conducted to identify the relationship between the compositions of reactant and the properties of PCDD/Fs produced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Distributions, profiles and formation mechanisms of polychlorinated naphthalenes in cement kilns co-processing municipal waste incinerator fly ash.

    PubMed

    Liu, Guorui; Zhan, Jiayu; Zhao, Yuyang; Li, Li; Jiang, Xiaoxu; Fu, Jianjie; Li, Chunping; Zheng, Minghui

    2016-07-01

    Co-processing municipal solid waste incinerator (MSWI) fly ash in cement kilns is challenging because the unintentional production of persistent organic pollutants (POPs) during the process is not well understood. The distributions, profiles and formation mechanisms of polychlorinated naphthalenes (PCNs) as new POPs covered under Stockholm Convention in two cement kilns co-processing MSWI fly ash were studied. The average concentrations of PCNs in stack gas samples were 710 ng m(-3). The PCN concentration in particle samples collected from different process stages in the cement kilns ranged from 1.1 to 84.7 ng g(-1). Three process sites including suspension pre-heater boiler, humidifier tower, and the kiln back-end bag filter were identified to be the major formation sites of PCNs in cement kilns co-processing MSWI fly ash. The PCN distribution patterns were similar to that of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs), which indicates the possibility for simultaneous control of PCNs and PCDD/Fs in cement kilns co-processing fly ash. Chlorination was suggested to be an important formation mechanism of PCNs, and chlorination pathways of PCN congeners are proposed based on the congener profiles. Thermodynamic calculations, including relative thermal energies (ΔE) and standard free energy of formation (ΔG), and the charge densities of the carbon atoms in PCN supported the proposed chlorination mechanisms for PCN formation. The results presented in this study might provide helpful information for developing techniques and strategies to control PCN emissions during cement kilns co-processing MSWI fly ash. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effects on cement after partial replacement with burned joss paper ash.

    PubMed

    Lin, D F; Huang, L S; Luo, H L; Weng, R S

    2012-12-01

    In the last ten years, as international environmental protection consciousness has increased, the study and applications of green building, green construction materials and energy savings as well as reduction of carbon dioxide have become urgent issues for governments. In Taiwan, joss papers are burned in more than 11,731 registered shrines or temples in traditional Chinese deity or ancestor worship ceremonies during special holidays or occasions. Instead of placing this large amount of burned joss paper ash (BJPA) in landfills, this study proposes recycling BJPA by replacing some cement with calcined BJPA (CBJPA) in mortar specimens. After BJPA samples were calcined at a high kiln temperature, mortar samples were created using CBJPA to replace cement at seven different levels: 0%, 5%, 10%, 15%, 20%, 25% and 30%. Tests like setting time and compressive strength were performed for macro-analyses; scanning electron microscopy-energy dispersive spectroscopy, X-ray diffraction and thermal gravimetric analysis/differential thermal analysis were carried out for the microstructure and chemical composition analyses. The test results showed that the compressive strengths of specimens with different levels of CBJPA replacement were apparently less than those of the control group (0% CBJPA) at all curing times. The compressive strength and setting time both decreased as the fraction of CBJPA in the mortar increased. Furthermore, because the hydration product did not cement and the mortar specimen structure was loose, the expected strength improvement from the pozzolanic reaction provided by the CBJPA was not clearly observed.

  17. Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production.

    PubMed

    Wu, Kai; Shi, Huisheng; Guo, Xiaolu

    2011-01-01

    The feasibility of partially substituting raw materials with municipal solid waste incineration (MSWI) fly ash in sulfoaluminate cement (SAC) clinker production was investigated by X-ray diffraction (XRD), compressive strength and free expansion ratio testing. Three different leaching tests were used to assess the environmental impact of the produced material. Experimental results show that the replacement of MSWI fly ash could be taken up to 30% in the raw mixes. The good quality SAC clinkers are obtained by controlling the compositional parameters at alkalinity modulus (C(m)) around 1.05, alumina-sulfur ratio (P) around 2.5, alumina-silica ratio (N) around 2.0~3.0 and firing the raw mixes at 1250 °C for 2h. The compressive strengths of SAC are high in early age while that develop slowly in later age. Results also show that the expansive properties of SAC are strongly depended on the gypsum content. Leaching studies of toxic elements in the hydrated SAC-based system reveal that all the investigated elements are well bounded in the clinker minerals or immobilized by the hydration products. Although some limited positive results indicate that the SAC prepared from MSWI fly ash would present no immediate thread to the environment, the long-term toxicity leaching behavior needs to be further studied.

  18. Optimum reaction ratio of coal fly ash to blast furnace cement for effective removal of hydrogen sulfide.

    PubMed

    Asaoka, Satoshi; Okamura, Hideo; Kim, Kyunghoi; Hatanaka, Yuzuru; Nakamoto, Kenji; Hino, Kazutoshi; Oikawa, Takahito; Hayakawa, Shinjiro; Okuda, Tetsuji

    2017-02-01

    Reducing hydrogen sulfide concentration in eutrophic marine sediments is crucial to maintaining healthy aquatic ecosystems. Managing fly ash, 750 million tons of which is generated annually throughout the world, is another serious environmental problem. In this study, we develop an approach that addresses both these issues by mixing coal fly ash from coal-fired power plants with blast furnace cement to remediate eutrophic sediments. The purpose of this study is to optimize the mixing ratio of coal fly ash and blast furnace cement to improve the rate of hydrogen sulfide removal based on scientific evidence obtained by removal experiments and XAFS, XRD, BET, and SEM images. In the case of 10 mg-S L(-1) of hydrogen sulfide, the highest removal rate of hydrogen sulfide was observed for 87 wt% of coal fly ash due to decreased competition of adsorption between sulfide and hydroxyl ions. Whereas regarding 100 mg-S L(-1), the hydrogen sulfide removal rate was the highest for 95 wt% of coal fly ash. However, for both concentrations, the removal rate obtained by 87 wt% and 95 wt% were statistically insignificant. The crushing strength of the mixture was over 1.2 N mm(-2) when the coal fly ash mixing ratio was less than 95 wt%. Consequently, the mixing ratio of coal fly ash was optimized at 87 wt% in terms of achieving both high hydrogen sulfide removal rate and sufficient crushing strength.

  19. Leachability of Arsenic (As) Contaminated Landfill Soil Stabilised by Cement and Bagasse Ash

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Azim, M. A. M.; Aziman, M.; Nabila, A. T. A.

    2016-11-01

    Contaminated soil with heavy metals, especially Arsenic (As) has become a major issue worldwide. As is reported to be a metal that affects human health and is related to have caused serious diseases that interrupts the nervous system, blood vessels and kidneys. However, proper treatment techniques such as Stabilization/Solidification (S/S) method can be employed and is capable of controlling these heavy metals from contaminating the soil strata and groundwater resources. This study is to investigate the leachability of Arsenic (As) in S/S method when bagasse ash (BA) is added to remedy contaminated Landfill soil. Cement is added at a proportion of 5%, 10%, 15% and 20% in sample weights without BA while in another sample; the cement replaces BA at a proportion of 2.5%, 5%, 7.5%. and 10%. All samples were allowed to harden and cured at room temperature for 7, 14 and 28 days. The effectiveness of the treatment was assessed by conducting Synthetic Precipitation Leaching Procedure (SPLP). Results indicate that pH and leachability are found to have major influence on metal release. The final pH after leaching tests showed improvements especially samples containing BA. In addition, the concentration of As in the SPLP test after the curing period of 28 days were detected to be below the leachability limit as regulated by WHO's Guidelines for Drinking-water Quality. As a whole, the results obtained from testing showed that sample containing 10% cement with 10% BA is the most effective and is the optimum mix since this proportion succeeded in minimising the leachability of As at total reduction by 100%, In conclusion, partial replacement of cement with BA in the binder system has been successful in reducing the leachability.

  20. Non-destructive analysis of chlorine in fly ash cement concrete

    NASA Astrophysics Data System (ADS)

    Naqvi, A. A.; Garwan, M. A.; Nagadi, M. M.; Maslehuddin, M.; Al-Amoudi, O. S. B.; Khateeb-ur-Rehman

    2009-08-01

    Preventive measures against reinforcement corrosion in concrete require increasing concrete density to prevent the diffusion of chloride ions to the steel surface. Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to concrete to increase its density. Monitoring the chloride concentration in concrete is required to assess the chances of reinforcement corrosion. In this study, FA was added to Portland cement concrete to increase its density. Prompt gamma neutron activation analysis (PGNAA) technique was utilized to analyze the concentration of chlorine in concrete. The chlorine concentration in the FA cement concrete was evaluated by determining the yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV gamma-rays of chlorine from the FA concrete specimen containing 0.4-3.5 wt% chlorine. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the calculated yield obtained through the Monte Carlo simulations. The Minimum Detectable Concentration (MDC) of chlorine in FA cement concrete was also calculated. The best value of MDC limit of chlorine in the FA cement concrete was found to be 0.022±0.007 and 0.038±0.017 wt% for 1.16 and 6.11 MeV prompt gamma-rays, respectively. Within the statistical uncertainty, the lower bound of MDC meets the maximum permissible limit of 0.03 wt% of chlorine in concrete set by American Concrete Institute Committee 318.

  1. Evaluation of sulfate resistance of cement mortars containing black rice husk ash.

    PubMed

    Chatveera, B; Lertwattanaruk, P

    2009-03-01

    In this paper, black rice husk ashes (BRHAs), which are agrowastes from an electricity generating power plant and a rice mill, were ground and used as a partial cement replacement. The durability of mortars under sulfate attack including expansion and compressive strength loss were investigated. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 30%, and 50% by weight of binder. The water-to-binder ratios were 0.55 and 0.65. For the durability of mortar exposed to sulfate attack, 5% sodium sulfate (Na2SO4) and magnesium sulfate (MgSO4) solutions were used. As a result, when increasing the percentage replacement of BRHA, the expansion and compressive strength loss of mortar decreased. At the replacement levels of 30% and 50% of BRHA, the expansion of the mortars was less than those mixed with sulfate-resistant cement. However, the expansion of the mortars exposed to Na2SO4 was more than those exposed to MgSO4. Increasing the replacement level of BRHA tends to reduce the compressive strength loss of mortars exposed to Na2SO4 attack. In contrary, under MgSO4 attack, when increasing the replacement level of BRHA, the compressive strength loss increases from 0% to 50% in comparison to Portland cement mortar. Results show that ground BRHA can be applied as a pozzolanic material to concrete and also improve resistance to sodium sulfate attack, but it can impair resistance to magnesium sulfate attack.

  2. Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production

    SciTech Connect

    Wu Kai; Shi Huisheng; Guo Xiaolu

    2011-09-15

    Highlights: > The replacement can be taken up to 30% of MSWI fly ash in the raw mix. > The novelty compositional parameters were defined, their optimum values were determined. > Expansive property of SAC is strongly depended on gypsum content. > Three leaching test methods are used to assess the environmental impact. - Abstract: The feasibility of partially substituting raw materials with municipal solid waste incineration (MSWI) fly ash in sulfoaluminate cement (SAC) clinker production was investigated by X-ray diffraction (XRD), compressive strength and free expansion ratio testing. Three different leaching tests were used to assess the environmental impact of the produced material. Experimental results show that the replacement of MSWI fly ash could be taken up to 30% in the raw mixes. The good quality SAC clinkers are obtained by controlling the compositional parameters at alkalinity modulus (C{sub m}) around 1.05, alumina-sulfur ratio (P) around 2.5, alumina-silica ratio (N) around 2.0{approx}3.0 and firing the raw mixes at 1250 deg. C for 2 h. The compressive strengths of SAC are high in early age while that develop slowly in later age. Results also show that the expansive properties of SAC are strongly depended on the gypsum content. Leaching studies of toxic elements in the hydrated SAC-based system reveal that all the investigated elements are well bounded in the clinker minerals or immobilized by the hydration products. Although some limited positive results indicate that the SAC prepared from MSWI fly ash would present no immediate thread to the environment, the long-term toxicity leaching behavior needs to be further studied.

  3. Self-degradable Slag/Class F Fly Ash-Blend Cements

    SciTech Connect

    Sugama, T.; Warren, J.; Butcher, T.; Lance Brothers; Bour, D.

    2011-03-01

    Self-degradable slag/Class F fly ash blend pozzolana cements were formulated, assuming that they might serve well as alternative temporary fracture sealers in Enhanced Geothermal System (EGS) wells operating at temperatures of {ge} 200 C. Two candidate formulas were screened based upon material criteria including an initial setting time {ge} 60 min at 85 C, compressive strength {ge} 2000 psi for a 200 C autoclaved specimen, and the extent of self-degradation of cement heated at {ge} 200 C for it was contacted with water. The first screened dry mix formula consisted of 76.5 wt% slag-19.0 wt% Class F fly ash-3.8 wt% sodium silicate as alkali activator, and 0.7 wt% carboxymethyl cellulose (CMC) as the self-degradation promoting additive, and second formula comprised of 57.3 wt% slag, 38.2 wt% Class F fly ash, 3.8 wt% sodium silicate, and 0.7 wt% CMC. After mixing with water and autoclaving it at 200 C, the aluminum-substituted 1.1 nm tobermorite crystal phase was identified as hydrothermal reaction product responsible for the development of a compressive strength of 5983 psi. The 200 C-autoclaved cement made with the latter formula had the combined phases of tobermorite as its major reaction product and amorphous geopolymer as its minor one providing a compressive strength of 5271 psi. Sodium hydroxide derived from the hydrolysis of sodium silicate activator not only initiated the pozzolanic reaction of slag and fly ash, but also played an important role in generating in-situ exothermic heat that significantly contributed to promoting self-degradation of cementitious sealers. The source of this exothermic heat was the interactions between sodium hydroxide, and gaseous CO{sub 2} and CH{sub 3}COOH by-products generated from thermal decomposition of CMC at {ge} 200 C in an aqueous medium. Thus, the magnitude of this self-degradation depended on the exothermic temperature evolved in the sealer; a higher temperature led to a sever disintegration of sealer. The exothermic

  4. Long-Term Behaviour of Fly Ash and Slag Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium.

    PubMed

    Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel

    2017-05-30

    Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days) of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the "Wenner" resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days) compared to grouts made with OPC.

  5. Long-Term Behaviour of Fly Ash and Slag Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium

    PubMed Central

    Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel

    2017-01-01

    Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days) of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the “Wenner” resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days) compared to grouts made with OPC. PMID:28772958

  6. High stenghth concrete with high cement substitution by adding fly ash, CaCO3, silica sand, and superplasticizer

    NASA Astrophysics Data System (ADS)

    Wicaksono, Muchammad Ridho Sigit; Qoly, Amelia; Hidayah, Annisaul; Pangestuti, Endah Kanti

    2017-03-01

    Concrete is a mixture of cement, fine aggregate, coarse aggregate and water with or without additives. Concrete can be made with substitution of cement with materials like Fly Ash, CaCO3 and silica sand that can increase the binding on pasta and also increase the compressive strength of concrete. The Superplasticizer on a mixture is used to reduce the high water content, improve concrete durability, low permeability concrete by making it more resilient, and improve the quality of concrete. The combination between Fly Ash (30% of cement required), CaCO3 (10% of cement required) and silica sand (5% of cement required) with added MasterGlenium ACE 8595 as much as 1,2% from total cement will produces compressive strength of up to 1080 kN/cm2 or 73,34 Mpa when the concrete is aged at 28 day. By using this technique and innovation, it proves that the cost reduction is calculated at 27%, which is much more efficient. While the strength of the concrete is increased at 5% compared with normal mixture.

  7. Hydration Characteristics of Low-Heat Cement Substituted by Fly Ash and Limestone Powder

    PubMed Central

    Kim, Si-Jun; Yang, Keun-Hyeok; Moon, Gyu-Don

    2015-01-01

    This study proposed a new binder as an alternative to conventional cement to reduce the heat of hydration in mass concrete elements. As a main cementitious material, low-heat cement (LHC) was considered, and then fly ash (FA), modified FA (MFA) by vibrator mill, and limestone powder (LP) were used as a partial replacement of LHC. The addition of FA delayed the induction period at the hydration heat curve and the maximum heat flow value (qmax) increased compared with the LHC based binder. As the proportion and fineness of the FA increased, the induction period of the hydration heat curve was extended, and the qmax increased. The hydration production of Ca(OH)2 was independent of the addition of FA or MFA up to an age of 7 days, beyond which the amount of Ca(OH)2 gradually decreased owing to their pozzolanic reaction. In the case of LP being used as a supplementary cementitious material, the induction period of the hydration heat curve was reduced by comparison with the case of LHC based binder, and monocarboaluminate was observed as a hydration product. The average pore size measured at an age of 28 days was smaller for LHC with FA or MFA than for 100% LHC. PMID:28793538

  8. Resistance of fly ash-Portland cement blends to thermal shock

    DOE PAGES

    Pyatina, Tatiana; Sugama, Toshifumi

    2015-09-11

    Thermal-shock resistance of high-content fly ash-Portland cement blends was tested in the following ways. Activated and non-activated blends with 80-90 % fly ash F (FAF) were left to set at room temperature, then hydrated for 24 hours at 85°C and 24-more hours at 300°C and tested in five thermal-shock cycles (600°C heat - 25°C water quenching). XRD, and thermal gravimetric analyses, along with calorimetric measurements and SEM-EDX tests demonstrated that the activated blends form more hydrates after 24 hours at 300°C, and achieve a higher short-term compressive strength than do non-activated ones. Sodium meta-silicate and sodaash engendered the concomitant hydrationmore » of OPC and FAF, with the formation of mixed crystalline FAF-OPC hydrates and FAF hydrates, such as garranite, analcime, and wairakite, along with the amorphous FAF hydration products. In SS-activated and non-activated blends separate OPC (tobermorite) and FAF (amorphous gel) hydrates with no mixed crystalline products formed. The compressive strength of all tested blends decreased by nearly 50% after 5 thermal-shock test cycles. These changes in the compressive strength were accompanied by a marked decrease in the intensities of XRD patterns of the crystalline hydrates after the thermalshock. As a result, there was no significant difference in the performance of the blends with different activators« less

  9. Resistance of fly ash-Portland cement blends to thermal shock

    SciTech Connect

    Pyatina, Tatiana; Sugama, Toshifumi

    2015-09-11

    Thermal-shock resistance of high-content fly ash-Portland cement blends was tested in the following ways. Activated and non-activated blends with 80-90 % fly ash F (FAF) were left to set at room temperature, then hydrated for 24 hours at 85°C and 24-more hours at 300°C and tested in five thermal-shock cycles (600°C heat - 25°C water quenching). XRD, and thermal gravimetric analyses, along with calorimetric measurements and SEM-EDX tests demonstrated that the activated blends form more hydrates after 24 hours at 300°C, and achieve a higher short-term compressive strength than do non-activated ones. Sodium meta-silicate and sodaash engendered the concomitant hydration of OPC and FAF, with the formation of mixed crystalline FAF-OPC hydrates and FAF hydrates, such as garranite, analcime, and wairakite, along with the amorphous FAF hydration products. In SS-activated and non-activated blends separate OPC (tobermorite) and FAF (amorphous gel) hydrates with no mixed crystalline products formed. The compressive strength of all tested blends decreased by nearly 50% after 5 thermal-shock test cycles. These changes in the compressive strength were accompanied by a marked decrease in the intensities of XRD patterns of the crystalline hydrates after the thermalshock. As a result, there was no significant difference in the performance of the blends with different activators

  10. Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive

    NASA Astrophysics Data System (ADS)

    Phoo-ngernkham, Tanakorn; Chindaprasirt, Prinya; Sata, Vanchai; Pangdaeng, Saengsuree; Sinsiri, Theerawat

    2013-02-01

    The effect of Portland cement (OPC) addition on the properties of high calcium fly ash geopolymer pastes was investigated in the paper. OPC partially replaced fly ash (FA) at the dosages of 0, 5%, 10%, and 15% by mass of binder. Sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solutions were used as the liquid portion in the mixture: NaOH 10 mol/L, Na2SiO3/NaOH with a mass ratio of 2.0, and alkaline liquid/binder (L/B) with a mass ratio of 0.6. The curing at 60°C for 24 h was used to accelerate the geopolymerization. The setting time of all fresh pastes, porosity, and compressive strength of the pastes at the stages of 1, 7, 28, and 90 d were tested. The elastic modulus and strain capacity of the pastes at the stage of 7 d were determined. It is revealed that the use of OPC as an additive to replace part of FA results in the decreases in the setting time, porosity, and strain capacity of the paste specimens, while the compressive strength and elastic modulus seem to increase.

  11. Engineering properties of cement mortar with pond ash in South Korea as construction materials: from waste to concrete

    NASA Astrophysics Data System (ADS)

    Jung, Sang; Kwon, Seung-Jun

    2013-09-01

    Among the wastes from coal combustion product, only fly ash is widely used for mineral mixture in concrete for its various advantages. However the other wastes including bottom ash, so called PA (pond ash) are limitedly reused for reclamation. In this paper, the engineering properties of domestic pond ash which has been used for reclamation are experimentally studied. For this, two reclamation sites (DH and TA) in South Korea are selected, and two domestic PAs are obtained. Cement mortar with two different w/c (water to cement) ratios and 3 different replacement ratios (0%, 30%, and 60%) of sand are prepared for the tests. For workability and physical properties of PA cement mortar, several tests like flow, setting time, and compressive strength are evaluated. Several durability tests including porosity measuring, freezing and thawing, chloride migration, and accelerated carbonation are also performed. Through the tests, PA (especially from DH area) in surface saturated condition is evaluated to have internal curing action which leads to reasonable strength development and durability performances. The results show a potential applicability of PA to concrete aggregate, which can reduce consuming natural resources and lead to active reutilization of coal product waste.

  12. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 1: Processing and characterization of MSWI fly ash.

    PubMed

    Aubert, J E; Husson, B; Sarramone, N

    2006-08-25

    This paper is the first of a series of two articles dealing with the processes applied to MSWI fly ash with a view to reusing it safely in cement-based materials. Part 1 presents two stabilization processes and Part 2 deals with the use of the two treated fly ashes (TFA) in mortars. Two types of binder were used: an Ordinary Portland Cement (OPC) containing more than 95% clinker (CEM I 52.5R) and a binary blend cement composed of 70% ground granulated blast furnace slag and 30% clinker (CEM III-B 42.5N). In this first part, two stabilization processes are presented: the conventional process, called "A", based on the washing, phosphation and calcination of the ash, and a modified process, called "B", intended to eliminate metallic aluminum and sulfate contained in the ash. The physical, chemical and mineralogical characteristics of the two TFA were comparable. The main differences observed were those expected, i.e. TFA-B was free of metallic aluminum and sulfate. The mineralogical characterization of the two TFAs highlighted the presence of large amounts of a calcium aluminosilicate phase taking two forms, a crystalline form (gehlenite) and an amorphous form. Hydration studies on pastes containing mixed TFA and calcium hydroxide showed that this phase reacted with calcium hydroxide to form calcium aluminate hydrates. This formation of hydrates was accompanied by a hardening of the pastes. These results are very encouraging for the reuse of such TFA in cement-based materials because they can be considered as pozzolanic additions and could advantageously replace a part of the cement in cement-based materials. Finally, leaching tests were carried out to evaluate the environmental impact of the two TFAs. The elements which were less efficiently stabilized by process A were zinc, cadmium and antimony but, when the results of the leaching tests were compared with the thresholds of the European landfill directive, TFA-A could nevertheless be accepted at landfills for non

  13. Reusing fly ash in glass fibre reinforced cement: a new generation of high-quality GRC composites.

    PubMed

    Payá, J; Bonilla, M; Borrachero, M V; Monzó, J; Peris-Mora, E; Lalinde, L F

    2007-01-01

    New composite materials based on an alkali-resistant glass-fibre reinforced cement (AR-GRC) system are being developed by using fly ash (FA) produced at coal thermoelectric power plants, and fluid catalytic cracking catalyst residue (FC3R) from the petrol industry as cement replacement materials. These wastes are reactive from the pozzolanic viewpoint, and modify the nature and the microstructure of the cement matrix when a part of the Portland cement is replaced in the formulation of GRC. Several microstructural and mechanical aspects are being studied for AR-GRC systems. The behaviour of composites exposed to ageing shows that the pozzolanic activity of the ground FA added in high amounts and its mixture with the FC3R increase the flexural strength and no evidences of strength decay are observed. Additionally, the fibres due to the high alkalinity of the cementing matrix can be deteriorated. Fibres in the control (only Portland cement) and FC3R containing composites were attacked, whereas composites with FA and their mixture with FC3R show that the fibres have not been attacked, due to the pozzolanic activity of replacing materials that reduce the calcium hydroxide content in the cementing matrix.

  14. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters

    PubMed Central

    Chowdhury, S.; Maniar, A.; Suganya, O.M.

    2014-01-01

    In this study, Wood Ash (WA) prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45) and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20%) including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM), strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper. PMID:26644928

  15. Solidification/stabilization of fly ash from city refuse incinerator facility and heavy metal sludge with cement additives.

    PubMed

    Cerbo, Atlas Adonis V; Ballesteros, Florencio; Chen, Teng Chien; Lu, Ming-Chun

    2017-01-01

    Solidification and stabilization are well-known technologies used for treating hazardous waste. These technologies that use cementitious binder have been applied for decades as a final treatment procedure prior to the hazardous waste disposal. In the present work, hazardous waste like fly ash containing high concentrations of heavy metals such Zn (4715.56 mg/kg), Pb (1300.56 mg/kg), and Cu (534.72 mg/kg) and amounts of Ag, Cd, Co, Cr, Mn, and Ni was sampled from a city refuse incinerator facility. This fly ash was utilized in the solidification/stabilization of heavy metal sludge since fly ash has cement-like characteristics. Cement additives such as sodium sulfate, sodium carbonate, and ethylenediaminetetraacetic acid (EDTA) was incorporated to the solidified matrix in order to determine its effect on the solidification/stabilization performance. The solidified matrix was cured for 7, 14, 21, and 28 days prior for its physical and chemical characterizations. The results show that the solidified matrix containing 40% fly ash and 60% cement with heavy metal sludge was the formulation that has the highest fly ash content with a satisfactory strength. The solidified matrix was also able to immobilize the heavy metals both found in the fly ash and sludge based on the toxicity characteristic leaching procedure (TCLP) test. It also shows that the incorporation of sodium carbonate into the solidified matrix not only further improved the compressive strength from 0.36 MPa (without Na2CO3) to 0.54 MPa (with Na2CO3) but also increased its leaching resistance.

  16. Expansive Cements

    DTIC Science & Technology

    1970-10-01

    sulfate (C), and free lime (C) as well as other known portland cement compounds. 9. Etiite (C6AS3H3 2 ) is the phase formed during the hydration of...hydroxide (CH), required for chemical combination originates by hydration of alite (C3 S), belite (C2 S), and hydration of free lime in both the... shrinkage was also observed when the specimens were moist cured to full exparn-on for a pericd of 33 days. The data regarding the effect of aggregate size on

  17. Concentrations and patterns of polychlorinated biphenyls at different process stages of cement kilns co-processing waste incinerator fly ash.

    PubMed

    Liu, Guorui; Yang, Lili; Zhan, Jiayu; Zheng, Minghui; Li, Li; Jin, Rong; Zhao, Yuyang; Wang, Mei

    2016-12-01

    Cement kilns can be used to co-process fly ash from municipal solid waste incinerators. However, this might increase emission of organic pollutants like polychlorinated biphenyls (PCBs). Knowledge of PCB concentrations and homolog and congener patterns at different stages in this process could be used to assess the possibility of simultaneously controlling emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and "dioxin-like" compounds. To date, emissions from cement kilns co-processing fly ash from municipal solid waste incinerators have not been analyzed for PCBs. In this study, stack gas and particulate samples from two cement kilns co-processing waste incinerator fly ash were analyzed for PCBs. The average total tri- to deca-chlorinated biphenyl (∑3-10PCB) concentration in the stack gas samples was 10.15ngm(-3). The ∑3-10PCB concentration ranges in particulate samples from different stages were 0.83-41.79ngg(-1) for cement kiln 1and0.13-1.69ngg(-1) for cement kiln 2. The ∑3-10PCB concentrations were much higher in particulate samples from the suspension pre-heater boiler, humidifier tower, and kiln back-end bag filters than in particulate samples from other stages. For these three stages, PCBs contributed to 15-18% of the total PCB, PCDD/F, and polychlorinated naphthalene toxic equivalents in stack gases and particulate matter. The PCB distributions were similar to those found in other studies for PCDD/Fs and polychlorinated naphthalenes, which suggest that it may be possible to simultaneously control emissions of multiple organic pollutants from cement kilns. Homolog patterns in the particulate samples were dominated by the pentachlorobiphenyls. CB-105, CB-118, and CB-123 were the dominant dioxin-like PCB congeners that formed at the back-end of the cement kiln. A mass balance of PCBs in the cement kilns indicated that the total mass of PCBs in the stack gases and clinker was about half the mass of PCBs in the raw materials.

  18. Mechanical behavior of mortars containing sewage sludge ash (SSA) and Portland cements with different tricalcium aluminate content

    SciTech Connect

    Monzo, J.; Paya, J.; Borrachero, M.V.; Peris-Mora, E.

    1999-01-01

    The influence of sewage sludge ash (SSA) on cement mortars strength has been studied. To evaluate better the increase of strength compared to control mortar, relative compressive strength gain (CSGr) and flexural strength gain (FSGr) were calculated. The experience shows that SSA behaves as an active material, producing an increase of compressive strength compared to control mortar, probably due to pozzolanic properties of SSA. It can be emphasized that high sulfur content of SSA (12.4%) does not seem to have influence on compressive strength of mortars containing SSA. When CSGr of mortars containing different types of cements are compared, no clear correlation is observed between CSGr and C{sub 3}A content in cement.

  19. CHEMICALLY BONDED CEMENTS FROM BOILER ASH AND SLUDGE WASTES. PHASE II REPORT, SEPT.1998-JULY 1999.

    SciTech Connect

    SUGAMA,T.YAGER,K.A.BLANKENHORN,D.

    1999-08-01

    Based upon the previous Phase I research program aimed at looking for ways of recycling the KeySpan-generated wastes, such as waste water treatment sludge (WWTS) and bottom ash (BA), into the potentially useful cementitious materials called chemically bonded cement (CBC) materials, the emphasis of this Phase II program done at Brookhaven National Laboratory, in a period of September 1998 through July 1999, was directed towards the two major subjects: One was to assess the technical feasibility of WWTS-based CBC material for use as Pb-exchange adsorbent (PEA) which remediates Pb-contaminated soils in the field; and the other was related to the establishment of the optimum-packaging storage system of dry BA-based CBC components that make it a promising matrix material for the steam-cured concrete products containing sand and coarse aggregate. To achieve the goal of the first subject, a small-scale field demonstration test was carried out. Using the PEA material consisting of 30 wt% WWTS, 13 wt% Type I cement and 57 wt% water, the PES slurry was prepared using a rotary shear concrete mixer, and then poured on the Pb-contaminated soil. The PEA-to-soil ratio by weight was a factor of 2.0. The placed PEA slurry was blended with soil using hand mixing tools such as claws and shovels. The wettability of soils with the PEA was very good, thereby facilitating the soil-PEA mix procedures. A very promising result was obtained from this field test; in fact, the mount of Pb leached out from the 25-day-aged PEA-treated soil specimen was only 0.74 mg/l, meeting the requirement for EPA safe regulation of < 5 mg/l. In contrast, a large amount (26.4 mg/l) of Pb was detected from the untreated soil of the same age. Thus, this finding demonstrated that the WWTS-based CBC has a potential for use as PEA material. Regarding the second subject, the dry-packed storage system consisting of 68.7 wt% BA, 13.0 wt% calcium aluminate cement (CAC), 13.0 wt% Type I portland cement and 5.3 wt

  20. CHEMICALLY BONDED CEMENTS FROM BOILER ASH AND SLUDGE WASTES. PHASE I REPORT AUGUST 1997 - JULY 1998

    SciTech Connect

    SUGAMA,T.; YAGER,K.A.

    2002-08-05

    In exploring methods to recycle boiler ash (BA) and waste water treatment sludge (WWTS), by-products generated from Keyspan's power plants, into commercially viable materials, we synthesized chemically bonded cements (CBC) offering the following three specific characteristics; (1) immobilization of hazardous heavy metals, such as Pb, Ni, and V, (2) rapid hardening and setting properties, and (3) development of high mechanical strength. The CBCs were prepared through an acid-base reaction between these by-products acting as the solid base reactants and the sodium polyphosphate solution as the cement-forming acid reactant, followed by a hydrating reaction. Furthermore, two additives, the calcium aluminate cements (CAC) and the calcium silicate cements (CSC) were incorporated into the CBC systems to improve their properties. Using a CBC formulation consisting of 53.8 wt% WWTS, 23.1 wt% CSC, and 23.1 wt% [40 wt% -(-NaPO{sub 3}-)-{sub n}]{sub 2} the Toxicity Characteristics Leaching Procedure (TCLP) tests showed that the concentrations of Pb, Ni, and V metals leached out from the specimens were minimal. This formulation originally contained {approx} 28800 mg/kg of Pb, {approx} 6300 mg/kg of Ni, and {approx} 11130 mg/kg of V; the amounts leaching into the acid extraction fluid were only 0.15 mg/L of Pb, 0.15 mg/L of Ni, and 4.63 mgiL of V. On the other hand, CBC specimens derived from a formulation consisting of 42 wt% BA, 18 wt% CAC and 40 wt% [40 wt% -(-NaPO{sub 3}-)-{sub n}] displayed an excellent compressive strength of 10.8 MPa at an early curing age of 2 hours after mixing at room temperature. The reason for its rapid hardening was due to a high exothermic energy evolved by the acid-base reaction. Furthermore, when these specimens were immersed for 28 days in water at 25 C, and exposed for 20 hours to steam at 80 C, a very high compressive strength of 3.32 MPa developed. Two physico-chemical factors played an important role in improving the mechanical strength of

  1. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag

    SciTech Connect

    Gardner, Laura J.; Bernal, Susan A.; Walling, Samuel A.; Corkhill, Claire L.; Provis, John L.; Hyatt, Neil C.

    2015-08-15

    Magnesium potassium phosphate cements (MKPCs), blended with 50 wt.% fly ash (FA) or ground granulated blast furnace slag (GBFS) to reduce heat evolution, water demand and cost, were assessed using compressive strength, X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) spectroscopy on {sup 25}Mg, {sup 27}Al, {sup 29}Si, {sup 31}P and {sup 39}K nuclei. We present the first definitive evidence that dissolution of the glassy aluminosilicate phases of both FA and GBFS occurred under the pH conditions of MKPC. In addition to the main binder phase, struvite-K, an amorphous orthophosphate phase was detected in FA/MKPC and GBFS/MKPC systems. It was postulated that an aluminium phosphate phase was formed, however, no significant Al–O–P interactions were identified. High-field NMR analysis of the GBFS/MKPC system indicated the potential formation of a potassium-aluminosilicate phase. This study demonstrates the need for further research on these binders, as both FA and GBFS are generally regarded as inert fillers within MKPC.

  2. THE IMPACT OF DISSOLVED SALTS ON PASTES CONTAINING FLY ASH, CEMENT AND SLAG

    SciTech Connect

    Harbour, J.; Edwards, T.; Williams, V.

    2009-09-21

    The degree of hydration of a mixture of cementitious materials (Class F fly ash, blast furnace slag and portland cement) in highly concentrated alkaline salt solutions is enhanced by the addition of aluminate to the salt solution. This increase in the degree of hydration, as monitored with isothermal calorimetry, leads to higher values of dynamic Young's modulus and compressive strength and lower values of total porosity. This enhancement in performance properties of these cementitious waste forms by increased hydration is beneficial to the retention of the radionuclides that are also present in the salt solution. The aluminate ions in the solution act first to retard the set time of the mix but then enhance the hydration reactions following the induction period. In fact, the aluminate ions increase the degree of hydration by {approx}35% over the degree of hydration for the same mix with a lower aluminate concentration. An increase in the blast furnace slag concentration and a decrease in the water to cementitious materials ratio produced mixes with higher values of Young's modulus and lower values of total porosity. Therefore, these operational factors can be fine tuned to enhance performance properties of cementitious waste form. Empirical models for Young modulus, heat of hydration and total porosity were developed to predict the values of these properties. These linear models used only statistically significant compositional and operational factors and provided insight into those factors that control these properties.

  3. The use of fly ash and portland cement to chemically fix metal mine drainage treatment sludges

    SciTech Connect

    Hustwit, C.C.

    1996-11-01

    The conventional treatment of metal mine drainages produces a sludge consisting principally of metal hydroxides and oxides. There are no commonly used treatment technologies or methods to convert the metal hydroxides and oxides to more stable chemical forms. Industrial solid or semisolid wastes are often stabilized prior to final disposal with admixtures of fly ash, portland cement, or a combination of these materials. In this study, an adaptation of this stabilization method was evaluated for its ability to improve the settling rate, density, and chemical stability of a metal mine drainage treatment sludge. The corresponding properties of a hydrated lime-generated sludge were used as the basis of comparison. Hydrated lime is frequently used as a neutralizing reagent in mine drainage treatment. In this adaptation, the stabilizing materials were mixed with the mine drainage during treatment, rather than added to the sludge after treatment. There were two reasons for doing this. First, metal mine drainage treatment systems include mixers and their use for blending the stabilizing agent with the sludge during treatment would eliminate the need for separate mixing equipment. Second, the stabilizing agents tested were alkaline materials and may reduce the volume of hydrated lime required for treatment. Water treatment performance was also evaluated in this study.

  4. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 2. Mechanical strength of mortars and environmental impact.

    PubMed

    Aubert, J E; Husson, B; Sarramone, N

    2007-07-19

    This second of two articles dealing with the utilization of MSWI fly ash in blended cement studies the effects of two variants of the stabilization process on the behavior of the treated fly ash (TFA) introduced into cement-based mortars. From a technological point of view, the modifications of the process are very efficient and eliminate the swelling produced by the introduction of MSWI fly ash in cement-based mortars. TFA has a significant activity in cement-based mortars and can also advantageously replace a part of the cement in cement-based material. From an environmental point of view, the results of traditional leaching tests on monolithic and crushed mortars highlight a poor stabilization of some harmful elements such as antimony and chromium. The use of a cement rich in ground granulated blast furnace slag (GGBFS) with a view to stabilizing the chromium is not efficient. Since neither adequate tests nor quality criteria exist to evaluate the pollutant potential of a waste with a view to reusing it, it is difficult to conclude on the environmental soundness of such a practice. Further experiments are necessary to investigate the environmental impact of TFA introduced in cement-based mortars depending on the reuse scenario.

  5. In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction

    SciTech Connect

    Álvarez-Pinazo, G.; Cuesta, A.; García-Maté, M.; Santacruz, I.; Losilla, E.R.; Fauth, F.; Aranda, M.A.G.; De la Torre, A.G.

    2014-02-15

    Eco-friendly belite calcium sulfoaluminate (BCSA) cement hydration behavior is not yet well understood. Here, we report an in-situ synchrotron X-ray powder diffraction study for the first hours of hydration of BCSA cements. Rietveld quantitative phase analysis has been used to establish the degree of reaction (α). The hydration of a mixture of ye'elimite and gypsum revealed that ettringite formation (α ∼ 70% at 50 h) is limited by ye'elimite dissolution. Two laboratory-prepared BCSA cements were also studied: non-active-BCSA and active-BCSA cements, with β- and α′{sub H}-belite as main phases, respectively. Ye'elimite, in the non-active-BCSA system, dissolves at higher pace (α ∼ 25% at 1 h) than in the active-BCSA one (α ∼ 10% at 1 h), with differences in the crystallization of ettringite (α ∼ 30% and α ∼ 5%, respectively). This behavior has strongly affected subsequent belite and ferrite reactivities, yielding stratlingite and other layered phases in non-active-BCSA. The dissolution and crystallization processes are reported and discussed in detail. -- Highlights: •Belite calcium sulfoaluminate cements early hydration mechanism has been determined. •Belite hydration strongly depends on availability of aluminum hydroxide. •Orthorhombic ye’elimite dissolved at a higher pace than cubic one. •Ye’elimite larger reaction degree yields stratlingite formation by belite reaction. •Rietveld method quantified gypsum, anhydrite and bassanite dissolution rates.

  6. Leaching from solid waste incineration ashes used in cement-treated base layers for pavements.

    PubMed

    Cai, Z; Bager, Dirch H; Christensen, T H

    2004-01-01

    Waste incineration bottom ash and treated flue gas cleaning products mixed with 2.5% of cement (50 kg/m3) were tested in the laboratory in terms of compressive strength and tank leaching tests over a 64-day period. Although the material displayed lower mechanical strength than a reference concrete, the strength still was sufficient for use as a base layer for roads. The metal content in the incineration-residue-based specimens was up to 100 times higher than in the reference concrete, suggesting that the mixed waste incineration residue should be used only for dedicated purposes. The leaching of Cl and Na was increased by a factor of 20-100 from the incineration-residue-based specimens as compared to the reference, while the leaching of K, Ca and SO4 was increased by a factor of 2-10. The leaching of heavy metals was also higher from the incineration-residue-based specimens than from the reference with respect to Cu (50 times), Cd, Pb and Zn (5 times), but not with respect to Cr and Ni. The leaching curves did only allow for a closer evaluation of the leaching process in a few cases. The physical retention of the constituents seemed to be the same in the reference as in the incineration-residue-based specimens. Heavy metal leaching was limited by enhanced chemical retention in the incineration-residue-specimens as compared to the reference. Since no quality criteria in terms of leaching from a monolithic material are currently available, the leaching issue must be evaluated case by case.

  7. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash.

    PubMed

    Wu, Mengxue; Li, Chen; Yao, Wu

    2017-01-11

    In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the "gel/space ratio" descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system) by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM) replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD). The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel ( G C to G S C M ratio) is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities.

  8. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash

    PubMed Central

    Wu, Mengxue; Li, Chen; Yao, Wu

    2017-01-01

    In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the “gel/space ratio” descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system) by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM) replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD). The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel (GC to GSCM ratio) is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities. PMID:28772420

  9. Recycling seal-coat pavements with self-cementing fly ash. Phase 2, progress report No. 1

    SciTech Connect

    Ferguson, E.G.

    1987-04-01

    The purpose of the proposed research is to evaluate the feasibility of recycling existing seal-coat pavements through stabilization with self-cementing fly ash. It is proposed that existing pavements can be pulverized in-place, sufficient quantities of Class C fly ash and water added, and the resulting mixture be compacted. The stabilized section could then be utilized as a base course section having greater support capacity than the original pavement section. The recycling process is intended primarily for existing pavements having up to 4 inches of asphaltic bound material underlain by a granular-base section of variable composition. The intent of the Phase II research is to establish more definitive criteria relevant to mix design and pavement thickness design for the proposed recycling process. The criteria is to be formulated through both laboratory and field tests on recycled pavements in a multistate area.

  10. High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes.

    PubMed

    Clark, Malcolm W; Despland, Laure M; Lake, Neal J; Yee, Lachlan H; Anstoetz, Manuela; Arif, Elisabeth; Parr, Jeffery F; Doumit, Philip

    2017-04-01

    Sugarcane bagasse ash re-utilisation has been advocated as a silica-rich feed for zeolites, pozzolans in cements and concretes, and geopolymers. However, many papers report variable success with the incorporation of such materials in these products as the ash can be inconsistent in nature. Therefore, understanding what variables affect the ash quality in real mills and understanding the processes to characterise ashes is critical in predicting successful ash waste utilisation. This paper investigated sugarcane bagasse ash from three sugar mills (Northern NSW, Australia) where two are used for the co-generation of electricity. Data shows that the burn temperatures of the bagasse in the high-efficiency co-generation boilers are much higher than those reported at the temperature measuring points. Silica polymorph transitions indicate the high burn temperatures of ≈1550 °C, produces ash dominated α -quartz rather than expected α-cristobilite and amorphous silica; although α-cristobilite, and amorphous silica are present. Furthermore, burn temperatures must be ≤1700 °C, because of the absence of lechatelierite where silica fusing and globulisation dominates. Consequently, silica-mineralogy changes deactivate the bagasse ash by reducing silica solubility, thus making bagasse ash utilisation in synthetic zeolites, geopolymers, or a pozzolanic material in mortars and concretes more difficult. For the ashes investigated, use as a filler material in cements and concrete has the greatest potential. Reported mill boiler temperatures discrepancies and the physical characteristics of the ash, highlight the importance of accurate temperature monitoring at the combustion seat if bagasse ash quality is to be prioritised to ensure a usable final ash product.

  11. Fly and bottom ashes from biomass combustion as cement replacing components in mortars production: rheological behaviour of the pastes and materials compression strength.

    PubMed

    Maschio, Stefano; Tonello, Gabriele; Piani, Luciano; Furlani, Erika

    2011-10-01

    In the present research mortar pastes obtained by replacing a commercial cement with the equivalent mass of 5, 10, 20 and 30 wt.% of fly ash or bottom ash from fir chips combustion, were prepared and rheologically characterized. It was observed that the presence of ash modifies their rheological behaviour with respect to the reference blend due to the presence, in the ashes, of KCl and K2SO4 which cause precipitation of gypsum and portlandite during the first hydration stages of the pastes. Hydrated materials containing 5 wt.% of ash display compression strength and absorption at 28 d of same magnitude as the reference composition; conversely, progressive increase of ash cause a continuous decline of materials performances. Conversely, samples tested after 180 d display a marked decline of compression strength, as a consequence of potassium elution and consequent alkali-silica reaction against materials under curing.

  12. Immobilization of trace elements in municipal solid waste incinerator (MSWI) fly ash by producing calcium sulphoaluminate cement after carbonation and washing.

    PubMed

    Wang, Lei; Jamro, Imtiaz Ali; Chen, Qi; Li, Shaobai; Luan, Jingde; Yang, Tianhua

    2016-03-01

    The possibility of producing calcium sulphoaluminate cement (CSA) by adding municipal solid waste incinerator (MSWI) fly ash to raw meal was investigated. After subjecting MSWI fly ash to accelerated carbonation and washing with water (ACW), various amounts (i.e., 5, 10 and 15 wt%) of the treated ash were added to raw meal composed of a mixture of bauxite, limestone and gypsum. The mixtures were sintered in a laboratory-scale muffle furnace at temperatures of 1250°, 1300°, 1325° and 1350 °C for various durations. The influence of different quantities of MSWI fly ash on the mineralogy, major phase composition and strength development of the resulting clinker was studied, as was the effect of ash treatments on leaching and volatilization of trace elements. The ACW treatment reduced the volatilization ratio of trace elements during the clinkerization process. Volatilization ratios for lead, cadmium and zinc were 21.5%, 33.6% and 16.3%, respectively, from the ACW fly ash treatment, compared with ratios of 97.5%, 93.1% and 85.2% from untreated fly ash. The volatilization ratios of trace elements were ordered as follows: untreated fly ash > carbonated fly ash > carbonated and water-washed fly ash. The ACW process also reduced the chloride content in the MSWI fly ash by 90 wt% and prevented high concentrations of trace elements in the effluents. © The Author(s) 2015.

  13. Rice husk ash (RHA) as cement admixture for immobilization of liquid radioactive waste at different temperatures

    NASA Astrophysics Data System (ADS)

    El-Dakroury, A.; Gasser, M. S.

    2008-11-01

    Cementitious materials will initially act as a mechanical barrier preventing activated water flow through the waste for a long time, and thus will contribute to the retardation of dissolved radionuclides by the combination of physical and chemical interactions. Most chemical species in aqueous solutions will undergo some kind of (chemical) interactions with any solids of the cementations material. Therefore, it is of great importance to develop a quantitative understanding of the chemical processes involved and to strictly differentiate between physical and chemical aspects of radionuclide transport through such materials. A study is undertaken to determine the waste immobilization performance of (Cs +) wastes in cement-RHA mixtures. In addition to evaluating the effects of RHA on the leaching properties of cemented waste forms, the effect of addition of (RHA) on the strength of the cemented waste form is also investigated. However, RHA addition of 30% causes a significant increase in the hydraulic stability of cemented waste form. RHA enhances the strength; leaching and durability of cement may be through three primary actions which are the filler effect, the acceleration of ordinary Portland cement hydration and the pozzolanic reaction with calcium hydroxide (CH). The results were compared to control sample, and the viability of the RHA addition to concrete was verified. The use of these minerals results in ecological, economic and energy saving considerations.

  14. Resistance of sodium polyphosphate-modified fly ash/calcium aluminate blend cements to hot H{sub 2}SO{sub 4} solution

    SciTech Connect

    Sugama, T.; Weber, L.; Brothers, L.E.

    1999-12-01

    Sodium polyphosphate-modified Class F fly ash/calcium aluminate blend (SFCB) cements were prepared at room temperature and their resistance to hot acid erosion was evaluated by submerging them in H{sub 2}SO{sub 4} solution (pH 1.6) at 90 C. Sodium polyphosphate preferentially reacted with calcium aluminate cement (CAC) to form amorphous Ca(HPO{sub 4}).xH{sub 2}O and Al{sub 2}O{sub 3}.xH{sub 2}O gel, rather than fly ash. These amorphous reaction products, which ground the partially reacted and unreacted CAC and fly ash particles into a coherent mass, were responsible for strengthening and densifying the SFCB specimens at room temperature, playing an essential role in mitigating their acid erosion. In these cements, the extent of acid erosion depended primarily on the ratio of fly ash/CAC; namely, those with a higher ratio underwent a severe erosion. This effect was due to the formation of a porous structure, which allowed acid to permeate the cement easily, diminishing the protective activity of Ca(HPO{sub 4}).xH{sub 2}O and Al{sub 2}O{sub 3}.xH{sub 2}O gel against H{sub 2}SO{sub 4}.

  15. Anion leaching from refinery oily sludge and ash from incineration of oily sludge stabilized/solidified with cement. Part I. Experimental results.

    PubMed

    Karamalidis, Athanasios K; Voudrias, Evangelos A

    2008-08-15

    This paper presents the leaching behavior of anions (SO4(2-) and CrO4(2-)) from refinery oily sludge and ash produced by incineration of oily sludge, stabilized/solidified (s/s) with two types of cement, 142.5 and 1142.5. Anion leaching was examined using a 5-step sequential toxicity characteristic leaching procedure (TCLP) test. A single TCLP extraction resulted in limited sulfate release (<50 mg/L) for s/s ash and significant sulfate release (<850 mg/L) for s/s oily sludge. Chromate release was <1 mg/L for s/s ash and nondetectable for s/s oily sludge. The sequential TCLP tests resulted in increased leaching for both sulfate and chromate. In general,the increase of liquid-to-solid ratio (TCLP leachant-to-waste ratio) resulted in increased leaching of sulfate from solidified samples compared to untreated oily sludge, ash and cement. In contrast, chromate leaching decreased by s/s process. A qualitatively similar leaching behavior for SO4(2-), even for radically different wastes such as oily sludge and ash, solidified with two different types of cement was observed.

  16. Volcanic ash-based geopolymer cements/concretes: the current state of the art and perspectives.

    PubMed

    Djobo, Jean Noël Yankwa; Elimbi, Antoine; Tchakouté, Hervé Kouamo; Kumar, Sanjay

    2017-02-01

    The progress achieved with the use of volcanic ash for geopolymer synthesis has been critically reviewed in this paper. This consists of an overview of mineralogy and chemistry of volcanic ash. The role of chemical composition and mineral contents of volcanic ash on their reactivity during geopolymerization reaction and, consequently, mechanical properties have been accessed. An attempt has been made to establish a relationship between synthesis factors and final properties. A critical assessment of some synthesis conditions has been addressed and some practical recommendations given along with suggestions of future works that have to be done. All this has shown that there are still many works such as durability tests (carbonation, freeze-thaw, resistance, etc.), life cycle analysis, etc. that need to be done in order to satisfy both suitability and sustainability criteria for a large-scale or industrial application.

  17. Effect of copolymer latexes on physicomechanical properties of mortar containing high volume fly ash as a replacement material of cement.

    PubMed

    Negim, El-Sayed; Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  18. Effect of Copolymer Latexes on Physicomechanical Properties of Mortar Containing High Volume Fly Ash as a Replacement Material of Cement

    PubMed Central

    Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes. PMID:25254256

  19. Evaluation of sulfidic mine tailings solidified/stabilized with cement kiln dust and fly ash to control acid mine drainage

    SciTech Connect

    Nehdi, M.; Tariq, A.

    2008-11-15

    In the present research, industrial byproducts, namely, cement kiln dust (CKD) and Class C fly ash (FAC) have been used as candidate materials along with the partial addition of sulfate-resistant cement (SRC) in the Stabilization/solidification of polymetallic sulfidic mine tailings (MT). The effectiveness of S/S was assessed by comparing laboratory experimental values obtained from unconfined compressive strength, hydraulic conductivity and leaching propensity tests of S/S samples with regulatory standards for safe surface disposal of such wastes. Despite general regulatory compliance of compressive strength and hydraulic conductivity, some solidified/stabilized-cured matrices were found unable to provide the required immobilization of pollutants. Solidified/stabilized and 90-day cured mine tailings specimens made with composite binders containing (10% CKD + 10% FAC), (5% SRC + 15% FAC) and (5% SRC + 5% CKD + 10% FAC) significantly impaired the solubility of all contaminants investigated and proved successful in fixing metals within the matrix, in addition to achieving adequate unconfined compressive strength and hydraulic conductivity values, thus satisfying USEPA regulations. Laboratory investigations revealed that, for polymetallic mining waste, leachate concentrations are the most critical factor in assessing the effectiveness of S/S technology.

  20. Use of Fluidized Bed Combustion Ash and Other Industrial Wastes as Raw Materials for the Manufacture of Calcium Sulphoaluminate Cements

    NASA Astrophysics Data System (ADS)

    Marroccoli, M.; Montagnaro, F.; Pace, M. L.; Telesca, A.; Valenti, G. L.

    Calcium sulphoaluminate cements, mainly composed by 4CaO·3Al2O3·SO3 and 2CaO·SiO2, are special hydraulic binders which require limestone, bauxite and gypsum as natural raw materials for their manufacture. In order to save bauxite and natural gypsum, it has been explored the possibility of using, among the raw mix components, FBC waste together with pulverised coal fly ash or anodization mud and, when necessary, flue gas desulphurization gypsum. Mixtures containing limestone (29-39%), FBC waste (30-44%), pulverised coal fly ash (0-13%) or anodization mud (0-32%), bauxite (0-18%) and flue gas desulphurization gypsum (0-8%) were heated for 2 hours in a laboratory electric oven at temperatures ranging from 1150° to 1300°C. The X-ray diffraction patterns on the burnt products generally showed a good conversion of the reactants and a high selectivity degree towards 4CaO·3Al2O3·SO3, particularly at 1250°C.

  1. Evaluation of nitric and acetic acid resistance of cement mortars containing high-volume black rice husk ash.

    PubMed

    Chatveera, B; Lertwattanaruk, P

    2014-01-15

    This paper presents the performance of cement mortar containing black rice husk ash (BRHA) under nitric and acetic acid attacks. The BRHA, collected from an electrical generating power plant that uses rice husk as fuel, was ground using a grinding machine. The compressive strength loss, weight loss, and expansion of mortars under nitric and acetic acid attack were investigated. The test results of BRHA properties in accordance with the ASTM C 618 standard found that the optimal grinding time was 4 h as this achieved a Blaine fineness of 5370 cm(2)/g. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 20%, 30%, 40%, and 50% by weight of binder. The water-to-binder ratios were 0.55, 0.60, and 0.65. From test results, when the percentage replacements of BRHA in cement increased, it was observed that the strength loss and weight loss of mortars containing BRHA under acetic acid attack were higher than those of the mortars against nitric acid attack. It was found that, of the various BHRA mortars, the strength loss and weight loss due to nitric and acetic acid attacks were the lowest in the mortar with 10% BRHA replacement. For 10%, 20% and 30% BRHA replacements, the rate of expansion of the BRHA mortar decreased when compared with the control mortar. For the mortars with other percentage replacements of BRHA, the rate of expansion increased. Furthermore, the effective water-to-binder ratios of control and BRHA mortars were the primary factor for determining the durability of mortar mixed with BRHA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Effect of Tartaric Acid on Hydration of a Sodium-Metasilicate-Activated Blend of Calcium Aluminate Cement and Fly Ash F

    PubMed Central

    Pyatina, Tatiana; Sugama, Toshifumi; Moon, Juhyuk; James, Simon

    2016-01-01

    An alkali-activated blend of aluminum cement and class F fly ash is an attractive solution for geothermal wells where cement is exposed to significant thermal shocks and aggressive environments. Set-control additives enable the safe cement placement in a well but may compromise its mechanical properties. This work evaluates the effect of a tartaric-acid set retarder on phase composition, microstructure, and strength development of a sodium-metasilicate-activated calcium aluminate/fly ash class F blend after curing at 85 °C, 200 °C or 300 °C. The hardened materials were characterized with X-ray diffraction, thermogravimetric analysis, X-ray computed tomography, and combined scanning electron microscopy/energy-dispersive X-ray spectroscopy and tested for mechanical strength. With increasing temperature, a higher number of phase transitions in non-retarded specimens was found as a result of fast cement hydration. The differences in the phase compositions were also attributed to tartaric acid interactions with metal ions released by the blend in retarded samples. The retarded samples showed higher total porosity but reduced percentage of large pores (above 500 µm) and greater compressive strength after 300 °C curing. Mechanical properties of the set cements were not compromised by the retarder. PMID:28773543

  3. Hydration and leaching characteristics of cement pastes made from electroplating sludge.

    PubMed

    Chen, Ying-Liang; Ko, Ming-Sheng; Lai, Yi-Chieh; Chang, Juu-En

    2011-06-01

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the (29)Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic β-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Hydration and leaching characteristics of cement pastes made from electroplating sludge

    SciTech Connect

    Chen, Ying-Liang; Ko, Ming-Sheng; Lai, Yi-Chieh; Chang, Juu-En

    2011-06-15

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the {sup 29}Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic {beta}-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability.

  5. Study on the effects of white rice husk ash and fibrous materials additions on some properties of fiber-cement composites.

    PubMed

    Hamzeh, Yahya; Ziabari, Kamran Pourhooshyar; Torkaman, Javad; Ashori, Alireza; Jafari, Mohammad

    2013-03-15

    This work assesses the effects of white rice husk ash (WRHA) as pozzolanic material, virgin kraft pulp (VKP), old corrugated container (OCC) and fibers derived from fiberboard (FFB) as reinforcing agents on some properties of blended cement composites. In the sample preparation, composites were manufactured using fiber-to-cement ratio of 25:75 by weight and 5% CaCl(2) as accelerator. Type II Portland cement was replaced by WRHA at 0%, 25% and 50% by weight of binder. A water-to-binder ratio of 0.55 was used for all blended cement paste mixes. For parametric study, compressive strength, water absorption and density of the composite samples were evaluated. Results showed that WRHA can be applied as a pozzolanic material to cement and also improved resistance to water absorption. However, increasing the replacement level of WRHA tends to reduce the compressive strength due to the low binding ability. The optimum replacement level of WRHA in mortar was 25% by weight of binder; this replacement percentage resulted in better compressive strengths and water absorption. OCC fiber is shown to be superior to VKF and FFB fibers in increasing the compressive strength, due to its superior strength properties. As expected, the increase of the WRHA content induced the reduction of bulk density of the cement composites. Statistical analysis showed that the interaction of above-mentioned variable parameters was significant on the mechanical and physical properties at 1% confidence level.

  6. A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual components in hydrating cement paste

    SciTech Connect

    Durdziński, Paweł T.; Dunant, Cyrille F.; Haha, Mohsen Ben; Scrivener, Karen L.

    2015-07-15

    Calcareous fly ashes are high-potential reactive residues for blended cements, but their qualification and use in concrete are hindered by heterogeneity and variability. Current characterization often fails to identify the dominant, most reactive, amorphous fraction of the ashes. We developed an approach to characterize ashes using electron microscopy. EDS element composition of millions of points is plotted in a ternary frequency plot. A visual analysis reveals number and ranges of chemical composition of populations: silicate, calcium-silicate, aluminosilicate, and calcium-rich aluminosilicate. We quantified these populations in four ashes and followed their hydration in two Portland-ash systems. One ash reacted at a moderate rate: it was composed of 70 vol.% of aluminosilicates and calcium-silicates and reached 60% reaction at 90 days. The other reacted faster, reaching 60% at 28 days due to 55 vol.% of calcium-rich aluminosilicates, but further reaction was slower and 15 vol.% of phases, the silica-rich ones, did not react.

  7. Micro-observations of different types of nano-Al₂O₃on the hydration of cement paste with sludge ash replacement.

    PubMed

    Luo, Huan-Lin; Lin, Deng-Fong; Shieh, Show-Ing; You, Yan-Fei

    2015-01-01

    In recent years, sewer systems and wastewater treatment plants have become important in developing countries. Consequently, the amount of sewage sludge produced by these countries has been gradually increasing, and determining how to properly recycle this sludge is becoming an important topic for researchers. In this study, to expand the recyclability of sewage sludge ash (SSA) in engineering applications, two types of nano-aluminium oxides (Al₂O₃), MC2A and MC2R, were added to SSA/cement paste and mortar specimens. The MC2R type (γ phase) had a smaller particle size and larger specific surface area than the MC2A type (α phase). The results indicate that the addition of nano-Al₂O₃to SSA/cement paste can effectively improve the hydration products of the paste. Moreover, the amount of hydration products increased as the amount of nano-Al₂O₃added to the SSA/cement paste increased. The test results indicate that MC2A nano-Al₂O₃can more uniformly distribute in the paste body and improve the hydration of cement than MC2R nano-Al₂O₃. Thus, more calcium-silicate-hydrate (C-S-H) gel and calcium aluminate hydrate (C-A-H) salts were produced, and the strength of the specimens was improved. This study suggests that MC2A nano-Al₂O₃is preferable to MC2R nano- Al₂O₃for SSA/cement specimen applications.

  8. The effects of the mechanical-chemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste.

    PubMed

    Chen, Cheng-Gang; Sun, Chang-Jung; Gau, Sue-Huai; Wu, Ching-Wei; Chen, Yu-Lun

    2013-04-01

    A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA) leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH)2 and led to the generation of calcium-silicate-hydrates (C-S-H) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste.

  9. Determination of potassium, sodium, and total alkalies in portland cement, fly ash, admixtures, and water of concrete by a simple flow injection flame photometric system.

    PubMed

    Junsomboon, Jaroon; Jakmunee, Jaroon

    2011-01-01

    A simple flow injection with flame photometric detection has been developed for determination of sodium, potassium, and total alkalies in portland cement, fly ash, admixtures, and water of concrete. A liquid sample or a digest of solid sample was injected into a water carrier stream which flowed to a flame photometer. A change in emission intensity at a selected wavelength was recorded as a peak. An amplifier circuit was fabricated, which helped improve sensitivity of the flame photometer. Calibration graphs in the range of 0.05-1.0 mg L(-1) and 1.0-20.0 mg L(-1) were obtained with a detection limit of 0.02 mg L(-1), for both potassium and sodium determination. Relative standard deviations for 11 replicates of injecting of 10 mg L(-1) potassium and sodium solutions were 1.69 and 1.79%, respectively. Sample throughput of 120 h(-1) was achieved. The proposed method was successfully applied to portland cement, fly ash, admixtures, and water samples validated by the ASTM standard method and certified reference materials of portland cement.

  10. Determination of Potassium, Sodium, and Total Alkalies in Portland Cement, Fly Ash, Admixtures, and Water of Concrete by a Simple Flow Injection Flame Photometric System

    PubMed Central

    Junsomboon, Jaroon; Jakmunee, Jaroon

    2011-01-01

    A simple flow injection with flame photometric detection has been developed for determination of sodium, potassium, and total alkalies in portland cement, fly ash, admixtures, and water of concrete. A liquid sample or a digest of solid sample was injected into a water carrier stream which flowed to a flame photometer. A change in emission intensity at a selected wavelength was recorded as a peak. An amplifier circuit was fabricated, which helped improve sensitivity of the flame photometer. Calibration graphs in the range of 0.05–1.0 mg L−1 and 1.0–20.0 mg L−1 were obtained with a detection limit of 0.02 mg L−1, for both potassium and sodium determination. Relative standard deviations for 11 replicates of injecting of 10 mg L−1 potassium and sodium solutions were 1.69 and 1.79%, respectively. Sample throughput of 120 h−1 was achieved. The proposed method was successfully applied to portland cement, fly ash, admixtures, and water samples validated by the ASTM standard method and certified reference materials of portland cement. PMID:21747733

  11. The effects of the mechanical–chemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste

    SciTech Connect

    Chen, Cheng-Gang; Sun, Chang-Jung; Gau, Sue-Huai; Wu, Ching-Wei; Chen, Yu-Lun

    2013-04-15

    Highlights: ► Milling extracted MSWI fly ash. ► Increasing specific surface area, destruction of the crystalline texture, and increasing the amount of amorphous materials. ► Increasing heavy metal stability. ► Inducing pozzolanic reactions and increasing the early and later strength of the cement paste. - Abstract: A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA) leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96 h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50 times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH){sub 2} and led to the generation of calcium–silicate–hydrates (C–S–H) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste.

  12. Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations.

    PubMed

    Liu, Guorui; Zhan, Jiayu; Zheng, Minghui; Li, Li; Li, Chunping; Jiang, Xiaoxu; Wang, Mei; Zhao, Yuyang; Jin, Rong

    2015-12-15

    A pilot study was performed to evaluate formation, distribution and emission of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from cement kilns that co-process fly ash from municipal solid waste incineration (MSWI). Stack gas and particulate samples from multiple stages in the process were collected and analyzed for PCDD/Fs. Stack emissions of PCDD/Fs were below the European Union limit for cement kilns (0.1 ng TEQ m(-3)). PCDD/F concentrations in particulates from the cyclone preheater outlet, suspension preheater boiler, humidifier tower, and back-end bag filter were much higher than in other samples, which suggests that these areas are the major sites of PCDD/F formation. Comparison of PCDD/F homolog and congener profiles from different stages suggested that tetra- and penta-chlorinated furans were mainly formed during cement kiln co-processing of MSWI fly ash. Three lower chlorinated furan congeners, including 2,3,7,8-tetrachlorodibenzofuran, 1,2,3,7,8-pentachlorodibenzo-p-dioxin and 2,3,4,7,8-pentachlorodibenzofuran, were identified as dominant contributors to the toxic equivalents (TEQ) of the PCDD/Fs. The concentration of PCDD/Fs in particulates was correlated with chloride content, which is consistent with its positive effect on PCDD/F formation. This could be mitigated by pretreating the feedstock to remove chloride and metals. Mass balance indicated that cement kilns eliminated about 94% of the PCDD/F TEQ input from the feedstock. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Anion leaching from refinery oily sludge and ash from incineration of oily sludge stabilized/solidified with cement. Part II. Modeling.

    PubMed

    Karamalidis, Athanasios K; Voudrias, Evangelos A

    2008-08-15

    This paper presents the modeling of anion leaching (SO4(2-) and CrO4(2-)) from refinery oily sludge and ash produced by incineration of oily sludge, stabilized/solidified (s/s) with two types of cement, 142.5 and 1142.5. Anion leaching was examined using a sequential toxicity characteristic leaching procedure (TCLP) test. To elucidate the mechanisms of sulfate and chromate leaching, we employed Visual MINTEQ, incorporating a multiple-problem setup. Specifically, 10-14 different problems, depending on the pH range of the leachates, were connected together in the same run. Each problem corresponded to one pH value of the leachate and the model run covered the pH range of the five sequential TCLP extractions. This modeling approach was tested using chemical equilibrium with or without sorption onto ferrihydrite. Good agreement between experimental and modeling results was obtained for sulfate leaching from solidified oily sludge and ash, considering surface complexation onto ferrihydrite on top of chemical equilibrium controlled by gypsum at pH <11 and ettringite at pH >11. Chromate leaching was described by chemical equilibrium, controlled by CaCrO4(s) (at pH <11) and Cr(VI)ettringite (at pH >11).

  14. Long-term compressive strength and some other properties of controlled low strength materials made with pozzolanic cement and Class C fly ash.

    PubMed

    Türkel, S

    2006-09-01

    Controlled low strength material (CLSM) is a flowable mixture that can be used as a backfill material in place of compacted soils. CLSM (or flowable fill) require no tamping or compaction to achieve its compressive strength and typically has a load carrying capacity much higher than that of compacted soils, but can be proportioned to allow future excavation. In this study, several different CLSM mixtures containing Class C fly ash (FA) obtained from Soma Thermal Power Plant in Turkey, crushed limestone sand (CLS), and a minimal amount of pozzolanic cement (PZC) were produced. The mass of PZC was kept constant for all mixtures at 5% of FA by mass. The mechanical and physical properties of CLSM mixtures such as unconfined compressive strength, water absorption by capillarity and EP toxicity were investigated by a series of laboratory tests. CLSM mixtures with low PZC contents and high Class C FA and CLS contents can be produced with excellent flowability and low unconfined compressive strengths in the range of 1.16-2.80 MPa at 365-days age when re-excavation at later ages might be needed. The results presented here show a new field of application for Soma FA in CLSM mixtures, resulting in great advantages in waste minimization, as well as, conservation of resources and environment.

  15. Interaction of acid mine drainage with Ordinary Portland Cement blended solid residues generated from active treatment of acid mine drainage with coal fly ash.

    PubMed

    Gitari, Wilson M; Petrik, Leslie F; Key, David L; Okujeni, Charles

    2011-01-01

    Fly ash (FA) has been investigated as a possible treatment agent for Acid mine drainage (AMD) and established to be an alternative, cheap and economically viable agent compared to the conventional alkaline agents. However, this treatment option also leads to generation of solid residues (SR) that require disposal and one of the proposed disposal method is a backfill in coal mine voids. In this study, the interaction of the SR with AMD that is likely to be present in such backfill scenario was simulated by draining columns packed with SR and SR + 6% Ordinary Portland Cement (OPC) unsaturated with simulated AMD over a 6 month period. The evolving geochemistry of the liquid/solid (L/S) system was evaluated in-terms of the mineral phases likely or controlling contaminants attenuation at the different pH regimes generated. Stepwise acidification of the percolates was observed as the drainage progressed. Two pH buffer zones were observed (7.5-9 and 3-4) for SR and (11.2-11.3 and 3.5-4) for SR + 6% OPC. The solid residue cores (SR) appeared to have a significant buffering capacity, maintaining a neutral to slightly alkaline pH in the leachates for an extended period of time (97 days: L/S 4.3) while SR + 6% OPC reduced this neutralization capacity to 22 days (L/S 1.9). Interaction of AMD with SR or SR + 6% OPC generated alkaline conditions that favored precipitation of Fe, Al, Mn-(oxy) hydroxides, Fe and Ca-Al hydroxysulphates that greatly contributed to the contaminants removal. However, precipitation of these phases was restricted to the pH of the leachates remaining at neutral to circum-neutral levels. Backfill of mine voids with SR promises to be a feasible technology for the disposal of the SR but its success will greatly depend on the disposal scenario, AMD generated and the alkalinity generating potential of the SR. A disadvantage would be the possible re-dissolution of the precipitated phases at pH < 4 that would release the contaminants back to the water column

  16. Thermal Shock-resistant Cement

    SciTech Connect

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  17. Evaluation of Ohio fly ash/hydrated lime slurries and Type 1 cement sorbent slurries in the U.C. Pilot spray dryer facility. Final report, September 1, 1993--August 31, 1994

    SciTech Connect

    Keener, T.C.; Khang, S.J.; Meyers, G.R.

    1995-02-01

    The objectives of this year`s work included an evaluation of the performance of fly ash/hydrated lime as well as hydrated cement sorbents for spray drying adsorption (SDA) of SO{sub 2} from a simulated high-sulfur flue gas. These sorbents were evaluated for several different hydration methods, and under different SDA operating conditions. In addition, the physical properties of surface area and porosity of the sorbents was determined. The most reactive fly ash/hydrated lime sorbent studied was prepared at room temperature with milled fly ash. Milling fly ash prior to hydration with lime did have a beneficial effect on calcium utilization. No benefit in utilization was experienced either by hydrating the slurries at a temperature of 90{degrees}C as compared to hydration at room temperature, or by increasing hydration time. While the surface areas varied greatly from sorbent to sorbent, the pore size distributions indicated ``ink bottle`` pores with surface porosity on the order of 0.5 microns. No correlation could be drawn between the surface area of the sorbents and calcium utilization. These results suggest that the composition of the resulting sorbent might be more important than its surface area. The most effective sorbent studied this year was produced by hydrating cement for 3 days at room temperature. This sorbent provided a removal efficiency and a calcium utilization over 25 percent higher than baseline results at an approach to saturation temperature of 30{degrees}F and a stoichiometric ratio of 0.9. A maximum SO{sub 2} removal efficiency of about 90 percent was experienced with this sorbent at an approach to saturation temperature of 20{degrees}F.

  18. A Procedure for Determining the Resource Utilization Potential of Coal Ash.

    DTIC Science & Technology

    1981-09-01

    can re- place clinker in the production of blended cement . The replacement of 20 tons of clinker with fly ash in 100 tons of cement during the final...admixture to concrete. In most cases fly ash/bottom ash is used as an admixture to the concrete rather than a replacement for the cement clinker (27: 1...consisting of an intimate and uniform blend of Portland cement and fine pozzolan produced either by intergrinding Portland- cement clinker and pozzolan

  19. Fly ash carbon passivation

    DOEpatents

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  20. Cements for Structural Concrete in Cold Regions.

    DTIC Science & Technology

    1977-10-01

    ability to reduce the early evolu- tion of heat: slag and obsidian, pumicite and calcined shale, fly-ash , tuff and calcined diatomite , natural cement...and uncalcined diatomite . Variations in initial set times of cements can be controlled ‘cy varying the percentages of different cement mixtures . Wh it

  1. Role of Tartaric Acid in Chemical, Mechanical and Self-Healing Behaviors of a Calcium-Aluminate Cement Blend with Fly Ash F under Steam and Alkali Carbonate Environments at 270°C

    DOE PAGES

    Pyatina, Tatiana; Sugama, Toshifumi

    2017-03-25

    Tartaric acid (TA) changes short-term mechanical behavior and phase composition of sodium-metasilicate activated calcium-aluminate cement blend with fly ash, type F, when used as a set control additive to allow sufficient pumping time for underground well placement. The present work focuses on TA effect on self-healing properties of the blend under steam or alkali carbonate environments at 270°C applicable to geothermal wells. Compressive strength recoveries and cracks sealing were examined to evaluate self-healing of the cement after repeated crush tests followed by two consecutive healing periods of 10 and 5 days at 270°C. Optical and scanning electron microscopes, X-ray diffraction,more » Fourier Transform infrared and EDX measurements along with thermal gravimetric analyses were used to identify phases participating in the healing processes. Samples with 1% mass fraction of TA by weight of blend demonstrated improved strength recoveries and crack plugging properties, especially in alkali carbonate environment. This effect was attributed to silicon-rich (C,N)-A-S-H amorphous phase predominant in TA-modified samples, high-temperature stable zeolite phases along with the formation of tobermorite-type crystals in the presence of tartaric acid.« less

  2. Role of Tartaric Acid in Chemical, Mechanical and Self-Healing Behaviors of a Calcium-Aluminate Cement Blend with Fly Ash F under Steam and Alkali Carbonate Environments at 270 °C

    PubMed Central

    Pyatina, Tatiana; Sugama, Toshifumi

    2017-01-01

    Tartaric acid (TA) changes short-term mechanical behavior and phase composition of sodium-metasilicate activated calcium-aluminate cement blend with fly ash, type F, when used as a set control additive to allow sufficient pumping time for underground well placement. The present work focuses on TA effect on self-healing properties of the blend under steam or alkali carbonate environments at 270 °C applicable to geothermal wells. Compressive strength recoveries and cracks sealing were examined to evaluate self-healing of the cement after repeated crush tests followed by two consecutive healing periods of 10 and 5 days at 270 °C. Optical and scanning electron microscopes, X-ray diffraction, Fourier Transform infrared and EDX measurements along with thermal gravimetric analyses were used to identify phases participating in the healing processes. Samples with 1% mass fraction of TA by weight of blend demonstrated improved strength recoveries and crack plugging properties, especially in alkali carbonate environment. This effect was attributed to silicon-rich (C,N)-A-S-H amorphous phase predominant in TA-modified samples, high-temperature stable zeolite phases along with the formation of tobermorite-type crystals in the presence of tartaric acid. PMID:28772701

  3. Release of Zn, Ni, Cu, SO4(2-) and CrO4(2-) as a function of pH from cement-based stabilized/solidified refinery oily sludge and ash from incineration of oily sludge.

    PubMed

    Karamalidis, Athanasios K; Voudrias, Evangelos A

    2007-03-22

    A framework for the evaluation of leaching behavior of inorganic constituents from stabilized/solidified refinery oily sludge and ash produced from incineration of oily sludge with cement was employed. Metal and anion release as a function of pH was investigated. The leaching test consisted of multiple parallel extractions at pH range from 2 to 12. Remarkably good immobilization >98% was observed for metals of solidified ash at pH>6 and >93% of solidified oily sludge at pH>7. Sulfate leaching was high at pH range 2-12. The leaching behavior of metals and anions was simulated by VMINTEQ. The calculations showed that leaching behavior of Zn, Ni and Cu was controlled by chemical equilibrium and surface complexation onto ferrihydrite, at the pH range 2-12. The dominant solid phases that controlled metal leachability were metal hydroxides. The dominant mechanism that described sulfate leaching was found to be chemical equilibrium. Sulfate and also chromate leachability was controlled by Ettringite and Cr(VI)Ettringite as the major minerals affecting their release.

  4. Coatability of cement clinker on basic refractories

    NASA Astrophysics Data System (ADS)

    Guo, Zongqi

    The aim of this work is to develop an effective and practicable method to evaluate the coatability of cement clinker on basic refractory bricks, susceptible to be translated in numbers. Determinations of the dominant influential factors, and assessment of reliability, as well as of coating mechanisms on different basic bricks, are to be tackled. Raw meal has been investigated in terms of chemical and phase compositions, particle size distribution, using DTA and TGA, as well as x-ray diffraction and microstructural analysis after heating at different temperatures. Raw meal calcinated at 1000°C for 4 hours contains plenty of free lime. Over 1350°C, most of liquid phases and belite C2S have formed. At 1450°C, there are still some clusters of free lime in clinker. Alite C 3S becomes dominant phase in clinker fired at temperature of 1550°C, with reduction of belite C2S and depletion of free lime. Samples of 50 x 50 x 60 mm are directly cut dry from available bricks (without water-cooling) and the sandwich is prepared using the cut surfaces. At least six pieces are needed to have three sandwiches for all tested brands of basic refractories. Mean value of the modulus of rupture obtained from three replicates is considered as representative of the adherence strength of the coating. Statistical process analysis was also used to plan and carry out experiments carefully so as to confirm repeatability and reproducibility of the sandwich protocol. Variability of +/-0.5 MPa is considered to be acceptable on a 5 MPa measured value. The following conclusions can be derived from the results: (1) The most significant effects on adherence strength are the compressive loads, the nature of the raw meal, the heating temperature and the holding time, ranked in the order of importance. (2) A ruggedness test indicates that the sandwich test is insensitive to minor changes, in holding time, paste thickness and mixing mode of the paste. (3) Adherence mechanism of cement clinker on doloma

  5. Incorporation of phosphorus guest ions in the calcium silicate phases of Portland cement from 31P MAS NMR spectroscopy.

    PubMed

    Poulsen, Søren L; Jakobsen, Hans J; Skibsted, Jørgen

    2010-06-21

    Portland cements may contain small quantities of phosphorus (typically below 0.5 wt % P(2)O(5)), originating from either the raw materials or alternative sources of fuel used to heat the cement kilns. This work reports the first (31)P MAS NMR study of anhydrous and hydrated Portland cements that focuses on the phase and site preferences of the (PO(4))(3-) guest ions in the main clinker phases and hydration products. The observed (31)P chemical shifts (10 to -2 ppm), the (31)P chemical shift anisotropy, and the resemblance of the lineshapes in the (31)P and (29)Si MAS NMR spectra strongly suggest that (PO(4))(3-) units are incorporated in the calcium silicate phases, alite (Ca(3)SiO(5)) and belite (Ca(2)SiO(4)), by substitution for (SiO(4))(4-) tetrahedra. This assignment is further supported by a determination of the spin-lattice relaxation times for (31)P in alite and belite, which exhibit the same ratio as observed for the corresponding (29)Si relaxation times. From simulations of the intensities, observed in inversion-recovery spectra for a white Portland cement, it is deduced that 1.3% and 2.1% of the Si sites in alite and belite, respectively, are replaced by phosphorus. Charge balance may potentially be achieved to some extent by a coupled substitution mechanism where Ca(2+) is replaced by Fe(3+) ions, which may account for the interaction of the (31)P spins with paramagnetic Fe(3+) ions as observed for the ordinary Portland cements. A minor fraction of phosphorus may also be present in the separate phase Ca(3)(PO(4))(2), as indicated by the observation of a narrow resonance at delta((31)P) = 3.0 ppm for two of the studied cements. (31)P{(1)H} CP/MAS NMR spectra following the hydration of a white Portland cement show that the resonances from the hydrous phosphate species fall in the same spectral range as observed for (PO(4))(3-) incorporated in alite. This similarity and the absence of a large (31)P chemical shift ansitropy indicate that the hydrous (PO(4

  6. Potential products from North Dakota lignite fly ash. Final report

    SciTech Connect

    Anderson, G R

    1980-06-01

    Four major areas where fly ash can be used are explored. Concrete building blocks with fly ash replacing 50% of the portland cement have proven to be successful using current ASTM standards. Results in the ceramics area show that a ceramic-like product using fly ash and crushed glass with a small amount of clay as a green binder. Some preliminary results using sulfur ash in building materials are reported and with results of making wallboard from ash. (MHR)

  7. Active mineral additives of sapropel ashes

    NASA Astrophysics Data System (ADS)

    Khomich, V. A.; Danilina, E. V.; Krivonos, O. I.; Plaksin, G. V.

    2015-01-01

    The goal of the presented research is to establish a scientific rational for the possibility of sapropel ashes usage as an active mineral additive. The research included the study of producing active mineral additives from sapropels by their thermal treatment at 850900 °C and afterpowdering, the investigation of the properties of paste matrix with an ash additive, and the study of the ash influence on the cement bonding agent. Thermogravimetric analysis and X-ray investigations allowed us to establish that while burning, organic substances are removed, clay minerals are dehydrated and their structure is broken. Sapropel ashes chemical composition was determined. An amorphous ash constituent is mainly formed from silica of the mineral sapropel part and alumosilicagels resulted from clay minerals decomposition. Properties of PC 400 and PC 500A0 sparopel ash additives were studied. Adding ashes containing Glenium plasticizer to the cement increases paste matrix strength and considerably reduces its water absorption. X-ray phase analysis data shows changes in the phase composition of the paste matrix with an ash additive. Ash additives produce a pozzolanic effect on the cement bonding agent. Besides, an ash additive due to the alumosilicagels content causes transformation from unstable calcium aluminate forms to the stable ones.

  8. Adsorptive properties of fly ash carbon

    SciTech Connect

    Graham, U.M.; Robl, T.L.; Rathbone, R.F.

    1996-12-31

    The driving force behind the development of this research project has been the increasing concerns about the detrimental effects of high carbon carryover into combustion ash. Without the carbon, combustion ash can be utilized in cement industry avoiding environmental implications in landfill operations. Because the carbon surfaces have been structurally altered while passing through the combustor, including the formation of a macro-porous surface, fly ash carbons, after separation from the ash, may constitute a unique precursor for the production of adsorbents. This paper discusses a novel approach for using fly ash carbons in the cleanup of organic pollutants.

  9. Fly ash and concrete: a study determines whether biomass, or coal co-firing fly ash, can be used in concrete

    SciTech Connect

    Wang, Shuangzhen; Baxter, Larry

    2006-08-01

    Current US national standards for using fly ash in concrete (ASTM C618) state that fly ash must come from coal combustion, thus precluding biomass-coal co-firing fly ash. The co-fired ash comes from a large and increasing fraction of US power plants due to rapid increases in co-firing opportunity fuels with coal. The fly ashes include coal fly ash, wood fly ash from pure wood combustion, biomass and coal co-fired fly ash SW1 and SW2. Also wood fly ash is blended with Class C or Class F to produce Wood C and Wood E. Concrete samples were prepared with fly ash replacing cement by 25%. All fly ash mixes except wood have a lower water demand than the pure cement mix. Fly ashes, either from coal or non coal combustion, increase the required air entraining agent (AEA) to meet the design specification of the mixes. If AEA is added arbitrarily without considering the amount or existence of fly ash results could lead to air content in concrete that is either too low or too high. Biomass fly ash does not impact concrete setting behaviour disproportionately. Switch grass-coal co-fired fly ash and blended wood fly ash generally lie within the range of pure coal fly ash strength. The 56 day flexure strength of all the fly ash mixes is comparable to that of the pure cement mix. The flexure strength from the coal-biomass co-fired fly ash does not differ much from pure coal fly ash. All fly ash concrete mixes exhibit lower chloride permeability than the pure cement mixes. In conclusion biomass coal co-fired fly ash perform similarly to coal fly ash in fresh and hardened concrete. As a result, there is no reason to exclude biomass-coal co-fired fly ash in concrete.

  10. Development of new ash cooling method for atmospheric fluidized beds

    SciTech Connect

    Li Xuantian; Luo Zhongyang; Ni Mingjiang; Cheng Leming; Gao Xiang; Fang Mengxiang; Cen Kefa

    1995-12-31

    The pollution caused by hot ash drained from the bed is another challenge to atmospheric fluidized bed combustion technology when low-rank, high ash fuels are used. A new technique is developed for ash cooling and utilization of the waste heat of ash. Results from the demonstration of an 1.5 T/H patented device have shown the potential to use this type of ash cooler for drying and secondary air preheating. Bottom ash sized in the range 0--13 mm can be cooled from 1,650 F (900 C) to tolerable temperatures for conveying machinery, and the cooled ash can be re-utilized for cement production.

  11. Using Natural Cementation Systems to Control Corrosion Dust on Un-surfaced Roads

    DTIC Science & Technology

    2010-02-01

    metallurgical slags), volcanic glass, fly ash and low-fired clays • Can use waste alkali from manufacturing operations • No Portland cement is involved Soil...Conventional Cement? • Glass can be both the aggregate and form the cementing phase • Waste glass (slag, fly ash ) can be used • More alkaline solution is...Materials: Suitable raw materials are available almost everywhere ( fly ash , slag, calcined clays) • Economical: Uses waste materials or low-fired clay

  12. ACAA fly ash basics: quick reference card

    SciTech Connect

    2006-07-01

    Fly ash is a fine powdery material created when coal is burned to generate electricity. Before escaping into the environment via the utility stacks, the ash is collected and may be stored for beneficial uses or disposed of, if necessary. The use of fly ash provides environmental benefits, such as the conservation of natural resources, the reduction of greenhouse gas emissions and eliminating the needed for ash disposal in landfills. It is also a valuable mineral resource that is used in construction and manufacturing. Fly ash is used in the production of Portland cement, concrete, mortars and stuccos, manufactured aggregates along with various agricultural applications. As mineral filler, fly ash can be used for paints, shingles, carpet backing, plastics, metal castings and other purposes. This quick reference card is intended to provide the reader basic source, identification and composition, information specifically related to fly ash.

  13. Apatite precipitation on a novel fast-setting calcium silicate cement containing fluoride

    PubMed Central

    Ranjkesh, Bahram; Chevallier, Jacques; Salehi, Hamideh; Cuisinier, Frédéric; Isidor, Flemming; Løvschall, Henrik

    2016-01-01

    Abstract Aim: Calcium silicate cements are widely used in endodontics. Novel fast-setting calcium silicate cement with fluoride (Protooth) has been developed for potential applications in teeth crowns including cavity lining and cementation. Objective: To evaluate the surface apatite-forming ability of Protooth compositions as a function of fluoride content and immersion time in phosphate-buffered saline (PBS). Material and methods: Three cement compositions were tested: Protooth (3.5% fluoride and 10% radiocontrast), ultrafast Protooth (3.5% fluoride and 20% radiocontrast), and high fluoride Protooth (15% fluoride and 25% radiocontrast). Powders were cap-mixed with liquid, filled to the molds and immersed in PBS. Scanning electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy were used to characterize the precipitations morphology and composition after 1, 7, 28, and 56 days. Apatite/belite Raman peak height indicated the apatite thickness. Results: Spherical calcium phosphate precipitations with acicular crystallites were formed after 1-day immersion in PBS and Raman spectra disclosed the phosphate band at 965 cm−1, supporting the apatite formation over Protooth compositions. The apatite deposition continued and more voluminous precipitations were observed after 56 days over the surface of all cements. Raman bands suggested the formation of β-type carbonated apatite over Protooth compositions. High fluoride Protooth showed the most compact deposition with significantly higher apatite/belite ratio compared to Protooth and ultrafast Protooth after 28 and 56 days. Conclusions: Calcium phosphate precipitations (apatite) were formed over Protooth compositions after immersion in PBS with increasing apatite formation as a function of time. High fluoride Protooth exhibited thicker apatite deposition. PMID:27335901

  14. Fly ash quality and utilization

    SciTech Connect

    Barta, L.E.; Lachner, L.; Wenzel, G.B.; Beer, M.J.

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  15. Bone cement

    PubMed Central

    Vaishya, Raju; Chauhan, Mayank; Vaish, Abhishek

    2013-01-01

    The knowledge about the bone cement is of paramount importance to all Orthopaedic surgeons. Although the bone cement had been the gold standard in the field of joint replacement surgery, its use has somewhat decreased because of the advent of press-fit implants which encourages bone in growth. The shortcomings, side effects and toxicity of the bone cement are being addressed recently. More research is needed and continues in the field of nanoparticle additives, enhanced bone–cement interface etc. PMID:26403875

  16. Multinuclear NMR approach to coal fly ash characterization

    SciTech Connect

    Netzel, D.A.

    1991-09-01

    This report describes the application of various nuclear magnetic resonance (NMR) techniques to study the hydration kinetics and mechanisms, the structural properties, and the adsorption characteristics of coal fly ash. Coal fly ash samples were obtained from the Dave Johnston and Laramie River electric power generating plants in Wyoming. Hydrogen NMR relaxation times were measured as a function of time to observe the kinetics of hydration for the two coal fly ashes at different temperatures and water-to-cement ration. The kinetic data for the hydrated coal fly ashes were compared to the hydration of portland cement. The mechanism used to describe the kinetic data for the hydration of portland cement was applied, with reservation, to describe the hydration of the coal fly ashes. The results showed that the coal fly ashes differ kinetically from that of portland cement and from each other. Consequently, both coal fly ashes were judged to be poorer cementitious materials than portland cement. Carbon-13 NMR CP/MAS spectra were obtained for the anhydrous coal fly ashes in an effort to determine the type of organic species that may be present, either adsorbed on the surface or entrained.

  17. Effect of Activators on Strength of Hybrid Alkaline Cement

    NASA Astrophysics Data System (ADS)

    Dwi Pratiwi, Wiwik; Fansuri, Hamzah; Jaya Ekaputri, Januarti; Triwulan

    2017-05-01

    Hybrid alkaline cement is a class of alkaline cement resulted from alkali activation of the medium calcium content of aluminosilicate materials. This paper presents an experimental analysis of alkali activators effect on strength of hybrid alkaline cement produced from 80% fly ash and 20% ordinary Portland cement. Two alkali activators were observed i.e. 5% sodium sulfate and a combination of 5% of sodium sulfate-1.1 M SiO2 of sodium silicate solution. Compressive strength tests were performed on 20mmx 40mm cylinder paste specimens while setting time tests were conducted by Vicat needle. Scanning electron microscopy analysis and measurement of fly ash reaction degree were performed to explain the compressive strength of paste. It is concluded that addition of soluble silicate on the dry mix of hybrid cement-sodium sulfate activator reduce compressive strength and shorten the setting time. Both of activators give relative low fly ash reaction degree.

  18. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash

    PubMed Central

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-01-01

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability. PMID:28793518

  19. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash.

    PubMed

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-08-21

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability.

  20. The performance and application of fly ash modified by PDMDAAC.

    PubMed

    Cao, X Y; Yue, Q Y; Song, L Y; Li, M; Zhao, Y C

    2007-08-17

    Fly ash modification by polydimethydiallylammonium chloride (PDMDAAC) in laboratory scale was explored in this work and the adsorption performance of modified fly ash and its application in dyeing wastewater treatment were also studied. The key factors (concentration and temperature) for PDMDAAC to affect the adsorption properties of fly ash (FA) were revealed using the orthogonal test with four factors. The results indicated that the adsorption magnitude of fly ash to PDMDAAC increased due to its favorable specific surface causing the change of the surface charge nature. Hence, adsorption performance of modified fly ash on organic molecules and its ion exchange capacity are strengthened. The maximum color removal efficiency was obtained as 88.2% by modified fly ash with 2.0 g/100 mL dosage in dyeing wastewater, which is much higher than 12.5% color removal efficiency by raw fly ash with the same dosage. And, the used modified fly ash could be used for cement production as additive agent. The intensity of cement produced with 15% the modified fly ash in weight reached the Chinese Cement Standard (GB/T17671-1999), blazing a promising novel way in fly ash utilization.

  1. Microscopic Understanding of Reactivity of Clinkers for Green Cement

    NASA Astrophysics Data System (ADS)

    Durgun, Engin; Manzano, Hegoi; Pellenq, Roland J. M.; Grossman, Jeffrey C.

    2011-03-01

    Cement is the cause of up to 10 percent of global CO2 emissions, and yet, while it is one of the most common materials in use, we have remarkably little understanding of its microscopic properties. Toward this end, we use quantum mechanical simulations to examine the electronic properties and structure of cement crystals and to understand the surface reactivity of various clinker phases. Using these results, our aim is to clarify the mechanisms of cement dissolution, which is the initial stage of hydration and also one of the key processes that leads to the need for high temperature/energy manufacturing. As a first step we modeled the crystal structure of two major clinker phases, alite and belite and analyzed both electronic and mechanical properties. Next, we cleaved the clinker crystal in the simulation along different symmetry directions in order to obtain a prediction of the most stable surfaces. Dissolution occurs at the surface so accurate determination of the surface pattern is crucial. Using the computed surface energies, we can predict the full structure of the clinker nanocluster. This allows us to examine the interaction of water molecules with different nanocluster phases, in order to shed light on the dissolution mechanism and use this new understanding to predict possible novel routes for modifying and controlling the dissolution reactions.

  2. Influence of different sized fractions of a fly ash on workability of mortars

    SciTech Connect

    Mora, E.P.; Paya, J.; Monzo, J. . Departamento de Ingenieria de la Construccion)

    1993-07-01

    The study of fly ash as a replacement to mortar workability using a flow table is presented. Flow table spread (FTS) values were measured and correlations among fly ash replacing percentages, water volumes and granulometric distributions of fly ashes have been established. Linear relationships between FFS values and water volumes were obtained in the 200-225 ml water range (0.5 water/cement+fly ash ratio, 3.0 natural sand/cement + fly ash ratio). An increase of water volume implies greater FTS values. Original fly ash was separated in four fractions with different granulometric distributions. FTS values increase as do specific surface, and FTS values decrease as mean diameter of fly ash increase. For the finest fraction, the lubricant effect was counteracted by water adsorption on fly ash particles surfaces. The shape distribution curves of fly ashes (original and their fractions) has an important influence on workability.

  3. Data for the physical and mechanical properties of staple fibers cement paste composites.

    PubMed

    Aydin, Ertug

    2017-10-01

    The data presented herein are compiled of the research summary of "Staple-wire-reinforced high-volume fly-ash cement paste composites" (Aydin, in preparation) [1]. This data article provides general information about the novel high volume fly ash cement paste composites composed of various volume of staple wires. The dataset here also helps the readers to understand the mechanisms of staple wires on physical and mechanical properties of pure cement paste composites.

  4. Market Assessment and Technical Feasibility Study of PFBC Ash Use

    SciTech Connect

    Bland, A.E.; Brown, T.H.; Georgiou, D.N.

    1995-03-01

    The commercial introduction of pressurized fluidized bed combustion (PFBC) has spurred evaluation of ash management options for this technology. The unique operating characteristics of PFBC compared to atmospheric fluidized bed combustion (AFBC) units indicate that PFBC ash will exhibit unique chemical and physical characteristics, and hence, unique ash use opportunities. Western Research Institute (WRI), under sponsorship of the Electric Power Research Institute (EPRI), Ahlstrom Pyropower, Inc., and the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC), has initiated a study of the use properties of PFBC ashes involving both an assessment of the potential markets, as well as a technical feasibility study of specific use options. The market assessment is designed to address six applications, including: (1) structural fill, (2) road base construction, (3) supplementary cementing materials in portland cement, (4) bricks and blocks, (5) synthetic aggregate, and (6) agricultural/soil amendment applications. Ashes from the Ahlstrom circulating PFBC pilot facility in Caroler, Finland, combusting western U.S. low-sulfur subbituminous coal with limestone sorbent, were made available for the technical feasibility study. The technical feasibility study examined the use of PFBC ash in construction-related applications, including its use as a supplemental cementing material in concrete, fills and embankments, soil stabilization, and synthetic aggregate production. In addition, testing was conducted to determine the technical feasibility of PFBC ash as a soil amendment for agricultural and reclamation applications. PFBC ash does not meet the ASTM chemical requirements as a pozzolan for cement replacement. However, it does appear that potential may exist for its use in cement production as a pozzolan and/or set retardant. PFBC ash shows relatively high strength development, low expansion and low permeability properties that make its use in fills and

  5. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation.

    PubMed

    Gandolfi, Maria Giovanna; Ciapetti, Gabriela; Taddei, Paola; Perut, Francesca; Tinti, Anna; Cardoso, Marcio Vivan; Van Meerbeek, Bart; Prati, Carlo

    2010-10-01

    The effect of ageing in phosphate-containing solution of bioactive calcium-silicate cements on the chemistry, morphology and topography of the surface, as well as on in vitro human marrow stromal cells viability and proliferation was investigated. A calcium-silicate cement (wTC) mainly based on dicalcium-silicate and tricalcium-silicate was prepared. Alpha-TCP was added to wTC to obtain wTC-TCP. Bismuth oxide was inserted in wTC to prepare a radiopaque cement (wTC-Bi). A commercial calcium-silicate cement (ProRoot MTA) was tested as control. Cement disks were aged in DPBS for 5 h ('fresh samples'), 14 and 28 days, and analyzed by ESEM/EDX, SEM/EDX, ATR-FTIR, micro-Raman techniques and scanning white-light interferometry. Proliferation, LDH release, ALP activity and collagen production of human marrow stromal cells (MSC) seeded for 1-28 days on the cements were evaluated. Fresh samples exposed a surface mainly composed of calcium-silicate hydrates CSH (from the hydration of belite and alite), calcium hydroxide, calcium carbonate, and ettringite. Apatite nano-spherulites rapidly precipitated on cement surfaces within 5 h. On wTC-TCP the Ca-P deposits appeared thicker than on the other cements. Aged cements showed an irregular porous calcium-phosphate (Ca-P) coating, formed by aggregated apatite spherulites with interspersed calcite crystals. All the experimental cements exerted no acute toxicity in the cell assay system and allowed cell growth. Using biochemical results, the scores were: fresh cements>aged cements for cell proliferation and ALP activity (except for wTC-Bi), whereas fresh cementscements for collagen synthesis. Summarizing (1) non-aged cements showed higher cell proliferation than aged cements, probably favoured by the presence of Si-OH gel and the early formation of apatite nano-spherulites; (2) the alpha-TCP doped cement aged for 28 days displayed the highest bioactivity and cell proliferation; (3) the deleterious effect of bismuth on cell

  6. 2007 world of coal ash conference proceedings

    SciTech Connect

    2007-07-01

    The theme of the conference was science, applications and sustainability. Papers are presented under the following topics: aggregates/geotechnology; agriculture; ash facility; management; CCT products; cement and concrete; chemistry and mineralogy; emerging technology; environmental; LOI/beneficiation/handling; mercury; mining and regulations and standards. The poster papers are included as well.

  7. Worldwide high-volume coal ash utilization

    SciTech Connect

    Manz, O.E.

    1999-11-01

    Coal ash refers to fly ash as well as bottom ash and boiler slag. High-volume uses include those fly ash products that are either large in quantity or use huge percentages (over 50%) of fly ash. High-volume uses are typified by fills, embankments, backfills, highway base course, and soil stabilization and amendment. In 1992, 367 million tonnes of fly ash were produced, as well as 91.8 million tonnes of bottom ash and boiler slag; 152.8 million tonnes (33.3%) were used. The main uses of coal ash have been in cement and concrete manufacture, in road construction and as filler on construction sites, in cellular concrete, and in lightweight aggregate and brick. Worldwide in 1992, 40.2 million tonnes were used in cement and concrete manufacture; 47.5 million tonnes in road construction and as filler on construction sites, in cellular concrete, and in lightweight aggregate and brick. Worldwide in 1992, 40.2 million tonnes were used in cement and concrete manufacture; 47.5 million tonnes in road construction and as filler on construction sites; 7.2 million tonnes in cellular concrete; 3.1 million tonnes in lightweight aggregate and bricks; over 40 million tonnes for filler for mines, quarries, or pits; and almost 3 million tonnes for soil amendment. EPRI (the collaborative R and D organization with membership of over 700 electric utilities) initiated an ash utilization research and development program in 1979 aimed at supporting the increased use of fly ash in the United States. This paper includes a worldwide survey of the production and utilization of coal ash from 1964 to 1995. The data were collected from various working papers of the UN Group of Experts on the Utilization of Ash and from three papers by the author on the worldwide production and utilization of coal ash. For 1995, information was obtained through a questionnaire sent to selected individuals. The last available data for eastern Europe and the United Kingdom are for 1989.

  8. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  9. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  10. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  11. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  12. A new beneficial use for 'unusable' fly ash

    SciTech Connect

    Bhatty, J.I.; Gajda, J.

    2005-09-30

    Nearly 70 million tons of fly ash are generated annually in the US, more than 60% of which is disposed of as 'unusable' in landfills because its carbon content is too high or because it is contaminated from processing measures to limit stack emissions. This paper discusses an economic use for much of this 'unusable' fly ash as a raw material in cement manufacturing. Demonstrations have produced cements that met applicable standards, and exhibited engineering properties comparable or superior to that of those normally used to produce cement. Cement plants conducting the demonstrations realized several material, operational, fuel, and environmental benefits. The operations were smooth, stable and glitch-free. The fuel consumption declined, and the rate of cement production increased. 2 figs., 2 tabs.

  13. Squeeze cementing

    SciTech Connect

    Ewert, D.P.; Kundert, D.P.; Dahl, J.A.; Dalrymple, E.D.; Gerke, R.R.

    1992-06-16

    This patent describes a method for terminating the flow of fluid from a portion of a subterranean formation into a wellbore. It comprises: placing within the wellbore adjacent the portion a volume of a slurry of hydraulic cement, permitting the volume to penetrate into the portion; and maintaining the slurry in the portion for a time sufficient to enable the slurry to form a rigid mass of cement in the portion.

  14. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  15. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  16. Possibilities of municipal solid waste incinerator fly ash utilisation.

    PubMed

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents.

  17. Environmental assessment and utilization CFB ash

    SciTech Connect

    Conn, R.

    1997-12-31

    Landfill disposal has generally been accepted as the most common option for ash management in CFB power plants. However, the cost of ash disposal continues to increase due to a reduction in landfill capacity and more stringent environmental regulations. As a result, beneficial uses of CFB ashes (versus landfilling) are being investigated in order to provide a more cost effective ash management program. The chemical and physical characteristics of CFB by-products will influence both their environmental impact and potential utilization options. Compared to conventional pulverized coal boiler ashes, CFB ashes generally have different chemical properties which may limit their utilization for production of Portland cement. Other diverse utilization options have been identified for CFB residues which include: agricultural applications, structural fill, and waste stabilization. Most of these applications have to meet specifications by following certain test methods. The exact utilization options for CFB by-products will depend primarily on the type of fuel being fired, and to a lesser extent, the type of sorbent utilized for sulfur capture. Based on laboratory investigation of ash characteristics, utilization options were concluded for different Foster Wheeler commercial boilers throughout the US and abroad. Based on the results of this study, it was demonstrated that most CFB ashes could be utilized for one or more of the purposes noted above.

  18. Stabilizing soft fine-grained soils with fly ash

    SciTech Connect

    Edil, T.B.; Acosta, H.A.; Benson, C.H.

    2006-03-15

    The objective of this study was to evaluate the effectiveness of self-cementing fly ashes derived from combustion of subbituminous coal at electric power plants for stabilization of soft fine-grained soils. California bearing ratio (CBR) and resilient modulus (M{sub r}) tests were conducted on mixtures prepared with seven soft fine-grained soils (six inorganic soils and one organic soil) and four fly ashes. The soils were selected to represent a relatively broad range of plasticity, with plasticity indices ranging between 15 and 38. Two of the fly ashes are high quality Class C ashes (per ASTM C 618) that are normally used in Portland cement concrete. The other ashes are off-specification ashes, meaning they do not meet the Class C or Class F criteria in ASTM C 618. Tests were conducted on soils and soil-fly ash mixtures prepared at optimum water content (a standardized condition), 7% wet of optimum water content (representative of the typical in situ condition in Wisconsin), and 9-18% wet of optimum water content (representative of a very wet in situ condition). Addition of fly ash resulted in appreciable increases in the CBR and M{sub r} of the inorganic soils. For water contents 7% wet of optimum, CBRs of the soils alone ranged between 1 and 5. Addition of 10% fly ash resulted in CBRs ranging between 8 and 17, and 18% fly ash resulted in CBRs between 15 and 31. Similarly, M{sub r} of the soil alone ranged between 3 and 15 MPa at 7% wet of optimum, whereas addition of 10% fly ash resulted in M{sub r} between 12 and 60 MPa and 18% fly ash resulted in M{sub r} between 51 and 106 MPa. In contrast, except for one fly ash, addition of fly ash generally had little effect on CBR or M{sub r} of the organic soil.

  19. Long-term diffusion of elements from municipal solid waste combustor ash blocks in the marine environment

    NASA Astrophysics Data System (ADS)

    Breslin, Vincent T.; Roethel, Frank J.

    Municipal solid waste (MSW) combustor ash was combined with Portland cement to form blocks which were placed in Conscience Bay, Long Island Sound, New York. During a 4·5-year period, ash blocks were returned to the laboratory to examine changes in the total elemental content of the ash blocks following placement. A continuous loss of calcium, potassium and zinc from the ash blocks was measured following submersion. Calculated effective diffusion coefficients ranged from 4·75 × 10 -8 cm 2s -1 for potassium to 5·56 × 10 -8 cm 2 s -1 for calcium. In contrast, lead an cadmium were effectively retained within the cementitious matrix of the submerged ash blocks. Following seawater submersion, the substitution of magnesium for calcium in the ash block pore spaces, the alkaline ash block porewaters and the encapsulation of ash particles within the Portland cement matrix contribute to reduce the leaching of contaminants from ash blocks in the marine environment.

  20. Morphological Analysis of White Cement Clinker Minerals: Discussion on the Crystallization-Related Defects

    PubMed Central

    Benmohamed, Mohamed; Alouani, Rabah; Jmayai, Amel; Ben Haj Amara, Abdesslem; Ben Rhaiem, Hafsia

    2016-01-01

    The paper deals with a formation of artificial rock (clinker). Temperature plays the capital role in the manufacturing process. So, it is useful to analyze a poor clinker to identify the different phases and defects associated with their crystallization. X-ray fluorescence spectroscopy was used to determine the clinker's chemical composition. The amounts of the mineralogical phases are measured by quantitative XRD analysis (Rietveld). Scanning electron microscopy (SEM) was used to characterize the main phases of white Portland cement clinker and the defects associated with the formation of clinker mineral elements. The results of a study which focused on the identification of white clinker minerals and defects detected in these noncomplying clinkers such as fluctuation of the amount of the main phases (alite (C3S) and belite (C2S)), excess of the free lime, occurrence of C3S polymorphs, and occurrence of moderately-crystallized structures are presented in this paper. PMID:27313617

  1. Morphological Analysis of White Cement Clinker Minerals: Discussion on the Crystallization-Related Defects.

    PubMed

    Benmohamed, Mohamed; Alouani, Rabah; Jmayai, Amel; Ben Haj Amara, Abdesslem; Ben Rhaiem, Hafsia

    2016-01-01

    The paper deals with a formation of artificial rock (clinker). Temperature plays the capital role in the manufacturing process. So, it is useful to analyze a poor clinker to identify the different phases and defects associated with their crystallization. X-ray fluorescence spectroscopy was used to determine the clinker's chemical composition. The amounts of the mineralogical phases are measured by quantitative XRD analysis (Rietveld). Scanning electron microscopy (SEM) was used to characterize the main phases of white Portland cement clinker and the defects associated with the formation of clinker mineral elements. The results of a study which focused on the identification of white clinker minerals and defects detected in these noncomplying clinkers such as fluctuation of the amount of the main phases (alite (C3S) and belite (C2S)), excess of the free lime, occurrence of C3S polymorphs, and occurrence of moderately-crystallized structures are presented in this paper.

  2. Cement Burns

    PubMed Central

    Alam, Munir; Moynagh, M.; Lawlor, C.

    2007-01-01

    Objective: Cement burns account for relatively few admissions to a burn unit; however, these burns deserve separate consideration because of special features of diagnosis and management. Cement burns, even though potentially disabling, have rarely been reported in literature. Methods: A retrospective review was performed of all patients admitted with cement burns injuries to the national burns unit at the St James's Hospital in Dublin, Ireland, over a 10-year period for the years 1996–2005. Results: A total of 46 patients with cement burns were admitted. The majority of patients were aged 16–74 years (mean age = 32 years). Eighty-seven percent of injuries occurred in an industrial and 13% in a domestic setting. The upper and lower extremities were involved in all the patients, and the mean total body surface area affected was 6.5%. The mean length of hospital stay was 21 days with a range of 1–40 days. Thirty-eight (82%) were surgically managed involving debridement and split-thickness skin graft (SSG) and four (9%) were conservatively managed. A further four did not have data available. Conclusion: Widespread inexperience in dealing with this group of cement burns patients and delays in referral to burns unit highlights the potential for greater levels of general awareness and knowledge in both prevention and treatment of these burns. As well, early debridement and split-thickness skin grafting at diagnosis constitutes the best means of reducing the high socioeconomic costs and allows for early return to work. PMID:18091981

  3. Utilization of CFB fly ash for construction applications

    SciTech Connect

    Conn, R.E.; Sellakumar, K.; Bland, A.E.

    1999-07-01

    Disposal in landfills has been the most common means of handling ash in circulating fluidized bed (CFB) boiler power plants. Recently, larger CFB boilers with generating capacities up to 300 MWe are currently being planned, resulting in increased volumes and disposal cost of ash by-product. Studies have shown that CFB ashes do not pose environmental concerns that should significantly limit their potential utilization. Many uses of CFB ash are being investigated by Foster Wheeler, which can provide more cost-effective ash management. Construction applications have been identified as one of the major uses for CFB ashes. Typically, CFB ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. However, CFB ashes can be used for other construction applications that require less stringent specifications including soil stabilization, road base, structural fill, and synthetic aggregate. In this study, potential construction applications were identified for fly ashes from several CFB boilers firing diverse fuels such as petroleum coke, refuse derived fuel (RDF) and coal. The compressive strength of hydrated fly ashes was measured in order to screen their potential for use in various construction applications. Based on the results of this work, the effects of both ash chemistry and carbon content on utilization potential were ascertained. Actual beneficial uses of ashes evaluated in this study are also discussed.

  4. Evaluation of Pollutant Leaching Potential of Coal Ashes for Recycling

    NASA Astrophysics Data System (ADS)

    Park, D.; Woo, N. C.; Kim, H.; Yoon, H.; Chung, D.

    2011-12-01

    By 2009, coal ashes produced from coal-based power plants in Korea have been reused as cement supplement materials; however, the rest is mostly disposed in landfills inside the plant properties. Continuous production of coal ashes and limited landfill sites require more recycles of coal ashes as base materials, specifically in constructions of roads and of huge industrial complex. Previous researches showed that coal ashes could contain various metals such as arsenic(As), chromium(Cr), lead(Pb), nickel(Ni), selenium(Se), etc. In this study, we collected four types of bottom ashes and two of fly ashes from four coal-based power plants. These ash samples were tested with distilled water through the column leaching process in oxidized conditions. The column test results were compared with those of total digestion, sequential extraction processes and TCLP. Concentrations of metals in outflows from columns are generally greater in fly ashes than in bottom ashes, specifically for As, Se, B, Sr and SO4. Only one fly ash (J2-F) shows high concentrations of arsenic and selenium in leachate. Sequential extraction results indicate that these metals are in readily soluble forms, such as adsorbed, carbonated, and reducible forms. Results of TCLP analysis indicate no potential contaminants leached from the ashes. In conclusion, recycling of coal combustion ashes could be encouraged with proper tests such as sequential and leaching experiments.

  5. Rising from the ashes: Coal ash in recycling and construction

    SciTech Connect

    Naquin, D.

    1998-02-01

    Beneficial Ash Management (BAM, Clearfield, Pa.) has won an environmental award for its use of ash and other waste to fight acid mine drainage. The company`s workers take various waste materials, mainly fly ash from coal-burning plants, to make a cement-like material or grouting, says Ernest Roselli, BAM president. The grouting covers the soil, which helps prevent water from contacting materials. This, in turn, helps control chemical reactions, reducing or eliminating formation of acid mine drainage. The company is restoring the 1,400-acre Bark Camp coal mine site near Penfield in Clearfield County, Pa. Under a no-cost contract with the state of Pennsylvania, BAM is using boiler slag, causticizing byproducts (lime) and nonreclaimable clarifier sludge from International Paper Co. (Erie, Pa.). The mine reclamation techniques developed and monitored at the site include using man-made wetlands to treat acid mine drainage and testing anhydrous ammonia as a similar treatment agent. BAM researches and tests fly ash mixed with lime-based activators as fill material for land reclamation, and develops and uses artificial soil material from paper mill and tannery biosolids.

  6. Geotechnical properties of ash deposits near Hilo, Hawaii

    USGS Publications Warehouse

    Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.

    1982-01-01

    Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.

  7. Cast-concrete products made with FBC ash and wet-collected coal-ash

    SciTech Connect

    Naik, T.R.; Kraus, R.N.; Chun, Y.M.; Botha, F.D.

    2005-12-01

    Cast-concrete hollow blocks, solid blocks, and paving stones were produced at a manufacturing plant by replacing up to 45% (by mass) of portland cement with fluidized bed combustion (FBC) coal ash and up to 9% of natural aggregates with wet-collected, low-lime, coarse coal-ash (WA). Cast-concrete product specimens of all three types exceeded the compressive strength requirements of ASTM from early ages, with the exception of one paving-stone mixture, which fell short of the requirement by less than 10%. The cast-concrete products made by replacing up to 40% of cement with FBC ash were equivalent in strength (89-113% of control) to the products without ash. The abrasion resistance of paving stones was equivalent for up to 34% FBC ash content. Partial replacement of aggregates with WA decreased strength of the products. The resistance of hollow blocks and paving stones to freezing and thawing decreased appreciably with increasing ash contents. The cast-concrete products could be used indoors in regions where freezing and thawing is a concern, and outdoors in a moderate climate.

  8. Proceedings: Eighth international ash utilization symposium: Volume 1

    SciTech Connect

    Not Available

    1987-10-01

    The two-volume publication contains 65 papers, including six abstracts, presented at ten sessions during the October 1987 event. Some topics covered basic research themes, such as: new studies of fly ash, fly ash concrete, and important properties and construction uses; updated ash sampling and testing procedures; advances in fluidized bed combustion (FBC), flue gas desulfurization (FGD), and other sulfur dioxide control products; and latest pozzolan programs of the Cement and Concrete Reference Laboratory (CCRL) of the National Bureau of Standards. Other topics focused on applied coal ash technology, including: airport, highway and dam construction; structural fills; flowable fill; roller compacted concrete;lightweight building products; recovery of metals from coal ash; fillers for paints and plastics; and new coal ash uses in agriculture and reclamation.

  9. Proceedings: Eighth international ash utilization symposium: Volume 2

    SciTech Connect

    Not Available

    1987-10-01

    The two-volume publication contains 65 papers, including six abstracts, presented at ten sessions during the October 1987 event. Some topics covered basic research themes, such as new studies of fly ash, fly ash concrete, and important properties and construction uses; updated ash sampling and testing procedures; advances in fluidized bed combustion (FBC), flue gas desulfurization (FGD), and other sulfur dioxide control products; and latest pozzolan programs of the Cement and Concrete Reference Laboratory (CCRL) of the National Bureau of Standards. Other topics focused on applied coal ash technology including: airport, highway and dam construction; structural fills; flowable fill; roller compacted concrete; lightweight building products; recovery of metals from coal ash; fillers for paints and plastics; and new coal ash uses in agriculture and reclamation.

  10. Saving green ash

    Treesearch

    J. Romero-Severson; Jennifer L. Koch

    2017-01-01

    The emerald ash borer (EAB, Agrilus planipennis) continues to kill ash trees in North America at an alarmingly fast pace. Although EAB is a threat to all species of ash (Fraxinus) in the United States, green ash (F. pennsylvanica) is among the most susceptible. Among the most commonly planted landscape trees in the United States, green ash is also an important species...

  11. High fire resistance in blocks containing coal combustion fly ashes and bottom ash.

    PubMed

    García Arenas, Celia; Marrero, Madelyn; Leiva, Carlos; Solís-Guzmán, Jaime; Vilches Arenas, Luis F

    2011-08-01

    Fire resistance recycled blocks, containing fly ash and bottom ash from coal combustion power plants with a high fire resistance, are studied in this paper by testing different compositions using Portland cement type II, sand, coarse aggregate and fly ash (up to 50% of total weight) and bottom ash (up to 30% of total weight). The fire resistance, physical-chemical (density, pH, humidity, and water absorption capacity), mechanical (compressive and flexural strength), and leaching properties are measured on blocks made with different proportions of fly ash and bottom ash. The standard fire resistance test is reproduced on 28cm-high, 18cm-wide and 3cm-thick units, and is measured as the time needed to reach a temperature of 180°C on the non-exposed surface of the blocks for the different compositions. The results show that the replacement of fine aggregate with fly ash and of coarse aggregate with bottom ash have a remarkable influence on fire resistance and cause no detriment to the mechanical properties of the product. Additionally, according to the leaching tests, no environmental problems have been detected in the product. These results lead to an analysis of the recycling possibilities of these by-products in useful construction applications for the passive protection against fire.

  12. Development of an Improved Cement for Geothermal Wells

    SciTech Connect

    Trabits, George

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  13. Quick monitoring of pozzolanic reactivity of waste ashes.

    PubMed

    Sinthaworn, Suppachai; Nimityongskul, Pichai

    2009-05-01

    This article proposes a quick method of monitoring for pozzolanic reactivity of waste ashes by investigating the electrical conductivity of the suspension at an elevated temperature. This suspension is obtained by mixing tested pozzolan with an ordinary Portland cement (OPC) solution produced by mixing ordinary Portland cement with water. For comparison, silica fume, metakaolin, rice husk ash and river sand - whose pozzolanic reactivities range from reactive to inert - were used in the experimental investigation. The electrical conductivity of the suspension was continually recorded by using an electrical conductivity meter and stored by using a personal computer for a period of slightly over 1day. The indicative parameters that can be related to pozzolanic reactivity were discussed and analyzed in detail. It was found that it is possible to determine the pozzolanic reactivity of fly ash within 28h by using the proposed technique, as compared to 7 or 28 days for the determination of strength activity index according to ASTM. This technique would help concrete technologists to speedily investigate the quality of fly ash for use as a cement replacement in order to alleviate pollution caused by cement production and solve disposal problems of waste ashes.

  14. Lunar cement

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  15. Cryogenics with cement microscopy redefines cement behavior

    SciTech Connect

    Mehta, S.; Jones, R. ); Caveny, B. )

    1994-10-03

    Cement microscopy (CM), cryogenics, environmental scanning microscopy (ESM), scanning electron microscopy (SEM), and other technologies are leading investigators to change their views on cement gelation, hydration, and retardation. Cement samples frozen in a nitrogen slush and viewed with an SEM present a more accurate picture of the setting process. Observations made through this technique have revolutionized ARCO Exploration and Production Technology's and Halliburton Energy Services' oil field cement procurement and slurry design. Findings from this joint study are expected to lead to: optimized waiting on cement (WOC) times; reduced planning and design time; optimized slurry retarder additions; optimized gel times to fit given situations; especially applicable to squeeze operations; improved cement selection (from vendors) for peak performance; and improved cement manufacture. The paper discusses the measuring methods and the findings on the following: cement voids, cement gelation, and retardation mechanisms. It also briefly discusses the impact these discoveries have on operations.

  16. Concretes and mortars with waste paper industry: Biomass ash and dregs.

    PubMed

    Martínez-Lage, Isabel; Velay-Lizancos, Miriam; Vázquez-Burgo, Pablo; Rivas-Fernández, Marcos; Vázquez-Herrero, Cristina; Ramírez-Rodríguez, Antonio; Martín-Cano, Miguel

    2016-10-01

    This article describes a study on the viability of using waste from the paper industry: biomass boiler ash and green liquor dregs to fabricate mortars and concretes. Both types of ash were characterized by obtaining their chemical and mineralogical composition, their organic matter content, granulometry, adsorption and other common tests for construction materials. Seven different mortars were fabricated, one for reference made up of cement, sand, and water, three in which 10, 20, or 30% of the cement was replaced by biomass ash, and three others in which 10, 20, or 30% of the cement was replaced with dregs. Test specimens were fabricated with these mortars to conduct flexural and compression tests. Flexural strength is reduced for all the mortars studied. Compressive strength increases for the mortars fabricated with biomass ash and decreases for the mortar with dregs. Finally, 5 concretes were made, one of them as a reference (neither biomass ash nor dregs added), two of them with replacements of 10 and 20% of biomass ash instead of cement and another two with replacements of 10 and 20% of dregs instead of cement. The compressive and tensile splitting strength increase when a 10% of ash is replaced and decrease in all the other cases. The modulus of elasticity always decreases.

  17. Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics

    PubMed Central

    Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze

    2012-01-01

    Abstract Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl2 accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores. PMID:22783062

  18. Tests and specifications pertinent to coal ash utilization

    SciTech Connect

    Manz, O.

    1994-12-31

    Fortunately, in the United States, most of the test methods and specifications for the use of coal ash in cement, concrete, lime, or soil-related products are found in the American Society for Testing and Materials (ASTM) books of standards. Many of the same or slightly different specifications are also found in the American Association of State Highway and Transportation Officials (AASHTO) books of standards, as well as those of the various Departments of Transportation (DOTs). Other specifications for selected uses are found in publications of the American Petroleum Institute (API), the Sulfur Institute, the mineral wool industry, and West Virginia University. It is difficult to keep up with the most recent printed specifications, particularly in ASTM, since the committees meet twice yearly and have many time-consuming ballots. This paper summarizes the critical engineering properties required to assess the utilization applications of coal ash products. For most uses, both physical and chemical limits are specified. There are specifications for blended cement containing fly ash, for sulfate resistance, and for alkali aggregate reaction, also for fly ash for use in concrete, in oil well cement, and in grout. Coal ash is specified for use in ash-lime stabilization, as lightweight aggregate, and for mineral filler, as well as for structural fill and flowable fill. Other uses include sulfur concrete, high flexural strength ceramics, mineral wool, brick, cenospheres, and filler.

  19. The effect of ageing and heat treatment on microstructure evolution of a commercial cement paste

    NASA Astrophysics Data System (ADS)

    Sabeur, Hassen; Platret, Gérard; Vincent, Julien

    2017-08-01

    This paper reports the microstructural changes on a 2 year-old cement paste, unprotected from contact with air, heated to various temperature regimes up to 1000 °C in steps of 100 °C for a constant period of 6 h. This work has been carried out using a thermal analysis technique and XRD. The parameter involved in this study is the state of the samples: powdered samples and blocks of paste. As a result, it is possible to monitor the major features of the experiments, i.e. the phase's existence domains and their growing of hydrated calcium silicate, portlandite, calcite as well as their decaying: alite, belite and lime. The result shows higher amounts of portlandite and carbonate calcium for the aged cement paste compared to fresh OPC. The carbonation is more marked for the blocks of paste while the crystallinity degree is higher for the powdered cement paste samples. The new portlandite formed during cooling continues to exist until the 1000 °C temperature plateau. Nevertheless, this portlandite is less crystalline than the original one, and its temperature of thermal decomposition gets lower. An increase in the total weight loss and in the crystallinity at 900 and 1000 °C, compared to 800 °C is also noted. The CSH dehydration to β-C2S and C3S become significant above 600 °C and the corresponding rate increases with increasing temperature.

  20. The effect of ageing and heat treatment on microstructure evolution of a commercial cement paste

    NASA Astrophysics Data System (ADS)

    Sabeur, Hassen; Platret, Gérard; Vincent, Julien

    2017-03-01

    This paper reports the microstructural changes on a 2 year-old cement paste, unprotected from contact with air, heated to various temperature regimes up to 1000 °C in steps of 100 °C for a constant period of 6 h. This work has been carried out using a thermal analysis technique and XRD. The parameter involved in this study is the state of the samples: powdered samples and blocks of paste. As a result, it is possible to monitor the major features of the experiments, i.e. the phase's existence domains and their growing of hydrated calcium silicate, portlandite, calcite as well as their decaying: alite, belite and lime. The result shows higher amounts of portlandite and carbonate calcium for the aged cement paste compared to fresh OPC. The carbonation is more marked for the blocks of paste while the crystallinity degree is higher for the powdered cement paste samples. The new portlandite formed during cooling continues to exist until the 1000 °C temperature plateau. Nevertheless, this portlandite is less crystalline than the original one, and its temperature of thermal decomposition gets lower. An increase in the total weight loss and in the crystallinity at 900 and 1000 °C, compared to 800 °C is also noted. The CSH dehydration to β-C2S and C3S become significant above 600 °C and the corresponding rate increases with increasing temperature.

  1. Sculpting with Cement.

    ERIC Educational Resources Information Center

    Olson, Lynn

    1983-01-01

    Cement offers many creative possibilities for school art programs. Instructions are given for sculpting with fiber-cement and sand-cement, as well as for finishing processes and the addition of color. Safety is stressed. (IS)

  2. Sculpting with Cement.

    ERIC Educational Resources Information Center

    Olson, Lynn

    1983-01-01

    Cement offers many creative possibilities for school art programs. Instructions are given for sculpting with fiber-cement and sand-cement, as well as for finishing processes and the addition of color. Safety is stressed. (IS)

  3. Environmentally friendly use of non-coal ashes in Sweden.

    PubMed

    Ribbing, C

    2007-01-01

    The Swedish Thermal Engineering Research Institute (Värmeforsk) initiated an applied research program "Environmentally friendly use of non-coal ashes", in 2002. The program aims at increasing knowledge on the by-products of energy production and their application. The goal of formulating technical and environmental guidelines and assessments is a major point of the program, which is supported by about forty authorities and private organisations. The programme has been divided into four areas: recycling of ashes to forests, geotechnical applications, use in landfilling, and environmental aspects and chemistry. Among all results obtained, the following progress is shown: *Evidence for the positive effects of spreading ashes on forest growth. *A proposal for environmental guidelines on the utilisation of ashes in construction. *A handbook for using non-coal fly ashes in unpaved roads. *Technical and environmental assessments of MSWI bottom ashes in road construction. *Development of the use of ashes with municipal wastewater sludge as a cover for landfills and mine tailings. *Use of ashes from bio-fuels in concrete and replacement of cement in stoop mining. *A method to classify those by-products from combustion that have mirror entries in the EWC as a hazardous or non-hazardous compound. The Ash Programme has also made it possible to increase knowledge on ashes as valuable materials, on quality assurance and on markets for recovered materials.

  4. Cements with low Clinker Content

    NASA Astrophysics Data System (ADS)

    García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A.

    2015-11-01

    Hybrid alkaline cements are multi-component systems containing a high percentage of mineral additions (fly ash, blast furnace slag), low proportions (<30%) of Portland clinker and scarce amounts of alkaline activators. The substantially lower amount of clinker needed to manufacture these binders in comparison to ordinary Portland cement is both economically and ecologically beneficial. Their enormous versatility in terms of the raw materials used has made them the object of considerable interest. The present study explored the mechanical strength of binary blends mixes; B1= 20% clinker (CK) + 80% fly ash (FA) and B2=20% clinker + 80% blast furnace slag (BFS), both hydrated in the presence and absence of an alkaline activator specifically designed for this purpose. The use of the activator enhanced the development of early age strength considerably. All the hydrated matrices were characterised with XRD, SEM/EDX and (29Si and 27Al) NMR. The use of the alkaline activator generated reaction products consisting primarily of a mix of gels ((N,C)-A-S-H and C-A-S-H) whose respective proportions were found to depend upon system composition and initial reactivity.

  5. Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes

    SciTech Connect

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem'' wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above it's melting point (120{degree}C), combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991. 12 refs., 8 figs., 3 tabs.

  6. Emerald ash borer infestation of ash stumps

    Treesearch

    Robert A. Haack; Toby R. Petrice

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Buprestidae), was first found in North America in 2002. Eradication efforts are currently underway for this insect in both Canada and the United States. As part of the eradication program, thousands of ash trees are cut and chipped. Ash trees are known to produce stump sprouts, and therefore...

  7. Cementing multilateral wells with latex cement

    SciTech Connect

    1997-08-01

    A multilateral well is a well with one or more branches or lateral sections extending from its main wellbore. The laterals can be openhole or cased hole. When laterals are cased hole, the cement integrity for casing support and zonal isolation is very important. When cementing the lateral sections of multilateral wells, it is important to use a cement with high strength and durability to support the liner throughout the life of the well and to support the lateral section. The cement column is subjected to various stresses when the cemented inner stub is cut. High tensile strength, flexural strength, and crack resistance are required. These properties are necessary to make a clean cut through the cement sheath that does not induce cracks in the cement column. Latex cement is commonly used for its gas-migration-control property.

  8. Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction

    SciTech Connect

    Chen, Maozhe; Blanc, Denise; Gautier, Mathieu; Mehu, Jacques; Gourdon, Rémy

    2013-05-15

    Highlights: ► We used sewage sludge ashes in ready-mix concrete recipe. ► SSAs were used as a substitution of cement. ► Compressive strength of ready-mix concrete incorporating SSAs were similar as blank one. ► Contaminants leaching from concrete monoliths were above threshold limits. - Abstract: Ashes produced by thermal treatments of sewage sludge exhibit common properties with cement. For example, major elements present in SSA are the same of major elements of cement. Hydraulic properties of SSA are quite the same of cement ones. They may therefore be used to substitute part of cement in concrete or other cementitious materials, provided that technical prescriptions are satisfied and that environmental risks are not significantly increased. The objective of the present study was to determine the appropriate substitution ratios to satisfy both technical and environmental criteria. In a first step, the elemental composition and particle size distribution of the ashes were measured. Then the ashes were used along with Portland cement and sand at different ratios of substitution to produce mortar and concrete which were cured for up to 90 days into parallelepipedic or cylindrical monoliths. The mechanical properties of the monoliths were measured using standard procedures for flexural and compressive strengths, and compared to blanks containing no ashes. The environmental criteria were assessed using leaching tests conducted according to standard protocols both on the ashes and the monoliths, and compared to the blanks. Results showed that the characteristics of the ashes ranged between those of cement and sand because of their larger particle size and higher content in SiO{sub 2} as compared to cement. The monoliths made with the highest substitution ratios exhibited a significant decrease in flexural and compressive strengths. However, when the ashes were used in partial substitution of cement at appropriate ratios, the concrete monoliths exhibited similar

  9. Sulfate resistance of high calcium fly ash concrete

    NASA Astrophysics Data System (ADS)

    Dhole, Rajaram

    Sulfate attack is one of the mechanisms which can cause deterioration of concrete. In general, Class C fly ash mixtures are reported to provide poor sulfate resistance. Fly ashes, mainly those belonging to the Class C, were tested as per the ASTM C 1012 procedure to evaluate chemical sulfate resistance. Overall the Class C fly ashes showed poor resistance in the sulfate environment. Different strategies were used in this research work to improve the sulfate resistance of Class C fly ash mixes. The study revealed that some of the strategies such as use of low W/CM (water to cementing materials by mass ratio), silica fume or ultra fine fly ash, high volumes of fly ash and, ternary or quaternary mixes with suitable supplementary cementing materials, can successfully improve the sulfate resistance of the Class C fly ash mixes. Combined sulfate attack, involving physical and chemical action, was studied using sodium sulfate and calcium sulfate solutions. The specimens were subjected to wetting-drying cycles and temperature changes. These conditions were found to accelerate the rate of degradation of concrete placed in a sodium sulfate environment. W/CM was found to be the main governing factor in providing sulfate resistance to mixes. Calcium sulfate did not reveal damage as a result of mainly physical action. Characterization of the selected fly ashes was undertaken by using SEM, XRD and the Rietveld analysis techniques, to determine the relation between the composition of fly ashes and resistance to sulfate attack. The chemical composition of glass represented on the ternary diagram was the main factor which had a significant influence on the sulfate resistance of fly ash mixtures. Mixes prepared with fly ashes containing significant amounts of vulnerable crystalline phases offered poor sulfate resistance. Comparatively, fly ash mixes containing inert crystalline phases such as quartz, mullite and hematite offered good sulfate resistance. The analysis of hydrated lime

  10. The effects of different types of nano-silicon dioxide additives on the properties of sludge ash mortar.

    PubMed

    Luo, Huan-Lin; Chang, Wei-Che; Lin, Deng-Fong

    2009-04-01

    To improve the drawbacks caused by the sludge ash replacement in mortar, the previous studies have shown that the early strength and durability of sludge ash/cement mortar are improved by adding nano-silicon dioxide (nano-SiO2) to mortar. In this article, three types of nano-SiO2--SS, HS, and SP (manufacturer code names)--were applied to sludge ash/cement mixture to make paste or mortar specimens. The object is to further extend the recycle of the sludge ash by determining the better type of nano-SiO2 additive to improve properties of sludge ash/ cement paste or mortar. The cement was replaced by 0, 10, 20, and 30% of sludge ash, and 0 and 2% of nano-SiO2 additives were added to the sludge ash paste or mortar specimens. Tests such as setting time, compressive strength, scanning electron microscopy, X-ray diffraction, nuclear magnetic resonance, and thermogravimetric analysis/differential thermal analysis were performed in this study. Test results show that nano-SiO2 additives can not only effectively increase the hydration product (calcium silicate hydrate [C-S-H] gel), but also make the crystal structure denser. Among the three types of nano-SiO2 additive, the SS type can best improve the properties of sludge ash/cement paste or mortar, followed by the SP and HS types.

  11. Ash aggregation enhanced by deposition and redistribution of salt on the surface of volcanic ash in eruption plumes.

    PubMed

    Mueller, Sebastian B; Ayris, Paul M; Wadsworth, Fabian B; Kueppers, Ulrich; Casas, Ana S; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B

    2017-03-31

    Interactions with volcanic gases in eruption plumes produce soluble salt deposits on the surface of volcanic ash. While it has been postulated that saturation-driven precipitation of salts following the dissolution of ash surfaces by condensed acidic liquids is a primary mechanism of salt formation during an eruption, it is only recently that this mechanism has been subjected to detailed study. Here we spray water and HCl droplets into a suspension of salt-doped synthetic glass or volcanic ash particles, and produce aggregates. Deposition of acidic liquid droplets on ash particles promotes dissolution of existing salts and leaches cations from the underlying material surface. The flow of liquid, due to capillary forces, will be directed to particle-particle contact points where subsequent precipitation of salts will cement the aggregate. Our data suggest that volcanically-relevant loads of surface salts can be produced by acid condensation in eruptive settings. Several minor and trace elements mobilised by surface dissolution are biologically relevant; geographic areas with aggregation-mediated ash fallout could be "hotspots" for the post-deposition release of these elements. The role of liquids in re-distributing surface salts and cementing ash aggregates also offers further insight into the mechanisms which preserve well-structured aggregates in some ash deposits.

  12. Ash aggregation enhanced by deposition and redistribution of salt on the surface of volcanic ash in eruption plumes

    PubMed Central

    Mueller, Sebastian B.; Ayris, Paul M.; Wadsworth, Fabian B.; Kueppers, Ulrich; Casas, Ana S.; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B.

    2017-01-01

    Interactions with volcanic gases in eruption plumes produce soluble salt deposits on the surface of volcanic ash. While it has been postulated that saturation-driven precipitation of salts following the dissolution of ash surfaces by condensed acidic liquids is a primary mechanism of salt formation during an eruption, it is only recently that this mechanism has been subjected to detailed study. Here we spray water and HCl droplets into a suspension of salt-doped synthetic glass or volcanic ash particles, and produce aggregates. Deposition of acidic liquid droplets on ash particles promotes dissolution of existing salts and leaches cations from the underlying material surface. The flow of liquid, due to capillary forces, will be directed to particle-particle contact points where subsequent precipitation of salts will cement the aggregate. Our data suggest that volcanically-relevant loads of surface salts can be produced by acid condensation in eruptive settings. Several minor and trace elements mobilised by surface dissolution are biologically relevant; geographic areas with aggregation-mediated ash fallout could be “hotspots” for the post-deposition release of these elements. The role of liquids in re-distributing surface salts and cementing ash aggregates also offers further insight into the mechanisms which preserve well-structured aggregates in some ash deposits. PMID:28361966

  13. Ash aggregation enhanced by deposition and redistribution of salt on the surface of volcanic ash in eruption plumes

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Ayris, Paul M.; Wadsworth, Fabian B.; Kueppers, Ulrich; Casas, Ana S.; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B.

    2017-03-01

    Interactions with volcanic gases in eruption plumes produce soluble salt deposits on the surface of volcanic ash. While it has been postulated that saturation-driven precipitation of salts following the dissolution of ash surfaces by condensed acidic liquids is a primary mechanism of salt formation during an eruption, it is only recently that this mechanism has been subjected to detailed study. Here we spray water and HCl droplets into a suspension of salt-doped synthetic glass or volcanic ash particles, and produce aggregates. Deposition of acidic liquid droplets on ash particles promotes dissolution of existing salts and leaches cations from the underlying material surface. The flow of liquid, due to capillary forces, will be directed to particle-particle contact points where subsequent precipitation of salts will cement the aggregate. Our data suggest that volcanically-relevant loads of surface salts can be produced by acid condensation in eruptive settings. Several minor and trace elements mobilised by surface dissolution are biologically relevant; geographic areas with aggregation-mediated ash fallout could be “hotspots” for the post-deposition release of these elements. The role of liquids in re-distributing surface salts and cementing ash aggregates also offers further insight into the mechanisms which preserve well-structured aggregates in some ash deposits.

  14. MUNICIPAL SOLID WASTE COMBUSTOR ASH DEMONSTRATION PROGRAM - "THE BOATHOUSE"

    EPA Science Inventory

    The report presents the results of a research program designed to examine the engineering and environmental acceptability of using municipal solid waste (MSW) combustor ash as an aggregate substitute in the manufacture of construction quality cement blocks. 50 tons of MSW combust...

  15. MUNICIPAL SOLID WASTE COMBUSTOR ASH DEMONSTRATION PROGRAM - "THE BOATHOUSE"

    EPA Science Inventory

    The report presents the results of a research program designed to examine the engineering and environmental acceptability of using municipal solid waste (MSW) combustor ash as an aggregate substitute in the manufacture of construction quality cement blocks. 50 tons of MSW combust...

  16. Use of olive biomass fly ash in the preparation of environmentally friendly mortars.

    PubMed

    Cruz-Yusta, Manuel; Mármol, Isabel; Morales, Julián; Sánchez, Luis

    2011-08-15

    The incorporation of fly ash from olive biomass (FAOB) combustion in cogeneration plants into cement based mortars was explored by analyzing the chemical composition, mineralogical phases, particle size, morphology, and IR spectra of the resulting material. Pozzolanic activity was detected and found to be related with the presence of calcium aluminum silicates phases. The preparation of new olive biomass fly ash content mortars is effective by replacing either CaCO(3) filler or cement with FAOB. In fact, up to 10% of cement can be replaced without detracting from the mechanical properties of a mortar. This can provide an alternative way to manage the olive biomass fly ash as waste produced in thermal plants and reduce cement consumption in the building industry, and hence an economically and environmentally attractive choice.

  17. Binary effect of fly ash and palm oil fuel ash on heat of hydration aerated concrete.

    PubMed

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa; Sajjadi, Seyed Mahdi

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern.

  18. Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete

    PubMed Central

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  19. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-07-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that was performed to analyze the alkali-silica reactivity of ULHS in cement slurries.

  20. The use of fluidized bed combustor ash in the solidification of high oil and grease sediments

    SciTech Connect

    Bennett, R.G.; Stine, E.F. Jr.

    1996-10-01

    A multi-part treatability study was conducted to identify lower cost solidification reagents for the solidification of oily sediments from several storm sewer impoundment ponds. The information from the treatability study was successfully applied to full-scale remediation. Several reagents were investigated including Portland cement, Class C fly ash, lime, cement kiln dust, and fluidized bed combustor ash. Screening tests were performed using single reagents and blended mixes of reagents. Testing included strength development, permeability, oil retention and volume increase due to treatment. The applicability of using the fluidized bed combustor ash was tested in a full scale field pilot study prior to full scale remediation. This paper will present background and experimental data from this study showing the successful substitution of fluidized bed combustor ash for cement as a primary solidification reagent.

  1. Leaching of metals from cement under simulated environmental conditions.

    PubMed

    Lu, Huixia; Wei, Fang; Tang, Jingchun; Giesy, John P

    2016-03-15

    Leaching of metals from cement under various environmental conditions was measured to evaluate their environmental safety. A cement product containing clinker, which was produced from cement kiln co-processing of hazardous wastes, was solidified and leaching of metals was characterized using the 8-period test. Concentrations and speciation of metals in cements were determined. Effects of ambient environment and particle size on leachability of metals and mineralogical phases of cement mortars were evaluated by use of XRD and SEM. Results indicated that metals in cements were leachable in various media in descending order of: sea water, groundwater and acid rain. Cr, Ni, As, Co and V were leached by simulated sea water, while Cu, Cd, Pb, Zn, Mn, Sb and Tl were not leached in simulated sea water, groundwater or acid rain. When exposed to simulated acid rain or groundwater, amounts of Cr, Ni, As and V leached was inversely proportional to particle size of cement mortar. According to the one-dimensional diffusion equation, Cr was most leachable and the cumulative leached mass was predicted to be 9.6 mg kg(-1) after 20 years. Results of this study are useful in predicting releases of metals from cement products containing ash and clinkers cement kiln co-processing of hazardous wastes, so that they can be safely applied in the environment.

  2. Cement design based on cement mechanical response

    SciTech Connect

    Thiercelin, M.J.; Dargaud, B.; Baret, J.F.; Rodriquez, W.J.

    1998-12-01

    The disappearance of cement bond log response as a result of variations of downhole conditions has been observed in numerous wells. This observation has led to concern about the loss of proper zonal isolation. Stresses induced in the cement, through deformation of the cemented casing resulting from the variation of downhole conditions, are the cause of this damage. The authors present an analysis of the mechanical response of set cement in a cased wellbore to quantify this damage and determine the key controlling parameters. The results show that the thermo-elastic properties of the casing, cement, and formation play a significant role. The type of failure, either cement debonding or cement cracking, is a function of the nature of the downhole condition variations. This analysis allows one to propose appropriate cement mechanical properties to avoid cement failure and debonding. The authors show that the use of high compressive strength cement is not always the best solution and, in some cases, flexible cements are preferred.

  3. Cementitious binder from fly ash and other industrial wastes

    SciTech Connect

    Singh, M.; Garg, M.

    1999-03-01

    In this paper, investigations were undertaken to formulate cementitious binder by judicious blending of fly ash with Portland cement as well as by admixing fly ash with calcined phosphogypsum, fluorogypsum, lime sludge, and chemical activators of different finenesses. The effect of addition of calcined clay in these types of binders was studied. Data showed that cementitious binders of high compressive strength and water retentivity can be produced. The strength of masonry mortars increased with the addition of chemical activators. The strength development of binders takes place through formation of ettringite. C-S-H, and C{sub 4}AH{sub 13}. The binders are eminently suitable for partial replacement (up to 25%) of the cement in concrete without any detrimental affect on the strength. The results showed that fly ash can be used in the range from 45% to 70% in formulating these binders along with other industrial wastes to help in mitigating environmental pollution.

  4. Municipal solid waste combustor ash demonstration program `the boathouse`

    SciTech Connect

    Roethel, F.J.; Breslin, V.T.

    1995-08-01

    The report presents the results of a research program designed to examine the engineering and environmental acceptability of using municipal solid waste (MSW) combustor ash as an aggregate substitute in the manufacture of construction quality cement blocks. 350 tons of MSW combustor ash was combined with Portland and Cement to form standard hollow masonary blocks. These stabilized combustor ash (SCA) blocks were used to construct a boathouse on the campus of the University at Stony Brook. Air samples collected within the boathouse were examined and compared to ambient air samples for the presence and concentrations of suspended particulate, and vapor phase PCDD/PCDF, volatile and semi-volatile organic compounds and volatile mercury. Rainwater samples following contact with the boathouse walls were collected and analyzed for the presence of trace elements. Soil samples were collected prior to and following the construction of the boathouse.

  5. Kiln dust-fly ash systems for highway bases and subbases

    SciTech Connect

    Not Available

    1982-10-01

    The purpose of this investigation was to determine the effectiveness of substituting kiln dusts for hydrated lime in lime-fly ash-aggregate road base systems. A total of 45 kiln dust samples, including 33 cement dusts and 12 lime dusts, were obtained in accordance with a standard sampling procedure. In addition, 18 fly ashes (including 5 Class C ash samples) and 6 aggregates were included in the sampling program. Kiln dust and fly ash samples were characterized by Trow, Ltd. to determine physical properties and chemical, as well as mineralogical, composition. Optimum kiln dust-fly ash ratios were developed for 66 mix combinations. Kiln dust-fly ash-aggregate compressive strength tests were performed. Engineering properties (durability, volume stability, etc.) of optimum mix combinations were tested and compared with conventional lime-fly ash-aggregate mixtures. Most kiln dust-fly ash-aggregate mixes were comparable to, and in many cases demonstrated higher early strength development than, lime-fly ash-aggregate mixes. Optimum mix strengths for kiln dust-fly ash-aggregate compositions were generally attained at kiln dust-fly ash ratios of 2:1 using cement kiln dust and 1:1 using lime kiln dust. By contrast, most lime-fly ash-aggregate mixes have lime-fly ash ratios of 1:3 or 1:4. Therefore, higher concentrations of kiln dust are required compared to commercial lime. Mixes containing Class C fly ash developed higher strengths than comparable mixes with Class F fly ash.

  6. Hydrothermal reaction of fly ash. Final report

    SciTech Connect

    Brown, P.W.

    1994-12-31

    The reactions which occur when fly ash is treated under hydrothermal conditions were investigated. This was done for the following primary reasons. The first of these is to determine the nature of the phases that form to assess the stabilities of these phases in the ambient environment and, finally, to assess whether these phases are capable of sequestering hazardous species. The second reason for undertaking this study was whether, depending on the composition of the ash and the presence of selected additives, it would be possible under hydrothermal conditions to form compounds which have cementitious properties. Formation of four classes of compounds, which bracket likely fly ash compositional ranges, were selected for study. The classes are calcium silicate hydrates, calcium selenates, and calcium aluminosulfates, and silicate-based glasses. Specific compounds synthesized were determined and their stability regions assessed. As part of stability assessment, the extent to which selected hazardous species are sequestered was determined. Finally, the cementing properties of these compounds were established. The results obtained in this program have demonstrated that mild hydrothermal conditions can be employed to improve the reactivity of fly ash. Such improvements in reactivity can result in the formation of monolithic forms which may exhibit suitable mechanical properties for selected applications as building materials. If the ashes involved are considered hazardous, the mechanical properties exhibited indicated the forms could be handled in a manner which facilitates their disposal.

  7. Pressurized fluidized bed combustion ash management options

    SciTech Connect

    Bland, A.E.; Brown, T.H.; Young, L.J.; Wheeldon, J.M.

    1995-12-31

    Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration and commercial deployment in the United States, as well as throughout the world. American Electric Power`s (AEP) bubbling PFBC 70 MW{sub e} Tidd demonstration program in Ohio and pilot-scale work at Ahlstrom Pyropower`s 10 MW{sub e} circulating PFBC at Karhula, Finland have demonstrated the advantages of PFBC technology. Development of uses for solid wastes from PFBC coal conversion systems is being actively pursued as part of the commercial demonstration of PFBC technologies. Ash collected from the low-sulfur subbituminous coal-fired Ahlstrom pilot circulating PFBC tests in Karhula, Finland and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI). Ash use options evaluated for these PFBC ashes were construction-related applications, such as (1) cement production, (2) fills and embankment, (3) soil stabilization, (4) synthetic aggregate production, as well as an amendment for acidic and sodic soil and mine spoil.

  8. Research of magnesium phosphosilicate cement

    NASA Astrophysics Data System (ADS)

    Ding, Zhu

    Magnesium phosphosilicate cement (MPSC) is a novel phosphate bonded cement, which consists mainly of magnesia, phosphate and silicate minerals. The traditional magnesium phosphate cements (MPCs) usually composed by ammonium phosphate, and gaseous ammonia will emit during mixing and in service. There is no noxious ammonia released from MPSC, furthermore, it can recycle a large volume of the non-hazardous waste. The goal of this research is to investigate the composition, reaction products, reaction mechanism, microstructure, properties, durability and applications of the MPSC. MPSC sets rapidly and has high early strength. It reacts better with solid industrial waste when compared to Portland cement. Many solid industrial wastes, such as fly ash, steel slag, coal gangue, red coal gangue, red mud, barium-bearing slag, copper slag, silica fume, and ground granulated blast furnace slag, have been used as the main component (40% by weight) in MPSC. The research has found that these aluminosilicate (or ironsilicate, or calciumsilicate) minerals with an amorphous or glass structure can enhance the performance of MPSC. The disorganized internal structure of amorphous materials may make it possess higher reactivity compared to the crystalline phases. Chemical reaction between phosphate and these minerals may form an amorphous gel, which is favorable to the cementing. Borax, boric acid and sodium tripolyphosphate have been used as retardants in the MPSC system. It is found that boric acid has a higher retarding effect on the setting of cement, than borax does. However, sodium polyphosphate accelerates the reaction of MPSC. The hydration of MPSC is exothermic reaction. The heat evolution may prompt hydrates formation, and shorten the setting process. Modern materials characterization techniques, XRD, DSC, TG-DTA FTIR, XPS, MAS-NMR, SEM, TEM, MIP, etc. were used to analyze the phase composition, micro morphology, and microstructure of hardened MPSC. The main hydration product

  9. Nondestructive Handheld Fourier Transform Infrared (FT-IR) Analysis of Spectroscopic Changes and Multivariate Modeling of Thermally Degraded Plain Portland Cement Concrete and its Slag and Fly Ash-Based Analogs.

    PubMed

    Leung Tang, Pik; Alqassim, Mohammad; Nic Daéid, Niamh; Berlouis, Leonard; Seelenbinder, John

    2016-05-01

    Concrete is by far the world's most common construction material. Modern concrete is a mixture of industrial pozzolanic cement formulations and aggregate fillers. The former acts as the glue or binder in the final inorganic composite; however, when exposed to a fire the degree of concrete damage is often difficult to evaluate nondestructively. Fourier transform infrared (FT-IR) spectroscopy through techniques such as transmission, attenuated total reflectance, and diffuse reflectance have been rarely used to evaluate thermally damaged concrete. In this paper, we report on a study assessing the thermal damage of concrete via the use of a nondestructive handheld FT-IR with a diffuse reflectance sample interface. In situ measurements can be made on actual damaged areas, without the need for sample preparation. Separate multivariate models were developed to determine the equivalent maximal temperature endured for three common industrial concrete formulations. The concrete mixtures were successfully modeled displaying high predictive power as well as good specificity. This has potential uses in forensic investigation and remediation services particularly for fires in buildings.

  10. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  11. Alternative Fuel for Portland Cement Processing

    SciTech Connect

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  12. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.

  13. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-10-28

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.

  14. Effective use of fly ash slurry as fill material.

    PubMed

    Horiuchi, S; Kawaguchi, M; Yasuhara, K

    2000-09-15

    A lot of effort has been put into increasing coal ash utilization; however, 50% of total amount is disposed of on land and in the sea. Several attempts have been reported recently concerning slurried coal fly ash use for civil engineering materials, such as for structural fill and backfill. The authors have studied this issue for more than 15 years and reported its potential for (1) underwater fills, (2) light weight backfills, and (3) light weight structural fills, through both laboratory tests and construction works. This paper is an overview of the results obtained for slurry, focusing on the following. (1) Coal fly ash reclaimed by slurry placement shows lower compressibility, higher ground density, and higher strength than by the other methods. This higher strength increases stability against liquefaction during earthquake. (2) Higher stability of the fly ash ground formed by slurry placement is caused by higher density and its self-hardening property. (3) Stability of fly ash reclaimed ground can be increased by increasing density and also by strength enhancement by cement addition. (4) Technical data obtained through a man-made island construction project shows the advantages of fly ash slurry in terms of mechanical properties such as higher stability against sliding failure, sufficient ground strength, and also in terms of cost saving. (5) Concentration in leachates from the placed slurry is lower than the Japanese environmental law. (6) In order to enlarge the fly ash slurry application toward a lightweight fill, mixtures of air foam, cement and fly ash were examined. Test results shows sufficient durability of this material against creep failure. This material was then used as lightweight structural fill around a high-rise building, and showed sufficient quality. From the above data, it can be concluded that coal fly ash slurry can be effectively utilized in civil engineering projects.

  15. Properties of solid waste incinerator fly ash

    SciTech Connect

    Poran, C.J. ); Ahtchi-Ali, F. )

    1989-08-01

    Since the late 1950s solid waste incinerators have become widely used in the United States. The incineration of solid waste produces large quantities of bottom and fly ash, which has been disposed of primarily by landfilling. However, as landfills become undesirable other disposal methods are being sought. An experimental research program is conducted to determine engineering properties of solid waste incinerator fly ash (SWIF) in order to evaluate the feasibility of using the material for compacted fill and road and subbase construction. Moisture-density relationship, permeability, shear strength, and California bearing ratio (CBR) are investigated. The effects of densification on these engineering properties are also examined. In addition, the effectiveness of cement and lime stabilization is investigated using two common mix ratios. Test results of stabilized mixes are compared to the unstabilized material. Cement stabilization is found to be very effective in reducing permeability, and increasing shear strength and CBR values of the material. The results indicate that SWIF with cement stabilization may be used effectively for compacted fill and road subbase construction. Finally, some environmental aspects related to these applications are examined.

  16. Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction.

    PubMed

    Chen, Maozhe; Blanc, Denise; Gautier, Mathieu; Mehu, Jacques; Gourdon, Rémy

    2013-05-01

    Ashes produced by thermal treatments of sewage sludge exhibit common properties with cement. For example, major elements present in SSA are the same of major elements of cement. Hydraulic properties of SSA are quite the same of cement ones. They may therefore be used to substitute part of cement in concrete or other cementitious materials, provided that technical prescriptions are satisfied and that environmental risks are not significantly increased. The objective of the present study was to determine the appropriate substitution ratios to satisfy both technical and environmental criteria. In a first step, the elemental composition and particle size distribution of the ashes were measured. Then the ashes were used along with Portland cement and sand at different ratios of substitution to produce mortar and concrete which were cured for up to 90 days into parallelepipedic or cylindrical monoliths. The mechanical properties of the monoliths were measured using standard procedures for flexural and compressive strengths, and compared to blanks containing no ashes. The environmental criteria were assessed using leaching tests conducted according to standard protocols both on the ashes and the monoliths, and compared to the blanks. Results showed that the characteristics of the ashes ranged between those of cement and sand because of their larger particle size and higher content in SiO2 as compared to cement. The monoliths made with the highest substitution ratios exhibited a significant decrease in flexural and compressive strengths. However, when the ashes were used in partial substitution of cement at appropriate ratios, the concrete monoliths exhibited similar compressive strengths as the blank samples. The most appropriate ratios were found to be 10% substitution of cement and 2% substitution of sand. The leaching tests conducted on the ashes in their powdery form revealed that amongst the potential contaminants analyzed only Mo and Se were leached at

  17. Cement mixing with vibrator

    SciTech Connect

    Allen, T.E.

    1991-07-09

    This patent describes a method of cementing a casing string in a bore hole of a well. It comprises introducing water and dry cement material into a mixing vessel; mixing the water and dry cement material in the mixing vessel to form a cement slurry, the slurry including lumps of the dry cement material, the mixing including steps of: agitating the slurry; and while agitating the slurry, transmitting vibrational energy into the slurry and thereby aiding disintegration and subsequent wetting of the lumps of the dry cement material in the slurry; and pumping the slurry into an annulus between the casing string and the bore hole.

  18. Feasible experimental study on the utilization of a 300 MW CFB boiler desulfurizating bottom ash for construction applications

    SciTech Connect

    Lu, X.F.; Amano, R.S.

    2006-12-15

    CFB boiler ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. The disposal in landfills has been the most common means of handling ash in circulating fluidized bed boiler power plants. However for a 300 MW CFB boiler power plant, there will be 600,000 tons of ash discharged per year and will result in great volumes and disposal cost of ash byproduct. It was very necessary to solve the utilization of CFB ash and to decrease the disposal cost of CFB ash. The feasible experimental study results on the utilization of the bottom ashes of a 300 MW CFB boiler in Baima power plant in China were reported in this paper. The bottom ashes used for test came from the discharged bottom ashes in a 100 MW CFB boiler in which the anthracite and limestone designed for the 300 MW CFB project was burned. The results of this study showed that the bottom ash could be used for cementitious material, road concrete, and road base material. The masonry cements, road concrete with 30 MPa compressive strength and 4.0 MPa flexural strength, and the road base material used for base courses of the expressway, the main road and the minor lane were all prepared with milled CFB bottom ashes in the lab. The better methods of utilization of the bottom ashes were discussed in this paper.

  19. Mud to cement technology proven in offshore drilling project

    SciTech Connect

    Javanmardi, K.; Flodberg, K.D. ); Nahm, J.J. )

    1993-02-15

    One problem with conventional cements is the incompatibility of Portland cement and the drilling mud. Expensive preflushes and spacer fluids have been used, often with limited success, to attempt to separate mud and Portland cement effectively. Under downhole conditions, most spacers are ineffective in preventing high viscosities and cement contamination problems which lead to poor primary cement jobs. One solution to this problem is to convert the drilling mud into a cementitious slurry, thereby eliminating the mud/Portland cement incompatibility. The existing mud solidification technologies have received limited acceptance because of high costs, complex design, and difficult field use. Shell Development Co.'s mud solidification technology (Slag-Mix) uses finely ground, granulated blast furnace slag as the cementitious agent. The slurry is activated with predetermined amounts of common alkaline chemicals (caustic or soda ash) and a thinner/retarder, such as lignosulfonate. Slag is only slightly reactive with water. Thus, the slag can be mixed in the mud through the mud hopper. At Auger, the slag was mixed and pumped with a conventional cementing unit. On two other operations (South Timbalier Blocks 295 and 300), the slurry was mixed in the mud pits and pumped down the well with the rig pump, thus eliminating the costs associated with conventional cementing units and services.

  20. MARKET ASSESSMENT AND TECHNICAL FEASIBILITY STUDY OF PRESSURIZED FLUIDIZED BED COMBUSTION ASH USE

    SciTech Connect

    A.E. Bland; T.H. Brown

    1997-04-01

    Western Research Institute, in conjunction with the Electric Power Research Institute, Foster Wheeler International, Inc. and the US Department of Energy, has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for PFBC ashes. Ashes from the Foster Wheeler Energia Oy pilot-scale circulating PFBC tests in Karhula, Finland, combusting (1) low-sulfur subbituminous and (2) high-sulfur bituminous coal, and ash from the AEP's high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at WR1. The technical feasibility study examined the use of PFBC ash in construction-related applications, including its use as a cementing material in concrete and use in cement manufacturing, fill and embankment materials, soil stabilization agent, and use in synthetic aggregate production. Testing was also conducted to determine the technical feasibility of PFBC ash as a soil amendment for acidic and sodic problem soils and spoils encountered in agricultural and reclamation applications. The results of the technical feasibility testing indicated the following conclusions. PFBC ash does not meet the chemical requirements as a pozzolan for cement replacement. However, it does appear that potential may exist for its use in cement production as a pozzolan and/or as a set retardant. PFBC ash shows relatively high strength development, low expansion, and low permeability properties that make its use in fills and embankments promising. Testing has also indicated that PFBC ash, when mixed with low amounts of lime, develops high strengths, suitable for soil stabilization applications and synthetic aggregate production. Synthetic aggregate produced from PFBC ash is capable of meeting ASTM/AASHTO specifications for many construction applications. The residual calcium carbonate and calcium sulfate in the PFE3C ash has been shown to be of value in

  1. California Dust and Ash

    Atmospheric Science Data Center

    2014-05-15

    article title:  Airborne Dust and Ash over Southern California     ... during late fall and winter swept large amounts of dust and ash across the skies of San Diego and over the Pacific Ocean on November 27, ...

  2. Biomass ash utilization

    SciTech Connect

    Bristol, D.R.; Noel, D.J.; O`Brien, B.; Parker, B.

    1993-12-31

    This paper demonstrates that with careful analysis of ash from multiple biomass and waste wood fired power plants that most of the ash can serve a useful purpose. Some applications require higher levels of consistency than others. Examples of ash spreading for agricultural purposes as a lime supplement for soil enhancement in Maine and North Carolina, as well as a roadbase material in Maine are discussed. Use of ash as a horticultural additive is explored, as well as in composting as a filtering media and as cover material for landfills. The ash utilization is evaluated in a framework of environmental responsibility, regulations, handling and cost. Depending on the chemical and physical properties of the biomass derived fly ash and bottom ash, it can be used in one or more applications. Developing a program that utilizes ash produced in biomass facilities is environmentally and socially sound and can be financially attractive.

  3. Research on the additives to reduce radioactive pollutants in the building materials containing fly ash.

    PubMed

    He, Deng-liang; Yin, Guang-fu; Dong, Fa-qin; Liu, Lai-bao; Luo, Ya-jun

    2010-05-15

    Several kinds of functional additives such as barite, zeolite, ferric oxide, gypsum, and high alumina cement were introduced to prepare a low-radiation cement-based composite to reduce radioactive pollutants contained in fly ash. The effect of content and granularity of the functional additives on the release of radioactive pollutants were investigated. Composites were characterized by X-ray diffraction, Scan electron microscopy. The results indicate that the radioactive pollutants contained in the fly ash can be reduced by adding a proper amount of zeolite, ferric oxide, gypsum, and high alumina cement. The release of radon from fly ash decreases with a decrease in the granularity of additives. Compared with traditional cement-based composite containing fly ash, the release of radon can be reduced 64.8% in these composites, and the release of gamma-ray is decreased 45%. Based on the microstructure and phase analysis, we think that by added functional additives, there are favorable to form self-absorption of radioactivity in the interior composites. This cement-based composite will conducive to fly ash are large-scale applied in the field of building materials.

  4. Asymmetric Ashes

    NASA Astrophysics Data System (ADS)

    2006-11-01

    , it is. "This has some impact on the use of Type Ia supernovae as standard candles," says Ferdinando Patat. "This kind of supernovae is used to measure the rate of acceleration of the expansion of the Universe, assuming these objects behave in a uniform way. But asymmetries can introduce dispersions in the quantities observed." "Our discovery puts strong constraints on any successful models of thermonuclear supernova explosions," adds Wang. Models have suggested that the clumpiness is caused by a slow-burn process, called 'deflagration', and leaves an irregular trail of ashes. The smoothness of the inner regions of the exploding star implies that at a given stage, the deflagration gives way to a more violent process, a 'detonation', which travels at supersonic speeds - so fast that it erases all the asymmetries in the ashes left behind by the slower burning of the first stage, resulting in a smoother, more homogeneous residue.

  5. Alpha ash transport and ash control

    SciTech Connect

    Miley, G.H.; Hu, S.C.; Varadarajan, V.

    1990-01-01

    This paper discusses: thermal {alpha}-particle transport is a crucial issue in ash buildup. The transport will determine if buildup prevents ignition and if external control is necessary. Due to uncertainties in the transport coefficients, 1-1/2-D sensitivity study of the influence on the fusion power density is done using the BALDUR code. The Baldur simulations with varying diffusion coefficients for ash plasma are performed. The results of ash transport in the presence of sawteeth and varying edge conditions are discussed. Also, the nature of the fishbone oscillation in the presence of two hot species consisting of hot alphas and beam injected ions is discussed. The sawteeth and fishbones can be potential mechanisms for enhanced ash transport; the latter will indirectly influence the ash transport.

  6. Activation of fly ash

    DOEpatents

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  7. Activation of fly ash

    DOEpatents

    Corbin, David R.; Velenyi, Louis J.; Pepera, Marc A.; Dolhyj, Serge R.

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  8. Magnetism of cigarette ashes

    NASA Astrophysics Data System (ADS)

    Jordanova, Neli; Jordanova, Diana; Henry, Bernard; Le Goff, Maxime; Dimov, Dimo; Tsacheva, Tsenka

    2006-06-01

    Mineral composition of cigarette ashes is well studied in the literature, but no reports are available about the magnetic fraction. Our study presents an investigation of the basic magnetic characteristics of ashes from several commercially available cigarette brands and a wood ash. Magnetic susceptibility, which is a concentration-dependent parameter in case of uniform mineralogy, shows that cigarette ashes contain relatively high amount of magnetic iron minerals, similar to that in wood ash from our study and other literature data. Magnetization data suggest that cigarette ashes contain some 0.1 wt% or lower quantity of magnetite, depending on the brand. Analyses of magnetic mineralogy imply that the main magnetic minerals in ashes from higher quality cigarette brands are magnetite and iron carbide cementite, while in ashes from lower quality brands without additives magnetic minerals are pure and substituted with foreign ions magnetite. Magnetic grain-size analysis shows that cigarette ashes contain significant amount of very fine, nano-meter sized magnetic particles, as well as coarser (up to several microns), magnetically stable grains. Thus, the magnetic study of cigarette ashes proved that these plant ashes possess non-negligible magnetic properties. The results could serve for better elucidation of mineralogy of cigarette ashes as a whole, as well as for future investigation on the presence of magnetic ultra fine particles in cigarette smoke, which may be inhaled in lungs during smoking.

  9. Asphalt cement poisoning

    MedlinePlus

    ... petroleum material that hardens when it cools. Asphalt cement poisoning occurs when someone swallows asphalt. If hot ... found in: Road paving materials Roofing materials Tile cements Asphalt may also be used for other purposes.

  10. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-10-31

    The objective of this project is to develop an improved ultra- lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  11. Municipal waste combustor ash as an aggregate in concrete masonry units

    SciTech Connect

    Berg, E.R.

    1993-12-31

    The use of municipal waste combustor ash (MWCA) as aggregate in concrete masonry units (CMU) was investigated using current commercial portland cement concrete technology in an effort to maximize MWCA utilization with a minimum of additional expense. The project used ASTM standards/protocols for portland cement materials to measure the physical and chemical properties including size and size gradation, chemical composition, organic and moisture contents, and density of the sample MWCA obtained from a refuse-derived-fuel operation. Powder X-ray diffraction, atomic absorption spectrophotometry, scanning electron microscope, and electron probe microanalysis were also used to assist in determining the morphology and mineral composition. MWCA fly ash and bottom ash components were evaluated separately. The fly ash component was found to contain high levels of sulfates and chlorides that created significant adverse reactions. The sulfate content of the bottom ash equalled the recommended limit for chlorides. MWCA bottom ash was used in the trial mixes with only a maximum size control to minimize processing costs. Trial mixes were made using a modified ASTM C-109 protocol to simulate CMU production methods. Techniques known to improve the durability, strength, and sulfate resistance of portland cement concrete were used to improve the performance of the MWCA mixes. Variables included cement type and amount, curing method, water content, sand content for size gradation, coal fly ash and microsilica content, a CMU plasticizer and a non-chloride accelerator. Compressive strengths in excess of 20.9 MPa (3000 psi), satisfactory for commercial CMU, were obtained with a 10 per cent cement content. A 28 day mist cure gave uniformly higher strengths than a 24 hour cycle atmospheric steam cure. The angularity and size gradation of the MWCA bottom ash adversely affected the machinability and strength results.

  12. High-volume use of self-cementing spray dry absorber material for structural applications

    NASA Astrophysics Data System (ADS)

    Riley, Charles E.

    Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to

  13. Strength Characteristics of Groundnut Leaf/Stem Ash (GLSA) Concrete

    NASA Astrophysics Data System (ADS)

    Oseni, O. W.; Audu, M. T.

    2016-09-01

    The compressive strength properties of concrete are substantial factors in the design and construction of concrete structures. Compressive strength directly affects the degree to which the concrete can be able to carry a load over time. These changes are complemented by deflections, cracks etc., in the structural elements of concrete. This research investigated the effect of groundnut leaf/stem ash (GLSA) on the compressive strength of concrete at 0%, 5 %, 10 % and 15 % replacements of cement. The effect of the water-cement ratio on properties such as the compressive strength, slump, flow and workability properties of groundnut leaf/stem ash (GLSA) mixes with OPC were evaluated to determine whether they are acceptable for use in concrete structural elements. A normal concrete mix with cement at 100 % (i.e., GLSA at 0%) with concrete grade C25 that can attain an average strength of 25 N/mm2 at 28 days was used as a control at design water-cement ratios of 0.65 and grading of (0.5-32) mm from fine to coarse aggregates was tested for: (1) compressive strength, and the (2) slump and flow Test. The results and observations showed that the concrete mixes from GLSA at 5 - 15 % ratios exhibit: pozzolanic properties and GLSA could be used as a partial replacement for cement at these percentage mix ratios compared with the control concrete; an increase in the water-cement ratio showed a significant decrease in the compressive strength and an increase in workability. Therefore, it is important that all concrete mixes exude an acceptably designed water-cement ratio for compressive strength characteristics for use in structures, water-cement ratio is a significant factor.

  14. Corrosion-resistant Foamed Cements for Carbon Steels

    SciTech Connect

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  15. Experimental Study on Rise Husk Ash & Fly Ash Based Geo-Polymer Concrete Using M-Sand

    NASA Astrophysics Data System (ADS)

    Nanda Kishore, G.; Gayathri, B.

    2017-08-01

    Serious environmental problems by means of increasing the production of Ordinary Portland cement (OPC), which is conventionally used as the primary binder to produce cement concrete. An attempt has been made to reduce the use of ordinary Portland cement in cement concrete. There is no standard mix design of geo-polymer concrete, an effort has been made to know the physical, chemical properties and optimum mix of geo-polymer concrete mix design. Concrete cubes of 100 x 100 x 100 mm were prepared and cured under steam curing for about 24 hours at temperature range of 40°C to 60°C. Fly ash is replaced partially with rice husk ash at percentage of 10%, 15% and 25%. Sodium hydroxide and sodium silicate are of used as alkaline activators with 5 Molar and 10 Molar NaOH solutions. Natural sand is replaced with manufacture sand. Test results were compared with controlled concrete mix of grade M30. The results shows that as the percentage of rice husk ash and water content increases, compressive strength will be decreases and as molarity of the alkaline solution increases, strength will be increases.

  16. pH-dependent leaching of constituents of potential concern from concrete materials containing coal combustion fly ash.

    PubMed

    Kosson, David S; Garrabrants, Andrew C; DeLapp, Rossane; van der Sloot, Hans A

    2014-05-01

    Current concerns about the environmental safety of coal combustion fly ash have motivated this evaluation of the impact of fly ash use as a cement replacement in concrete materials on the leaching of constituents of potential concern. The chemical effects of fly ash on leaching were determined through characterization of liquid-solid partitioning using EPA Method 1313 for four fly ash materials as well as concrete and microconcrete materials containing 0% (control materials), 25% and 45% replacement of portland cement with the fly ash source. All source materials, concrete formulations and replacement levels are representative of US concrete industry practices. Eluate concentrations as a function of pH were compared to a broader range of available testing results for international concretes and mortars for which the leaching characteristics of the component fly ashes were unknown. The chemistry of the hydrated cement fraction was found to dominate the liquid-solid partitioning resulting in reduced leaching concentrations of most trace metals compared to concentrations from fly ash materials alone. Compared to controls, eluate concentrations of Sb, As, B, Cr, Mo, Se, Tl and V from concrete products containing fly ash were essentially the same as the eluate concentrations from control materials produced without fly ash replacement indicating little to no significant impact on aqueous partitioning.

  17. Mechanical and Durability Properties of Fly Ash Based Concrete Exposed to Marine Environment

    NASA Astrophysics Data System (ADS)

    Kagadgar, Sarfaraz Ahmed; Saha, Suman; Rajasekaran, C.

    2017-06-01

    Efforts over the past few years for improving the performance of concrete suggest that cement replacement with mineral admixtures can enhance the strength and durability of concrete. Feasibility of producing good quality concrete by using alccofine and fly ash replacements is investigated and also the potential benefits from their incorporation were looked into. In this study, an attempt has been made to assess the performance of concrete in severe marine conditions exposed upto a period of 150 days. This work investigates the influence of alccofine and fly ash as partial replacement of cement in various percentages (Alccofine - 5% replacement to cement content) and (fly ash - 0%, 15%, 30%, 50% & 60% to total cementitious content) on mechanical and durability properties (Permit ion permeability test and corrosion current density) of concrete. Usage of alccofine and high quantity of fly ash as additional cementitious materials in concrete has resulted in higher workability of concrete. Inclusion of alccofine shows an early strength gaining property whereas fly ash results in gaining strength at later stage. Concrete mixes containing 5% alccofine with 15% fly ash replacement reported greater compressive strength than the other concrete mixes cured in both curing conditions. Durability test conducted at 56 and 150 days indicated that concrete containing higher percentages of fly ash resulted in lower permeability as well lesser corrosion density.

  18. Use potential of ash from circulating pressurized fluidized bed combustors using low-sulfur subbituminous coal

    SciTech Connect

    Bland, A.E.; Brown, T.H.; Georgiou, D.N.; Young, L.J.; Ashbaugh, M.B.; Wheeldon, J.

    1995-12-31

    The commercial introduction of pressurized fluidized bed combustion (PFBC) has spurred evaluation of ash management options for this technology. The unique operating characteristics of PFBC compared to atmospheric fluidized bed combustion (AFBC) units indicates that PFBC ash will exhibit unique chemical and physical characteristics, and hence, unique ash use opportunities. Western Research Institute (WRI) has initiated a study of the use properties of PFBC ashes involving both an assessment of the potential markets, as well as a technical feasibility study of specific use options. The market assessment is designed to address six applications including: (1) structural fill, (2) road base construction, (3) supplementary cementing materials in portland cement, (4) bricks and blocks, (5) synthetic aggregate, and (6) agricultural/soil amendment applications. Ashes from the Ahlstrom circulating PFBC pilot facility in Karhula, Finland, combusting western US low-sulfur subbituminous coal with limestone sorbent, were made available for the technical feasibility study. The technical feasibility study examined the use of PFBC ash in construction related applications, including its use as a supplemental cementing material in concrete, fills and embankments, soil stabilization, and synthetic aggregate production. In addition, testing was conducted to determine the technical feasibility of PFBC ash as a soil amendment for agriculture and reclamation applications.

  19. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-04-15

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter.

  20. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-04-29

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, and shear bond. Testing to determine the effect of temperature cycling on the shear bond properties of the cement systems was also conducted. In addition, the stress-strain behavior of the cement types was studied. This report discusses a software program that is being developed to help design ULHS cements and foamed cements.

  1. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-10-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that will be performed for analyzing the alkali-silica reactivity of ULHS in cement slurries, as well as the results of Field Tests 1 and 2.

  2. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-07-18

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job.

  3. Detoxification of ashes from a fluidized bed waste incinerator.

    PubMed

    Yu, Jie; Qiao, Yu; Sun, Lushi; Jin, Limei; Wang, Wenxia; Ma, Chuan

    2015-09-01

    This paper was to test and control the toxicity of bottom and fly ashes from a circulated fluidized bed (CFB) incinerator. Bottom and fly ashes were firstly subject to TCLP test. Even though leachates of most particle size of bottom ash were below regulatory limit, the leachates of finer bottom ash may exceed the regulatory limit. Therefore, finer bottom ash should be separated and treated before landfilled directly or used as cement replacement. Due to high amounts of leached heavy metals, thermal treatment of fly ash was carried out to remove heavy metals. The influence of temperature, residence time, metal chloride and gas velocity were studied. In all conditions, Cd can be well removed. Pb can be almost completely removed with MgCl2 addition at 1000°C in 1h. The removal of Zn and Cu was accelerated significantly by MgCl2 and higher temperature separately. At optimum conditions, more than 90% of Cu and 95% of Zn could be removed, while a maximum 20% of Cr was removed due to the existence or formation of CaCr2O4, MgCr2O4 and K2Cr2O4 in raw or treated fly ashes.

  4. Development of Classified Fly Ash as a Pozzolanic Material

    NASA Astrophysics Data System (ADS)

    Rukzon, Sumrerng; Chindaprasirt, Prinya

    This research studies the potential for using classified fly ash from Mae Moh power plant in Thailand as a pozzolanic material. Three different fly ash finenesses viz., coarse Original Fly Ash (OFA), Medium Fly Ash (MFA) and Fine Fly Ash (FFA) were used for the study. Ordinary Portland Cement (OPC) was partially replaced with fly ash at 20 and 40% by weight of binder. The water to binder ratio was kept constant at 0.5 and the flow of mortar was maintained at 110±5% with the aid of superplasticizer (SP). Compressive strength, carbonation depth and porosity test of mortars were determined. FFA has a high potential to be used as a good pozzolanic material. The use of FFA produces mortars with good strength and low porosity. The resistance to carbonation of mortar improves with partial replacement of FFA in comparison with the normal coarse fly ash. The use of FFA results in a strong and dense mortar which is due to better dispersion and filling effect as well as an increase in the pozzolanic reaction.

  5. The use of coal fly ash for soil stabilization

    SciTech Connect

    Brown, T.H.; Brown, M.A.; Sorini, S.S.; Huntington, G.

    1991-12-01

    The objective of this work was to examine the potential use of Wyoming subbituminous coal fly ash materials for cementation of soil materials. Specimens made from Laramie River (LR) fly ash had higher unconfined compression strength and more brittleness than the Specimens made with Dave Johnston (DJ) fly ash. However, soil/DJ fly ash mixtures that were cured for 28 days had relatively good strengths without the brittleness that the LR specimens developed. These characteristics of the DJ fly ash may be important attributes for road stabilization applications. The detailed mineralogical evaluation provides some insight into which minerals may enhance development of strength in these materials. In general, selective dissolution of the soil/fly ash mixtures shows that many of the potentially toxic elements (e.g., B, Cr, Fe, Mn, Ni, Pb) are associated with the sulfide phase (HNO{sub 3} extractable) and with the residual material. In this study, the dynamics of elemental release from the element pools did not result in toxic conditions. The formation of colloidal material capable of mobilizing potentially toxic elements was not found in the soil/fly ash mixtures. Apparently, the high pH of the materials enhanced immobilization of the high molecular weight material.

  6. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements.

    PubMed

    Shi, Caijun; Fernández-Jiménez, A

    2006-10-11

    This paper reviews progresses on the use of alkali-activated cements for stabilization/solidification of hazardous and radioactive wastes. Alkali-activated cements consist of an alkaline activator and cementing components, such as blast furnace slag, coal fly ash, phosphorus slag, steel slag, metakaolin, etc., or a combination of two or more of them. Properly designed alkali-activated cements can exhibit both higher early and later strengths than conventional portland cement. The main hydration product of alkali-activated cements is calcium silicate hydrate (CSH) with low Ca/Si ratios or aluminosilicate gel at room temperature; CSH, tobmorite, xonotlite and/or zeolites under hydrothermal condition, no metastable crystalline compounds such as Ca(OH)(2) and calcium sulphoaluminates exist. Alkali-activated cements also exhibit excellent resistance to corrosive environments. The leachability of contaminants from alkali-activated cement stabilized hazardous and radioactive wastes is lower than that from hardened portland cement stabilized wastes. From all these aspects, it is concluded that alkali-activated cements are better matrix for solidification/stabilization of hazardous and radioactive wastes than Portland cement.

  7. Identifying improvement potentials in cement production with life cycle assessment.

    PubMed

    Boesch, Michael Elias; Hellweg, Stefanie

    2010-12-01

    Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending.

  8. Global warming impact on the cement and aggregates industries

    SciTech Connect

    Davidovits, J. . Geopolymer Inst.)

    1994-06-01

    CO[sub 2] related energy taxes are focusing essentially on fuel consumption, not on actual CO[sub 2] emission measured at the chimneys. Ordinary Portland cement, used in the aggregates and industries, results from the calcination of limestone and silica. The production of 1 ton of cement directly generates 0.55 tons of chemical-CO[sub 2] and requires the combustion of carbon-fuel to yield an additional 0.40 tons of CO[sub 2]. The 1987 1 billion metric tons world production of cement accounted for 1 billion metric tons of CO[sub 2], i.e., 5% of the 1987 world CO[sub 2] emission. A world-wide freeze of CO[sub 2] emission at the 1990 level as recommended by international institutions, is incompatible with the extremely high cement development needs of less industrialized countries. Present cement production growth ranges from 5% to 16% and suggests that in 25 years from now, world cement CO[sub 2] emissions could equal 3,500 million tons. Eco-taxes when applied would have a spectacular impact on traditional Portland cement based aggregates industries. Taxation based only on fuel consumption would lead to a cement price increase of 20%, whereas taxation based on actual CO[sub 2] emission would multiply cement price by 1.5 to 2. A 25--30% minor reduction of CO[sub 2] emissions may be achieved through the blending of Portland cement with replacement materials such as coal-fly ash and iron blast furnace slag.

  9. Utilization of fly ash as engineering pellet aggregates

    NASA Astrophysics Data System (ADS)

    Arslan, Haydar; Baykal, Gokhan

    2006-07-01

    It has been recognized that there exists a serious need for recovery and reuse of industrial wastes. Agglomeration by pelletization method can alleviate the problems associated with fly ash. The objective of this study was to evaluate the material properties of manufactured aggregates produced from fly ash and cement mixing by pelletization method. Engineering properties of the manufactured aggregates were evaluated experimentally. Crushing strength, specific gravity, water absorption, particle size distribution, surface characteristics and shear strength properties of the manufactured aggregates were evaluated. For all practical purposes, the study showed that the manufactured aggregates are a good alternative for wide range civil engineering applications.

  10. Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.

    PubMed

    Lee, H K; Kim, H K; Hwang, E A

    2010-02-01

    Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.

  11. The potential of recycling and reusing municipal solid waste incinerator ash in Taiwan.

    PubMed

    Huang, Chin-Ming; Yang, Wan-Fa; Ma, Hwong-Wen; Song, Yii-Ren

    2006-01-01

    By 2004, there were 19 municipal solid waste incinerators (MSWI) with a total yearly treatment capacity of 7.72 million tons in service in Taiwan. All 19 incinerators operated daily to generate about 1.05 million tons of incinerator ash, including bottom ash and stabilized fly ash in 2003, and the average ash yield is 18.67%. The total number of incinerators is expected to increase to 27, serving almost all cities in Taiwan by 2007. The authors have suggested a set of criteria based on the yield of incinerator ash (Phi) to study the ash recycle and reuse potential. The Taiwan Environmental Protection Administration has studied the treatment and reuse of MSWI ashes for many years and collected references on international experience accumulated by developed nations for establishing policies on treatment and reuse of MSWI ashes. These citations were analyzed as the basis for current governmental decision making on policies and factors to be considered for establishing policies on recycle and reuse of MSWI ashes. Feasible applications include utilization of ashes, which after sieving and separation of metal particles, produce granular materials. When granular materials comply with TCLP limitations, they can be utilized as cement additives or road base. The procedures of evaluation have been proposed in the performance criteria to be included in the proposed decision-making process of ash utilization.

  12. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material

    SciTech Connect

    Valle-Zermeño, R. del; Formosa, J.; Chimenos, J.M.; Martínez, M.; Fernández, A.I.

    2013-03-15

    Highlights: ► A concrete formulation was optimized using Bottom Ash and APC ash. ► 10% of APC ash achieves good compromise between economic and performance aspects. ► The crushed concrete was evaluated as secondary building granular material. ► The environmental behavior allows its use as secondary material. ► The abrasion resistance is not good enough for its use as a road sub-base material. - Abstract: The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured.

  13. Chloride extraction for quality improvement of municipal solid waste incinerator ash for the concrete industry.

    PubMed

    Boghetich, Giancarlo; Liberti, Lorenzo; Notarnicola, Michele; Palma, Maria; Petruzzelli, Domenico

    2005-02-01

    Coal ash from power stations has long been used successfully in the cement industry as binders in several Portland formulations. This is not the case for municipal solid waste (MSW) ash as chloride concentrations, ranging from 10 to 200 g kg(-1) dry weight in the bottom and fly ash, respectively, exceed the maximum allowable concentration in most cement mixtures. To reduce chloride content in MSW bottom ash, a laboratory investigation was carried out based on the exhaustive washing in tap water. The influence of operative parameters such as temperature, granulometric properties and solid/liquid ratio of extraction was evaluated. In addition to optimization of the mentioned operative parameters for full-scale application, the paper gives preliminary indications on mechanistic aspects of the washing operation.

  14. The Effect of Fly Ash on the Corrosion Behaviour of Galvanised Steel Rebarsin Concrete

    NASA Astrophysics Data System (ADS)

    Tittarelli, Francesca; Mobili, Alessandra; Bellezze, Tiziano

    2017-08-01

    The effect of fly ash on the corrosion behaviour of galvanised steel rebars in cracked concrete specimens exposed to wet-dry cycles in a chloride solution has been investigated. The obtained results show that the use of fly ash, replacing either cement or aggregate, always improves the corrosion behaviour of galvanised steel reinforcements. In particular, the addition of fly ash, even in the presence of concrete cracks, decreases the corrosion rate monitored in very porous concretes, as those with w/c = 0.80, to values comparable with those obtained in good quality concretes, as those with w/c = 0.45. Therefore, fly ash cancels the negative effect, at least from the corrosion point of view, of a great porosity of the cement matrix.

  15. The role of weathering on fly ash charge distribution during triboelectrostatic beneficiation.

    PubMed

    Cangialosi, Federico; Notarnicola, Michele; Liberti, Lorenzo; Stencel, John

    2009-05-30

    Triboelectrostatic beneficiation of coal combustion fly ashes with high-unburned carbon contents can produce low-carbon ash products having value as mineral admixtures and meeting technical requirements for replacing cement in concrete. This capability is a result of establishing bipolar charge on mineral ash versus carbon particles where, typically, unburned carbon attains positive surface charge and ash attains negative surface charge under the tribocharging conditions employed in triboelectrostatic technologies. However, long-term exposure of fly ash to weathering conditions, such as moisture or high humidity, before beneficiation is known to dramatically diminish carbon-ash separation efficiencies. Although experimentation has shown that water soluble surface species can be redistributed on fly ash particles after exposure to moisture, which could affect the extent of charging and polarities, measurement of the actual amount of charge and polarity on particles after weathering exposure versus after removal of surface moisture has not been accomplished. Hence, a new experimental methodology was developed and applied to measure charge distributions on tribocharged ash and carbon particles in a fly ash that had been exposed to weathering conditions for 6 months before and after removal of the surface moisture. Weathered ash particles were found to have an average zero charge, whereas carbon particles attained an average negative charge, opposite of the normal polarity for carbon. Although the extent of uncharged particles decreased and ash particles attained an average negative charge after drying, carbon particles attained only an average zero charge. These changes were reflected in very small increases in carbon-ash separation efficiency, in contrast to previous beneficiation tests in which fly ash drying led to significant increases in carbon-ash separation efficiency. It is suggested that removal of surface moisture in the absence of other processes like

  16. Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete

    PubMed Central

    Liu, Jun; Qiu, Qiwen; Xing, Feng; Pan, Dong

    2014-01-01

    This paper presents an experimental study on the nature of permeation properties and pore structure of concrete surface layers containing fly ash. Concretes containing different dosages of fly ash as a replacement for cement (15% and 30% by weight of total cement materials, respectively) were investigated. Concrete without any fly ash added was also employed as the reference specimen. Laboratory tests were conducted to determine the surface layer properties of concrete including chloride transport, apparent water permeability and pore structure. The results demonstrate that incorporation of fly ash, for the early test period, promotes the chloride ingress at the surface layer of concrete but substituting proportions of fly ash may have little impact on it. With the process of chloride immersion, the chloride concentration at the surface layer of concrete with or without fly ash was found to be nearly the same. In addition, it is suggested that the water permeability at the concrete surface area is closely related to the fly ash contents as well as the chloride exposure time. Pore structure was characterized by means of mercury intrusion porosimetry (MIP) test and the scanning electron microscopy (SEM) images. The modification of pore structure of concrete submersed in distilled water is determined by the pozzolanic reaction of fly ash and the calcium leaching effect. The pozzolanic reaction was more dominant at the immersion time of 180 days while the calcium leaching effect became more evident after 270 days. PMID:28788677

  17. Market Assessment and Technical Feasibility Study of Pressurized Fluidized Bed Combustion Ash Use

    SciTech Connect

    Bland, A.E.; Brown, T.H.

    1996-12-31

    Western Research Institute in conjunction with the Electric Power Research Institute, Foster Wheeler Energy International, Inc. and the U.S. Department of Energy Technology Center (METC), has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for pressurized fluidized bed combustion (PFBC) ashes. The assessment is designed to address six applications, including: (1) structural fill, (2) road base construction, (3) supplementary cementing materials in portland cement, (4) synthetic aggregate, and (5) agricultural/soil amendment applications. Ash from low-sulfur subbituminous coal-fired Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, and ash from the high-sulfur bituminous coal-fired American Electric Power (AEP) bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing. This paper addresses the technical feasibility of ash use options for PFBC unit using low- sulfur coal and limestone sorbent (karhula ash) and high-sulfur coal and dolomite sorbents (AEP Tidd ash).

  18. Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete.

    PubMed

    Liu, Jun; Qiu, Qiwen; Xing, Feng; Pan, Dong

    2014-05-30

    This paper presents an experimental study on the nature of permeation properties and pore structure of concrete surface layers containing fly ash. Concretes containing different dosages of fly ash as a replacement for cement (15% and 30% by weight of total cement materials, respectively) were investigated. Concrete without any fly ash added was also employed as the reference specimen. Laboratory tests were conducted to determine the surface layer properties of concrete including chloride transport, apparent water permeability and pore structure. The results demonstrate that incorporation of fly ash, for the early test period, promotes the chloride ingress at the surface layer of concrete but substituting proportions of fly ash may have little impact on it. With the process of chloride immersion, the chloride concentration at the surface layer of concrete with or without fly ash was found to be nearly the same. In addition, it is suggested that the water permeability at the concrete surface area is closely related to the fly ash contents as well as the chloride exposure time. Pore structure was characterized by means of mercury intrusion porosimetry (MIP) test and the scanning electron microscopy (SEM) images. The modification of pore structure of concrete submersed in distilled water is determined by the pozzolanic reaction of fly ash and the calcium leaching effect. The pozzolanic reaction was more dominant at the immersion time of 180 days while the calcium leaching effect became more evident after 270 days.

  19. Improvement of casing cementation of deep and ultradeep wells. Part 2: Oilfield cements and cement additives

    NASA Astrophysics Data System (ADS)

    Arens, K. H.; Akstinat, M.

    1982-07-01

    Oilfield cements and cement additives were investigated in order to improve the casing cementation of deep and ultradeep wells. Characterization and evaluation of the main oil field cements commercially available were studied. The testing was carried out according to American Petroleum Institute API standards and nonstandardized test methods (dynamic modulus of elasticity, expansion/shrinkage), especially the rheology, thickening time and the influence of pressure, temperature and water-cement ratio, were considered. The main emphasis in the field of cement additives was on the evaluation of cement retarders for high temperatures, accelerators, and additives for cement expansion. Furthermore oil field cements were tested, and their properties are described.

  20. Abyssal seep site cementation

    SciTech Connect

    Neumann, A.C.; Paull, C.K.; Commeau, R.; Commeau, J.

    1988-01-01

    The deepest submarine cements known so far occur along the 3,300-m deep base of the Florida escarpment and are associated with methane-bearing brine seeps, which emanate there. These deep Holocene carbonates, which occur as surficial and buried crusts, burrow fillings, and friable horizons, were sampled via ALVIN. The carbonates form irregular halos extending up to 20 m from seeps colonized by chemosynthetic fauna. Mussels, gastropods, and clams, the carbonate components of the community, produce a shell hash that is locally cemented by coarsely crystalline low-Mg calcite. Halos of palisade calcite are reminiscent of ancient examples of marine cements. Also present are carbonate hemipelagics cemented by micrite into crusts and burrow fillings. The degree of cementation varies from pervasive to light. Slabs of cemented crust up to 30 cm thick contrast with typical shallow crusts and exhibit irregular tops and smooth bottoms indicating different chemical gradients and pathways.

  1. Cementation of indirect restorations: an overview of resin cements.

    PubMed

    Stamatacos, Catherine; Simon, James F

    2013-01-01

    The process of ensuring proper retention, marginal seal, and durability of indirect restorations depends heavily on effective cementation. Careful consideration must be made when selecting an adhesive cement for a given application. This article provides information on resin cements that can guide clinicians in determining which type of cement is best suited to their clinical needs regarding cementation of indirect restorations. Emphasis is placed on successful cementation of all-ceramic restorations.

  2. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-01-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. DOE joined the Materials Management Service (MMS)-sponsored joint industry project ''Long-Term Integrity of Deepwater Cement under Stress/Compaction Conditions.'' Results of the project contained in two progress reports are also presented in this report.

  3. Wood ash disposal and recycling sourcebook

    SciTech Connect

    Greene, W.T.

    1988-04-25

    This report presents information on thirteen different methods of using or disposing of wood ash in Section III. Discussion concentrates on agricultural landspreading and landfilling since these two methods account for the disposition of about 95% of the wood ash produced at present in the Northeast. The thirteen disposal options include spreading on agricultural lands, landfilling, a sewage sludge composting agent, spreading on forest lands, a fertilizer additive, to pretreat landfill leachate, cement production, a binding agent in charcoal production, a hazardous waste absorbing agent, a hazardous waste solidification agent, roadbase construction, a waste water treatment agent, and an agent in treating potato processing waste. Landfilling of wood ash at a ''secure'' landfill, i.e., one with a liner to allow recovery and treatment of leachate, costs about $40 to $45 per ton for tipping fees. This is the cost for using the landfill and can vary widely. The quoted range is based on 1987 rates in Maine and New Hampshire. In addition, there are transportation costs which typically run about $1.50 per mile for a 10- or 12-ton truck, or about $0.15 per ton per mile. Thus a facility producing 5000 tons per year of ash that would have to truck the ash 40 miles to the nearest landfill would have tipping fees of $200,000 to $225,000 per year and transportation costs of $30,000 per year. Regulatory requirements placed on landfills have increased dramatically over the last decade. This is reflected in substantially increased tipping fees.

  4. Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge.

    PubMed

    Qian, Guangren; Cao, Yali; Chui, Pengcheong; Tay, Joohwa

    2006-02-28

    This work investigated the potential for utilization of MSWI incineration fly ash as solidification binder to treat heavy metals-bearing industrial waste sludge. In the study, Municipal Solid Waste Incineration (MSWI) fly ash was used along with ordinary Portland cement to immobilize three different types of industrial sludge while MSWI incineration fly ash was stabilized at the same time. The results showed that the matrixes with heavy metals-bearing sludge and MSWI fly ash have a strong fixing capacity for heavy metals: Zn, Pb, Cu, Ni and Mn. Specimens with only 5-15% cement content was observed to be sufficient to achieve the target compressive strength of 0.3 MPa required for landfill disposal. An optimum mix comprising 45% fly ash, 5% cement and 50% of the industrial sludge could provide the required solidification and stabilization. Addition of MSWI can improve the strength of matrix. Meanwhile, the main hydration products of new S/S matrix are ettringite AFt, Friedel's salt and C-S-H. These hydration products play an important role in the fixing of heavy metals. The co-disposal of MSWI fly ash with heavy metals-bearing sludge can minimize the enlargement of the landfill volume and stabilize the heavy metals effectively.

  5. The influence of pozzolanic materials on the mechanical stability of aluminous cement

    SciTech Connect

    Collepardi, M.; Monosi, S.; Piccioli, P.

    1995-07-01

    High alumina cement is particularly suitable for manufacturing sulphate resistant concretes and in particular cement mixes which are able resist the sear water aggression. High alumina cement paste, in the presence of silica fume, shows an increasing strength trend even at 20 C and 40 C, since this pozzolan causes the formation of gehlenite hydrate (C{sub 2}ASH{sub 8}) and therefore strongly reduces the transformation of hexagonal aluminate hydrates (CAH{sub 10}, C{sub 2}AH{sub 8}) into the cubic hydrate (C{sub 3}AH{sub 6}) which is responsible for the strength loss of high-alumina cement mixes at higher temperatures (>20 C). On the contrary, fly ash is not suitable for reducing the transformation of hexagonal hydrates into the cubic phase. Consequently, the strength at 20 C and 40 C of the fly ash-high alumina cement mixes decrease as well as the high alumina cement pastes in the absence of pozzolan.

  6. Disposal of fluidized-bed combustion ash in an underground mine to control acid mine drainage and subsidence. Quarterly technical progress report, December 1994--February 1995

    SciTech Connect

    1995-03-01

    Research continued on the disposal of fluidized-bed combustion products in underground mines in order to control acid mine drainage and ground subsidence. This quarter, the installation of a coal ash grout into an underground mine void was accomplished. A mixture of 10% portland cement was added to the ash. Problems arose with the clumping of the grout.

  7. Effect of the Additives on the Desulphurization Rate of Flash Hydrated and Agglomerated CFB Fly Ash

    NASA Astrophysics Data System (ADS)

    Li, D. X.; Li, H. L.; Xu, M.; Lu, J. F.; Liu, Q.; Zhang, J. S.; Yue, G. X.

    CFB fly ash from separators was mixed with water or the mixture of water and additives under the temperature of 363K by use of a blender. Then, this compound of fly ash and water or additives was pumped into a CFB combustion chamber by a sludge pump. Because the temperature of flue gas was high in CFB, the fly ash was hydrated fast and agglomerated in the same time. Through this process, the size of agglomerating fly ash is larger than the original particle and the relative residence time of agglomerated fly ash in CFB becomes longer. Therefore, the rate of utility of calcium in fly ash improves and the content of carbon in fly ash decreases. This results in a low Ca/S and low operational cost for CFB boiler. The additive is one key factor, which affects the rate of desulfurization of agglomerated fly ash. Effect of different additives on rate of desulfurization is not same. Cement and limestone are beneficiated to sulfur removal of agglomerated fly ash, but sodium silicate does not devote to the rate of sulfur removal of agglomerated fly ash.

  8. Properties of Cement Compacts Prepared by High-Pressure Compaction.

    DTIC Science & Technology

    1986-05-01

    presence of water with the free lime or calcium hydroxide (Ca(OH) ) produced by the hydration process to produce calcium-silicati-hydrates (C-S-H...67 A-2 Fly Ash Composition and Properties ............... 69 A-3 Aggregate Data .......... . ... . .. ... ........... .. 70 C-1 Preliminary Data Used...70 to 80 MPa) strength level generally depends on optimization of the constituent materials ( aggregate , cement, water, and various admixtures in the

  9. Hard x-ray nanotomography of amorphous aluminosilicate cements.

    SciTech Connect

    Provis, J. L.; Rose, V.; Winarski, R. P.; van Deventer, J. S. J.

    2011-08-01

    Nanotomographic reconstruction of a sample of low-CO{sub 2} 'geopolymer' cement provides the first three-dimensional view of the pore structure of the aluminosilicate geopolymer gel, as well as evidence for direct binding of geopolymer gel onto unreacted fly ash precursor particles. This is central to understanding and optimizing the durability of concretes made using this new class of binder, and demonstrates the value of nanotomography in providing a three-dimensional view of nanoporous inorganic materials.

  10. Kinetics of fly ash beneficiation by carbon burnout. [Quarterly report], October 1, 1995--January 30, 1996

    SciTech Connect

    Dodoo, J.N.; Okoh, J.M.; Yilmaz, E.

    1996-09-01

    The objective is to investigate the kinetics of beneficiation of fly ash by carbon burnout. The three year project that was proposed is a joint venture between Delmarva Power, a power generating company on the eastern shore of Maryland, and the University of Maryland Eastern Shore. The studies have focused on the beneficiation of fly ash by carbon burnout. The increasing use of coal fly ash as pozzolanic material in Portland cement concrete means that there is the highest economic potential in marketability of large volumes of fly ash. For the concrete industry to consider large scale use the fly ash must be of the highest quality. This means that the residual carbon content of the fly ash must have an acceptable loss on ignition (LOI) value, usually between 7--2% residual carbon. The economic gains to be had from low-carbon ash is a fact that is generally accepted by the electricity generating companies. However, since the cost of producing low-carbon in large quantities, based on present technology, far outweighs any financial gains, no electrical power company using coal as its fuel at present considers the effort worthwhile. The concrete industry would use fly ash in cement concrete mix if it can be assured of its LOI value. At present no utility company would give such assurance. Hence with several million tons of fly ash produced by a single power plant per year all that can be done is to dump the fly ash in landfills. The kinetics of fly ash beneficiation have been investigated in the zone II kinetic regime, using a Cahn TG 121 microbalance in the temperature 550--750{degrees}C. The P{sub 02} and total surface area dependence of the reaction kinetics were determined using a vacuum accessory attached to the microbalance and a surface area analyzer (ASAP 2010), respectively.

  11. An assessment of gas-side fouling in cement plants

    NASA Technical Reports Server (NTRS)

    Marner, W. J.

    1982-01-01

    The cement industry is the most energy-intensive industry in the United States in terms of energy cost as a percentage of the total product cost. An assessment of gas-side fouling in cement plants with special emphasis on heat recovery applications is provided. In the present context, fouling is defined as the buildup of scale on a heat-transfer surface which retards the transfer of heat and includes the related problems of erosion and corrosion. Exhaust gases in the cement industry which are suitable for heat recovery range in temperature from about 100 to 1300 K, are generally dusty, may be highly abrasive, and are often heavily laden with alkalies, sulfates, and chlorides. Particulates in the exhaust streams range in size from molecular to about 100 micrometers in diameter and come from both the raw feed as well as the ash in the coal which is the primary fuel used in the cement industry. The major types of heat-transfer equipment used in the cement industry include preheaters, gas-to-air heat exchangers, waste heat boilers, and clinker coolers. At the present time, the trend in this country is toward suspension preheater systems, in which the raw feed is heated by direct contact with the hot kiln exit gases, and away from waste heat boilers as the principal method of heat recovery. The most important gas-side fouling mechanisms in the cement industry are those due to particulate, chemical reaction, and corrosion fouling.

  12. Coal fly ash: a potential resource for aluminium and titanium

    SciTech Connect

    Frederick, J.R.; Murtha, M.J.; Burnet, G.

    1980-01-01

    Two processes are described which utilize fly ash as a source of metals and by-products. The lime-soda sinter process involves sintering of the fly ash and alkaline oxides at 1100-1300/sup 0/C to break the alumina-silica bonds and form soluble aluminate compounds and insoluble calcium silicates. The aluminates are extracted from the sinter by dissolution in sodium carbonate. The calcium silicate sinter extract shows promise as a raw material for the manufacture of portland cement. The HiChlor process uses high temperature chlorination of fly ash in the presence of a reductant to form volatile metal chlorides of aluminium, titanium, iron, and silicon. The HiChlor process extracts aluminium, titanium, and iron, while the sinter process extracts only aluminium.

  13. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    NASA Astrophysics Data System (ADS)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement

  14. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2004-01-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  15. Protecting black ash from the emerald ash borer

    Treesearch

    Les Benedict

    2010-01-01

    Black ash (Fraxinus nigra) is an important resource for Tribes in the Northeast and Great Lakes regions of the North American continent. Ash in North America is being threatened with widespread destruction as a result of the introduction of emerald ash borer beetle (Agrilus planipennis) in 2002. Measures are being taken to slow the spread of emerald ash borer beetle....

  16. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  17. Modified sulfur cement solidification of low-level wastes

    SciTech Connect

    Not Available

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended.

  18. Encapsulation of caesium-loaded Ionsiv in cement

    SciTech Connect

    Jenni, A.; Hyatt, N.C.

    2010-08-15

    The microporous material Ionsiv is used for {sup 137}Cs removal from aqueous nuclear waste streams. In the UK, Cs-loaded Ionsiv is classed as an intermediate-level waste; no sentencing and disposal route is yet defined for this material and it is currently held in safe interim storage on several nuclear sites. In this study, the suitability of fly ash and blast furnace slag blended cements for encapsulation of Cs-Ionsiv in a monolithic wasteform was investigated. No evidence of reaction or dissolution of the Cs-Ionsiv in the cementitious environment was found by scanning electron microscopy and X-ray diffraction. However, a small fraction ({<=} 1.6 wt.%) of the Cs inventory was released from the encapsulated Ionsiv during leaching experiments carried out on hydrated samples. Furthermore, it was evident that K and Na present in the cementitious pore water exchanged with Cs and H in the Ionsiv. Therefore, cement systems lower in K and Na, such as slag based cements, showed lower Cs release than the fly ash based cements.

  19. Enhanced properties of graphene/fly ash geopolymeric composite cement

    SciTech Connect

    Saafi, Mohamed; Tang, Leung; Fung, Jason; Rahman, Mahbubur; Liggat, John

    2015-01-15

    This paper reports for the first time the incorporation of in-situ reduced graphene oxide (rGO) into geopolymers. The resulting rGO–geopolymeric composites are easy to manufacture and exhibit excellent mechanical properties. Geopolymers with graphene oxide (GO) concentrations of 0.00, 0.10, 0.35 and 0.50% by weight were fabricated. The functional groups, morphology, void filling mechanisms and mechanical properties of the composites were determined. The Fourier transform infrared (FTIR) spectra revealed that the alkaline solution reduced the hydroxyl/carbonyl groups of GO by deoxygenation and/or dehydration. Concomitantly, the spectral absorbance related to silica type cross-linking increased in the spectra. The scanning electron microscope (SEM) micrographs indicated that rGO altered the morphology of geopolymers from a porous nature to a substantially pore filled morphology with increased mechanical properties. The flexural tests showed that 0.35-wt.% rGO produced the highest flexural strength, Young's modulus and flexural toughness and they were increased by 134%, 376% and 56%, respectively.

  20. Chemical and thermal analysis of biomass ash from wooden chips and wheat straw combustion

    NASA Astrophysics Data System (ADS)

    Jankovský, Ondřej; Sedmidubský, David; Luxa, Jan; Bartůněk, Vilém; Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek

    2017-07-01

    In this paper, we would like to demonstrate that biomass ash with appropriate composition can be used for the fabrication of high performance composites. Biomass ash from wooden chips and packed wheat straw was characterized using XRF and XRD. While the biomass ash contained high amount of carbon, it was thermally treated in order to reduce carbon content. The chemical and phase composition of treated biomass ash was again analyzed in detail by XRF and XRD. Moreover, the thermal treatment process was analyzed using STA. In the next step, the pozzolanic activity was analyzed using Frattini test. Potentiometric method was used for pH measurement. Since the both biomass ashes were pozzolana active, they are potentially suitable as a pozzolana active admixture in the cement, lime and alkali activated aluminosilicate composites.

  1. Nano-scale hydrogen-bond network improves the durability of greener cements

    PubMed Central

    Jacobsen, Johan; Rodrigues, Michelle Santos; Telling, Mark T. F.; Beraldo, Antonio Ludovico; Santos, Sérgio Francisco; Aldridge, Laurence P.; Bordallo, Heloisa N.

    2013-01-01

    More than ever before, the world's increasing need for new infrastructure demands the construction of efficient, sustainable and durable buildings, requiring minimal climate-changing gas-generation in their production. Maintenance-free “greener” building materials made from blended cements have advantages over ordinary Portland cements, as they are cheaper, generate less carbon dioxide and are more durable. The key for the improved performance of blends (which substitute fine amorphous silicates for cement) is related to their resistance to water penetration. The mechanism of this water resistance is of great environmental and economical impact but is not yet understood due to the complexity of the cement's hydration reactions. Using neutron spectroscopy, we studied a blend where cement was replaced by ash from sugar cane residuals originating from agricultural waste. Our findings demonstrate that the development of a distinctive hydrogen bond network at the nano-scale is the key to the performance of these greener materials. PMID:24036676

  2. Performance appraisal of industrial waste incineration bottom ash as controlled low-strength material.

    PubMed

    Razak, Hashim Abdul; Naganathan, Sivakumar; Hamid, Siti Nadzriah Abdul

    2009-12-30

    Controlled low-strength material (CLSM) is slurry made by mixing sand, cement, ash, and water. It is primarily used as a replacement for soil and structural fillings. This paper presents the findings of a preliminary investigation carried out on the performance of industrial waste incineration bottom ash as CLSM. CLSM mixes were designed using industrial waste incineration bottom ash, and cement. Tests for density, setting time, bleed, and compressive strength on cubes under various curing conditions, corrosivity, and leaching of heavy metals and salts were carried out on the CLSM mixtures, and the results discussed. Compressive strength for the designed CLSM mixtures ranged from 0.1 to 1.7 MPa. It is shown that the variations in curing conditions have less influence on the compressive strength of CLSM at high values of water to cement ratio (w/c), but low values of w/c influences the strength of CLSM. The CLSM produced does not exhibit corrosive characters as evidenced by pH. Leaching of heavy metals and salts is higher in bleed than in leachate collected from hardened CLSM. Cement reduces the leaching of Boron in bleed. It is concluded that there is good potential for the use of industrial waste incineration bottom ash in CLSM.

  3. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash.

    PubMed

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-07-15

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO₂. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials' thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  4. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash

    PubMed Central

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-01-01

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  5. Timing of syntaxial cement

    SciTech Connect

    Perkins, R.D.

    1985-02-01

    Echinodermal fragments are commonly overgrown in ancient limestones, with large single crystals growing in optical continuity over their skeletal hosts (i.e., syntaxial overgrowths). Such syntaxial cements are usually considered to have precipitated from meteoric pore waters associated with a later stage of subaerial exposure. Although several examples have been reported from ancient carbonates where petrographic relationships may indicate an early submarine formation of syntaxial cement, no occurrences have been noted in Holocene submarine-cemented rocks. Syntaxial cements of submarine origin have been found in Bermuda beachrock where isopachous high-magnesian calcite cements merge with large optically continuous crystals growing on echinodermal debris. Examination of other Holocene sediments cemented by magnesian calcite indicates that echinodermal fragments are not always overgrown syntaxially, but may be rimmed by microcrystalline calcite. The reason for this difference is not clear, although it may be a function of the spacing of nucleation sites and rates of crystal growth. A review of syntaxial cements from several localities in ancient carbonate sequences reveals that many are best interpreted as having formed in the submarine setting, whereas it is more clear that others formed from meteoric precipitation. These occurrences suggest that care should be exercised in inferring meteoric diagenesis from syntaxial overgrowths and that the possibility of submarine formation should be considered.

  6. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-07-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the eleventh quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. This report provides a progress summary of ASR testing. The original laboratory procedure for measuring set cement expansion resulted in unacceptable erosion of the test specimens. In subsequent tests, a different expansion procedure was implemented and an alternate curing method for cements formulated with TXI Lightweight cement was employed to prevent sample failure caused by thermal shock. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but data for some compositions were still questionable. Additional modification of test procedures for compositions containing TXI Lightweight cement were implemented and testing is ongoing.

  7. Development of the Use of Alternative Cements for the Treatment of Intermediate Level Waste

    SciTech Connect

    Hayes, M.; Godfrey, I.H.

    2007-07-01

    This paper describes initial development studies undertaken to investigate the potential use of alternative, non ordinary Portland cement (OPC) based encapsulation matrices to treat historic legacy wastes within the UK's Intermediate Level Waste (ILW) inventory. Currently these wastes are encapsulated in composite OPC cement systems based on high replacement with blast furnace slag of pulverised fuel ash. However, the high alkalinity of these cements can lead to high corrosion rates with reactive metals found in some wastes releasing hydrogen and forming expansive corrosion products. This paper therefore details preliminary results from studies on two commercial products, calcium sulfo-aluminate (CSA) and magnesium phosphate (MP) cement which react with a different hydration chemistry, and which may allow wastes containing these metals to be encapsulated with lower reactivity. The results indicate that grouts can be formulated from both cements over a range of water contents and reactant ratios that have significantly improved fluidity in comparison to typical OPC cements. All designed mixes set in 24 hours with zero bleed and the pH values in the plastic state were in the range 10-11 for CSA and 5-7 for MP cements. In addition, a marked reduction in aluminium corrosion rate has been observed in both types of cements compared to a composite OPC system. These results therefore provide encouragement that both cement types can provide a possible alternative to OPC in the immobilisation of reactive wastes, however further investigation is needed. (authors)

  8. Kinetics of fly ash beneficiation by carbon burnout. Quarterly report, January--March 1996

    SciTech Connect

    Dodoo, J.N.; Okoh, J.M.; Yilmaz, E.

    1996-09-01

    The three year project that was proposed is a joint venture between Delmarva Power, a power generating company on the eastern shore of Maryland, and the University of Maryland Eastern Shore. The studies have focused on the benefication of fly ash by carbon burnout. The increasing use of coal fly ash as pozzolanic material in Portland cement concrete means that there is the highest economic potential in marketability of large volumes of fly ash. For the concrete industry to consider large scale use the fly ash must be of the highest quality. This means that the residual carbon content of the fly ash must have an acceptable loss on ignition (LOI) value, usually between 7-2% residual carbon. The economic gains to be had from low-carbon ash is a fact that is generally accepted by the electricity generating companies. However, since the cost of producing low-carbon in large quantities, based on present technology, far outweighs any financial gains, no electrical power company using coal as its fuel at present considers the effort worthwhile. The concrete industry would use fly ash in cement concrete mix if it can be assured of its LOI value. At present no utility company would give such assurance. Hence with several million tons of fly ash produced by a single power plant per year all that can be done is to dump the fly ash in landfills. The kinetics of fly ash benefication have been investigated in the zone II kinetic regime, using a Cahn TG 121 microbalance in the temperature 550-750{degrees}C. The P{sub O{sub 2}} and total surface area dependence of the reaction kinetics were determined using a vacuum accessory attached to the microbalance and a surface area analyzer (ASAP 2010), respectively. 16 refs., 7 figs., 3 tabs.

  9. Evaluation of concrete incorporating bottom ash as a natural aggregates replacement.

    PubMed

    Andrade, L B; Rocha, J C; Cheriaf, M

    2007-01-01

    A study on the incorporation of coal bottom ash from thermoelectric power stations as a substitute material for natural sand in the production of concrete is here presented. The normally coarse, fused, glassy texture of bottom ash makes it an ideal substitute for natural aggregates. The use of bottom ash in concrete presents several technical challenges: the physical and mineralogical characteristics of the bottom ash; the effect on water demand and the participation on cements hydratation. In the production of the concrete, substitutions in volume were used. Two different ways to employ bottom ash were used to make up the mix proportions: one considering the natural humidity present in the porous particles and the other not considering it, seeking to maintain the same strength. These considerations are fundamental given that the process of bottom ash extraction is carried out through moisture. Mechanical tests by compressive strength were performed and the elastic modulus was determined. An analysis of the influence of bottom ash in the formation of pores was carried out through tests for the water loss by air drying and water uptake by capillary absorption. The results show that the higher the bottom ash contents in the concrete, the worse the performance regarding moisture transport. However, for one bottom ash concrete type, the mechanical properties were maintained.

  10. Cement and concrete

    NASA Technical Reports Server (NTRS)

    Corley, Gene; Haskin, Larry A.

    1992-01-01

    To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

  11. Stage cementing apparatus

    SciTech Connect

    Blamford, D.M.; Easter, J.H.

    1988-06-21

    A stage cementing apparatus for selectively passing cement from the interior passage of a casing to the annulus between the exterior of the casing and borehole, the casing having an upper portion and a lower portion, is described comprising: a barrel secured to the upper portion of the casing; a mandrel secured to the lower portion of the casing, and a stage cementing tool having a generally cylindrical configuration adapted for attachment to the lower end of the barrel about a portion of the mandrel.

  12. Reducing CO2-Emission by using Eco-Cements

    NASA Astrophysics Data System (ADS)

    Voit, K.; Bergmeister, K.; Janotka, I.

    2012-04-01

    CO2 concentration in the air is rising constantly. Globally, cement companies are emitting nearly two billion tonnes/year of CO2 (or around 6 to 7 % of the planet's total CO2 emissions) by producing portland cement clinker. At this pace, by 2025 the cement industry will be emitting CO2 at a rate of 3.5 billion tones/year causing enormous environmental damage (Shi et al., 2011; Janotka et al., 2012). At the dawn of the industrial revolution in the mid-eighteenth century the concentration of CO2 was at a level of ca. 280 ppm. 200 years later at the time of World War II the CO2 level had risen to 310 ppm what results in a rate of increase of 0,15 ppm per year for that period (Shi et al., 2011). In November 2011 the CO2 concentration reached a value of 391 ppm (NOAA Earth System Research Laboratory, 2011), a rise of ca. 81 ppm in 66 years and an increased rate of around 1,2 ppm/year respectively. In the same period cement production in tons of cement has multiplied by a factor of ca. 62 (Kelly & Oss, US Geological Survey, 2010). Thus new CO2-saving eco-cement types are gaining in importance. In these cement types the energy-consuming portland cement clinker is partially replaced by latent hydraulic additives such as blast furnace slag, fly ash or zeolite. These hydraulic additives do not need to be fired in the rotary furnace. They ony need to be pulverized to the required grain size and added to the ground portland cement clinker. Hence energy is saved by skipping the engery-consuming firing process, in addition there is no CO2-degassing as there is in the case of lime burning. Therefore a research project between Austria and Slovakia, funded by the EU (Project ENVIZEO), was initiated in 2010. The main goal of this project is to develop new CEM V eco-types of cements and certificate them for common usage. CEM V is a portland clinker saving cement kind that allows the reduction of clinker to a proportion of 40-64% for CEM V/A and 20-39% for CEM V/B respectively by the

  13. Ash cloud aviation advisories

    SciTech Connect

    Sullivan, T.J.; Ellis, J.S.; Schalk, W.W.; Nasstrom, J.S.

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  14. The influence of mineral additives on the strength and porosity of OPC mortar[Ordinary Portland Cement

    SciTech Connect

    Pandey, S.P.; Sharma, R.L.

    2000-01-01

    Mercury intrusion porosimetry study was carried out on samples of ordinary Portland cement mortars made with mineral additives such as fly ash, granulated blast furnace slag, phosphorus furnace slag, limestone, and lime sludge. The total porosity and compressive strength of all the blended cement mortar samples were determined at 7, 18, and 90 days of hydration. The porosity and mean pore diameter were found to increase with the addition of fly ash and slags, although the total pore volume was almost the same. The strength was found to decrease with the increase in porosity, but the extent of decrease in strength was more closely related to slags and fly ash addition than to limestone and lime sludge. Acceleration of the strength development of ordinary Portland cement was also observed with limestone and lime sludge addition.

  15. Cement Kiln Flue Gas Recovery Scrubber Project

    SciTech Connect

    National Energy Technology Laboratory

    2001-11-30

    The Cement Kiln Flue Gas Recovery Scrubber Project was a technical success and demonstrated the following: CKD can be used successfully as the sole reagent for removing SO2 from cement kiln flue gas, with removal efficiencies of 90 percent or greater; Removal efficiencies for HCl and VOCs were approximately 98 percent and 70 percent, respectively; Particulate emissions were low, in the range of 0.005 to 0.007 grains/standard cubic foot; The treated CKD sorbent can be recycled to the kiln after its potassium content has been reduced in the scrubber, thereby avoiding the need for landfilling; The process can yield fertilizer-grade K2SO4, a saleable by-product; and Waste heat in the flue gas can provide the energy required for evaporation and crystallization in the by-product recovery operation. The demonstration program established the feasibility of using the Recovery Scrubber{trademark} for desulfurization of flue gas from cement kilns, with generally favorable economics, assuming tipping fees are available for disposal of ash from biomass combustion. The process appears to be suitable for commercial use on any type of cement kiln. EPA has ruled that CKD is a nonhazardous waste, provided the facility meets Performance Standards for the Management of CKD (U.S. Environmental Protection Agency 1999d). Therefore, regulatory drivers for the technology focus more on reduction of air pollutants and pollution prevention, rather than on treating CKD as a hazardous waste. Application of the Recovery Scrubbe{trademark} concept to other waste-disposal operations, where pollution and waste reductions are needed, appears promising.

  16. Comparison of Ash from PF and CFB Boilers and Behaviour of Ash in Ash Fields

    NASA Astrophysics Data System (ADS)

    Arro, H.; Pihu, T.; Prikk, A.; Rootamm, R.; Konist, A.

    Over 90% of electricity produced in Estonia is made by power plants firing local oil shale and 25% of the boilers are of the circulating fluidised bed (CFB) variety. In 2007 approximately 6.5 million tons of ash was acquired as a byproduct of using oil shale for energy production. Approximately 1.5 million tons of that was ash from CFB boilers. Such ash is deposited in ash fields by means ofhydro ash removal.

  17. Environmentally compatible spray cement

    SciTech Connect

    Loeschnig, P.

    1995-12-31

    Within the framework of a European research project, Heidelberger Zement developed a quickly setting and hardening binder for shotcrete, called Chronolith S, which avoids the application of setting accelerators. Density and strength of the shotcrete produced with this spray cement correspond to those of an unaccelerated shotcrete. An increased hazard for the heading team and for the environment, which may occur when applying setting accelerators, can be excluded here. Owing to the special setting properties of a spray cement, the process engineering for its manufacturing is of great importance. The treatment of a spray cement as a dry concrete with kiln-dried aggregates is possible without any problems. The use of a naturally damp pre-batched mixture is possible with Chronolith S but requires special process engineering; spray cement and damp aggregate are mixed with one another immediately before entering the spraying machinery.

  18. Thermodynamics and cement science

    SciTech Connect

    Damidot, D.; Lothenbach, B.; Herfort, D.; Glasser, F.P.

    2011-07-15

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  19. Early Eocene volcanic ashes on Greifswalder Oie and their depositional environment, with an overview of coeval ash-bearing deposits in northern Germany and Denmark

    NASA Astrophysics Data System (ADS)

    Obst, Karsten; Ansorge, Jörg; Matting, Sabine; Hüneke, Heiko

    2015-11-01

    Unconsolidated bentonites and carbonate-cemented volcanic ashes occur in northern Germany within the clay sequence of the Lamstedt and Schlieven Formations documented by several wells. Ash-bearing carbonate concretions (so-called cementstones) are also known from glacially transported rafts and erratic boulders on the Baltic Sea island Greifswalder Oie, representing the easternmost exposures of early Eocene sediments in the North Sea Basin. The ashes can be correlated with water-lain ashes of the Danish Fur and Ølst Formations (mo-clay) generated during the opening of the North Atlantic Ocean about 55 Ma ago. Two types of cementstones can be distinguished on the basis of the mineralogical composition, sedimentary features and fossil content. Greifswalder Oie type I contains a black, up to 12-cm-thick ash deposit that follows above two distinct thin grey ash layers. The major ash unit has a rather homogeneous lower part; only a very weak normal grading and faint lamination are discernible. In the upper part, however, intercalations with light mudstone, in part intensively bioturbated, together with parallel and cross-lamination suggest reworking of the ash in a shallow marine environment. Major and trace element compositions are used to correlate type I ashes with those of the Danish-positive series which represent rather uniform ferrobasalts of the Danish stage 4, probably related to the emergence of proto-Iceland. In contrast, type II ash comprises a single, normally graded, about 5-cm-thick layer of water-lain air-fall tuff, which is embedded in fine-grained sandstone to muddy siltstone. Type II ash is characterised by very high TiO2 but low MgO contents. Exceptional REE patterns with a pronounced positive Eu anomaly suggest intense leaching of the glass that hampers exact correlation with pyroclastic deposits within the North Atlantic Igneous Province.

  20. Sorbents for CO2 capture from high carbon fly ashes.

    PubMed

    Maroto-Valer, M Mercedes; Lu, Zhe; Zhang, Yinzhi; Tang, Zhong

    2008-11-01

    Fly ashes with high-unburned-carbon content, referred to as fly ash carbons, are an increasing problem for the utility industry, since they cannot be marketed as a cement extender and, therefore, have to be disposed. Previous work has explored the potential development of amine-enriched fly ash carbons for CO2 capture. However, their performance was lower than that of commercially available sorbents, probably because the samples investigated were not activated prior to impregnation and, therefore, had a very low surface area. Accordingly, the work described here focuses on the development of activated fly ash derived sorbents for CO2 capture. The samples were steam activated at 850 degrees C, resulting in a significant increase of the surface area (1075 m2/g). The activated samples were impregnated with different amine compounds, and the resultant samples were tested for CO2 capture at different temperatures. The CO2 adsorption of the parent and activated samples is typical of a physical adsorption process. The impregnation process results in a decrease of the surface areas, indicating a blocking of the porosity. The highest adsorption capacity at 30 and 70 degrees C for the amine impregnated activated carbons was probably due to a combination of physical adsorption inherent from the parent sample and chemical adsorption of the loaded amine groups. The CO2 adsorption capacities for the activated amine impregnated samples are higher than those previously published for fly ash carbons without activation (68.6 vs. 45 mg CO2/g sorbent).

  1. Optimising Ambient Setting Bayer Derived Fly Ash Geopolymers

    PubMed Central

    Jamieson, Evan; Kealley, Catherine S.; van Riessen, Arie; Hart, Robert D.

    2016-01-01

    The Bayer process utilises high concentrations of caustic and elevated temperature to liberate alumina from bauxite, for the production of aluminium and other chemicals. Within Australia, this process results in 40 million tonnes of mineral residues (Red mud) each year. Over the same period, the energy production sector will produce 14 million tonnes of coal combustion products (Fly ash). Both industrial residues require impoundment storage, yet combining some of these components can produce geopolymers, an alternative to cement. Geopolymers derived from Bayer liquor and fly ash have been made successfully with a compressive strength in excess of 40 MPa after oven curing. However, any product from these industries would require large volume applications with robust operational conditions to maximise utilisation. To facilitate potential unconfined large-scale production, Bayer derived fly ash geopolymers have been optimised to achieve ambient curing. Fly ash from two different power stations have been successfully trialled showing the versatility of the Bayer liquor-ash combination for making geopolymers. PMID:28773513

  2. Optimising Ambient Setting Bayer Derived Fly Ash Geopolymers.

    PubMed

    Jamieson, Evan; Kealley, Catherine S; van Riessen, Arie; Hart, Robert D

    2016-05-19

    The Bayer process utilises high concentrations of caustic and elevated temperature to liberate alumina from bauxite, for the production of aluminium and other chemicals. Within Australia, this process results in 40 million tonnes of mineral residues (Red mud) each year. Over the same period, the energy production sector will produce 14 million tonnes of coal combustion products (Fly ash). Both industrial residues require impoundment storage, yet combining some of these components can produce geopolymers, an alternative to cement. Geopolymers derived from Bayer liquor and fly ash have been made successfully with a compressive strength in excess of 40 MPa after oven curing. However, any product from these industries would require large volume applications with robust operational conditions to maximise utilisation. To facilitate potential unconfined large-scale production, Bayer derived fly ash geopolymers have been optimised to achieve ambient curing. Fly ash from two different power stations have been successfully trialled showing the versatility of the Bayer liquor-ash combination for making geopolymers.

  3. Flowable Backfill Materials from Bottom Ash for Underground Pipeline

    PubMed Central

    Lee, Kyung-Joong; Kim, Seong-Kyum; Lee, Kwan-Ho

    2014-01-01

    The purpose of this study was to investigate the relationship between strength and strain in manufacturing controlled low strength materials to recycle incineration bottom ash. Laboratory tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. The optimum mixing ratios were 25%–45% of in-situ soil, 30% of bottom ash, 10%–20% of fly ash, 0%–3% of crumb rubber, 3% of cement, and 22% of water. Each mixture satisfied the standard specifications: a minimum 20 cm of flowability and 127 kPa of unconfined compressive strength. The average secant modulus (E50) was (0.07–0.08) qu. The ranges of the internal friction angle and cohesion for mixtures were 36.5°–46.6° and 49.1–180 kPa, respectively. The pH of all of the mixtures was over 12, which is strongly alkaline. Small-scale chamber tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. Vertical deflection of 0.88–2.41 mm and horizontal deflection of 0.83–3.72 mm were measured during backfilling. The vertical and horizontal deflections of controlled low strength materials were smaller than that of sand backfill. PMID:28788621

  4. Flowable Backfill Materials from Bottom Ash for Underground Pipeline.

    PubMed

    Lee, Kyung-Joong; Kim, Seong-Kyum; Lee, Kwan-Ho

    2014-04-25

    The purpose of this study was to investigate the relationship between strength and strain in manufacturing controlled low strength materials to recycle incineration bottom ash. Laboratory tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. The optimum mixing ratios were 25%-45% of in-situ soil, 30% of bottom ash, 10%-20% of fly ash, 0%-3% of crumb rubber, 3% of cement, and 22% of water. Each mixture satisfied the standard specifications: a minimum 20 cm of flowability and 127 kPa of unconfined compressive strength. The average secant modulus (E50) was (0.07-0.08) qu. The ranges of the internal friction angle and cohesion for mixtures were 36.5°-46.6° and 49.1-180 kPa, respectively. The pH of all of the mixtures was over 12, which is strongly alkaline. Small-scale chamber tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. Vertical deflection of 0.88-2.41 mm and horizontal deflection of 0.83-3.72 mm were measured during backfilling. The vertical and horizontal deflections of controlled low strength materials were smaller than that of sand backfill.

  5. Fly ash design manual for road and site applications

    SciTech Connect

    DiGioia, A.M. Jr.; Brendel, G.F.; McLaren, R.J.; Balsamo, N.J.; Glogowski, P.E.; Kelley, J.M. )

    1992-04-01

    This design manual is the second of two volumes pertaining to the use of fly ash as a construction material in road and site development applications. Volume 1 describes the use of fly ash conditioned with small amounts of water to produce a solid, soil-like material. Volume 2 describes the use of fly ash mixed with sufficient water to create a fluid or semi-fluid material. In most applications, Portland cement is added to the mixture to provide the desired level of strength. In some applications, aggregate filler is also added to the mixture to improve the durability of the mix. The flowable nature of these materials determines the manner in which they are handled, placed, and used in construction. The following uses are discussed: Slurry Backfills; Grouting; and Hydraulic Fills. Miscellaneous uses are also discussed, including the use of fly ash in high fly ash content concrete, unsintered synthetic aggregate, and slurry walls. Also included are three appendices containing additional information of interest to the designer: Mix Design; Laboratory Test Procedures; and a Bibliography.

  6. Chloride chemical form in various types of fly ash.

    PubMed

    Zhu, Fenfen; Takaoka, Masaki; Shiota, Kenji; Oshita, Kazuyuki; Kitajima, Yoshinori

    2008-06-01

    Chloride content is a critical problem for the reuse of fly ash as a raw material in cement, and the method used by recyclers to reduce the fly ash chloride content depends on the chemical form of the chlorides. However, limited information is available on the quantitative distribution of chlorides and the identity of some chlorides such as Friedel's salt. We examined chloride forms and percentages using X-ray absorption near edge structure and X-ray diffraction analyses, as well as corresponding washing experiments. Approximately 15% of the chlorine in raw fly ash was estimated to be in the form of NaCI, 10% in KCl, 50% in CaCl2, and the remainder in the form of Friedel's salt. Fly ash collected in a bag filter with the injection of calcium hydroxide for acid gas removal (CaFA) contained 35% chlorine as NaCl, 11% as KCI, 37% as CaCl2, 13% as Friedel's salt, and the remaining 4% as CaClOH. In fly ash collected in a bag filter with the injection of sodium bicarbonate for acid gas removal (NaFA), approximately 79% of chlorine was in NaCl, 12% was in KCl, and 9% was in Friedel's salt.

  7. Chloride chemical form in various types of fly ash

    SciTech Connect

    Fenfen Zhu; Masaki Takaoka; Kenji Shiota; Kazuyuki Oshita; Yoshinori Kitajima

    2008-06-01

    Chloride content is a critical problem for the reuse of fly ash as a raw material in cement, and the method used by recyclers to reduce the fly ash chloride content depends on the chemical form of the chlorides. However, limited information is available on the quantitative distribution of chlorides and the identity of some chlorides such as Friedel's salt. We examined chloride forms and percentages using X-ray absorption near edge structure and X-ray diffraction analyses, as well as corresponding washing experiments. Approximately 15% of the chlorine in raw fly ash was estimated to be in the form of NaCl, 10% in KCl, 50% in CaCl{sub 2}, and the remainder in the form of Friedel's salt. Fly ash collected in a bag filter with the injection of calcium hydroxide for acid gas removal (CaFA) contained 35% chlorine as NaCl, 11% as KCl, 37% as CaCl{sub 2}, 13% as Friedel's salt, and the remaining 4% as CaClOH. In fly ash collected in a bag filter with the injection of sodium bicarbonate for acid gas removal (NaFA), approximately 79% of chlorine was in NaCl, 12% was in KCl, and 9% was in Friedel's salt. 25 refs., 4 figs., 4 tabs.

  8. Effects of processing and materials variations on mechanical properties of lightweight cement composites

    SciTech Connect

    Park, S.B.; Yoon, E.S.; Lee, B.I.

    1999-02-01

    Low-density/low-cost cement composites were fabricated. Carbon and alkali-resistant glass fibers were used to reinforce the matrix of industrial by-products; fly ash with silica fume, Portland cement, and calcium silicates were mixed in different proportions. The additional low density was obtained by adding perlite and foaming agents followed by hot water curing. The composites also were prepared by autoclave curing for comparison. The mechanical properties were improved by increasing the amount of silica fume, fly ash, and fibers.Both carbon fibers and alkali-resistant glass fibers were effective in reinforcing the matrices, but carbon fibers were superior to glass fibers. Fabrication techniques for producing lightweight cement composites that can substitute for autoclaved lightweight concrete was developed.

  9. Use of waste ash from palm oil industry in concrete.

    PubMed

    Tangchirapat, Weerachart; Saeting, Tirasit; Jaturapitakkul, Chai; Kiattikomol, Kraiwood; Siripanichgorn, Anek

    2007-01-01

    Palm oil fuel ash (POFA), a by-product from the palm oil industry, is disposed of as waste in landfills. In this study, POFA was utilized as a pozzolan in concrete. The original size POFA (termed OP) was ground until the median particle sizes were 15.9 microm (termed MP) and 7.4 microm (termed SP). Portland cement Type I was replaced by OP, MP, and SP of 10%, 20%, 30%, and 40% by weight of binder. The properties of concrete, such as setting time, compressive strength, and expansion due to magnesium sulfate attack were investigated. The results revealed that the use of POFA in concretes caused delay in both initial and final setting times, depending on the fineness and degree of replacement of POFA. The compressive strength of concrete containing OP was much lower than that of Portland cement Type I concrete. Thus, OP is not suitable to be used as a pozzolanic material in concrete. However, the replacement of Portland cement Type I by 10% of MP and 20% of SP gave the compressive strengths of concrete at 90 days higher than that of concrete made from Portland cement Type I. After being immersed in 5% of magnesium sulfate solution for 364 days, the concrete bar mixed with 30% of SP had the same expansion level as that of the concrete bar made from Portland cement Type V. The above results suggest that ground POFA is an excellent pozzolanic material and can be used as a cement replacement in concrete. It is recommended that the optimum replacement levels of Portland cement Type I by MP and SP are 20% and 30%, respectively.

  10. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    NASA Astrophysics Data System (ADS)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition

  11. Effect of coal combustion fly ash use in concrete on the mass transport release of constituents of potential concern.

    PubMed

    Garrabrants, Andrew C; Kosson, David S; DeLapp, Rossane; van der Sloot, Hans A

    2014-05-01

    Concerns about the environmental safety of coal combustion fly ash use as a supplemental cementitious material have necessitated comprehensive evaluation of the potential for leaching concrete materials containing fly ash used as a cement replacement. Using concrete formulations representative of US residential and commercial applications, test monoliths were made without fly ash replacement (i.e., controls) and with 20% or 45% of the portland cement fraction replaced by fly ash from four coal combustion sources. In addition, microconcrete materials were created with 45% fly ash replacement based on the commercial concrete formulation but with no coarse aggregate and an increased fine aggregate fraction to maintain aggregate-paste interfacial area. All materials were cured for 3 months prior to mass transport-based leach testing of constituents of potential concern (i.e., Sb, As, B, Ba, Cd, Cr, Mo, Pb, Se, Tl and V) according to EPA Method 1315. The cumulative release results were consistent with previously tested samples of concretes and mortars from international sources. Of the 11 constituents tested, only Sb, Ba, B, Cr and V were measured in quantifiable amounts. Microconcretes without coarse aggregate were determined to be conservative surrogates for concrete in leaching assessment since cumulative release from microconcretes were only slightly greater than the associated concrete materials. Relative to control materials without fly ash, concretes and microconcretes with fly ash replacement of cement had increased 28-d and 63-d cumulative release for a limited number 10 comparison cases: 2 cases for Sb, 7 cases for Ba and 1 case for Cr. The overall results suggest minimal leaching impact from fly ash use as a replacement for up to 45% of the cement fraction in typical US concrete formulations; however, scenario-specific assessment based on this leaching evaluation should be used to determine if potential environmental impacts exist.

  12. The effect of high content of fly ash on the properties of glass fiber reinforced cementitious composites

    SciTech Connect

    Zhang, Y.; Sun, W.; Pan, G.; Shang, L.

    1997-12-01

    The objective of this paper was to study glass fiber reinforced cementitious composites (GFRCC) with Portland cement, a high content of fly ash as matrix. The effect of fly ash content, the initial curing time, and accelerated aging on the flexural strength of GFRCC was investigated. The suitability of the accelerated aging method was queried by analyzing the results from SEM observation, XRD analysis, and deflection testing.

  13. Durability of Cement Composites Reinforced with Sisal Fiber

    NASA Astrophysics Data System (ADS)

    Wei, Jianqiang

    understanding of degradation mechanisms, two approaches are proposed to mitigate the degradation of sisal fiber in the cement matrix. In order to relieve the aggressive environment of hydrated cement, cement substitution by a combination of metakaolin and nanoclay, and a combination of rice husk ash and limestone are studied. Both metakaolin and nanoclay significantly optimize the cement hydration, while the combination of these two supplementary cementitious materials validates their complementary and synergistic effect at different stages of aging. The presented approaches effectively reduce the calcium hydroxide content and the alkalinity of the pore solution, thereby mitigating the fiber degradation and improving both the initial mechanical properties and durability of the fiber-cement composites. The role of rice husk ash in cement modification is mainly as the active cementitious supplementary material. In order to improve the degradation resistance of sisal fiber itself, two novel, simple, and economical pretreatments of the fibers (thermal and sodium carbonate treatment) are investigated. Both thermal treatment and Na 2CO3 treatment effectively improve the durability of sisal fiber-reinforced concrete. The thermal treatment achieves improvement of cellulose's crystallization, which ensures the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali pore solution, is formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface.

  14. Full-scale tests of sulfur polymer cement and non-radioactive waste in heated and unheated prototypical containers

    SciTech Connect

    Darnell, G.R.; Aldrich, W.C.; Logan, J.A.

    1992-02-01

    Sulfur polymer cement has been demonstrated to be superior to portland cement in the stabilization of numerous troublesome low- level radioactive wastes, notably mixed waste fly ash, which contains heavy metals. EG&G Idaho, Inc. conducted full-scale, waste-stabilization tests with a mixture of sulfur polymer cement and nonradioactive incinerator ash poured over simulated steel and ash wastes. The container used to contain the simulated waste for the pour was a thin-walled, rectangular, steel container with no appendages. The variable in the tests was that one container and its contents were at 65{degree}F (18{degree}C) at the beginning of the pour, while the other was preheated to 275{degree}F (135{degree}C) and was insulated before the pour. The primary goal was to determine the procedures and equipment deemed operationally acceptable and capable of providing the best probability of passing the only remaining governmental test for sulfur polymer cement, the Nuclear Regulatory Commission`s full-scale test. The secondary goal was to analyze the ability of the molten cement and ash mixture to fill different size pipes and thus eliminate voids in the resultant 24 ft{sup 3} monolith.

  15. Full-scale tests of sulfur polymer cement and non-radioactive waste in heated and unheated prototypical containers

    SciTech Connect

    Darnell, G.R.; Aldrich, W.C.; Logan, J.A.

    1992-02-01

    Sulfur polymer cement has been demonstrated to be superior to portland cement in the stabilization of numerous troublesome low- level radioactive wastes, notably mixed waste fly ash, which contains heavy metals. EG G Idaho, Inc. conducted full-scale, waste-stabilization tests with a mixture of sulfur polymer cement and nonradioactive incinerator ash poured over simulated steel and ash wastes. The container used to contain the simulated waste for the pour was a thin-walled, rectangular, steel container with no appendages. The variable in the tests was that one container and its contents were at 65{degree}F (18{degree}C) at the beginning of the pour, while the other was preheated to 275{degree}F (135{degree}C) and was insulated before the pour. The primary goal was to determine the procedures and equipment deemed operationally acceptable and capable of providing the best probability of passing the only remaining governmental test for sulfur polymer cement, the Nuclear Regulatory Commission's full-scale test. The secondary goal was to analyze the ability of the molten cement and ash mixture to fill different size pipes and thus eliminate voids in the resultant 24 ft{sup 3} monolith.

  16. Characterization and modeling of major constituent equilibrium chemistry of a blended cement mortar

    NASA Astrophysics Data System (ADS)

    Arnold, J.; Kosson, D. S.; Brown, K. G.; Garrabrants, A. C.; Meeussen, J. C. L.; van der Sloot, H. A.

    2013-07-01

    Cementitious materials containing ground granulated iron blast furnace slag and coal combustion fly ash as admixtures are being used extensively for nuclear waste containment applications. Whereas the solid phases of ordinary Portland cement (OPC) have been studied in great detail, the chemistry of cement, fly ash and slag blends has received relatively less study. Given that OPC is generally more reactive than slag and fly ash, the mineralogy of OPC provides a logical starting point for describing the major constituent chemistry of blended cement mortars. To this end, a blended cement mortar containing Portland cement, granulated blast furnace slag, fly ash and quartz sand was modeled using a set of solid phases known to form in hydrated OPC with the geochemical speciation solver LeachXS/ORCHESTRA. Comparison of modeling results to the experimentally determined pH-dependent batch leaching concentrations (USEPA Method 1313) indicates that major constituent concentrations are described reasonably well with the Portland cement mineral set; however, modeled and measured aluminum concentrations differ greatly. Scanning electron microscopic analysis of the mortar reveals the presence of Al-rich phyllosilicate minerals heretofore unreported in similar cementitious blends: kaolinite and potassic phyllosilicates similar in composition to illite and muscovite. Whereas the potassic phyllosilicates are present in the quartz sand aggregate, the formation of kaolinite appears to be authigenic. The inclusion of kaolinite in speciation modeling provides a substantially improved description of the release of Al and therefore, suggests that the behavior of phyllosilicate phases may be important for predicting long-term physico-chemical behavior of such systems.

  17. Hydraulic behavior of calcium sulfoaluminate-based cements derived from industrial process wastes

    SciTech Connect

    Beretka, J.; Sherman, N. . Div. of Building); Vito, B. de . Dipt. di Ingegneria dei Materiali e della Produzione); Santoro, L. . Dipt. di Chimica); Valenti, G.L. . Dipt. di Ingegneria e Fisica dell'Ambiente)

    1993-09-01

    The manufacture of cements based on calcium sulfoaluminate (C[sub 4]A[sub 3][bar S]) [In this paper, the notation adopted in cement chemistry, vis. C=CO, A=Al[sub 2]O[sub 3], [bar S]=SO[sub 3], S=SiO[sub 2], and H=H[sub 2]O, has been used.] requires lower firing temperatures and lower grinding energy, as compared to ordinary Portland cements (OPC). Some of these low-energy cements can be formulated in order to develop high early strength and other performances similar to OPC. Further interest towards these types of cements relies on the possibility of using industrial process wastes as raw materials for their manufacture. It has been found that a number of industrial wastes and by-products such as phosphogypsum, bauxite fines, fly ash and blast furnace slag, can be employed without negatively affecting the hydraulic behavior of cements of planned C[sub 4]A[sub 3][bar S]:[beta]-C[sub 2]S:C[bar S] weight ratio 1.5:1:1. Blast furnace slag and fly ash can also be advantageously used as blending components of the fired products.

  18. Effects of lithium nitrate admixture on early-age cement hydration

    SciTech Connect

    Millard, M.J. Kurtis, K.E.

    2008-04-15

    Although the benefits of lithium admixtures for mitigation of alkali-silica reaction (ASR) have been well documented, the potential ancillary effects of lithium compounds on cement and concrete remain largely uncharacterized. To examine the effects of the most common lithium admixture - lithium nitrate - on early-age behavior, the admixture was introduced at dosages of 0% to 400% of the recommended dosage to six cements of varying composition and to a cement-fly ash blend. Behavior was examined by isothermal calorimetry and measurements of chemical shrinkage, autogenous shrinkage, and setting time. Results indicate that lithium nitrate accelerates the early hydration of most cements but may retard hydration after 24 h. In the lowest alkali cement tested, set times were shortened in the presence of lithium nitrate by 15-22%. Higher dosages appeared to increase autogenous shrinkage after 40 days. The replacement of cement by Class F fly ash at 20% by weight appeared to diminish the early acceleration effects, but later hydration retardation and autogenous shrinkage were still observed.

  19. The distribution of ash in North America

    Treesearch

    Randall S. Morin

    2010-01-01

    Ash trees have been important to the people of North America for thousands of years. Of the nine ash species, white ash (Fraxinus americana L.) and green ash (F. pennsylvanica Marsh.) are the most widely distributed.

  20. Ashes to ashes: Large Fraxinus germplasm collections and their fates

    Treesearch

    Kim C. Steiner; Paul. Lupo

    2010-01-01

    As the emerald ash borer (EAB) threatens the survival of our ash species, measures should be taken to preserve their genetic variability in the event that we discover a way to restore populations destroyed by the beetle. As it happens, large germplasm collections exist for our most important and widely distributed eastern species of the genus, white ash (...

  1. Emerald ash borer aftermath forests: the future of ash ecosystems

    Treesearch

    Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Kamal J.K. Gandhi; Catharine P. Herms

    2011-01-01

    The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program between the U.S. Forest Service and The Ohio State University. We are monitoring ash demographics, understory light availability, EAB population dynamics, native and non-native plants, and effects of ash...

  2. Power-plant fly-ash utilization: a chemical processing perspective

    SciTech Connect

    Burnet, G.; Murtha, M.J.

    1981-01-01

    The 1976 Resource Conservation and Recovery Act (RCRA) deals with the management of solid and hazardous wastes, and encourages energy and resource recovery. Recent research has indicated that solid wastes from coal combustion, including fly ash, could be classified as hazardous under present EPA definitions. The seriousness of this possibility has been recognized and new rules for coal ash waste disposal are being considered. Ames Laboratory research on fly ash utilization as an alternative to disposal includes extraction of metals from the ash and discovery of uses for the process residues. Recovery of alumina and iron oxides by physical and chemical processing would permit large scale utilization of fly ash and help reduce dependency on imports. One of the processes investigated uses a lime-soda sinter method to form soluble aluminate compounds from mixtures of fly ash, limestone, and soda ash. The aluminates are extracted, treated to remove silicates, and precipitated: the precipitate is calcined to metallurgical grade alumina. The extract residue shows promise as a raw material for the production of Portland cement. Process economics are presented, and the effects of alumina and silica contents of the fly ash, sintering temperatures and time, and sales credits for by-products are discussed.

  3. Experimental study on durability improvement of fly ash concrete with durability improving admixture.

    PubMed

    Quan, Hong-zhu; Kasami, Hideo

    2014-01-01

    In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%-20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized.

  4. California bearing ratio behavior of soil-stabilized class F fly ash systems

    SciTech Connect

    Leelavathamma, B.; Mini, K.M.; Pandian, N.S.

    2005-11-01

    Fly ash is a finely divided mineral residue resulting from the combustion of coal in power plants that occupies large extents of land and also causes environmental problems. Hence, concerted attempts are being made to effectively use fly ash in an environmentally friendly way instead of dumping. Several studies have been carried out for its bulk utilization, such as its addition to improve the California bearing ratio (CBR) of soil in roads and embankments. But a thorough mixing of fly ash with soil may not be possible in the field. Hence a study has been carried out on the CBR behavior of black cotton soil and Raichur fly ash (which is class F) in layers and compared with the same in mixes. The results show that the CBR values of soil-fly ash mixes are better than layers, as expected. To improve the strength of layers, cement is used as an additive to fly ash. The results show that black cotton soil can be improved with stabilized fly ash, solving its strength problem as well as the disposal problem of fly ash.

  5. Experimental Study on Durability Improvement of Fly Ash Concrete with Durability Improving Admixture

    PubMed Central

    Quan, Hong-zhu; Kasami, Hideo

    2014-01-01

    In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%–20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized. PMID:25013870

  6. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  7. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-06-16

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the tenth quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. The original laboratory procedure for measuring set cement expansion resulted in test specimen erosion that was unacceptable. A different expansion procedure is being evaluated. This report provides a progress summary of ASR testing. The testing program initiated in November produced questionable initial results so the procedure was modified slightly and the testing was reinitiated. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but questionable data were obtained from several of the compositions. Additional modification of test procedures for compositions containing TXI Lightweight cement are being implemented and testing is ongoing.

  8. Low-alumina portland cement from lime-soda sinter residue

    SciTech Connect

    Chesley, J.A.

    1987-01-01

    A byproduct for the Ames Lime-Soda Sinter Process for recovering alumina from power plant fly ash was investigated as a cement raw material. This investigation dealt with a determination of the best method to utilize the process residue from both a clinker quality and an economic perspective. The experimental work was divided into 4 major areas; characterization of the sinter residue, laboratory burnability tests, physical testing of produced residue-cements, and a kinetic study of C{sub 3}S formation. Other important topics were considered such as the effect use of the sinter residue has on the energy requirements of a commercial cement kiln and on the economics of a combined lime-soda sinter, cement plant. It was found that a low-alumina, C{sub 3}S-bearing cement could be readily produced from a raw mix containing significant amounts of sinter residue, which was found to consist of {beta}-C{sub 2}S, C{sub 3}A, CaCO{sub 3}, MgO, and C{sub 4}AF. Based on an energy balance using a typical cement feed containing around 75%{sub w} limestone as a reference, use of the residue in a cement feed allows for a 50% reduction in required energy for the kiln and a 32%{sub w} increased throughput. A laboratory produced residue-cement was found to meet all of the specifications for a Type 5 portland cement. The rate of return found for a combined lime-soda sinter and cement facility processing 43,800 tons per year (TPY) of alumina and 530,400 TPY of portland cement was 4.7%.

  9. Small-particle-size cement

    SciTech Connect

    Ewert, D.P.; Almond, S.W.; Blerhaus, W.M. II )

    1991-05-01

    Successful remedial cementing has historically been difficult in wells with large-interval, multizone, gravel-packed completions. The reason is the inability of conventional oilfield cements to penetrate gravel packs adequately. Small-particle-size cement (SPSC) was developed to penetrate gravel packs and to provide the zonal isolation required. This paper details the laboratory work, job design, and field implementation of this new cement.

  10. Reclamation and revegetation of fly ash disposal sites - Challenges and research needs.

    PubMed

    Haynes, R J

    2009-01-01

    Coal-fired power generation is a principal energy source throughout the world. Approximately, 70-75% of coal combustion residues are fly ash and its utilization worldwide is only slightly above 30%. The remainder is disposed of in landfills and fly ash basins. It is desirable to revegetate these sites for aesthetic purposes, to stabilize the surface ash against wind and water erosion and to reduce the quantity of water leaching through the deposit. Limitations to plant establishment and growth in fly ash can include a high pH (and consequent deficiencies of Fe, Mn, Cu, Zn and P), high soluble salts, toxic levels of elements such as B, pozzalanic properties of ash resulting in cemented/compacted layers and lack of microbial activity. An integrated organic/biotechnological approach to revegetation seems appropriate and should be investigated further. This would include incorporation of organic matter into the surface layer of ash, mycorrhizal inoculation of establishing vegetation and use of inoculated legumes to add N. Leaching losses from ash disposal sites are likely to be site-specific but a sparse number of studies have revealed enriched concentrations of elements such as Ca, Fe, Cd, Pb, and Sb in surrounding groundwater. This aspect deserves further study particularly in the longer-term. In addition, during weathering of the ash and deposition of organic matter during plant growth, a soil will form with properties vastly different to that of the parent ash. In turn, this will influence the effect that the disposal site has on the surrounding environment. Nevertheless, the effects of ash weathering and organic matter accumulation over time on the chemical, physical and biological properties of the developing ash-derived soil are not well understood and require further study.

  11. Reducing cement's CO2 footprint

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  12. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  13. Cement Mason's Curriculum. Instructional Units.

    ERIC Educational Resources Information Center

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  14. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  15. Cement Mason's Curriculum. Instructional Units.

    ERIC Educational Resources Information Center

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  16. Low-alumina portland cement from lime-soda sinter residue

    SciTech Connect

    Chesley, J.A.

    1987-11-01

    A byproduct for the Ames Lime-Soda Sinter Process for recovering alumina from power plant fly ash was investigated as a cement raw material. This investigation dealt with a determination of the best method to utilize the process residue from both a clinker quality and an economic perspective. The experimental work was divided into characterization of the sinter residue, laboratory burnability tests, physical testing of produced residue-cements, and a kinetic study of C/sub 3/S formation. Other important topics were considered such as the effect use of te sinter residue has on the energy requirements of a commercial cement kiln and on the economics of a combined lime-soda sinter, cement plant. (130 refs., 61 figs., 56 tabs

  17. Cementing a wellbore using cementing material encapsulated in a shell

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Floyd, III, William C.; Spadaccini, Christopher M.; Vericella, John J.; Cowan, Kenneth Michael

    2017-03-14

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  18. Cementing a wellbore using cementing material encapsulated in a shell

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  19. Circle of Ashes

    NASA Image and Video Library

    2006-04-05

    This plot shows that a pulsar, the remnant of a stellar explosion, is surrounded by a disk of its own ashes. The disk, revealed by the two data points at the far right from NASA Spitzer Space Telescope, is the first ever found around a pulsar.

  20. Emerald Ash Borer

    Treesearch

    Deborah G. McCullough; Steven A. Katovich

    2004-01-01

    An exotic beetle from Asia was discovered in July 2002 feeding on ash (Fraxinus spp.) trees in southeastern Michigan. It was identified as Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Larvae feed in the cambium between the bark and wood, producing galleries that eventually girdle and kill branches and entire trees. Evidence suggests that A. planipennis has...

  1. Differential utilization of ash phloem by emerald ash borer larvae: Ash species and larval stage effects

    Treesearch

    Yigen Chen; Michael D. Ulyshen; Therese M. Poland

    2012-01-01

    Two experiments were performed to determine the extent to which ash species (black, green and white) and larval developmental stage (second, third and fourth instar) affect the efficiency of phloem amino acid utilization by emerald ash borer (EAB) Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) larvae. EAB larvae generally utilized green ash...

  2. Environmental scanning electron microscopy connected with energy dispersive x-ray analysis and Raman techniques to study ProRoot mineral trioxide aggregate and calcium silicate cements in wet conditions and in real time.

    PubMed

    Gandolfi, Maria Giovanna; Van Landuyt, Kirsten; Taddei, Paola; Modena, Enrico; Van Meerbeek, Bart; Prati, Carlo

    2010-05-01

    ProRoot mineral trioxide aggregate (MTA) and calcium silicate cements are able to set in a moist environment. The aim of the study was to examine the surface structure and composition of a cement paste under wet conditions and in real time during setting by environmental scanning electron microscopy connected with energy dispersive x-ray analysis (ESEM-EDX) and micro-Raman techniques. White ProRoot MTA and experimental white tetrasilicate cement (wTC) and wTC containing bismuth oxide (wTC-Bi) were studied. Cement disks were analyzed 10 minutes after powder-liquid mixing (freshly prepared samples) and after immersion in Dulbecco phosphate-buffered saline at 37 degrees C for 24 hours (24-hour-aged samples). Freshly prepared wet cements at ESEM-EDX exposed an irregular surface (displaying calcium, silicon, aluminum, chlorine reflexes, and bismuth traces in MTA and wTC-Bi) with needle-like and cubic-hexagonal shaped crystals. Aggregates of spheroidal Ca-P-rich crystals (spherulites) appeared on the surface of 24-hour-aged samples. The starting unhydrated powders displayed the typical Raman bands of Portland cement components: alite, belite, and calcium sulfate (only as anhydrite in MTA and as both anhydrite and gypsum in wTC and wTC-Bi). MTA powder showed higher amount of calcium carbonate and lower quantities of anhydrite and higher crystallinity of the silicate component, leading to a slower hydration reaction. Products/markers of hydration reactions were present on fresh samples; ettringite formed on the surface of all the cements; calcium hydroxide (portlandite) was detected only on the surface of wTC, but no conclusion can be drawn on wTC-Bi and MTA because of the interference of bismuth oxide. Calcium phosphate and calcite/aragonite bands were detected on all 24-hour-aged cements; portlandite was no longer detected on wTC. ESEM and micro-Raman are powerful and suitable techniques to investigate endodontic calcium silicate hydrated cements in real time and in

  3. Highlights of worldwide production and utilization of coal ash -- A survey for the period 1959--1989

    SciTech Connect

    Manz, O.E.; Stewart, B.R.

    1997-09-01

    In 1960, the Coal Committee for the United Nations Economic Committee for Europe requested a group of rapporteurs to undertaken work on the utilization of ash from coal fueling thermal power stations. This later became the Group of Experts on the Utilization of Ash. In 1959, out of a world production of 100 million tons of ash, only 2% was put to use, whereas in 1969, about 15% of a production of 200 million tons was used. In 1989, 562 million tons were produced, and 90.5 million tons were used. The main uses of coal ash have been in cement and concrete manufacture; in road construction and as filler on construction sites; in cellular concrete; and in lightweight aggregate and brick. Worldwide, in 1989, 27.7 million tons were used in cement and concrete manufacture, 23.6 million tons in road construction and as filler on construction sites, 2.8 million tons in cellular concrete, and 6.8 million tons in lightweight aggregate and bricks. This paper presents a worldwide survey of the production and utilization of coal ash from 1959 to 1989. The data were collected from various working papers of the US Group of Experts on the utilization of Ash and from two papers by O.E. Manz on the worldwide production and utilization of coal ash.

  4. Sustainability assessment and prioritisation of bottom ash management in Macao.

    PubMed

    Sou, W I; Chu, Andrea; Chiueh, P T

    2016-12-01

    In Macao, about 7200 t yr(-1) of bottom ash (BA) is generated and conventionally landfilled with construction waste. Because the properties of BA are similar to those of natural aggregates, it is suitable to be recycled as construction material. However, pre-treatment processes for BA reuse may require more resource input and may generate additional environmental impacts. Life cycle assessment, multi-media transport model analysis, cost-benefit analysis and the analytical hierarchy process were conducted to evaluate the impacts of current and potential BA management scenarios regarding environmental, economic, social and regulatory aspects. The five analysed scenarios are as follows: (0) BA buried with construction and demolition waste (current system); (1) pre-treated BA used to replace 25% of the natural aggregate in asphalt concrete; (2) pre-treated BA used to replace 25% of the natural aggregate in cement concrete; (3) pre-treated BA used to replace 25% of cement in cement concrete; and (4) pre-treated BA sent to China, blended with municipal solid waste for landfill. The results reveal the following ranking of the scenarios: 3 > 2 > 0 > 1 > 4. Scenario 3 shows the best conditions for BA recycling, because the quantity of cement concrete output is the highest and this brings the greatest economic benefits. Our use of integrated analysis provides multi-aspect investigations for BA management systems, particularly in accounting for site-specific characteristics. This approach is suitable for application in other non-western regions. © The Author(s) 2016.

  5. Cement technology for borehole plugging: an interim report on permeability measurements of cementitious solids

    SciTech Connect

    McDaniel, E.W.

    1980-01-01

    The permeability of borehole plug solids and plug-wall rock junctions is a property of major interest in the Borehole Plugging Program. This report describes the equipment and techniques used to determine the permeabilities of possible borehole plugging materials and presents results from tests on various cementitious solids and plug-rock combinations. The cementitious solids were made from mixtures of cement, sand, salt, fly ash, and water. Three different types of cement and four different fly ashes were used. Permeabilities ranged from a high value of 3 x 10/sup -4/ darcy for a neat cement paste to a low of 5 x 10/sup -8/ darcy for a saltcrete containing 30 wt % sodium chloride. Miniature boreholes were made in the following four different types of rock: Westerly granite, Dresser basalt, Sioux quartzite, and St. Cloud granodiorite. These small holes were plugged with a mix consisting of 23 wt % Type I Portland cement, 20 wt % bituminous fy ash, 43.2 wt % sand, and 13.8 wt % water. After curing for 91 days at ambient temperature, the permeability of the plug-wall rock junctions ranged from 3 x 10/sup -5/ to < 1 x 10/sup -8/ darcy. Three of the four miniature plugged boreholes exhibited permeabilities of < 10 microdarcys.

  6. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    SciTech Connect

    Galitsky, Christina; Price, Lynn; Zhou, Nan; Fuqiu , Zhou; Huawen, Xiong; Xuemin, Zeng; Lan, Wang

    2008-07-30

    The Benchmarking and Energy Savings Tool (BEST) Cement is a process-based tool based on commercially available efficiency technologies used anywhere in the world applicable to the cement industry. This version has been designed for use in China. No actual cement facility with every single efficiency measure included in the benchmark will likely exist; however, the benchmark sets a reasonable standard by which to compare for plants striving to be the best. The energy consumption of the benchmark facility differs due to differences in processing at a given cement facility. The tool accounts for most of these variables and allows the user to adapt the model to operational variables specific for his/her cement facility. Figure 1 shows the boundaries included in a plant modeled by BEST Cement. In order to model the benchmark, i.e., the most energy efficient cement facility, so that it represents a facility similar to the user's cement facility, the user is first required to input production variables in the input sheet (see Section 6 for more information on how to input variables). These variables allow the tool to estimate a benchmark facility that is similar to the user's cement plant, giving a better picture of the potential for that particular facility, rather than benchmarking against a generic one. The input variables required include the following: (1) the amount of raw materials used in tonnes per year (limestone, gypsum, clay minerals, iron ore, blast furnace slag, fly ash, slag from other industries, natural pozzolans, limestone powder (used post-clinker stage), municipal wastes and others); the amount of raw materials that are preblended (prehomogenized and proportioned) and crushed (in tonnes per year); (2) the amount of additives that are dried and ground (in tonnes per year); (3) the production of clinker (in tonnes per year) from each kiln by kiln type; (4) the amount of raw materials, coal and clinker that is ground by mill type (in tonnes per year); (5

  7. Prediction of unconfined compressive strength of cement paste containing industrial wastes.

    PubMed

    Stegemann, J A; Buenfeld, N R

    2003-01-01

    Neural network analysis was used to construct models of unconfined compressive strength (UCS) as a function of mix composition using existing data from literature studies of Portland cement containing real industrial wastes. The models were able to represent the known non-linear dependency of UCS on curing time and water content, and generalised from the literature data to find relationships between UCS and quantities of five waste types. Substantial decreases in UCS were caused by all wastes; except for EAF dust, the effect was nonlinear with the greatest decrease caused initially by approx. 12% plating sludge, 40% foundry dust, 58% other ash, and 72% MSWI fly ash by mass of dry product. It appears that the maximum waste additions used in modelling may approximate the practical limits of waste additions used in modelling may approximate the practical limits of waste addition to Portland cement, i.e., 50% plating sludge or EAF dust, 64% foundry dust, 92% other ash, and 85% MSWI fly ash by mass of dry product. The laboratory was found to be a key predictive variable and acted as a surrogate for laboratory-specific variables related to cement composition, strength and hardening class, product mixing and preparation details, laboratory conditions, and testing details. While the neural network modelling approach has been shown to be feasible, development of better models would require larger data sets with more complete information regarding laboratory-specific variables and waste composition.

  8. Lunar ash flows - Isothermal approximation.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  9. Use of vitrified MSWI bottom ashes for concrete production.

    PubMed

    Ferraris, Monica; Salvo, Milena; Ventrella, Andrea; Buzzi, Luigi; Veglia, Massimo

    2009-03-01

    Bottom ashes from a north Italian municipal solid waste incinerator (MSWI) were vitrified at 1450 degrees C without adding any vitrifying agent, then ground and sieved to different granulometry (ranging from 50 microm to 20mm), and used as filler, sand, or aggregate for concrete. Samples were characterized via slump tests (UNI 9418), alkali-silica reactivity (UNI 8520/22 and ASTM C 298), and compression strength tests (UNI 6132, 6132/72, 6686/72), and compared to reference samples obtained without vitrified bottom ashes (VBA). Our results show that vitrified bottom ashes are unsuitable as a sand substitute; however, concrete containing up to 20 wt.% of VBA filler used as a substitute for cement and up to 75 vol.% of VBA as a substitute for natural aggregate retains the same mechanical properties as reference samples. Alkali-silica or other detrimental reactions were not observed in VBA-containing concrete samples after a period of two years. The results of this work demonstrate that vitrified bottom ashes from MSWI can be used instead of natural aggregates in mortar and concrete production.

  10. Manufacture of artificial aggregate using MSWI bottom ash.

    PubMed

    Cioffi, R; Colangelo, F; Montagnaro, F; Santoro, L

    2011-02-01

    This paper reports the results of an investigation on material recovery by stabilization/solidification of bottom ash coming from a municipal solid waste incineration plant. Stabilization/solidification was carried out to produce artificial aggregate in a rotary plate granulator by adding hydraulic binders based on cement, lime and coal fly ash. Different mixes were tested in which the bottom ash content ranged between 60% and 90%. To avoid undesirable swelling in hardened products, the ash was previously milled and then granulated at room temperature. The granules were tested to assess their suitability to be used as artificial aggregate through the measurement of the following properties: density, water absorption capacity, compressive strength and heavy metals release upon leaching. It was demonstrated that the granules can be classified as lightweight aggregate with mechanical strength strongly dependent on the type of binder. Concrete mixes were prepared with the granulated artificial aggregate and tested for in-service performance, proving to be suitable for the manufacture of standard concrete blocks in all the cases investigated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Polymer-Cement Composites Containing Waste Perlite Powder.

    PubMed

    Łukowski, Paweł

    2016-10-17

    Polymer-cement composites (PCCs) are materials in which the polymer and mineral binder create an interpenetrating network and co-operate, significantly improving the performance of the material. On the other hand, the need for the utilization of waste materials is a demand of sustainable construction. Various mineral powders, such as fly ash or blast-furnace slag, are successfully used for the production of cement and concrete. This paper deals with the use of perlite powder, which is a burdensome waste from the process of thermal expansion of the raw perlite, as a component of PCCs. The results of the testing of the mechanical properties of the composite and some microscopic observations are presented, indicating that there is a possibility to rationally and efficiently utilize waste perlite powder as a component of the PCC. This would lead to creating a new type of building material that successfully meets the requirements of sustainable construction.

  12. Polymer-Cement Composites Containing Waste Perlite Powder

    PubMed Central

    Łukowski, Paweł

    2016-01-01

    Polymer-cement composites (PCCs) are materials in which the polymer and mineral binder create an interpenetrating network and co-operate, significantly improving the performance of the material. On the other hand, the need for the utilization of waste materials is a demand of sustainable construction. Various mineral powders, such as fly ash or blast-furnace slag, are successfully used for the production of cement and concrete. This paper deals with the use of perlite powder, which is a burdensome waste from the process of thermal expansion of the raw perlite, as a component of PCCs. The results of the testing of the mechanical properties of the composite and some microscopic observations are presented, indicating that there is a possibility to rationally and efficiently utilize waste perlite powder as a component of the PCC. This would lead to creating a new type of building material that successfully meets the requirements of sustainable construction. PMID:28773961

  13. Impact of admixtures on the hydration kinetics of Portland cement

    SciTech Connect

    Cheung, J.; Jeknavorian, A.; Roberts, L.; Silva, D.

    2011-12-15

    Most concrete produced today includes either chemical additions to the cement, chemical admixtures in the concrete, or both. These chemicals alter a number of properties of cementitious systems, including hydration behavior, and it has been long understood by practitioners that these systems can differ widely in response to such chemicals. In this paper the impact on hydration of several classes of chemicals is reviewed with an emphasis on the current understanding of interactions with cement chemistry. These include setting retarders, accelerators, and water reducing dispersants. The ability of the chemicals to alter the aluminate-sulfate balance of cementitious systems is discussed with a focus on the impact on silicate hydration. As a key example of this complex interaction, unusual behavior sometimes observed in systems containing high calcium fly ash is highlighted.

  14. Cement composition and sulfate attack

    SciTech Connect

    Shanahan, Natalya; Zayed, Abla . E-mail: zayed@eng.usf.edu

    2007-04-15

    Four cements were used to address the effect of tricalcium silicate content of cement on external sulfate attack in sodium sulfate solution. The selected cements had similar fineness and Bogue-calculated tricalcium aluminate content but variable tricalcium silicates. Durability was assessed using linear expansion and compressive strength. Phases associated with deterioration were examined using scanning electron microscopy and X-ray diffraction. Mineralogical phase content of the as-received cements was studied by X-ray diffraction using two methods: internal standard and Rietveld analysis. The results indicate that phase content of cements determined by X-ray mineralogical analysis correlates better with the mortar performance in sulfate environment than Bogue content. Additionally, it was found that in cements containing triclacium aluminate only in the cubic form, the observed deterioration is affected by tricalcium silicate content. Morphological similarities between hydration products of high tricalcium aluminate and high tricalcium silicate cements exposed to sodium sulfate environment were also observed.

  15. A comparative study of ordinary and mineralised Portland cement clinker from two different production units Part I: Composition and hydration of the clinkers

    SciTech Connect

    Emanuelson, Anna; Hansen, Staffan; Viggh, Erik

    2003-10-01

    Portland cement clinkers from two production units were investigated; Plant 1: ordinary clinker (P1) and clinker mineralised with CaF{sub 2}+CaSO{sub 4} (P1m); Plant 2: ordinary clinker (P2) and two clinkers mineralised with CaF{sub 2}+CaSO{sub 4} (P2m, low SO{sub 3} and P2m', high SO{sub 3}). The chemical composition of the clinkers was determined by X-ray fluorescence, ICP analysis, titration (free lime) and ion selective electrode measurements (F). Observed clinker parameters (LSF, SR, AR, R, wt.% MgO, F, SO{sub 3}, free lime): P1 (0.96, 2.72, 1.27, 1.04, 0.78, 0.06, 0.64, 0.71); P1m (1.03, 2.21, 1.58, 2.18, 0.87, 0.23, 1.95, 0.69); P2 (1.00, 2.66, 1.72, 0.75, 4.06, 0.20, 1.38, 1.51); P2m (1.01, 2.91, 1.96, 0.90, 3.21, 0.39, 1.72, 2.06); P2m' (0.97, 2.70, 1.84, 1.15, 3.86, 0.42, 2.48, 0.89). The qualitative and quantitative phase compositions were characterised using X-ray powder diffraction, backscattered electron imaging, X-ray microanalysis and elemental mapping, plus optical reflection microscopy. Phases observed in all clinkers were: alite, {beta}-belite, cubic aluminate, ferrite and free lime. Additional phases observed were: aphthitalite (P1, P2, P2m, P2m'), calcium langbeinite (P1m) and periclase (P2, P2m, P2m'). The clinker composition and texture differ more between the two plants, than between ordinary and mineralised clinker from the same production unit. Laboratory cements were prepared by mixing ground clinker with CaSO{sub 4}{center_dot}2H{sub 2}O. The cements were hydrated in an isothermal calorimeter at 20 deg. C (water/cement weight ratio=0.5) during 33 h. After 12 h, the laboratory cement based on P1m reached a higher level of reaction than the one based on P1. The P2m and P2m' laboratory cements had a slower reaction than the P2 cement.

  16. Properties of Portland cement concretes containing pozzolanic admixtures

    NASA Astrophysics Data System (ADS)

    Simmons, D. D.; Pasko, T. J., Jr.; Jones, W. R.

    1981-04-01

    A laboratory comparison was made of the properties of a concrete containing no pozzolan with several mixtures containing pozzolans. Used were a natural pozzolan (Lassenite), two fly ashes of different fineness and low carbon and an amorphous silica fume dust from a metal-producing plant. One cement, one coarse crushed limestone aggregate, and one fine river aggregate were used. Replacing a faster reacting binder with a slower one, produced lower early strengths and adversely affected the properties which are highly dependent on strength. The measures of durability were greatly affected by the air contents and aging or treatment prior to exposure. The amorphous silica fume dust increased the early strengths of a fly ash mixture.

  17. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement.

    PubMed

    Sales, Almir; Lima, Sofia Araújo

    2010-06-01

    Sugarcane today plays a major role in the worldwide economy, and Brazil is the leading producer of sugar and alcohol, which are important international commodities. The production process generates bagasse as a waste, which is used as fuel to stoke boilers that produce steam for electricity cogeneration. The final product of this burning is residual sugarcane bagasse ash (SBA), which is normally used as fertilizer in sugarcane plantations. Ash stands out among agroindustrial wastes because it results from energy generating processes. Many types of ash do not have hydraulic or pozzolanic reactivity, but can be used in civil construction as inert materials. The present study used ash collected from four sugar mills in the region of São Carlos, SP, Brazil, which is one of the world's largest producers of sugarcane. The ash samples were subjected to chemical characterization, sieve analysis, determination of specific gravity, X-ray diffraction, scanning electron microscopy, and solubilization and leaching tests. Mortars and concretes with SBA as sand replacement were produced and tests were carried out: compressive strength, tensile strength and elastic modulus. The results indicated that the SBA samples presented physical properties similar to those of natural sand. Several heavy metals were found in the SBA samples, indicating the need to restrict its use as a fertilizer. The mortars produced with SBA in place of sand showed better mechanical results than the reference samples. SBA can be used as a partial substitute of sand in concretes made with cement slag-modified Portland cement.

  18. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement

    SciTech Connect

    Sales, Almir; Lima, Sofia Araujo

    2010-06-15

    Sugarcane today plays a major role in the worldwide economy, and Brazil is the leading producer of sugar and alcohol, which are important international commodities. The production process generates bagasse as a waste, which is used as fuel to stoke boilers that produce steam for electricity cogeneration. The final product of this burning is residual sugarcane bagasse ash (SBA), which is normally used as fertilizer in sugarcane plantations. Ash stands out among agroindustrial wastes because it results from energy generating processes. Many types of ash do not have hydraulic or pozzolanic reactivity, but can be used in civil construction as inert materials. The present study used ash collected from four sugar mills in the region of Sao Carlos, SP, Brazil, which is one of the world's largest producers of sugarcane. The ash samples were subjected to chemical characterization, sieve analysis, determination of specific gravity, X-ray diffraction, scanning electron microscopy, and solubilization and leaching tests. Mortars and concretes with SBA as sand replacement were produced and tests were carried out: compressive strength, tensile strength and elastic modulus. The results indicated that the SBA samples presented physical properties similar to those of natural sand. Several heavy metals were found in the SBA samples, indicating the need to restrict its use as a fertilizer. The mortars produced with SBA in place of sand showed better mechanical results than the reference samples. SBA can be used as a partial substitute of sand in concretes made with cement slag-modified Portland cement.

  19. Use of fly-ash for sealing a radioactive waste repository

    SciTech Connect

    Ollagnier, M.; Tauziede, C.; Olivier, J.

    1993-12-31

    The mining industry currently uses fly-ash from coal-fired power-plants to close access shafts in abandoned mines, in sedimentary formations. The technique consists of installing a plug of fly-ash, about fifty meters high, at the base of the shaft-lining. In this study, fly-ash is considered as a possible sealant for radioactive repositories in sedimentary formations, as well as in hard rock. Specific studies have been conducted in order to assess the feasibility of this technique, and to improve the long-term performance of the fly-ash seals. The hydraulic and mechanical characteristics of fly-ash, taken from the plug of an abandoned shaft, as well as from dumps of various ages, were measured. Laboratory tests showed that it is possible to reduce the hydraulic conductivity of fly-ash by a factor of thousand, with the addition of ten percent bentonite. Moreover, it seems possible to block fine fissures in the surrounding damaged rock by injecting grouts made of cement and fly-ash having maximum diameters of twenty micrometers.

  20. New cement formulation helps solve deep cementing problems

    SciTech Connect

    Brothers, L.E.; DeBlanc, F.X.

    1989-06-01

    Invert-emulsion muds are used in most deep, hot wells. The internal aqueous phase of these muds frequently contains high concentrations of salts. It is desirable to complete these wells with a cement slurry containing salt concentrations up to and including saturation to minimize compatibility problems between cement slurry and mud. Above their effective temperature range, however, saturated salt cements - though still considered desirable for their other properties - pose design difficulties regarding thickening time, fluid loss, and rheology. High salt concentrations tend to decrease the effectiveness of most common cement additives - e.g., retarders, fluid-loss additives, and dispersants. At high temperatures, concentrations of these additives can become unacceptably large, while the additives themselves are not as effective under these conditions. Development of and field experience with a new cementing formulation for deep, high-temperature, saturated-salt applications have helped resolve the cement design problems encountered in south Texas and southern and offshore Louisiana. A single synthetic-polymer additive provides cement retardation, fluid-loss control, and dispersant properties with normal design considerations as opposed to the lengthy design requirements of other cement systems. A particular benefit derived from use of the new cement system involves cementing of long liners. Such liners frequently require squeeze cementing at the liner top because the cement is designed for conditions at the bottom of the liner and is thus frequently over-retarded for the cooler temperatures encountered at the top of the liner. This over-retardation tendency is alleviated greatly by use of the new saturated-salt cement additive.

  1. Environmental Benefit Assessment for the Carbonation Process of Petroleum Coke Fly Ash in a Rotating Packed Bed.

    PubMed

    Pei, Si-Lu; Pan, Shu-Yuan; Li, Ye-Mei; Chiang, Pen-Chi

    2017-09-19

    A high-gravity carbonation process was deployed at a petrochemical plant using petroleum coke fly ash and blowdown wastewater to simultaneously mineralized CO2 and remove nitrogen oxides and particulate matters from the flue gas. With a high-gravity carbonation process, the CO2 removal efficiency was found to be 95.6%, corresponding to a capture capacity of 600 kg CO2 per day, at a gas flow rate of 1.47 m(3)/min under ambient temperature and pressure. Moreover, the removal efficiency of nitrogen oxides and particulate matters was 99.1% and 83.2%, respectively. After carbonation, the reacted fly ash was further utilized as supplementary cementitious materials in the blended cement mortar. The results indicated that cement with carbonated fly ash exhibited superior compressive strength (38.1 ± 2.5 MPa at 28 days in 5% substitution ratio) compared to the cement with fresh fly ash. Furthermore, the environmental benefits for the high-gravity carbonation process using fly ash were critically assessed. The energy consumption of the entire high-gravity carbonation ranged from 80 to 169 kWh/t-CO2 (0.29-0.61 GJ/t-CO2). Compared with the scenarios of business-as-usual and conventional carbon capture and storage plant, the economic benefit from the high-gravity carbonation process was approximately 90 and 74 USD per ton of CO2 fixation, respectively.

  2. On the Utilization of Pozzolanic Wastes as an Alternative Resource of Cement

    PubMed Central

    Karim, Md. Rezaul; Hossain, Md. Maruf; Khan, Mohammad Nabi Newaz; Zain, Muhammad Fauzi Mohd; Jamil, Maslina; Lai, Fook Chuan

    2014-01-01

    Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash) as an alkali activated binder (AAB) that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1.0, 2.5 and 5.0 molar concentration added into the mortar, separately. The required solution was used to maintain the flow of mortar at 110% ± 5%. The consistency and setting time of the AAB-paste were determined. Mortar was tested for its flow, compressive strength, porosity, water absorption and thermal resistance (heating at 700 °C) and investigated by scanning electron microscopy. The experimental results reveal that AAB-mortar exhibits less flow than that of ordinary Portland cement (OPC). Surprisingly, AAB-mortars (with 2.5 molar solution) achieved a compressive strength of 34.3 MPa at 28 days, while OPC shows that of 43.9 MPa under the same conditions. Although water absorption and porosity of the AAB-mortar are slightly high, it shows excellent thermal resistance compared to OPC. Therefore, based on the test results, it can be concluded that in the presence of a chemical activator, the aforementioned pozzolans can be used as an alternative material for cement. PMID:28788277

  3. On the Utilization of Pozzolanic Wastes as an Alternative Resource of Cement.

    PubMed

    Karim, Md Rezaul; Hossain, Md Maruf; Khan, Mohammad Nabi Newaz; Zain, Muhammad Fauzi Mohd; Jamil, Maslina; Lai, Fook Chuan

    2014-12-05

    Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash) as an alkali activated binder (AAB) that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1.0, 2.5 and 5.0 molar concentration added into the mortar, separately. The required solution was used to maintain the flow of mortar at 110% ± 5%. The consistency and setting time of the AAB-paste were determined. Mortar was tested for its flow, compressive strength, porosity, water absorption and thermal resistance (heating at 700 °C) and investigated by scanning electron microscopy. The experimental results reveal that AAB-mortar exhibits less flow than that of ordinary Portland cement (OPC). Surprisingly, AAB-mortars (with 2.5 molar solution) achieved a compressive strength of 34.3 MPa at 28 days, while OPC shows that of 43.9 MPa under the same conditions. Although water absorption and porosity of the AAB-mortar are slightly high, it shows excellent thermal resistance compared to OPC. Therefore, based on the test results, it can be concluded that in the presence of a chemical activator, the aforementioned pozzolans can be used as an alternative material for cement.

  4. Evaluation of heavy metal leaching from coal ash-versus conventional concrete monoliths and debris.

    PubMed

    Gwenzi, Willis; Mupatsi, Nyarai M

    2016-03-01

    Application of coal ash in construction materials is constrained by the potential risk of heavy metal leaching. Limited information is available on the comparative heavy metal leaching from coal ash-versus conventional concrete. The current study compared total and leached heavy metal concentrations in unbound coal ash, cement and sand; and investigated the effect of initial leachant pH on heavy metal leaching from coal-ash versus conventional concrete monoliths and their debris. Total Pb, Mn and Zn in coal ash were lower than or similar to that of other materials, while Cu and Fe showed the opposite trend. Leached concentrations of Zn, Pb, Mn, Cu and Fe in unbound coal ash, its concrete and debris were comparable and in some cases even lower than that for conventional concrete. In all cases, leached concentrations accounted for just <1% of the total concentrations. Log-log plots of concentration and cumulative release of Fe versus time based on tank leaching data showed that leaching was dominated by diffusion. Overall, the risk of Zn, Pb, Mn, Cu and Fe leaching from coal ash and its concrete was minimal and comparable to that of conventional concrete, a finding in contrast to widely held public perceptions and earlier results reported in other regions such as India. In the current study the coal ash, and its concrete and debris had highly alkaline pH indicative of high acid neutralizing and pH buffering capacity, which account for the stabilization of Zn, Pb, Mn, Cu and Fe. Based on the low risk of Zn, Pb, Mn, Cu and Fe leaching from the coal ash imply that such coal ash can be incorporated in construction materials such as concrete without adverse impacts on public and environmental health from these constituents.

  5. ASH EMISSIVITY CHARACTERIZATION AND PREDICTION

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor; Charlene R. Crocker

    1999-12-01

    The increased use of western subbituminous coals has generated concerns regarding highly reflective ash disrupting heat transfer in the radiant zone of pulverized-fuel boilers. Ash emissivity and reflectivity is primarily a function of ash particle size, with reflective deposits expected to consist of very small refractory ash materials such as CaO, MgO, or sulfate materials such as Na{sub 2}SO{sub 4}. For biomass fuels and biomass-coal blends, similar reflectivity issues may arise as a result of the presence of abundant organically associated calcium and potassium, which can transform during combustion to fine calcium, and potassium oxides and sulfates, which may act as reflective ash. The relationship of reflectivity to ash chemistry is a second-order effect, with the ash particle size distribution and melting point being determined by the size and chemistry of the minerals present in the starting fuel. Measurement of the emission properties of ash and deposits have been performed by several research groups (1-6) using both laboratory methods and measurements in pilot- and full-scale combustion systems. A review of the properties and thermal properties of ash stresses the important effect of ash deposits on heat transfer in the radiant boiler zone (1).

  6. Coal ash utilization in India

    SciTech Connect

    Michalski, S.R.; Brendel, G.F.; Gray, R.E.

    1998-12-31

    This paper describes methods of coal combustion product (CCP) management successfully employed in the US and considers their potential application in India. India produces about 66 million tons per year (mty) of coal ash from the combustion of 220 mty of domestically produced coal, the average ash content being about 30--40 percent as opposed to an average ash content of less than 10 percent in the US In other words, India produces coal ash at about triple the rate of the US. Currently, 95 percent of this ash is sluiced into slurry ponds, many located near urban centers and consuming vast areas of premium land. Indian coal-fired generating capacity is expected to triple in the next ten years, which will dramatically increase ash production. Advanced coal cleaning technology may help reduce this amount, but not significantly. Currently India utilizes two percent of the CCP`s produced with the remainder being disposed of primarily in large impoundments. The US utilizes about 25 percent of its coal ash with the remainder primarily being disposed of in nearly equal amounts between dry landfills and impoundments. There is an urgent need for India to improve its ash management practice and to develop efficient and environmentally sound disposal procedures as well as high volume ash uses in ash haulback to the coalfields. In addition, utilization should include: reclamation, structural fill, flowable backfill and road base.

  7. Volcanic ash melting under conditions relevant to ash turbine interactions

    PubMed Central

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-01-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200–2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824

  8. Volcanic ash melting under conditions relevant to ash turbine interactions

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-03-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  9. Effects of sintering atmosphere on cement clinkers produced from chromium-bearing sludge.

    PubMed

    Chen, Ying-Liang; Chang, Juu-En; Lai, Yi-Chieh; Ko, Ming-Sheng

    2012-05-01

    The purpose of this study was to investigate the effects of sintering atmosphere (oxidizing and reducing) on the polymorphs of dicalcium silicates (Ca2SiO4, C2S) and on the chromium leaching of the belite-rich clinkers made from a chromium-bearing sludge. This sludge was generated in an electroplating factory, and in addition to chromium, it contained nickel, copper and zinc. In the clinker production, air was used as the oxidizing atmosphere, and carbon monoxide, which was produced by burning graphite with an insufficient amount of oxygen, was employed as the reducing atmosphere. Dicalcium silicates were substantially formed under both kinds of sintering atmosphere, but there was some nonhydraulic gamma-C2S in the clinkers produced under the oxidizing atmosphere. In addition, the amount of gamma-C2S decreased with the chromium-bearing sludge addition, whereas that of beta-C2S increased. The clinkers produced under the reducing atmosphere had less residual chromium, a finding that shows that more chromium was evaporated. However, the reducing atmosphere can decrease the proportion of hexavalent chromium (Cr(VI)) in the resulting clinkers. For other heavy metals, the residual amounts of nickel and copper generally increased with the sludge addition, but zinc was absent in most of the clinkers produced under the reducing atmosphere. This implies that the evaporation of zinc is much more significant than that of the other heavy metals under a reducing atmosphere. In the leaching tests, the concentrations of nickel, copper, and zinc were below the detection limits in all the leachates. In terms of chromium, the total leaching concentration was highly related to Cr(VI). The clinkers produced under the oxidizing atmosphere had high leaching concentrations of chromium, and thus failed to meet the regulatory limit. In contrast, the reducing atmosphere was effective in decreasing the chromium leaching, and it therefore makes the resulting cement clinkers more

  10. Modeling volcanic ash dispersal

    ScienceCinema

    None

    2016-07-12

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  11. Modeling volcanic ash dispersal

    SciTech Connect

    2010-10-22

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  12. Circle of Ashes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Circle of Ashes

    This plot tells astronomers that a pulsar, the remnant of a stellar explosion, is surrounded by a disk of its own ashes. The disk, revealed by the two data points at the far right from NASA's Spitzer Space Telescope, is the first ever found around a pulsar. Astronomers believe planets might rise up out of these stellar ashes.

    The data in this plot, or spectrum, were taken by ground-based telescopes and Spitzer. They show that light from around the pulsar can be divided into two categories: direct light from the pulsar, and light from the dusty disk swirling around the pulsar. This excess light was detected by Spitzer's infrared array camera. Dust gives off more infrared light than the pulsar because it's cooler.

    The pulsar, called 4U 0142+61, was once a massive star, until about 100,000 years ago, when it blew up in a supernova explosion and scattered dusty debris into space. Some of that debris was captured into what astronomers refer to as a 'fallback disk,' now circling the leftover stellar core, or pulsar. The disk resembles protoplanetary disks around young stars, out of which planets are thought to be born.

    The data have been corrected to remove the effects of light scattering from dust that lies between Earth and the pulsar.

    The ground-based data is from the Keck I telescope atop Mauna Kea, Hawaii.

  13. Mineral resource of the month: hydraulic cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  14. Cement from magnesium substituted hydroxyapatite.

    PubMed

    Lilley, K J; Gbureck, U; Knowles, J C; Farrar, D F; Barralet, J E

    2005-05-01

    Brushite cement may be used as a bone graft material and is more soluble than apatite in physiological conditions. Consequently it is considerably more resorbable in vivo than apatite forming cements. Brushite cement formation has previously been reported by our group following the mixture of nanocrystalline hydroxyapatite and phosphoric acid. In this study, brushite cement was formed from the reaction of nanocrystalline magnesium-substituted hydroxyapatite with phosphoric acid in an attempt to produce a magnesium substituted brushite cement. The presence of magnesium was shown to have a strong effect on cement composition and strength. Additionally the presence of magnesium in brushite cement was found to reduce the extent of brushite hydrolysis resulting in the formation of HA. By incorporating magnesium ions in the apatite reactant structure the concentration of magnesium ions in the liquid phase of the cement was controlled by the dissolution rate of the apatite. This approach may be used to supply other ions to cement systems during setting as a means to manipulate the clinical performance and characteristics of brushite cements.

  15. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    NASA Astrophysics Data System (ADS)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  16. Foamed well cementing compositions and methods

    SciTech Connect

    Bour, D.L.; Childs, J.D.

    1992-07-28

    This patent describes a method of cementing a well penetrating a salt containing subterranean formation. It comprises: forming a foamed cement composition; placing the foamed cement composition in contact with the salt containing formation; and permitting the foamed cement composition to set in contact with the salt containing formation to form a hardened mass of cement.

  17. An atlas of volcanic ash

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1974-01-01

    Volcanic ash samples collected from a variety of recent eruptions were studied, using petrography, chemical analyses, and scanning electron microscopy to characterize each ash type and to relate ash morphology to magma composition and eruption type. The ashes are best placed into two broad genetic categories: magnetic and hydrovolcanic (phreatomagmatic). Ashes from magmatic eruptions are formed when expanding gases in the magma form a froth that loses its coherence as it approaches the ground surface. During hydrovolcanic eruptions, the magma is chilled on contact with ground or surface waters, resulting in violent steam eruptions. Within these two genetic categories, ashes from different magma types can be characterized. The pigeon hole classification used here is for convenience; there are eruptions which are driven by both phreatic and magmatic gases.

  18. Ash in the Soil System

    NASA Astrophysics Data System (ADS)

    Pereira, P.

    2012-04-01

    Ash is the organic and inorganic residue produced by combustion, under laboratory and field conditions. This definition is far away to be accepted. Some researchers consider ash only as the inorganic part, others include also the material not completely combusted as charcoal or biochar. There is a need to have a convergence about this question and define clear "what means ash". After the fire and after spread ash onto soil surface, soil properties can be substantially changed depending on ash properties, that can be different according to the burned residue (e.g wood, coal, solid waste, peppermill, animal residues), material treatment before burning, time of exposition and storage conditions. Ash produced in boilers is different from the produced in fires because of the material diferent propertie and burning conditions. In addition, the ash produced in boilers is frequently treated (e.g pelletization, granulation, self curing) previously to application, to reduce the negative effects on soil (e.g rapid increase of pH, mycorrhiza, fine roots of trees and microfauna). These treatments normally reduce the rate of nutrients dissolution. In fires this does not happen. Thus the implications on soil properties are logically different. Depending on the combustion temperature and/or severity, ash could have different physical (e.g texture, wettability) and chemical properties (e.g amount and type of total and leached nutrients) and this will have implications on soil. Ash can increase and decrease soil aggregation, wettablity and water retention, bulk density, runoff and water infiltration. Normally, ash increases soil pH, Electrical Conductivity, and the amount of some basic nutrients as calcium, magnesium, sodium and potassium. However it is also a potential source of heavy metals, especially if ash pH is low. However the effect of ash on soil in space and time depends especially of the ash amount and characteristics, fire temperature, severity, topography, aspect

  19. US cement industry

    SciTech Connect

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  20. Cement evaluation tool: a new approach to cement evaluation

    SciTech Connect

    Froelich, B.; Dumont, A.; Pittman, D.; Seeman, B.

    1982-08-01

    Cement bond logging achieves its greatest utility when it provides the production engineer with precise indications of cement strength and distribution around the casing. Zone isolation is of critical importance in production. Previous logging systems have yielded measures of cement bond that were circumferential averages of cement quality. These were difficult to interpret. Additionally, they were sensitive to the degree of shear coupling between pipe, cement, and formation and thus were affected by microannulus. The cement evaluation tool (CET) described here overcomes these difficulties. It provides a measurement of cement presence and strength, which is largely insensitive to microannulus. Its log output is interpreted easily. Tool design allows examination of the casing circumferentially at each depth. Impedance behind casing is measured. Laboratory calibration measurements allow this to be presented in terms of cement compressive strength. Cement channels are distinguished easily, and a zone isolation indicator can be presented. Additionally, casing internal diameter and distortion are displayed. European and North American field tests have been completed, and performance for a variety of well conditions is discussed. The ability of the tool to identify channels is confirmed. Sequential runs with and without excess pressure demonstrate immunity to microannulus in cases where CBL is affected but where microannulus is small enough to prohibit hydraulic communication. Geometrical measurements have been good indicators of casing deformation and have identified casing corrosion and wear.

  1. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures.

    PubMed

    Collivignarelli, Carlo; Sorlini, Sabrina

    2002-01-01

    This study is aimed at assessing the feasibility of concrete production using stabilized m.s.w. (municipal solid waste) incineration fly ashes in addition to natural aggregates. The tested fly ashes were washed and milled, then stabilized by a cement-lime process and finally were reused as a "recycled aggregate" for cement mixture production, in substitution of a natural aggregate (with dosage of 200-400 kg m(-3)). These mixtures, after curing, were characterized with conventional physical-mechanical tests (compression, traction, flexure, modulus of elasticity, shrinkage). In samples containing 200 kg(waste) m(-3)(concrete), a good compressive strength was achieved after 28 days of curing. Furthermore, concrete leaching behavior was evaluated by means of different leaching tests, both on milled and on monolithic samples. Experimental results showed a remarkable reduction of metal leaching in comparison with raw waste. In some cases, similar behavior was observed in "natural" concrete (produced with natural aggregates) and in "waste containing" concrete.

  2. Well cementing in permafrost

    SciTech Connect

    Wilson, W.N.

    1980-01-01

    A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of ligno-sulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious material which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition for cementing in a permafrost region of a wellbore.

  3. Evaluation of cement production using a pressurized fluidized-bed combustor

    SciTech Connect

    DeLallo, M.; Eshbach, R.

    1994-01-01

    There are several primary conclusions which can be reached and used to define research required in establishing the feasibility of using PFBC-derived materials as cement feedstock. 1. With appropriate blending almost any material containing the required cement-making materials can be utilized to manufacture cement. However, extensive blending with multiple materials or the use of ash in relatively small quantities would compromise the worth of this concept. 2. The composition of a potential feedstock must be considered not only with respect to the presence of required materials, but just as significantly, with respect to the presence and concentration of known deleterious materials. 3. The processing costs for rendering the feedstock into an acceptable composition and the energy costs associated with both processing and burning must be considered. It should be noted that the cost of energy to produce cement, expressed as a percentage of the price of the product is higher than for any other major industrial product. Energy consumption is, therefore, a major issue. 4. The need for conformance to environmental regulations has a profound effect on the cement industry since waste materials can neither be discharged to the atmosphere or be shipped to a landfill. 5. Fifth, the need for achieving uniformity in the composition of the cement is critical to controlling its quality. Unfortunately, certain materials in very small concentrations have the capability to affect the rate and extent to which the cementitious compound in portland cement are able to form. Particularly critical are variations in the ash, the sulfur content of the coal or the amount and composition of the stack dust returned to the kiln.

  4. Mineral of the month: cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2006-01-01

    Hydraulic cement is a virtually ubiquitous construction material that, when mixed with water, serves as the binder in concrete and most mortars. Only about 13 percent of concrete by weight is cement (the rest being water and aggregates), but the cement contributes all of the concrete’s compressional strength. The term “hydraulic” refers to the cement’s ability to set and harden underwater through the hydration of the cement’s components.

  5. Cement penetration after patella venting.

    PubMed

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement.

  6. [Haemotoxicity of dental luting cements].

    PubMed

    Anders, A; Welker, D

    1989-06-01

    A glass ionomer luting cement (AquaCem) shows a relatively low haemolytic activity in comparison with two zinc phosphate cements. Especially the initial irritation by this cement is smaller. Although it is possible that AquaCem particularly, in unfavourable cases, may damage the pulpa dentin system; this is due to the slowly decrease of the haemolytic activity with increasing of the probes. We found that Adhesor showed in dependence of the batches a varying quality.

  7. Abrasive wear of cemented carbides

    SciTech Connect

    Hawk, Jeffrey A.; Wilson, Rick D.

    2003-10-01

    Cemented carbides are used for a wide variety of applications where wear is a problem. Usually the wear of the cemented carbides is a combination of metal-to-metal and abrasion. Wear can occur at room or elevated temperatures. This research summarizes initial research to understand the abrasive wear of various cemented carbides (various grain sizes, carbide types, carbide grain sizes and binder compositions) in terms of absolute material removal rates and material removal mechanisms.

  8. Porous materials produced from incineration ash using thermal plasma technology.

    PubMed

    Yang, Sheng-Fu; Chiu, Wen-Tung; Wang, To-Mai; Chen, Ching-Ting; Tzeng, Chin-Ching

    2014-06-01

    This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9-1.2 g cm(-3) and 50-60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m(-1) K(-1). Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications.

  9. Strength properties of fly ash based controlled low strength materials.

    PubMed

    Türkel, S

    2007-08-25

    Controlled low strength material (CLSM) is a flowable mixture that can be used as a backfill material in place of compacted soils. Flowable fill requires no tamping or compaction to achieve its strength and typically has a load carrying capacity much higher than compacted soils, but it can still be excavated easily. The selection of CLSM type should be based on technical and economical considerations for specific applications. In this study, a mixture of high volume fly ash (FA), crushed limestone powder (filler) and a low percentage of pozzolana cement have been tried in different compositions. The amount of pozzolana cement was kept constant for all mixes as, 5% of fly ash weight. The amount of mixing water was chosen in order to provide optimum pumpability by determining the spreading ratio of CLSM mixtures using flow table method. The shear strength of the material is a measure of the materials ability to support imposed stresses on the material. The shear strength properties of CLSM mixtures have been investigated by a series of laboratory tests. The direct shear test procedure was applied for determining the strength parameters Phi (angle of shearing resistance) and C(h) (cohesion intercept) of the material. The test results indicated that CLSM mixtures have superior shear strength properties compared to compacted soils. Shear strength, cohesion intercept and angle of shearing resistance values of CLSM mixtures exceeded conventional soil materials' similar properties at 7 days. These parameters proved that CLSM mixtures are suitable materials for backfill applications.

  10. Volcanic ash infrared signature: realistic ash particle shapes compared to spherical ash particles

    NASA Astrophysics Data System (ADS)

    Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T.

    2013-10-01

    The reverse absorption technique is often used to detect volcanic clouds from thermal infrared satellite measurements. From these measurements particle size and mass loading may also be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculate thermal infrared optical properties of highly irregular and porous ash particles and compare these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry are calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres are found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates will underestimate the mass loading by several tens of percent compared to morphologically complex inhomogeneous ash particles.

  11. Inspection program improves bulk cement system delivery

    SciTech Connect

    O'Bannion, T. ); Guidroz, B.; Morris, G. )

    1993-12-20

    A recently implemented survey of pneumatically operated bulk cement-handling equipment offshore has improved bulk cement deliverability on several Gulf of Mexico rigs. The 30-point survey helps ensure an adequate rate of bulk cement delivery throughout the cement job. The inspection survey was developed because the source of many cement job failures was a lack of adequate, steady delivery of bulk cement to the cementing unit during the job. The job failures caused by flow interruptions, plugging of tools by chunks of set cement, and erratic flow resulted in poor primary cement jobs, many of which required remedial cementing jobs. A better-controlled flow of cement may help prevent these types of failure, thereby reducing the number of remedial cement operations. The paper describes the inspection procedures.

  12. Ash, the emerald ash borer, and private forest land management

    Treesearch

    Tom. Crowe

    2010-01-01

    Forest management through emerald ash borer (EAB) will be a dynamic process that will change based on the best information available at the time. Management decisions will depend on the anticipated time of EAB arrival; the diameter and number of ash present in the forest stand; the diameter and number of other desirable and undesirable species present in the stand (...

  13. Pore size distribution, strength, and microstructure of portland cement paste containing metal hydroxide waste

    SciTech Connect

    Majid, Z.A.; Mahmud, H.; Shaaban, M.G.

    1996-12-31

    Stabilization/solidification of hazardous wastes is used to convert hazardous metal hydroxide waste sludge into a solid mass with better handling properties. This study investigated the pore size development of ordinary portland cement pastes containing metal hydroxide waste sludge and rice husk ash using mercury intrusion porosimetry. The effects of acre and the addition of rice husk ash on pore size development and strength were studied. It was found that the pore structures of mixes changed significantly with curing acre. The pore size shifted from 1,204 to 324 {angstrom} for 3-day old cement paste, and from 956 to 263 {angstrom} for a 7-day old sample. A reduction in pore size distribution for different curing ages was also observed in the other mixtures. From this limited study, no conclusion could be made as to any correlation between strength development and porosity. 10 refs., 6 figs., 3 tabs.

  14. Environmental behavior of cement-based stabilized foundry sludge products incorporating additives.

    PubMed

    Ruiz, M C; Irabien, A

    2004-06-18

    A series of experiments were conducted to stabilize the inorganic and organic pollutants in a foundry sludge from a cast iron activity using Portland cement as binder and three different types of additives, organophilic bentonite, lime and coal fly ash. Ecotoxicological and chemical behavior of stabilized mixes of foundry sludge were analyzed to assess the feasibility to immobilize both types of contaminants, all determined on the basis of compliance leaching tests. The incorporation of lime reduces the ecotoxicity of stabilized mixes and enhances stabilization of organic pollutants obtaining better results when a 50% of cement is replaced by lime. However, the alkalinity of lime increases slightly the leached zinc up to concentrations above the limit set under neutral conditions by the European regulations. The addition of organophilic bentonite and coal fly ash can immobilize the phenolic compounds but are inefficient to reduce the ecotoxicity and mobility of zinc of final products.

  15. Characterization of vapor phase mercury released from concrete processing with baghouse filter dust added cement.

    PubMed

    Wang, Jun; Hayes, Josh; Wu, Chang-Yu; Townsend, Timothy; Schert, John; Vinson, Tim; Deliz, Katherine; Bonzongo, Jean-Claude

    2014-02-18

    The fate of mercury (Hg) in cement processing and products has drawn intense attention due to its contribution to the ambient emission inventory. Feeding Hg-loaded coal fly ash to the cement kiln introduces additional Hg into the kiln's baghouse filter dust (BFD), and the practice of replacing 5% of cement with the Hg-loaded BFD by cement plants has recently raised environmental and occupational health concerns. The objective of this study was to determine Hg concentration and speciation in BFD as well as to investigate the release of vapor phase Hg from storing and processing BFD-added cement. The results showed that Hg content in the BFD from different seasons ranged from 0.91-1.44 mg/kg (ppm), with 62-73% as soluble inorganic Hg, while Hg in the other concrete constituents were 1-3 orders of magnitude lower than the BFD. Up to 21% of Hg loss was observed in the time-series study while storing the BFD in the open environment by the end of the seventh day. Real-time monitoring in the bench system indicated that high temperature and moisture can facilitate Hg release at the early stage. Ontario Hydro (OH) traps showed that total Hg emission from BFD is dictated by the air exchange surface area. In the bench simulation of concrete processing, only 0.4-0.5% of Hg escaped from mixing and curing BFD-added cement. A follow-up headspace study did not detect Hg release in the following 7 days. In summary, replacing 5% of cement with the BFD investigated in this study has minimal occupational health concerns for concrete workers, and proper storing and mixing of BFD with cement can minimize Hg emission burden for the cement plant.

  16. Eco-friendly porous concrete using bottom ash aggregate for marine ranch application.

    PubMed

    Lee, Byung Jae; Prabhu, G Ganesh; Lee, Bong Chun; Kim, Yun Yong

    2016-03-01

    This article presents the test results of an investigation carried out on the reuse of coal bottom ash aggregate as a substitute material for coarse aggregate in porous concrete production for marine ranch applications. The experimental parameters were the rate of bottom ash aggregate substitution (30%, 50% and 100%) and the target void ratio (15%, 20% and 25%). The cement-coated granular fertiliser was substituted into a bottom ash aggregate concrete mixture to improve marine ranch applications. The results of leaching tests revealed that the bottom ash aggregate has only a negligible amount of the ten deleterious substances specified in the Ministry of Environment - Enforcement Regulation of the Waste Management Act of Republic Korea. The large amount of bubbles/air gaps in the bottom ash aggregate increased the voids of the concrete mixtures in all target void ratios, and decreased the compressive strength of the porous concrete mixture; however, the mixture substituted with 30% and 10% of bottom ash aggregate and granular fertiliser, respectively, showed an equal strength to the control mixture. The sea water resistibility of the bottom ash aggregate substituted mixture was relatively equal to that of the control mixture, and also showed a great deal of improvement in the degree of marine organism adhesion compared with the control mixture. No fatality of fish was observed in the fish toxicity test, which suggested that bottom ash aggregate was a harmless material and that the combination of bottom ash aggregate and granular fertiliser with substitution rates of 30% and 10%, respectively, can be effectively used in porous concrete production for marine ranch application.

  17. The lime-soda sinter process for resource recovery from fly ash: A new look

    SciTech Connect

    Burnet, G.

    1991-01-01

    The lime-soda sinter process is one of the earliest and most thoroughly researched and evaluated of the several methods available for resource recovery from fly ash. The principle product, metallurgical grade alumina, is obtained with yields as high as 90% depending upon how much alumina needs to be left in the residue to form acceptable byproduct cement clinker. The process has the advantages of requiring a relatively low sintering temperature (1100-1200{degree}C), using conventional equipment of carbon steel construction, utilizing a variety of calcium and mineralizer raw materials, and producing only a single byproduct consisting of dicalcium silicate that has been shown to be an attractive raw material for the manufacture of portland cement. An economic feasibility study for a combined facility to produce alumina and cement from the fly ash generated by a 1000 MWe coal-fired power station shows a 10.5% return on average investment. This is increased to 14.2% when a disposal charge of $10/ton of fly ash consumed is credited to the process. Research has shown that the soda ash can be replaced by coal cleaning refuse or that the soda ash and one-fourth of the limestone can be replaced by FGD sludge with a savings in raw material cost in both cases. The return on average investment becomes 14.5% when the refuse is used and 15.2% when the sludge is used. The return could be increased further if an inexpensive fluxing agent were substituted for the alumina deliberately left in the residue. 12 refs., 2 figs., 7 tabs.

  18. Phosphate based oil well cements

    NASA Astrophysics Data System (ADS)

    Natarajan, Ramkumar

    The main application of the cement in an oil well is to stabilize the steel casing in the borehole and protect it from corrosion. The cement is pumped through the borehole and is pushed upwards through the annulus between the casing and the formation. The cement will be exposed to temperature and pressure gradients of the borehole. Modified Portland cement that is being used presently has several shortcomings for borehole sealant. The setting of the Portland cement in permafrost regions is poor because the water in it will freeze even before the cement sets and because of high porosity and calcium oxide, a major ingredient it gets easily affected by the down hole gases such as carbon dioxide. The concept of phosphate bonded cements was born out of considerable work at Argonne National Laboratory (ANL) on their use in stabilization of radioactive and hazardous wastes. Novel cements were synthesized by an acid base reaction between a metal oxide and acid phosphate solution. The major objective of this research is to develop phosphate based oil well cements. We have used thermodynamics along with solution chemistry principles to select calcined magnesium oxide as candidate metal oxide for temperatures up to 200°F (93.3°C) and alumina for temperatures greater than 200°F (93.3°C). Solution chemistry helped us in selecting mono potassium phosphate as the acid component for temperatures less than 200°F (93.3°C) and phosphoric acid solution greater than 200°F (93.3°C). These phosphate cements have performance superior to common Portland well cements in providing suitable thickening time, better mechanical and physical properties.

  19. Biogas purification with biomass ash.

    PubMed

    Fernández-Delgado Juárez, M; Mostbauer, P; Knapp, A; Müller, W; Tertsch, S; Bockreis, A; Insam, H

    2017-10-07

    The aim of the study was to investigate the option to purify biogas from small-scale biogas plants by entrapping CO2 and H2S with regionally available biomass ash. Connected to the existing biogas plant Neustift (Tyrol) wood ash placed in a 1 m(3) container was used as a trap for CO2 and H2S in the biogas. With the process conditions chosen, for a period of a few hours CO2 was trapped resulting in pure methane. The removal of H2S was much longer-lasting (up to 34 d). The cumulative H2S uptake by the biomass ash ranged from 0.56 to 1.25 kg H2S per ton of ash. The pH of the ash and the leachability of Lead and Barium were reduced by the flushing with biogas, however toxicity towards plants was increased thus reducing the potential of ash use in agriculture. It can be concluded that biomass ash may be used for removal of hydrogen sulphide from biogas in small and medium biogas plants. The economic evaluation, however, indicated that the application of this system is limited by transport distances for the ash and its potential use afterwards. Copyright © 2017. Published by Elsevier Ltd.

  20. Emerald ash borer flight potential

    Treesearch

    Robin A. Taylor; Leah S. Bauer; Deborah L. Miller; Robert A. Haack

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive pest of ash trees (Fraxinus spp.) that is rapidly spreading from the probable introduction site in Detroit, Michigan. The rapid spread to areas outside Michigan is undoubtedly due to phoretic transport on nursery stock, logs, and...

  1. Volcanic ash - Terrestrial versus extraterrestrial

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.

    1976-01-01

    A principal difference between terrestrial and extraterrestrial lavas may consist in the greater ability of terrestrial lavas to form thin films (like those of soap bubbles) and hence foams. It would follow that, in place of the pumice and spiny shards found in terrestrial volcanic ash, an extraterrestrial ash should contain minute spherules. This hypothesis may help to explain lunar microspherules.

  2. Incineration and incinerator ash processing

    SciTech Connect

    Blum, T.W.

    1991-01-01

    Parallel small-scale studies on the dissolution and anion exchange recovery of plutonium from Rocky Flats Plant incinerator ash were conducted at the Los Alamos National Laboratory and at the Rocky Flats Plant. Results from these two studies are discussed in context with incinerator design considerations that might help to mitigate ash processing related problems. 11 refs., 1 fig., 1 tab.

  3. Emerald Ash Borer (Coleoptera: Buprestidae)

    USDA-ARS?s Scientific Manuscript database

    The emerald ash borer, Agrilus planipennis Fairmaire, is an invasive beetle from Asia that has caused large scale ash (Fraxinus spp.) mortality in North America. This book chapter reviews the taxonomy, biology, life history of this invasive pest and its associated natural enemies in both its native ...

  4. Emerald ash borer life cycle

    Treesearch

    Leah S. Bauer; Robert A. Haack; Deborah L. Miller; Toby R. Petrice; Houping Liu

    2004-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), native to several Asian countries, was discovered in southeastern Michigan and nearby Ontario in June of 2002. EAB was identified as the cause of extensive ash (Fraxinus spp.) mortality in approximately 2,500 mi2, and...

  5. Emerald ash borer biological control

    Treesearch

    Leah Bauer; Juli Gould; Jian Duan; Mike. Ulyshen

    2011-01-01

    Emerald ash borer (EAB) (Agrilus planipennis), an invasive buprestid from northeast Asia, was identified in 2002 as the cause of ash (Fraxinus) tree mortality in southeast Michigan and adjacent areas of Ontario, Canada. This destructive beetle apparently arrived in North America via infested solid wood packaging materials from...

  6. Ash-Based Ceramic Materials.

    DTIC Science & Technology

    This patent discloses a ceramic material made from raw coal fly ash or raw municipal solid waste fly ash and (1) sodium tetraborate or (2) a mixture of sodium tetraborate and a calcium containing material that is triple superphosphate, lime, dolomite lime, or mixtures thereof.

  7. Bottom ash boosts poor soil

    SciTech Connect

    Stanley, D.

    1993-04-01

    This article describes agricultural uses of fluidized bed bottom ash residue from burning limestone and coal in electric power generating plants: as a limestone substitute, to increase calcium levels in both soil and plants, and as a gypsom-containing soil amendment. Apples and tomatoes are the crops used. The industrial perspective and other uses of bottom ash are also briefly described.

  8. Ash Plume from Shiveluch

    NASA Image and Video Library

    2017-09-27

    When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet. By the time NASA’s Aqua satellite passed over the area two hours later (bottom image), the volcano had erupted and sent a plume of ash over the Kamchatskiy Zaliv. The plume traveled about 90 kilometers (55 miles) toward the south-southeast, where a change in wind direction began pushing the plume toward the east. On October 6, 2012, the Kamchatka Volcanic Emergency Response Team (KVERT) reported that the ash plume from Shiveluch reached an altitude of 3 kilometers (9,800 feet) above sea level, and had traveled some 220 kilometers (140 miles) from the volcano summit. Shiveluch (also spelled Sheveluch) ranks among the biggest and most active volcanoes on the Kamchatka Peninsula. Rising to 3,283 meters (10,771 feet) above sea level, Shiveluch is a stratovolcano composed of alternating layers of hardened lava, compacted ash, and rocks ejected by previous eruptions. The beige-colored expanse of rock on the volcano’s southern slopes (visible in both images) is due to an explosive eruption that occurred in 1964. Part of Shiveluch’s southern flank collapsed, and the light-colored rock is avalanche debris left by that event. High-resolution imagery of Shiveluch shows very little vegetation within that avalanche zone. On October 6, 2012, KVERT cited observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on Terra and Aqua in detecting the Shiveluch eruption. This was not the first time that MODIS observed a Shiveluch eruption shortly after it started. In 2007, MODIS captured an image within minutes of the eruption’s start, before winds could blow the ash away from the summit. When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet (top image). By the time NASA

  9. Industrial properties of lignitic and lignocellulosic fly ashes from Turkish sources

    SciTech Connect

    Demirbas, A.; Cetin, S.

    2006-01-21

    Fly ash is an inorganic matter from combustion of the carbonaceous solid fuels. More than half the electricity in Turkey is produced from lignite-fired power plants. This energy production has resulted in the formation of more than 13 million tons of fly ash waste annually. The presence of carbon in fly ash inducing common faults include adding unwanted black color and adsorbing process or product materials such as water and chemicals. One of the reasons for not using fly ash directly is its carbon content. For some uses carbon must be lower than 3%. Fly ash has been used for partial replacement of cement, aggregate, or both for nearly 70 years, and it is still used on a very limited scale in Turkey. The heavy metal content of industrial wastewaters is an important source of environmental pollution. Each of the three major oxides (SiO{sub 2} + Al{sub 2}O{sub 3} + Fe{sub 2}O{sub 3}) in fly ash can be ideal as a metal adsorbent.

  10. Trace elements in coal ash

    USGS Publications Warehouse

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    In this fact sheet, the form, distribution, and behavior of trace elements of environmental interest in samples of coal fly ash were investigated in response to concerns about element mobility in the event of an ash spill. The study includes laboratory-based leaching experiments to examine the behavior of trace elements, such as arsenic (As) and chromium (Cr), in response to key environmental factors including redox conditions (degree of oxygenation), which are known to vary with depth within coal ash impoundments and in natural ecosystems. The experiments show that As dissolves from samples of coal fly ash into simulated freshwater under both oxic (highly oxygenated) and anoxic (poorly oxygenated) conditions, whereas dissolved Cr concentrations are very redox dependent. This U.S. Geological Survey research helps define the distribution of elements such as As in coal ash and shows that element mobility can vary considerably under different conditions expected in the environment.

  11. Beneficial uses of CFB ash

    SciTech Connect

    Young, L.J.; Cotton, J.L. Jr.

    1994-12-31

    Coal-fired generation accounts for almost 55 percent of the electricity produced in the United States. It has been estimated that over 90 million tons of coal combustion waste by-products were generated in 1990. Currently, only 30% of coal combustion waste is recycled for various beneficial applications. The remaining waste is primarily managed in landfills and surface impoundments. Circulating fluidized bed (CFB) combustion technology will play an important role in supplying power for future load growth and Title 4 of the 1990 Clean Air Act Amendments compliance. CFB ash by-products have many beneficial uses. This paper describes potential applications of CFB ashes based on the ash characteristics. The beneficial uses of CFB ash discussed in this study include agricultural applications, acidic waste stabilizer, ash rock, sludge stabilizer, strip mine reclamation, and structural fill.

  12. Using fly ash for construction

    SciTech Connect

    Valenti, M.

    1995-05-01

    Each year electrical utilities generate 80 million tons of fly ash, primarily from coal combustion. Typically, utilities dispose of fly ash by hauling it to landfills, but that is changing because of the increasing cost of landfilling, as well as environmental regulations. Now, the Electric Power Research Institute (EPRI), in Palo Alto, Calif., its member utilities, and manufacturers of building materials are finding ways of turning this energy byproduct into the building blocks of roads and structures by converting fly ash into construction materials. Some of these materials include concrete and autoclaved cellular concrete (ACC, also known as aerated concrete), flowable fill, and light-weight aggregate. EPRI is also exploring uses for fly ash other than in construction materials. One of the more high-end uses for the material is in metal matrix composites. In this application, fly ash is mixed with softer metals, such as aluminum and magnesium, to strengthen them, while retaining their lighter weight.

  13. Ash Aggregates in Proximal Settings

    NASA Astrophysics Data System (ADS)

    Porritt, L. A.; Russell, K.

    2012-12-01

    Ash aggregates are thought to have formed within and been deposited by the eruption column and plume and dilute density currents and their associated ash clouds. Moist, turbulent ash clouds are considered critical to ash aggregate formation by facilitating both collision and adhesion of particles. Consequently, they are most commonly found in distal deposits. Proximal deposits containing ash aggregates are less commonly observed but do occur. Here we describe two occurrences of vent proximal ash aggregate-rich deposits; the first within a kimberlite pipe where coated ash pellets and accretionary lapilli are found within the intra-vent sequence; and the second in a glaciovolcanic setting where cored pellets (armoured lapilli) occur within <1 km of the vent. The deposits within the A418 pipe, Diavik Diamond Mine, Canada, are the residual deposits within the conduit and vent of the volcano and are characterised by an abundance of ash aggregates. Coated ash pellets are dominant but are followed in abundance by ash pellets, accretionary lapilli and rare cored pellets. The coated ash pellets typically range from 1 - 5 mm in diameter and have core to rim ratios of approximately 10:1. The formation and preservation of these aggregates elucidates the style and nature of the explosive phase of kimberlite eruption at A418 (and other pipes?). First, these pyroclasts dictate the intensity of the kimberlite eruption; it must be energetic enough to cause intense fragmentation of the kimberlite to produce a substantial volume of very fine ash (<62 μm). Secondly, the ash aggregates indicate the involvement of moisture coupled with the presence of dilute expanded eruption clouds. The structure and distribution of these deposits throughout the kimberlite conduit demand that aggregation and deposition operate entirely within the confines of the vent; this indicates that aggregation is a rapid process. Ash aggregates within glaciovolcanic sequences are also rarely documented. The

  14. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    NASA Astrophysics Data System (ADS)

    Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca

    2010-10-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  15. Sinabung Volcanic Ash Utilization As The Additive for Paving Block Quality A and B

    NASA Astrophysics Data System (ADS)

    Sembiring, I. S.; Hastuty, I. P.

    2017-03-01

    Paving block is one of the building materials used as the top layer of the road structure besides asphalt and concrete. Paving block is made of mixed materials such as portland cement or other adhesive materials, water and aggregate. In this research, the material used as the additive of cement and concrete is volcanic ash from Mount Sinabung, it is based on the results of the material testing, Sinabung ash contains 74.3% silica (SiO2). The purpose of this research aims to analyze the behavior of the paving blocks quality A and B with and without a mixture of Sinabung ash, to analyze the workability of fresh concrete using Sinabung ash as an additive in concrete, and to compare the test results of paving blocks with and without using Sinabung ash. The samples that we made consist of four variations of the concrete mix to experiment a mixture of normal sample without additive, samples which are mixed with the addition of Sinabung ash 5%, 10%, 15%, 20% and 25% of the volume of concrete/m3. Each variation consists of 10 samples of the concrete with 28 days curing time period. We will do the compressive strength and water absorption test to the samples to determine whether the samples are in accordance with the type needed. According to the test result, paving blocks with Sinabung ash and curing time reach quality A at 0%, 5% and 10% mixture with the compressive strength of each 50.14 MPa, 46.20 MPa and 1.49Mpa, and reach quality B at 15%, 20 %,25% mixture with curing time and 0%, 5%, 10%, 15%, 20% and 25% mixture without curing time. According to the absorption values we got from the test which are 6.66%, 6.73%, 6.88%, 7.03%, 7.09% and 7.16%, the entire sample have average absorption exceeding SNI standardization which is above 6% and reach quality C. Based on compressive strength and absorption data obtained Sinabung ash can’t fully replace cement as the binder because of the low CaO content.

  16. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH.

    PubMed

    Komonweeraket, Kanokwan; Cetin, Bora; Benson, Craig H; Aydilek, Ahmet H; Edil, Tuncer B

    2015-04-01

    Leaching behaviors of Arsenic (As), Barium (Ba), Calcium (Ca), Cadmium (Cd), Magnesium (Mg), Selenium (Se), and Strontium (Sr) from soil alone, coal fly ash alone, and soil-coal fly ash mixtures, were studied at a pH range of 2-14 via pH-dependent leaching tests. Seven different types of soils and coal fly ashes were tested. Results of this study indicated that Ca, Cd, Mg, and Sr showed cationic leaching pattern while As and Se generally follows an oxyanionic leaching pattern. On the other hand, leaching of Ba presented amphoteric-like leaching pattern but less pH-dependent. In spite of different types and composition of soil and coal fly ash investigated, the study reveals the similarity in leaching behavior as a function of pH for a given element from soil, coal fly ash, and soil-coal fly ash mixtures. The similarity is most likely due to similar controlling mechanisms (e.g., solubility, sorption, and solid-solution formation) and similar controlling factors (e.g., leachate pH and redox conditions). This offers the opportunity to transfer knowledge of coal fly ash that has been extensively characterized and studied to soil stabilized with coal fly ash. It is speculated that unburned carbon in off-specification coal fly ashes may provide sorption sites for Cd resulting in a reduction in concentration of these elements in leachate from soil-coal fly ash mixture. Class C fly ash provides sufficient CaO to initiate the pozzolanic reaction yielding hydrated cement products that oxyanions, including As and Se, can be incorporated into. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Properties of concrete modified with waste Low Density Polyethylene and saw dust ash

    NASA Astrophysics Data System (ADS)

    Srimanikandan, P.; Sreenath, S.

    2017-07-01

    The increase in industrialization creates need for disposal of large quantity of by-products. To overcome the difficulty of disposal, these by-products can be used as a replacement for raw material. In this concern, non-conventional industrial wastes such as plastic bags, PET bottles, pulverized waste Low Density Polyethylene (LDPE) and biological waste such as saw-dust ash, coconut coir were used as a replacement in concrete. In this project, saw-dust ash and pulverized waste LDPE were introduced as the partial replacement for cement and fine aggregates respectively. 0%, 5%, 10%, 15% and 20% of sand by volume was replaced with LDPE and 0%, 1%, 3%, 5% and 10% of cement by volume was replaced with saw dust ash. Standard cube, cylinder and prism specimens were cast to assess the compressive strength, split tensile strength and flexural strength of modified concrete after 28 days of curing. Optimum percentage of replacement was found by comparing the test results. The mix with 5% of LDPE and 3% of saw dust ash showed a better result among the other mixes.

  18. Effect of fly ash calcination in geopolymer synthesis

    NASA Astrophysics Data System (ADS)

    Samadhi, Tjokorde Walmiki; Jatiningrum, Mirna; Arisiani, Gresia

    2015-12-01

    Geopolymer, a largely amorphous class of inorganic polymer consisting of aluminosilicate repeat units, is an environmentally attractive engineering material due to its ability to consume aluminosilicate waste as raw materials. This work studies the effect of the calcination temperature of a coal fly ash generated by a low-efficiency boiler on the mechanical strength of geopolymer mortar synthesized using a mixture of the fly ash, potassium hydroxide as the alkali activator, and locally available sand as the filler aggregate. The calcination temperature is varied between 500-700 °C, with a calcination period of 2 hours in an electric furnace. Two sand samples with different particle size distributions are used. The key response variable is the compressive strength at room temperature, measured after curing at 80 °C for 7 and 14 days. Uncalcined ash, with a carbon content of approximately 31.0%, is not amenable for geopolymer synthesis. Analysis of experimental data using the ANOVA method for general factorial design identifies significant main effects for all three experimental variables. Two-way interactions are significant, except that between sand type and curing period. Higher calcination temperature significantly improves the strength of the mortar. However, the strength of the obtained geopolymer mortars are still significantly lower than that of ordinary Portland cement mortar.

  19. Microscopic observations of self-healing products in calcareous fly ash mortars.

    PubMed

    Jóźwiak-Niedźwiedzka, Daria

    2015-01-01

    The results of microstructural characterization of mortars containing fly ash class C (High Calcium Fly Ash) from combustion of lignite are presented. The evaluation of the microstructure was performed using scanning electron microscope, optical, and confocal microscope. The tested beams were bent till the crack and microcracks opening, which were healed during the different curing time. The results showed that the replacement of cement with fly ash class C influenced the process of crack healing. The addition of HCFA, at both 30% and 60%, speeds up the self-healing process in cracks and particularly in micro-cracks. In the research, the completely filling up of the cracks by new phases has not been observed, only the beginning of such process has been noticed.

  20. Prediction of the Chloride Resistance of Concrete Modified with High Calcium Fly Ash Using Machine Learning

    PubMed Central

    Marks, Michał; Glinicki, Michał A.; Gibas, Karolina

    2015-01-01

    The aim of the study was to generate rules for the prediction of the chloride resistance of concrete modified with high calcium fly ash using machine learning methods. The rapid chloride permeability test, according to the Nordtest Method Build 492, was used for determining the chloride ions’ penetration in concrete containing high calcium fly ash (HCFA) for partial replacement of Portland cement. The results of the performed tests were used as the training set to generate rules describing the relation between material composition and the chloride resistance. Multiple methods for rule generation were applied and compared. The rules generated by algorithm J48 from the Weka workbench provided the means for adequate classification of plain concretes and concretes modified with high calcium fly ash as materials of good, acceptable or unacceptable resistance to chloride penetration. PMID:28793740

  1. Prediction of the Chloride Resistance of Concrete Modified with High Calcium Fly Ash Using Machine Learning.

    PubMed

    Marks, Michał; Glinicki, Michał A; Gibas, Karolina

    2015-12-11

    The aim of the study was to generate rules for the prediction of the chloride resistance of concrete modified with high calcium fly ash using machine learning methods. The rapid chloride permeability test, according to the Nordtest Method Build 492, was used for determining the chloride ions' penetration in concrete containing high calcium fly ash (HCFA) for partial replacement of Portland cement. The results of the performed tests were used as the training set to generate rules describing the relation between material composition and the chloride resistance. Multiple methods for rule generation were applied and compared. The rules generated by algorithm J48 from the Weka workbench provided the means for adequate classification of plain concretes and concretes modified with high calcium fly ash as materials of good, acceptable or unacceptable resistance to chloride penetration.

  2. [Toxicity of glass ionomer cement].

    PubMed

    Lübben, B; Geyer, G

    2001-04-01

    The hybrid bone substitute ionomeric cement achieves a stable and durable space-free bond to adjacent bone during hardening. Clinical studies have evaluated the material differently: Fully hardened ionomeric cement showed in middle ear surgery, e.g. as an ossicular prosthesis, good biocompatibility with outstanding functional results. In a few cases, freshly mixed ionomeric cement led to severe complications after contact with CSF in skull base surgery. Therefore we intended to evaluate the influence of early fluid contact on the quality of cement and to define the interval for a safe application of the material, using a cell culture model. Further we intended to investigate whether combining cement with homologous and alloplastic materials influenced its quality. 1) Ionomeric cement (Ionocem) test bodies were placed in Ringer's solution at different times after the mixing phase. 2) Ionomeric cement (Ionocem) test bodies were coated with different clinically used homologous and alloplastic materials during the setting and hardening phase. The concentrations of released cement-forming ions and the toxic effects on mouse fibroblasts within cell cultures were measured. Cytotoxic effects were observed when ionomeric cement was not carefully protected from fluid contact for the first two hours after mixing. This was due to forced fast elution of large amounts of cement-constituting fluoride ions and aluminium ions and to the development of acid valences and their interactions. A total hardening time of less than 25 min had an especially unfavourable influence on cell behaviour. Cell impairments could be reduced significantly by coating the 30-minute cured cement with PDS sheeting and significantly by covering it with viscous collagene. On the other hand, cement toxicity was intensified in part by combinations with some other coating materials. Ionomeric cement should be kept dry and protected from any fluid contact for at least 30 minutes after mixing. Contact with soft

  3. Rice-husk ash paste and concrete: Some aspects of hydration and the microstructure of the interfacial zone between the aggregate and paste

    SciTech Connect

    Zhang, M.H.; Lastra, R.; Malhotra, V.M.

    1996-06-01

    This paper presents an experimental study on the effects of the incorporation of rice-husk ash (RHA) in cement paste and concrete on the hydration and the microstructure of the interfacial zone between the aggregate and paste. The influence on the compressive strength of concrete is discussed, and the results are compared with those obtained with the control portland cement concrete and concrete incorporating silica fume. As for ordinary portland cement paste, it was found that calcium hydroxide and calcium silicate hydrates [C-S-H] were the major hydration and reaction products for the HA paste. Because of the pozzolanic reaction, the paste incorporating RHA had lower Ca(OH){sub 2} content than the control portland cement paste. The incorporation of the RHA in concrete reduced its porosity and the Ca(OH){sub 2} amount in the interfacial zone; the width of the interfacial zone between the aggregate and the cement paste was also reduced compared with the control portland cement composite. However, the porosity in the interfacial zone of the rice-husk ash composite was higher than that of the silica fume composite. The incorporation of the RHA in the cement paste did not increase its compressive strength compared with that of the control. The higher compressive strength of the RHA concrete compared with that of the control is due probably to the reduced porosity, reduced Ca(OH){sub 2}, and reduced width of the interfacial zone between the paste and the aggregate.

  4. Study on Strength of Hybrid Mortar Synthesis with Epoxy Resin, Fly Ash and Quarry Dust Under Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Sudheer, P.; Muni Reddy, M. G., Dr.; Adiseshu, S., Dr.

    2017-08-01

    Blend and characterization of Bisphenol-A diglycidyl ether based thermosetting polymer mortar comprising an epoxy resin, Fly ash and Quarry dust are presented here for the strength study. The specimens have been prepared by means of an innovative process in Extreme conditions of commercial epoxy resin, Fly ash and Quarry dust based paste. In this way, thermosetting based hybrid mortars characterized by a different contents of normalized Fly ash and Quarry dust by a homogeneous distribution of the resin have been attained. Once hardened, these new composite materials show improved compressive strength and toughness in respect to both the Fly ash and Rock sand pastes since the Resin provides a more cohesive microstructure, with a reduced number of micro cracks. The micro structural characterization allows pointing out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars. A correlation between micro-structural features and mechanical properties of the mortar has also been studied in Extreme conditions.

  5. Evaluation of stabilization/solidification of fluidized-bed incinerator ash (K048 and K051). Final report

    SciTech Connect

    Bricka, R.M.; Holmes, T.; Cullinane, M.J.

    1988-12-01

    This report presents the results of testing performed on a stabilized/solidified (S/S) incinerator ash. This study was conducted in support of the US Environmental Protection Agency, Best Demonstrated Available Technology program. The ash samples evaluated in the study were residuals resulting from the incineration of a mixture of dissolved air-flotation float (K048), API separator oily sludge (K051), and a biological sludge. Three S/S processes were evaluated. They included: (1) a cement process; (2) a kiln-dust process; and (3) a lime/fly ash process. Physical and leaching characteristics of the S/S waste-ash materials were evaluated. Physical characteristics were evaluated using the unconfined compressive-strength test. The waste-leaching characteristics were evaluated using the toxicity characteristic leaching procedure.

  6. Pozzolanic Reactivity of Silica Fume and Ground Rice Husk Ash as Reactive Silica in a Cementitious System: A Comparative Study

    PubMed Central

    Xu, Weiting; Lo, Tommy Yiu; Wang, Weilun; Ouyang, Dong; Wang, Penggang; Xing, Feng

    2016-01-01

    This study comparably assessed the pozzolanic effect of silica fume (SF) and ground rice husk ash (RHA) as supplementary cementing materials on the properties of blended cement pastes and concretes. A commonly commercial silica fume (SF) and locally-produced rice husk ash (RHA) samples with two finenesses (one with larger size than cement and the other with smaller size than cement) were used in this study. Material properties of SF and RHA were experimentally characterized. Hydration and mechanical properties of cement pastes incorporating SF and RHA were determined by thermogravimetric analysis (TGA) and compressive strength tests, respectively. Properties of concretes regarding workability, mechanical property, durability, and microstructure were evaluated. Results showed that, although the finely ground RHA used in this study possessed lower SiO2 content and higher particle size compared to SF, it exhibited comparable pozzolanic reactivity with SF due to the nano-scale pores on its each single particle, leading to a higher specific surface area. The optimal replacement levels of SF and RHA were 10% by weight of cement in pastes and concretes. Although addition of SF and RHA led to a significant reduction in slump for the fresh mixtures, inclusion of up to 30% of SF or 15% of ground RHA did not adversely affect the strength of concretes. At the same mix, incorporation of finely-ground RHA in cement composites provided comparable mechanical properties, hydration degree, and durability with SF blended cement composites, owing to the porous structure and high specific surface area of RHA particles. Microstructure morphology analysis of concretes explored by scanning electron microscopy (SEM) further validated the strength and the durability test results. PMID:28773271

  7. Reduction of Leaching Impacts by Applying Biomass Bottom Ash and Recycled Mixed Aggregates in Structural Layers of Roads

    PubMed Central

    Cabrera, Manuel; Galvin, Adela P.; Agrela, Francisco; Beltran, Manuel G.; Ayuso, Jesus

    2016-01-01

    This research is focused on analyzing the environmental pollution potential of biomass bottom ashes as individual materials, as mixtures manufactured with biomass bottom ashes and granular construction aggregates, and these mixtures treated with cement. For the environmental assessment of all of the samples and materials mentioned, the following leaching procedures have been performed: the compliance batch test of UNE-EN 12457-3:2003 for aggregates and bottom ashes; the column test according to NEN 7343:1994 for the mixtures prepared in the laboratory; and the tank test by EA NEN 7375:2004 for analyzing the behavior of mixtures after their solidification/stabilization with 5% cement. After the discussion of the data, the reduction of the pollution load of the most hazardous biomass bottom ashes after their combination with different aggregates can be confirmed, which implies their possible application in civil infrastructures, such as filler embankments and road construction layers, without negatively impacting the environment. In addition, the positive effect of the stabilization/solidification of the cement-treated mixtures with a reduction of the heavy metals that were released at the highest levels, namely As, Hg Cr, Ni, Cu, Se and Mo, was proven. PMID:28773352

  8. Experimental studies on effect of cow dung ash (pozzolanic binder) and coconut fiber on strengthproperties of concrete

    NASA Astrophysics Data System (ADS)

    Venkatasubramanian, C.; Muthu, D.; Aswini, G.; Nandhini, G.; Muhilini, K.

    2017-07-01

    The studies on durability of concrete have attracted attention in the recent years and its long term strength depends on quality of ingredients used in production of concrete. Now a days, the availability of ingredients is limited and in order to overcome this problem, research studies focuses on some alternate materials in the concrete production process. Also, Incorporation of waste materials consumes less energy leading to reduction of emission of green house gases. The application of fly ash and cow dung ash as a pozzolanic binder instead of cement and coir fibers finds extensive application in the manufacturing process of building materials. In this project an attempt has been made to utilize cow dung ash and coconut fiber as a replacement material of cement in the production of concrete. The cement is partially replaced with cow dung ash by about 2.5, 3 & 3.5 % by weight and with 1% of coconut fiber. The Compressive and Tensile strengths of concrete were found at different curing periods (7,14 & 28 days). From this study, it is inferred that these replacements will have a reasonable improvement in the strength properties of concrete by about 55-70%. The substitution of CDA, CF is economical in terms of cost and this usage eliminates the problem of landfills, reducing the environmental risk, maintaining the ecological balance, which is very much required for our nation.

  9. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    SciTech Connect

    Sugama, T.; Pyatina, T.

    2014-11-01

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

  10. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    SciTech Connect

    Sugama, T.; Pyatina, T.

    2014-11-14

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

  11. Effect of Admixtures on the Yield Stresses of Cement Pastes under High Hydrostatic Pressures

    PubMed Central

    Yim, Hong Jae; Kim, Jae Hong; Kwon, Seung Hee

    2016-01-01

    When cement-based materials are transported at a construction site, they undergo high pressures during the pumping process. The rheological properties of the materials under such high pressures are unknown, and estimating the workability of the materials after pumping is a complex problem. Among various influential factors on the rheology of concrete, this study investigated the effect of mineral and chemical admixtures on the high-pressure rheology. A rheometer was fabricated that could measure the rheological properties while maintaining a high pressure to simulate the pumping process. The effects of superplasticizer, silica fume, nanoclay, fly ash, or ground granulated blast furnace slag were investigated when mixed with two control cement pastes. The water-to-cement ratios were 0.35 and 0.50. PMID:28773273

  12. Contrastive Numerical Investigations on Thermo-Structural Behaviors in Mass Concrete with Various Cements

    PubMed Central

    Zhou, Wei; Feng, Chuqiao; Liu, Xinghong; Liu, Shuhua; Zhang, Chao; Yuan, Wei

    2016-01-01

    This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention. PMID:28773517

  13. Contrastive Numerical Investigations on Thermo-Structural Behaviors in Mass Concrete with Various Cements.

    PubMed

    Zhou, Wei; Feng, Chuqiao; Liu, Xinghong; Liu, Shuhua; Zhang, Chao; Yuan, Wei

    2016-05-20

    This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention.

  14. Performance of portland limestone cements: Cements designed to be more sustainable that include up to 15% limestone addition

    NASA Astrophysics Data System (ADS)

    Barrett, Timothy J.

    where the limestone was blended (i.e., not interground) as needed, enabling variation of the size of the limestone particles. In addition, one of the commercially produced OPCs and PLCs were used with fly ash. A series of standardized tests were run to assess the physical effects of intergrinding limestone in portland cement, the effect of limestone presence and method of inclusion on the hydration reaction, and the associated mechanical and transport properties of concretes made with these limestone cements. The second phase of the study used a commercially produced OPC, a PLC, and a PLC-slag all made from the same parent clinker to quantify the early age shrinkage and cracking potential. The study presents a series of tests that quantify the fundamental origins of shrinkage in cementitious materials to elucidate the differences between PLC and OPC. The bulk shrinkage of these systems is then quantified under free and restrained conditions to provide an assessment of the susceptibility for cracking in portland limestone cements. The results of the first phase of this thesis showed that in general the PLC and OPC systems have similar hydration, set, and mechanical performance. Transport properties in this study show behavior that is +/- 30% of the conventional OPC system depending on the system. Literature has shown similar freeze-thaw resistance when these materials are used in properly air entrained mixtures, and the results for PLC systems with fly ash show added performance. Based on these results it appears that PLC that meets ASTM C595/AASHTO M234 should be able to be used interchangeably with OPC, while it should also be noted that the investigation of the influence of salts and sulfates on PLCs is still ongoing and should be monitored. The results of the second phase of this thesis showed that while the PLCs are finer, this comes primarily by reducing the very large particles (clinker particles greater than 30 microns) using advanced separator technology and

  15. Assessment of arsenic immobilization in synthetically prepared cemented paste backfill specimens.

    PubMed

    Coussy, Samuel; Benzaazoua, Mostafa; Blanc, Denise; Moszkowicz, Pierre; Bussière, Bruno

    2012-01-01

    Mine tailings coming from the exploitation of sulphide and/or gold deposits can contain significant amounts of arsenic (As), highly soluble in conditions of weathering. Open mine voids backfilling techniques are now widely practiced by modern mining companies to manage the tailings. The most common one is called cemented paste backfill (CPB), and consists of tailings mixed with low amounts of hydraulic binders (3-5%) and a high proportion of water (typically 25%). The CPB is transported through a pipe network, to be placed in the mine openings. CPB provides storage benefits and underground support during mining operations. Moreover, this technique could also enhance contaminant stabilization, by fixing the contaminants in the binder matrix. CPB composites artificially spiked with As were synthesized in laboratory, using two types of hydraulic binders: a Portland cement, and a mix of fly ash and Portland cement. After curing duration of 66 days, the CPB samples were subjected to several leaching tests in various experimental conditions in order to better understand and then predict the As geochemical behaviour within CPBs. The assessment of the As release indicates that this element is better stabilized in Portland cement-based matrices rather than fly ash-based matrices. The As mobility differs in these two matrices, mainly because of the different As-bearing minerals formed during hydration processes. However, the total As depletion does not exceed 5% at the end of the most aggressive leaching test, i