Tang, Zhi; Chen, Xiaoping; Liu, Daoyin; Zhuang, Yaming; Ye, Minghua; Sheng, Hongchan; Xu, Shaojuan
2016-10-01
Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction, as well as a source of renewable energy. During MSW combustion, increased formation of deposits on convection heating exchanger surfaces can pose severe operational problems, such as fouling, slagging and corrosion. These problems can cause lower heat transfer efficiency from the hot flue gas to the working fluid inside the tubes. A study was performed where experiments were carried out to examine the ash deposition characteristics in a full-scale MSW circulating fluidized bed (CFB) incinerator, using a newly designed deposit probe that was fitted with six thermocouples and four removable half rings. The influence of probe exposure time and probe surface temperature (500, 560, and 700°C) on ash deposit formation rate was investigated. The results indicate that the deposition mass and collection efficiency achieve a minimum at the probe surface temperature of 560°C. Ash particles are deposited on both the windward and leeward sides of the probe by impacting and thermophoretic/condensation behavior. The major inorganic elements present in the ash deposits are Ca, Al and Si. Compared to ash deposits formed on the leeward side of the probe, windward-side ash deposits contain relatively higher Ca and S concentrations, but lower levels of Al and Si. Among all cases at different surface temperatures, the differences in elemental composition of the ash deposits from the leeward side are insignificant. However, as the surface temperature increases, the concentrations of Al, Si, K and Na in the windward-side ash deposits increase, but the Ca concentration is reduced. Finally, governing mechanisms are proposed on the basis of the experimental data, such as deposit morphology, elemental composition and thermodynamic calculations. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Wilson, T. M.; Cole, J. W.; Stewart, C.; Cronin, S. J.; Johnston, D. M.
2011-04-01
Tephra fall from the August 1991 eruption of Volcán Hudson affected some 100,000 km2 of Patagonia and was almost immediately reworked by strong winds, creating billowing clouds of remobilised ash, or `ash storms'. The immediate impacts on agriculture and rural communities were severe, but were then greatly exacerbated by continuing ash storms. This paper describes the findings of a 3-week study tour of the diverse environments of southern Patagonia affected by ash storms, with an emphasis on determining the impacts of repeated ash storms on agriculture and local practices that were developed in an attempt to mitigate these impacts. Ash storms produce similar effects to initial tephra eruptions, prolonged for considerable periods. These have included the burial of farmland under dune deposits, abrasion of vegetation and contamination of feed supplies with fine ash. These impacts can then cause problems for grazing animals such as starvation, severe tooth abrasion, gastrointestinal problems, corneal abrasion and blindness, and exhaustion if sheep fleeces become laden with ash. In addition, ash storms have led to exacerbated soil erosion, human health impacts, increased cleanup requirements, sedimentation in irrigation canals, and disruption of aviation and land transport. Ash deposits were naturally stabilised most rapidly in areas with high rainfall (>1,500 mm/year) through compaction and enhanced vegetation growth. Stabilisation was slowest in windy, semi-arid regions. Destruction of vegetation and suppression of regrowth by heavy tephra fall (>100 mm) hindered the stabilisation of deposits for years, and reduced the surface friction which increased wind erosivity. Stabilisation of tephra deposits was improved by intensive tillage, use of windbreaks and where there was dense and taller vegetative cover. Long-term drought and the impracticality of mixing ash deposits with soil by tillage on large farms was a barrier to stabilising deposits and, in turn, agricultural recovery. The continuing ash storms motivated the partial evacuation of small rural towns such as Chile Chico (Chile) and Los Antiguos (Argentina) in September-December 1991, after the primary tephra fall in August 1991. Greatly increased municipal cleanup efforts had to be sustained beyond the initial tephra fall to cope with the ongoing impacts of ash storms. Throughout the 1990s, ash storms contributed to continued population migration out of the affected area, leaving hundreds of farms abandoned on the Argentine steppe. The major lesson from our study is the importance of stabilisation of ash deposits as soon as possible after the initial eruption, particularly in windy, arid climates. Suggested mitigation measures include deep cultivation of the ash into the soil and erecting windbreaks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrifvars, B.J.; Backman, R.; Hupa, Mikko
1996-12-31
The thermal behavior of a fuel ash is one important factor to consider when fireside slagging and fouling problems in steam boilers are addressed. It is well known that different types of chemical reactions and melts in deposits play an important role in the build-up of problematic fireside deposits. Low viscous melts occur in steam boilers mainly when salt mixtures are present in the ash. Such are Merent mixtures of alkali and earth alkali sulfates, chlorides and carbonates. These mixtures do not melt at a certain temperature but form a melt in a temperature range which in some cases maymore » be several hundreds of degrees. The amount of melt is crucial for the deposit build-up. For some boilers it has been found that roughly 10 - 20 weight-% melt in an ash mixture would be enough to cause extensive deposit formation, while 60 - 80 weight-% melt would already cause the ash to be so wet it would flow down a vertical tube and not cause any further deposit growth.« less
Transformations of inorganic coal constituents in combustion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helble, J.J.; Srinivasachar, S.; Wilemski, G.
1992-11-01
The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon themore » size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles What determines their composition Whether or not particles deposit How combustion conditions, including reactor size, affect these processes remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helble, J.J.; Srinivasachar, S.; Wilemski, G.
1992-11-01
The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon themore » size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles? What determines their composition? Whether or not particles deposit? How combustion conditions, including reactor size, affect these processes? remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.« less
Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes
Bourne, A. J.; Abbott, P. M.; Albert, P. G.; Cook, E.; Pearce, N. J. G.; Ponomareva, V.; Svensson, A.; Davies, S. M.
2016-01-01
Widespread ash dispersal poses a significant natural hazard to society, particularly in relation to disruption to aviation. Assessing the extent of the threat of far-travelled ash clouds on flight paths is substantially hindered by an incomplete volcanic history and an underestimation of the potential reach of distant eruptive centres. The risk of extensive ash clouds to aviation is thus poorly quantified. New evidence is presented of explosive Late Pleistocene eruptions in the Pacific Arc, currently undocumented in the proximal geological record, which dispersed ash up to 8000 km from source. Twelve microscopic ash deposits or cryptotephra, invisible to the naked eye, discovered within Greenland ice-cores, and ranging in age between 11.1 and 83.7 ka b2k, are compositionally matched to northern Pacific Arc sources including Japan, Kamchatka, Cascades and Alaska. Only two cryptotephra deposits are correlated to known high-magnitude eruptions (Towada-H, Japan, ca 15 ka BP and Mount St Helens Set M, ca 28 ka BP). For the remaining 10 deposits, there is no evidence of age- and compositionally-equivalent eruptive events in regional volcanic stratigraphies. This highlights the inherent problem of under-reporting eruptions and the dangers of underestimating the long-term risk of widespread ash dispersal for trans-Pacific and trans-Atlantic flight routes. PMID:27445233
Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes.
Bourne, A J; Abbott, P M; Albert, P G; Cook, E; Pearce, N J G; Ponomareva, V; Svensson, A; Davies, S M
2016-07-21
Widespread ash dispersal poses a significant natural hazard to society, particularly in relation to disruption to aviation. Assessing the extent of the threat of far-travelled ash clouds on flight paths is substantially hindered by an incomplete volcanic history and an underestimation of the potential reach of distant eruptive centres. The risk of extensive ash clouds to aviation is thus poorly quantified. New evidence is presented of explosive Late Pleistocene eruptions in the Pacific Arc, currently undocumented in the proximal geological record, which dispersed ash up to 8000 km from source. Twelve microscopic ash deposits or cryptotephra, invisible to the naked eye, discovered within Greenland ice-cores, and ranging in age between 11.1 and 83.7 ka b2k, are compositionally matched to northern Pacific Arc sources including Japan, Kamchatka, Cascades and Alaska. Only two cryptotephra deposits are correlated to known high-magnitude eruptions (Towada-H, Japan, ca 15 ka BP and Mount St Helens Set M, ca 28 ka BP). For the remaining 10 deposits, there is no evidence of age- and compositionally-equivalent eruptive events in regional volcanic stratigraphies. This highlights the inherent problem of under-reporting eruptions and the dangers of underestimating the long-term risk of widespread ash dispersal for trans-Pacific and trans-Atlantic flight routes.
NASA Astrophysics Data System (ADS)
Ford, Anabel; Rose, William I.
1995-07-01
In the spirit of collaborative research, Glicken and Ford embarked on the problem of identifying the source of volcanic ash used as temper in prehistoric Maya ceramics. Verification of the presence of glass shards and associated volcanic mineralogy in thin sections of Maya ceramics was straightforward and pointed to the Guatemala Highland volcanic chain. Considering seasonal wind rose patterns, target volcanoes include those from the area west of and including Guatemala City. Joint field research conducted in 1983 by Glicken and Ford in the limestone lowlands of Belize and neighboring Guatemala, 300 km north of the volcanic zone and 150 km from the nearest identified ash deposits, was unsuccessful in discovering local volcanic ash deposits. The abundance of the ash in common Maya ceramic vessels coupled with the difficulties of long-distance procurement without draft animals lead Glicken to suggest that ashfall into the lowlands would most parsimoniously explain prehistoric procurement; it literally dropped into their hands. A major archaeological problem with this explanation is that the use of volcanic ash occurring over several centuries of the Late Classic Period (ca. 600-900 AD). To accept the ashfall hypothesis for ancient Maya volcanic ash procurement, one would have to demonstrate a long span of consistent volcanic activity in the Guatemala Highlands for the last half of the first millennium AD. Should this be documented through careful petrographic, microprobe and tephrachronological studies, a number of related archaeological phenomena would be explained. In addition, the proposed model of volcanic activity has implications for understanding volcanism and potential volcanic hazards in Central America over a significantly longer time span than the historic period. These avenues are explored and a call for further collaborative research of this interdisciplinary problem is extended in this paper.
A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios
NASA Astrophysics Data System (ADS)
González-Mellado, A. O.; de La Cruz-Reyna, S.
2010-11-01
The impact of ash-fall on people, buildings, crops, water resources, and infrastructure depends on several factors such as the thickness of the deposits, grain size distribution and others. Preparedness against tephra falls over large regions around an active volcano requires an understanding of all processes controlling those factors, and a working model capable of predicting at least some of them. However, the complexity of tephra dispersion and sedimentation makes the search of an integral solution an almost unapproachable problem in the absence of highly efficient computing facilities due to the large number of equations and unknown parameters that control the process. An alternative attempt is made here to address the problem of modeling the thickness of ash deposits as a primary impact factor that can be easily communicated to the public and decision-makers. We develop a semi-empirical inversion model to estimate the thickness of non-compacted deposits produced by an explosive eruption around a volcano in the distance range 4-150 km from the eruptive source. The model was elaborated from the analysis of the geometric distribution of deposit thickness of 14 world-wide well-documented eruptions. The model was initially developed to depict deposits of potential eruptions of Popocatépetl and Colima volcanoes in México, but it can be applied to any volcano. It has been designed to provide planners and Civil Protection authorities of an accurate perception of the ash-fall deposit thickness that may be expected for different eruption scenarios. The model needs to be fed with a few easy-to-obtain parameters, namely, height of the eruptive column, duration of the explosive phase, and wind speed and direction, and its simplicity allows it to run in any platform, including a personal computers and even a notebook. The results may be represented as tables, two dimensional thickness-distance plots, or isopach maps using any available graphic interface. The model has been tested, with available data from some recent eruptions in México, and permits to generate ash-fall deposit scenarios from new situations, or to recreate past situations, or to superimpose scenarios from eruptions of other volcanoes. The results may be displayed as thickness vs. distance plots, or as deposit-thickness scenarios superimposed on a regional map by means of a visual computer simulator based on a user-friendly built-in computer graphic interface.
NASA Astrophysics Data System (ADS)
De Rosa, R.
This paper illustrates some problems involved in the quantitative compositional study of pyroclastic deposits and proposes criteria for selecting the main petrographic and textural classes for modal analysis. The relative proportions of the different classes are obtained using a point-counting procedure applied to medium-coarse ash samples that reduces the dependence of the modal composition on grain size and avoids tedious counting of different grain-size fractions. The major purposes of a quantified measure of component distributions are to: (a) document the nature of the fragmenting magma; (b) define the eruptive dynamics of the eruptions on a detailed scale; and (c) ensure accuracy in classifying pyroclastic deposits. Compositional modes of the ash fraction of pyroclastic deposits vary systematically, and their graphical representation defines the compositional and textural characteristics of pyroclastic fragments associated with different eruptive styles. Textural features of the glass component can be very helpful for inferring aspects of eruptive dynamics. Four major parameters can be used to represent the component composition of pyroclastic ash deposits: (a) juvenile index (JI); (b) crystallinity index (CrI); (c) juvenile vesicularity index (JVI); and (d) free crystal index (FCrI). The FCrI is defined as the ratio between single and total crystal fragments in the juvenile component (single crystals+crystals in juvenile glass). This parameter may provide an effective estimate of the mechanical energy of eruptions. Variations in FCrI vs JVI discriminate among pyroclastic deposits of different origin and define compositional fields that represent ash derived from different fragmentation styles.
NASA Astrophysics Data System (ADS)
Shao, Yuanyuan; Zhu, Jesse; Preto, Fernando; Tourigny, Guy; Wang, Jinsheng; Badour, Chadi; Li, Hanning; Xu, Chunbao Charles
Characterizations of ash deposits from co-firing/co-combusting of a woody biomass (i.e., white pine) and lignite coal were investigated in a fluidized-bed combustor using a custom designed air-cooled probe installed in the freeboard region of the reactor. Ash deposition behaviors on a heat transfer surface were comprehensively investigated and discussed under different conditions including fuel type, fuel blending ratios (20-80% biomass on a thermal basis), and moisture contents. For the combustion of 100% lignite, the compositions of the deposited ash were very similar to those of the fuel ash, while in the combustion of 100% white pine pellets or sawdust the deposited ash contained a much lower contents of CaO, SO3, K2O and P2O5 compared with the fuel ash, but the deposited ash was enriched with SiO2, Al2O3 and MgO. A small addition of white pine (20% on a heat input basis) to the coal led to the highest ash deposition rates likely due to the strong interaction of the CaO and MgO (from the biomass ash) with the alumina and silica (from the lignite ash) during the co-combustion process, evidenced by the detection of high concentrations of calcium/magnesium sulfates, aluminates and silicates in the ash deposits. Interestingly, co-firing of white pine pellets and lignite at a 50% blending ratio led to the lowest ash deposition rates. Ash deposition rates in combustion of fuels as received with a higher moisture content was found to be much lower than those of oven-dried fuels.
Development of an ash particle deposition model considering build-up and removal mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kjell Strandstroem; Christian Muellera; Mikko Hupa
2007-12-15
Slagging and fouling on heat exchanger surfaces in power boilers fired with fossil fuels and fuel mixtures has a significant influence on boiler efficiency and availability. Mathematical modelling has long been considered a suitable method to assist boiler operators to determine optimized operating conditions for an existing furnace. The ultimate goal in ash deposition prediction is hereby the determination of the total amount of material deposited and hence the determination of the total reduction in efficiency. Depending on the fuels fired the total deposited mass is a combination of ash particle deposition and ash particle erosion due to non-sticky particles.more » The novel ash particle deposition model presented in this work considers deposition of sticky ash particles, cleansing of deposit by non-sticky sand particles and sticking of sand due to contact with sticky ash. The steady-state modelling results for the total amount of ash deposited on the deposition probe of an entrained flow reactor presented in this work agree well with the experimental data. Only at very high fractions of sand added as non-sticky material, a significant influence of the sand on the overall mass deposited was found. Since the model considers sticking of non-sticking sand due to contact with sticky ash, the fraction of sand deposited on the probe was especially studied. Using a correction factor to consider the influence of operating time on the steady-state simulations led to good agreement between simulations and experimental data. 12 refs., 10 figs.« less
NASA Astrophysics Data System (ADS)
Fujii, Toshitsugu; Nakada, Setsuya
1999-04-01
Large-scale collapse of a dacite dome in the late afternoon of 15 September 1991 generated a series of pyroclastic-flow events at Unzen Volcano. Pyroclastic flows with a volume of 1×10 6 m 3 (as DRE) descended the northeastern slope of the volcano, changing their courses to the southeast due to topographic control. After they exited a narrow gorge, an ash-cloud surge rushed straight ahead, detaching the main body of the flow that turned and followed the topographic lows to the east. The surge swept the Kita-Kamikoba area, which had been devastated by the previous pyroclastic-flow events, and transported a car as far as 120 m. Following detachment, the surge lost its force after it moved several hundred meters, but maintained a high temperature. The deposits consist of a bottom layer of better-sorted ash (unit 1), a thick layer of block and ash (unit 2), and a thin top layer of fall-out ash (unit 3). Unit 2 overlies unit 1 with an erosional contact. The upper part of unit 2 grades into better-sorted ash. At distal block-and-ash flow deposits, the bottom part of unit 2 also consists of better-sorted ash, and the contact with the unit 1 deposits becomes ambiguous. Video footage of cascading pyroclastic flows during the 1991-1995 eruption, traveling over surfaces without any topographic barriers, revealed that lobes of ash cloud protruded intermittently from the moving head and sides, and that these lobes surged ahead on the ground surface. This fact, together with the inspection by helicopter shortly after the events, suggests that the protruded lobes consisted of better-sorted ash, and resulted in the deposits of unit 1. The highest ash-cloud plume at the Oshigadani valley exit, and the thickest deposition of fall-out ash over Kita-Kamikoba and Ohnokoba, indicate that abundant ash was also produced when the flow passed through a narrow gorge. In the model presented here, the ash clouds from the pyroclastic flows were composed of a basal turbulent current of high concentration (main body), an overriding and intermediate fluidization zone, and an overlying dilute cloud. Release of pressurized gas in lava block pores, due to collisions among blocks and the resulting upward current, caused a zone of fluidization just above the main body. The mixture of gas and ash sorted in the fluidization zone moved ahead and to the side of the main body as a gravitational current, where the ash was deposited as surge deposits. The main body, which had high internal friction and shear near its base, then overran the surge deposits, partially eroding them. When the upward current of gas (fluidization) waned, better-sorted ash suspended in the fluidization zone was deposited on block-and-ash deposits. In the distal places of block-and-ash deposits, unit 2 probably was deposited in non-turbulent fashion without any erosion of the underlying layer (unit 1).
Wildland fire ash: Production, composition and eco-hydro-geomorphic effects
Bodi, Merche B.; Martin, Deborah; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Cerda, Artemi; Mataix-Solera, Jorge
2014-01-01
Fire transforms fuels (i.e. biomass, necromass, soil organic matter) into materials with different chemical and physical properties. One of these materials is ash, which is the particulate residue remaining or deposited on the ground that consists of mineral materials and charred organic components. The quantity and characteristics of ash produced during a wildland fire depend mainly on (1) the total burned fuel (i.e. fuel load), (2) fuel type and (3) its combustion completeness. For a given fuel load and type, a higher combustion completeness will reduce the ash organic carbon content, increasing the relative mineral content, and hence reducing total mass of ash produced. The homogeneity and thickness of the ash layer can vary substantially in space and time and reported average thicknesses range from close to 0 to 50 mm. Ash is a highly mobile material that, after its deposition, may be incorporated into the soil profile, redistributed or removed from a burned site within days or weeks by wind and water erosion to surface depressions, footslopes, streams, lakes, reservoirs and, potentially, into marine deposits.Research on the composition, properties and effects of ash on the burned ecosystem has been conducted on material collected in the field after wildland and prescribed fires as well as on material produced in the laboratory. At low combustion completeness (typically T < 450 °C), ash is organic-rich, with organic carbon as the main component. At high combustion completeness (T > 450 °C), most organic carbon is volatized and the remaining mineral ash has elevated pH when in solution. It is composed mainly of calcium, magnesium, sodium, potassium, silicon and phosphorous in the form of inorganic carbonates, whereas at T > 580 °C the most common forms are oxides. Ash produced under lower combustion completeness is usually darker, coarser, and less dense and has a higher saturated hydraulic conductivity than ash with higher combustion completeness, although physical reactions with CO2 and when moistened produce further changes in ash characteristics.As a new material present after a wildland fire, ash can have profound effects on ecosystems. It affects biogeochemical cycles, including the C cycle, not only within the burned area, but also globally. Ash incorporated into the soil increases temporarily soil pH and nutrient pools and changes physical properties such as albedo, soil texture and hydraulic properties including water repellency. Ash modifies soil hydrologic behavior by creating a two-layer system: the soil and the ash layer, which can function in different ways depending on (1) ash depth and type, (2) soil type and (3) rainfall characteristics. Key parameters are the ash's water holding capacity, hydraulic conductivity and its potential to clog soil pores. Runoff from burned areas carries soluble nutrients contained in ash, which can lead to problems for potable water supplies. Ash deposition also stimulates soil microbial activity and vegetation growth.Further work is needed to (1) standardize methods for investigating ash and its effects on the ecosystem, (2) characterize ash properties for specific ecosystems and wildland fire types, (3) determine the effects of ash on human and ecosystem health, especially when transported by wind or water, (4) investigate ash's controls on water and soil losses at slope and catchment scales, (5) examine its role in the C cycle, and (6) study its redistribution and fate in the environment.
Ash dispersal dynamics: state of the art and perspectives
NASA Astrophysics Data System (ADS)
Sulpizio, R.
2013-05-01
Volcanic ash, during dispersal and deposition, is among the major hazards from explosive eruptions. Volcanic ash fallout can disrupt communities downwind, interrupt surface transportation networks and lead to closure of airports. Airborne ash seriously threatens modern jet aircraft in flight. In several documented cases, encounters between aircraft and volcanic clouds have resulted in engine flameout and near crashes, so there is a need to accurately predict the trajectory of volcanic ash clouds in order to improve aviation safety and reduce economic losses. The ash clouds affect aviation even in distal regions, as demonstrated by several eruptions with far-range dispersal. Recent examples include Crater Peak 1992, Tungurahua 1999-2001, Mount Cleveland 2001, Chaitén 2008, Eyjafjallajökull 2010, Grimsvötn 2011, and Cordón-Caulle 2011. Amongst these, the April-May 2010 eruption of Eyjafjallajökull in Iceland provoked the largest civil aviation breakdown. Accumulation of tephra can produce roof collapse, interruption of lifelines (roads, railways, etc.), disruption to airport operations, and damage to communications and electrical power lines. Deposition of ash decreases soil permeability, increases surface runoff, and promotes floods. Ash leaching can result in the pollution of water resources, damage to agriculture, pastures, and livestock, impinge on aquatic ecosystems, and alteration of the geochemical environment on the seafloor. Despite the potential big impact, the dispersal dynamics of volcanic ash is still an unsolved problem for volcanologists, which claims for fiture high level research. Here, a critical overview about models (field, experimental and numerical) for inversion of field data to gain insights on physics of dispersal of volcanic ash is proposed. A special focus is devoted to some physical parameters that are far from a satisfactory inversion (e.g. reconstruction of total grain size distribution), and clues for future research are suggested.
Mueller, Sebastian B; Ayris, Paul M; Wadsworth, Fabian B; Kueppers, Ulrich; Casas, Ana S; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B
2017-03-31
Interactions with volcanic gases in eruption plumes produce soluble salt deposits on the surface of volcanic ash. While it has been postulated that saturation-driven precipitation of salts following the dissolution of ash surfaces by condensed acidic liquids is a primary mechanism of salt formation during an eruption, it is only recently that this mechanism has been subjected to detailed study. Here we spray water and HCl droplets into a suspension of salt-doped synthetic glass or volcanic ash particles, and produce aggregates. Deposition of acidic liquid droplets on ash particles promotes dissolution of existing salts and leaches cations from the underlying material surface. The flow of liquid, due to capillary forces, will be directed to particle-particle contact points where subsequent precipitation of salts will cement the aggregate. Our data suggest that volcanically-relevant loads of surface salts can be produced by acid condensation in eruptive settings. Several minor and trace elements mobilised by surface dissolution are biologically relevant; geographic areas with aggregation-mediated ash fallout could be "hotspots" for the post-deposition release of these elements. The role of liquids in re-distributing surface salts and cementing ash aggregates also offers further insight into the mechanisms which preserve well-structured aggregates in some ash deposits.
Mueller, Sebastian B.; Ayris, Paul M.; Wadsworth, Fabian B.; Kueppers, Ulrich; Casas, Ana S.; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B.
2017-01-01
Interactions with volcanic gases in eruption plumes produce soluble salt deposits on the surface of volcanic ash. While it has been postulated that saturation-driven precipitation of salts following the dissolution of ash surfaces by condensed acidic liquids is a primary mechanism of salt formation during an eruption, it is only recently that this mechanism has been subjected to detailed study. Here we spray water and HCl droplets into a suspension of salt-doped synthetic glass or volcanic ash particles, and produce aggregates. Deposition of acidic liquid droplets on ash particles promotes dissolution of existing salts and leaches cations from the underlying material surface. The flow of liquid, due to capillary forces, will be directed to particle-particle contact points where subsequent precipitation of salts will cement the aggregate. Our data suggest that volcanically-relevant loads of surface salts can be produced by acid condensation in eruptive settings. Several minor and trace elements mobilised by surface dissolution are biologically relevant; geographic areas with aggregation-mediated ash fallout could be “hotspots” for the post-deposition release of these elements. The role of liquids in re-distributing surface salts and cementing ash aggregates also offers further insight into the mechanisms which preserve well-structured aggregates in some ash deposits. PMID:28361966
Du, Yingzhe; Jin, Yuqi; Lu, Shengyong; Peng, Zheng; Li, Xiaodong; Yan, Jianhua
2013-02-01
Over the past decades in China, the number of medical waste incinerators (MWIs) has been rising rapidly, causing emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). In this study, samples of fly ash, ash deposits, and bottom ash from typical MWIs were analyzed for PCDD/Fs and their distribution characteristics. Results showed international toxic equivalent (I-TEQ) values in the range of 6.9-67 ng I-TEQ/g in fly ash and ash deposits, whereas the concentration in bottom ash was extremely low (only 1.33 pg I-TEQ/g), yet the generation of PCDD/Fs was mostly de novo synthesis in fly ash and ash deposits according to the ratio of PCDFs to PCDDs; the major distribution differences of PCDD/Fs in fly ash was manifested by the content of toxic furan 2,3,7,8-TCDF but other toxic PCDD/Fs showed similar distribution. Other findings are that 2,3,4,7,8-PeCDF had the most contribution to TEQ concentration, and that the most abundant toxic furan congener is 1,2,3,4,6,7,8-HpCDF. Correlation analysis showed that there was no significant correlation between PCDD/Fs concentration and several other physical and chemical parameters. This paper is of interest because it presents the emission performances of PCDD/Fs in ash from medical waste incineration in China. PCDD/F contents in fly ash and ash deposits vary between 6.9 and 67.3 ng I-TEQ/g. However, the concentration in bottom ash was extremely low (only 1.33 x 10(-3) ng I-TEQ/g). The fingerprints of PCDD/Fs in fly ash are almost similar, except for 2,3,7,8-TCDF. There is no marked correlation between PCDD/Fs and other physicochemical properties.
The aggregation efficiency of very fine volcanic ash
NASA Astrophysics Data System (ADS)
Del Bello, E.; Taddeucci, J.; Scarlato, P.
2013-12-01
Explosive volcanic eruptions can discharge large amounts of very small sized pyroclasts (under 0.090 mm) into the atmosphere that may cause problems to people, infrastructures and environment. The transport and deposition of fine ash are ruled by aggregation that causes premature settling of fine ash and, as consequence, significantly reduces the concentration of airborne material over long distances. Parameterizing the aggregation potential of fine ash is then needed to provide accurate modelling of ash transport and deposition from volcanic plumes. Here we present the first results of laboratory experiments investigating the aggregation efficiency of very fine volcanic particles. Previous laboratory experiments have shown that collision kinetic and relative humidity provide the strongest effect on aggregation behaviour but were only limited to particles with size > 0.125 mm. In our work, we focus on natural volcanic ash at ambient humidity with particles size < 0.090 mm, by taking into account the effect of grain size distribution on aggregation potential. Two types of ash were used in our experiments: fresh ash, collected during fall-out from a recent plume-forming eruption at Sakurajima (Japan -July 2013) and old ash, collected from fall-out tephra deposits at Campi Flegrei (Italy, ca. 10 ka), to account for the different chemical composition and morphoscopic effects of altered ash on aggregation efficiency. Total samples were hand sieved to obtain three classes with unimodal grain size distributions (<0.090 mm, <0.063 mm, <0.032 mm). Bimodal grain size distributions were also obtained by mixing the three classes in different proportions. During each experiments, particles were sieved from the top of a transparent tank where a fan, placed at the bottom, allows turbulent dispersion of particles. Collision and sticking of particles on a vertical glass slide were filmed with a high speed cameras at 6000 fps. Our lenses arrangement provide high image resolution allowing to capture particles down to 0.005 mm in diameter. Video sequences of particles motion and collision were then processed with image analysis and particle tracking tools to determine i) the particle number density and ii) the grain size distribution of particles in the turbulent dispersion, and iii) the number of adhered particles as a function of time. Optical laser granulometry provided constrains on grain size distribution of ash particles effectively adhered to the glass slide at the end of each run. Results obtained from our data-set allowed to provide a relationship for determining aggregation rate as a function of particle number density across a range of particle size distributions. This empirical model can be used to determine the aggregation fraction starting from a given total grain size distribution, thus providing fundamental parameters to incorporate aggregation into numerical models of ash dispersal and deposition.
Deposition and immersion-mode nucleation of ice by three distinct samples of volcanic ash
NASA Astrophysics Data System (ADS)
Schill, G. P.; Genareau, K.; Tolbert, M. A.
2015-07-01
Ice nucleation of volcanic ash controls both ash aggregation and cloud glaciation, which affect atmospheric transport and global climate. Previously, it has been suggested that there is one characteristic ice nucleation efficiency for all volcanic ash, regardless of its composition, when accounting for surface area; however, this claim is derived from data from only two volcanic eruptions. In this work, we have studied the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman microscopy coupled to an environmental cell. Ash from the Fuego (basaltic ash, Guatemala), Soufrière Hills (andesitic ash, Montserrat), and Taupo (Oruanui eruption, rhyolitic ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. In the present study, we find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice from 225 to 235 K at ice saturation ratios of 1.05 ± 0.01, comparable to the mineral dust proxy kaolinite. Since depositional ice nucleation will be more important at colder temperatures, fine volcanic ash may represent a global source of cold-cloud ice nuclei. For immersion freezing relevant to mixed-phase clouds, however, only the Oruanui ash exhibited appreciable heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.
Diverse Water-Magma Interactions In The Conduit And Column During The 2008 Okmok Eruption, Alaska
NASA Astrophysics Data System (ADS)
Ort, M. H.; Unema, J. A.; Neal, C. A.; Larsen, J. F.; Schaefer, J. R.
2015-12-01
Ground, surface, and atmospheric water affected the Okmok (central Aleutians, Alaska) 2008 eruption in diverse ways. An initial 16-km-high column produced a widespread coarse fallout. Explosion breccias and lithic-rich fallout overlie this deposit proximally, topped by an ash with abundant accretionary lapilli and ash pellets. After this, a water-rich flood, likely from ejected lake water, left deposits in the eastern caldera. Pyroclastic density currents traveled northward in the caldera, leaving both coarse-ash dune forms and massive unsorted deposits. We interpret these to mark vent opening or widening, with diverse currents forming in different sectors due to directed explosions and partial column collapse. The rest of the eruption was characterized by water-rich ash and steam columns 1-4 km high, with brief <9-km-high periods. Several vents formed during the eruption; one enlarged a pre-existing lake and others formed a new lake, a small tuff ring, and a 300-m-high tuff cone. Surface water, shallow groundwater in coarse sediments, and atmospheric water were abundantly available throughout the eruption. Cone D Lake (13.6 Mm3 volume) drained into the North vent 7-10 days into the eruption, with massive groundwater and sediment removal. Nearby pit craters have no ejecta; surficial lava collapsed when underlying sediments were removed. The eruption column was typically gray or white, rarely black, and ashfall dominates the deposits at all localities, reflecting efficient fragmentation and deposition. Scrubbing of the plume by erupted and atmospheric water caused rapid deposition of the ash, so deposits thin rapidly away from the vent. Laminae and thin lenses dominate the deposits outside the caldera whereas some intracaldera deposits are massive beds up to several decimeters thick. Wind-blown ash-laden mist made low-angle ripples and discontinuous laminae; ash rain deposited continuous laminae. A capping vesicular ash (Av soil horizon) formed as a water-saturation front trapped air in the ash. These observations highlight how water affected fragmentation, transport, and deposition during the 2008 Okmok eruption.
Remobilisation of industrial lead depositions in ash during Australian wildfires.
Wu, Liqin; Taylor, Mark Patrick; Handley, Heather K
2017-12-01
This study examined the recycling of lead (Pb) in ash from wildfires, its source and potential contribution to environmental contamination. Ash from wildfires was collected from four Australian sites following uncontrolled fires during 2012 to 2013 close to major urban populations in Sydney (New South Wales), Hobart (Tasmania) and Adelaide (South Australia). The samples were analysed for their total Pb concentration and Pb isotopic composition to determine the sources of Pb and the extent, if any, of industrial contamination and its recycling into the ecosystem. Median ash concentrations (23mg/kg) released from a wildfire close to Australia's largest city, Sydney, exceeded the median ash Pb concentrations from wildfires from the less populated locations of Hobart, Adelaide and NSW Central Coast. Lead isotopic compositions of Duffys Forest wildfire ash demonstrate that anthropogenic inputs from legacy leaded petrol depositions were the predominant source of contamination. Despite the cessation of leaded petrol use in Australia in 2002, historic petrol Pb deposits continue to be a substantial source of contamination in ash: petrol Pb contributed 35% of the Pb in the Woy Woy ash, 73% in Duffys Forest ash, 39% in Forcett ash and 5% in Cherryville ash. The remobilisation of legacy industrial Pb depositions by wildfires in ash results in it being a persistent and problematic contaminant in contemporary environmental systems because of its known toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Volcanic ash as an oceanic iron source and sink
NASA Astrophysics Data System (ADS)
Rogan, Nicholas; Achterberg, Eric P.; Le Moigne, Frédéric A. C.; Marsay, Chris M.; Tagliabue, Alessandro; Williams, Richard G.
2016-03-01
Volcanic ash deposition to the ocean forms a natural source of iron (Fe) to surface water microbial communities. Inputs of lithogenic material may also facilitate Fe removal through scavenging. Combining dissolved Fe (dFe) and thorium-234 observations alongside modeling, we investigate scavenging of Fe in the North Atlantic following the Eyjafjallajökull volcanic eruption. Under typical conditions biogenic particles dominate scavenging, whereas ash particles dominate during the eruption. The size of particles is important as smaller scavenging particles can become saturated with surface-associated ions. Model simulations indicate that ash deposition associated with Eyjafjallajökull likely led to net Fe removal. Our model suggests a threefold greater stimulation of biological activity if ash deposition had occurred later in the growing season when the region was Fe limited. The implications of ash particle scavenging, eruption timing, and particle saturation need to be considered when assessing the impact of ash deposition on the ocean Fe cycle and productivity.
Neuzil, Sandra G.; Supardi,; Cecil, C. Blaine; Kane, Jean S.; Soedjono, Kadar
1993-01-01
The inorganic geochemistry of three domed ombrogenous peat deposits in Riau and West Kalimantan provinces, Indonesia, was investigated as a possible modern analogue for certain types of low-ash, low-sulfur coal. Mineral matter entering the deposits is apparently limited to small amounts from the allogenic sources of dryfall, rainfall, and diffusion from substrate pore water. In the low-ash peat in the interior of the deposits, a large portion of the mineral matter is authigenic and has been mobilized and stabilized by hydrological, chemical, and biological processes and conditions.Ash yield and sulfur content are low through most of the peat deposits and average 1.1% and 0.14%, respectively, on a moisture-free basis. Ash and sulfur contents only exceed 5% and 0.3%, respectively, near the base of the deposits, with maximum concentrations of 19.9% ash and 0.56% sulfur. Peat water in all three deposits has a low pH, about 4 units, and low dissolved cation concentration, averaging 14 ppm. Near the base, in the geographic interior of each peat deposit, pH is about two units higher and dissolved cation concentration averages 110 ppm. Relative concentrations of the inorganic constituents vary, resulting in chemical facies in the peat. In general, Si, Al, and Fe are the abundant inorganic constituents, although Mg, Ca, and Na dominate in the middle horizon in the geographic interior of coastal peat deposits.The composition of the three deposits reported in this paper indicates that domed ombrogenous peat deposits will result in low ash and sulfur coal, probably less than 10% ash and 1% sulfur, even if marine rocks are laterally and vertically adjacent to the coal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harb, J.N.
This report describes work performed in the fifteenth quarter of a fundamental study to examine the effect of staged combustion on ash formation and deposition. Efforts this quarter included addition of a new cyclone for improved particle sampling and modification of the existing sampling probe. Particulate samples were collected under a variety of experimental conditions for both coals under investigation. Deposits formed from the Black Thunder coal were also collected. Particle size and composition from the Pittsburgh No. 8 ash samples support previously reported results. In addition, the authors ability to distinguish char/ash associations has been refined and applied tomore » a variety of ash samples from this coal. The results show a clear difference between the behavior of included and excluded pyrite, and provide insight into the extent of pyrite oxidation. Ash samples from the Black Thunder coal have also been collected and analyzed. Results indicate a significant difference in the particle size of {open_quotes}unclassifiable{close_quotes} particles for ash formed during staged combustion. A difference in composition also appears to be present and is currently under investigation. Finally, deposits were collected under staged conditions for the Black Thunder coal. Specifically, two deposits were formed under similar conditions and allowed to mature under either reducing or oxidizing conditions in natural gas. Differences between the samples due to curing were noted. In addition, both deposits showed skeletal ash structures which resulted from in-situ burnout of the char after deposition.« less
Long-range volcanic ash transport and fallout during the 2008 eruption of Chaiten volcano, Chile
NASA Astrophysics Data System (ADS)
Durant, A. J.; Prata, A. J.; Villarosa, G.; Rose, W. I.; Delmelle, P.; Viramonte, J.
2012-04-01
The May 2008 eruption of Chaitén volcano, Chile, provided a rare opportunity to measure the long-range transport of volcanic emissions and characteristics of a widely-dispersed terrestrial ash deposit. Airborne ash mass, quantified using thermal infrared satellite remote sensing, ranged between 0.2-0.4 Tg during the period 3-7 May 2008. A high level of spatiotemporal correspondence was observed between cloud trajectories and changes in surface reflectivity, which was inferred to indicate ash deposition. The evolution of the deposit was mapped for the first time using satellite-based observations of surface reflectivity. The distal (>80 km) ash deposit was poorly sorted and fine grained, and mean particle size varied very little beyond a distance >300 km. There were 3 consistent particle size subpopulations in fallout at distances >300 km which suggests that aggregation influenced particle settling. Discrete temporal sampling and characterisation of fallout demonstrated contributions from specific eruptive phases. Some evidence for winnowing was identified through comparison of samples collected at the time of deposition to bulk samples collected months after deposition. X-Ray Photoelectron Spectroscopy (XPS) analyses revealed surface enrichments in Ca, Na and Fe and the presence of coatings of mixed Ca-, Na- and Fe-rich salts on ash particles prior to deposition. XPS analyses revealed strong surface Fe enrichments (in contrast to the results from bulk leachate analyses), which indicates that surface analysis techniques should be applied to investigate potential influences on ocean productivity in response to volcanic ash fallout over oceans. Low S:Cl ratios in leachates indicate that the eruption had a low S content, and high Cl:F ratios imply gas-ash interaction within a Cl-rich environment. We estimate that ash fallout had potential to scavenge ~42 % of total S released into the atmosphere prior to deposition.
Phenolic acids as bioindicators of fly ash deposit revegetation
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. Djurdjevic; M. Mitrovic; P. Pavlovic
The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central partmore » of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.« less
In vitro evaluation of pulmonary deposition of airborne volcanic ash
NASA Astrophysics Data System (ADS)
Lähde, Anna; Sæunn Gudmundsdottir, Sigurbjörg; Joutsensaari, Jorma; Tapper, Unto; Ruusunen, Jarno; Ihalainen, Mika; Karhunen, Tommi; Torvela, Tiina; Jokiniemi, Jorma; Järvinen, Kristiina; Gíslason, Sigurður Reynir; Briem, Haraldur; Gizurarson, Sveinbjörn
2013-05-01
There has been an increasing interest in the effects of volcanic eruption on the environment, climate, and health following two recent volcanic eruptions in Iceland. Although health issues are mainly focused on subjects living close to the eruption due to the high concentration of airborne ash and gasses in close vicinity to the volcanoes, the ash may also reach high altitude and get distributed thousands of kilometers away from the volcano. Ash particles used in the studies were collected at the Eyjafjallajökull and Grímsvötn eruption sites. The composition, size, density and morphology of the particles were analyzed and the effect of particle properties on the re-dispersion and lung deposition were studied. The aerodynamic size and morphology of the particles were consistent with field measurement results obtained during the eruptions. Due to their size and structure, the ash particles can be re-suspended and transported into the lungs. The total surface area of submicron ash particles deposited into the alveolar and tracheobronchial regions of the lungs were 3-9% and 1-2%, respectively. Although the main fraction of the surface area is deposited in the head airways region, a significant amount of particles can deposit into the alveolar and tracheobronchial regions. The results indicate that a substantial increase in the concentration of respirable airborne ash particles and associated health hazard can take place if the deposited ash particles are re-suspended under dry, windy conditions or by outdoor human activity.
Environmentally-mediated ash aggregate formation: example from Tungurahua volcano, Ecuador
NASA Astrophysics Data System (ADS)
Kueppers, Ulrich; Ayris, Paul M.; Bernard, Benjamin; Delmelle, Pierre; Douillet, Guilhem A.; Lavallée, Yan; Mueller, Sebastian B.; Dingwell, Donald B.; Dobson, Kate J.
2016-04-01
Volcanic ash is generated during explosive eruptions through an array of different processes; it can be produced in large quantities and can, in some circumstances, have the potential for far-reaching impacts beyond the flanks of the volcano. Aggregation of ash particles can significantly impact the dispersal within the atmosphere, and its subsequent deposition into terrestrial or aquatic environments. However, our understanding of the complex interplay of the boundary conditions which permit aggregation to occur remain incomplete. Tungurahua volcano, Ecuador, has been intermittently active since 1999. In August 2006, a series of pyroclastic density currents (PDC) were generated during a series of dry, Vulcanian explosions and travelled down the western and northern flanks of the volcano. In some locations, the related PDC deposits temporarily dammed the Chambo river, and the residual heat within those deposits produced vigorous steam plumes. During several field campaigns (2009-2015), we mapped, sampled, and analysed the related deposits. At the base of the Rea ravine, a large delta fan of PDC deposits had dammed the river over a length of several hundred metres. In several outcrops adjacent to the river and in small erosional gullies we found a peculiar stratigraphic layer (up to ten centimetres thick) at the top of the PDC deposits. As this layer is capped by a thin fall unit of coarse ash that we also find elsewhere at the top of the August 2006 deposits, the primary nature is without doubt. In this unit, we observed abundant ash aggregates up to eight millimetres in diameter within a poorly sorted, ash-depleted lapilli tuff, primarily comprised of rounded pumiceous and scoriaceous clasts of similar size. Leaching experiments have shown that these aggregates contain several hundred ppm of soluble sulphate and chloride salts. Recent laboratory experiments (Mueller et al. 2015) have suggested that in order for accretionary lapilli to be preserved within ash deposits likely requires a combination of sufficient humidity and a pre-existing soluble salt load on aggregating ash particles. We suggest that steam pluming from the dammed Chambo river, coupled with soluble salts emplaced by gas-ash interactions between ejection and deposition, provided a unique opportunity for the formation of accretionary lapilli with sufficient mechanical strength to survive deposition, accounting for their presence in a deposit otherwise absent of such aggregates. This possibility provides an important reminder of the role played by external environmental triggers in shaping the properties volcanic ash deposits.
Valavanidis, Athanasios; Iliopoulos, Nikiforos; Fiotakis, Konstantinos; Gotsis, George
2008-06-01
Medical waste from hospitals and other healthcare institutions has become an imperative environmental and public safety problem. Medical waste in Greece has become one of the most urgent environmental problems, because there are 14,000 tons produced annually, of which only a small proportion is incinerated. In the prefecture of Attica there is only one modern municipal medical waste incinerator (started 2004) burning selected infectious hospital waste (5-6 tons day(-1)). Fly and bottom residues (ashes) are collected and stored temporarily in barrels. High values of metal leachability prohibit the landfilling of these ashes, as imposed by EU directives. In the present study we determined quantitatively the heavy metals and other elements in the fly and bottom ashes of the medical waste incinerator, by inductively coupled plasma emission spectrometry (ICP) and by energy dispersive X-ray analysis (EDAX). Heavy metals, which are very toxic, such as Pb, Cd, Ni, Cr, Cu and Zn were found in high concentrations in both fly and bottom ashes. Metal leachability of fly and bottom ashes by water and kerosene was measured by ICP and the results showed that toxic metals in both ashes, such as Pb, Cr, Cd, Cu and Zn, have high leaching values. These values indicate that metals can become soluble and mobile if ash is deposited in landfills, thus restricting their burial according to EU regulations. Analysis of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in fly and bottom ashes showed that their concentrations were very low. This is the first known study in Greece and the results showed that incineration of medical waste can be very effective in minimizing the most hazardous and infectious health-care waste. The presence of toxic metals with high leachability values remains an important draw back of incineration of medical waste and various methods of treating these residues to diminish leaching are been considered at present to overcome this serious technical problem.
Spatial trends in S and Cl in ash leachates of the May 18th, 1980 eruption of Mt. St Helens
NASA Astrophysics Data System (ADS)
Ayris, Paul M.; Delmelle, Pierre; Durant, Adam J.; Damby, David E.; Maters, Elena C.
2014-05-01
It has long been known that surficial deposits of salts and acids on volcanic ash particles derive from interactions of ash with sulphur and halide species within the eruption plume and volcanic cloud. These compounds are mobilised as ash particles are wetted, and beneficial or detrimental environmental and health impacts may be induced where the most concentrated solutions are produced. However, limited mechanistic understanding of gas-ash interactions currently precludes prediction of the spatial distribution or variation in leachate chemistry and concentration following an eruption. Sampling and leachate analysis of freshly-fallen ash therefore offers the sole method by which such variations can be observed. Previous ash leachate studies often involve a limited number of ash samples, and utilise a 'one-dimensional' analysis that considers variation in terms of absolute distance from the source volcano. Here, we demonstrate that extensive sampling and a 'two-dimensional' analysis can uncover more complex spatial trends. We compiled over 358 leachate compositions from the May 18th 1980 eruption of Mt. St. Helens. Of the water-extracted leachates, only 95 compositions from ash sampled at 45 localities between 35 and 1129 km from the volcano are sufficiently documented to be retrospectively comparable. To consider the effects of intra-deposit variability, we calculated average concentrations of leachate data within 11×22 km grid cells across the region, and defined a data quality parameter to reflect confidence in the derived values. To investigate any dependence of leachate composition on the grain size distribution, we generated an interpolated map of geometric specific surface area variation across the deposit, normalising ash leachate data to the calculated specific surface area at the corresponding sampling location. The data treatment identifies S and Cl enrichments in proximal blast deposits; relatively constant Cl concentrations across the ashfall deposits; and a core region of depleted S concentrations in ashfall deposits between 240 and 400 km from the volcano, coinciding with the distal thickening of the deposit attributed to particle aggregation and enhanced fallout. Blast deposit enrichments can be attributed to pre-eruptive uptake of SO2 and HCl gases within the cryptodome, while ashfall deposit trends could reflect differences in the rates of HCl and SO2 uptake by ash, modified by in-plume aggregation processes. However, to validate and interpret such trends with greater confidence would have required a greater spatial density and temporal resolution of sampling, with comprehensive characterisation of the recovered ash and the surrounding deposit. In the future, rigorous study and sampling of equivalent extent to that in the aftermath of the historic Mt. St. Helens eruption is likely required to extend insight into processes affecting the spatial distribution of leachate chemistry.
Phenolic acids as bioindicators of fly ash deposit revegetation.
Djurdjević, L; Mitrović, M; Pavlović, P; Gajić, G; Kostić, O
2006-05-01
The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the "Nikola Tesla-A" thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges (ranging from 1-80%). Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids (38.07-185.16 microg/g of total phenolics and 4.12-27.28 microg/g of phenolic acids) in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. Ash samples contained high amounts of ferulic, vanillic, and p-coumaric acid, while the content of both p-hydroxybenzoic and syringic acid was relatively low. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.
The Grainsize Characteristics of Coignimbrite Deposits
NASA Astrophysics Data System (ADS)
Engwell, Samantha; Eychenne, Julia
2015-04-01
Due to their long atmospheric residence time, identifying the source and understanding the dispersion processes of fine-grained ash is of great importance when considering volcanic hazard and risk. An exceptionally efficient mechanism to supply large volumes of fine-grained ash to the stratosphere is the formation of co-ignimbrite plumes. Such plumes form as air is entrained at the top of propagating pyroclastic density currents, allowing a neutrally buoyant package of gas and ash to loft to high altitudes, consequently dispersing over large areas. The study of ash deposits on land and in deep sea cores has demonstrated that such events have played a major role during ignimbrite-forming eruptions, including the Tambora 1815, the Minoan (Santorini), the Campanian Ignimbrite, and the Younger Toba Tuff eruptions, as well as during more recent, pyroclastic flow-forming, intermediate sized eruptions (Vulcanian to Plinian in style), e.g. Mount St. Helens 1980, Fugen-dake (Unzen) 1991, Pinatubo 1991, Montserrat 1997 and Tungurahua 2006 eruptions. Published, as well as new results from the study of co-ignimbrite deposits, show that co-ignimbrite plumes can rise to high altitudes into the atmosphere (the co-ignimbrite plumes from the May 18, 1980 Mount St Helens blast and the Campanian Ignimbrite eruptions reached 30 - 35 km a.s.l,), potentially distribute enormous volumes of ash (the 75 ka Toba eruption and the Minoan eruption of Santorini settled >800 km3 and >25 km3 of co-ignimbrite ash, respectively), and contribute much of the ash to very large (60±6 vol% of the Campanian fallout deposit 130 to 900 km from vent), as well as intermediate size (up to 58 wt% and 52 wt% in the 2006 Tungurahua and May 18, 1980 Mount St. Helens fallout deposits, respectively) explosive eruptions. Comparison of new data with those from the published record shows that co-ignimbrite deposits are strikingly similar, regardless of eruption conditions, and have distinct grain size characteristics. The deposits are very fine grained (< 100 microns), have unimodal grain size distributions skewed towards the fines, and are more poorly sorted in medial to distal areas than tephra fall deposits from vent-derived plumes at the same distance. Deposits from a single eruption show constant grain size over hundreds to thousands of kilometres, except for a slight coarsening close to source in some cases. In intermediate size eruptions, co-ignimbrite ash often settles synchronously to vent-derived tephra, leading to bimodal grain size fallout deposits. These observations highlight the propensity of the ash to remain in the atmosphere for extended periods of time, and pose important questions regarding how the ash is deposited, and especially the role of aggregation. The uniformity of co-ignimbrite ash means that, with regards to real-time dispersion modelling during an eruption, few assumptions are required for the initial grain size, however depositional assumptions utilised when modelling vent-derived plume dispersion, may not be able to accurately reproduce co-ignimbrite depositional patterns.
NASA Astrophysics Data System (ADS)
Donelick, H. M.; Donelick, M. B.; Donelick, R. A.
2012-12-01
Sand from three river systems in North Idaho (Snake River near Lewiston, Clearwater River near Lewiston and the Salmon River near White Bird) and two regional ash fall events (Mt. Mazama and Mt. St. Helens) were collected for zircon U-Pb detrital age analysis. Up to 120 grains of zircon per sample were ablated using a Resonetics M-50 193 nm ArF Excimer laser ablation (LA) system and the Pb, Th, and U isotopic signals were quantified using an Agilent 7700x quadrupole inductively coupled plasma-mass spectrometer (ICP-MS). Isotopic signals for major, minor, and trace elements, including all REEs, were also monitored. The youngest zircon U-Pb ages from the river samples were approximately 44 Ma; Cenozoic Idaho Batholith and Precambrian Belt Supergroup ages were well represented. Significant common Pb contamination of the Clearwater River sample (e.g., placer native Cu was observed in the sample) precluded detailed analysis of the zircon U-Pb ages but no interpretable ages <44 Ma were observed. Interestingly, not one of the river samples yielded zircon U-Pb ages near 0 Ma, despite all three catchment areas having received significant ash from Mt. St. Helens in 1980, and Mount Mazama 7,700 years ago, and no doubt other events during the Quaternary. Work currently in progress seeks to address bias against near 0 Ma ages in the catchment areas due to: a) small, local ash fall grain sizes and b) overwhelming number of older grains relative to the ash fall grains. Data from Mt. St. Helens ash from several localities near the mountain (Toutle River and Maple Flats, WA) and several far from the mountain (Spokane, WA; Princeton, ID; Kalispell, MT) and Mt. Mazama ash fall deposits near Lewiston, ID and Spokane, WA will be presented to address these possibilities. Additionally, fission track and U-Pb ages from apatites collected from these river and ash fall samples will also be shown to help constrain the problem.
Cooling, degassing and compaction of rhyolitic ash flow tuffs: a computational model
Riehle, J.R.; Miller, T.F.; Bailey, R.A.
1995-01-01
Previous models of degassing, cooling and compaction of rhyolitic ash flow deposits are combined in a single computational model that runs on a personal computer. The model applies to a broader range of initial and boundary conditions than Riehle's earlier model, which did not integrate heat and mass flux with compaction and which for compound units was limited to two deposits. Model temperatures and gas pressures compare well with simple measured examples. The results indicate that degassing of volatiles present at deposition occurs within days to a few weeks. Compaction occurs for weeks to two to three years unless halted by devitrification; near-emplacement temperatures can persist for tens of years in the interiors of thick deposits. Even modest rainfall significantly chills the upper parts of ash deposits, but compaction in simple cooling units ends before chilling by rainwater influences cooling of the interior of the sheet. Rainfall does, however, affect compaction at the boundaries of deposits in compound cooling units, because the influx of heat from the overlying unit is inadequate to overcome heat previously lost to vaporization of water. Three density profiles from the Matahina Ignimbrite, a compound cooling unit, are fairly well reproduced by the model despite complexities arising from numerous cooling breaks. Uncertainties in attempts to correlate in detail among the profiles may be the result of the non-uniform distribution of individual deposits. Regardless, it is inferred that model compaction is approximately valid. Thus the model should be of use in reconstructing the emplacement history of compound ash deposits, for inferring the depositional environments of ancient deposits and for assessing how long deposits of modern ash flows are capable of generating phreatic eruptions or secondary ash flows. ?? 1995 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Kandlbauer, Jessica; Carey, Steven N.; Sparks, R. Stephen J.
2013-04-01
Tambora volcano lies on the Sanggar Peninsula of Sumbawa Island in the Indonesian archipelago. During the great 1815 explosive eruption, the majority of the erupted pyroclastic material was dispersed and subsequently deposited into the Indian Ocean and Java Sea. This study focuses on the grain size distribution of distal 1815 Tambora ash deposited in the deep sea compared to ash fallen on land. Grain size distribution is an important factor in assessing potential risks to aviation and human health, and provides additional information about the ash transport mechanisms within volcanic umbrella clouds. Grain size analysis was performed using high precision laser diffraction for a particle range of 0.2 μm-2 mm diameter. The results indicate that the deep-sea samples provide a smooth transition to the land samples in terms of grain size distributions despite the different depositional environments. Even the very fine ash fraction (<10 μm) is deposited in the deep sea, suggesting vertical density currents as a fast and effective means of transport to the seafloor. The measured grain size distribution is consistent with an improved atmospheric gravity current sedimentation model that takes into account the finite duration of an eruption. In this model, the eruption time and particle fall velocity are the critical parameters for assessing the ash component depositing while the cloud advances versus the ash component depositing once the eruption terminates. With the historical data on eruption duration (maximum 24 h) and volumetric flow rate of the umbrella cloud (˜1.5-2.5 × 1011 m3/s) as input to the improved model, and assuming a combination of 3 h Plinian phase and 21 h co-ignimbrite phase, it reduces the mean deviation of the predicted versus observed grain size distribution by more than half (˜9.4 % to ˜3.7 %) if both ash components are considered.
Maier, Katherine L.; Gatti, Emma; Wan, Elmira; Ponti, Daniel J.; Pagenkopp, Mark; Starratt, Scott W.; Olson, Holly A.; Tinsley, John
2015-01-01
We document characteristics of tephra, including facies and geochemistry, from 27 subsurface sites in the Sacramento-San Joaquin Delta, California, to obtain stratigraphic constraints in a complex setting. Analyzed discrete tephra deposits are correlative with: 1) an unnamed tephra from the Carlotta Formation near Ferndale, California, herein informally named the ash of Wildcat Grade (<~1.450 - >~0.780 Ma), 2) the Rockland ash bed (~0.575 Ma), 3) the Loleta ash bed (~0.390 Ma), and 4) a middle Pleistocene tephra resembling volcanic ash deposits at Tulelake, California, and Pringle Falls, Bend, and Summer Lake, Oregon, herein informally named the dacitic ash of Hood (<~0.211 to >~0.180 Ma, correlated age). All four tephra are derived from Cascades volcanic sources. The Rockland ash bed erupted from the southern Cascades near Lassen Peak, California, and occurs in deposits up to >7 m thick as observed in core samples taken from ~40 m depth below land surface. Tephra facies and tephra age constraints suggest rapid tephra deposition within fluvial channel and overbank settings, likely related to flood events shortly following the volcanic eruption. Such rapidly deposited tephra are important chronostratigraphic markers that suggest varying sediment accumulation rates (~0.07-0.29 m/1000 yr) in Quaternary deposits below the modern Sacramento-San Joaquin Delta. This study provides the first steps in developing a subsurface Quaternary stratigraphic framework necessary for future hazard assessment.
NASA Astrophysics Data System (ADS)
Wygel, C. M.; Sahagian, D. L.
2017-12-01
Volcanic eruptions are natural hazards due to their explosive nature and widespread transportation and deposition of ash particles. After deposition and subsequent leaching in soils or water bodies, ash deposition positively (nutrients) and negatively (contaminants) impacts the health of flora and fauna, including humans. The effects of ash leachates have been difficult to replicate in field and laboratory studies due to the many complexities and differences between ash particles. Ash morphology is characteristic for each eruption, dependent upon eruption energy, and should play a critical role in determining leaching rates. Morphology reflects overall particle surface area, which is strongly influenced by the presence of surface dust. In addition, ash composition, which in part controls morphology and particle size, may also affect leaching rates. This study determines the extent to which ash morphology, surface area, composition, and particle size control ash dissolution rates. Further, it is necessary to determine whether compound vesicular ash particles permit water into their interior structures to understand if both the internal and external surface areas are available for leaching. To address this, six fresh, unhydrated ash samples from diverse volcanic environments and a large range in morphology, from Pele's spheres to vesicular compound ash, are tested in the laboratory. Ash morphology was characterized on the Scanning Electron Microscope (SEM) before and after leaching and surface area was quantified by Brunauer Emmett Teller (BET) analysis and with geometric calculations. Column Leachate Tests (CLT) were conducted to compare leaching rates over a range of basaltic to silicic ashes as a function of time and surface area, to recreate the effects of ash deposition in diverse volcanic environments. After the CLT, post-leaching water analyses were conducted by Ion Coupled Plasma-Mass Spectrometry (ICP-MS) and Ion Chromatography (IC). We find that leaching rates are correlated to characteristic surface area of ash particles.
Mazama ash in the Northeastern Pacific
Nelson, C.H.; Kulm, L.D.; Carlson, P.R.; Duncan, J.R.
1968-01-01
Volcanic glass in marine sediments off Oregon and Washington correlates with continental deposits of Mount Mazama ash by stratigraphic position, refractive index, and radiocarbon dating. Ash deposited in the abyssal regions by turbidity currents is used for tracing of the dispersal routes of postglacial sediments and for evaluation of marine sedimentary processes.
Effects of volcanic ash on the forest canopy insects of Montserrat, West Indies.
Marske, Katharine A; Ivie, Michael A; Hilton, Geoff M
2007-08-01
The impact of ash deposition levels on canopy arthropods was studied on the West Indian island of Montserrat, the site of an ongoing volcanic eruption since 1995. Many of the island's natural habitats have been buried by volcanic debris, and remaining forests regularly receive volcanic ash deposition. To test the effect of ash on canopy arthropods, four study sites were sampled over a 15-mo period. Arthropod samples were obtained using canopy fogging, and ash samples were taken from leaf surfaces. Volcanic ash has had a significant negative impact on canopy arthropod populations, but the decline is not shared equally by all taxa present, and total population variation is within the variance attributed to other aboitic and biotic factors. The affected populations do not differ greatly from those of the neighboring island of St. Kitts, which has not been subject to recent volcanic activity. This indicates that observed effects on Montserrat's arthropod fauna have a short-term acute response to recent ash deposition rather than a chronic depression caused by repeated exposure to ash over the last decade.
Recovery of phosphorus compounds from thermally-processed wastes
NASA Astrophysics Data System (ADS)
Czechowska-Kosacka, A.; Pawłowski, L.; Niedbala, G.; Cel, W.
2018-05-01
Depletion of phosphorus deposits is one of the most serious global problems, which may soon lead to a crisis in food production. It is estimated that if the current living standard is maintained, the available reserves will be depleted in 130 years. Considering the principle of sustainable development, searching for alternative phosphorus sources is extremely important. The work presented the results of the research on the possibility of utilizing wastes as a source of phosphorus. The studies were conducted on poultry manure. The physicochemical properties of phosporus-rich wastes were determined as well. The fertilizing properties of ashes from poultry manure combustion – obtained from different systems, i.e. caged and barn production. The assimilability of phosphorus from the obtained ashes was determined. Potential applications of phosphorus-rich ashes were proposed as well.
Ielpo, Pierina; Fermo, Paola; Comite, Valeria; Mastroianni, Domenico; Viviano, Gaetano; Salerno, Franco; Tartari, Gianni
2016-12-15
During a sampling campaign, carried out during June 2012, inside some traditional households located in four villages (Phakding, Namche, Pangboche and Tukla) of Mt. Everest region in southern part of the central Himalaya (Nepal), particulate matter (PM) depositions and ashes have been collected. Moreover, outdoor PM depositions have also been analyzed. Chemical characterization of PM depositions and ashes for major ions, organic carbon, elemental carbon (EC), metal content and PAHs (Polycyclic Aromatic Hydrocarbons) allowed identifying, as major contributes to indoor PM, the following sources: biomass burning, cooking and chimney ashes. These sources significantly affect outdoor PM depositions: in-house biomass burning is the major source for outdoor EC and K + as well as biomass burning and cooking activities are the major sources for Polycyclic Aromatic Hydrocarbons. Copyright © 2016 Elsevier B.V. All rights reserved.
Geotechnical approaches to coal ash content control in mining of complex structure deposits
NASA Astrophysics Data System (ADS)
Batugin, SA; Gavrilov, VL; Khoyutanov, EA
2017-02-01
Coal deposits having complex structure and nonuniform quality coal reserves require improved processes of production quality control. The paper proposes a method to present coal ash content as components of natural and technological dilution. It is chosen to carry out studies on the western site of Elginsk coal deposit, composed of four coal beds of complex structure. The reported estimates of coal ash content in the beds with respect to five components point at the need to account for such data in confirmation exploration, mine planning and actual mining. Basic means of analysis and control of overall ash content and its components are discussed.
NASA Astrophysics Data System (ADS)
Easdale, M. H.; Bruzzone, O.
2018-03-01
Volcanic ash fallout is a recurrent environmental disturbance in forests, arid and semi-arid rangelands of Patagonia, South America. The ash deposits over large areas are responsible for several impacts on ecological processes, agricultural production and health of local communities. Public policy decision making needs monitoring information of the affected areas by ash fallout, in order to better orient social, economic and productive aids. The aim of this study was to analyze the spatial distribution of volcanic ash deposits from the eruption of Puyehue-Cordón Caulle in 2011, by identifying a sudden change in the Normalized Difference Vegetation Index (NDVI) temporal dynamics, defined as a perturbation located in the time series. We applied a sparse-wavelet transform using the Basis Pursuit algorithm to NDVI time series obtained from the Moderate Resolution Image Spectroradiometer (MODIS) sensor, to identify perturbations at a pixel level. The spatial distribution of the perturbation promoted by ash deposits in Patagonia was successfully identified and characterized by means of a perturbation in NDVI temporal dynamics. Results are encouraging for the future development of a new platform, in combination with data from forecasting models and tracking of ash cloud trajectories and dispersion, to inform stakeholders to mitigate impact of volcanic ash on agricultural production and to orient public intervention strategies after a volcanic eruption followed by ash fallout over a wide region.
Ash formation, deposition, corrosion, and erosion in conventional boilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, S.A.; Jones, M.L.
1995-12-01
The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustionmore » and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.« less
Volcanic ash supports a diverse bacterial community in a marine mesocosm
Verena Witt,; Paul M Ayris,; Damby, David; Corrado Cimarelli,; Ulrich Kueppers,; Donald B Dingwell,; Gert Wörheide,
2017-01-01
Shallow-water coral reef ecosystems, particularly those already impaired by anthropogenic pressures, may be highly sensitive to disturbances from natural catastrophic events, such as volcanic eruptions. Explosive volcanic eruptions expel large quantities of silicate ash particles into the atmosphere, which can disperse across millions of square kilometres and deposit into coral reef ecosystems. Following heavy ash deposition, mass mortality of reef biota is expected, but little is known about the recovery of post-burial reef ecosystems. Reef regeneration depends partly upon the capacity of the ash deposit to be colonised by waterborne bacterial communities and may be influenced to an unknown extent by the physiochemical properties of the ash substrate itself. To determine the potential for volcanic ash to support pioneer bacterial colonisation, we exposed five well-characterised volcanic and coral reef substrates to a marine aquarium under low light conditions for 3 months: volcanic ash, synthetic volcanic glass, carbonate reef sand, calcite sand and quartz sand. Multivariate statistical analysis of Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting data demonstrates clear segregation of volcanic substrates from the quartz and coral reef substrates over 3 months of bacterial colonisation. Overall bacterial diversity showed shared and substrate-specific bacterial communities; however, the volcanic ash substrate supported the most diverse bacterial community. These data suggest a significant influence of substrate properties (composition, granulometry and colour) on bacterial settlement. Our findings provide first insights into physicochemical controls on pioneer bacterial colonisation of volcanic ash and highlight the potential for volcanic ash deposits to support bacterial diversity in the aftermath of reef burial, on timescales that could permit cascading effects on larval settlement.
Geotechnical properties of ash deposits near Hilo, Hawaii
Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.
1982-01-01
Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.
Panebianco, Juan E.; Mendez, Mariano J.; Buschiazzo, Daniel E.; Bran, Donaldo; Gaitán, Juan J.
2017-01-01
Wind erosion of freshly-deposited volcanic ash causes persistent storms, strongly affecting ecosystems and human activity. Wind erosion of the volcanic ash was measured up to 17 months after the ash deposition, at 7 sites located within the ash-deposition area. The mass flux was measured up to 1.5 m above ground level. Mass transport rates were over 125 times the soil wind-erosion rates observed before the ash deposition, reaching up to 6.3 kg m−1 day−1. Total mass transport of ash during the 17 months ranged between 113.6 and 969.9 kg m−1 depending on topographic location and wind exposure. The vertical distribution of the mass flux at sites with higher vegetation cover was generally inverted as compared to sites with lower vegetation cover. This situation lasted 7 months and then a shift towards a more uniform vertical distribution was observed, in coincidence with the beginning of the decline of the mass transport rates. Decay rates differed between sites. Despite changes over time, an inverse linear correlation between the mass transports and the mass-flux gradients was found. Both the mass-flux gradients and the average mass-transport rates were not linked with shear-stress partition parameters, but with the ratio: ash-fall thickness to total vegetation cover. PMID:28349929
Panebianco, Juan E; Mendez, Mariano J; Buschiazzo, Daniel E; Bran, Donaldo; Gaitán, Juan J
2017-03-28
Wind erosion of freshly-deposited volcanic ash causes persistent storms, strongly affecting ecosystems and human activity. Wind erosion of the volcanic ash was measured up to 17 months after the ash deposition, at 7 sites located within the ash-deposition area. The mass flux was measured up to 1.5 m above ground level. Mass transport rates were over 125 times the soil wind-erosion rates observed before the ash deposition, reaching up to 6.3 kg m -1 day -1 . Total mass transport of ash during the 17 months ranged between 113.6 and 969.9 kg m -1 depending on topographic location and wind exposure. The vertical distribution of the mass flux at sites with higher vegetation cover was generally inverted as compared to sites with lower vegetation cover. This situation lasted 7 months and then a shift towards a more uniform vertical distribution was observed, in coincidence with the beginning of the decline of the mass transport rates. Decay rates differed between sites. Despite changes over time, an inverse linear correlation between the mass transports and the mass-flux gradients was found. Both the mass-flux gradients and the average mass-transport rates were not linked with shear-stress partition parameters, but with the ratio: ash-fall thickness to total vegetation cover.
Volcanic Hazards Associated with the NE Sector of Tacaná Volcano, Guatemala.
NASA Astrophysics Data System (ADS)
Hughes, S. R.; Saucedo, R.; Macias, J.; Arce, J.; Garcia-Palomo, A.; Mora, J.; Scolamacchia, T.
2003-12-01
Tacaná volcano, with a height of 4,030 m above sea level, straddles the southern Mexico/Guatemala border. Last active in 1986, when there was a small phreatic event with a duration of a few days, this volcano presents an impending hazard to over 250,000 people. The NE sector of the volcano reveals the violent volcanic history of Tacaná that may be indicative of a serious potential risk to the area. Its earliest pyroclastic history appears to consist of fall, flow, and surge deposits, together with lavas, that have formed megablocks within a series of old debris avalanche deposits. This sector collapse event is overlain by a sequence of pumice fall and ash flow deposits, of which the youngest, less-altered pumice fall deposit shows a minimum thickness of > 4 m, with a dispersal axis trending toward the NE. A second debris avalanche deposit, separated from the above deposits by a paleosoil, is dominated by megablocks of lava and scoriaceous dome material. The current topography around the northeastern flank of the volcano is determined by a third, and most recent debris avalanche deposit, a thick (> 20 m) sequence of six block and ash flows dated at around 16,000 years BP, each separated by 1-10 cm thick ash cloud surge deposit, together with secondary lahar deposits. These are followed by a at least 4 lava flows that extend 2 km down the flank of the volcano. It appears that the most recent pyroclastic event at Tacaná is also recorded in this sector of the volcano: above the block and ash flows occurs a > 1 m thick ash flow unit that can be seen at least 5 km from the vent. Lastly, the Santa Maria Ash fall deposit, produced in 1902, has capped most of the deposits at Tacaná.
Hampton, M.A.; Bouma, A.H.; Frost, T.P.; Colburn, I.P.
1979-01-01
Surficial sediments of the Kodiak shelf, Gulf of Alaska, contain various amounts of volcanic ash whose physical properties indicate that it originated from the 1912 Katmai eruption. The distribution of ash is related to the shelf physiography and represents redistribution by oceanic circulation rather than the original depositional pattern from the volcanic event. The ash distribution can be used, in conjunction with the distribution of grain sizes, as an indicator of present-day sediment dispersal patterns on the shelf. No significant modern input of sediment is occurring on the Kodiak shelf, which is mostly covered by Pleistocene glacial deposits. Coarse-grained sediments on flat portions of shallow banks apparently are being winnowed, with the removed ash-rich fine material being deposited in shallow depressions on the banks and in three of the four major troughs that cut transversely across the shelf. The other major trough seems to be experiencing a relatively high-energy current regime, with little deposition of fine material. ?? 1979.
Emplacement temperatures of the November 22, 1994 nuee ardente deposits, Merapi Volcano, Java
Voight, B.; Davis, M.J.
2000-01-01
A study of emplacement temperatures was carried out for the largest of the 22 November 1994 nuée ardente deposits at Merapi Volcano, based mainly on the response of plastic and woody materials subjected to the hot pyroclastic current and the deposits, and to some extent on eyewitness observations. The study emphasizes the Turgo–Kaliurang area in the distal part of the area affected by the nuée ardente, where nearly 100 casualties occurred. The term nuée ardente as used here includes channeled block-and-ash flows, and associated ash-clouds of surge and fallout origins. The emplacement temperature of the 8 m thick channeled block-and-ash deposit was relatively high, ∼550°C, based mainly on eyewitness reports of visual thermal radiance. Emplacement temperatures for ash-cloud deposits a few cm thick were deduced from polymer objects collected at Turgo and Kaliurang. Most polymers do not display a sharp melting range, but polyethylene terephthalate used in water bottles melts between 245 and 265°C, and parts of the bottles that had been deformed during fabrication molding turn a milky color at 200°C. The experimental evidence suggests that deposits in the Turgo area briefly achieved a maximum temperature near 300°C, whereas those near Kaliurang were <200°C. Maximum ash deposit temperatures occurred in fallout with a local source in the channeled block-and-ash flow of the Boyong river valley; the surge deposit was cooler (∼180°C) due to entrainment of cool air and soils, and tree singe-zone temperatures were around 100°C.
NASA Astrophysics Data System (ADS)
Schneider, Jean-Luc; Fourquin, Claude; Paicheler, Jean-Claude
1992-02-01
Pyroclastic deposits interpreted as subaqueous ash-flow tuff have been recognized within Archean to Recent marine and lacustrine sequences. Several authors proposed a high-temperature emplacement for some of these tuffs. However, the subaqueous welding of pyroclastic deposits remains controversial. The Visean marine volcaniclastic formations of southern Vosges (France) contain several layers of rhyolitic and rhyodacitic ash-flow tuff. These deposits include, from proximal to distal settings, breccia, lapilli and fine-ash tuff. The breccia and lapilli tuff are partly welded, as indicated by the presence of fiamme, fluidal and axiolitic structures. The lapilli tuff form idealized sections with a lower, coarse and welded unit and an upper, bedded and unwelded fine-ash tuff. Sedimentary structures suggest that the fine-ash tuff units were deposited by turbidity currents. Welded breccias, interbedded in a thick submarine volcanic complex, indicate the close proximity of the volcanic source. The lapilli and fine-ash tuff are interbedded in a thick marine sequence composed of alternating sandstones and shales. Presence of a marine stenohaline fauna and sedimentary structures attest to a marine depositional environment below storm-wave base. In northern Anatolia, thick massive sequences of rhyodacitic crystal tuff are interbedded with the Upper Cretaceous marine turbidites of the Mudurnu basin. Some of these tuffs are welded. As in southern Vosges, partial welding is attested by the presence of fiamme and fluidal structures. The latter are frequent in the fresh vitric matrix. These tuff units contain a high proportion of vitroclasis, and were emplaced by ash flows. Welded tuff units are associated with non-welded crystal tuff, and contain abundant bioclasts which indicate mixing with water during flowage. At the base, basaltic breccia beds are associated with micritic beds containing a marine fauna. The welded and non-welded tuff sequences are interbedded in an alternation of limestones and marls. These limestones are rich in pelagic microfossils. The evidence above strongly suggest that in both examples, tuff beds are partly welded and were emplaced at high temperature by subaqueous ash flows in a permanent marine environment. The sources of the pyroclastic material are unknown in both cases. We propose that the ash flows were produced during submarine fissure eruptions. Such eruptions could produce non-turbulent flows which were insulated by a steam carapace before deposition and welding. The welded ash-flow tuff deposits of southern Vosges and northern Anatolia give strong evidence for existence of subaqueous welding.
Volcanic ash supports a diverse bacterial community in a marine mesocosm.
Witt, V; Ayris, P M; Damby, D E; Cimarelli, C; Kueppers, U; Dingwell, D B; Wörheide, G
2017-05-01
Shallow-water coral reef ecosystems, particularly those already impaired by anthropogenic pressures, may be highly sensitive to disturbances from natural catastrophic events, such as volcanic eruptions. Explosive volcanic eruptions expel large quantities of silicate ash particles into the atmosphere, which can disperse across millions of square kilometres and deposit into coral reef ecosystems. Following heavy ash deposition, mass mortality of reef biota is expected, but little is known about the recovery of post-burial reef ecosystems. Reef regeneration depends partly upon the capacity of the ash deposit to be colonised by waterborne bacterial communities and may be influenced to an unknown extent by the physiochemical properties of the ash substrate itself. To determine the potential for volcanic ash to support pioneer bacterial colonisation, we exposed five well-characterised volcanic and coral reef substrates to a marine aquarium under low light conditions for 3 months: volcanic ash, synthetic volcanic glass, carbonate reef sand, calcite sand and quartz sand. Multivariate statistical analysis of Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting data demonstrates clear segregation of volcanic substrates from the quartz and coral reef substrates over 3 months of bacterial colonisation. Overall bacterial diversity showed shared and substrate-specific bacterial communities; however, the volcanic ash substrate supported the most diverse bacterial community. These data suggest a significant influence of substrate properties (composition, granulometry and colour) on bacterial settlement. Our findings provide first insights into physicochemical controls on pioneer bacterial colonisation of volcanic ash and highlight the potential for volcanic ash deposits to support bacterial diversity in the aftermath of reef burial, on timescales that could permit cascading effects on larval settlement. © 2017 The Authors. Geobiology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Dingwell, Donald B.
2016-01-01
Explosive volcanic eruptions can release vast quantities of pyroclastic material into Earth's atmosphere, including volcanic ash, particles with diameters less than two millimeters. Ash particles can cluster together to form aggregates, in some cases reaching up to several centimeters in size. Aggregation alters ash transport and settling behavior compared to un-aggregated particles, influencing ash distribution and deposit stratigraphy. Accretionary lapilli, the most commonly preserved type of aggregates within the geologic record, can exhibit complex internal stratigraphy. The processes involved in the formation and preservation of these aggregates remain poorly constrained quantitatively. In this study, we simulate the variable gas-particle flow conditions which may be encountered within eruption plumes and pyroclastic density currents via laboratory experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. In this apparatus, solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (particle concentration, air flow rate, gas temperature, humidity, liquid composition). Experiments were conducted with soda-lime glass beads and natural volcanic ash particles under a range of experimental conditions. Both glass beads and volcanic ash exhibited the capacity for aggregation, but stable aggregates could only be produced when materials were coated with high but volcanically-relevant concentrations of NaCl. The growth and structure of aggregates was dependent on the initial granulometry, while the rate of aggregate formation increased exponentially with increasing relative humidity (12-45% RH), before overwetting promoted mud droplet formation. Notably, by use of a broad granulometry, we generated spherical, internally structured aggregates similar to some accretionary pellets found in volcanic deposits. Adaptation of a powder-technology model offers an explanation for the origin of natural accretionary pellets, suggesting them to be the result of a particular granulometry and fast-acting selective aggregation processes. For such aggregates to survive deposition and be preserved in the deposits of eruption plumes and pyroclastic density currents likely requires a significant pre-existing salt load on ash surfaces, and rapid aggregate drying prior to deposition or interaction with a more energetic environment. Our results carry clear benefits for future efforts to parameterize models of ash transport and deposition in the field.
Near term application of water cooling
NASA Astrophysics Data System (ADS)
Horner, M. W.; Caruvana, A.; Cohn, A.; Smith, D. P.
1980-03-01
The paper presents studies of combined gas and steam-turbine cycles related to the near term application of water cooling technology to the commercial gas turbine operating on heavy residual oil or coal derived liquid fuels. Water cooling promises significant reduction of hot corrosion and ash deposition at the turbine first-stage nozzle. It was found that: (1) corrosion of some alloys in the presence of alkali contaminant was less as metal temperatures were lowered to the 800-1000 F range, (2) the rate of ash deposition is increased for air-cooled and water-cooled nozzles at the 2060 F turbine firing temperature compared to 1850 F, (3) the ash deposit for the water cooled nozzle was lighter and more easily removed at both 1850 and 2050 F, (4) on-line nutshelling was effective on the water-cooled nozzles even at 2050 F, and (5) the data indicates that the rate of ash deposition may be sensitive to surface wall temperatures.
NASA Astrophysics Data System (ADS)
Resom, Angesom; Asrat, Asfawossen; Gossa, Tegenu; Hovers, Erella
2018-06-01
The Melka Wakena archaeological site-complex is located at the eastern rift margin of the central sector of the Main Ethiopian Rift (MER), in south central Ethiopia. This wide, gently sloping rift shoulder, locally called the "Gadeb plain" is underlain by a succession of primary pyroclastic deposits and intercalated fluvial sediments as well as reworked volcaniclastic rocks, the top part of which is exposed by the Wabe River in the Melka Wakena area. Recent archaeological survey and excavations at this site revealed important paleoanthropological records. An integrated stratigraphic, petrological, and major and trace element geochemical study has been conducted to constrain the petrogenesis of the primary pyroclastic deposits and the depositional history of the sequence. The results revealed that the Melka Wakena pyroclastic deposits are a suite of mildly alkaline, rhyolitic pantellerites (ash falls, pumiceous ash falls and ignimbrites) and slightly dacitic ash flows. These rocks were deposited by episodic volcanic eruptions during early to middle Pleistocene from large calderas along the Wonji Fault Belt (WFB) in the central sector of the MER and from large silicic volcanic centers at the eastern rift shoulder. The rhyolitic ash falls, pumiceous ash falls and ignimbrites have been generated by fractional crystallization of a differentiating basaltic magma while the petrogenesis of the slightly dacitic ash flows involved some crustal contamination and assimilation during fractionation. Contemporaneous fluvial activities in the geomorphologically active Gadeb plain deposited overbank sedimentary sequences (archaeology bearing conglomerates and sands) along meandering river courses while a dense network of channels and streams have subsequently down-cut through the older volcanic and sedimentary sequences, redepositing the reworked volcaniclastic sediments further downstream.
Dispersal of Volcanic Ash on Mars: Ash Grain Shape Analysis
NASA Astrophysics Data System (ADS)
Langdalen, Z.; Fagents, S. A.; Fitch, E. P.
2017-12-01
Many ash dispersal models use spheres as ash-grain analogs in drag calculations. These simplifications introduce inaccuracies in the treatment of drag coefficients, leading to inaccurate settling velocities and dispersal predictions. Therefore, we are investigating the use of a range of shape parameters, calculated using grain dimensions, to derive a better representation of grain shape and effective grain cross-sectional area. Specifically, our goal is to apply our results to the modeling of ash deposition to investigate the proposed volcanic origin of certain fine-grained deposits on Mars. Therefore, we are documenting the dimensions and shapes of ash grains from terrestrial subplinian to plinian deposits, in eight size divisions from 2 mm to 16 μm, employing a high resolution optical microscope. The optical image capture protocol provides an accurate ash grain outline by taking multiple images at different focus heights prior to combining them into a composite image. Image composite mosaics are then processed through ImageJ, a robust scientific measurement software package, to calculate a range of dimensionless shape parameters. Since ash grains rotate as they fall, drag forces act on a changing cross-sectional area. Therefore, we capture images and calculate shape parameters of each grain positioned in three orthogonal orientations. We find that the difference between maximum and minimum aspect ratios of the three orientations of a given grain best quantifies the degree of elongation of that grain. However, the average aspect ratio calculated for each grain provides a good representation of relative differences among grains. We also find that convexity provides the best representation of surface irregularity. For both shape parameters, natural ash grains display notably different shape parameter values than sphere analogs. Therefore, Mars ash dispersal modeling that incorporates shape parameters will provide more realistic predictions of deposit extents because volcanic ash-grain morphologies differ substantially from simplified geometric shapes.
NASA Astrophysics Data System (ADS)
Poulidis, Alexandros P.; Takemi, Tetsuya; Shimizu, Atsushi; Iguchi, Masato; Jenkins, Susanna F.
2018-04-01
With the eruption of Eyjafjallajökull (Iceland) in 2010, interest in the transport of volcanic ash after moderate to major eruptions has increased with regards to both the physical and the emergency hazard management aspects. However, there remain significant gaps in the understanding of the long-term behaviour of emissions from volcanoes with long periods of activity. Mt. Sakurajima (Japan) provides us with a rare opportunity to study such activity, due to its eruptive behaviour and dense observation network. In the 6-year period from 2009 to 2015, the volcano was erupting at an almost constant rate introducing approximately 500 kt of ash per month to the atmosphere. The long-term characteristics of the transport and deposition of ash and SO2 in the area surrounding the volcano are studied here using daily surface observations of suspended particulate matter (SPM) and SO2 and monthly ashfall values. Results reveal different dispersal patterns for SO2 and volcanic ash, suggesting volcanic emissions' separation in the long-term. Peak SO2 concentrations at different locations on the volcano vary up to 2 orders of magnitude and decrease steeply with distance. Airborne volcanic ash increases SPM concentrations uniformly across the area surrounding the volcano, with distance from the vent having a secondary effect. During the period studied here, the influence of volcanic emissions was identifiable both in SO2 and SPM concentrations which were, at times, over the recommended exposure limits defined by the Japanese government, European Union and the World Health Organisation. Depositional patterns of volcanic ash exhibit elements of seasonality, consistent with previous studies. Climatological and topographic effects are suspected to impact the deposition of volcanic ash away from the vent: for sampling stations located close to complex topographical elements, sharp changes in the deposition patterns were observed, with ash deposits for neighbouring stations as close as 5 km differing as much as an order of magnitude. Despite these effects, deposition was sufficiently approximated by an inverse power law relationship, the fidelity of which depended on the distance from the vent: for proximal to intermediate areas (<20 km), errors decrease with longer accumulation periods (tested here for 1-72 months), while the opposite was seen for deposition in distal areas (>20 km).
Enviromental impact of a hospital waste incineration plant in Krakow (Poland).
Gielar, Agnieszka; Helios-Rybicka, Edeltrauda
2013-07-01
The environmental impact of a hospital waste incineration plant in Krakow was investigated. The objective of this study was to assess the degree of environmental effect of the secondary solid waste generated during the incineration process of medical waste. The analysis of pollution of the air emissions and leaching test of ashes and slag were carried out. The obtained results allowed us to conclude that (i) the hospital waste incineration plant significantly solves the problems of medical waste treatment in Krakow; (ii) the detected contaminant concentrations were generally lower than the permissible values; (iii) the generated ashes and slag contained considerable concentrations of heavy metals, mainly zinc, and chloride and sulfate anions. Ashes and slag constituted 10-15% of the mass of incinerated wastes; they are more harmful for the environment when compared with untreated waste, and after solidification they can be deposited in the hazardous waste disposal.
Resuspension of ash after the 2014 phreatic eruption at Ontake volcano, Japan
NASA Astrophysics Data System (ADS)
Miwa, Takahiro; Nagai, Masashi; Kawaguchi, Ryohei
2018-02-01
We determined the resuspension process of an ash deposit after the phreatic eruption of September 27th, 2014 at Ontake volcano, Japan, by analyzing the time series data of particle concentrations obtained using an optical particle counter and the characteristics of an ash sample. The time series of particle concentration was obtained by an optical particle counter installed 11 km from the volcano from September 21st to October 19th, 2014. The time series contains counts of dust particles (ash and soil), pollen, and water drops, and was corrected to calculate the concentration of dust particles based on a polarization factor reflecting the optical anisotropy of particles. The dust concentration was compared with the time series of wind velocity. The dust concentration was high and the correlation coefficient with wind velocity was positive from September 28th to October 2nd. Grain-size analysis of an ash sample confirmed that the ash deposit contains abundant very fine particles (< 30 μm). Simple theoretical calculations revealed that the daily peaks of the moderate wind (a few m/s at 10 m above the ground surface) were comparable with the threshold wind velocity for resuspension of an unconsolidated deposit with a wide range of particle densities. These results demonstrate that moderate wind drove the resuspension of an ash deposit containing abundant fine particles produced by the phreatic eruption. Histogram of polarization factors of each species experimentally obtained. The N is the number of analyzed particles.
NASA Astrophysics Data System (ADS)
Zanella, E.; Gurioli, L.; Pareschi, M. T.; Lanza, R.
2007-05-01
During the A.D. 79 eruption of Vesuvius, Italy, the Roman town of Pompeii was covered by 2.5 m of pyroclastic fall pumice and then partially destroyed by pyroclastic density currents (PDCs). Thermal remanent magnetization measurements performed on the lithic and roof tile fragments embedded in the PDC deposits allow us to quantify the variations in the temperature (Tdep) of the deposits within and around Pompeii. These results reveal that the presence of buildings strongly influenced the deposition temperature of the erupted products. The first two currents, which entered Pompeii at a temperature around 300-360°C, show drastic decreases in the Tdep, with minima of 100-140°C, found in the deposits within the town. We interpret these decreases in temperature as being the result of localized interactions between the PDCs and the city structures, which were only able to affect the lower part of the currents. Down flow of Pompeii, the lowermost portion of the PDCs regained its original physical characteristics, emplacing hot deposits once more. The final, dilute PDCs entered a town that was already partially destroyed by the previous currents. These PDCs left thin ash deposits, which mantled the previous ones. The lack of interaction with the urban fabric is indicated by their uniform temperature everywhere. However, the relatively high temperature of the deposits, between 140 and 300°C, indicates that even these distal, thin ash layers, capped by their accretionary lapilli bed, were associated with PDCs that were still hot enough to cause problems for unsheltered people.
NASA Astrophysics Data System (ADS)
Dowd, E.; Koffman, B. G.; Osterberg, E. C.; Ferris, D. G.; Hartman, L.; Wheatley, S.; Kurbatov, A.; Wong, G. J.; Markle, B. R.; Dunbar, N. W.; Kreutz, K. J.; Yates, M. G.
2017-12-01
The VEI 5 eruption of the Puyehue-Cordón Caulle volcanic complex (PCC) in central Chile, which began 4 June 2011, provides a rare opportunity to assess the rapid transport and deposition of sulfate and ash from a mid-latitude volcano to the Antarctic ice sheet. We present sulfate, microparticle concentrations of fine-grained ( 5 μm diameter) tephra, and geochemistry, which document the depositional sequence of volcanic products from the PCC eruption in West Antarctic snow and shallow firn. From the depositional phasing and duration of ash and sulfate peaks, we infer that transport occurred primarily through the troposphere but that ash and sulfate transport were decoupled. We use Hysplit back-trajectory modeling to assess circulation conditions in the weeks following the eruption, and find that atmospheric conditions favored mid-to-high latitude air parcel transport during 6-14 June and 4-18 July, 2011. We suggest that two discrete pulses of cryptotephra deposition relate to these intervals, and as such, constrain the sulfate transport and deposition lifespan to the 2-3 weeks following the eruption. Finally, we compare PCC depositional patterns to those of prominent low- and high-latitude eruptions in order to improve multiparameter-based efforts to identify "unknown source" eruptions in the ice core record. Our observations suggest that mid-latitude eruptions such as PCC can be distinguished from explosive tropical eruptions by differences in ash/sulfate phasing and in the duration of sulfate deposition, and from high-latitude eruptions by differences in particle size distribution and in cryptotephra geochemical composition.
NASA Astrophysics Data System (ADS)
Koffman, Bess G.; Dowd, Eleanor G.; Osterberg, Erich C.; Ferris, David G.; Hartman, Laura H.; Wheatley, Sarah D.; Kurbatov, Andrei V.; Wong, Gifford J.; Markle, Bradley R.; Dunbar, Nelia W.; Kreutz, Karl J.; Yates, Martin
2017-08-01
The Volcanic Explosivity Index 5 eruption of the Puyehue-Cordón Caulle volcanic complex (PCC) in central Chile, which began 4 June 2011, provides a rare opportunity to assess the rapid transport and deposition of sulfate and ash from a midlatitude volcano to the Antarctic ice sheet. We present sulfate, microparticle concentrations of fine-grained ( 5 μm diameter) tephra, and major oxide geochemistry, which document the depositional sequence of volcanic products from the PCC eruption in West Antarctic snow and shallow firn. From the depositional phasing and duration of ash and sulfate peaks, we infer that transport occurred primarily through the troposphere but that ash and sulfate transport were decoupled. We use Hybrid Single-Particle Lagrangian Integrated Trajectory back trajectory modeling to assess atmospheric circulation conditions in the weeks following the eruption and find that conditions favored southward air parcel transport during 6-14 June and 4-18 July 2011. We suggest that two discrete pulses of cryptotephra deposition relate to these intervals, and as such, constrain the sulfate transport and deposition lifespan to the 2-3 weeks following the eruption. Finally, we compare PCC depositional patterns to those of prominent low- and high-latitude eruptions in order to improve multiparameter-based efforts to identify "unknown source" eruptions in the ice core record. Our observations suggest that midlatitude eruptions such as PCC can be distinguished from explosive tropical eruptions by differences in ash/sulfate phasing and in the duration of sulfate deposition, and from high-latitude eruptions by differences in particle size distribution and in cryptotephra geochemical composition.
Molten salt corrosion of heat resisting alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong-Moreno, A.; Salgado, R.I.M.; Martinez, L.
1995-09-01
This paper is devoted to the study of the corrosion behavior of eight high chromium alloys exposed to three different oil ash deposits with V/(Na+S) atomic ratios 0.58, 2.05 and 13.43, respectively. The alloys were exposed to ash deposits at 750 and 900 C; in this temperature range some deposit constituents have reached their melting point developing a molten salt corrosion process. The group of alloys tested included four Fe-Cr-Ni steels UNS specifications S304000, S31000, N08810 and N08330; two Fe-Cr alloys, UNS S44600 and alloy MA 956; and two Ni-base alloys, UNS N06333 and UNS N06601. The deposits and themore » exposed surfaces were characterized by chemical analysis, XRD, DTA, SEM and x-ray microanalysis. The oil-ash corrosion resistance of alloys is discussed in terms of the characteristics of corrosion product scales, which are determined by interaction between the alloy and the corrosive environment. All the alloys containing nickel exhibited sulfidation when were exposed at 750 C, but at 900 C only those without aluminum presented sulfidation or sulfidation and oxidation, while the alloys containing aluminum only exhibited internal oxidation. In spite of good resistance to corrosion by oil-ash deposits, 446-type alloy might not be suitable for temperatures higher than 750 C because of embrittlement caused by excessive sigma-phase precipitation. Alloy MA956 showed highest corrosion resistance at 900 C to oil-ash deposits with high vanadium content.« less
Tropek, Robert; Cerna, Ilona; Straka, Jakub; Kocarek, Petr; Malenovsky, Igor; Tichanek, Filip; Sebek, Pavel
2016-07-01
Recently, fly ash deposits have been revealed as a secondary refuge of critically endangered arthropods specialised on aeolian sands in Central Europe. Simultaneously, these anthropogenic habitats are well known for their negative impact on human health and the surrounding environment. The overwhelming majority of these risks are caused by wind erosion, the substantial decreasing of which is thus necessary. But, any effects of anti-dust treatments on endangered arthropods have never been studied. We surveyed communities of five arthropod groups (wild bees and wasps, leafhoppers, spiders, hoverflies and orthopteroid insects) colonising three fly ash deposits in the western Czech Republic. We focused on two different anti-dust treatments (~70 and 100 % cover of fly ash by barren soil) and their comparison with a control of bare fly ash. Altogether, we recorded 495 species, including 132 nationally threatened species (eight of them were considered to be extinct in the country) and/or 30 species strictly specialised to drift sands. Bees and wasps and leafhoppers contained the overwhelming majority of species of the highest conservation interest; a few other important records were also in spiders and orthopteroids. Total soil cover depleted the unique environment of fly ash and thus destroyed the high conservation potential of the deposits. On the other hand, partial coverage (with ~30 % of bare fly ash) still offered habitats for many of the most threatened species, as we showed by both regression and multivariate analyses, with a decrease of wind erosion. This topic still needs much more research interest, but we consider mosaic-like preservation of smaller spots of fly ash as one of the possible compromises between biodiversity and human health.
Effects of fine volcanic ash aerosol on pulmonary mechanical properties of awake guinea pigs were evaluated during exposure by inhalation. Ash penetration into the lungs as well as tissue response to ash were determined by transmission electron microscopy. The reactivity of airwa...
NASA Astrophysics Data System (ADS)
Luo, Kevin
Coal synthesis gas (syngas) can introduce contaminants into the flow of an Integrated Gasification Combined Cycle (IGCC) industrial gas turbine which can form molten deposits onto components of the first stage of a turbine. Research is being conducted at West Virginia University (WVU) to study the effects of particulate deposition on thermal barrier coatings (TBC) employed on the airfoils of an IGCC turbine hot section. WVU had been working with U.S. Department of Energy, National Energy Technology Laboratory (NETL) to simulate deposition on the pressure side of an IGCC turbine first stage vane to study the effects on film cooling. To simulate the particulate deposition, TBC coated, angled film-cooled test articles were subjected to accelerated deposition injected into the flow of a combustor facility with a pressure of approximately 4 atm and a gas temperature of 1560 K. The particle characteristics between engine conditions and laboratory are matched using the Stokes number and particulate loading. To investigate the degradation on the TBC from the particulate deposition, non-destructive evaluations were performed using a load-based multiple-partial unloading micro-indentation technique and were followed by scanning electron microscopy (SEM) evaluation and energy dispersive X-ray spectroscopy (EDS) examinations. The micro-indentation technique used in the study was developed by Kang et al. and can quantitatively evaluate the mechanical properties of materials. The indentation results found that the Young's Modulus of the ceramic top coat is higher in areas with deposition formation due to the penetration of the fly ash. The increase in the modulus of elasticity has been shown to result in a reduction of strain tolerance of the 7% yttria-stabilized zirconia (7YSZ) TBC coatings. The increase in the Young's modulus of the ceramic top coat is due to the stiffening of the YSZ columnar microstructure from the cooled particulate fly ash. SEM evaluation was used to evaluate the microstructure of the layers within the TBC system, and the SEM micrographs showed that the TBC/fly ash deposition interaction zone made the YSZ coating more susceptible to delamination and promoted a dissolution-reprecipitation mechanism that changes the YSZ morphology and composition. EDS examination provided elemental maps which showed a shallow infiltration depth of the fly ash deposits and an elemental distribution spectrum analysis showed yttria migration from the YSZ top coating into the molten deposition. This preliminary work should lead to future studies in gas turbine material coating systems and their interaction with simulated fly ash and potentially CMAS or volcanic ash deposition.
Properties of volcanic soils in cold climate conditions
NASA Astrophysics Data System (ADS)
Kuznetsova, Elena
2017-04-01
Layers of volcanic ash and the Andosol soils derived from them may play an important role in preserving snow and ice as well as developing permafrost conditions in the immediate vicinity of volcanoes of high elevation or those situated at high latitudes, and land areas, often distant from volcanic activity that are either prone to permafrost or covered by snow and ice, but are affected by the deposition of subaerial ash. The special properties of volcanic ash that are responsible are critically reviewed particularly in relation to recent research in Kamchatka in the Far East of Russia. Of particular importance are the thermal properties and the unfrozen water contents of ash layers and the rate at which the weathering of volcanic glass takes place. Volcanic glass is the most easily weathered component of volcanic ejecta (Shoji et al., 1993; Kimble et al., 2000). There are many specific environmental conditions, including paleoclimate and present-day climate, the composition of volcanic tephra and glaciation history, which cause the differences in weathering and development of volcanic ash soils (Zehetner et al., 2003). The preservation of in situ, unweathered, and unaltered surficial ash-fall deposits in the cold regions has important implications for paleoclimate and glacial history. Ash-fall deposits, which trap and preserve the soils, sediments, and landforms on which they fall, can be used to resolve local climate conditions (temperature and moisture) at the ash site during ash-fall deposition. The preservation of detailed sedimentary features (e.g. bedding in the ash, sharpness of stratigraphic contacts) can tell us about their post-depositional history, whether they have been redeposited by wind or water, or overridden by glaciers (Marchant et al., 1996). Weathering of volcanic glass results in the development of amorphous clay minerals (e.g. allophane, opal, palagonite) but this takes place much slower in cold than under warmer climate conditions. Only few studies on weathering of volcanic ash and developing volcanic soils under cold climatic conditions were carried out, especially in areas with permafrost (Bäumler, 2003). Most of research on volcanic permafrost soils was done in Yukon (Canada), Kamchatka (Russia), and Antarctica, or on seasonal frost in mountain area in Iceland, Japan, New Zealand, and Ecuador. Soils of Iceland and Antarctica are used as terrestrial analogs to Martian soils (Gooding & Keil, 1978; Allen et al., 1981). The review of existing data demonstrates that there is a strong correlation between the thermal conductivity, the water-ice content, and the mineralogy of the weathered part of the volcanic ash, enhanced amount of amorphous clay minerals (allophane, palagonite) increase the proportion of unfrozen water and decrease thermal conductivity (Kuznetsova et al., 2012, 2013; Kuznetsova & Motenko, 2014), and amorphous silica does not alter to halloysite or other clay minerals even in ashes of Early Pleistocene age (Kamchatka) or Miocene and Pliocene deposits (Antarctica) due to cold temperatures. The significance of these findings is discussed in relation to the reconstruction of past climates and the influence of volcanic ash on permafrost aggradation and degradation, snow and ice ablation, and the development of glaciers.
Deformation, geochemistry, and origin of massive sulfide deposits, Gossan lead district, Virginia.
Gair, J.E.; Slack, J.F.
1984-01-01
Lenses and layers of massive sulphides comprise a discontinuous horizon in the late Proterozoic metasedimentary Ashe formation. The folded and brecciated sulphides include pyrrhotite, minor chalcopyrite, sphalerite and pyrite, and rare arsenopyrite and galena. The deposits were mined for supergene copper, later for gossan iron, and finally for sulphur. The Ashe formation is interpreted to be marine turbidites, and contains lenses of mafic rocks of probable tholeiitic basalt parentage. Mineralogically and chemically distinctive rocks - for the Ashe formation - are interbedded with the sulphides and may represent metamorphosed alteration zones and/or mixed chemical and clastic sediments. The sulphide deposits are interpreted as syngenetic sediments, modified by deformation during metamorphism. Their deposition occurred in a deep, elongate marine basin overlying a crustal rift zone.-G.J.N.
Lipman, P.W.; Sawyer, D.A.
1985-01-01
Jurassic and Upper Cretaceous volcanic and associated granitic rocks in SE Arizona are remnants of large composite silicic volcanic fields, characterized by voluminous ash-flow tuffs and associated calderas. Presence of 10-15 large caldera fragments is inferred primarily from 1) ash-flow deposits over 1 km thick, having features of inter-caldera ponding; 2) 'exotic-block' breccia within a tuff matrix, interpreted as caldera-collapse megabreccia; and 3) local granitic intrusion along arcuate structural boundaries of the thick volcanics. Several major porphyry copper deposits are associated with late granitic intrusions within the calderas or along their margins. Such close spatial and temporal association casts doubt on models that associate porphyry copper deposits exclusively with intermediate composition strato-volcanoes. -L.C.H.
Mastin, Larry G.; Randall, Michael J.; Schwaiger, Hans F.; Denlinger, Roger P.
2013-01-01
Ash3d is a three-dimensional Eulerian atmospheric model for tephra transport, dispersal, and deposition, written by the authors to study and forecast hazards of volcanic ash clouds and tephra fall. In this report, we explain how to set up simulations using both a web interface and an ASCII input file, and how to view and interpret model output. We also summarize the architecture of the model and some of its properties.
Composite Ni-Co-fly ash coatings on 5083 aluminium alloy
NASA Astrophysics Data System (ADS)
Panagopoulos, C. N.; Georgiou, E. P.; Tsopani, A.; Piperi, L.
2011-03-01
Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.
Lab-scale ash production by abrasion and collision experiments of porous volcanic samples
NASA Astrophysics Data System (ADS)
Mueller, S. B.; Lane, S. J.; Kueppers, U.
2015-09-01
In the course of explosive eruptions, magma is fragmented into smaller pieces by a plethora of processes before and during deposition. Volcanic ash, fragments smaller than 2 mm, has near-volcano effects (e.g. increasing mobility of PDCs, threat to human infrastructure) but may also cause various problems over long duration and/or far away from the source (human health and aviation matters). We quantify the efficiency of ash generation during experimental fracturing of pumiceous and scoriaceous samples subjected to shear and normal stress fields. Experiments were designed to produce ash by overcoming the yield strength of samples from Tenerife (Canary Islands, Spain), Sicily and Lipari Islands (Italy), with this study having particular interest in the < 355 μm fraction. Fracturing within volcanic conduits, plumes and pyroclastic density currents (PDCs) was simulated through a series of abrasion (shear) and collision (normal) experiments. An understanding of these processes is crucial as they are capable of producing very fine ash (< 10 μm). These particles can remain in the atmosphere for several days and may travel large distances ( 1000s of km). This poses a threat to the aviation industry and human health. From the experiments we establish that abrasion produced the finest-grained material and up to 50% of the generated ash was smaller than 10 μm. In comparison, the collision experiments that applied mainly normal stress fields produced coarser grain sizes. Results were compared to established grain size distributions for natural fall and PDC deposits and good correlation was found. Energies involved in collision and abrasion experiments were calculated and showed an exponential correlation with ash production rate. Projecting these experimental results into the volcanic environment, the greatest amounts of ash are produced in the most energetic and turbulent regions of volcanic flows, which are proximal to the vent. Finest grain sizes are produced in PDCs and can be observed as co-ignimbrite clouds above density currents. Finally, a significant dependency was found between material density and the mass of fines produced, also observable in the total particle size distribution: higher values of open porosity promote the generation of finer-grained particles and overall greater ratios of ash. While this paper draws on numerous previous studies of particle comminution processes, it is the first to analyze and compare results of several comminution experiments with each other in order to characterize these mechanisms.
Corbacho, J A; Baeza, A
2018-05-17
The evaluation of the radiological impact in soils due to the fly-ash ponds using both in situ techniques and laboratory based measurements is presented. In order to check the in situ techniques capabilities for monitoring this type of industries, a comparison between both techniques was performed. A characterization of external radiation exposure in the fly-ash pond and in its surrounding soils was made. The associated external radiological hazard due to the fly-ash pond has been evaluated. In situ techniques could be used to determine the radiological impact on soils due to fly-ash deposition, but its use could be limited due to the associated uncertainties.
Nuées ardentes of 22 November 1994 at Merapi volcano, Java, Indonesia
Abdurachman, E.K.; Bourdier, J.-L.; Voight, B.
2000-01-01
Nuées ardentes associated with dome collapse on 22 November 1994, at Merapi volcano traveled to the south–southwest as far as 6.5 km, and collectively accumulated roughly 2.5–3 million cubic meters of deposits. The damaged area comprises 9.5 km2 and is covered by two nuée ardente facies, a conventional “Merapi-type”, valley-fill block-and-ash flow facies and a pyroclastic surge facies. The proximal deposits reflect the accumulation of dozens of nuées ardentes, with many subsidiary flow units. The distal deposits are more simply organized, as only a few individual events reached to distances >3.5 km. The stratigraphic relationships north of Turgo hill indicate that the surge deposits are a facies of particularly mobile nuées ardentes that also deposited channeled block-and-ash flow facies. They further suggest that the surge facies beyond the channel margins correlate laterally with a finer-grained sublayer locally developed at the base of the block-and-ash flow facies. Eyewitness reports suggest that the emplacement of the block-and-ash flow facies in the distal part of the Boyong river may have followed, by a short time interval, the destruction and deposition of the surge facies at Turgo village. The stratigraphy is in accord with the eyewitness reports. The surge facies was emplaced by a dilute surge current, detached from the same dome-collapse nuée ardente that, as a separate flow unit, subsequently emplaced the distal block-and-ash deposit in the Boyong valley. The detachment occurred at higher elevations, likely at or above the slope break at about 2000 m elevation. This flow separation enabled the surge current to shortcut over the landscape and to emplace its deposit even as the block-and-ash flow continued its tortuous southward movement in the Boyong channel. Dome-collapse nuée ardente activity formed the bulk of the eruption, which was accompanied by virtually no significant vertical summit explosive activity.
NASA Astrophysics Data System (ADS)
Griggs, Adam J.; Davies, Siwan M.; Abbott, Peter M.; Rasmussen, Tine L.; Palmer, Adrian P.
2014-12-01
Tephrochronology is central to the INTIMATE goals for testing the degree of climatic synchroneity during abrupt climatic events that punctuated the last glacial period. Since their identification in North Atlantic marine sequences, the Faroe Marine Ash Zone II (FMAZ II), FMAZ III and FMAZ IV have received considerable attention due to their potential for high-precision synchronisation with the Greenland ice-cores. In order to optimise the use of these horizons as isochronous markers, a detailed re-investigation of their geochemical composition, sedimentology and the processes that deposited each ash zone is presented. Shard concentration profiles, geochemical homogeneity and micro-sedimentological structures are investigated for each ash zone preserved within core JM11-19PC, retrieved from the southeastern Norwegian Sea on the central North Faroe Slope. This approach allows a thorough assessment of primary ash-fall preservation and secondary depositional features and demonstrates its value for assessing depositional integrity in the marine environment. Results indicate that the FMAZ II and IV are well-resolved primary deposits that can be used as isochrons for high-precision correlation studies. We outline key recommendations for future marine tephra studies and provide a protocol for optimising the application of tephrochronology to meet the INTIMATE synchronisation goals.
Thermal Barrier Coatings Resistant to Glassy Deposits
NASA Astrophysics Data System (ADS)
Drexler, Julie Marie
Engineering of alloys has for years allowed aircraft turbine engines to become more efficient and operate at higher temperatures. As advancements in these alloy systems have become more difficult, ceramic thermal barrier coatings (TBCs), often yttria (7 wt %) stabilized zirconia (7YSZ), have been utilized for thermal protection. TBCs have allowed for higher engine operating temperatures and better fuel efficiency but have also created new engineering problems. Specifically, silica based particles such as sand and volcanic ash that enter the engine during operation form glassy deposits on the TBCs. These deposits can cause the current industrial 7YSZ thermal barrier coatings to fail since the glass formed penetrates and chemically interacts with the TBC. When this occurs, coating failure may occur due to a loss of strain tolerance, which can lead to fracture, and phase changes of the TBC material. There have been several approaches used to stop calcium-magnesium aluminio-silcate (CMAS) glasses (molten sand) from destroying the entire TBC, but overall there is still limited knowledge. In this thesis, 7YSZ and new TBC materials will be examined for thermochemical and thermomechanical performance in the presence of molten CMAS and volcanic ash. Two air plasma sprayed TBCs will be shown to be resistant to volcanic ash and CMAS. The first type of coating is a modified 7YSZ coating with 20 mol% Al2O3 and 5 mol% TiO2 in solid solution (YSZ+20Al+5Ti). The second TBC is made of gadolinium zirconate. These novel TBCs impede CMAS and ash penetration by interacting with the molten CMAS or ash and drastically changing the chemistry. The chemically modified CMAS or ash will crystallize into an apatite or anorthite phase, blocking the CMAS or ash from further destroying the coating. A presented mechanism study will show these coatings are effective due to the large amount of solute (Gd, Al) in the zirconia structure, which is the key to creating the crystalline apatite or anorthite phases. In fact, it will be shown that if the industrial standard 7YSZ coatings contained more Y2O3 they would be very effective in stopping CMAS penetration. Lastly, thermal cyclic testing of 7YSZ and YSZ+20Al+5Ti TBCs reveals that partially CMAS-impregnated TBCs can survive mechanically if cycled in thermal gradient while in most isothermal tests they would fail. Since parts in a jet engine are in a thermal gradient, this type of testing should be performed on future CMAS resistant TBCs.
Meteorological Controls on Local and Regional Volcanic Ash Dispersal.
Poulidis, Alexandros P; Phillips, Jeremy C; Renfrew, Ian A; Barclay, Jenni; Hogg, Andrew; Jenkins, Susanna F; Robertson, Richard; Pyle, David M
2018-05-02
Volcanic ash has the capacity to impact human health, livestock, crops and infrastructure, including international air traffic. For recent major eruptions, information on the volcanic ash plume has been combined with relatively coarse-resolution meteorological model output to provide simulations of regional ash dispersal, with reasonable success on the scale of hundreds of kilometres. However, to predict and mitigate these impacts locally, significant improvements in modelling capability are required. Here, we present results from a dynamic meteorological-ash-dispersion model configured with sufficient resolution to represent local topographic and convectively-forced flows. We focus on an archetypal volcanic setting, Soufrière, St Vincent, and use the exceptional historical records of the 1902 and 1979 eruptions to challenge our simulations. We find that the evolution and characteristics of ash deposition on St Vincent and nearby islands can be accurately simulated when the wind shear associated with the trade wind inversion and topographically-forced flows are represented. The wind shear plays a primary role and topographic flows a secondary role on ash distribution on local to regional scales. We propose a new explanation for the downwind ash deposition maxima, commonly observed in volcanic eruptions, as resulting from the detailed forcing of mesoscale meteorology on the ash plume.
NASA Astrophysics Data System (ADS)
Forte, Pablo; Domínguez, Lucia; Bonadonna, Costanza; Gregg, Chris E.; Bran, Donaldo; Bird, Deanne; Castro, Jonathan M.
2018-01-01
The 2011-2012 Cordón Caulle eruption emitted about 1 km3 of rhyodacitic tephra. Dominant westerly winds in the region caused most of the primary tephra to deposit in neighboring Argentina. In addition to the impact of widespread dispersal and fallout of primary tephra during the eruption, Argentina was also significantly affected by remobilization of the primary ash even several years after the climactic phase of the eruption. In this mixed methods study, we combine aspects of natural and social sciences to characterize the ash resuspension events associated with the 2011-2012 Cordón Caulle deposits and assess the impacts on the Argentinian farming community of Ingeniero Jacobacci in the Patagonian Steppe. Our findings show the primary importance of wind, rainfall and ash availability in controlling the occurrence and persistence of ash resuspension events. The role played by these variables was also reflected in the seasonal distribution of events observed. Regarding the impacts, our results complement those of earlier studies and demonstrate that ash resuspension events can exacerbate the negative impact of primary tephra fallout events from the time of deposition to many years after the eruption. Only after five years has the environment and the farming community begun to show signs of recovery. Our findings also highlight the importance of assessing ash resuspension events in multi-hazard scenarios involving volcanic and hydrometeorologic hazards.
Origin and depositional environment of clastic deposits in the Hilo drill hole, Hawaii
Beeson, M.H.; Clague, D.A.; Lockwood, J.P.
1996-01-01
Volcaniclastic units cored at depths of about 87, 164, 178, 226, and 246 m below sea level and carbonate units located between depths of 27 and 53 m below sea level in the Hilo drill core were found to be deposited at or near sea level. Four of these units are hydroclastic deposits, formed when subaerially erupted Mauna Loa lava flows entered the ocean and fragmented to produce quenched, glassy fragments during hydrovolcanic explosions. Ash units 24 and 26, at 178 m depth, accumulated at sea level in a freshwater bog. They contain pyroxenes crystallized from tholeiitic magma that we infer erupted explosively at the summit of Kilauea volcano. Two carbon-rich layers from these ashes have a weighted average radiocarbon age of 38.6 ?? 0.9 ka; the ashes probably correlate with the oldest and thickest part of the Pahala ash. Ash unit 44, at the transition from Mauna Kea to Mauna Loa lava flows, was probably nearly 3.2 m thick and is inferred to be equivalent to the lower thick part of the composite Homelani ash mapped in Hilo and on the flanks of Mauna Kea. The age of this part of Homelani ash is between 128 ?? 33 and 200 ?? 10 ka; it may have erupted subglacially during the Pohakuloa glacial maxima on Mauna Kea. Beach sand units 12 and 22 were derived from nearby Mauna Loa and Mauna Kea lava flows. The middle of beach sand unit 38 was derived mainly from lava erupted near the distal end of the subaerial east rift zone of Kilauea volcano; these sands were transported about 33 km northwest to Hilo Bay by prevailing longshore currents. Combined age, depth, and sea level markers in the core allow us to determine that lava flow recurrence intervals averaged one flow every 4 kyr during the past 86 kyr and one flow every 16 kyr between 86 and 200 ka at the drill site and that major explosive eruptions that deposit thick ash in Hilo have occurred only twice in the last 400 kyr. These recurrence intervals support the moderate lava flow hazard zonation (zone 3) for coastal Hilo previously determined from surficial mapping.
NASA Astrophysics Data System (ADS)
Mulas, M.; Chunga, K.; Peña Carpio, E.; Falquez Torres, D. A.; Alcivar, R., Sr.; Lopez Coronel, M. C.
2015-12-01
The central zone of the coast of Ecuador at the north of Manabí Province, on the area comprised between Salango and Jama communities, is characterized by the presence of whitish to grey, centimeters to meters thick, consolidated to loose distal ash deposits. Recent archeological studies on Valdivia (3500 BC) and Manteña (800-1500 AC - Harris et al. 2004) civilizations remains link this deposits with the intense eruptive phases that afflicted Ecuador 700-900 years ago (Usselman, 2006). Stratigraphic evidences and bibliographic datations of paleosols (Estrada, 1962; Mothes and Hall, 2008), allowed to estimate that these deposits are linked with the 800 BP eruption of Quilotoa and the following eruptions of Cotopaxi. According to the Smith and Lowe classification (1991), the deposits outcropping on the coast (located at a distance greater than 160 km from the volcanic vents), varied from whitish to grey, loose to weakly consolidated, massive to weakly stratified, centimeters to meters thick, coarse to fine ash matrix layers (diluite streamflow facies) to massive, large angular to sub-rounded siltitic blocks-rich and coarse to medium ash matrix deposits (debris flow facies). These types of lithofacies are associated to a rain-triggered lahar (De Belizal et al., 2013). The presence in some stratigraphic sections of sharp contacts, laminated layers of very fine ash, and also cm-thick sand and silt layers between the ash beds of the same deposits permit to understand that the different pulses were generated in short periods and after a long period. Structures like water pipes imply that the lahar went into the sea (Schneider, 2004), and allow the reconstruction of the paleotopographic condition during the emplacement of these deposits. This study focuses on the characterization of these types of deposits, permit to understand the kind of risk that may affect the towns located on the coast of Ecuador after VEI 4 to 6 eruptions on short time and within years.
Fujimura, Reiko; Sato, Yoshinori; Nishizawa, Tomoyasu; Oshima, Kenshiro; Kim, Seok-Won; Hattori, Masahira; Kamijo, Takashi
2012-01-01
A diazotrophic, acidophilic, iron-oxidizing bacterium, Leptospirillum ferrooxidans, known to be difficult to cultivate, was isolated from a fresh volcanic ash deposit on the island of Miyake, Japan. Here, we report the complete genome sequence of a cultured strain, C2-3. PMID:22815442
Fujimura, Reiko; Sato, Yoshinori; Nishizawa, Tomoyasu; Oshima, Kenshiro; Kim, Seok-Won; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki
2012-08-01
A diazotrophic, acidophilic, iron-oxidizing bacterium, Leptospirillum ferrooxidans, known to be difficult to cultivate, was isolated from a fresh volcanic ash deposit on the island of Miyake, Japan. Here, we report the complete genome sequence of a cultured strain, C2-3.
Hail formation triggers rapid ash aggregation in volcanic plumes.
Van Eaton, Alexa R; Mastin, Larry G; Herzog, Michael; Schwaiger, Hans F; Schneider, David J; Wallace, Kristi L; Clarke, Amanda B
2015-08-03
During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized 'wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits.
Hail formation triggers rapid ash aggregation in volcanic plumes
Van Eaton, Alexa R.; Mastin, Larry G.; Herzog, Michael; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi L.; Clarke, Amanda B.
2015-01-01
During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized ‘wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits. PMID:26235052
The Elusive Evidence of Volcanic Lightning.
Genareau, K; Gharghabi, P; Gafford, J; Mazzola, M
2017-11-14
Lightning strikes are known to morphologically alter and chemically reduce geologic formations and deposits, forming fulgurites. A similar process occurs as the result of volcanic lightning discharge, when airborne volcanic ash is transformed into lightning-induced volcanic spherules (LIVS). Here, we adapt the calculations used in previous studies of lightning-induced damage to infrastructure materials to determine the effects on pseudo-ash samples of simplified composition. Using laboratory high-current impulse experiments, this research shows that within the lightning discharge channel there is an ideal melting zone that represents roughly 10% or less of the total channel radius at which temperatures are sufficient to melt the ash, regardless of peak current. The melted ash is simultaneously expelled from the channel by the heated, expanding air, permitting particles to cool during atmospheric transport before coming to rest in ash fall deposits. The limited size of this ideal melting zone explains the low number of LIVS typically observed in volcanic ash despite the frequent occurrence of lightning during explosive eruptions.
Jack H. Barger; Ralph H. Davidson
1967-01-01
A life history study was made of the ash seed weevils, Thysanocnemis bischoffi Blatchley and T. helvola LeConte. Over-wintering occurs as larvae in ash seeds or in soil, with adults appearing in July and August. Adults soon deposit eggs within ash seeds, where larval development occurs. Only one generation...
Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition
Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.
2012-01-01
We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.
NASA Astrophysics Data System (ADS)
Jones, Morgan T.; Gislason, Sigurður R.
2008-08-01
Deposition of volcanic ash into aqueous environments leads to dissolution of adsorbed metal salts and aerosols, increasing the bioavailability of key nutrients. Volcanogenic fertilization events could increase marine primary productivity, leading to a drawdown of atmospheric CO 2. Here we conduct flow-through experiments on unhydrated volcanic ash samples from a variety of locations and sources, measuring the concentrations and fluxes of elements into de-ionized water and two contrasting ocean surface waters. Comparisons of element fluxes show that dissolution of adsorbed surface salts and aerosols dominates over glass dissolution, even in sustained low pH conditions. These surface ash-leachates appear unstable, decaying in situ even if kept unhydrated. Volcanic ash from recent eruptions is shown to have a large fertilization potential in both fresh and saline water. Fluorine concentrations are integral to bulk dissolution rates and samples with high F concentrations display elevated fluxes of some nutrients, particularly Fe, Si, and P. Bio-limiting micronutrients are released in large quantities, suggesting that subsequent biological growth will be limited by macronutrient availability. Importantly, acidification of surface waters and high fluxes of toxic elements highlights the potential of volcanic ash-leachates to poison aqueous environments. In particular, large pH changes can cause undersaturation of CaCO 3 polymorphs, damaging populations of calcifying organisms. Deposition of volcanic ash can both fertilize and/or poison aqueous environments, causing significant changes to surface water chemistry and biogeochemical cycles.
An extreme wind erosion event of the fresh Eyjafjallajökull 2010 volcanic ash
Arnalds, Olafur; Thorarinsdottir, Elin Fjola; Thorsson, Johann; Waldhauserova, Pavla Dagsson; Agustsdottir, Anna Maria
2013-01-01
Volcanic eruptions can generate widespread deposits of ash that are subsequently subjected to erosive forces which causes detrimental effects on ecosystems. We measured wind erosion of the freshly deposited Eyjafjallajökull ash at a field site the first summer after the 2010 eruption. Over 30 wind erosion events occurred (June-October) at wind speeds > 10 m s−1 in each storm with gusts up to 38.7 m s−1. Surface transport over one m wide transect (surface to 150 cm height) reached > 11,800 kg m−1 during the most intense storm event with a rate of 1,440 kg m−1 hr−1 for about 6½ hrs. This storm is among the most extreme wind erosion events recorded on Earth. The Eyjafjallajökull wind erosion storms caused dust emissions extending several hundred km from the volcano affecting both air quality and ecosystems showing how wind erosion of freshly deposited ash prolongs impacts of volcanic eruptions. PMID:23409248
An extreme wind erosion event of the fresh Eyjafjallajökull 2010 volcanic ash.
Arnalds, Olafur; Thorarinsdottir, Elin Fjola; Thorsson, Johann; Waldhauserova, Pavla Dagsson; Agustsdottir, Anna Maria
2013-01-01
Volcanic eruptions can generate widespread deposits of ash that are subsequently subjected to erosive forces which causes detrimental effects on ecosystems. We measured wind erosion of the freshly deposited Eyjafjallajökull ash at a field site the first summer after the 2010 eruption. Over 30 wind erosion events occurred (June-October) at wind speeds > 10 m s(-1) in each storm with gusts up to 38.7 m s(-1). Surface transport over one m wide transect (surface to 150 cm height) reached > 11,800 kg m(-1) during the most intense storm event with a rate of 1,440 kg m(-1) hr(-1) for about 6½ hrs. This storm is among the most extreme wind erosion events recorded on Earth. The Eyjafjallajökull wind erosion storms caused dust emissions extending several hundred km from the volcano affecting both air quality and ecosystems showing how wind erosion of freshly deposited ash prolongs impacts of volcanic eruptions.
High sodium coal-firing experiences at Basin Electric Power Cooperative's Leland Olds Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laning, V.R.; Bartle, M.L.
1982-12-01
This paper describes some of the efforts made at the Leland Olds Station to cope with the problems created from high sodium content coals. Such coals have historically presented superheater fouling problems for utilities; ash deposits from high sodium coals have a very high sintering strength and are very difficult to remove by conventional methods. It is reported that the addition of limestone in the pulverizer unit at Leland Olds and vermiculite ore in the cyclone unit has helped reduce the fouling characteristics of high sodium lignites in North Dakota at an affordable cost.
NASA Astrophysics Data System (ADS)
Werner, A.; Kathan, K. M.; Kaufman, D. S.; Hancock, J. R.; Waythomas, C. F.; Wallace, K. L.
2004-12-01
Fourteen sediment cores recovered from three kettle lakes (Goose, Little Campbell and Lorraine) near Anchorage, AK were used to document and date Holocene volcanic ash deposition in the upper Cook Inlet area. Small lakes (<0.5 km2) with small (<1.5 km2), low relief (<50 m), and well-vegetated drainage areas were selected in order to minimize ash remobilization by mass wasting and fluvial processes. The resulting stratigraphic records are interpreted as primary terpha-fall stratigraphies. Relative to the surrounding lacustrine sediments, the ash layers exhibit low organic-matter content (as determined by loss-on-ignition, LOI), high magnetic susceptibility (MS), increased density (X-radiographs), and bubble-wall glass shards. Some ash layers are up to 1 cm thick (macrotephra) consisting of pure glass, some occur as light bands, while others (microtephra) can only be located using non-visual techniques (MS, LOI and X-radiography). The thinnest microtephras observed occur either as discrete (1 mm) layers or diffuse laminations composed of tephra mixed with ambient lake sediment. Forty-five AMS C-14 dates on terrestrial macro fossils were used to constrain sedimentation-rate models for the cores, and to assign absolute ages to ash units. Comparison of inferred tephra ages corroborates our intra and inter basin stratigraphic correlations (+/- 200 yrs) based on physical and MS stratigraphy. Ten out of 12 macrotephras can be confidently correlated among all three lakes, whereas, two of the prominent tephras occur in one basin but not in the others. This suggests subtle differences in ash plume extents or differences in tephra preservation between lakes. A total of 24 Holocene ash units (12 macro and 12 micro) have been recognized and dated in the Anchorage area, suggesting an ash-fall frequency of about 2.4/1000 yrs. By comparison, historical records suggest more frequent ash-fall events (120/1000 yrs). Our data indicate that, either the ash layers are not consistently preserved in the kettle basins, or more likely, these records lack the resolution to differentiate closely spaced ash-fall events. Core top stratigraphies support the latter interpretation: The 10-12 historically observed ash-fall events are represented by two diffuse zones in the upper 15 cm of the cores. As such, ash records from small kettle lakes should be regarded as conservative statements of ash deposition. Further, ash plumes can have narrow geographic distributions and ash-fall thicknesses can change markedly over short distances. Therefore distal ash-fall stratigraphies underestimate eruption frequencies.
NASA Astrophysics Data System (ADS)
Pypker, T. G.; Davis, J.; Van Grinsven, M. J.; Bolton, N. W.; Shannon, J.; Kolka, R. K.; Nelson, J.; Wagenbrenner, J. W.
2014-12-01
Emerald ash borer (Agrilus planipennis Fairmaire (EAB)) is an invasive insect that effectively kills ash trees (genus: Fraxinus) greater than 2.5 cm in diameter, resulting in near-complete stand mortality within 3-4 years. Black ash wetlands occupy approximately 270,000 ha in Michigan, and have 40 to 90% of the basal area occupied by black ash (F. nigra Marshall); hence the loss of black ash may result in dramatic changes in the canopy hydrology and nutrient deposition. We assessed the impact of a simulated EAB invasion on throughfall and stemflow quantity and nitrogen (N) content in 9 uninfected black ash wetlands located in the Upper Peninsula of Michigan. Within the 9 stands, 3 stands were left untreated ('Control'), 3 stands had all the black ash trees manually girdled ('Girdled') and 3 had all the black ash trees felled by chainsaw ('Clearcut'). We measured the quantity and inorganic-N content of throughfall using an array of randomly placed collectors (n = 16 per site). Stemflow was monitored at 2 sites (n = 12 trees) on the 3 most common tree species (black ash, yellow birch (Betula alleghaniensis Britt.) and red maple (Acer rubra L.)). Preliminary results indicate that relative to the Control, average monthly throughfall was 25% and 1% greater in the Clearcut and Girdled sites, respectively. While the loss of the ash trees resulted in greater throughfall inputs in the Clearcut sites, water table heights did not significantly change as a result of the treatments. Stemflow from live black ash trees was lower than from the yellow birch and red maple trees. As a result, we predict stemflow will increase over time as species with smoother bark and less upright branching begin replacing the black ash. Hence, the change in tree species may result in a greater concentration of inorganic-N inputs to the base of the trees, thereby altering the distribution of inorganic-N inputs into the wetland. Our preliminary results show no significant change in the total inorganic-N deposition via throughfall. Despite the severity of the disturbance that resulted from the simulated EAB infestation, preliminary results suggest that that these wetlands may show some short-term resiliency to the impacts of ash mortality, resulting in relatively unchanged hydrologic and nutrient deposition regimes.
Durant, A.J.; Rose, William I.; Sarna-Wojcicki, A. M.; Carey, Steven; Volentik, A.C.M.
2009-01-01
Uncertainty remains on the origin of distal mass deposition maxima observed in many recent tephra fall deposits. In this study the link between ash aggregation and the formation of distal mass deposition maxima is investigated through reanalysis of tephra fallout from the Mount St. Helens 18 May 1980 (MSH80) eruption. In addition, we collate all the data needed to model distal ash sedimentation from the MSH80 eruption cloud. Four particle size subpopulations were present in distal fallout with modes at 2.2 ??, 4.2 ??, 5.9 ??, and 8.3 ??. Settling rates of the coarsest subpopulation closely matched predicted single-particle terminal fall velocities. Sedimentation of particles <100 ??m was greatly enhanced, predominantly through aggregation of a particle subpopulation with modal diameter 5.9 ?? 0.2 ?? (19 ?? 3 ??m). Mammatus on the MSH80 cloud provided a mechanism to transport very fine ash particles, with predicted atmospheric lifetimes of days to weeks, from the upper troposphere to the surface in a matter of hours. In this mechanism, ash particles initiate ice hydrometeor formation high in the troposphere. Subsequently, the volcanic cloud rapidly subsides as mammatus develop from increased particle loading and cloud base sublimation. Rapid fallout occurs as the cloud passes through the melting level in a process analogous to snowflake aggregation. Aggregates sediment en masse and form the distal mass deposition maxima observed in many recent volcanic ash fall deposits. This work provides a data resource that will facilitate tephra sedimentation modeling and allow model intercomparisons. Copyright 2009 by the American Geophysical Union.
Hydraulics of subaqueous ash flows as deduced from their deposits
NASA Astrophysics Data System (ADS)
Doronzo, Domenico M.; Dellino, Pierfrancesco
2012-09-01
Subaqueous ash flows are gravity currents consisting of a mixture of sea water and ash particles. Also called volcaniclastic turbidity currents (VTCs), they can be generated because of remobilization of pyroclastic fall deposits, which are emplaced into the sea around a volcanic island, as well as far away, during an explosive eruption. The VTC upper part is the turbulent transport system for the flow, whereas the viscous basal one is the depositional system. Typical sequences of VTC deposits are characterized by cross-laminations, planar and convolute laminations, and massive beds, which reflect the stratified nature of the flow. Here, the analysis of some VTC hydraulic parameters is presented in order to depict flow behavior and sedimentation during deposition. A reverse engineering approach is proposed, which consists of calculating hydraulic parameters by starting from deposit features. The calculated values show that a VTC is homogeneously-turbulent for most of the thickness, but is viscous at its base. First, cross-laminations are directly acquired over the rough pre-existing seafloor, then planar or convolute laminations aggrade over the newly formed substrate. Finally, fine-grained suspended particles gently settle and cap the flow deposit.
NASA Astrophysics Data System (ADS)
Fernandez-Turiel, Jose-Luis; Ratto, Norma; Perez-Torrado, Francisco-Jose; Rodriguez-Gonzalez, Alejandro; Rejas, Marta; Lobo, Agustin
2016-04-01
Geomorphological, stratigraphical, mineralogical and chemical characteristics of many recent 30-160 cm ash deposits occurring at the Bolsón de Fiambalá in Catamarca, NW Argentina, allow their correlation. This lithostratigraphic unit is named Fiambalá Ash and it is uncovered or covered by colluvial deposits and present-day aeolian deposits, reworked products of the primary fall deposits. The grain size of these ash deposits is gritty rather than silty. They are nearly unique among regional ashes in containing hornblende phenocrysts. In addition, they are made up of glass (subangular blocky shards), feldspars, biotite, and quartz; magnetite, ilmenite, apatite and titanite are scarce. The glass is rhyolitic (˜75 to 79 % m/m SiO2; ˜3 to 4 % m/m Na2O; ˜3 to 5 % m/m K2O; 1 to 2 % m/m CaO; normalized to 100 %). On the other hand, in northern margins of Fiambalá basin, extensive remnants of fines-poor pumiceous debris flows and hyperconcentrated sandflow deposits as thick as 10 m are exposed on the walls of the river gorges, where the base is usually covered, e.g., Chuquisaca River. There is no significant unconformity or intercalation of other materials, thus suggesting rapid emplacement after a single eruptive event. A preliminary age of Fiambalá Ash based on archaeological studies bracket it between 1400-1270 and 1270-980 cal a BP (OxCal 4.2.4, SHCal13, 2 sigma). The geographical distribution, the geomorphological features observed in satellite images and the information on the main trends of the stratigraphy, the abundance of hornblende and biotite in the younger proximal ash fall deposits, ignimbrites and lava-domes of the Nevado Tres Cruces complex, favours this edifice as the strongest candidate to be the source of the Upper Holocene pyroclastic deposits found in the Fiambalá basin. The archaeological records seem to evidence the abrupt environmental and societal changes associated with this major eruption. Significant areas of Catamarca were likely rendered uninhabitable, being dramatic the socio-economic and environmental consequences for generations. However, the resilience was high, as evidenced by the relatively quick reintroduction of cultivated fields. The understanding of these impacts could provide valuable insights to manage volcanic hazards related to large explosive eruptions. Financial support was provided by the QUECA Project (MINECO, CGL2011-23307).
Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants
NASA Astrophysics Data System (ADS)
Krylov, D. A.; Sidorova, G. P.
2013-04-01
This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.
Vaasma, Taavi; Kaasik, Marko; Loosaar, Jüri; Kiisk, Madis; Tkaczyk, Alan H
2017-11-01
Two of the world's largest oil shale-fired power plants (PPs) in Estonia have been operational over 40 years, emitting various pollutants, such as fly ash, SO x , NO x , heavy metals, volatile organic compounds as well as radionuclides to the environment. The emissions from these PPs have varied significantly during this period, with the maximum during the 1970s and 1980s. The oil shale burned in the PPs contains naturally occurring radionuclides from the 238 U and 232 Th decay series as well as 40 K. These radionuclides become enriched in fly ash fractions (up to 10 times), especially in the fine fly ash escaping the purification system. Using a validated Gaussian-plume model, atmospheric dispersion modelling was carried out to determine the quantity and a real magnitude of fly ash and radionuclide deposition fluxes during different decades. The maximum deposition fluxes of volatile radionuclides ( 210 Pb and 210 Po) were around 70 mBq m -2 d -1 nearby the PPs during 1970s and 1980s. Due to the reduction of burned oil shale and significant renovations done on the PPs, the deposition fluxes were reduced to 10 mBq m -2 d -1 in the 2000s and down to 1.5 mBq m -2 d -1 in 2015. The maximum deposition occurs within couple of kilometers of the PPs, but the impacted area extends to over 50 km from the sources. For many radionuclides, including 210 Po, the PPs have been larger contributors of radionuclides to the environment via atmospheric pathway than natural sources. This is the first time that the emissions and deposition fluxes of radionuclides from the PPs have been quantified, providing the information about their radionuclide deposition load on the surrounding environment during various time periods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Madsen, D.B.; Sarna-Wojcicki, A. M.; Thompson, R.S.
2002-01-01
A newly identified tephra in stratified deposits in southwestern Utah, dated ???14,000 14C yr B.P., may aid in correlating late Pleistocene deposits across parts of the southern Great Basin and west-central Colorado Plateau. Geochemical analyses of the ash suggest the tephra originated from Mono Craters, California, and most probably correlates with Wilson Creek ash #3. Because the ash is 2 mm thick ???550 km from its source, the event may have been larger than others correlated to Mono Craters eruptions. ?? 2002 University of Washington.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, D.; Lewis, R.; Tobiasz, R.
1998-12-31
The composition and properties of ash formed during coal firing have a major impact on boiler performance. Higher ash content in the coal can mean higher costs associated with coal handling, transportation, ash removal and ash disposal along with higher costs due to the increased ash content`s deleterious effects on pulverizing, combustion and heat transfer. ABB C-E Services, Inc. has conducted research for many years on what might be done to minimize the adverse effects of ash on boiler performance. Recently, ABB C-E Services has studied the effects of firing system modifications on ash composition and properties and the effectmore » these firing system modifications have on overall furnace performance. The subject of this paper is the impact of the installation of the CFS Concentric Firing System on the propensity for boiler wall ash deposition. For this study, CFS yaw angles were varied and particle samples were collected at the waterwalls for the different yaw angles tested. These ash samples were analyzed for ash composition. The results showed that with a larger CFS yaw angle (the air stream directed more towards the boiler walls) the base/acid ratio, iron content and sulfur content of the particle samples collected at the waterwall were reduced. This effect is due to several contributing factors: (1) an oxidizing environment produced by injecting more air toward the walls; and (2) an aerodynamic change which impacts the particle combustion time/temperature history.« less
Volcanic ash impacts on critical infrastructure
NASA Astrophysics Data System (ADS)
Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.
2012-01-01
Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern WWTPs can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20 years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating. This summary of volcanic ash impacts on critical infrastructure provides insight into the relative vulnerability of infrastructure under a range of different ashfall scenarios. Identifying and quantifying these impacts is an essential step in building resilience within these critical systems. We have attempted to consider interdependencies between sectors in a holistic way using systems thinking. As modern society becomes increasingly complex and interdependent this approach is likely to become increasingly necessary.
Geology and mineral deposits of the Jabal ash Shumta quadrangle, Kingdom of Saudi Arabia
Hummel, C.L.; Ankary, Abdullah O.
1972-01-01
Rocks, structures, and mineral deposits which are the result of both the older Halaban petro-tectonic cycle and the younker Najd Wrench Fault deformation are present in the Ash Shumta area. Northward-trending belts of granitic rocks and folded, layered metavolcanic and metasedimentary rocks of the Halaban Formation which they intrude represent the effects of the Halaban cycle. These older rocks are everywhere transected and deformed by northwestward- and northeastward-striking fractures and strike-slip faults and by eastward-striking fractures and fracture-controlled silicic dikes which belong to the Najd Wrench Fault deformation. Several kinds of epigenetic mineral deposits of hydrothermal origin are present throughout the Ash Shumta area. All occur in or ape closely associated with structures of the Najd Wrench Fault deformation. The mineralization which produced the deposits is thought to have taken place during the period of deformation which produced the Najd Wrench Fault structures. The hydrothermal deposits include many metalliferous quartz veins most of which occur in three mineralized areas: two major areas at Jabal Ash Shumta and Jabal El Khom in the northern half of the quadrangle and a minor area along Wadj al Boharah in the southeastern part of the quadrangle. The metalliferous lodes possess the only economic potential in the area of the Jabal Ash Shumta quadrangle. These lodes consist mainly of gold and base metal-bearing quartz veins, some of which were mined for gold in ancient times. The mineralized area at Jabal Ash Shumta has the best of these veins. Higher temperature veins with wolframite as a major constituent and beryl as a minor one occur in a granite cupola in the eastern part of the El Khom area. These veins have altered, gneissen-like wall rocks. Although the grade of the veins is low at the surface, the made could increase at depth. The tungsten-bearing veins and El Khom area possess the greatest economic promise in the Jabal Ash Shumta quadrangle. They deserve detailed surface investigation followed if needed by exploration at depth.
NASA Astrophysics Data System (ADS)
Poret, M.; Corradini, S.; Merucci, L.; Costa, A.; Andronico, D.; Montopoli, M.; Vulpiani, G.; Scollo, S.; Freret-Lorgeril, V.
2017-12-01
On the 23rd November 2013, Etna erupted giving one of the most intense lava fountain recorded. The eruption produced a buoyant plume that rose higher than 10 km a.s.l. from which two volcanic clouds were observed from satellite at two different atmospheric levels. A Previous study described one of the two clouds as mainly composed by ash making use of remote sensing instruments. Besides, the second cloud is made of ice/SO2 droplets and is not measurable in terms of ash mass. Both clouds spread out under north-easterly winds transporting the tephra from Etna towards the Puglia region. The untypical meteorological conditions permit to collect tephra samples in proximal areas to the Etna emission source as well as far away in the Calabria region. The eruption was observed by satellite (MSG-SEVIRI, MODIS) and ground-based (X-band weather radar, VIS/IR cameras and L-band Doppler radar) remote sensing systems. This study uses the FALL3D code to model the evolution of the plume and the tephra deposition by constraining the simulation results with remote sensing products for volcanic cloud (cloud height, fine ash Mass - Ma, Aerosol Optical Depth at 0.55 mm - AOD). Among the input parameters, the Total Grain-Size Distribution (TGSD) is reconstructed by integrating field deposits with estimations from the X-band radar data. The optimal TGSD was selected through an inverse problem method that best-fits both the field deposits and airborne measurements. The results of the simulations capture the main behavior of the two volcanic clouds at their altitudes. The best agreement between the simulated Ma and AOD and the SEVIRI retrievals indicates a PM20 fraction of 3.4 %. The total erupted mass is estimated at 1.6 × 109 kg in consistency with the estimations made from remote sensing data (3.0 × 109 kg) and ground deposit (1.3 × 109 kg).
Oh, Hyukjin; Annamalai, Kalyan; Sweeten, John M
2008-04-01
Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass [FB]) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash "fouling" were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash-fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out.
Soil as an archive of coal-fired power plant mercury deposition.
Rodríguez Martín, José Antonio; Nanos, Nikos
2016-05-05
Mercury pollution is a global environmental problem that has serious implications for human health. One of the most important sources of anthropogenic mercury emissions are coal-burning power plants. Hg accumulations in soil are associated with their atmospheric deposition. Our study provides the first assessment of soil Hg on the entire Spanish surface obtained from one sampling protocol. Hg spatial distribution was analysed with topsoil samples taken from 4000 locations in a regular sampling grid. The other aim was to use geostatistical techniques to verify the extent of soil contamination by Hg and to evaluate presumed Hg enrichment near the seven Spanish power plants with installed capacity above 1000 MW. The Hg concentration in Spanish soil fell within the range of 1-7564 μg kg(-1) (mean 67.2) and 50% of the samples had a concentration below 37 μg kg(-1). Evidence for human activity was found near all the coal-fired power plants, which reflects that metals have accumulated in the basin over many years. Values over 1000 μg kg(-1) have been found in soils in the vicinity of the Aboño, Soto de Ribera and Castellon power plants. However, soil Hg enrichment was detectable only close to the emission source, within an approximate range of only 15 km from the power plants. We associated this effect with airborne emissions and subsequent depositions as the potential distance through fly ash deposition. Hg associated with particles of ash tends to be deposited near coal combustion sources. Copyright © 2016 Elsevier B.V. All rights reserved.
MAFALDA: An early warning modeling tool to forecast volcanic ash dispersal and deposition
NASA Astrophysics Data System (ADS)
Barsotti, S.; Nannipieri, L.; Neri, A.
2008-12-01
Forecasting the dispersal of ash from explosive volcanoes is a scientific challenge to modern volcanology. It also represents a fundamental step in mitigating the potential impact of volcanic ash on urban areas and transport routes near explosive volcanoes. To this end we developed a Web-based early warning modeling tool named MAFALDA (Modeling and Forecasting Ash Loading and Dispersal in the Atmosphere) able to quantitatively forecast ash concentrations in the air and on the ground. The main features of MAFALDA are the usage of (1) a dispersal model, named VOL-CALPUFF, that couples the column ascent phase with the ash cloud transport and (2) high-resolution weather forecasting data, the capability to run and merge multiple scenarios, and the Web-based structure of the procedure that makes it suitable as an early warning tool. MAFALDA produces plots for a detailed analysis of ash cloud dynamics and ground deposition, as well as synthetic 2-D maps of areas potentially affected by dangerous concentrations of ash. A first application of MAFALDA to the long-lasting weak plumes produced at Mt. Etna (Italy) is presented. A similar tool can be useful to civil protection authorities and volcanic observatories in reducing the impact of the eruptive events. MAFALDA can be accessed at http://mafalda.pi.ingv.it.
Deposition and dose from the 18 May 1980 eruption of Mount St. Helens
NASA Technical Reports Server (NTRS)
Peterson, K. R.
1982-01-01
The downwind deposition and radiation doses was calculated for the tropospheric part of the ash cloud from the May 18, 1980 eruption of Mount St. Helens, by using a large cloud diffusion model. The naturally occurring radionnuclides of radium and thorium, whose radon daughters normally seep very slowly from the rocks and soil, were violently released to the atmosphere. The largest dose to an individual from these nuclides is small, but the population dose to those affected by the radioactivity in the ash is about 100 person rem. This population dose from Mount St. Helens is much greater than the annual person rem routinely released by a typical large nuclear power plant. It is estimated that subsequent eruptions of Mount St. Helens have doubled or tripled the person rem calculated from the initial large eruption. The long range global ash deposition of the May 18 eruption is estimated through 1984, by use of a global deposition model. The maximum deposition is nearly 1000 kg square km and occurs in the spring of 1981 over middle latitudes of the Northern Hemisphere.
Problems in processing Rheinische Braunkohle (soft coal) (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Hartmann, G.B.
At Wesseling, difficulties were encountered with the hydrogenation of Rhine brown coal. The hydrogenation reaction was proceeding too rapidly at 600 atm pressure under relatively low temperature and throughput conditions. This caused a build-up of ''caviar'' deposits containing ash and asphalts. This flocculation of asphalt seemed to arise because the rapid reaction produced a liquid medium unable to hold the heavy asphalt particles in suspension. A stronger paraffinic character of the oil was also a result. To obtain practical, problem-free yields, throughput had to be increased (from .4 kg/liter/hr to more than .5), and temperature had to be increased (frommore » 24.0 MV to 24,8 MV). Further, a considerable increase in sludge recycling was recommended. The Wesseling plant was unable to increase the temperature and throughput. However, more sludge was recycled, producing a paste better able to hold higher-molecular-weight particles in suspension. If this were not to solve the ''caviar'' deposit problems, further recommendations were suggested including addition of more heavy oil.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, A.D.; Raymond, R. Jr.; Thayer, G.
1987-08-01
A peat deposit occupying over 80 square kilometers, and averaging 8 meters in thickness, was discovered on the Caribbean coast of northwestern Panama near the town of Changuinola. This deposit occurs inland (behind) the present beach-barrier shoreline. It is thickest in the center and thins toward all edges (as if domed). The surface vegetation in the central regions consists primarily of ombrotrophic plants (especially sedges, grasses, Sphagnum, Sagittaria, and various scattered shrubs). Toward the edges, the deposit has a surface cover of more minerotrophic plants (such as swamp-forest trees, ferns, and palms). Petrographic/botanical analysis of the deposit with depth revealsmore » the presence of five peat types (swamp-forest, sedge-grass-fern, Sagittaria et al., Nymphaea et al., and Rhizophora). Typically peats of the thick, central portions of the deposit are very low in ash and sulfur (less than 2% ash and 0.3% sulfur). Ash contents tend to increase abruptly at the base and more gradually toward the edges of the deposit and sulfur contents increasing gradually toward the ocean and bay. Vertical and lateral variations in botanical, chemical, and physical properties of this deposit can be related to factors that have controlled: (1) the surrounding rocks and water chemistry; (2) the source vegetation; and (3) the environments in which these source ingredients were deposited. 3 refs., 10 figs.« less
NASA Astrophysics Data System (ADS)
Miyabuchi, Yasuo; Iizuka, Yoshiyuki; Hara, Chihoko; Yokoo, Akihiko; Ohkura, Takahiro
2018-02-01
An explosive eruption occurred at Nakadake first crater, Aso Volcano in central Kyushu, southwestern Japan, on September 14, 2015. The sequence and causes of the eruption were reconstructed from the distribution, textures, grain-size, component and chemical characteristics of the related deposits, and video record. The eruptive deposits are divided into ballistics, pyroclastic density current and ash-fall deposits. A large number of ballistic clasts (mostly < 10 cm in diameter; maximum size 1.6 m) are scattered within about 500 m from the center of the crater. Almost half of the ballistics appear as fresh and unaltered basaltic andesite rocks interpreted to be derived from a fresh batch of magma, while the rest is weakly to highly altered clasts. A relatively thin ash derived from pyroclastic density currents covered an area of 2.3 km2 with the SE-trending main axis and two minor axes to the NE and NW. The pyroclastic density current deposit (maximum thickness < 10 cm even at the crater rim) is wholly fine grained, containing no block-sized clasts. Based on the isopach map, the mass of the pyroclastic density current deposit was estimated at ca. 5.2 × 104 tons. The ash-fall deposit is finer grained and clearly distributed to about 8 km west of the source crater. The mass of the ash-fall deposit was calculated at about 2.7 × 104 tons. Adding the mass of the pyroclastic density current deposit, the total discharged mass of the September 14, 2015 eruption was 7.9 × 104 tons. The September 14 pyroclastic density current and ash-fall deposits consist of glass shards (ca. 30%), crystals (20-30%) and lithic (40-50%) grains. Most glass shards are unaltered poorly crystallized pale brown glasses which probably resulted from quenching of juvenile magma. This suggests that the September 14, 2015 event at the Nakadake first crater was a phreatomagmatic eruption. Similar phreatomagmatic eruptions occurred at the same crater on September 6, 1979 and April 20, 1990 whose eruptive masses were one order larger than that of the September 14, 2015 eruption. These events highlight the potential hazard from phreatic or phreatomagmatic eruptions at Nakadake first crater, and provide useful information that will assist in preventing or mitigating future disasters at other similar volcanoes worldwide.
Modeling ash fall distribution from a Yellowstone supereruption
Mastin, Larry G.; Van Eaton, Alexa R.; Lowenstern, Jacob B.
2014-01-01
We used the volcanic ash transport and dispersion model Ash3d to estimate the distribution of ashfall that would result from a modern-day Plinian supereruption at Yellowstone volcano. The simulations required modifying Ash3d to consider growth of a continent-scale umbrella cloud and its interaction with ambient wind fields. We simulated eruptions lasting 3 days, 1 week, and 1 month, each producing 330 km3 of volcanic ash, dense-rock equivalent (DRE). Results demonstrate that radial expansion of the umbrella cloud is capable of driving ash upwind (westward) and crosswind (N-S) in excess of 1500 km, producing more-or-less radially symmetric isopachs that are only secondarily modified by ambient wind. Deposit thicknesses are decimeters to meters in the northern Rocky Mountains, centimeters to decimeters in the northern Midwest, and millimeters to centimeters on the East, West, and Gulf Coasts. Umbrella cloud growth may explain the extremely widespread dispersal of the ∼640 ka and 2.1 Ma Yellowstone tephra deposits in the eastern Pacific, northeastern California, southern California, and South Texas.
Spreading dynamic of viscous volcanic ash in stimulated jet engine conditions
NASA Astrophysics Data System (ADS)
song, wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado
2016-04-01
The ingestion of volcanic ash is widely recognised as a potentially fatal hazard for aircraft operation. The volcanic ash deposition process in a jet turbine is potentially complex. Volcanic ash in the air stream enters the inner liners of the combustors and partially or completely melts under the flames up to 2000 °C, at which point part of the ash deposits in the combustor fuel nozzle. Molten volcanic particles within high energy airflow escape the combustor to enter the turbine and impact the stationary (e.g., inlet nozzle guide vanes) and rotating airfoils (e.g., first stage high-pressure turbine blades) at high speed (up to Mach 1.25) in different directions, with the result that ash may stick, flow and remain liquid or solidify. Thus, the wetting behaviour of molten volcanic ash particle is fundamental to investigate impingement phenomena of ash droplet on the surface of real jet engine operation. The topic of wetting has received tremendous interest from both fundamental and applied points of view. However, due to the interdisciplinary gap between jet engine engineering and geology science, explicit investigation of wetting behaviour of volcanic ash at high temperature is in its infancy. We have taken a big step towards meeting this challenge. Here, we experimentally and theoretically investigate the wetting behaviour of viscous volcanic ash over a wide temperature range from 1100 to 1550 °C using an improved sessile-drop method. The results of our experiment demonstrate that temperature and viscosity play a critical role in determining the wetting possibility and governing the spreading kinetics of volcanic ash at high temperatures. Our systemic analysis of spreading of molten volcanic ash systems allows us to report on the fundamental differences between the mechanisms controlling spreading of organic liquids at room temperature and molten volcanic ash droplets.
Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard
NASA Astrophysics Data System (ADS)
Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.
2013-12-01
Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to investigate the sintering process of volcanic ash. In order to analyze the mineral transformation and microstructure evolution, the qualitative as well as quantitative crystalline phase analysis of volcanic ash samples directly taken from furnace by per 100 oC in the range of between 100 and 1400 oC as well as evaluation of microstructure of volcanic ash taken from from furnace by per 20 oC in the range of between 1000 and 1300 oC has been made by X-ray diffraction (XRD) and observed by scanning electron microscopy (SEM). Finally, we obtain the viscosity temperature curve for volcanic ash during melting process on the basis of the characteristic temperature obtained by HSM.
Impact of volcanic ash on anammox communities in deep sea sediments.
Song, Bongkeun; Buckner, Caroline T; Hembury, Deborah J; Mills, Rachel A; Palmer, Martin R
2014-04-01
Subaerial explosive volcanism contributes substantial amounts of material to the oceans, but little is known about the impact of volcanic ash on sedimentary microbial activity. We have studied anammox communities in deep sea sediments near the volcanically active island of Montserrat, Lesser Antilles. The rates of anammox and denitrification in the sediments were measured using (15)N isotope pairing incubation experiments, while 16S rRNA genes were used to examine anammox community structures. The higher anammox rates were measured in sediment containing the lower accumulation of volcanic ash in the surface sediments, while the lowest activities were found in sediments with the highest ash deposit. 16S rRNA gene analysis revealed the presence of 'Candidatus Scalindua spp.' in the sediments. The lowest diversity of anammox bacteria was observed in the sediments with the highest ash deposit. Overall, this study demonstrates that the deposition of volcanic material in deep sea sediments has negative impacts on activity and diversity of the anammox community. Since anammox may account for up to 79% of N2 production in marine ecosystems, periods of extensive explosive volcanism in Earth history may have had a hitherto unrecognized negative impact on the sedimentary nitrogen removal processes. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Hail formation triggers rapid ash aggregation in volcanic plumes
Van Eaton, Alexa R.; Mastin, Larry G.; Herzog, M.; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi; Clarke, Amanda B
2015-01-01
During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized ‘wet’ eruption. The 2009 eruption of Redoubt Volcano in Alaska incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits, and numerical modeling demonstrate that volcanic hail formed rapidly in the eruption plume, leading to mixed-phase aggregation of ~95% of the fine ash and stripping much of the cloud out of the atmosphere within 30 minutes. Based on these findings, we propose a mechanism of hail-like aggregation that contributes to the anomalously rapid fallout of fine ash and the occurrence of concentrically-layered aggregates in volcanic deposits.
Late Pleistocene Hansel Valley basaltic ash, northern Lake Bonneville, Utah, USA
Miller, D.M.; Oviatt, Charles G.; Nash, B.P.
2008-01-01
The Hansel Valley ash bed lies within 5 cm of the base of deposits of Lake Bonneville (???28 ka) in the vicinity of Great Salt Lake and provides a useful stratigraphic marker for this area of the lake basin. However, it has not been matched to an eruptive edifice, presumably because such an edifice was eroded by waves of Lake Bonneville. We present data for the chemical composition of the tephra and for possible matching lavas and tephras of the region, as well as grain size data for the tephra in an attempt to identify the location of the eruption. Matches with other tephras are negative, but lavas near the coarsest ash deposits match well with the distinctive high values of TiO2 and P2O5 of the ash. Neither chemistry nor grain size data points uniquely to a source area, but an area near the northwest shore of Great Salt Lake and within Curlew Valley is most likely. The Hansel Valley ash is an example of an ash that has no direct numerical date from proximal deposits, despite considerable study, yet nonetheless is useful for stratigraphic studies by virtue of its known stratigraphic position and approximate age. Basaltic tephras commonly are not as widespread as their rhyolitic counterparts, and in some cases apparently are produced by eruptive sources that are short lived and whose edifices are not persistent. ?? 2007 Elsevier Ltd and INQUA.
Geohydrologic data from test hole USW UZ-7, Yucca Mountain area, Nye County, Nevada
Kume, Jack; Hammermeister, D.P.
1990-01-01
This report contains a description of the methods used in drilling and coring of the test-hole USW UZ-7, a description of the methods used in collecting, handling, and testing of test-hole samples; Lithologic information from the test hole; and water-content, water-potential, bulk-density, grain-density, porosity, and tritium data for the test hole. Test-hole USW UZ-7 was drilled and cored to a total depth of 62.94 m. The drilling was done using air as a drilling fluid to minimize disturbance to the water content of cores, drill-bit cuttings, and borehole wall-rock. Beginning at the land surface, the unsaturated-zone rock that was penetrated consisted of alluvium; welded and partially to nonwelded ash-flow tuff; bedded and reworked ash-fall tuff; nonwelded ash-flow tuff; and welded ash-flow tuff. Values of gravimetric water content and water potential of alluvium were intermediate between the extreme values in welded and nonwelded units of tuff. Gravimetric water content was largest in bedded and nonwelded ash-fall tuffs and was smallest in welded ash-flow tuff. Values of water potential were more negative in densely welded ash-flow tuffs and were less negative in bedded and nonwelded ash-fall tuffs. Bulk density was largest in densely welded ash-flow tuffs and smallest in nonwelded and bedded ash-fall tuffs. Grain density was uniform but was slightly larger in nonwelded and bedded ash-fall tuffs than in welded ash-flow tuffs. Porosity trends were opposite to bulk-density trends. Tritium content in alluvium was smallest near the alluvium-bedrock contact, markedly increased in the middle of the deposit, and decreased in the near-surface zone of the deposit. (Author 's abstract)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyukjin Oh; Kalyan Annamalai; John M. Sweeten
2008-04-15
Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass, FB) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash 'fouling' were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss throughmore » ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out. 16 refs., 12 figs., 6 tabs.« less
A fouling monitor alarm to prevent forced outages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, R.E.; Hickinbotham, A.; Fang, T.C.
2000-07-01
Many utilities rely on coal blending to meet emissions and boiler performance goals, but the increased variability in coal quality can adversely impact ash deposition and soot blowing requirements. Other utilities are experimenting with lower quality coals and burner zone blending of coals fired from different bunkers as part of a deregulation strategy to reduce fuel costs. However, these strategies can lead to slagging/fouling episodes, a possible outage, or a decrease in unit availability if boiler operations are not carefully monitored. This paper summarizes the development of software to monitor boiler fouling and to provide an advanced warning to themore » control operators when a fouling episode is imminent. With adequate warming, preemptive action can be taken (e.g., soot blowing, a change in coal blend, etc.) to potentially avoid a costly outage. The software utilizes a unique combination of combustion diagnostic techniques and convective section heat adsorption analyses to identify boiler operating conditions where ash deposition rates may be high and conductive to triggering a fouling episode. The paper outlines the history of the fouling problem and the implementation of the software on Wabamun Unit 4, a tangentially-fired unit with relatively narrow reheat tube spacing. The unit had a tendency to foul when burning a high alkaline (but low ash) coal seam. The paper discusses the software development, implementation, and data acquisitions activities. Preliminary test results are provided for Wabamun 4 and for Sundance Units 1 and 2 where the software was recently installed.« less
Vallner, Leo; Gavrilova, Olga; Vilu, Raivo
2015-08-15
The main wastes of the Estonian shale oil industry - oil shale semi-coke and ashes - are deposited in landfills. The Kohtla-Järve oil shale semi-coke and ash landfill, which is likely the largest of its kind in the World, was started in 1938. The environmental risks connected with the landfill were assessed and prioritized. The most significant hazard to human health is emission of harmful landfill gases and the water contamination in the local river network is harmful for aqueous organisms. The spatial expansion of subsurface contamination predicted by the groundwater transport model completed is practically insignificant from the viewpoint of health services. The landfill's leachates must be captured and purified, and the closed part of the landfill should be covered by greenery. The partial landfill capping recently executed is useless. The EU Landfill Directive requirements imposed on the hydraulic resistance of geological barriers cannot prevent the leakage of contaminants from a landfill. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gatti, E.; Saidin, M.; Gibbard, P.; Oppenheimer, C.
2011-12-01
The Younger Toba Tuff eruption, approximately 73 ka ago, is the largest known for the Quaternary and its climate, environmental and human consequences are keenly debated (Oppenheimer, 2011).While the distribution (Rose and Chesner, 1987; Rose and Chesner, 1990; Chesner et al., 1991; Schulz et al., 2002; Von Rad et al., 2002) , geochemical properties (Shane et al., 1995; Westgate et al., 1998) and volcanic significance (Rampino and Self, 1982; Rampino and Self, 1993; Rampino and Ambrose, 2000; Oppenheimer, 2002; Mason et al., 2004)of the YTT have been widely studied, few attention has been given to the significance of the distal volcanic ash deposits within their receiving basin context. Although several studies exist on the impact of pyroclastic flows on proximal rivers and lakes (Collins and Dunne, 1986; Thompson et al., 1986; Hayes et al., 2002; Németh and Cronin, 2007), only few address the issues of the dynamic of preservation of super-distal fine ash deposits in rivers (also due to the lack of direct data on super-eruptions). It has also been demonstrated that models of the styles and timing of distal volcanoclastic re-sedimentation are more complicated than those developed for proximal settings of stratovolcanoes (Kataoka et al., 2009). We present an analysis of the taphonomy (intended as accumulation and preservation) of distal volcanic ash in fluvial and lacustrian contexts in newly discovered Toungest Toba Tuff sites in the Lenggong valley, western Peninsular Malaysia. The paper aims to characterise the nature of distal tephras in fluvial environments towards a stratigraphic distinction between primary ash and secondary ash, characterisation of the pre-ash fall receiving environment in term of fluvial dynamic and landscape morphology, and assessment of the time of recovery.
Dynamics and Deposits of Coignimbrite Plumes
NASA Astrophysics Data System (ADS)
Engwell, Samantha; de'Michieli Vitturi, Mattia; Esposti Ongaro, Tomaso; Neri, Augusto
2014-05-01
Fine ash in the atmosphere poses a significant hazard, with potentially disastrous consequences for aviation and, on deposition, health and infrastructure. Fine-grained particles form a large proportion of ejecta in Plinian volcanic clouds. However, another common, but poorly studied phenomena exists whereby large amounts of fine ash are injected into the atmosphere. Coignimbrite plumes form as material is elutriated from the top of pyroclastic density currents. The ash in these plumes is considerably finer grained than that in Plinian plumes and can be distributed over thousands of kilometres in the atmosphere. Despite their significance, very little is known regarding coignimbrite plume formation and dispersion, predominantly due to the poor preservation of resultant deposits. As a result, consequences of coignimbrite plume formation are usually overlooked when conducting hazard and risk analysis. In this study, deposit characteristics and numerical models of plumes are combined to investigate the conditions required for coignimbrite plume formation. Coignimbrite deposits from the Campanian Ignimbrite eruption (Magnitude 7.7, 39 ka) are well sorted and very fine, with a mode of between 30 and 50 microns, and a significant component of respirable ash (less than 10 microns). Analogous distributions are found for coignimbrite deposits from Tungurahua 2006 and Volcan de Colima (2004-2006), amongst others, regardless of magnitude, type or chemistry of eruption. These results indicate that elutriation processes are the dominant control on coignimbrite grainsize distribution. To further investigate elutriation and coignimbrite plume dynamics, the numerical plume model of Bursik (2001) is applied. Model sensitivity analysis demonstrates that neutral buoyancy conditions (required for the formation of the plume) are controlled by a balance between temperature and gas mass flux in the upper most parts of the pyroclastic density current. In addition, results emphasize the importance of entrainment into the established plume, a process that is still poorly defined. The numerical results, and the consistent fine grained nature of ash in the deposits, highlight the importance of physical dynamics in the parent pyroclastic density currents for coignimbrite plume formation and stress the need for tailored methods to investigate hazard and risk from such events. Bursik, M. Effect of wind on the rise height of volcanic plumes. Geophysical Research Letters, 28(18), 3621-3624, 2001.
The Largest Holocene Eruption of the Central Andes Found
NASA Astrophysics Data System (ADS)
Fernandez-Turiel, J.; Rodriguez-Gonzalez, A.; Saavedra, J.; Perez-Torrado, F.; Carracedo, J.; Osterrieth, M.; Carrizo, J.; Esteban, G.
2013-12-01
We present new data and interpretation about a major eruption -spreading ˜110 km3 ashes over 440.000 km2- long thought to have occurred around 4200 years ago in the Cerro Blanco Volcanic Complex (CBVC) in NW Argentina. This eruption may be the biggest during the past five millennia in the Central Volcanic Zone of the Andes, and possibly one of the largest Holocene eruptions in the world. The environmental effects of this voluminous eruption are still noticeable, as evidenced by the high content of arsenic and other trace elements in the groundwaters of the Chacopampean Plain. The recognition of this significant volcanic event may shed new light on interpretations of critical changes observed in the mid-Holocene paleontological and archaeological records, and offers researchers an excellent, extensive regional chronostratigraphic marker for reconstructing mid-Holocene geological history over a wide geographical area of South America. More than 100 ashes were sampled in Argentina, Chile and Uruguay during different field campaigns. Ash samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), grain size distributions laser diffraction, and geochemically by electron microprobe (EMPA) and laser ablation-HR-ICP-MS. New and published 14C ages were calibrated to calendar years BP. The age of the most recent CBVC eruption is 4407-4093 cal y BP, indirectly dated by 14C of associated organic sediment within the lower part of a proximal fall deposit of this event (26°53'16.05"S-67°44'48.68"W). This is the youngest record of a major volcanic event in the Southern Puna. This age is consistent with other radiocarbon dates of organic matter in palaeosols underlying or overlying distal ash fall deposits. Based on their products, all of rhyolitic composition, we have distinguished 8 main episodes during the evolution of the most recent CBVC eruption: 1) the eruption began with a white rhyolite lava dome extrusion; 2) followed by a Plinian proximal and distal dispersal of purely fallout (˜110 km3, bulk volume); 3) the eruptive column collapsed, producing white co-ignimbrite lag breccia, ignimbrite flow deposits, and associated surge and ash cloud deposits (~1 km3); 4) a resurgent white rhyolite lava dome was extruded that 5) collapsed to produce several lateral blasts directed into the Cerro Blanco caldera that emplaced lithic-rich block-and-ash flow deposits; 6) a new pinkish rhyolite lava dome extruded and 7) also laterally collapsed forming new lithic-rich block-and-ash flow deposits within the same caldera; finally, 8) the development of a post-eruption geothermal field that produced white sinter deposits within the Cerro Blanco caldera. Financial support was provided by the QUECA Project (MINECO, CGL2011-23307).
Analysis of Pyroclastic Deposits Using MESSENGER MASCS Observations
NASA Astrophysics Data System (ADS)
Besse, S.; Dorresoundiram, A.; Griton, L.
2018-05-01
Pyroclastic Deposits on the surface of Mercury are analysed using MASCS observations and an optimised calibration procedure. Pyroclastic Deposits show similar spectral properties that is explained by isotropic distribution of the ashes.
McPhie, J.; Walker, G.P.L.; Christiansen, R.L.
1990-01-01
In or around 1790 a.d. an explosive eruption took place in the summit caldera of Kilauea shield volcano. A group of Hawaiian warriors close to the caldera at the time were killed by the effects of the explosions. The stratigraphy of pyroclastic deposits surrounding Kilauea (i.e., the Keanakakoi Ash Member) suggests that the explosions referred to in the historic record were the culmination of a prolonged hydrovolcanic eruption consisting of three main phases. The first phase was phreatomagmatic and generated well-bedded, fine fallout ash rich in glassy, variably vesiculated, juvenile magmatic and dense, lithic pyroclasts. The ash was mainly dispersed to the southwest of the caldera by the northeasterly trade winds. The second phase produced a Strombolian-style scoria fall deposit followed by phreatomagmatic ash similar to that of the first phase, though richer in accretionary lapilli and lithics. The third and culminating phase was phreatic and deposited lithic-rich lapilli and block fall layers, interbedded with cross-bedded surge deposits, and accretionary lapilli-rich, fine ash beds. These final explosions may have been responsible for the deaths of the warriors. The three phases were separated by quiescent spells during which the primary deposits were eroded and transported downwind in dunes migrating southwestward and locally excavated by fluvial runoff close to the rim. The entire hydrovolcanic eruption may have lasted for weeks or perhaps months. At around the same time, lava erupted from Kilauea's East Rift Zone and probably drained magma from the summit storage. The earliest descriptions of Kilauea (30 years after the Keanakakoi eruption) emphasize the great depth of the floor (300-500 m below the rim) and the presence of stepped ledges. It is therefore likely that the Keanakakoi explosions were deepseated within Kilauea, and that the vent rim was substantially lower than the caldera rim. The change from phreatomagmatic to phreatic phases may reflect the progressive degassing and cooling of the magma during deep withdrawal: throughout the phreatomagmatic phases magma vesiculation contributed to the explosive interaction with water by initiating the fragmentation process: thereafter, the principal role of the subsiding magma column was to supply heat for steam production that drove the phreatic explosions of the final phase. ?? 1990 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Bhuyan, S. K.; Samal, S.; Pattnaik, D.; Sahu, A.; Swain, B.; Thiyagarajan, T. K.; Mishra, S. C.
2018-03-01
The environment is being contaminated with advancement of new technology, day by day. One of the primary sources for this contamination is the industrial waste. Industrialization is the prime reason behind the prosperity of any country to meet the materialistic demand. To run the industries, a huge amount of (electric) power is needed and hence need for thermal power plants to serve the purpose. In present scenario, coal fired thermal power plants are set up which generates a huge quantity of Fly ash. Consumption of industrial waste (Fly ash), continually a major concern for human race. In recent years, fly ash is being utilized for various purposes i.e. making bricks, mine reclamation, production of cements etc. The presence of Silica and Alumina in fly ash makes it useful for thermal barrier applications also. The plasma spray technology has the advantage of being able to process any types of metal/ceramic mineral, low-grade-ore minerals etc. to make value-added products and also to deposit ceramics, metals and a combination of these to deposit composite coatings with desired microstructure and required properties on a range of substrate materials. The present work focuses on utilization of fly ash mixing with bauxite (ore mineral) for a high valued application. Fly ash with 10 and 20% bauxite addition is used to deposit plasma spray overlay coatings at different power levels (10-20kW) on aluminum and mild steel substrates. Adhesion strength and surface roughness of the coatings are evaluated. Phase composition analysis of the coatings were done using X-ray diffraction analysis. Surface morphology of the coatings was studied using a scanning electron microscope (SEM). Maximum adhesion strength of 4.924 MPa is obtained for the composition fly ash and bauxite (10%), coated on mild steel at 16kW torch power level. The surface roughness (Ra) of the coatings is found to vary between 10.0102 to 17.2341 micron.
3D Micro-tomography on Aggregates from the 2014- 2015 Eruption of Hunga Tonga-Hunga Ha'apai Volcano
NASA Astrophysics Data System (ADS)
Colombier, M.; Scheu, B.; Cronin, S. J.; Tost, M.; Dobson, K. J.; Dingwell, D. B.
2016-12-01
In December 2014- January 2015, a surtseyan eruption at Hunga Tonga-Hunga Ha'apai volcano (Tonga) formed a new island. Three main eruptive phases were distinguished by observation and deposits: (i) mound and cone construction, involving collapse of 300-600 m-high wet tephra jets, grain flows, slope-remobilisation and energetic surges, with little or no convective plume (ii) The upper cone-building phase with lower jets (mainly <300 m) but greater ash production (weak, steam-rich plumes to 6 km) and weak surges, and (iii) final phase with weak surge, fall and ballistic deposits with more vesicular pyroclasts producing proximal capping deposits. Most sampled deposits contain ash, lapilli and bombs, and lapilli-sized aggregates are ubiquitous. We used high-resolution 3D X-ray microcomputed tomography (XCT) to quantify the grain size distribution (GSD) and porosity by sampling multiple stratigraphic units within the main eruptive sequences. We visualized and quantified the internal structure of the aggregates to understand the evolution of this surtseyan eruption. We present here an overview of the textural information: porosity, vesicle size distribution and morphology as well as the variability of the aggregation features. Aggregates from the fall deposits of the early wet phase are mostly loosely packed, poorly-structured ash clusters. Aggregates from the early surge sequence and the main cone building phase dominantly exhibit a central particle coated by ash cluster material. Vesicles in the particles from the early fall deposits tend to be smaller and more isolated than in the particles from the surge sequence and the main cone building phase. The GSD of aggregates obtained by XCT is highly valuable to correct the total GSD of volcaniclastic deposits. The strong variations in the aggregation features across the eruption suggest a range of different formation and deposition mechanisms related to varying degrees of magma-water-interaction, which changed the morphology and textural properties of the individual particles.
Wang, B.; Michaelson, G.; Ping, C.-L.; Plumlee, G.; Hageman, P.
2010-01-01
The 78 August 2008 eruption of Kasatochi Island volcano blanketed the island in newly generated pyroclastic deposits and deposited ash into the ocean and onto nearby islands. Concentrations of water soluble Fe, Cu, and Zn determined from a 1:20 deionized water leachate of the ash were sufficient to provide short-term fertilization of the surface ocean. The 2008 pyroclastic deposits were thicker in concavities at bases of steeper slopes and thinner on steep slopes and ridge crests. By summer 2009, secondary erosion had exposed the pre-eruption soils along gulley walls and in gully bottoms on the southern and eastern slopes, respectively. Topographic and microtopographic position altered the depositional patterns of the pyroclastic flows and resulted in pre-eruption soils being buried by as little as 1 m of ash. The different erosion patterns gave rise to three surfaces on which future ecosystems will likely develop: largely pre-eruptive soils; fresh pyroclastic deposits influenced by shallowly buried, pre-eruptive soil; and thick (>1 m) pyroclastic deposits. As expected, the chemical composition differed between the pyroclastic deposits and the pre-eruptive soils. Pre-eruptive soils hold stocks of C and N important for establishing biota that are lacking in the fresh pyroclastic deposits. The pyroclastic deposits are a source for P and K but have negligible nutrient holding capacity, making these elements vulnerable to leaching loss. Consequently, the pre-eruption soils may also represent an important long-term P and K source. ?? 2010 Regents of the University of Colorado.
NASA Astrophysics Data System (ADS)
Traineau, Hervé; Westercamp, Denis; Bardintzeff, Jacques-Marie; Miskovsky, Jean-Claude
1989-08-01
Mount Pelée is one of the most active volcanoes of the Lesser Antilles arc, with more than twenty eruptions over the last 5000 years. Both nuée ardente-type eruptions, which are well known, and pumice eruptions, although little known, are very common in the stratigraphic record. The four younger pumice eruptions, P4 (2440 y.B.P.), P3 (2010 y.B.P.), P2 (1670 y.B.P.) and P1 (650 y.B.P.) can be used to reconstruct the eruption sequences. The various pumiceous deposits can be described as fine lithic ash layer, Plinian fall deposits, pumice and ash flow deposits with associated ash cloud fall deposits, and pumice surge deposits. Three kinds of depositional sequences have been defined. The distinctions between them are based on the occurrence of an initial Plinian phase and the generation of intraflow pyroclastic surges. The pumice eruptions of Mt. Pelée are small in intensity and magnitude, as expressed by the dispersal of their products and by the total mass of erupted material which is estimated to be less than 1 km 3 in each case. The pumice fall deposits have dispersal characteristics of small Plinian eruptions, close to the sub-Plinian type. Nevertheless, the probability of an occurrence of a new pumice eruption at Mt. Pelée is high, and the widespread distribution of pumice deposits around the volcano suggests that such an eruption is a major volcanic risk during the present stage of activity.
Major, Jon J.; Pierson, Thomas C.; Hoblitt, Richard P.; Moreno, Hugo
2013-01-01
Explosive activity at Chaitén Volcano in May 2008 and subsequent dome collapses over the following nine months triggered multiple, small-volume pyroclastic density currents (PDCs). The explosive activity triggered PDCs to the north and northeast, which felled modest patches of forest as far as 2 km from the caldera rim. Felled trees pointing in the down-current direction dominate the disturbance zones. The PDC on the north flank of Chaitén left a decimeters-thick, bipartite deposit having a basal layer of poorly sorted, fines-depleted pumice-and-lithic coarse ash and lapilli, which transitions abruptly to fines-enriched pumice-and-lithic coarse ash. The deposit contains fragments of mostly uncharred organics near its base; vegetation protruding above the deposit is uncharred. The nature of the forest disturbance and deposit characteristics suggest the PDC was dilute, of relatively low temperature (-1. It was formed by directionally focused explosions throughout the volcano's prehistoric, intracaldera lava dome. Dilute, low-temperature PDCs that exited the caldera over a low point on the east-southeast caldera rim deposited meters-thick fill of stratified beds of pumice-and-lithic coarse ash and lapilli. They did not fell large trees more than a few hundred of meters from the caldera rim and were thus less energetic than those on the north and northeast flanks. They likely formed by partial collapses of the margins of vertical eruption columns. In the Chaitén River valley south of the volcano, several-meter-thick deposits of two block-and-ash flow (BAF) PDCs are preserved. Both have a coarse ash matrix that supports blocks and lapilli predominantly of lithic rhyolite dome rock, minor obsidian, and local bedrock. One deposit was emplaced by a BAF that traveled an undetermined distance downvalley between June and November 2008, apparently triggered by partial collapse of a newly effused lava dome on that started growing on 12 May. A second, and larger, BAF related to another collapse of the new lava dome on 19 February 2009 traveled to within 3 km of the village of Chaitén, 10 km downstream of the volcano. It deposited as much as 8-10 m of diamict having sedimentary characteristics very similar to the previous BAF deposit. Charred trees locally encased within the BAD deposits suggest that the flows were of moderate temperature, perhaps as much as 300°C. Erosion of the BAD deposits filling the Chaitén River channel has delivered substantial sediment loads downstream, contributing to channel instability and challenged river management.
Effects Of Crystallographic Properties On The Ice Nucleation Properties Of Volcanic Ash Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, Gourihar R.; Nandasiri, Manjula I.; Zelenyuk, Alla
2015-04-28
Specific chemical and physical properties of volcanic ash particles that could affect their ability to induce ice formation are poorly understood. In this study, the ice nucleating properties of size-selected volcanic ash and mineral dust particles in relation to their surface chemistry and crystalline structure at temperatures ranging from –30 to –38 °C were investigated in deposition mode. Ice nucleation efficiency of dust particles was higher compared to ash particles at all temperature and relative humidity conditions. Particle characterization analysis shows that surface elemental composition of ash and dust particles was similar; however, the structural properties of ash samples weremore » different.« less
NASA Astrophysics Data System (ADS)
Ctvrtnickova, T.; Mateo, M. P.; Yañez, A.; Nicolas, G.
2011-04-01
Presented work brings results of Laser-Induced Breakdown Spectroscopy (LIBS) and Thermo-Mechanical Analysis (TMA) of coals and coal blends used in coal fired power plants all over Spain. Several coal specimens, its blends and corresponding laboratory ash were analyzed by mentioned techniques and results were compared to standard laboratory methods. The indices of slagging, which predict the tendency of coal ash deposition on the boiler walls, were determined by means of standard chemical analysis, LIBS and TMA. The optimal coal suitable to be blended with the problematic national lignite coal was suggested in order to diminish the slagging problems. Used techniques were evaluated based on the precision, acquisition time, extension and quality of information they could provide. Finally, the applicability of LIBS and TMA to the successful calculation of slagging indices is discussed and their substitution of time-consuming and instrumentally difficult standard methods is considered.
Adjusting particle-size distributions to account for aggregation in tephra-deposit model forecasts
Mastin, Larry G.; Van Eaton, Alexa; Durant, A.J.
2016-01-01
Volcanic ash transport and dispersion (VATD) models are used to forecast tephra deposition during volcanic eruptions. Model accuracy is limited by the fact that fine-ash aggregates (clumps into clusters), thus altering patterns of deposition. In most models this is accounted for by ad hoc changes to model input, representing fine ash as aggregates with density ρagg, and a log-normal size distribution with median μagg and standard deviation σagg. Optimal values may vary between eruptions. To test the variance, we used the Ash3d tephra model to simulate four deposits: 18 May 1980 Mount St. Helens; 16–17 September 1992 Crater Peak (Mount Spurr); 17 June 1996 Ruapehu; and 23 March 2009 Mount Redoubt. In 192 simulations, we systematically varied μagg and σagg, holding ρagg constant at 600 kg m−3. We evaluated the fit using three indices that compare modeled versus measured (1) mass load at sample locations; (2) mass load versus distance along the dispersal axis; and (3) isomass area. For all deposits, under these inputs, the best-fit value of μagg ranged narrowly between ∼ 2.3 and 2.7φ (0.20–0.15 mm), despite large variations in erupted mass (0.25–50 Tg), plume height (8.5–25 km), mass fraction of fine ( < 0.063 mm) ash (3–59 %), atmospheric temperature, and water content between these eruptions. This close agreement suggests that aggregation may be treated as a discrete process that is insensitive to eruptive style or magnitude. This result offers the potential for a simple, computationally efficient parameterization scheme for use in operational model forecasts. Further research may indicate whether this narrow range also reflects physical constraints on processes in the evolving cloud.
Fusion characteristics of volcanic ash relevant to aviation hazards
NASA Astrophysics Data System (ADS)
Song, Wenjia; Hess, Kai-Uwe; Damby, David E.; Wadsworth, Fabian B.; Lavallée, Yan; Cimarelli, Corrado; Dingwell, Donald B.
2014-04-01
The fusion dynamics of volcanic ash strongly impacts deposition in hot parts of jet engines. In this study, we investigate the sintering behavior of volcanic ash using natural ash of intermediate composition, erupted in 2012 at Santiaguito Volcano, Guatemala. A material science procedure was followed in which we monitored the geometrical evolution of cylindrical-shaped volcanic ash compact upon heating from 50 to 1400°C in a heating microscope. Combined morphological, mineralogical, and rheological analyses helped define the evolution of volcanic ash during fusion and sintering and constrain their sticking potential as well as their ability to flow at characteristic temperatures. For the ash investigated, 1240°C marks the onset of adhesion and flowability. The much higher fusibility of ash compared to that of typical test sands demonstrates for the need of a more extensive fusion characterization of volcanic ash in order to mitigate the risk posed on jet engine operation.
Biomimetic thermal barrier coating in jet engine to resist volcanic ash deposition
NASA Astrophysics Data System (ADS)
Song, Wenjia; Major, Zsuzsanna; Schulz, Uwe; Muth, Tobias; Lavallée, Yan; Hess, Kai-Uwe; Dingwell, Donald B.
2017-04-01
The threat of volcanic ash to aviation safety is attracting extensive attention when several commercial jet aircraft were damaged after flying through volcanic ash clouds from the May 1980 eruptions of Mount St. Helen in Washington, U.S. and especially after the air traffic disruption in 2010 Eyjafjallajökull eruption. A major hazard presented by volcanic ash to aircraft is linked to the wetting and spreading of molten ash droplets on engine component surfaces. Due to the fact ash has a lower melting point, around 1100 °C, than the gas temperature in the hot section (between 1400 to 2000 °C), this cause the ash to melt and potentially stick to the internal components (e.g., combustor and turbine blades), this cause the ash to melt and potentially stick to the internal components of the engine creating, substantial damage or even engine failure after ingestion. Here, inspiring form the natural surface of lotus leaf (exhibiting extreme water repellency, known as 'lotus effect'), we firstly create the multifunctional surface thermal barrier coatings (TBCs) by producing a hierarchical structure with femtosecond laser pulses. In detail, we investigate the effect of one of primary femtosecond laser irradiation process parameter (scanning speed) on the hydrophobicity of water droplets onto the two kinds of TBCs fabricated by electron-beam physical vapor deposition (EB-PVD) and air plasma spray (APS), respectively as well as their corresponding to morphology. It is found that, comparison with the original surface (without femtosecond laser ablation), all of the irradiated samples demonstrate more significant hydrophobic properties due to nanostructuring. On the basis of these preliminary room-temperature results, the wettability of volcanic ash droplets will be analysed at the high temperature to constrain the potential impact of volcanic ash on the jet engines.
Perkiömäki, Jonna; Fritze, Hannu
2003-05-01
Abstract Wood ash contains Cd in concentrations not permitted for fertilization use in agriculture (>3 mg kg(-1)). It has been shown that spiking ash with Cd to concentrations of 1000 mg kg(-1) induced no further changes in humus microbial activity and community structure as ash alone. To accelerate the weathering process and thus to liberate the spiked Cd from the ash, three treatments - wood ash (A), Cd spiked wood ash (ACd, 1000 mg Cd kg(-1) ash), both applied at a fertilization rate of 5000 kg ha(-1), together with a control (C) - were performed in microcosms and incubated in field condition under two types of irrigation - water and simulated acid rain. During the incubation period of one growing season the simulated acid rain plots received a sulfur load of 3.64 g S m(-2), which was 15 times more than the S deposition on the water irrigated plots. The treatments resulted in a mean Cd increase of the humus from 0.23 mg kg(-1) of the C treatment to 0.52 and 39.5 mg kg(-1) of the A and ACd treatments, respectively. The irrigation had no further effect on the result. The microbial activity, measured as soil basal respiration, and the microbial community structure, measured as humus phospholipid fatty acid and 16S and 18S polymerase chain reaction/denaturing gradient gel electrophoresis patterns, changed only due to the ash (A and ACd treatments) fertilization irrespective of the irrigation. The bacterial biosensor, emitting light in the presence of bioavailable Cd, did not react to any of the treatments. This result shows that Cd in ash was not leached into the humus due to increased deposition of acidified rain.
NASA Astrophysics Data System (ADS)
Avery, Meredith R.; Panter, Kurt S.; Gorsevski, Pece V.
2017-02-01
The style and dynamics of volcanic eruptions control the level and type of hazards posed for local populations and can have a temporary long-range impact on climate if eruptions are extremely energetic. The purpose of this study is to provide a statistical approach to ash morphometrics in order to provide a means by which to evaluate diverse eruption styles and mechanisms of fragmentation. The methodology presented can be applied to tephra deposits worldwide and may aid volcanic hazard mitigation by better defining a volcano's history of explosive behavior. Ash-sized grains were collected from tephra deposits on Mount Erebus, Antarctica (< 10 ka, phonolitic unit SC4), Mount Redoubt, Alaska (2009, andesitic events 2-4 & 9-18), and the Taupo volcano, New Zealand (1.8 ka, rhyolitic unit 3D). Coarse ash from each deposit was carefully hand-sieved to 1 mm diameter and display diverse morphologies that vary from grains that are moderately vesicular and more rectangular (blocky) to highly vesiculated (spongy) grains that vary from angular to sub-rounded. A total of 264 grains were imaged by scanning electron microscopy. Morphometric properties were determined using image processing software and then evaluated by several statistical methods. Discriminant analysis of all parameters was found to be the best at differentiating the tephra deposits and allowing for interpretation of eruptive styles in conjunction with field observations. A linear array of data forming a positive slope in factor space, which explains > 99% of the total data variance, is interpreted to represent a continuum between fragmentations involving water-magma interaction ("wet") to grains that were formed predominately by magmatic ("dry") fragmentation mechanisms. The Taupo Hatepe ash, which was deposited from a phreatoplinian eruption column, has the highest factor values in the array, which signifies, in part, more rectangular/blocky morphologies with smooth grain edges. Factor values for the 2009 Redoubt eruption (events 2-4) are nearly as high as Hatepe ash and based on this we suggest that it was produced, in part, by phreatomagmatic fragmentation. This is supported by field observations that document melting and eruption through glacial ice during the early phases of the 2009 activity. Redoubt ash grains from later stages of the same eruption (events 9-18) show a significant shift to lower values in factor space (more irregular/vesiculated grains) and are interpreted to be a consequence of 'dryer' conditions. Coarse ash data from Mount Erebus are completely separated from Taupo and Redoubt grains in factor space due primarily to the difference in mean gray value, which is a proxy for vesicle density and size. The vesicle characteristics (larger and deeper) are consistent with documented strombolian-style activity and the scatter in grain shape data support fragmentation by a mixture of wet and dry processes as has previously been proposed based on deposit characteristics and resemblance to tephra produced by current activity.
NASA Astrophysics Data System (ADS)
Tsuji, T.; Nishizaka, N.; Onishi, K.
2017-12-01
Sedimentation processes during explosive volcanic eruptions can be constrained based on detailed analysis of grain-size variation of tephra deposits. Especially, an accurate description of the amount of fine particles has also significant implications for the assessment of specific tephra hazards. Grain size studies for single short-term eruption has advantage to contribute understanding the sedimentation processes because it is simple compared to long-lasting eruption. The 2016 Aso Nakadake eruption, Japan represents an ideal for the study of short-term eruptions thanks to an accurate investigation. Then, we investigate the grain size variation with distance from the vent and sedimentological features of the deposit to discuss the sedimentation processes of the tephra fragments. The eruption provided pyroclastic flow deposit and fallout tephra which distributed NE to ENE direction from the vent. The deposits between 4 and 20 km from vent consist of fine-coated lapilli to coarse ash, ash pellet and mud droplet in ascending degree. The samples are lapilli-bearing within 20 km from vent and those outside of 20 km mainly consist of ash particles. Detailed analyses of individual samples highlight a rapid decay of maximum and mean grain size for the deposit from proximal to distal. The decay trend of maximum grain-size is approximated by three segments of exponential curves with two breaks-in-slope at 10 and 40 km from vent. Most of the sampled deposits are characterized by bimodal grain-size distributions, with the modes of the coarse subpopulation decreasing with distance from vent and those of the fine subpopulation being mostly stable. The fine subpopulation has been interpreted as being mostly associated with size-selective sedimentation processes (e.g., particle aggregation) confirmed by the existence of fine-coated particles, ash pellet and mud droplet. As the fine-coated particles generally have a higher terminal velocity than the individual constituent particles, those could be related with the rapid decrease of maximum grain-size with distance from vent at proximal area. Further detail grain-size analyses and theoretical studies can be contributed to understand the effect of fine ash aggregation on sedimentation processes quantitatively.
NASA Astrophysics Data System (ADS)
Thouret, Jean-Claude; Gupta, Avijit; Liew, Soo Chin; Lube, Gert; Cronin, Shane J.; Surono, Dr
2010-05-01
On 16 June 2006 an overpass of IKONOS coincided with the emplacement of an active block-and-ash flow fed by a lava dome collapse event at Merapi Volcano (Java, Indonesia). This was the first satellite image recorded for a moving pyroclastic flow. The very high-spatial resolution data displayed the extent and impact of the pyroclastic deposits emplaced during and prior to, the day of image acquisition. This allowed a number of features associated with high-hazard block-and-ash flows emplaced in narrow, deep gorges to be mapped, interpreted and understood. The block-and-ash flow and surge deposits recognized in the Ikonos images include: (1) several channel-confined flow lobes and tongues in the box-shaped valley; (2) thin ash-cloud surge deposit and knocked-down trees in constricted areas on both slopes of the gorge; (3) fan-like over bank deposits on the Gendol-Tlogo interfluves from which flows were re-routed in the Tlogo secondary valley; (4) massive over bank lobes on the right bank from which flows devastated the village of Kaliadem 0.5 km from the main channel, a small part of this flow being re-channeled in the Opak secondary valley. The high-resolution IKONOS images also helped us to identify geomorphic obstacles that enabled flows to ramp and spill out from the sinuous channel, a process called flow avulsion. Importantly, the avulsion redirected flows to unexpected areas away from the main channel. In the case of Merapi we see that the presence of valley fill by previous deposits, bends and man-made dams influence the otherwise valley-guided course of the flows. Sadly, Sabo dams (built to ameliorate the effect of high sediment load streams) can actually cause block-and-ash flows to jump out of their containing channel and advance into sensitive areas. Very-high-spatial resolution satellite images are very useful for mapping and interpreting the distribution of freshly erupted volcanic deposits. IKONOS-type images with 1-m resolution provide opportunities to study and map the meter-scale detail of volcanic deposits. When such high-spatial-resolution satellite remote sensing data are combined with in situ field work, geomorphic analyses can be applied that allow us to more fully understand the dynamics and hazards of eruptions. In the case given here, IKONOS imagery allowed two qualitative hazard assessments for block-and-ash flow activity in drainages around Merapi. Firstly, the interpretation of IKONOS images provides insights in factors that control the propagation of secondary flows as the avulsion of the main flows is driven by longitudinal change in channel capacity due to increased sinuosity in the valley and decreased containment space. Secondly, the sinuosity and obstacles (including Sabo dams) may create over bank flows over adjacent low relief, allowing them to reach unexpectedly vulnerable areas distant from an active dome and away from the volcanically active valleys. Hazard assessment should therefore consider the geometry of secondary channels outside the principal valleys.
Hydrodesulfurization and hydrodenitrogenation catalysts obtained from coal mineral matter
Liu, Kindtoken H. D.; Hamrin, Jr., Charles E.
1982-01-01
A hydrotreating catalyst is prepared from coal mineral matter obtained by low temperature ashing coals of relatively low bassanite content by the steps of: (a) depositing on the low temperature ash 0.25-3 grams of an iron or nickel salt in water per gram of ash and drying a resulting slurry; (b) crushing and sizing a resulting solid; and (c) heating the thus-sized solid powder in hydrogen.
The role of fly-ash particulate material and oxide catalysts in stone degradation
NASA Astrophysics Data System (ADS)
Hutchinson, A. J.; Johnson, J. B.; Thompson, G. E.; Wood, G. C.; Sage, P. W.; Cooke, M. J.
Studies of fly-ash composition identified the presence of calcium and sulphur, indicating their potential role as sources of calcium sulphate. Residual acidity (particularly for oil fly ash) suggested the possibility of enhanced chemical reaction, and the presence of transition metals, probably as oxides, might accelerate the oxidation of SO 2 to SO 42-. Exposure tests in a laboratory-based rig simulating dry deposition on Portland and Monks Park limestone, either seeded or unseeded with fly-ash particulate material or transition metal oxide catalysts, were carried out using an SO 2-containing environment at 95% r.h. Enhanced sulphation of these seeded limestones due to the above factors was minimal; at high loadings of fly ash, there was even evidence of masking the limestone surface, reducing sulphation. However, pure CaCO 3 powder in the exposure rig showed increases in sulphation when seeded with metal oxide catalysts. Thus the limestones examined contained sufficient inherent catalysts for the oxidation of SO 2 to SO 42- to proceed at such a rate that external catalysts were superfluous. This implies that dissolution rate of SO 2 in moisture films controls the availability of species for reaction with these carbonate-based stones and that fly ash deposited from the atmosphere does not enhance the reaction.
Source mass eruption rate retrieved from satellite-based data using statistical modelling
NASA Astrophysics Data System (ADS)
Gouhier, Mathieu; Guillin, Arnaud; Azzaoui, Nourddine; Eychenne, Julia; Valade, Sébastien
2015-04-01
Ash clouds emitted during volcanic eruptions have long been recognized as a major hazard likely to have dramatic consequences on aircrafts, environment and people. Thus, the International Civil Aviation Organization (ICAO) established nine Volcanic Ash Advisory Centers (VAACs) around the world, whose mission is to forecast the location and concentration of ash clouds over hours to days, using volcanic ash transport and dispersion models (VATDs). Those models use input parameters such as plume height (PH), particle size distribution (PSD), and mass eruption rate (MER), the latter being a key parameter as it directly controls the amount of ash injected into the atmosphere. The MER can be obtained rather accurately from detailed ground deposit studies, but this method does not match the operational requirements in case of a volcanic crisis. Thus, VAACs use empirical laws to determine the MER from the estimation of the plume height. In some cases, this method can be difficult to apply, either because plume height data are not available or because uncertainties related to this method are too large. We propose here an alternative method based on the utilization of satellite data to assess the MER at the source, during explosive eruptions. Satellite-based techniques allow fine ash cloud loading to be quantitatively retrieved far from the source vent. Those measurements can be carried out in a systematic and real-time fashion using geostationary satellite, in particular. We tested here the relationship likely to exist between the amount of fine ash dispersed in the atmosphere and of coarser tephra deposited on the ground. The sum of both contributions yielding an estimate of the MER. For this purpose we examined 19 eruptions (of known duration) in detail for which both (i) the amount of fine ash dispersed in the atmosphere, and (ii) the mass of tephra deposited on the ground have been estimated and published. We combined these data with contextual information that may influence the statistical relationship such as the magma composition or the existence of phreatomagmatism. In order to infer the relationship between ash content in the atmosphere and the amount of tephra on the ground, we used advanced statistic modelling using model selection, with AIC-type (Akaike Information Criterion) penalization, and classification. First we show that a reliable statistical relationship does exist between atmospheric fine ash and tephra fall deposits. Then we show that magma composition does have an effect on this relationship. It follows a power function in the form S_1=c_0{S_2}c_1(P_n))Hc_2 having a coefficient of determination r2=0.91 and a prediction error of 2.16 at a confidence level of 95%. S1 is the mass of tephra fall deposits and S2 is the fine ash cloud mass as retrieved from satellite measurements. H is the plume height, c0 and c2 are constant coefficients while c1 is variable and depends on the magma composition type (Pn=1:3). This method greatly improves the prediction capability of the source MER as compared to the one based on the plume height solely. If available in real-time, satellite data might be advantageously used as a proxy by the VAACs, to derive key source parameters such as the MER.
Ash production and dispersal from sustained low-intensity Mono-Inyo eruptions
NASA Astrophysics Data System (ADS)
Black, Benjamin A.; Manga, Michael; Andrews, Benjamin
2016-08-01
Recent rhyolitic volcanism has demonstrated that prolonged low-intensity ash venting may accompany effusive dome formation. We examine the possibility and some consequences of episodes of extended, weak ash venting at the rhyolitic Mono-Inyo chain in Eastern California. We describe ash-filled cracks within one of the youngest domes, Panum Crater, which provide a textural record of ash venting during dome effusion. We use synchrotron-based X-ray computed tomography to characterize the particles in these tuffisites. Particle sizes in well-sorted tuffisite layers agree well with grain size distributions observed during weak ash venting at Soufrière Hills Volcano, Montserrat, and yield approximate upper and lower bounds on gas velocity and mass flux during the formation of those layers. We simulate ash dispersal with Ash3d to assess the consequences of long-lived Mono-Inyo ash venting for ash deposition and the accompanying volcanic hazards. Our results highlight the sensitivity of large-scale outcomes of volcanic eruptions to small-scale processes.
Schils, Tom
2012-01-01
Volcanically active islands abound in the tropical Pacific and harbor complex coral communities. Whereas lava streams and deep ash deposits are well-known to devastate coral communities through burial and smothering, little is known about the effect of moderate amounts of small particulate ash deposits on reef communities. Volcanic ash contains a diversity of chemical compounds that can induce nutrient enrichments triggering changes in benthic composition. Two independently collected data sets on the marine benthos of the pristine and remote reefs around Pagan Island, Northern Mariana Islands, reveal a sudden critical transition to cyanobacteria-dominated communities in 2009-2010, which coincides with a period of continuous volcanic ash eruptions. Concurrently, localized outbreaks of the coral-killing cyanobacteriosponge Terpios hoshinota displayed a remarkable symbiosis with filamentous cyanobacteria, which supported the rapid overgrowth of massive coral colonies and allowed the sponge to colonize substrate types from which it has not been documented before. The chemical composition of tephra from Pagan indicates that the outbreak of nuisance species on its reefs might represent an early succession stage of iron enrichment (a.k.a. "black reefs") similar to that caused by anthropogenic debris like ship wrecks or natural events like particulate deposition from wildfire smoke plumes or desert dust storms. Once Pagan's volcanic activity ceased in 2011, the cyanobacterial bloom disappeared. Another group of well-known nuisance algae in the tropical Pacific, the pelagophytes, did not reach bloom densities during this period of ash eruptions but new species records for the Northern Mariana Islands were documented. These field observations indicate that the study of population dynamics of pristine coral communities can advance our understanding of the resilience of tropical reef systems to natural and anthropogenic disturbances.
Ruppert, L.F.; Moore, T.A.
1993-01-01
The Sangsang deposit of the Eocene Senakin coal bed, Tanjung Formation, southeastern Kalimantan, Indonesia, contains 11 layers, which are thin ( 70%). These layers are characterized by their pelitic macroscopic texture. Examination of eight of the layers by scanning-electron microscopy, energy-dispersive X-ray, and X-ray diffraction analyses show that they are composed primarily of fairly well-crystallized kaolinite, much of which is vermicular. Accessory minerals include abundant Ti oxide, rare-earth element-rich Ca and A1 phosphates, quartz that luminescences in the blue color range, and euhedral to subhedral pyroxene, hornblende, zircon, and sanidine. Although this mineral suite is suggestive of volcanic ash-fall material, only the four pelitic layers in the middle of the bed are thought to be solely derived from volcanic ash-falls on the basis of diagnostic minerals, replaced glass shards, and lithostratigraphic relationships observed in core and outcrop. The three uppermost pelitic layers contain octahedral chromites, some quartz grains that luminesce in teh orange color range, and some quartz grains that contain two-phase fluid inclusions. These layers are interpreted to be derived from a combination of volcanic ash-fall material and hydrologic transport of volcaniclastic sediment. In contrast, the lowermost pelitic layer, which contains large, rounded FeMg-rich chromites, is thought to have been dominantly deposited by water. The source of the volcanic ash-fall material may have been middle Tertiary volcanism related to plate tectonic activity between Kalimantan and Sulawesi. The volcanic ash was deposited in sufficient amounts to be preserved as layers within the coal only in the northern portions of the Senakin region: the southern coal beds in the region do not contain pelitic layers. ?? 1993.
Euramerican tonsteins: overview, magmatic origin, and depositional-tectonic implications
Lyons, P.C.; Spears, D.A.; Outerbridge, W.F.; Congdon, R.D.; Evans, H.T.
1994-01-01
Carboniferous tonsteins (kaolinized volcanic-ash beds) of wide geographic distribution are known in both Europe and North America. Relict volcanic minerals common in these Euramerican tonsteins are volcanic quartz (including beta-quartz paramorphs), zircon and ilmenite; less common are magnetite, fayalite, rutile, monazite, xenotime, apatite and sanidine. Data for two relatively thick (3-13 cm) and widespread (>400 km) European tonsteins (Erda and Sub-Worsley Four-foot) indicate an increase in detrital quartz near the top of the beds which indicates mixing with normal clastic sediments, including the introduction of heavy detrital minerals (e.g., tourmaline and garnet). These thick tonsteins show multiple horizontal bedding, normal graded bedding, disturbed bedding, and centimeter-scale scour surfaces. The Fire Clay tonstein in North America represents from one to five separate volcanic air-fall ash deposits as determined by normal graded bedding and mineralogical analysis. These features indicate several episodes of volcanic-ash deposition and very localized subsequent erosion and bioturbation. Electron microprobe data from glass inclusions in volcanic quartz in Euramerican tonsteins indicate a rhyolitic origin for these tonsteins and reveal chemical "fingerprints" valuable for intra- and inter-basinal correlations. However, the tectonic framework for European and North American tonsteins was quite different. In Europe, volcanic-ash beds were associated with Variscan collisional tectonics, whereas in North America, volcanic ash was associated with Ouachita tectonic activity, explosive volcanism from the Yucatan block, collision between the South American and North American plates, and the formation of Pangea. ?? 1994.
Leaching behaviour of coal-ash: a case study.
Hajarnavis, M R; Bhide, A D
2003-10-01
Leaching of trace elements from fly ash dumps to subsoil layer due to the rain water results in contamination of ground water. The ground water pollution due to fly ash deposition on land so occurring was assessed by simulating the disposal site conditions using two lysimeter with two different soils. Leachate was collected and analysed daily to help understand the phenomenon of leaching of fly-ash constituents in the environment. The trace metals and physico-chemical parameters of fly ash and soil used were measured before and after the experiment. Results of analysis of soil and fly ash samples were then compared with the results of lysimeter-I and lysimeter-II. The study reveals that metals respond differently at dumping site while reacting with soil and water.
Volcanic ash melting under conditions relevant to ash turbine interactions.
Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B
2016-03-02
The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.
NASA Astrophysics Data System (ADS)
Gledhill, Andrew
Thermal barrier coatings (TBCs) are ceramic coatings used on component in the hottest sections of gas turbine engines, used for power generation and aviation. These coatings insulate the underlying metal components and allow for much higher engine operating temperatures, improving the engine efficiency. These increase temperatures engender a new set of materials problems for TBCs. Operating temperatures in engines are now high enough for silicate impurities, either present in the fuel or ingested into the engines, to melt and adhere to the surface of the TBCs. The effects of four such impurities, two coal fly ashes, a petroleum coke-fly ash blend, and volcanic ash from the Eyjafjallajokull volcano were tested with conventional yttria-stabilized zirconia (YSZ) coatings, and found to penetrate through the entire thickness of the coating. This penetration reduces the strain tolerance of the coatings, and can result in premature failure. Testing on a newly built thermal gradient burner rig with simultaneous injection of ash impurities has shown a reduction of life up to 99.6% in these coatings when ash is present. Coatings of an alternative ceramic, gadolinium zirconate (Gd2Zr 2O7), were found to form a dense reaction layer with each of these impurities, preventing further penetration of the molten ash. This dense layer also reduces the strain tolerance, but these coatings were found to have a significantly higher life than the YSZ coatings. Testing with a small amount of ash baked onto the samples showed thirteen times the life of YSZ coatings. When the ash is continuously sprayed onto the hot sample, the life of the Gd2Zr2O7 coatings was nearly twice that of the YSZ. Finally, a delamination model was employed to explain the degradation of both types of coatings. This elastic model that takes into account the degree of penetration, differential cooling in thermal gradient testing, and thermal expansion mismatch with the underlying substrate, predicted the failure of YSZ coatings with the observed degree of penetration. The model shows that deposition optimization can be employed to further enhance the life of Gd 2Zr2O7coatings.
NASA Astrophysics Data System (ADS)
Oishi, Masayuki; Nishiki, Kuniaki; Geshi, Nobuo; Furukawa, Ryuta; Ishizuka, Yoshihiro; Oikawa, Teruki; Yamamoto, Takahiro; Nanayama, Futoshi; Tanaka, Akiko; Hirota, Akinari; Miwa, Takahiro; Miyabuchi, Yasuo
2018-04-01
We estimate the total mass of ash fall deposits for individual eruptions of Sakurajima Volcano, southwest Japan based on distribution maps of the tephra fallout. Five ash-sampling campaigns were performed between 2011 and 2015, during which time Sakurajima continued to emit ash from frequent Vulcanian explosions. During each survey, between 29 and 53 ash samplers were installed in a zone 2.2-43 km downwind of the source crater. Total masses of erupted tephra were estimated using several empirical methods based on the relationship between the area surrounded by a given isopleth and the thickness of ash fall within each isopleth. We obtained 70-40,520 t (4.7 × 10-8-2.7 × 10-5-km3 DRE) as the minimum estimated mass of erupted materials for each eruption period. The minimum erupted mass of tephra produced during the recorded events was calculated as being 890-5140 t (5.9 × 10-7-3.6 × 10-6-km3 DRE). This calculation was based on the total mass of tephra collected during any one eruptive period and the number of eruptions during that period. These values may thus also include the contribution of continuous weak ash emissions before and after prominent eruptions. We analyzed the meteorological effects on ash fall distribution patterns and concluded that the width of distribution area of an ash fall is strongly controlled by the near-ground wind speed. The direction of the isopleth axis for larger masses is affected by the local wind direction at ground level. Furthermore, the wind direction influences the direction of the isopleth axes more at higher altitude. While a second maximum of ash fall can appear, the influence of rain might only affect the finer particles in distal areas.
Odigie, Kingsley O; Flegal, A Russell
2014-01-01
The amounts of labile trace metals: [Co] (3 to 11 µg g-1), [Cu] (15 to 69 µg g-1), [Ni] (6 to 15 µg g-1), [Pb] (7 to 42 µg g-1), and [Zn] (65 to 500 µg g-1) in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlations between the concentrations of these trace metals, normalized to Fe, in ash from the fire suggest that Co, Cu, and Ni in most of those samples were predominantly from natural sources, whereas Pb and Zn were enriched in some ash samples. The predominantly anthropogenic source of excess Pb in the ash was further demonstrated by its isotopic ratios (208Pb/207Pb: 206Pb/207Pb) that fell between those of natural Pb and leaded gasoline sold in California during the previous century. These analyses substantiate current human and environmental health concerns with the pyrogenic remobilization of toxic metals, which are compounded by projections of increases in the intensity and frequency of wildfires associated with climate change.
Effects of digestion, chemical separation, and deposition on Po-210 quantitative analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiner, Brienne N.; Morley, Shannon M.; Beacham, Tere A.
Polonium-210 is a radioactive isotope often used to study sedimentation processes, food chains, aerosol behavior, and atmospheric circulations related to environmental sciences. Materials for the analysis of Po-210 range from tobacco leaves or cotton fibers, to soils and sediments. The purpose of this work was to determine polonium losses from a variety of sample types (soil, cotton fiber, and air filter) due to digestion technique, chemical separation, and deposition method for alpha energy analysis. Results demonstrated that yields from a perchloric acid wet-ash were similar to that from a microwave digestion. Both were greater than the dry-ash procedure. The poloniummore » yield from the perchloric acid wet ash was 87 ± 5%, the microwave digestion had a yield of 100 ± 7%, and the dry ash had a yield of 38 ± 5%. The chemical separation of polonium by an anion exchange resin was used only on the soil samples due to the complex nature of this sample. The yield of Po-209 tracer after chemical separation and deposition for alpha analysis was 83 ± 7% for the soil samples. Spontaneous deposition yields for the cotton and air filters were 87 ± 4% and 92 ± 6%, respectively. Based on the overall process yields for each sample type the amount of Po-210 was quantified using alpha energy analysis. The soil contained 0.18 ± 0.08 Bq/g, the cotton swipe contained 0.7 mBq/g, and the air filter contained 0.04 ± 0.02 mBq/g. High and robust yields of polonium are possible using a suitable digestion, separation, and deposition method.« less
Large volcanic eruptions and the PETM: Geochemistry from the Fur Formation, Denmark
NASA Astrophysics Data System (ADS)
Jones, Morgan; Svensen, Henrik; Tegner, Christian; Planke, Sverre; Willumsen, Pi
2015-04-01
The opening of the North Atlantic Ocean during the early Cenozoic was accompanied by substantial volcanism that resulted in the deposition of numerous ash layers over much of northern Europe. This volcanism was contemporaneous with the extreme greenhouse climate of the Palaeocene-Eocene Thermal Maximum (PETM), and is therefore of particular interest for volcanism-climate interactions. The island of Fur, northern Denmark, contains abundant outcrops of volcanic ash layers deposited in a shallow marine environment. Over 179 distinct ash horizons (those greater than ~1 cm are numbered #-39 to #+140) are found within the ~60 m thick Fur Formation. The ash layers are predominantly black and composed of volcanic glass particles ranging from silt to sand in size. Each bed is normally graded and lacks any evidence of significant reworking. There were no volcanoes in the vicinity of Fur during this time, and the outcrops are >700 km from the break-up axis, indicating that at least some of the ash layers were formed during very large eruptions and transported a long way from the source volcanoes. A few thick grey ash layers (e.g. #-33 and #+19) are believed to have originated from volcanoes in East Greenland. Here we present geochemical data from two key sections within the Fur Formation, a beach section at Stolleklint where ashes #-34 to #-31 are exposed, and a quarry section at Jenshøj that covers ashes #+17 to #+35. The #-33 and #+19 ashes are both prominent marker horizons around 15-20 cm thick. The Stolleklint section is clay rich while the quarry section is dominated by diatomite. At Stolleklint, bulk rock total organic carbon (TOC) δ13C values throughout a 1.5 m section are relatively steady at -30.7 to -31.7 o typical of the carbon isotope excursion values of the PETM at Fur. Just above ash layer #-33, δ13C = -27.9 o characteristic of post-PETM values. The bulk rock TOC is high, 1.5 to 4 wt. %. The post-PETM quarry section is much poorer in organic material (0-0.5 wt. % TOC). Values of δ13C are more varied than at Stolleklint, scatter around -28.0 o in the lower 0.5 m. A small negative δ13C excursion occurs just above the thick #+19 ash layer, followed by a slow recovery to less negative values up section. This suggests a possible causal relation between the ash deposition and the carbon isotope record, as diminished primary productivity is typified by negative δ13C TOC values. These results indicate that North-Atlantic volcanism had significant repercussions and could have played a role in the termination of the PETM.
Two coarse pyroclastic flow deposits, northern Mono-Inyo Craters, CA
NASA Astrophysics Data System (ADS)
Dennen, R. L.; Bursik, M. I.; Stokes, P. J.; Lagamba, M.; Fontanella, N.; Hintz, A. R.; Jayko, A. S.
2010-12-01
The ~1350 A.D., rhyolitic North Mono eruption, Mono-Inyo Craters, CA, included the extrusion and destruction of Panum Dome and associated clastic deposits. Overlying the tephras of the North Mono sequence, the Panum deposits include a block-and-ash flow (BAF) deposit, covering ~3.5 km2. Blocks within the deposit are typically lithic rhyolite and banded gray micro-vesicular glass, showing white, almost powdery marks ranging from circular to linear in shape. These marks are interpreted as friction marks resulting from collisions between clasts. The deposit also contains bread-crusted obsidians with pressed-in clasts as well as reticulite with a bread-crusted surface texture. Near the centerline of the deposit is a ridge-topping train of jigsaw fractured blocks, often with reddish-orange alteration. One house sized jigsaw block sits upstream of a long, thinning pile of reddish orange debris; this “flow shadow” indicates that the block remained relatively stationary while the block and ash flow continued to propagate around it. The bread-crusted reticulite is most common at proximal localities. It is proposed that the dome destruction included a debris avalanche emplacing the train of jigsaw fractured blocks and creating a topographic high, the block-and-ash flow (the farthest reaching deposit from this event) which flowed around the debris avalanche deposits, and a final “lateral expansion” of a magma foam, creating the reticulite seen concentrated at proximal locations. Another coarse pyroclastic flow (here termed the “lower blast deposit”) underlies the North Mono tephra. It is more obsidian rich and finer grained than the Panum BAF. The lower blast deposit may have originated from Pumice Pit vent, which is now capped with an older dome ~0.5 km southeast of Panum. The lower blast deposit extends farther from the Panum vent than does the Panum BAF deposit, and apparently was mistaken for the Panum BAF deposit by previous workers. Hence the run-out distance of the Panum BAF is smaller than previously reported. Thus, there are multiple, coarse pyroclastic flow-like deposits at the northern end of the Mono-Inyo Craters, reflecting multiple phases of dome destruction. The lower blast deposit is proposed to be a blast event predating the Panum eruption, possibly originating from Pumice Pit. The Panum BAF consists of three main facies, formed by three separate, sequential events. A debris avalanche deposited a train of jigsaw clasts along a narrow path, followed by a block and ash flow that spread material over a wider region. Finally, molten rhyolite was exposed by the earlier events, resulting in rapid foam expansion and creation of a bread crusted reticulite-bearing facies.
Chemical and engineering properties of fired bricks containing 50 weight percent of class F fly ash
Chou, I.-Ming; Patel, V.; Laird, C.J.; Ho, K.K.
2001-01-01
The generation of fly ash during coal combustion represents a considerable solid waste disposal problem in the state of Illinois and nationwide. In fact, the majority of the three million tons of fly ash produced from burning Illinois bituminous coals is disposed of in landfills. The purpose of this study was to obtain a preliminary assessment of the technical feasibility of mitigating this solid waste problem by making fired bricks with the large volume of fly ash generated from burning Illinois coals. Test bricks were produced by the extrusion method with increasing amounts (20-50% by weight) of fly ash as a replacement for conventional raw materials. The chemical characteristics and engineering properties of the test bricks produced with and without 50 wt% of fly ash substitutions were analyzed and compared. The properties of the test bricks containing fly ash were at least comparable to, if not better than, those of standard test bricks made without fly ash and met the commercial specifications for fired bricks. The positive results of this study suggest that further study on test bricks with fly ash substitutions of greater than 50wt% is warranted. Successful results could have an important impact in reducing the waste disposal problem related to class F fly ash while providing the brick industry with a new low cost raw material. Copyright ?? 2001 Taylor & Francis.
Dzurisin, D.; Lockwood, J.P.; Casadevall, T.J.; Rubin, M.
1995-01-01
Kilauea volcano's reputation for relatively gentle effusive eruptions belies a violent geologic past, including several large phreatic and phreatomagmatic eruptions that are recorded by Holocene pyroclastic deposits which mantle Kilauea's summit area and the southeast flank of adjacent Mauna Loa volcano. The most widespread of these deposits is the Uwekahuna Ash Member, a basaltic surge and fall deposit emplaced during two or more eruptive episodes separated by a few decades to several centuries. It is infered that the eruptions which produced the Uwekahuna were driven by water interacting with a fluctuating magma column. The volume, extent and character of the Uwekahuna deposits underscore the hazards posed by relatively infrequent but potentially devastating explosive eruptions at Kilauea, as well as at other basaltic volcanoes. -from Authors
Leon S. Dochinger; Keith F. Jensen; Keith F. Jensen
1990-01-01
Seedlings represent an important linkage for assessing the effect of air pollution on forests. This study examines the foliar responses of white ash seedlings to ozone and acid precipitation as a means of identifying atmospheric deposition effects on forests.
Stabilizing Waste Materials for Landfills
ERIC Educational Resources Information Center
Environmental Science and Technology, 1977
1977-01-01
The test procedures used to evaluate the suitability of landfilled materials of varying stability and to determine the leachate from such materials are reviewed. A process for stabilizing a mixture of sulfur dioxide sludge, fly ash, and bottom ash with lime and other additives for deposition in landfills is detailed. (BT)
Approaches for the accurate definition of geological time boundaries
NASA Astrophysics Data System (ADS)
Schaltegger, Urs; Baresel, Björn; Ovtcharova, Maria; Goudemand, Nicolas; Bucher, Hugo
2015-04-01
Which strategies lead to the most precise and accurate date of a given geological boundary? Geological units are usually defined by the occurrence of characteristic taxa and hence boundaries between these geological units correspond to dramatic faunal and/or floral turnovers and they are primarily defined using first or last occurrences of index species, or ideally by the separation interval between two consecutive, characteristic associations of fossil taxa. These boundaries need to be defined in a way that enables their worldwide recognition and correlation across different stratigraphic successions, using tools as different as bio-, magneto-, and chemo-stratigraphy, and astrochronology. Sedimentary sequences can be dated in numerical terms by applying high-precision chemical-abrasion, isotope-dilution, thermal-ionization mass spectrometry (CA-ID-TIMS) U-Pb age determination to zircon (ZrSiO4) in intercalated volcanic ashes. But, though volcanic activity is common in geological history, ashes are not necessarily close to the boundary we would like to date precisely and accurately. In addition, U-Pb zircon data sets may be very complex and difficult to interpret in terms of the age of ash deposition. To overcome these difficulties we use a multi-proxy approach we applied to the precise and accurate dating of the Permo-Triassic and Early-Middle Triassic boundaries in South China. a) Dense sampling of ashes across the critical time interval and a sufficiently large number of analysed zircons per ash sample can guarantee the recognition of all system complexities. Geochronological datasets from U-Pb dating of volcanic zircon may indeed combine effects of i) post-crystallization Pb loss from percolation of hydrothermal fluids (even using chemical abrasion), with ii) age dispersion from prolonged residence of earlier crystallized zircon in the magmatic system. As a result, U-Pb dates of individual zircons are both apparently younger and older than the depositional age of the ash, therefore masking the true age of deposition. Trace element ratios such as Th/U, Yb/Gd, as well as Hf isotope analysis of dated zircon can be used to decipher the temporal evolution of the magmatic system before the eruption and deposition of the studied ashes, and resolve the complex system behaviour of the zircons. b) Changes in the source of the magma may happen between the deposition of two stratigraphically consecutive ash beds. They result in the modification of the trace element signature of zircon, but also of apatite (Ca5 (F, Cl, OH) (PO4)3). Trace element characteristics in apatite (e.g. Mg, Mn, Fe, F, Cl, Ce, and Y) are a reliable tool for distinguishing chemically similar groups of apatite crystals to unravel the geochemical fingerprint of one single ash bed. By establishing this fingerprint, ash beds of geographically separated geologic sections can be correlated even if they have not all been dated by U-Pb techniques. c) The ultimate goal of quantitative stratigraphy is to establish an age model that predicts the age of a synchronous time line with an associated 95% confidence interval for any such line within a stratigraphic sequence. We show how a Bayesian, non-parametric interpolation approach can be applied to very complex data sets and leads to a well-defined age solution, possibly identifying changes in sedimentation rate. The age of a geological time boundary bracketed by dated samples in such an age model can be defined with an associated uncertainty.
Reconstructing the Lethal Part of the 1790 Eruption at Kilauea
NASA Astrophysics Data System (ADS)
Swanson, D.; Weaver, S. J.; Houghton, B. F.
2011-12-01
The most lethal known eruption from a volcano in the United States took place in November 1790 at Kilauea, killing perhaps 400-800 people (estimates range widely) who were crossing the summit on their way to a distant battle site. The eruption culminated ca. 300 years of sporadic explosive activity after the formation of Kilauea Caldera in about 1500. No contemporary account exists of the 1790 activity, but an eruption plume was observed from Kawaihae, 100 km NW of Kilauea, that probably was 10 km or higher. We are attempting to piece together the lethal event from a study of the 1790 and enclosing deposits and by using published accounts, written several decades later, based on interviews with survivors or others with knowledge of the tragedy. Determining what deposits actually formed in November 1790 is crucial. The best tie to that date is a deposit of phreatomagmatic lithic lapilli and ash that occurs SE of the caldera and must have been advected by high-level (>~10 km) westerly winds rather than low-level NE trade winds. It is the only contender for deposits from the high column observed in 1790. Small lapilli from the high column fell onto, and sank deeply into, a 3-5-cm-thick accretionary lapilli layer that was wet and likely no more than a few hours old. The wet ash occurs south of the caldera, where the lithic lapilli fell into it, and is also found west of the caldera in the saddle between Kilauea and Mauna Loa, where the victims were probably walking along a main foot trail still visible today. A lithic pyroclastic surge swept across the saddle, locally scouring away the wet accretionary lapilli layer but generally leaving a deposit <1 to 15 cm thick on the ash and embedding 1-cm lithic lapilli deeply within it. This indicates that the surge also erupted in November 1790, while the underlying ash was still wet. Though scattered ballistic blocks later fell in the area, the surge left the youngest continuous deposit on the west flank of Kilauea. An account written in 1843 by Rev. Sheldon Dibble describes the dead victims as lying on the surface or "sitting upright clasping with dying grasp their wives and children," not buried by ash or battered by falling debris, and "thoroughly scorched" but "in no place deeply burnt." These gruesome details suggest that the surge engulfed the victims, some of whom were clasping one another to keep from being blown away. The surge deposit covers an area of 12-15 sq km on the western flank of Kilauea between the Hawaiian Volcano Observatory (HVO) and the main highway around the island. The fatalities probably took place in this area, now visited daily by 5000 travelers to Hawai`i Volcanoes National Park. Several human footprints, barely discernible through the thin surge deposit, indent the surface of the accretionary lapilli ash near HVO. Do they record someone's last footsteps? We do not yet know when the eruption started or how many units older than the accretionary lapilli ash were also erupted in 1790. But we think we have identified the lethal surge of the eruption, and it is sobering to realize that it overwhelmed the place where this abstract is being written 221 years later.
Geology of the Wadi Ash Shu'bah Quadrangle, Sheet 26 E, Kingdom of Saudi Arabia
Quick, James E.; Doebrich, Jeff L.
1987-01-01
The magnesite deposit near the village of Zarghat is the most significant mineral deposit in the quadrangle. However, the Hulayfah group has the most potential for metallic deposits in the area as it contains numerous gossans and ancient mine workings.
Fossil and active fumaroles in the 1912 eruptive deposits, Valley of ten thousand smokes, Alaska
Keith, T.E.C.
1991-01-01
Fumaroles in the ash-flow sheet emplaced during the 1912 eruption of Novarupta were intensely active throughout the Valley of Ten Thousand Smokes (VTTS) when first studied in 1917. Fumarole temperatures recorded in 1919 were as hot as 645??C. Influx of surface waters into the hot ash-flow sheet provided the fluid flow to sustain the fumaroles but also enhanced cooling so that by the mid-1930's vigorous activity survived only in the vent region. Configuration and distribution of high-temperature fissure fumaroles tens of meters long, that are prevalent in the middle and upper VTTS, were controlled largely by sintering and degree of welding, which in turn controlled fracturing and permeability of the ash-flow tuff. One fracture type developed parallel to the enclosing valley walls during compaction of the ash-flow sheet. Another type extends across the VTTS nearly perpendicular to the flow direction. A third type of randomly oriented fractures developed as cooling contraction cracks during vapor-phase devitrification. In distal parts of the ash-flow sheet where the tuff is nonwelded, prominent fumaroles have irregular funnel-shaped morphologies. Fumarole distribution in the nonwelded part of the ash-flow sheet is concentrated above pre-emplacement river channels. The hottest, longest-lived fumaroles occurred in the upper VTTS near the 1912 vent where the ash-flow sheet is thicker, more indurated, and on average more mafic (richer in dacite and andesite) in contrast to the thinner, nonwelded rhyolitic tuff in the distal part of the sheet. Fumarolic activity was less intense in the distal part of the tuff because of lower emplacement temperatures, more diffuse fumarole conduits in the nonwelded tuff, and the thinness of the ash-flow sheet. Chemical leaching of ash-flow tuff by hot rising fluids took place adjacent to fumarolic conduits in deep parts of the fumaroles. Deposition of incrustation minerals, the components of which were carried upward by fumarolic gases, took place in the upper part of the ejecta, mostly in the fallout layers. The permeability difference between the ash-flow tuff and the overlying coarse dacite fallout was a critical factor in promoting the abrupt gradients in temperature, pressure, and fO2 that resulted in deposition of minerals from the fumarolic gases. The permeability difference between nonwelded ash-flow tuff and overlying fine-grained fall layers in the lower VTTS is less pronounced. The total mass of fumarolically deposited minerals appears large at first glance owing to the conspicuous coloration by Fe minerals; the mass is appreciably less than is apparent, however, because most incrustations are composed largely of ejecta coated or cemented by fine-grained fumarolic minerals. A large mass of unstable incrustation minerals, mainly chlorides and sulfates, reported during the 1917-1919 studies have since been removed by dissolution and weathering. In the vent region, argillic alteration that followed high-temperature degassing is localized along arcuate subsidence fractures in fallback ejecta. At widely scattered residual orifices, fumarolic gases presently are near-neutral steam, and temperatures are as hot as 90??C. ?? 1991.
McGimsey, Robert G.; Richter, Donald H.; DuBois, Gregory D.; Miller, T.P.
1992-01-01
The White River Ash (Lerbekmo and others, 1968), product of two of the most voluminous pyroclastic eruptions in North America in the past 2,000 yr, blankets much of the Yukon Terrtory, Canada, and a small part of adjoining eastern Alaska. Lerbekmo and Campbell (1969) narrowed the source of the ash to an area northeast of the Mt. Bona-Mt. Churchill massif in the St. Elias Mountains of southern Alaska. Based on indirect evidence, Lerbekmo and Campbell (1969) further suggested that the vent was beneath the Klutlan Glacier, adjacent to a mound of coarse pumice, 16 km northeast of Mt. Bona. Recently discovered pumice and ash deposits and a possible vent structure near the summit of Mt. Churchill suggest an alternate source area. The White River Ash is a bilobate plinian fallout deposit covering more than 340,000 km2 and containing an estimated 25-50 km3 of tephra (Bostock, 1952; Berger, 1960; fig. 1). Radiocarbon ages indicate that the northern lobe was deposited about 1,887 yr B.P. and the eastern, and larger, lobe about 1,250 yr B.P. (Lerbekmo and others, 1975). The axes of the two lobes converge near Mt. Bona (16,420 ft (5,005 m)) and Mt. Churchill [15,638 ft (4,766 m)], which together form a prominent massif in the St. Elias Mountains. The Klutlan Glacier, a large valley glacier that flows eastward into Canada, has its principal source on the eastern flank of the massif.
Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleeson, Brian
2014-09-30
Air plasma sprayed (APS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded from the buildup of fly-ash deposits created in the power-generation process. Fly ash from an integrated gasification combined cycle (IGCC) system can result from coal-based syngas. TBCs are also exposed to harsh gas environments containing CO 2, SO 2, and steam. Degradation from the combined effects of fly ash and harsh gas atmospheres has the potentialmore » to severely limit TBC lifetimes. The main objective of this study was to use lab-scale testing to systematically elucidate the interplay between prototypical deposit chemistries (i.e., ash and its constituents, K 2SO 4, and FeS) and environmental oxidants (i.e., O 2, H 2O and CO 2) on the degradation behavior of advanced TBC systems. Several mechanisms of early TBC failure were identified, as were the specific fly-ash constituents responsible for degradation. The reactivity of MCrAlY bondcoats used in TBC systems was also investigated. The specific roles of oxide and sulfate components were assessed, together with the complex interplay between gas composition, deposit chemistry and alloy reactivity. Bondcoat composition design strategies to mitigate corrosion were established, particularly with regard to controlling phase constitution and the amount of reactive elements the bondcoat contains in order to achieve optimal corrosion resistance.« less
Marine Mesocosm Bacterial Colonisation of Volcanic Ash
NASA Astrophysics Data System (ADS)
Witt, V.; Cimarelli, C.; Ayris, P. M.; Kueppers, U.; Erpenbeck, D.; Dingwell, D. B.; Woerheide, G.
2014-12-01
Explosive volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local or regional scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, ash deposition may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, it is currently unknown which bacteria are involved in pioneer colonisation. We hypothesize that physico-chemical properties (i.e., morphology, chemistry, mineralogy) of the ash may dictate bacterial colonisation. We have tested the effect of substrate properties on bacterial diversity and abundance colonising five substrates: i) quartz sand ii) crystalline ash from the Sakurajima volcano (Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size - by incubation in a controlled marine mesocosm (coral reef aquarium) under low light conditions for three months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis Of Similarity supports significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community and carried the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the physico-chemical composition of the substrate. Knowledge on pioneer bacterial colonisation may increase our understanding on the resilience of coral reefs to natural "catastrophes", such as volcanic ash fallout.
Contamination of water supplies by volcanic ashfall: A literature review and simple impact modelling
NASA Astrophysics Data System (ADS)
Stewart, C.; Johnston, D. M.; Leonard, G. S.; Horwell, C. J.; Thordarson, T.; Cronin, S. J.
2006-11-01
Volcanic ash is the most widely-distributed product of explosive volcanic eruptions, and can disrupt vital infrastructure on a large scale. Previous studies of effects of ashfall on natural waters and water supplies have focused mainly on the consequences of increased levels of turbidity (ash suspended in water), acidity and fluoride, with very little attention paid to other contaminants associated with volcanic ash. The aims of this paper are twofold: firstly, to review previous studies of the effects of volcanic ashfall on water supplies and identify information gaps; and secondly, to propose a simple model for predicting effects of ashfall on water supplies using available information on ash composition. We reviewed reported impacts of historic eruptions on water supplies, drawing on case studies from New Zealand, Vanuatu, Argentina, the USA, Costa Rica, Montserrat, Iceland and Guadeloupe. Elevated concentrations of fluoride, iron, sulphate and chloride, as well as turbidity and acidity, have been reported in water supplies. From a public health perspective, the two main issues appear to be: (1) outbreaks of infectious disease caused by the inhibition of disinfection by high levels of suspended ash, and (2) elevated fluoride concentrations. We devised a simple model using volcanic ash leachate composition data to predict effects on receiving waters. Applying this model to the effects of Ruapehu ash, from the 1995/1996 eruptions, suggests that the primary effects of concern are likely to be an increase in acidity (decrease in pH), and increases in concentrations of the metals aluminium, iron and manganese. These metals are not normally considered to pose health risks, and are regulated only by secondary, non-enforceable guidelines. However, exceedences of guideline values for Al, Mn, Fe and pH will cause water to become undrinkable due to a bitter metallic taste and dark colour, and may also cause corrosion, staining and scale deposition problems in water tanks and pipes. Therefore, the main issues following volcanic ashfall of similar composition to Ruapehu ash are likely to be shortages of potable water and damage to distribution systems, rather than risks to public health.
NASA Astrophysics Data System (ADS)
Smith, A. L.; Daly, G.; Killingsworth, N.; Deuerling, K.; Schneider, S.; Fryxell, J. E.
2008-12-01
The island of Dominica, located in the center of the Lesser Antilles island arc has witnessed, probably within the last 100,000 years, three large volume Plinian eruptions. One of these, associated with the Morne Diablotins center, forms the Grande Savane pyroclastic flow fan, that extends off shore as a distinctive submarine feature for a distance of at least 14 km. Stratigraphical studies of road cuts and well-exposed sea cliffs indicate the fan is composed of an older unit composed of reworked deposits at the base followed by at least four sequences, based on the presence of paleosols, of block and ash flow deposits. The upper unit of block and ash flows is overlain, with no evidence of an intervening paleosol, by a sequence of ignimbrites and pumiceous surges (representing the Plinian eruption). There is no evidence of an initial Plinian fall deposit, so the lowest bed in the succession is an ignimbrite with a highly irregular base that cuts into the underlying block and ash flow deposits, the upper parts of which are colored red due to thermal effects. This lowest ignimbrite is welded (minimum porosity of 15%) throughout its thickness (maximum thickness of greater than 21 m), although a few outcrops near the margins show a thin (20-30 cm) non-welded but lithified zone beneath the welded zone. The remainder of the sequence is composed of lithified ignimbrite that can be subdivided into three units separated by pumiceous surge layers. The ignimbrite succession is overlain, with no obvious break, by a thin fall deposit containing accretionary lapilli and gas cavities, followed by three pumiceous surge deposits (lower and upper show planar stratification and the middle surge shows massive bedding); towards the north the upper two surge deposits are separated by thin pumiceous lapilli fall and ash fall deposits. This surge sequence extends laterally outside of the main area of ignimbrite deposition. The pumice clasts from the ignimbrites are andesitic in composition and show essentially no variation up stratigraphy. In contrast, the surges are more variable in composition, ranging from andesite to dacite. Modeling of these data will provide information on the dynamics of this major Plinian eruption including the effects of water/magma interaction.
Volcanic ash melting under conditions relevant to ash turbine interactions
Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.
2016-01-01
The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200–2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824
NASA Astrophysics Data System (ADS)
Cook, Geoffrey W.; Wolff, John A.; Self, Stephen
2016-02-01
The 1.60 Ma caldera-forming eruption of the Otowi Member of the Bandelier Tuff produced Plinian and coignimbrite fall deposits, outflow and intracaldera ignimbrite, all of it deposited on land. We present a detailed approach to estimating and reconstructing the original volume of the eroded, partly buried large ignimbrite and distal ash-fall deposits. Dense rock equivalent (DRE) volume estimates for the eruption are 89 + 33/-10 km3 of outflow ignimbrite and 144 ± 72 km3 of intracaldera ignimbrite. Also, there was at least 65 km3 (DRE) of Plinian fall when extrapolated distally, and 107 + 40/-12 km3 of coignimbrite ash was "lost" from the outflow sheet to form an unknown proportion of the distal ash fall. The minimum total volume is 216 km3 and the maximum is 550 km3; hence, the eruption overlaps the low end of the super-eruption spectrum (VEI ˜8.0). Despite an abundance of geological data for the Otowi Member, the errors attached to these estimates do not allow us to constrain the proportions of intracaldera (IC), outflow (O), and distal ash (A) to better than a factor of three. We advocate caution in applying the IC/O/A = 1:1:1 relation of Mason et al. (2004) to scaling up mapped volumes of imperfectly preserved caldera-forming ignimbrites.
Odigie, Kingsley O.; Flegal, A. Russell
2014-01-01
The amounts of labile trace metals: [Co] (3 to 11 µg g−1), [Cu] (15 to 69 µg g−1), [Ni] (6 to 15 µg g−1), [Pb] (7 to 42 µg g−1), and [Zn] (65 to 500 µg g−1) in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlations between the concentrations of these trace metals, normalized to Fe, in ash from the fire suggest that Co, Cu, and Ni in most of those samples were predominantly from natural sources, whereas Pb and Zn were enriched in some ash samples. The predominantly anthropogenic source of excess Pb in the ash was further demonstrated by its isotopic ratios (208Pb/207Pb: 206Pb/207Pb) that fell between those of natural Pb and leaded gasoline sold in California during the previous century. These analyses substantiate current human and environmental health concerns with the pyrogenic remobilization of toxic metals, which are compounded by projections of increases in the intensity and frequency of wildfires associated with climate change. PMID:25259524
NASA Astrophysics Data System (ADS)
Doronzo, Domenico Maria
2010-05-01
Tephra layers intercalated in sedimentary successions are very interesting since they represent some instants of geodynamic evolution in a sedimentation basin. Furthermore, they can constitute deposits of explosive eruptions whose distal behaviour can be useful for studying the volcanoes activity, especially when pyroclastic deposits in proximal areas are absent. In the Craco area (Matera, Italy), thick ash turbidites intercalated in marine clays deposits have been recently recognized, which interest is related to the considerable cropping out thickness (1 to 5 m), freshness of the material and absence of sedimentary component. Petrography, sedimentology and chemistry of the deposits have been characterized with the aim of defining genesis and deposition of the material. The deposits are essentially made up of ashy pyroclasts, dominated by fresh acidic to intermediate glass, mostly in the form of shards, pumice fragments and groundmass fragments with vitrophyric texture. Rare crystals include Pl, Opx, Cpx, Hbl and Bt. 40Ar/39Ar geochronology on the amphibole dated one level to 2.24 ± 0.06 Ma, indicating the Late Pliocene. The grain size (fine ash) and textural features of the deposits are typical of pyroclastic fall deposits related to explosive eruptions with consequent upward projection of the fragmented material through Plinian columms. The columns turned eastward because of stratospheric winds and the material fell in a marine environment. It deposited on the slope of Pliocene basins in the frontal sector of the Southern Apennine chain. Structural features are the following: fining-upward gradation of the deposits with cross- and convolute laminations at the base and fine-grained massive beds at the top. They suggest that the primary pyroclastic fall deposits were mobilized as volcaniclastic turbidity currents towards a deeper environment. Glass and crystal compositions were investigated by SEM/EDS analysis. Petrographycal and chemical compositions of the volcaniclastic material is typical of a transitional high-K calc-alkaline series (basaltic andesite to rhyolite for the ash). The age and chemical composition constrain the provenance of the volcaniclastic Craco levels from the Southern Tyrrhenian domain, where a volcanic arc was probably active during the Pliocene. The hypothetical eruptive centres have been located at the northern termination of the arc, exactly in the Pontine islands area. Other neighbouring volcanic centres have been located on land in the Volturno plain. The integrated approach used in this work can be applied in the future to other tephra layers of Neogene successions for contributing to geodynamic evolution cadre of the Tyrrhenian sea.
Stratigraphy and Petrology of the Grande Soufriere Hills Volcano, Dominica, Lesser Antilles
NASA Astrophysics Data System (ADS)
Daly, G.; Smith, A. L.; Garcia, R.; Killingsworth, N.
2007-12-01
The Grande Soufriere Hills volcanic center is located on the south east coast of the island of Dominica in the Lesser Antilles. Although the volcano is deeply dissected, a distinct circular crater that opens to the east can be observed. Within the crater is a lava dome and unconsolidated pyroclastic deposits mantle the southeast flanks of the volcano. These pyroclastic deposits are almost entirely matrix-supported block and ash flows and surges suggesting that Pelean-style eruptions have dominated its most recent activity. Within this sequence is a relatively thin (30-50 cm) clast-supported deposit that has been interpreted as a possible blast deposit. Two age dates from these younger deposits suggest that much of this activity occurred between l0,000 and 12,000 years ago. On the southeastern coast at Pointe Mulâtre and extending approximately 4 km north and at a maximum 2 km west, is a megabreccia of large (up to 3 m) flow-banded andesite clasts set in a semi-lithified medium grained ash matrix. At Pointe Mulâtre this megabreccia is overlain by unconsolidated block and ash flow deposits. To the north of the megabreccia, exposures in the sea cliffs reveal a consolidated sequence of well-bedded alternating coarse and fine deposits suggesting deltaic foreset beds; which in turn appears to be overlain by a yellow- colored relatively coarse flow deposit with an irregular upper surface. The uppermost deposits in the sea cliffs are a sequence of unconsolidated block and ash flow deposits and interbedded fluviatile conglomerates equivalent to the younger flow deposits logged inland. Volcanic rocks from the Grande Soufriere Hills are all porphyritic andesites often containing hypabyssal inclusions. Dominant phenocrysts are plagioclase often with inclusion-rich cores and well developed zoning. Mafic phenocrysts include hornblende, augite and hypersthene. Geochemically these andesites range from 58- 63% SiO2 and show trends of decreasing values for Al2O3, FeO, MgO, CaO, TiO2, Sr, V, and Sc and increasing values for Na2O, K2O, Ba, Rb, and Zr with increasing silica. Samples from the megabreccia can be chemically distinguished from the younger rocks of this center. Petrologic models suggest that the younger rocks from the Grand Soufriere Hills can be produced by fractional crystallization of basaltic magma such as those erupted from other centers (such as Morne Anglais to the west). Minor variations within this suite of andesites can be related to upper crustal fractionation of phenocryst phases.
Cadmium contamination of wood ash and fire-treated coniferous humus: Effect on soil respiration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritze, H.; Kapanen, A.; Vanhala, P.
Atmospheric acidic deposition is known to affect soil fertility and in many countries, liming has been used to counteract anthropogenic soil acidification in coniferous forest soils. Other measures used to improve the acid neutralization capacity of forest soils are wood ash application and prescribed burning. In both cases, ash is deposited on the forest floor, resulting in a pH increase in the humus layer. Currently, application of forests with wood ash is under discussion in Finland, since the naturally occurring cadmium of forest trees is concentrated into the wood ash which then contains between 4 and 20 {mu} g{sup {minus}1}more » of dry matter. Microbes are essential for maintaining soil fertility and plant growth because they play a fundamental role in nutrient availability. Soil respiration rate, which is an indicator of the microbially-mediated nutrient turnover rate, is decreased by addition of cadmium to the soil environment. In this paper we report on the effects of cadmium addition on the soil respiration rate of forest humus having received wood ash or fire treatments. The underlying objectives of this study were: (i) to determine the cadmium level which decreases the soil respiration of a Vaccinium site type forest humus to half of its original value (EC{sub 50}), (ii) to estimate how the forest treatments influence the EC{sub 50}, and (iii) to discuss the effect of Cd addition provided by wood ash on the nutrient mineralization rate. 17 refs., 2 figs., 2 tabs.« less
Alkali content of fly ash : measuring and testing strategies for compliance.
DOT National Transportation Integrated Search
2015-04-01
Sodium and potassium are the common alkalis present in fly ash. Excessive amounts of fly ash alkalis can cause efflorescence : problems in concrete products and raise concern about the effectiveness of the fly ash to mitigate alkali-silica reaction (...
NASA Astrophysics Data System (ADS)
Cronin, S. J.; Stewart, C.; Zernack, A. V.; Brenna, M.; Procter, J. N.; Pardo, N.; Christenson, B.; Wilson, T.; Stewart, R. B.; Irwin, M.
2014-10-01
After almost 80 years of quiescence, the upper Te Maari vent on Mt. Tongariro erupted suddenly at 2352 h (NZ time) on 6 August 2012. The short-lived hydrothermal eruption distributed a fine ash of minor volume (~ 5 × 105 m3) over 200 km from source. The threat of further eruptions prompted an investigation of the possible health and agricultural impacts of any future eruptions from this volcano, particularly since the most recent large-scale ash falls in New Zealand in 1995-1996 had generated significant agricultural problems, including livestock deaths. Deposited ash was sampled between 5 and 200 km from the volcano as soon as possible after the eruption. Two sub-lobes of ash were identified from different vent areas and displayed subtly different leaching properties. The first was an initial small lobe directed NNE, likely formed from drifting low-level clouds associated with the initial lateral explosive blast and surges. The main fall lobe, directed eastward, was sourced from a short-lived vertical plume that rose up to c. 8 km. Ash from the initial fall lobe had higher concentrations of F and Al, in single-step leaches as well as in the totals of three, sequential extractions. Further, the initial lobe showed a higher proportion of soluble F and Al extracted in the first leach, compared to totals. A linear relationship between concentrations of Al and F in single leaches from the 6 August eruption was highly significant (Pearson correlation coefficient r = 0.987 for 1:20 leaching ratios and r = 0.971 for 1:100), suggesting the presence of soluble alumino-fluoride complexes (AlFx+ 3 - x). An even more significant 1:1 ratio is displayed for the largest concentration leached ions of Ca and SO4, which correspond to the presence of crystalline gypsum throughout the newly excavated hydrothermal system. Although no fresh magma was erupted in this event, a shallow intrusion prior to the hydrothermal explosion apparently provided significant contents of volcanic gas that was dissolved within the hydrothermal fluids and adhering to ejected particles. This and the ubiquitous presence of gypsum dominated the soluble components of these ash deposits leading to a complex leaching profile. The leaching study carried out here showed that agricultural and human health hazard assessment (particularly of F and S) is not straightforward, particularly because F solubility may be complex and not well characterised by simple leaching studies. In the case of S, which is agriculturally important, saturation effects are apparent using normal leaching protocols and also imply a need for modification of standard methods.
NASA Astrophysics Data System (ADS)
White, James D. L.; Schmincke, Hans-Ulrich
1999-12-01
In 1949, a 5-week-long magmatic and phreatomagmatic eruption took place along the active volcanic ridge of La Palma (Canary Islands). Two vents, Duraznero and Hoyo Negro, produced significant pyroclastic deposits. The eruption began from Duraznero vent, which produced a series of deposits with an upward decrease in accidental fragments and increase in fluidal ash and spatter, together inferred to indicate decreasing phreatomagmatic interaction. Hoyo Negro erupted over a 2-week period, producing a variety of pyroclastic density currents and ballistic blocks and bombs. Hoyo Negro erupted within and modified an older crater having high walls on the northern to southeastern edges. Southwestern to western margins of the crater lay 50 to 100 m lower. Strongly contrasting deposits in the different sectors (N-SE vs. SW-W) were formed as a result of interaction between topography, weak eruptive columns and stratified pyroclastic density currents. Tephra ring deposits are thicker and coarser-grained than upper rim deposits formed along the higher edges of the crater, and beyond the crater margin, valley-confined deposits are thicker than more thinly bedded mantling deposits on higher topography. These differences indicate that the impact zone for the bulk of the collapsing, tephra-laden column lay within the crater and that the high crater walls inhibited escape of pyroclastic density currents to the north and east. The impact zone lay outside the low SW-W rims, however, thus allowing stratified pyroclastic density currents to move freely away from the crater in those directions, depositing thin sections (<30 cm) of well-bedded ash (mantling deposits) on ridges and thicker sections (1-3 m) of structureless ash beds in valleys and small basins. Such segregation of dense pyroclastic currents from more dilute ones at the crater wall is likely to be common for small eruptions from pre-existing craters and is an important factor to be taken into account in volcanic hazards assessments.
NASA Astrophysics Data System (ADS)
Chakrabarty, P.; Basu, A. R.
2017-12-01
We report LA-ICPMS U-Pb ages and Hf isotopes of zircons, petrography, major and trace elements and X-ray diffraction (XRD) analyses of whole rock black shales(marls) from volcanic subsurface as well as surface exposure ash beds of the Eagle Ford and Boquillas Formations in South Texas. Zircons from the middle part of the 300ft long Eagle Ford cores yield ages of 93.2±1.66 Ma, 94.13±1.25 Ma and 93.7±1.9 Ma. These ages are consistent with the Cenomanian-Turonian (C-T) age of deposition in three contiguous cores with spatial separation of 140 miles. An approximate 10Ma duration of deposition of volcanic ash and marl, at a rate of 28ft/Ma for the Eagle Ford is suggested from the 85.76 to 95.5 Ma ages. These ages are from the Eagle Ford ash beds, below the Austin Chalk and above the Buda Limestone and cover the Oceanic Anoxic Event 2 at the C-T boundary. Zircons from 7 ash beds in the surface exposures of the Boquillas Formation near Del Rio, yield ages between 84.63 Ma - 90.91 Ma, implying younger than C-T boundary ages for these samples. The mineralogy, major and trace elements of the ash beds suggest their source from nearby arc-derived calc-alkaline volcanism. The ɛHf(T) of the analyzed ash bed zircons yield values between 0 - +8 averaging at +3.5, clearly indicating a mantle component in the host magmas of the zircons. This initial range of ɛHf(T) is similar to arc-volcanism signatures such as the Quaternary andesitic volcanism in Central Mexico. Petrographic analyses of marls away from the visible tuff layer contain phenocrysts of biotite, alkali feldspar and andesitic rock fragments. The whole rock marl with high concentration of some transition metals (V, Zn, Ni, Pb, Mo) and relatively higher MgO and TiO2 contents indicate contemporaneous arc volcanic activity at the time of marl deposition. XRD of subsurface Eagle Ford bulk marl samples from different depths in 4 cores, show volcanogenic clays, such as montmorillonite, vermiculite, dickite and halloysite 10Å, ranging from 2 to 12% in modal abundance. This observation indicates continuous volcanism throughout the Eagle Ford deposition. This volcanism during the Eagle Ford deposition of volcanic silicic sediments and carbonates was part of the global continental arc flare-ups in the Cretaceous, responsible for greenhouse conditions and subsequent anoxia during marl deposition.
NASA Technical Reports Server (NTRS)
Rosner, D. E.; Chen, B.-K.; Fryburg, G. C.; Kohl, F. J.
1979-01-01
There is increased interest in, and concern about, deposition and corrosion phenomena in combustion systems containing inorganic condensible vapors and particles (salts, ash). To meet the need for a computationally tractable deposition rate theory general enough to embrace multielement/component situations of current and future gas turbine and magnetogasdynamic interest, a multicomponent chemically 'frozen' boundary layer (CFBL) deposition theory is presented and its applicability to the special case of Na2SO4 deposition from seeded laboratory burner combustion products is demonstrated. The coupled effects of Fick (concentration) diffusion and Soret (thermal) diffusion are included, along with explicit corrections for effects of variable properties and free stream turbulence. The present formulation is sufficiently general to include the transport of particles provided they are small enough to be formally treated as heavy molecules. Quantitative criteria developed to delineate the domain of validity of CFBL-rate theory suggest considerable practical promise for the present framework, which is characterized by relatively modest demands for new input information and computer time.
NASA Astrophysics Data System (ADS)
Graciela Ulke, Ana; Torres Brizuela, Marcela M.; Raga, Graciela B.; Baumgardner, Darrel
2016-09-01
The eruption in June 2011 of the Puyehue-Cordón Caulle Volcanic Complex in Chile impacted air traffic around the Southern Hemisphere for several months after the initial ash emissions. The ash deposited in vast areas of the Patagonian Steppe was subjected to the strong wind conditions prevalent during the austral winter and spring experiencing resuspension over various regions of Argentina. In this study we analyze the meteorological conditions that led to the episode of volcanic ash resuspension which impacted the city of Buenos Aires and resulted in the closure of the two main airports in Buenos Aires area (Ezeiza and Aeroparque) on 16 October 2011. A relevant result is that resuspended material (volcanic ash plus dust) imprints a distinguishable feature within the atmospheric thermodynamic vertical profiles. The thermodynamic soundings show the signature of "pulses of drying" in layers associated with the presence of hygroscopic ash in the atmosphere that has already been reported in similar episodes after volcanic eruptions in other parts of the world. This particular footprint can be used to detect the probable existence of volcanic ash layers. This study also illustrates the utility of ceilometers to detect not only cloud base at airports but also volcanic ash plumes at the boundary layer and up to 7 km altitude. Aerosol properties measured in the city during the resuspension episode indicate the presence of enhanced concentrations of aerosol particles in the boundary layer along with spectral signatures in the measurements at the Buenos Aires AERONET site typical of ash plus dust advected towards the city. The mandatory aviation reports from the National Weather Service about airborne and deposited volcanic ash at the airport near the measurement site (Aeroparque) correlate in time with the enhanced concentrations. The presence of the resuspended material was detected by the CALIOP lidar overpassing the region. Since the dynamics of ash resuspension and recirculation are similar to the dynamics of dust storms, we use the HYSPLIT model with the dust storm module to simulate the episode that affected Buenos Aires. The results of the modeling agree qualitatively with satellite lidar measurements.
Clay Improvement with Burned Olive Waste Ash
Mutman, Utkan
2013-01-01
Olive oil is concentrated in the Mediterranean basin countries. Since the olive oil industries are incriminated for a high quantity of pollution, it has become imperative to solve this problem by developing optimized systems for the treatment of olive oil wastes. This study proposes a solution to the problem. Burned olive waste ash is evaluated for using it as clay stabilizer. In a laboratory, bentonite clay is used to improve olive waste ash. Before the laboratory, the olive waste is burned at 550°C in the high temperature oven. The burned olive waste ash was added to bentonite clay with increasing 1% by weight from 1% to 10%. The study consisted of the following tests on samples treated with burned olive waste ash: Atterberg Limits, Standard Proctor Density, and Unconfined Compressive Strength Tests. The test results show promise for this material to be used as stabilizer and to solve many of the problems associated with its accumulation. PMID:23766671
NASA Astrophysics Data System (ADS)
Lindenthal, A.; Langmann, B.; Hort, M.; Hoshyaripour, G.; Paetsch, J.; Lorkowski, I.
2012-04-01
Until recently it was more or less common sense that once volcanic ash enters the ocean it simply deposits into the sediments without any further impact on ocean biochemistry. This view has been notably revised after the eruption of Kasatochi volcano in 2008. During the eruption significant amounts of ash were deposited into oceanic NE Pacific. The NE Pacific is known as a high-nutrient-low-chlorophyll (HNLC) region where algae growth is limited by the bio-available, i.e. soluble iron. These bio-available iron salts residing on the volcanic ash are most likely formed by gas-ash/aerosol interactions inside the volcanic plume. The physico-chemical mechanisms behind the processes contributing to bio-available iron production in volcanic plumes, however, are still poorly constrained. As the eruption occurred in early August, the atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom as was observed by satellite instruments and in-situ measurements. Here we investigate this event with the marine biogeochemical model ECOHAM, which is a regional scale three-dimensional ocean biogeochemistry model, coupled to the hydrodynamic model HAMSON. It has been successfully applied mainly over the NW European continental shelf area where iron limitation does not play a role. For applications of this model to the eruption of Kasatochi volcano, an iron cycle model has been implemented, which considers the influence of iron addition to the euphotic zone on diatoms, flagellates, and carbon dioxide concentrations. This model-approach assumes that all dissolved iron in the first meters of seawater is bio-available for phytoplankton uptake. It describes the limitation of phytoplankton growth rates by iron in addition to the limitation by the macro-nutrients nitrogen, phosphate and silicate as well as by light. The surface ocean iron input associated with the eruption of Kasatochi volcano has been determined by an atmospheric-aerosol model to be on the order of 4.5-6x1011kg (ash volume of 0.23-0.3km3). This amount of volcanic ash is consistent with estimates from 1D eruption column models. ECOHAM model results show that volcanic ash can stimulate algae blooms in surface ocean waters in HNLC regions like the NE Pacific. Soluble iron released from volcanic ash acts as a key micro nutrient for phytoplankton growth, especially for diatoms. Model results have been verified with measurements of station Papa (50°N, 145°W). Here a deposition of bio-available iron of 968 micromol Fe/m2 into the surface ocean between Aug. 8-11 lead to an increase in the primary production of chlorophyll in the upper 10m of the ocean of 3.7mg Chl/m3. Following the ash deposition the CO2 partial pressure at station Papa dropped by about 40microatm, which compares well with the 50microatm drop observed in our model calculations.
Energy and environmental research emphasizing low-rank coal: Task 3.7, Fuel utilization properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zygarlicke, C.J.
Gasification-type entrained ash and deposits were produced in a pressurized test furnace at high temperature. For the subbituminous Black Thunder coal, the effect of fuel-rich conditions was an increase in quartz, calcite, dolomite, and calcium-rich phases in the entrained ash. Lower particle temperatures, as compared to full air conventional combustion, and the oxygen-lean atmosphere may have caused a reduction in the interaction and assimilation of pure quartz and organically bound calcium into calcium aluminosilicate phases. For the Illinois No. 6 entrained fly ash fuel-rich conditions prevented the oxidation of pyrite and pyrrhotite to iron oxide. Lower temperatures within and surroundingmore » char particles during reducing conditions combustion may have prevented the decomposition of pyrrhotite and enhanced the reaction of iron with aluminosilicate phases. The deposits show similar trends, with the Illinois No. 6 deposit grown under pressurized conditions at a lower temperature having Na and (Ca, Mg, Fe, Na, K) aluminosilicates, calcium carbonate, and an iron sulfide, probably pyrrohotite, present. At higher temperature, loss of sulfur occurs with the increased formation of iron aluminosilicate phases. The Illinois No. 6 and Black Thunder coals were tested with kaolin and lime additives under highly reducing conditions to simulate a gasification environment. The deposit collection zone temperature was varied from 750{degree}C to 1OOO{degree}C. Although no clear trends were evident for the interaction of kaolin or lime with the deposits, the deposits did become more porous, with greatly reduced strength shown for both additives.« less
Origin of accretionary lapilli from the Pompeii and Avellino deposits of Vesuvius
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheridan, M.F.; Wohletz, K.H.
1983-01-01
Accretionary lapilli from the Pompeii and Avellino Plinian ash deposits of Vesuvius consist of centimeter-sized spheroids composed of glass, crystal, and lithic fragments of submillimeter size. The typical structure of the lapilli consists of a central massive core surrounded by concentric layers of fine ash with concentrations of larger clasts and vesicles and a thin outer layer of dust. Clasts within the lapilli larger than 125 ..mu..m are extremely rare. The median grain-size of the fine ash is about 50 ..mu..m and the size-distribution is well sorted. Most constituent particles of accretionary lapilli display blocky shapes characteristic of grains producedmore » by phreatomagmatic hydroexplosions. We have used the scanning electron microscope (SEM) in conjunction with energy dispersive spectral analysis (EDS) to investigate the textural and chemical variation along traverses from the core to the rim of lapilli from Vesuvius.« less
NASA Astrophysics Data System (ADS)
Velasco-Tapia, Fernando; Martínez-Paco, Margarita; Iriondo, Alexander; Ocampo-Díaz, Yam Zul Ernesto; Cruz-Gámez, Esther María; Ramos-Ledezma, Andrés; Andaverde, Jorge Alberto; Ostrooumov, Mikhail; Masuch, Dirk
2016-10-01
A detailed petrographic, geochemical, and Usbnd Pb geochronological study of altered volcanic ash layers, collected in eight outcrops of the Late Cretaceous San Felipe Formation (Sierra Madre Oriental, Northeastern Mexico), has been carried out. The main objectives have been: (1) to establish a deposit period, and (2) to propose a reliable provenance-transport-deposit-diagenetic model. These volcano-sedimentary strata represent the altered remains of vitreous-crystalline ash (main grains: quartz + K-feldspar (sanidine) + Na-plagioclase + zircon + biotite; groundmass: glass + calcite + clinochlore + illite) deposited and preserved in a shallow, relatively large in area, open platform environment. Major and trace element geochemistry indicate that parent volcanism was mainly rhyodacitic to rhyolitic in composition. Discrimination diagrams suggest a link to continental arc transitional to extension tectonic setting. Usbnd Pb geochronology in zircon has revealed that the volcanic ash was released from their sources approximately during the range 84.6 ± 0.8 to 73.7 ± 0.3 Ma, being transported to the depocenters. Burial diagenesis process was marked by: (a) a limited recycling, (b) the partial loss of original components (mainly K-feldspar, plagioclase, biotite and glass), and (c) the addition of quartz, calcite, illite and clinochlore. The location of the source area remains uncertain, although the lack of enrichment in Zr/Sc ratio suggests that ashes were subjected to relatively fast and short-distance transport process. El Peñuelo intrusive complex, at 130-170 km west of the depocenters, is the nearest known zone of active magmatism during the Upper Cretaceous. This intermediate to felsic pluton, characterized by a geochemical affinity to post-orogenic tectonic setting, could be linked to the volcanic sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staub, J.R.; Richards, B.K.
1993-07-01
Coals from the No. 5 Block coal beds (Westphalian D) of the central Appalachian basin are noted for their blocky, dull character and their low ash and low sulfur content. The beds are multiple benched, with rock partings separating benches. Individual benches have limited lateral extent and, where thick, are dominated by bright, high-ash coal at the base and dull, low-ash coal in the upper parts. The duller coals contain more exinite-group and inertinite-group macerals than the brighter coals. These coal beds are encased in sandstone units dominated by fining-upward sequences. The overall depositional setting is an alluvial-plain environment withmore » northwest-flowing channels spaced approximately 20 km apart. The channels were flanked by clastic swamps about 7 km wide. Low-ash peat accumulated in areas of the flood plain most distant from the channels. These peat-accumulating swamps were about 8 km across. In a few instances low-frequency flood events introduced fine siliciclastic sediment into the peat swamps, depositing a thin layer of sediment on top of the peat. This sediment layer is thicker where the underlying coal is the thickest. These thick coal areas are topographically lower than surrounding coal areas. This relationship between coal thickness, parting thickness, and topography indicates that these peat swamps were planar at the time of deposition. Individual coal benches contain abundant preserved cellular tissue (telocollinite, semifusinite, and fusinite) at most locations, suggesting that robust vegetation was widespread in the swamps and that the morphology was planar. The high concentrations of exinite-group an inertinite-group macerals in the upper parts of benches resulted from selective decomposition and oxidation of the peat in subaerial and aquatic planar-swamp environments.« less
Panda, Debabrata; Panda, Dibyajyoti; Padhan, Bandana; Biswas, Meghali
2018-05-12
Revegetation with metal tolerant plants for management of fly ash deposits is an important environmental perspective nowadays. Growth performance, photosynthesis, and antioxidant defense of lemongrass (Cymbopogon citratus (D.C.) Stapf.) were evaluated under various combination of fly ash amended with garden soil in order to assess its fly ash tolerance potential. Under low level of fly ash (25%) amended soil, the plant growth parameters such as shoot, root, and total plant biomass as well as metal tolerance index were increased compared to the control plants grown on garden soil, followed by decline under higher concentration of fly ash (50%, 75% and 100%). In addition, leaf photosynthetic rate, stomatal conductance, and photosystem (PS) II activity were not significantly changed under low level of fly ash (25%) amended soil compared to the garden soil but these parameters were significantly decreased further with increase of fly ash concentrations. Furthermore, increase of activities of some antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase over control were noticed in lemongrass under all fly ash treatments. Taken together, the study suggests that lemongrass can be used for phytoremediation of fly ash at 25% amended soil.
Depositional history of the Fire Clay coal bed (Late Duckmantian), Eastern Kentucky, USA
Greb, S.F.; Eble, C.F.; Hower, J.C.
1999-01-01
More than 3800 coal thickness measurements, proximate analyses from 97 localities, and stratigraphic and sedimentological analyses from more than 300 outcrops and cores were used in conjunction with previously reported palynological and petrographic studies to map individual benches of the coal and document bench-scale variability in the Fire Clay (Hazard No. 4) coal bed across a 1860 km2 area of the Eastern Kentucky Coal Field. The bench architecture of the Fire Clay coal bed consists of uncommon leader benches, a persistent but variable lower bench, a widespread, and generally thick upper bench, and local, variable rider benches. Rheotrophic conditions are inferred for the leader benches and lower bench based on sedimentological associations, mixed palynomorph assemblages, locally common cannel coal layers, and generally high ash yields. The lower bench consistently exhibits vertical variability in petrography and palynology that reflects changing trophic conditions as topographic depressions infilled. Infilling also led to unconfined flooding and ultimately the drowning of the lower bench mire. The drowned mire was covered by an air-fall volcanic-ash deposit, which produced the characteristic flint clay parting. The extent and uniform thickness of the parting suggests that the ash layer was deposited in water on a relatively flat surface without a thick canopy or extensive standing vegetation across most of the study area. Ash deposits led to regional ponding and establishment of a second planar mire. Because the topography had become a broadly uniform, nutrient-rich surface, upper-bench peats became widespread with large areas of the mire distant to clastic sources. Vertical sections of thick (> 70 cm), low-ash yield, upper coal bench show a common palynomorph change from arborescent lycopod dominance upward to fern and densospore-producing, small lycopod dominance, inferred as a shift from planar to ombrotrophic mire phases. Domed mires appear to have been surrounded by wide areas of planar mires, where the coal was thinner (< 70 cm), higher in ash yield, and dominated by arborescent lycopods. Rectangular thickness trends suggest that syndepositional faulting influenced peat accumulation, and possibly the position of the domed mire phase. Faulting also influenced post-depositional clastic environments of deposition, resulting in sandstone channels with angular changes in orientation. Channels and lateral facies were locally draped by high-ash-yield rider coal benches, which sometimes merged with the upper coal bench. These arborescent-lycopod dominant rider coal benches were profoundly controlled by palcotopography, much like the leader coal benches. Each of the benches of coal documented here represent distinctly different mires that came together to form the Fire Clay coal bed, rather than a single mire periodically split by clastic influx. This is significant as each bench of the coal has its own characteristics, which contribute to the total coal characteristics. The large data set allows interpretation of both vertical and lateral limits to postulated domed phases in the upper coal bench, and to the delineation of subtle tectonic structures that allow for meaningful thickness projections beyond the limits of present mining.A study was conducted to analyze the depositional history of the Fire Clay coal bed in the eastern Kentucky coal field. The study involved over 3800 coal thickness measurements, proximate analyses from 97 localities, and stratigraphic and sedimentological analyses from more than 300 outcrops and cores in conjunction with previously reported palynological and petrographic studies to map individual benches of the coal and document bench-scale variability.
NASA Astrophysics Data System (ADS)
Umazano, A. Martín; Krause, J. Marcelo; Bellosi, Eduardo S.; Perez, Mariano; Visconti, Graciela; Melchor, Ricardo N.
2017-08-01
The Cretaceous Puesto La Paloma (PLPM) and Cerro Castaño (CCM) members (Cerro Barcino Formation, Chubut Group) are pyroclastic-rich, alluvial successions deposited in the Somuncurá-Cañadón Asfalto Basin during sag and endorheic conditions. The PLPM comprises sheet-like tuffaceous sandstone strata, whereas the overlying CCM includes sheet-to ribbon-channel sandstone bodies intercalated within tuffaceous and fine-grained sediments. In this context, the goals of this contribution were: i) to make a detailed documentation of the contrasting sedimentary palaeonvironments; and ii) to infer the allocyclic controls that governed the sedimentation of both units. The study area is located in the western sector of the basin, where six localities, which were studied. Six facies associations were defined including ash-falls, sheet-floods, shallow lakes, aeolian, fluvial channel-belts, and reworked debris-flows. We defined four stratigraphic intervals for the studied sections, denominated 1 to 4 in chronological order of deposition, which increase their thicknesses toward the Puesto Mesa-Cerro León site. The interval 1 (18-42 m thick) corresponds to the PLPM and includes numerous pedogenized sheet-flood deposits, carbonate-rich lacustrine, aeolian sandy facies, and ash-fall beds. The interval 1 is interpreted as an ephemeral and unconfined alluvial system that interacted with aeolian dunes and dry interdune zones. The interval 2 (20-47 m thick) represents the lower part of the CCM. It shows an alternation of fluvial channel-belt deposits and vegetated floodplain facies with sediments originated from sheet-floods, lakes, and few ash-falls and debris-flows. The mean palaeoflow was toward E-SE, except in the northernmost locality where the drainage was towards SW. Proportion of channel-belt bodies ranges from 10 to 36%, reaching higher values in the northern part of the study area, where they are also thicker. The interval 2 represents a permanent, meandering or locally low-sinuosity, fluvial system, and displays both an increase of lacustrine facies and a decrease of ash-fall deposits. The interval 3 (7.5-27 m thick) corresponds to the middle part of the CCM, and lacks channel-belt bodies. It has the highest participation of sheet-flood and ash-fall deposits. This interval entirely records a pedogenized floodplain setting. In relation to the interval 2, participation of debris-flow deposits remains constant and lacustrine facies subtly increases. The interval 4 (18-148 m thick) represents the upper part of the CCM. It comprises an alternation of channel-belt bodies and pedogenized floodplain facies, the last characterized by sheet-flood, lake, debris-flow, and volcanic ash rain deposits. The mean palaeoflow was toward E-SE, except in the two localities positioned further north where the drainage was towards NE and SSE. Proportion of channel-belt deposits ranges from 6 to 32%. It represents channelized and perennial fluvial systems with meandering and locally low-sinuosity styles. Increase in channel proportion and thicker channel bodies are in the northern part of the study area. Particularly, in Puesto Mesa-Cerro León locality this interval is the thickest and has the highest proportion of thicker channel-belt bodies. We interpret these changes in facies architecture as the response to alternated periods of high (intervals 1 and 3) and low (intervals 2 and 4) primary pyroclastic sediment supply. Moreover, there was a climatic change to wetter conditions (intervals 1 to 2-4); as well as intrabasinal tectonic activity in northern area for intervals 2 and 4 inferred from palaeocurrent data.
Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite super-eruption
NASA Astrophysics Data System (ADS)
Costa, A.; Folch, A.; Macedonio, G.; Giaccio, B.; Isaia, R.; Smith, V. C.
2012-05-01
We apply a novel computational approach to assess, for the first time, volcanic ash dispersal during the Campanian Ignimbrite (Italy) super-eruption providing insights into eruption dynamics and the impact of this gigantic event. The method uses a 3D time-dependent computational ash dispersion model, a set of wind fields, and more than 100 thickness measurements of the CI tephra deposit. Results reveal that the CI eruption dispersed 250-300 km3 of ash over ˜3.7 million km2. The injection of such a large quantity of ash (and volatiles) into the atmosphere would have caused a volcanic winter during the Heinrich Event 4, the coldest and driest climatic episode of the Last Glacial period. Fluorine-bearing leachate from the volcanic ash and acid rain would have further affected food sources and severely impacted Late Middle-Early Upper Paleolithic groups in Southern and Eastern Europe.
pH-dependent leaching of dump coal ash - retrospective environmental analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovic, A.; Djordjevic, D.
2009-07-01
Trace and major elements in coal ash particles from dump of 'Nikola Tesla A' power plant in Obrenovac near Belgrade (Serbia) can cause pollution, due to leaching by atmospheric and surface waters. In order to assess this leaching potential, dump ash samples were subjected to extraction with solutions of decreasing pH values (8.50, 7.00, 5.50, and 4.00), imitating the reactions of the alkaline ash particles with the possible alkaline, neutral, and acidic (e.g., acid rain) waters. The most recently deposited ash represents the greatest environmental threat, while 'aged' ash, because of permanent leaching on the dump, was shown to havemore » already lost this pollution potential. On the basis of the determined leachability, it was possible to perform an estimation of the acidity of the regional rainfalls in the last decades.« less
Treated bottom ash medium and method of arsenic removal from drinking water
Gadgil, Ashok
2009-06-09
A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.
NASA Technical Reports Server (NTRS)
Criswell, C. William
1987-01-01
The eruption of Mount St. Helens on May 18, 1980 can be subdivided into six phases: the paroxysmal phase I, the early Plinian phase II, the early ash flow phase III, the climactic phase IV, the late ash flow phase V, and phase VI, the activity of which consisted of a low-energy ash plume. These phases are correlated with stratigraphic subunits of ash-fall tephra and pyroclastic flow deposits. Sustained vertical discharge of phase II produced evolved dacite with high S/Cl ratios. Ash flow activity of phase III is attributed to decreases in gas content, indicated by reduced S/Cl ratios and increased clast density of the less evolved gray pumice. Climactic events are attributed to vent clearing and exhaustion of the evolved dacite.
Are there Tuffs from Toba Supereruptions in Singapore?
NASA Astrophysics Data System (ADS)
Bergal-Kuvikas, O.; Bouvet de Maisonneuve, C.; Vazquez, J. A.
2016-12-01
Singapore is a dense transportation hub and the most highly populated area of SE Asia. In order to assess volcanic hazards for Singapore, we compiled a database of Quaternary eruptions from neighboring volcanoes and we investigated samples from 20 boreholes collected across 11 reservoirs and several natural outcrops in the NW parts of the city. We identified a deposit of white to slightly yellow clay with a visible thickness of 6-8 meters in the western part of Singapore. This deposit of very fine ash is silicic (SiO2 72-75 wt.%) and calk-alkaline (K2O 3.7-4.5 wt.%). The ash layer is clearly weathered as the LOI is around 5 wt.% and SEM images show the presence of clay minerals almost exclusively. Geochemical mapping shows that quartz crystals are characterized by textures similar to volcanic deposits. N-MORB normalized spiderdiagrams of whole-rocks show minimums in Nb and Ti, enrichments in LREE, and depletions of HREE. This suggests a subduction origin. One possible source for this voluminous weathered ash layer is the Toba caldera, which produced several super eruptions in the Quaternary (the Young Toba Tuff at 0.074 Ma, Middle Toba Tuff at 0.5 Ma, Old Toba Tuff at 0.84 Ma, and Haranggoal Dacite Tuff at 1.2 Ma). Recognizing distal Toba tuffs is problematic because most deposits are underwater. Most of the analyzed samples have geochemical compositions that are statistically similar to the Toba tuffs and characterized by high contents of HREE elements (e.g. Y, Er, Yb) and some REE (e.g. Eu, Ba, La, Th). Preliminary dating shows the presence of Triassic zircons, possibly due to geologic contamination. Additional dating is needed to ascertain the source and age of this ash. Our new geochemical data of likely distal Toba deposits will be an important component for tephrochronological and paleoenvironmental studies in addition to being of importance for hazards assessments in Singapore.
Insights into the Toba Super-Eruption using SEM Analysis of Ash Deposits
NASA Astrophysics Data System (ADS)
Gatti, E.; Achyuthan, H.; Durant, A. J.; Gibbard, P.; Mokhtar, S.; Oppenheimer, C.; Raj, R.; Shridar, A.
2010-12-01
The ~74 ka Youngest Toba Tuff (YTT) super-eruption of Toba volcano, Northern Sumatra, was the largest eruption of the Quaternary (magnitude M= 8.8) and injected massive quantities of volcanic gases and ash into the stratosphere. YTT deposits covered at least 40,000,000 km2 of Southeast Asia and are preserved in river valleys across peninsular India and Malaysia, and in deep-sea tephra layers in the Indian Ocean, Bay of Bengal and South China Sea. Initial studies hypothesized the eruption caused immediate and substantial global cooling during the ~ 1 kyr between Dansgaard-Oeschger events 19 and 20 which devastated ecosystems and hominid populations. A more recent review argues against severe post-YTT climatic deterioration and cannot find clear evidence for considerable impacts on ecosystems or bio-diversity. The determination of the eruptive parameters is crucial in this issue to document the eruption and understand the potential impacts from future super-volcanic eruptions. Volcanic ash deposits can offer dramatic insights into key eruptive parameters, including magnitude, duration and plume height. The composition and shape of volcanic ashes can be used to interpret physical properties of an erupting magma and tephra transport, while textural characteristics such as grain roughness and surface vescicularity can provide insights into degassing history, volatile content and explosive activity of the volcano. We present a stratigraphic and sedimentological analysis of YTT deposits in stratified contexts at three localities in India, at two sites in Peninsular Malaysia, and at several localities around Lake Toba and on Samosir Island, Sumatra. These sites offer excellent constraints on the spatial distribution of YTT deposits which can be used to infer dispersal directions of the cloud, and provide insights into environmental controls on preservation of tephra beds. The research aims at a systematic interpretation of the Toba tephra to understand the volcanic processes and environmental impacts of the largest known Quaternary volcanic eruption.
Water-magma interaction and plume processes in the 2008 Okmok eruption, Alaska
Unema, Joel; Ort, Michael H.; Larsen, Jessica D; Neal, Christina; Schaefer, Janet R.
2016-01-01
Eruptions of similar explosivity can have divergent effects on the surroundings due to differences in the behavior of the tephra in the eruption column and atmosphere. Okmok volcano, located on Umnak Island in the eastern Aleutian Islands, erupted explosively between 12 July and 19 August 2008. The basaltic andesitic eruption ejected ∼0.24 km3dense rock equivalent (DRE) of tephra, primarily directed to the northeast of the vent area. The first 4 h of the eruption produced dominantly coarse-grained tephra, but the following 5 wk of the eruption deposited almost exclusively ash, much of it very fine and deposited as ash pellets and ashy rain and mist. Meteorological storms combined with abundant plume water to efficiently scrub ash from the eruption column, with a rapid decrease in deposit thickness with distance from the vent. Grain-size analysis shows that the modes (although not their relative proportions) are very constant throughout the deposit, implying that the fragmentation mechanisms did not vary much. Grain-shape features consistent with molten fuel-coolant interaction are common. Surface and groundwater drainage into the vents provided the water for phreatomagmatic fragmentation. The available water (water that could reach the vent area during the eruption) was ∼2.8 × 1010 kg, and the erupted magma totaled ∼7 × 1011 kg, which yield an overall water:magma mass ratio of ∼0.04, but much of the water was not interactive. Although magma flux dropped from 1 × 107 kg/s during the initial 4 h to 1.8 × 105 kg/s for the remainder of the eruption, most of the erupted material was ejected during the lower-mass-flux period due to its much greater length, and this tephra was dominantly deposited within 10 km downwind of the vent. This highlights the importance of ash scrubbing in the evaluation of hazards from explosive eruptions.
Stratigraphy of the Grande Savane Ignimbrite Sequence, Dominica, Lesser Antilles
NASA Astrophysics Data System (ADS)
Schneider, S.; Smith, A. L.; Deuerling, K.; Killingsworth, N.; Daly, G.
2007-12-01
The island of Dominica, located in the central part of the Lesser Antilles island arc has eight potentially active volcanoes. One of these, Morne Diablotins, is a composite stratovolcano with several superimposed stratigraphic sequences ranging in age from Pliocene (4-2 Ma) to "Younger" Pleistocene (<1.8 Ma). The most recent major eruptive activity from this volcano was a series of Plinian eruptions that produced ignimbrites that gave dates of >22,000 and >40,000 years B.P. The ignimbrite sequences form four flow fans that reached both the east and west coasts of the island. One of these flow fans, the Grande Savane, on the west coast of the island, also extends off-shore for a distance of at least 14 km as a distinctive submarine fan. Stratigraphical studies of the on- shore deposits that make up this fan indicate an older sequence of block and ash flow deposits, within which occurs a distinctive vulcanian fall deposit. These are overlain, with no evidence of an intervening paleosol, by a sequence of ignimbrites containing welded horizons (ranging in thickness from around 4 m to 16m). The lack of fall deposits beneath the ignimbrites suggest they may have been formed by instantaneous continuous collapse of the eruption column. This whole succession is overlain by a series of planar and dune bedded pumiceous surge deposits with interbedded pumiceous lapilli fall and ash fall deposits, that extend laterally outside of the main area of ignimbrite deposition. Beds within this upper sequence often contain accretionary lapilli and gas cavities suggesting magma-water interaction. The youngest deposits from Morne Diablotins appear to be valley- fill deposits of both ignimbrite and block and ash flow. A comparison of the of the Grande Savane pyroclastic sequence with the Pointe Ronde (west coast) and Londonderry (east coast) pyroclastic flow fans will provide information on the eruptive history of this major Plinian episode.
Cameron, C.C.; Esterle, J.S.; Palmer, C.A.
1989-01-01
Peat has been studied in several geologic settings: (1) glaciated terrain in cold temperate Maine and Minnesota, U.S.A.; (2) an island in the Atlantic Ocean off the coast of Maine, where sea level is rising; (3) the warm temperate U.S. Atlantic and Gulf Coastal Plains, where sea level has changed often; and (4) the tropical coast of Sarawak, Malaysia, and the tropical delta of the Batang Hari River, Sumatra, Indonesia. Most of these deposits are domed (ombrotrophic or partly ombrotrophic) bogs in which peat accumulation continued above the surface of the surrounding soil. However, the bogs of the U.S. Atlantic and Gulf Coastal Plains are comparatively not as domed, and many have almost level surfaces. In some bogs, aquatic or semi-aquatic plant materials accumulated, replaced water in the depressions, and formed a surface on which marsh or swamp vegetation could subsequently live, die, and accumulate. In others, the plant materials accumulated initially on level silt or sand surfaces supporting marshes or swamps. As the peat dome formed, plants growing on it changed from luxuriant ones near the base of the dome, where nutrients were brought into the bog by surface and ground water, to stunted ones at the top of the dome, where the raised bogs are fed by nutrient-poor precipitation. The physical and chemical changes that take place in the sequence of environments from the pond stage of deposit development, through the grassy marsh stage, through the forested swamp stage, and finally through the heath dome stage can be measured in terms of acidity and ash, volatile matter, carbon, hydrogen, nitrogen, sulfur and oxygen contents, as well as in the kind and distribution of trace elements. The organic and inorganic contents of the deposits relate to geomorphology, and geomorphology relates to their settings. As models of coal formation, some domed peat deposits may help in solving problems of distribution and character of ancient coal beds. But clearly not all peat deposits are precursors of coal. Most Holocene peat deposits are subject to destruction by erosion, fire and decomposition through microbial and chemical oxidation before burial. The best environments for coal precursors have biomass accumulation, a continuously rising water table within the mass, and minimum influx of clay and silt until preservation by burial. The most suitable settings for future economic coal deposits are domed bogs that accumulate thick, widespread peat having low ash and low sulfur contents. The ombrotrophic peat deposits of tropical Sarawak and Sumatra are thick and extensive, contain low-ash and low-sulfur peat, and have high heating values. They are considered to be the best tropical coal analogs because of their extent and chances of preservation; the base of the peat is below adjacent river levels, and chemical and structural conditions are favorable for accumulation. ?? 1989.
Surface mechanical behaviour of composite Ni-P-fly ash/zincate coated aluminium alloy
NASA Astrophysics Data System (ADS)
Panagopoulos, C. N.; Georgiou, E. P.
2009-04-01
Ni-P-fly ash coatings were produced on zincate coated 5083 wrought aluminium alloy substrates with the aid of an electroless deposition technique. Structural and chemical characterization of the produced coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-P-fly ash coating was found to consist of an amorphous Ni-P matrix with dispersed fly ash particles. The wear resistance of the Ni-P-fly ash coating on zincate treated aluminium alloy was observed to be higher than that of the bare aluminium alloy, when sliding against a stainless steel counterface. In addition, the adhesion between the Ni-P-fly ash/zincate coating and the aluminium alloy substrate was also studied with a scratch testing apparatus. The adhesion strength of Ni-P-fly ash/zincate coating on the aluminium alloy substrate was observed to be higher in comparison to the Ni-P/zincate coating on the same aluminium alloy.
Trusdell, F.A.; Moore, R.B.; Sako, M.; White, R.A.; Koyanagi, S.K.; Chong, R.; Camacho, J.T.
2005-01-01
The first historical eruption on Anatahan Island occurred on 10 May 2003 from the east crater of the volcano. The eruption was preceded by several hours of seismicity. Two and a half hours before the outbreak, the number of earthquakes surged to more than 100 events per hour. At 0730 UTC, the Washington Volcanic Ash Advisory Center issued an ash advisory. Although the eruption lasted for 3 months, the majority of erupted material was expelled during the first 2 weeks. The opening episode of the eruption resulted in a deposit of juvenile scoria and lithic clasts, the latter derived from geothermally altered colluvial fill from the vent area. The opening episode was followed by crater enlargement and deepening, which produced deposits of coarse, reddish-brown ash containing a mixture of juvenile and lithic clasts. The third episode of the eruption produced coarse ash and lapilli comprised of juvenile scoria and minor amounts of lithics. Plume heights were 4500 to 13,000 m for the initial three phases. The fourth episode, from about May 18 through early August, was characterized by smaller plume heights of 900 to 2400 m, and steam was the dominant component. Minor amounts of coarse ash and accretionary-lapilli ash comprise most of the deposits of the fourth episode, although ballistic blocks and bombs of andesite lava are also locally present. These andesite blocks were emplaced by an explosion on 14 June, which destroyed a small lava dome extruded during the first week of June. Activity waned as the summer progressed, and subsequent ash deposits accumulated in July and early August, by which time the eruption had effectively ended. In September and October, degassing and geothermal activity continued, characterized by small geysers, boiling water, and jetting steam. Noteworthy deviations from this activity were a surge event in late May-early June and the destruction of the lava dome on 14 June. We calculated on-land tephra-fall deposits to have a bulk volume of about 27.5 ?? 106 m3, covering an area of 40.6 km2. We determined the juvenile to lithic content of the deposits and corrected the bulk volume to a juvenile volume of 24.0 ?? 106 m3. We use a volume corrected density of 1.32 g/cm3 to convert the juvenile volume of 24.0 ?? 106 m3 to a magma volume of 13.2 ?? 106 m3. Using the methods of Fierstein and Nathenson (1992) [Fierstein, J., Nathenson, M., 1992. Another look at the calculation of fallout tephra volumes. Bull. Volcanology. 54, 156-167.], we computed the total eruption volume at 45.4 ?? 106 m3. Deformation surveys recorded large changes surrounding the east crater. The modeled volumetric change based on the surveys was 0.82 ?? 106 m3 of magma, which we estimate corresponds to a minimum intrusion of 10 ?? 106 m3 of magma which is in good agreement with our calculated on-land magma volume.
Asian dust deposition rendered volcanic-ash-soils the ability to retain radiocesium in Japan
NASA Astrophysics Data System (ADS)
Nakao, A.; Uno, S.; Tanaka, R.; Yanai, J.; Kosaki, T.; Kubotera, H.
2017-12-01
Although mineral dusts are known to contribute greatly to marine and terrestrial biogeochemical cycles, their role in increasing the retention of radio-Cs in soil is less clear. Fine-mica, which is one of the main component of Asian dust, has a specific adsorption site for radio-Cs. Therefore, historical deposition of Asian dust may have rendered soils in Japan capable of retaining radio-Cs. This effect may be particularly important for volcanic-ash derived soils since they originally contain only small amounts of fine-mica. To test this hypothesis, we investigated 47 soils in volcanic ash-fall layers at four sites (Site 1, 2, 3, 4) with a different distance from volcanic crater of Mt. Aso, Japan, which is 10, 14, 16, and 32 km, respectively. Soils were collected from surface to the volcanic layer with 7.3 ka in Site 1 and 2, whereas from surface to the layer with 30 ka in Site 3 and 4. Ages of key layers were confirmed by tephrochronology and 14C dating method. Oxygen isotopic ratio (d18O) value of fine-quartz was used as a fingerprint of Asian dust in each volcanic layer. Average d18O value for fine-quartz from Site 3 and 4 was 16.0 ± 0.4‰, which was homogeneous and very close to those of fine-quartz in Gobi Desert, while clearly different from those of SiO2 in volcanic rocks. Fine-quartz and fine-mica contents were larger with increased distance from the volcanic crater and showed a linear relationship. Cumulative amount of fine-mica in the layers deposited during the last glacial period (i.e. 10 ka to 30 ka) was about five times larger than those deposited during the postglacial period (i.e. < 10 ka). These results clearly indicated that fine-mica in the volcanic ash-fall layers are mostly derived from Asian dust. Since radio-Cs adsorption experiment revealed that the ability to retain radio-Cs increased linearly as soils contained larger amount of fine-mica, we concluded that the inclusion rate of Asian dust to volcanic ash determine the ability to retain radio-Cs in volcanic-ash soils in Japan and probably any other soil influenced by these aeolian materials.
Petrography and geochemistry of the San Miguel lignite, Jackson Group (Eocene), south Texas
Warwick, Peter D.; Crowley, Sharon S.; Ruppert, Leslie F.; Pontolillo, James
1996-01-01
The San Miguel lignite deposit (late Eocene, lower Jackson Group) of south Texas consists of four or more thin (generally < 1 m thick) lignite benches that are separated by claystone and mudstone partings. The partings are composed of altered volcanic air-fall ash that has been reworked by tidal or channel processes associated with a back-barrier depositional environment. The purpose of this study is to examine the relationship between the ash yield and the petrographic and geochemical characteristics of the San Miguel lignite as mined. Particular attention is given to 12 of the environmentally sensitive trace elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) that have been identified as possible hazardous air pollutants (HAPs) by the United States Clean Air Act Amendments of 1990. A total of 29 rock and lignite samples were collected and characterized by geochemical and petrographic methods. The major conclusions of the study are as follows: (1) The distribution of Mn is inversely related to the ash yield of the lignite samples. This indicates an organic affinity, or an association with finely disseminated minerals in the lignite that contain this element. (2) On a whole-coal basis, the concentration of the HAPs' element Pb is positively related to ash yield in lignite samples. This indicates an inorganic affinity for Pb. (3) Average whole-coal concentrations of As, Be, Sb, and U in the San Miguel samples are greater than published averages for these elements in other U.S. lignites. (4) The upper and lower lignite benches of the San Miguel deposit are both ash- and algal-rich, indicating that these intervals were probably deposited in wetter conditions than those in which the middle intervals formed. (5) The dominance of the eugelinite maceral subgroup over the huminite subgroup indicates that the San Miguel lignites were subjected to peat-forming conditions (either biogenic or chemical) that enabled degradation of wood cellular material into matrix gels, or that the plants that formed these lignite benches were less woody and more prone to formation of matrix gels. (6) An inertinite-rich layer (top of the B bed) might have formed from widespread oxidation of the San Miguel peat as a result of a volcanic ash fall which was subsequently reworked.
NASA Astrophysics Data System (ADS)
Senturk, Bilge S.; Garces, Hector F.; Ortiz, Angel L.; Dwivedi, Gopal; Sampath, Sanjay; Padture, Nitin P.
2014-04-01
The higher operating temperatures in gas-turbine engines made possible by thermal barrier coatings (TBCs) are engendering a new problem: environmentally ingested airborne silicate particles (sand, ash) melt on the hot TBC surfaces and form calcium-magnesium-alumino-silicate (CMAS) glass deposits. The molten CMAS glass degrades the TBCs, leading to their premature failure. Here, we demonstrate the use of a commercially manufactured feedstock powder, in conjunction with air plasma spray process, to deposit CMAS-resistant yttria-stabilized zirconia-based TBCs containing Al3+ and Ti4+ in solid solution. Results from the characterization of these new TBCs and CMAS/TBCs interaction experiments are presented. The CMAS mitigation mechanisms in these new TBCs involve the crystallization of the anorthite phase. Raman microscopy is used to generate large area maps of the anorthite phase in the CMAS-interacted TBCs demonstrating the potential usefulness of this method for studying CMAS/TBCs interactions. The ubiquity of airborne sand/ash particles and the ever-increasing demand for higher operating temperatures in future high efficiency gas-turbine engines will necessitate CMAS resistance in all hot-section components of those engines. In this context, the versatility, ease of processing, and low cost offered by the process demonstrated here could benefit the development of these new CMAS-resistant TBCs.
Volcanic and atmospheric controls on ash iron solubility: A review
NASA Astrophysics Data System (ADS)
Ayris, Paul; Delmelle, Pierre
2012-01-01
The ash material produced by volcanic eruptions carries important information about the underground magma eruptive conditions and subsequent modifications in the volcanic plume and during atmospheric transport. Volcanic ash is also studied because of its impacts on the environment and human health. In particular, there is a growing interest from a multidisciplinary scientific community to understand the role that ash deposition over open ocean regions may play as a source of bioavailable Fe for phytoplankton production. Similar to aeolian mineral dust, the processes that affect the mineralogy and speciation of Fe in ash may promote solubilisation of Fe in ash, and thus may increase the amount of volcanic Fe supplied to ocean surface waters. Our knowledge of these controls is still very limited, a situation which has hindered quantitative interpretation of experimental Fe release measurements. In this review, we identify the key volcanic and atmospheric controls that are likely to modulate ash Fe solubility. We also briefly discuss existing data on Fe release from ash and make some recommendations for future studies in this area.
The Role of Authigenic Volcanic Ash in Marine Sediment
NASA Astrophysics Data System (ADS)
Scudder, R.; McKinley, C. C.; Thomas, D. J.; Murray, R. W.
2016-12-01
Marine sediments are a fundamental archive of the history of weathering and erosion, biological productivity, volcanic activity, patterns of deep-water formation and circulation, and a multitude of other earth, ocean, and atmosphere processes. In particular, the record and consequences of volcanic eruptions have long fascinated humanity. Volcanic ash layers are often visually stunning, and can have thicknesses of 10s of cm or more. While the ash layer records are of great importance by themselves, we are missing a key piece of information-that of the very fined grained size fractions. Dispersed ash is the very fine grained-component that has either been mixed into the bulk sediment by bioturbation, or is deposited from subaqueous eruptions, erosion of terrestrial deposits, general input during time periods of elevated global volcanism, or other mechanisms, plays an important role in the marine sediment. The presence of dispersed ash in the marine record has previously been relatively over-looked as it is difficult to identify petrographically due to its commonly extremely fine grain size and/or alteration to authigenic clay. The dispersed ash, either altered or unaltered, is extremely difficult to differentiate from detrital/terrigenous/authigenic clay, as they are all "aluminosilicates". Here we apply a combined geochemical, isotopic, and statistical technique that enables us to resolve volcanic from detrital terrigenous inputs at DSDP/ODP/IODP sites from both the Brazil Margin and the Northwest Pacific Oceans. Incorporating the combined geochemical/statistical techniques with radiogenic isotope records allows us to address paleoceanographic questions in addition to studies of the effect of sediment fluxes on carbon cycling, the relationship between volcanic ash and biological productivity of the open ocean and nutrient availability for subseafloor microbial life.
McGimsey, Robert G.; Neal, Christina A.; Riley, Colleen M.
2001-01-01
The Crater Peak flank vent of Mount Spurr volcano erupted June 27, August 18, and September 16-17, 1992. The three eruptions were similar in intensity (vulcanian to subplinian eruption columns reaching up to 14 km Above Sea Level) and duration (3.5 to 4.0 hours) and produced tephra-fall deposits (12, 14, 15 x 106 m3 Dense Rock Equivalent [DRE]) discernible up to 1,000 km downwind. The June 27 ash cloud traveled north over the rugged, ice- and snow-covered Alaska Range. The August 18 ash cloud was carried southeastward over Anchorage, across Prince William Sound, and down the southeastern shoreline of the Gulf of Alaska. The September 16-17 ash plume was directed eastward over the Talkeetna and Wrangell mountains and into the Yukon Territory of Canada. Over 50 mass-per-unit-area (MPUA) samples were collected for each of the latter two fall deposits at distances ranging from about 2 km to 370 km downwind from the volcano. Only 10 (mostly proximal) samples were collected for the June fall deposit due to inaccessible terrain and funding constraints. MPUA data were plotted and contoured (isomass lines) to graphically display the distribution of each fall deposit. For the August and September eruptions, fallout was concentrated along a narrow (30 to 50 km wide) belt. The fallout was most concentrated (100,000 to greater than 250,000 g/m2) within about 80 km of the volcano. Secondary maxima occur at 200 km (2,620 g/m2) and 300 km (4,659 g/m2), respectively, down axis for the August and September deposits. The maxima contain bimodal grain size distributions (with peaks at 88.4 and 22.1 microns) indicating aggregation within the ash cloud. Combined tephra-volume for the 1992 Mount Spurr eruptions (41 x 106 m3 DRE) is comparable to that (tephra-fall only) of the 1989-90 eruptions of nearby Redoubt volcano (31-49 x 106 m3 DRE).
Extraction of trace metals from fly ash
Blander, M.; Wai, C.M.; Nagy, Z.
1983-08-15
A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.
Extraction of trace metals from fly ash
Blander, Milton; Wai, Chien M.; Nagy, Zoltan
1984-01-01
A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.
Fly ash system technology improves opacity
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2007-06-15
Unit 3 of the Dave Johnston Power Plant east of Glenrock, WY, USA had problems staying at or below the opacity limits set by the state. The unit makes use of a Lodge Cottrell precipitator. When the plant changed to burning Power River Basin coal, ash buildup became a significant issue as the fly ash control system was unable to properly evacuate hoppers on the unit. To overcome the problem, the PLC on the unit was replaced with a software optimization package called SmartAsh for the precipitator fly ash control system, at a cost of $500,000. After the upgrade, theremore » have been no plugged hoppers and the opacity has been reduced from around 20% to 3-5%. 2 figs.« less
Photogrammetric Retrieval of Etna's Plume Height from SEVIRI and MODIS
NASA Astrophysics Data System (ADS)
Zaksek, K.; Ganci, G.; Hort, M. K.
2013-12-01
Even remote volcanoes can impact the modern society due to volcanic ash dispersion in the atmosphere. A lot of research is currently dedicated to minimizing the impact of volcanic ash on air traffic. But the ash transport in the atmosphere and its deposition on land and in the oceans may also significantly influence the climate through modifications of atmospheric CO2. The emphasis of this contribution is the retrieval of volcanic ash plume height. This is important information for air traffic, to predict ash transport and to estimate the mass flux of the ejected material. The best way to monitor volcanic ash cloud top height (ACTH) on the global level is using satellite remote sensing. The most commonly used method for satellite ACTH compares brightness temperature of the cloud with the atmospheric temperature profile. Because of well-known uncertainties of this method we propose photogrammetric methods based on the parallax between data retrieved from geostationary (SEVIRI, HRV band; 1000 m spatial resolution) and polar orbiting satellites (MODIS, band 1; 250 m spatial resolution). The procedure works well if the data from both satellites are retrieved nearly simultaneously butMODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection in the atmosphere we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. ACTH is then estimated by intersection of corresponding lines-of-view from MODIS and interpolated SEVIRI data. The proposed method has already been tested for the case of the Eyjafjallajökull eruption in April 2010. This case study had almost perfect conditions as the plume was vast and stretching over a homogeneous background - ocean. Here we show results of ACTH estimation during lava fountaining activity of Mount Etna in years 2011-2013. This activity resulted in volcanic ash plumes that are much smaller than the plume observed at Eyjafjallajökull eruption. Challenges and problems occurring while applying the photogrammetric method to small and medium sized plumes will be discussed and solutions to those challenges will be shown.
Anthropogenic metal enrichment of snow and soil in north-eastern European Russia.
Walker, T R; Young, S D; Crittenden, P D; Zhang, H
2003-01-01
Trace metal composition of winter snowpack, snow-melt filter residues and top-soil samples were determined along three transects through industrial towns in the Usa basin, North-East Russia: Inta, Usinsk and Vorkuta. Snow was analysed for Ag, Al, As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr and Zn using ICP-MS (Ca and K by F-AAS for Vorkuta only), pH and acidity/alkalinity. Filter residues were analysed for: Al, Ba, Ca, Cd, Cu, K, Mg, Mn, Ni, Pb, Sr and Zn using F-AAS and GF-AAS; top-soil samples were analysed for Ba, Cu, Mg, Mn, Na, Ni, Pb, Sr, Zn using F-AAS. Results indicate elevated concentrations of elements associated with alkaline combustion ash around the coal mining towns of Vorkuta and Inta. There is little evidence of deposition around the gas and oil town of Usinsk. Atmospheric deposition in the vicinity of Vorkuta, and to a lesser extent Inta, added significantly to the soil contaminant loading as a result of ash fallout. Acid deposition was associated with pristine areas whereas alkaline combustion ash near to emission sources more than compensated for the acidity caused by SO2.
Leaching characteristics of fly ash from thermal power plants of Soma and Tuncbilek, Turkey.
Baba, Alper; Kaya, Abidin
2004-02-01
Use of lignite in power generation has led to increasing environmental problems associated not only with gaseous emissions but also with the disposal of ash residues. In particular, use of low quality coal with high ash content results in huge quantities of fly ash to be disposed of. The main problem related to fly ash disposal is the heavy metal content of the residue. In this regard, experimental results of numerous studies indicate that toxic trace metals may leach when fly ash contacts water. In this study, fly ash samples obtained from thermal power plants, namely Soma and Tunçbilek, located at the west part of Turkey, were subjected to toxicity tests such as European Committee for standardization (CEN) and toxicity characteristic leaching (TCLP) procedures of the U.S. Environmental Protection Agency (U.S. EPA). The geochemical composition of the tested ash samples from the power plant show variations depending on the coal burned in the plants. Furthermore, the CEN and TCLP extraction results showed variations such that the ash samples were classified as 'toxic waste' based on TCLP result whereas they were classified as 'non-toxic' wastes based on CEN results, indicating test results are pH dependent.
Bednar, A J; Averett, D E; Seiter, J M; Lafferty, B; Jones, W T; Hayes, C A; Chappell, M A; Clarke, J U; Steevens, J A
2013-09-01
A storage-pond dike failure occurred on December 22, 2008 at the Tennessee Valley Authority Kingston Fossil Plant resulting in the release of over 4million cubic meters (5million cubic yards) of fly ash. Approximately half of the released ash was deposited in the main channel of the Emory River, Tennessee, USA. Remediation efforts of the Emory River focused on hydraulic dredging, as well as mechanical excavation in targeted areas. However, agitation of the submerged fly ash during hydraulic dredging introduces river water into the fly ash material, which could promote dissolution and desorption of metals from the solid fly ash material. Furthermore, aeration of the dredge slurry could alter the redox state of metals in the fly ash material and thereby change their sorption, mobility, and toxicity properties. The research presented here focuses on the concentrations and speciation of metals during the fly ash recovery from the Emory River. Our results indicate that arsenite [As(III)] released from the fly ash material during dredging was slowly oxidized to arsenate [As(V)] in the slurry recovery system with subsequent removal through precipitation or sorption reactions with suspended fly ash material. Concentrations of other dissolved metals, including iron and manganese, also generally decreased in the ash recovery system prior to water discharge back to the river. Published by Elsevier Ltd.
Volcanic Ash Data Assimilation System for Atmospheric Transport Model
NASA Astrophysics Data System (ADS)
Ishii, K.; Shimbori, T.; Sato, E.; Tokumoto, T.; Hayashi, Y.; Hashimoto, A.
2017-12-01
The Japan Meteorological Agency (JMA) has two operations for volcanic ash forecasts, which are Volcanic Ash Fall Forecast (VAFF) and Volcanic Ash Advisory (VAA). In these operations, the forecasts are calculated by atmospheric transport models including the advection process, the turbulent diffusion process, the gravitational fall process and the deposition process (wet/dry). The initial distribution of volcanic ash in the models is the most important but uncertain factor. In operations, the model of Suzuki (1983) with many empirical assumptions is adopted to the initial distribution. This adversely affects the reconstruction of actual eruption plumes.We are developing a volcanic ash data assimilation system using weather radars and meteorological satellite observation, in order to improve the initial distribution of the atmospheric transport models. Our data assimilation system is based on the three-dimensional variational data assimilation method (3D-Var). Analysis variables are ash concentration and size distribution parameters which are mutually independent. The radar observation is expected to provide three-dimensional parameters such as ash concentration and parameters of ash particle size distribution. On the other hand, the satellite observation is anticipated to provide two-dimensional parameters of ash clouds such as mass loading, top height and particle effective radius. In this study, we estimate the thickness of ash clouds using vertical wind shear of JMA numerical weather prediction, and apply for the volcanic ash data assimilation system.
NASA Astrophysics Data System (ADS)
McGimsey, R. G.; Neal, C. A.; Adleman, J. A.; Larsen, J. F.; Ramsey, M.
2003-12-01
Black Peak Caldera is a 4-km-diameter, circular crater located on the Alaska Peninsula midway between Aniakchak and Veniaminof Volcanoes, approximately 45 km south-southwest of the community of Port Heiden and 730 km southwest of Anchorage. The caldera truncates a highly altered volcanic edifice that consists largely of lava domes, minor lava flows, and volcaniclastics. New radiocarbon dating of soils beneath the ash-flow deposit confirm earlier dating and place the age of the caldera-forming event at approximately 4600 14C yrs BP. Climactic fall deposits from this eruption form a prominent, crystal-rich, regional tephra horizon informally referred to as the 'salt and pepper ash.' Coeval pyroclastic flow deposits fill the two major drainages around the caldera to a depth of up to 100 m, and extend at least 10 km from the caldera rim. Deposits consist of a lower, highly pumiceous, crystal-rich dacite flow unit capped by a conspicuously oxidized, lithic-rich unit that is less aerially extensive. We estimate the bulk volume of the eruption to be less than 10-20 km3. Post-caldera eruptions at Black Peak have largely consisted of viscous, crystal-rich, hornblende-bearing dacite lavas forming a coalescing field of steep-sided, blocky domes and at least one coulee that fill much of the caldera. No coarse tephra fall deposits related to these eruptions have been found. Fine-grained, highly altered ash fall deposits, possibly related to dome emplacement, form a thick, monotonous sequence on the caldera rim and immediately overlying the ash flow in exposures near the caldera. This suggests that the dome eruptions closely followed caldera formation. Several domes collapsed over the eastern rim of the caldera to form coarse block and ash avalanche fans that extend ~1.5 km down Red Bluff Creek. Radiocarbon dating of an overlying soil indicates an age of >500 14C yrs BP for these avalanches. There are no reports of eruptive activity at Black Peak in historic time (approximately 1750-present). A USGS report from 1926 noted both carbon dioxide and hydrogen sulfide springs within the caldera. With the exception of a few areas of diffuse bubbling, we were unable to relocate significant sites of degassing. An area of pervasive sulfur deposition against the west inner caldera wall is not thermally active at present. Radiometer measurements of Purple Lake showed rapid fluctuations due to possible overturning. Terraces, dry channels, and lake-clay exposures indicate that at least two of the several small lakes presently inside the caldera once formed a larger body of water.
Wallace, Kristi; Coombs, Michelle L; Schaefer, Janet R.
2013-01-01
Particle size data showing a preponderance of fine ash, even in the most proximal locations, along with the abundance of aggregate lapilli documented in most samples, confirms that particle aggregation played a significant role in the 2009 eruption and induced premature fallout of fine ash.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Keating; W.Statham
2004-02-12
The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the groundmore » surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model.« less
NASA Astrophysics Data System (ADS)
Gusman, M. H.; Sastroredjo, P. N. E.; Prawisudha, P.; Hardianto, T.; Pasek, A. D.
2017-05-01
Less utilized empty fruit bunch (EFB) is seldom used as solid biofuel due to its high alkali content that potentially cause ash deposit called slagging and fouling. This phenomenon could harm biomass-fired power plant equipment. Some pre-treatment of EFB is needed to reduce EFB ash deposit potential. The effect of wet torrefaction pre-treatment in laboratory scale was successfully proven in decreasing slagging and fouling potential while increasing EFB calorific value that could fulfill clean solid fuel criteria. This research focuses on wet torrefaction process that conducted on a pilot scale with the capacity of 250 liters. It was found that wet torrefaction process can improve the product’s calorific value up to 9.41% while reduce its ash content down to 1.01% comparing to the raw EFB. The reduction of ash content also leads to the reduction of slagging and fouling tendency that presents in terms of alkali index. Alkali index is a quantitative method that can be calculated after obtaining metal oxides fraction on solid fuel. Metal oxides could be obtained by using energy dispersive x-ray spectroscopy.
NASA Astrophysics Data System (ADS)
Dai, Shifeng; Nechaev, Victor P.; Chekryzhov, Igor Yu.; Zhao, Lixin; Vysotskiy, Sergei V.; Graham, Ian; Ward, Colin R.; Ignatiev, Alexander V.; Velivetskaya, Tatyana A.; Zhao, Lei; French, David; Hower, James C.
2018-03-01
Clay-altered volcanic ash with highly-elevated concentrations of Nb(Ta), Zr(Hf), rare earth elements (REE), and Ga, is a new type of critical metal deposit with high commercial prospects that has been discovered in Yunnan Province, southwest China. Previous studies showed that the volcanic ashes had been subjected to hydrothermal fluids, the nature of which, however, is not clear. Here we show that the volcanic ashes were originated from alkaline magmatism, followed by a continuous hydrothermal-weathering process. Heated meteoric waters, which were sourced from acidic rains and mixed with CO2 from degassing of the Emeishan plume, have caused partial, but widespread, acidic leaching of Nb, Ta, Zr, Hf, REE, and Ga into ground water and residual enrichment of these elements, along with Al and Ti, in the deeply altered rocks. Subsequent alteration occurring under cooler, neutral or alkaline conditions, caused by water-rock interaction, resulted in precipitation of the leached critical metals in the deposit. Polymetallic mineralization of similar origin may be found in other continental regions subjected to explosive alkaline volcanism associated with deep weathering in humid conditions.
NASA Astrophysics Data System (ADS)
Morgan, K.; Ort, M. H.; Di Muro, A.; Parnell, R. A.; Huff, W. D.
2017-12-01
Piton de la Fournaise (PdF) is an active basaltic volcano on La Réunion island. The Bellecombe Tephra was deposited from at least three unusually explosive eruptions between 3000-5000 ka. The Bellecombe eruptions were interpreted recently to have been due to rapid depressurization of the hydrothermal system when a deep fracture opened after lateral, seaward-directed sliding of the eastern flank, late in a large effusive eruption. This project tests this hypothesis by physically, mineralogically, and chemically characterizing the Bellecombe Tephra to look for evidence of the involvement of the PdF hydrothermal system in the eruptions and understand where the eruptions initiated. The Bellecombe tephra consists of three units separated by incipient soils. Both the Upper and Lower Bellecombe deposits are mostly medium to very fine ash. Lower Bellecombe deposits, from the first two eruptions, are mostly beds of glassy ash containing minor lithic grains and olivine crystals. Hydrothermal minerals, mostly smectite, are present in a few Lower Bellecombe beds. Since these minerals are only present in some beds, the smectite formed before deposition rather than as a product of surficial alteration. The Upper Bellecombe deposits record a third eruption and vary between clast-supported crystal- and lithic-rich lapilli beds and ash beds with abundant ash pellets. The crystals are mostly olivine, with lesser pyroxene and plagioclase and sparse hydrothermal quartz. Gabbro and oceanite clasts are abundant and trachytic pumice rare in these deposits. Hydrothermal minerals are common in most Upper Bellecombe beds. The presence of smectite in some of the Lower Bellecombe beds suggests these deposits came from a system below 200 ºC. Clays in the Upper Bellecombe beds - smectite and mixed layer R0 illite/smectite - imply a system at 40-140 ºC. The hydrothermal system was involved, but might not have been the primary impetus for these eruptions, since hydrothermal minerals are not present in all of the beds, but we find no evidence of high temperatures. The lower Bellecombe vent was near the active summit whereas the Upper Bellecombe vent was from a previously more active area, and this may be reflected in the temperatures of the hydrothermal system. The abundant olivine crystals confirm a relation to a large effusive oceanite eruption.
The 1793 Eruption of San Martin Volcano (Los Tuxtlas, Veracruz, Mexico)
NASA Astrophysics Data System (ADS)
Espindola, J. M.; Zamora-Camacho, A.; Godinez, M. L.; Rodriguez-Elizarraras, S.
2007-12-01
San Martin Tuxtla Volcano is located in the State of Veracruz, Eastern Mexico (18.572N, 95.169W, 1650 masl). Its last eruption, which occurred 1793, was described by D. Jose Moziño, a naturalist sent by the Viceroy-of the then New Spain-to report on the eruption. The activity lasted for several months with distinct events of explosive character, which produced thick ash fall deposits in its vicinity. The explosions were heard, among other places, in the coasts of Tampico some 500km NW from the volcano. The ash fall reached distances up to 200 Km from the crater and covered an area of about 112,000 Km2. Following the description of Moziño and the results of field studies we make a reconstruction of the eruption. We identified the air fall deposit from this eruption and present an isopach map. We present radiocarbon ages of the paleosoils under the ash bed as an indirect evidence of its age. This data together with present day wind velocities, and a diffusion-advection model of the dispersion of ashes allow to estimate in at least 10km the altitude reached by some of the eruptive plumes. An estimation of the minimum volume of ash erupted, based on the reconstructed isopachs, is of about 1.3 x 108 m3. Microphotographs of the ashes suggest that the activity was of phreatomagmatic and strombolian nature. Finally, we address some aspects of the volcanic risk in the area derived from our study.
Properties of Fly Ash Blocks Made from Adobe Mould
NASA Astrophysics Data System (ADS)
Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.
2018-02-01
Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.
Properties of Fly Ash Blocks Made from Adobe Mould
NASA Astrophysics Data System (ADS)
Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.
2018-06-01
Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.
Geology and ore deposits of the McDermitt Caldera, Nevada-Oregon
Rytuba, James J.
1976-01-01
The McDermitt caldera is a Miocene collapse structure along the Nevada-Oregon border. The oval-shaped caldera is bounded by arcuate normal faults on the north and south and by rhyolite ring domes on the west. Precollapse ash-flow tuffs exposed within the south caldera rim consist of three cooling units and are peralkaline in composition. Refractive indexes of nonhydrated glasses from basal vitrophyres of the. units range from 1.493 to 1.503 and are typical of comendites. Post-collapse intracaldera rocks consist of tuffaceous lake sediments, rhyolite flows and domes, and ash-flow tuffs. Within the caldera are the mercury mines of Bretz, Cordero, McDermitt, Opalite, and Ruja and the Moonlight uranium mine. The mercury mines are adjacent to ring fracture faults, and the uranium mine and other uranium occurrences are located within rhyolite ring domes. Fluid inclusions in quartz indicate a deposition temperature of 340?C for the uranium deposit and 200?C for the mercury deposits. The mercury deposits formed at shallow depth by replacement of lakebed sediments and volcanic rocks.
DOT National Transportation Integrated Search
2014-02-01
Anisotropy is an inherent property of soils. The anisotropy could either be induced by applied stress or inherent from particle : eccentricity and preferential deposition. Other than stress and deposition, the anisotropy was also found resulted from ...
Superheater Corrosion In Biomass Boilers: Today's Science and Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, William
2011-12-01
This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, andmore » creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through the measured first melting point of fly ash deposits does not necessarily produce a step increase in corrosion rate. Corrosion rate typically accelerates at temperatures below the first melting temperature and mixed deposits may have a broad melting temperature range. Although the environment at a superheater tube surface is initially that of the ash deposits, this chemistry typically changes as the deposits mature. The corrosion rate is controlled by the environment and temperature at the tube surface, which can only be measured indirectly. Some results are counter-intuitive. Two boiler manufacturers and a consortium have developed models to predict fouling and corrosion in biomass boilers in order to specify tube materials for particular operating conditions. It would be very useful to compare the predictions of these models regarding corrosion rates and recommended alloys in the boiler environments where field tests will be performed in the current program. Manufacturers of biomass boilers have concluded that it is more cost-effective to restrict steam temperatures, to co-fire biofuels with high sulfur fuels and/or to use fuel additives rather than try to increase fuel efficiency by operating with superheater tube temperatures above melting temperature of fly ash deposits. Similar strategies have been developed for coal fired and waste-fired boilers. Additives are primarily used to replace alkali metal chloride deposits with higher melting temperature and less corrosive alkali metal sulfate or alkali aluminum silicate deposits. Design modifications that have been shown to control superheater corrosion include adding a radiant pass (empty chamber) between the furnace and the superheater, installing cool tubes immediately upstream of the superheater to trap high chloride deposits, designing superheater banks for quick replacement, using an external superheater that burns a less corrosive biomass fuel, moving circulating fluidized bed (CFB) superheaters from the convective pass into the hot recirculated fluidizing medium and adding an insulating layer to superheater tubes to raise their surface temperature above the dew point temperature of alkali chlorides. These design changes offer advantages but introduce other challenges. For example, operating with superheater temperatures above the dew point of alkali chlorides could require the use of creep-resistant tube alloys and doesn't eliminate chloride corrosion. Improved test methods that can be applied within this project include automated dimensional metrology to make a statistical analysis of depth of penetration and corrosion product thickness, and simultaneous thermal analysis measurements to quantify the melting of complex ashes and avoid the unreliability of the standard ash fusion test. Other important developments in testing include the installation of individually-temperature-controlled superheater loops for corrosion testing in operating boilers and temperature gradient testing.« less
NASA Astrophysics Data System (ADS)
Giannetti, Bernardino
1998-01-01
This paper describes the 232 ka B.P. MTTT trachyte-trachyandesite pyroclastic succession of Roccamonfina volcano. This small-volume, proximal sequence crops out along Mulino di Sotto, Paratone, and Pisciariello ravines in the southwest sector of the central caldera, and covers a minimum extent of 3.5 km 2 area. It is made up of seven pyroclastic flows and pyroclastic surge units consisting of trachytic ash matrix containing juvenile trachyandesitic scoria and dense lava fragments, pumice clasts of uncertain trachyandesite, and a foreign trachyandesitic lithic facies. Two stratigraphic markers allow correlation of the units. No paleosoils and Plinian fallout have been observed at the base and within the succession. Some lateral grading of scoria and lithic clasts suggests that MTTT derived from three distinct source vents. The sequence consists of a basal ash flow passing laterally to laminated surge deposits (Unit A). This is overlain by a reversely graded scoria and pumice lapilli flow (Unit B) which is in turn overlain by a thinly cross-stratified scoria lapilli surge (Unit C). Unit C is capped by a prominent ash-and-scoria flow (Unit D). A ground layer (Marker MK1) divides Unit D from a massive ignimbrite which grades upcurrent to sand-wave surge deposits (Unit E). Another ground layer (Marker MK2) separates Unit E from Unit F. This unit consists of a basal ignimbrite passing laterally to bedded surge deposits with convolute structures (subunit Fl), and grading upcurrent to a subhorizontally plane-laminated ash cloud (subunit F2) containing near the top a layer of millimetric lithic clasts embedded in fine ash. The succession is closed by the pyroclastic flow Unit G. Surge Unit C can be interpreted in terms of vertical gradients in turbulence, particle concentration, and velocity during flowage, whereas the bedded surge parts present in the massive deposits of Units A and E-F1 can be related to abrupt changes of velocity down the steep slopes of ravines. Reverse grading in Unit B is probably due to grain dispersive pressures. The convolute structures within Fl are related to zones of diagenetic cementation associated with groundwater. Finally, the laminated, fine-grained nature of subunit F2 is interpreted as due to ash clouds elutriated from the basal part of Unit F. Stratigraphic markers MK1-MK2 are ground layer breccias formed by settling of lithic and scoria clasts from overlying units E and F, respectively. Vesiculation and morphologies of glass shards of the MTTT succession suggest that eruptions were essentially driven by magmatic explosions which had an appreciable hydromagmatic component.
Method of arsenic removal from water
Gadgil, Ashok
2010-10-26
A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.
NASA Astrophysics Data System (ADS)
Spanu, Antonio; Weinzierl, Bernadett; Freudenthaler, Volker; Sauer, Daniel; Gasteiger, Josef
2016-04-01
Explosive volcanic eruptions inject large amounts of gas and particles into the atmosphere resulting in strong impacts on anthropic systems and climate. Fine ash particles in suspension, even if at low concentrations, are a serious aviation safety hazard. A key point to predict the dispersion and deposition of volcanic ash is the knowledge of emitted mass and its particle size distribution. Usually the deposit is used to characterize the source but a large uncertainty is present for fine and very fine ash particles which are usually not well preserved. Conversely, satellite observations provide only column-integrated information and are strongly sensitive to cloud conditions above the ash plumes. Consequently, in situ measurements are fundamental to extend our knowledge on ash clouds, their properties, and interactions over the vertical extent of the atmosphere. Different in-situ instruments are available covering different particle size ranges using a variety of measurement techniques. Depending on the measurement technique, artefacts due to instrument setup and ambient conditions can strongly modify the measured number concentration and size distribution of the airborne particles. It is fundamental to correct for those effects to quantify the uncertainty associated with the measurement. Here we evaluate the potential of our optical light-scattering spectrometer CAS-DPOL to detect airborne mineral dust and volcanic ash (in the size range between 0.7μm and 50μm) and to provide a reliable estimation of the mass concentration, investigating the associate uncertainty. The CAS-DPOL instrument sizes particles by detecting the light scattered off the particle into a defined angle. The associated uncertainty depends on the optical instrument design and on unknown particles characteristics such as shape and material. Indirect measurements of mass concentrations are statistically reconstructed using the air flow velocity. Therefore, the detected concentration is strongly sensitive to the sample flow and on the mechanical instrument design. Using a fluid dynamics model coupled with an optical model we analyze the effects of instrument design on the measurement, identify measurement uncertainties and recommend strategies to reduce the uncertainties. The two main results are that the optical design of the CAS-DPOL aerosol spectrometer can lead to an under-counting bias of up to 40% for larger particles and an over-counting bias of 20%-30% for smaller particles. Secondly, depending on how the instrument is mounted on the plane, the sampling can be subject to a significantly larger size selection bias than typically recognized, especially if the mounting leads to irregular sampling conditions. To correct both problems a new correction algorithm is described generalizing the results also to other optical particle counters. Finally, a comparison study is presented showing the effects on mass estimation and radiative forcing for uncorrected and corrected data also stating the resulting uncertainty.
NASA Astrophysics Data System (ADS)
Straub, S. M.; Schindlbeck, J. C.; Jegen, M. D.; Corry-Saavedra, K.; Murayama, M.; Woodhead, J. D.; Kutterolf, S.; Vautravers, M. J.; Wang, K. L.
2016-12-01
While the influences of orbital cycles on the ocean-atmosphere system are well documented, it remains largely unknown whether Earth's interior processes are similarly connected to orbital cycles. Recent studies of cyclic deposition in ash fallout from arc volcanism suggest that global climate changes in the form of variable glacial and water load are inversely related to magma production and/or volcanic eruption rate. However, a rigorous test of this hypotheses requires a temporally precise record of past volcanism which spans multiple glacial cycles at high resolution. The marine ash record of explosive volcanism provides such records readily. Here we undertake a detailed chemical study of discrete and disperse tephra deposits in cores from IODP Holes U1437B and U1436A drilled near the Izu Bonin arc in the northwestern Pacific. These locations combine a high background sedimentation rate (>10 m/Ma) of biogenic carbonate and Asian-derived dust with frequent emplacement of tephra fallout from the nearby Izu Bonin and Japan arcs. δ18O analyses record thirteen climatic cycles in the carbonate mud of the uppermost 120 m of Hole U1437B and eleven cycles in the uppermost 70 m of Hole U1436C. Strikingly, the distribution of 134 primary ash layers in Hole U1437B seems to be synchronous with glacial cycles, with a distinct increase in eruption occurrences at either the transitions of glacial/interglacial or at the early interglacials. This is confirmed by first results of a frequency analysis of the ash-time series that indicate a dominance of a 100 ka cycle. The question, which remains to be answered, is whether deglaciation drives volcanism or volcanism drives deglaciation? We also investigate the distribution of `dispersed ash' in this sequence, which is not visible to the naked eye but is volumetrically significant and thus also critical in testing time-cause relationships between arc volcanism and glacial cycles. Major questions we address are: 1) do we see the same cyclic behavior between dispersed ash and discrete ash layers?, 2) does this cyclicity following orbital cycles and 3) is the distribution of tephra layers controlled by orbital cycles or do the tephras reflect the cyclic deposition of the host sediment?
Leaching kinetics of As, Mo, and Se from acidic coal fly ash samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neupane, Ghanashyam; Donahoe, Rona J.; Bhattacharyya, Siddhartha
Annually, coal-fired electric power plants produce large volumes potentially hazardous coal combustion products (CCPs) including fly ash. Since majority of the coal fly ash and other CCPs deposited in dry land fills or wet lagoons, they pose risk of contamination to local environment and hydrogeology. In this study, we present results of leaching kinetics for As, Mo, and Se from three acidic fly ash samples. This study shows that the leachate concentrations of As, Mo, and Se increase over time. Three kinetics equations, pseudo-second order, Elovich, and power-function, are able to adequately describe the experimental leaching kinetics data. Experimental leachingmore » data and modeling results indicate that the rate limiting leaching of As, Mo, and Se is largely controlled by the dissolution of the fly ash particles. Furthermore, it is important to adopt effective containment/treatment schemes to avoid potential and persistent dispersion of trace elements from ash disposal facilities to surrounding environment for a long time.« less
Leaching kinetics of As, Mo, and Se from acidic coal fly ash samples
Neupane, Ghanashyam; Donahoe, Rona J.; Bhattacharyya, Siddhartha; ...
2017-07-03
Annually, coal-fired electric power plants produce large volumes potentially hazardous coal combustion products (CCPs) including fly ash. Since majority of the coal fly ash and other CCPs deposited in dry land fills or wet lagoons, they pose risk of contamination to local environment and hydrogeology. In this study, we present results of leaching kinetics for As, Mo, and Se from three acidic fly ash samples. This study shows that the leachate concentrations of As, Mo, and Se increase over time. Three kinetics equations, pseudo-second order, Elovich, and power-function, are able to adequately describe the experimental leaching kinetics data. Experimental leachingmore » data and modeling results indicate that the rate limiting leaching of As, Mo, and Se is largely controlled by the dissolution of the fly ash particles. Furthermore, it is important to adopt effective containment/treatment schemes to avoid potential and persistent dispersion of trace elements from ash disposal facilities to surrounding environment for a long time.« less
Rare and Rare-Earth Metals in Coal Processing Waste
NASA Astrophysics Data System (ADS)
Cherkasova, Tatiana; Cherkasova, Elizaveta; Tikhomirova, Anastasia; Bobrovni-kova, Alyona; Goryunova, Irina
2017-11-01
An urgent issue for power plants operating on solid fuels (coal) is the issue of utilization or use of accumulated production waste - ash and slag materials - in the related production. Ash-slag materials are classified as "waste", usually grade 5; tens of millions of tons of them being pro-duced annually in the Kemerovo region, which threatens the ecology of the region. At the same time, ash and slag is a very promising raw material. The use of this material as a base for the final product allows us to signifi-cantly expand the possibilities of using coal. The most widespread is the system of ash and slag involving in construction or as a replacement for sand in road construction, or as an additive to building mixtures. However, there are both industrially valuable and environmentally dangerous ele-ments in ash-slag materials. Ash-slag materials can be considered as inde-pendent ore deposits located on the surface and requiring the costs of their extraction.
Searl, A; Nicholl, A; Baxter, P
2002-01-01
Background and Aims: The Soufriere Hills volcano, Montserrat, has been erupting since July 1995 and volcanic ash has fallen on the island throughout most of the eruption. The ash contains substantial quantities of respirable particles and unusually large amounts (15–20%) of the crystalline silica mineral, cristobalite. The purpose of the surveys described here, undertaken between December 1996 and April 2000, was to determine levels of personal exposure of islanders to volcanic ash and cristobalite in order to inform advice on the associated risks to health and the measures required to reduce exposure. Methods: Surveys of personal exposure to respirable dust and cristobalite were undertaken using cyclone samplers. In addition, direct reading instruments (DUSTTRAK) were used to monitor ambient air concentrations of PM10 at fixed sites and also to provide information about exposures to airborne particles associated with selected activities. Results: Environmental concentrations of airborne ash have been greatest in the areas where the most ash has been deposited and during dry weather. Individual exposure to airborne ash was related to occupation, with the highest exposures among gardeners, cleaners, roadworkers, and police at roadside checkpoints. During 1997 many of these individuals were exposed to concentrations of cristobalite that exceeded the ACGIH recommended occupational exposure limit. Since the population became confined to the north of the island in October 1997, even those in relatively dusty occupations have received exposures to cristobalite well below this limit. Conclusions: Most of the 4500 people who have remained on island since the eruption began have not been exposed to sufficiently high concentrations of airborne dust for long enough to be at risk of developing silicosis. However, more than a dozen individuals continued to experience frequent high occupational exposures to volcanic ash, some of whom may have had sufficient exposure to crystalline silica to be at risk of developing mild silicosis. If volcanic activity were to deposit further ash over the occupied areas of the island during the coming years, the risks of silicosis will become more substantial. PMID:12151608
Searl, A; Nicholl, A; Baxter, P J
2002-08-01
The Soufriere Hills volcano, Montserrat, has been erupting since July 1995 and volcanic ash has fallen on the island throughout most of the eruption. The ash contains substantial quantities of respirable particles and unusually large amounts (15-20%) of the crystalline silica mineral, cristobalite. The purpose of the surveys described here, undertaken between December 1996 and April 2000, was to determine levels of personal exposure of islanders to volcanic ash and cristobalite in order to inform advice on the associated risks to health and the measures required to reduce exposure. Surveys of personal exposure to respirable dust and cristobalite were undertaken using cyclone samplers. In addition, direct reading instruments (DUSTTRAK) were used to monitor ambient air concentrations of PM(10) at fixed sites and also to provide information about exposures to airborne particles associated with selected activities. Environmental concentrations of airborne ash have been greatest in the areas where the most ash has been deposited and during dry weather. Individual exposure to airborne ash was related to occupation, with the highest exposures among gardeners, cleaners, roadworkers, and police at roadside checkpoints. During 1997 many of these individuals were exposed to concentrations of cristobalite that exceeded the ACGIH recommended occupational exposure limit. Since the population became confined to the north of the island in October 1997, even those in relatively dusty occupations have received exposures to cristobalite well below this limit. Most of the 4500 people who have remained on island since the eruption began have not been exposed to sufficiently high concentrations of airborne dust for long enough to be at risk of developing silicosis. However, more than a dozen individuals continued to experience frequent high occupational exposures to volcanic ash, some of whom may have had sufficient exposure to crystalline silica to be at risk of developing mild silicosis. If volcanic activity were to deposit further ash over the occupied areas of the island during the coming years, the risks of silicosis will become more substantial.
Ash production by attrition in volcanic conduits and plumes.
Jones, T J; Russell, J K
2017-07-17
Tephra deposits result from explosive volcanic eruption and serve as indirect probes into fragmentation processes operating in subsurface volcanic conduits. Primary magmatic fragmentation creates a population of pyroclasts through volatile-driven decompression during conduit ascent. In this study, we explore the role that secondary fragmentation, specifically attrition, has in transforming primary pyroclasts upon transport in volcanic conduits and plumes. We utilize total grain size distributions from a suite of natural and experimentally produced tephra to show that attrition is likely to occur in all explosive volcanic eruptions. Our experimental results indicate that fine ash production and surface area generation is fast (<15 min) thereby rapidly raising the fractal dimension of tephra deposits. Furthermore, a new metric, the Entropy of Information, is introduced to quantify the degree of attrition (secondary fragmentation) from grain size data. Attrition elevates fine ash production which, in turn, has consequences for eruption column stability, tephra dispersal, aggregation, volcanic lightening generation, and has concomitant effects on aviation safety and Earth's climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrifvars, B.J.; Backman, R.; Hupa, M.
1996-10-01
The chemistry of a fuel ash is important to consider when ash behavior in combustion or gasification is studied. Four different types of thermal behavior based bed agglomeration and deposit foliation mechanisms have been proposed to be important, (1) partial melting, (2) viscous flow, (3) chemical reaction sintering, and (4) solid state sintering. In this paper we present data from a broader study in which we have quantified the four mechanisms more in detail. The ashes from 10 different types of fuels have been tested for their sintering tendency by a compression strength sintering test. The ashes were also subjectmore » to quantitative wet chemical analyses and combined differential thermal, thermogravimetric (DT/TG) analyses. These thermal behavior predictions were compared with multi-component multi-phase thermodynamic phase equilibrium calculations and further with full scale combustion experience. The results and their relevance to full scale conversion systems are discussed in the paper.« less
NASA Astrophysics Data System (ADS)
Zimmermann, Mark; Ruggerone, Gregory T.; Freymueller, Jeffrey T.; Kinsman, Nicole; Ward, David H.; Hogrefe, Kyle R.
2018-03-01
We quantified the shallowing of the seafloor in five of six bays examined in the Chignik region of the Alaska Peninsula, confirming National Ocean Service observations that 1990s hydrographic surveys were shallower than previous surveys from the 1920s. Castle Bay, Chignik Lagoon, Hook Bay, Kujulik Bay and Mud Bay lost volume as calculated from Mean Lower Low Water (Chart Datum) to the deepest depths and four of these sites lost volume from Mean High Water to the deepest depths. Calculations relative to each datum were made because tidal datum records exhibited an increase in tidal range in this region from the 1920s to the 1990s. Our analysis showed that Mud Bay is quickly disappearing while Chignik Lagoon is being reduced to narrow channels. Anchorage Bay was the only site that increased in depth over time, perhaps due to erosion. Volcanoes dominate the landscape of the Chignik area. They have blanketed the region in deep ash deposits before the time frame of this study, and some have had smaller ash-producing eruptions during the time frame of this study. Remobilization of land-deposited ash and redeposition in marine areas - in some locations facilitated by extensive eelgrass (Zostera marina) beds (covering 54% of Chignik Lagoon and 68% of Mud Bay in 2010) - is the most likely cause of shallowing in the marine environment. Loss of shallow water marine habitat may alter future abundance and distribution of several fish, invertebrate and avian species.
Selenium in pollen gathered by bees foraging on fly ash-grown plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Jong, D.; Morse, R.A.; Gutenmann, W.H.
1977-10-01
Fly ash is the material collected in the stacks of coal burning electric power-generating plants by electrostatic precipitators. About 26 million metric tons of fly ash was estimated to have been produced in 1975 (BRACKETT, 1970). Aside from a small percentage of the material which is used as a base material for roads and in concrete, the bulk of it is deposited in landfills. It was first reported by Gutenmann et al. (1976) that sweet clover, found voluntarily growing on a fly ash landfill site, contained up to 200 ppM of selenium. Fly ashes from 21 states were found tomore » contain the element. Cabbage grown on each of these fly ashes added (7 percent w/w) to soil was shown to absorb selenium in proportion to its concentration in the particular ash (GUTENMANN et al., 1976). The percentage of fly ash in soil was also shown to dictate the extent of selenium absorption by a variety of plants (FURR et al., 1976). In the work reported, pollen collected by honey bees foraging on plants growing on a fly ash landfill was analyzed for selenium and compared with that collected by bees from the same plants growing on soil.« less
Conditions and timescales for welding block-and-ash flow deposits
NASA Astrophysics Data System (ADS)
Heap, M. J.; Kolzenburg, S.; Russell, J. K.; Campbell, M. E.; Welles, J.; Farquharson, J. I.; Ryan, A.
2014-12-01
Welding of pyroclastic deposits to reform a coherent rock mass is a common phenomenon, especially for pumiceous pyroclastic density current deposits (i.e., ignimbrites). However, and despite the pervasive abundance of block-and-ash flow (BAF) deposits in the geological and modern record, instances of strongly welded BAF deposits are few. Here, we present a series of high-temperature (800-900 °C) compaction experiments designed to map the conditions (deposit thickness/stress and temperature/viscosity) and timescales that permit or inhibit the welding of BAF deposits. Our experiments were performed on unconsolidated aggregates (containing an ash and lapilli component) derived from crushed and sieved lava blocks (containing 25% crystals) taken from the well-documented welded BAF deposit at Mount Meager volcano (British Columbia, Canada). The experiments demonstrate that welding efficiency increases with increasing time and temperature. Progressive welding is expressed by increasing axial strain, porosity loss, and bulk density. The rate of change of each of these physical properties reduces as welding progresses. Microstructural analysis of the experimental products shows that the loss of interclast porosity during welding results from the progressive sintering and amalgamation of vitric fragments, and that the pore shape changes from sub-equant pores to stretched lenses sandwiched between vitric and crystal fragments. The coincidence between the microstructure and rock physical properties of the natural and experimental samples highlight that we have successfully reproduced welded BAF in the laboratory. Furthermore, our permeability measurements highlight a hysteresis in the return journey of the "there-and-back-again" volcanic permeability cycle (expressed by an increase in permeability due to vesiculation and fragmentation followed by a decrease due to welding). This hysteresis cannot be described by a single porosity-permeability power law relationship and reflects the change in pore shape and connectivity during welding. Finally, we show that a simple model for welding can accurately forecast the welding timescales of the BAF deposit at Mount Meager (as reconstructed from the collapse of the Lillooet River valley dam) using our experimental data. We use this validation as a platform to provide a universal window for the welding of BAF deposits, also applicable for comparable welded deposits (e.g., welded autobreccias in block-lavas and lava domes), for a broad range of deposit thickness (or stress) and effective viscosity.
Okubo, Chris H.
2012-01-01
Volcanic ash is thought to comprise a large fraction of the Martian equatorial layered deposits and much new insight into the process of faulting and related fluid flow in these deposits can be gained through the study of analogous terrestrial tuffs. This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in fine-grained, poorly indurated volcanic ash by investigating exposures of faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah. The porosity and granularity of the host rock are found to control the style of localized strain that occurs prior to and contemporaneous with faulting. Deformation bands occur in tuff that was porous and granular at the time of deformation, while fractures formed where the tuff lost its porous and granular nature due to silicic alteration. Non-localized deformation of the host rock is also prominent and occurs through compaction of void space, including crushing of pumice clasts. Significant off-fault damage of the host rock, resembling fault pulverization, is recognized adjacent to one analog fault and may reflect the strain rate dependence of the resulting fault zone architecture. These findings provide important new guidelines for future structural analyses and numerical modeling of faulting and subsurface fluid flow through volcanic ash deposits on Mars.
Peat deposits of North Carolina: Bulletin 88
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, R.L.
1987-01-01
Fuel-grade peat is an accumulation of partially decomposed plant material that has less than 25% non-combustible material (ash). In eastern North Carolina peat has formed in the past 10,000 years in swamps or pocosins (coastal swamps), Carolina bays, and river floodplains. Most of the peat is found at the surface with no over-burden and usually ranges in thickness from 1 to 15 ft with an average of 4-1/2 ft. The mean ash content of the fuel-grade peats is about 7.4%, but ash contents of less than 5% are common in most peat deposits. Heating values average 10,100 Btu/lb on amore » moisture-free basis. Fuel-grade peat deposits cover about 677,000 acres (1060 sq mi) in coastal North Carolina with total resources of about 500 million tons of moisture-free peat. Of this total, about 284,000 acres (444 sq mi) with 319 million tons are underlain by peat greater than 4 ft thick. Peat resources are concentrated in the pocosins or coastal swamps of northeastern North Carolina with the Albemarle-Pamlico peninsula having 55% of the resources and the Dismal Swamp, 11%. The remaining coastal swamp deposits are small but significant. Although 96 Carolina bays have peat, only 46 have peat greater than 4 ft thick; and only one has more than 1 million tons of peat. None of the river floodplain peats located were very large, continuous, or of high quality. 75 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, D.; Lewis, R.; Tobiasz, R.
1998-07-01
The composition and properties of ash formed during coal firing have a major impact on boiler performance. Higher ash content in the coal can mean higher costs associated with coal handling, transportation, ash removal and ash disposal along with higher costs due to the increased ash content's deleterious effects on pulverizing, combustion and heat transfer. ABB C-E Services, Inc. has conducted research what might be done to minimize the adverse effects of ash on boiler performance for many years. Recently, ABB C-E Services has studied the effects of firing system modifications on ash composition and properties and the effect thesemore » firing system modifications have on overall furnace performance. The subject of this paper is the impact of the installation of the CFS{trademark} yaw angles were varied and particle samples were collected at the waterwalls for the different yaw angles tested. These ash samples were analyzed for ash composition. The results showed that with a larger CFS{trademark} yaw angle (the air stream directed more towards the boiler walls) the base/acid ratio, iron content and sulfur content of the particle samples collected at the waterwall were reduced. This effect is due to several contributing factors: (1) an oxidizing environment produced by injecting more air toward the walls; and (2) an aerodynamic change which impacts the particle combustion time/temperature history.« less
Warwick, Peter D.; Shakoor, T.; Javed, Shahid; Mashhadi, S.T.A.; Hussain, H.; Anwar, M.; Ghaznavi, M.I.
1990-01-01
Sixty coal and carbonaceous shale samples collected from the Paleocene Patala Formation in the Salt Range coal field, Punjab Province, Pakistan, were analyzed to examine the relationships between coal bed chemical and physical characteristics and depositional environments. Results of proximate and ultimate analyses, reported on an as received basis, indicate that coal beds have an average ash yield of 24.23 percent, average sulfur content of 5.32 percent, average pyritic sulfur content of 4.07 percent, and average calorific value of 8943 Btu (4972 kcal/kg). Thirty five coal samples, analyzed on a whole coal, dry basis for selected trace elements and oxides, have anomalously high average concentrations of Ti, at O.3& percent; Zr, at 382 ppm; and Se, at 11.4 ppm, compared to world wide averages for these elements in coal.Some positive correlation coefficients, significant at a 0.01 level, are those between total sulfur and As, pyritic sulfur and As, total sulfur and sample location, organic sulfur and Se, calorific value (Btu) and sample location, and coal bed thickness and Se. Calorific values -for the samples, calculated on a moist, mineral matter free basis, indicate that the apparent rank of the coal is high volatile C bituminous.Variations observed in the chemical and physical characteristics of the coal beds may be related to depositional environments. Total ash yields and concentrations of Se and organic sulfur increase toward more landward depositional environments and may be related to an increase of fluvial influence on peat deposition. Variations in pyritic sulfur concentrations may be related to post-peat pyrite filled burrows commonly observed in the upper part of the coal bed. The thickest coal beds that have the lowest ash content, and highest calorific values, formed from peats deposited in back barrier, tidal flat environments of the central and western parts of the coal field. The reasons for correlations between Se and coal bed thickness and Se and ash content are not clear and may be a product of averaging.
The Effect of Volcanic Ash Composition on Ice Nucleation Affinity
NASA Astrophysics Data System (ADS)
Genareau, K. D.; Cloer, S.; Primm, K.; Woods, T.; Tolbert, M. A.
2017-12-01
Understanding the role that volcanic ash plays in ice nucleation is important for knowledge of lightning generation in both volcanic plumes and in clouds developing downwind from active volcanoes. Volcanic ash has long been suggested to influence heterogeneous ice nucleation following explosive eruptions, but determining precisely how composition and mineralogy affects ice nucleation affinity (INA) is poorly constrained. For the study presented here, volcanic ash samples with different compositions and mineral/glass contents were tested in both the deposition and immersion modes, following the methods presented in Schill et al. (2015). Bulk composition was determined with X-ray fluorescence (XRF), grain size distribution was determined with laser diffraction particle size analysis (LDPSA), and mineralogy was determined with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results of the deposition-mode experiments reveal that there is no relationship between ice saturation ratios (Sice) and either mineralogy or bulk ash composition, as all samples have similar Sice ratios. In the immersion-mode experiments, frozen fractions were determined from -20 °C to -50 °C using three different amounts of ash (0.5, 1.0, and 2.0 wt% of slurry). Results from the immersion freezing reveal that the rhyolitic samples (73 wt% SiO2) nucleate ice at higher temperatures compared to the basaltic samples (49 wt% SiO2). There is no observed correlation between frozen fractions and mineral content of ash samples, but the two most efficient ice nuclei are rhyolites that contain the greatest proportion of amorphous glass (> 90 %), and are enriched in K2O relative to transition metals (MnO and TiO2), the latter of which show a negative correlation with frozen fraction. Higher ash abundance in water droplets increases the frozen fraction at all temperatures, indicating that ash amount plays the biggest role in ice nucleation. If volcanic ash can reach sufficient abundance (≥ 2 wt%) in hydrometeors, and be compositionally enriched in K2O relative to MnO and TiO2, the nucleation of ice should efficiently occur. These chemical relationships are not only important for understanding ice nucleation in volcanic plumes, but also for constraining the effect of composition on the INA of other atmospheric aerosols.
Coal Ash Aerosol in East Asian Outflow as a Source for Oceanic Deposition of Iron and Other Metals
NASA Astrophysics Data System (ADS)
Anderson, J. R.; Hua, X.
2008-12-01
While ocean deposition of East Asian dust is given significant emphasis as a source of biologically-active trace elements, iron in particular, dust events are episodic and highly seasonal. There is, however, a constant source of aerosol that is chemically similar to dust (albeit amorphous in structure rather than crystalline) in the ash particles emitted from many hundreds of coal-fired power plants that are sited along the entire coastal region of China and Korea. The emission controls on these facilities vary widely and, in even cases of state-of-the-art emission controls, the secondary release of ash can be significant. There are of course even more small industrial and household sources of coal combustion emissions, in most cases with little or no emissions controls. Ash from a modern coal-fired power facility in Korea has been examined chemically and morphologically with electron microscopic techniques. As is characteristic of all such facilities, two principal types of ash are present: (1) flyash, silicate glass spheres that are emitted with the smoke and removed by electrostatic precipitators; and (2) bottom ash, "clinkers" and noncombustible material sticking to the furnace walls that are mixed with water and ground after cooling, then removed as a slurry to a dumping area. In addition, iron sulfide (pyrite) is a common constituent of coal and provides both a source of sulfur dioxide gas and also molten iron spherical particles in the ash. The iron spheres then are rapidly oxidized upon cooling. Bottom ash is a more complex material than flyash in that it contains more iron and other trace metals, plus it contains varying amounts of uncombusted carbon. The post-combustion handling of bottom ash can lead to significant emissions despite the fact that little or none goes out the stack. The iron oxide spheres can also be emitted by this secondary method. The concentrations of ash can be very high in close proximity to power plants (PM10 of several hundred micrograms per cubic meter of air) and traces of these aerosols have been found in the ACE-Asia and PACDEX experiments above the Sea of Japan, the Yellow Sea and across the width of the North Pacific.
Simonella, Lucio E; Gaiero, Diego M; Palomeque, Miriam E
2014-10-01
Iron is an essential micronutrient for phytoplankton growth and is supplied to the remote areas of the ocean mainly through atmospheric dust/ash. The amount of soluble Fe in dust/ash is a major source of uncertainty in modeling-Fe dissolution and deposition to the surface ocean. Currently in the literature, there exist almost as many different methods to estimate fractional solubility as researchers in the field, making it difficult to compare results between research groups. Also, an important constraint to evaluate Fe solubility in atmospheric dust is the limited mass of sample which is usually only available in micrograms to milligrams amounts. A continuous flow (CF) method that can be run with low mass of sediments (<10mg) was tested against a standard method which require about 1g of sediments (BCR of the European Union). For validation of the CF experiment, we run both methods using South American surface sediment and deposited volcanic ash. Both materials tested are easy eroded by wind and are representative of atmospheric dust/ash exported from this region. The uncertainty of the CF method was obtained from seven replicates of one surface sediment sample, and shows very good reproducibility. The replication was conducted on different days in a span of two years and ranged between 8 and 22% (i.e., the uncertainty for the standard method was 6-19%). Compared to other standardized methods, the CF method allows studies of dissolution kinetic of metals and consumes less reagents and time (<3h). The method validated here is suggested to be used as a standardized method for Fe solubility studies on dust/ash. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lube, Gert; Breard, Eric C. P.; Cronin, Shane J.; Procter, Jonathan N.; Brenna, Marco; Moebis, Anja; Pardo, Natalia; Stewart, Robert B.; Jolly, Arthur; Fournier, Nicolas
2014-10-01
The 6 August 2012 Te Maari eruption produced violent and widespread "cold" Pyroclastic Density Currents (PDCs) following unroofing of the pressurized hydrothermal system. Despite an erupted volume of only ~ 5 × 105 m3, and lacking any juvenile component, the 340,000 m3 of PDCs spread over an area of 6.1 km2 and had mobilities that were on the order of volcanic blasts or blast-like PDCs. This great mobility was due to strong lateral focussing of explosion energy, producing jets with initial velocities > 100 m/s. We present a type-stratigraphy for these hydrothermal-derived low-temperature PDCs that show a tripartite deposit sequence. Each of the deposit units dominates respectively three outward-gradational sedimentary facies, reflecting transitions in the propagating PDC transport and depositional mechanisms. The largest PDCs, directed west and east of the Upper Te Maari area were generated from outer-cone breccias and tuffs that were mostly highly hydrothermally altered. Landsliding and the geometry of the hydrothermal area led to the directed jetting. Initial particle-laden jets laid sheets, grading into lobes of proximal massive sand to gravel-rich facies dominated by unit A and extending up to 1 km from the vents. As the jets were collapsing, a vertically and longitudinally stratified PDC developed within the first few hundred metres from source. Exponential thinning and coarse-tail grading-dominated fining with radial distance of massive unit A resulted from fast deposition and progressive depletion of the most concentrated flow region behind the PDC head. Markedly slower tractional sedimentation from the passing PDC body and tail deposited the highly stratified and ripple-bedded fine-coarse ash of unit B. This formed distinctive dune fields of the medial dune-bedded ash-rich facies. Upwards in depositional sequences the waning of the current can be seen, by replacement of higher-energy bedforms to progressively lower ones. Downstream progressive waning and further depletion are characterised by the development of the distal wavy to planar-bedded ash-rich facies. This is increasingly dominated by the uppermost deposition unit C of laminated fine-med ash deposited by gently turbulent, dilute phoenix clouds. These high energy PDCs, sourced from flank hydrothermal systems should be regarded as a serious threat in any multihazard assessment of a stratovolcano, even though they may not be one of the major magmatic vent sites. In addition, further detailed studies of these hydrothermal jetting events and their deposits should be pursued in order to better understand large-volume volcanic blasts, which appear to be a larger scale sibling phenomenon.
Ash Dispersal in Planetary Atmospheres: Continuum vs. Non-continuum Effects
NASA Astrophysics Data System (ADS)
Fagents, S. A.; Baloga, S. M.; Glaze, L. S.
2013-12-01
The dispersal of ash from a volcanic vent on any given planet is dictated by particle properties (density, shape, and size distribution), the intensity of the eruptive source, and the characteristics of the planetary environment (atmospheric structure, wind field, and gravity) into which the ash is erupted. Relating observations of potential pyroclastic deposits to source locations and eruption conditions requires a detailed quantitative understanding of the settling rates of individual particles under changing ambient conditions. For atmospheres that are well described by continuum mechanics, the conventional Newtonian description of particle motion allows particle settling velocities to be related to particle characteristics via a drag coefficient. However, under rarefied atmospheric conditions (i.e., on Mars and at high altitude on Earth), non-continuum effects become important for ash-sized particles, and an equation of motion based on statistical mechanics is required for calculating particle motion. We have developed a rigorous new treatment of particle settling under variable atmospheric conditions and applied it to Earth and Mars. When non-continuum effects are important (as dictated by the mean free path of atmospheric gas relative to the particle size), fall velocities are greater than those calculated by continuum mechanics. When continuum conditions (i.e., higher atmospheric densities) are reached during descent, our model switches to a conventional formulation that determines the appropriate drag coefficient as the particle transits varying atmospheric properties. The variation of settling velocity with altitude allows computation of particle trajectories, fall durations and downwind dispersal. Our theoretical and numerical analyses show that several key, competing factors strongly influence the downwind trajectories of ash particles and the extents of the resulting deposits. These factors include: the shape of the particles (non-spherical particles fall more slowly than spherical particle shapes commonly adopted in settling models); the formation of particle aggregates, which enhances settling rates; and the lagging of particle motion behind the ambient wind field, which results in less widely dispersed deposits. Above all, any particles experiencing non-continuum effects settle faster and are less widely dispersed than particles falling in an entirely continuum regime. Our model results demonstrate the complex interplay of these factors in the Martian environment, and our approach provides a basis for relating deposits observed in planetary datasets to candidate volcanic sources and eruption conditions. This allows for a critical reassessment of the potential for explosive volcanism to contribute to extremely widespread, fine-grained, layered deposits such as the Medusae Fossae Formation.
Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments.
Mõtlep, Riho; Sild, Terje; Puura, Erik; Kirsimäe, Kalle
2010-12-15
Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years. Copyright © 2010 Elsevier B.V. All rights reserved.
A brief review on fly ash and its use in surface engineering
NASA Astrophysics Data System (ADS)
Bhajantri, Vishwanath; Krishna, Prasad; Jambagi, Sudhakar
2018-04-01
Fly ash is a by-product obtained from coal power plants. Over the past two decades, handling this industrial waste has been a great challenge for many developing countries. However, this menace can be used in many industrial applications viz., civil, automobile and aerospace applications. In civil industry, the fly ash has been used in concreate to enhance the porosity that increases the curing time of the concrete. The fly ash has been gaining importance these days as a feedstock material for many thermal spray processes. In automobile sector, the fly ash has been used as a thermal barrier coating in IC engines, whereas in aerospace industry, which demands lighter and stronger materials, the fly ash has been used as a reinforcement material. Hence, so far, fly ash has been used as an either single or a composite feed stock material in thermal spray processes. The fly ash with other materials like alumina, titania and red mud have been deposited using thermal spray processes. These coatings have exhibited higher wear, corrosion and erosion resistance as compared to the uncoated specimens. In this paper, a brief review on fly ash and its use, especially its use as a feed stock in thermal spray coating, is presented. Therefore, the use of fly ash has opened a new frontier of research in thermal spray coating area where economically viable coatings can be produced using industrial waste like fly ash.
An Early-Warning System for Volcanic Ash Dispersal: The MAFALDA Procedure
NASA Astrophysics Data System (ADS)
Barsotti, S.; Nannipieri, L.; Neri, A.
2006-12-01
Forecasts of the dispersal of volcanic ash is a fundamental goal in order to mitigate its potential impact on urbanized areas and transport routes surrounding explosive volcanoes. To this aim we developed an early- warning procedure named MAFALDA (Modeling And Forecasting Ash Loading and Dispersal in the Atmosphere). Such tool is able to quantitatively forecast the atmospheric concentration of ash as well as the ground deposition as a function of time over a 3D spatial domain.\\The main features of MAFALDA are: (1) the use of the hybrid Lagrangian-Eulerian code VOL-CALPUFF able to describe both the rising column phase and the atmospheric dispersal as a function of weather conditions, (2) the use of high-resolution weather forecasting data, (3) the short execution time that allows to analyse a set of scenarios and (4) the web-based CGI software application (written in Perl programming language) that shows the results in a standard graphical web interface and makes it suitable as an early-warning system during volcanic crises.\\MAFALDA is composed by a computational part that simulates the ash cloud dynamics and a graphical interface for visualizing the modelling results. The computational part includes the codes for elaborating the meteorological data, the dispersal code and the post-processing programs. These produces hourly 2D maps of aerial ash concentration at several vertical levels, extension of "threat" area on air and 2D maps of ash deposit on the ground, in addition to graphs of hourly variations of column height.\\The processed results are available on the web by the graphical interface and the users can choose, by drop-down menu, which data to visualize. \\A first partial application of the procedure has been carried out for Mt. Etna (Italy). In this case, the procedure simulates four volcanological scenarios characterized by different plume intensities and uses 48-hrs weather forecasting data with a resolution of 7 km provided by the Italian Air Force.
NASA Astrophysics Data System (ADS)
Alfano, Fabrizio; Bonadonna, Costanza; Watt, Sebastian; Connor, Chuck; Volentik, Alain; Pyle, David M.
2016-07-01
The 2008-2013 eruption of Chaitén Volcano (Chile) was a long-lasting eruption whose climactic phase (May 6, 2008) produced a sub-Plinian plume, with height ranging between 14 and 20 km that dispersed to the NE, reaching the Atlantic coast of Argentina. The erupted material was mainly of lithic origin (˜77 wt%), resulting in a unimodal total grain size distribution (TGSD) dominated by coarse ash (77 wt%), with Mdϕ of 2.7 and σϕ of 2.4. Lapilli clasts (>2 mm) dominate the proximal deposit within ~20 km of the vent, while coarse (63 μm-2 mm) and fine ash (<63 μm) sedimented as far as 800 km from vent, generating mostly poly-modal grain size distributions across the entire deposit. Given that most of the mass is sedimented in proximal areas, results show that possible contributions of later explosive events to the thickness of the distal deposit where layers are less distinguishable (>400 km) do not significantly affect the determination of the TGSD. In contrast, gaps in data sampling in the medial deposit (in particular the gap between 50 and 350 km from vent that coincides with shifts in sedimentation regimes) have large impacts on estimates of TGSD. Particle number distribution for this deposit is characterized by a high power-law exponent (3.0) following a trend very similar to the vesicle size distribution in the juvenile pyroclasts. Although this could be taken to indicate a bubble-driven fragmentation process, we suggest that fragmentation was more likely the result of a shear-driven process because of the predominance of non-vesicular products (lithics and obsidians) and the large fraction of coarse ash in the TGSD.
Hydrological sensitivity of volcanically disturbed watersheds—a lesson reinforced at Pinatubo
NASA Astrophysics Data System (ADS)
Major, J. J.; Janda, R. J.
2016-12-01
The climactic June 1991 eruption of Mount Pinatubo devastated many surrounding catchments with thick pyroclastic fall and flow deposits, and subsequent hydrogeomorphic responses were dramatic and persisted for years. But in the 24 hours preceding the climactic eruption there was less devastating eruptive activity that had more subtle, yet significant, impact on catchment hydrology. Stratigraphic relations show damaging lahars swept all major channels east of the volcano, starting late on June 14 and continuing through (and in some instances after) midday on June 15, before the climactic phase of the eruption began and before Typhoon Yunya struck the region. These early lahars were preceded by relatively small explosions and pyroclastic surges that emplaced fine-grained ash in the upper catchments, locally damaged or destroyed vegetation, reduced hillside infiltration capacity, and smoothed surface roughness. Thus the lahars, likely triggered by typical afternoon monsoon storms perhaps enhanced by local thermal influences of fresh volcanic deposits, did not result from extraordinary tropical rainfall or exceptional volcaniclastic deposition. Instead, direct rainfall-runoff volume increased substantially as a consequence of vegetation damage and moderate deposition of fine ash. Rapid runoff from hillsides to channels initiated hillside and bank erosion as well as channel scour, producing debris flows and hyperconcentrated flows. Timing of some lahars varied across catchments as well as downstream within catchments with respect to climactic pumice fall, demonstrating complex interplay among volcanic processes, variations in catchment disturbance, and rainfall timing and intensity. Occurrence of these early lahars supports the hypothesis that eruptions that deposit fine ash in volcanic catchments can instigate major hydrogeomorphic responses even when volcanic disturbances are modest—an effect that can be masked by later eruption impacts.
NASA Astrophysics Data System (ADS)
Trofimovs, J.; Sparks, S.; Talling, P.
2006-12-01
What happens when pyroclastic flows enter the ocean? To date, the subject of submarine pyroclastic flow behaviour has been controversial. Ambiguity arises from inconclusive evidence of a subaqueous depositional environment in ancient successions, to difficulty in sampling the in situ products of modern eruptions. A research voyage of the RRS James Clark Ross (9-18 May 2005) sampled 52 sites offshore from the volcanic island of Montserrat. The Soufrière Hills volcano, Montserrat, has been active since 1995 with eruptive behaviour dominated by andesite lava dome growth and collapse. Over 90% of the pyroclastic material produced has been deposited into the ocean. In July 2003 the Soufrière Hills volcano produced the largest historically documented dome collapse event. 210 x 106 m3 of pyroclastic material avalanched down the Tar River Valley, southeast Montserrat, to be deposited into the ocean. Bathymetric imaging and coring of offshore pyroclastic deposits, with a specific focus on the July 2003 units, reveals that the pyroclastic flows mix rapidly and violently with the water as they enter the ocean. Mixing takes place between the shore and 500 m depth where the deposition of basal coarse-grained parts of the flow initiates on slopes of 15° or less. The coarse components (pebbles to boulders) are deposited proximally from dense basal slurries to form steep sided, near linear ridges that amalgamate to form a kilometer-scale submarine fan. These proximal deposits contain <1% of ash-grade material. The finer components (dominantly ash-grade) are mixed into the overlying water column to form turbidity currents that flow distances >40 km from source. The total volume of pyroclastic material deposited within the submarine environment during this event exceeds 170 x 106 m3, with 65% deposited in proximal lobes and 35% deposited as distal turbidites. This broadly correlates with the block and ash components respectively, of the source subaerial pyroclastic flow. However, the efficient sorting and physical differentiation of the submarine flows, in comparison to the original mixture of their subaerial counterparts, suggests that the pyroclastic flows mix thoroughly with seawater and generate sediment gravity currents which are stratified in grain size and concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bool, L.E. III; Helble, J.J.; Shah, N.
1995-09-01
The technical objectives of this project are: (1) To identify the partitioning of inorganic coal constituents among vapor, submicron fume, and fly ash products generated during the combustion of pulverized coal under a variety of combustion conditions. Fuel lean and fuel rich combustion conditions are considered. (2) To identify and quantify the fundamental processes by which the transformations of minerals and organically-associated inorganic species occur. Emphasis is placed on identifying any changes that occur as a result of combustion under sub-stoichiometric combustion conditions. (3) To incorporate the effects of combustion stoichiometry into an Engineering Model for Ash Formation.
Clast comminution during pyroclastic density current transport: Mt St Helens
NASA Astrophysics Data System (ADS)
Dawson, B.; Brand, B. D.; Dufek, J.
2011-12-01
Volcanic clasts within pyroclastic density currents (PDCs) tend to be more rounded than those in fall deposits. This rounding reflects degrees of comminution during transport, which produces an increase in fine-grained ash with distance from source (Manga, M., Patel, A., Dufek., J. 2011. Bull Volcanol 73: 321-333). The amount of ash produced due to comminution can potentially affect runout distance, deposit sorting, the volume of ash lofted into the upper atmosphere, and increase internal pore pressure (e.g., Wohletz, K., Sheridan, M. F., Brown, W.K. 1989. J Geophy Res, 94, 15703-15721). For example, increased pore pressure has been shown to produce longer runout distances than non-comminuted PDC flows (e.g., Dufek, J., and M. Manga, 2008. J. Geophy Res, 113). We build on the work of Manga et al., (2011) by completing a pumice abrasion study for two well-exposed flow units from the May 18th, 1980 eruption of Mt St Helens (MSH). To quantify differences in comminution from source, sampling and the image analysis technique developed in Manga et al., 2010 was completed at distances proximal, medial, and distal from source. Within the units observed, data was taken from the base, middle, and pumice lobes within the outcrops. Our study is unique in that in addition to quantifying the degree of pumice rounding with distance from source, we also determine the possible range of ash sizes produced during comminution by analyzing bubble wall thickness of the pumice through petrographic and SEM analysis. The proportion of this ash size is then measured relative to the grain size of larger ash with distance from source. This allows us to correlate ash production with degree of rounding with distance from source, and determine the fraction of the fine ash produced due to comminution versus vent-fragmentation mechanisms. In addition we test the error in 2D analysis by completing a 3D image analysis of selected pumice samples using a Camsizer. We find that the roundness of PDC pumice at MSH increases with distance from source, as does the quantity of fine-grained ash. In addition, we have made the first steps towards determining the proportion of fine ash produced by comminution with distance from source. These results are being tested by numerical methods to understand the effect of an increase in fine ash on overall flow dynamics of the PDCs in which they were produced.
NASA Astrophysics Data System (ADS)
Valentine, G. A.; Perry, F. V.; WoldeGabriel, G.
2000-12-01
The Oligocene, deeply eroded Summer Coon composite volcano contains mafic andesite deposits that are massive to poorly bedded, have abundant flattened and deformed spatter clasts, have varying proportions of dense lithic clasts, and are supported mostly by a coarse-ash matrix. Although superficially these deposits resemble typical facies from Strombolian eruptions (emplaced ballistically, by fallout, and by rolling and local grain-avalanches down steep cone slopes), there are several lines of evidence that lead to an interpretation that the deposits were emplaced by pyroclastic density currents. These include local coarse-tail grading, deformation of spatter clasts in a down-flow direction, incorporation of matrix ash and lapilli into flattened spatter clasts, imbrication of large clasts, plastering of spatter on stoss sides of large lithic blocks and lenses of lithic-rich material on lee sides, deposition on angles less than the angle of repose, and a paucity of clast shapes associated with Strombolian mechanisms. The deposit characteristics are consistent with rapid sedimentation from a low-particle-concentration, turbulent flow onto an aggrading bed. We infer two potential mechanisms for generating these density currents: (1) explosive magma-water interaction involving lithic debris and relatively unfragmented melt; and (2) collapse of oversteepened upper cone slopes due to rapid accumulation of spatter from voluminous Strombolian eruptions.
Stochastic Modelling of the Hydraulic Anisotropy of Ash Impoundment Sediment
NASA Astrophysics Data System (ADS)
Slávik, Ivan
2017-12-01
In the case reported here the impoundments of a 400 MW coal heated power plant with an annual production of about 1.5 million tons of fuel ash are of the cross-valley type, operated by the simple and cheap „upstream method”. The aim of the research was to determine overall and local values of the permeability in horizontal as well as in vertical direction and the anisotropy of the thin-layered sedimented ash. The coal ashes are hydraulically transported through pipelines in form of a slurry and periodically floated on the beach of the impoundment. The ashes are deposited in the form of a thin-layered sediment, with random alternation of layers with a coarser or finer granularity. The ash impoundment sediment is anthropogenic sediment with horizontally laminated texture. Therefore, the sediment is anisotropic from the viewpoint of water seepage. The knowledge of the permeability and the seepage anisotropy of the sediment is a basic requirement for the design of an appropriate dewatering system. The seepage anisotropy of the ash sediment has been checked by means of stochastic modelling, based on the correlation between the effective grain diameter and the coefficient of permeability of the ash: the effective grain diameter and the thickness of individual layers have been proposed to be random events.
Huff, W.D.; Kolata, Dennis R.; Bergstrom, Stig M.; Zhang, Y.-S.
1996-01-01
Middle Ordovician K-bentonites represent some of the largest known fallout ash deposits in the Phanerozoic Era. They cover minimally 2.2 ?? 106 km2 in eastern North America and 6.9 ?? 105 km2 in northwestern Europe, and represents the coeval accumulation of plinian and co-ignimbrite ash on both Laurentia and Baltica during the closure of the Iapetus Ocean. The three most widespread beds are the Deicke and Millbrig K-bentonites in North America and the Kinnekulle K-bentonite in northwestern Europe. The vents were located near the Laurentian margin of Iapetus on an arc or microplate undergoing collision with Laurentia. The volume of ash preserved in the stratigraphic record converted to dense rock equivalent (DRE) of silicic magma is minimally estimated to be 943 km3 for the Deicke, 1509 km3 for the Millbrig and 972 km3 for the Kinnekulle. The Millbrig and Kinnekulle beds are coeval and possibly equivalent, yielding a combined DRE volume of nearly 2500 km3. Some unknown but probably large amount of additional ash fell into oceanic regions of the Iapetus, but these areas became subducted and the ash is not preserved in the geologic record. The symmetry of the thickness contours is suggestive that one or more ash clouds interacting with equatorial stratospheric and tropospheric wind patterns dispersed pyroclastic material to both the northwest and southeast in terms of Ordovician paleogeography. Based on grain size measurements and thickness/area1/2 plots we conclude the three beds were each formed from co-ignimbrite or possibly phreatoplinian eruption columns. Analyses of melt inclusions in primary quartz crystals indicate the parental magma contained approximately 4% dissolved water at the time of the eruption. This water provided the explosive energy during the initial gas thrust phase. The implied fragmentation pressure on the magma would have reduced much of the ejecta to small particles, forming a deposit composed largely of single crystals and glassy dust. Conversion of the ash to K-bentonite resulted in a mass loss of approximately 35%, mostly in the form of Si with lesser amounts of Na and K.
Crowley, S.S.; Ruppert, L.F.; Belkin, H.E.; Stanton, R.W.; Moore, T.A.
1993-01-01
The inorganic geochemistry and mineralogy of three cores from the Anderson-Dietz 1 coal bed, a 15.2-m-thick subbituminous coal bed in the Tongue River Member (Paleocene) of the Fort Union Formation, were examined (1) to determine if the cores could be correlated by geochemical composition alone over a total distance of 2 km and (2) to identify the major factors that influenced the geochemistry of the coal bed. Chemical data (46 elements on a coal-ash basis) for 81 coal samples and 4 carbonaceous rock samples, with most samples representing a 0.6-m-thick (2-ft) interval of core, were grouped into compositional clusters by means of cluster analysis. Seven major clusters were produced; two of these clusters can be used to correlate the coal bed throughout the study area. Data from scanning electron and optical microscope analyses indicate that several factors influenced the geochemistry of the Anderson-Dietz 1 coal bed. The majority of mineral grains in the coal bed are interpreted to be detrital (water borne); evidence includes the presence of rounded to subrounded quartz grains having two-phase, aqueous fluid inclusions characteristic of hydrothermal or low-to-moderate grade metamorphic quartz. These quartz grains are found throughout the coal bed but are most abundant in samples from the midpart of the bed, which was influenced by detrital input associated with the deposition of the clastic rocks that form the split between the Anderson and Dietz 1 coal beds 900 m to the east of the study area. In addition to the detrital minerals mentioned above, volcanic ash that was fluvially transported to the sites of peat deposition or possibly deposited as air-fall volcanic ash also affected the geochemistry of the coal bed. For example, crandallite(?), a mineral reported to form as an alteration product of volcanic ash, is found in seven samples from the coal bed. The presence of quartz grains containing silicate-melt inclusions in eight samples from the coal bed.provides further support for a volcanic ash component. Other factors that probably affected the geochemistry of the coal bed include (1) detrital input associated with the deposition of the roof rocks of the coal bed, (2) peat-forming processes and plant material, and (3) epigenetic ground-water flow. ?? 1993.
Reflectance-difference spectroscopy of GaAs crystal growth by OMCVD
NASA Astrophysics Data System (ADS)
Colas, Etienne G.; Aspnes, David E.; Bhat, Rajaram J.; Studna, A. A.; Koza, M. A.; Keramidas, Vassilis G.
1990-02-01
This paper summarizes results of our investigations of growth on (001) and (110) GaAs by atmospheric-pressure organometallic chemical vapor deposition (OMCVD). We follow evolutions of surface species to a sensitivity of 0.01 monolayer (ML) on a time scale of 0.1 s under alternating flows of trimethylgallium (TMG) and arsine (AsH3) as functions of partial pressure, sample temperature, and surface orienta-tion. The reaction of TMG with an AsH3-saturated (001) surface is rate-limited by com-petition between desorption and decomposition of TMG molecules chemisorbed to surface lattice sites via an excluded-volume mechanism, while the reaction of AsH3 with the TMG-saturated (001) surface is essentially instantaneous. In contrast, TMG reacts essentially instantaneously with the AsH3 -saturated (110) surface while the AsH3 reaction with the TMG-saturated (110) surface is the rate-limiting step. However, the latter rate is not intrinsic to the AsH3-surface reaction but appears to be determined by desorption of adsorbed species that block active sites.
NASA Astrophysics Data System (ADS)
Costa, A.; Folch, A.; Macedonio, G.; Giaccio, B.; Isaia, R.; Smith, V. C.
2012-04-01
Distal and ultra-distal volcanic ash dispersal during a super-eruption was reconstructed for the first time, providing insights into eruption dynamics and the impact of these gigantic events. A novel computational methodology was applied to the ash fallout of the Campanian Ignimbrite (CI), the most powerful volcanic eruption in Europe in the last 200 kyrs. The method uses a 3D time-dependent computational ash dispersion model, an ensemble of wind fields, and hundreds of thickness observations of the CI tephra deposit. Results reveal that 250-300 km3 of fallout material was produced during the eruption, blanketing a region of ~3.7 million km2 with more than 5 mm of fine ash. The model also indicates that the column height was ~37-40 km, and the eruption lasted 2-4 days. The eruption would have caused a volcanic winter within the coldest and driest Heinrich event. Fluorine-bearing leachate from the volcanic ash and acid rain would have further affected food sources and severely impacted Late Middle Paleolithic groups in Southern and Eastern Europe.
Nanominerals and nanoparticles in feed coal and bottom ash: implications for human health effects.
Silva, Luis F O; da Boit, Kátia M
2011-03-01
Environmental and human health risk assessments of nanoparticle effects from coal and bottom ash require thorough characterisation of nanoparticles and their aggregates. In this manuscript, we expand the study of human exposure to nanosized particles from coal combustion sources (typically <100 nm in size), characterising the complex micromineralogy of these airborne combustion-derived nanomaterials. Our study focuses on bottom ash generated in the Santa Catarina power station (Brazil) which uses coal enriched in ashes, many potential elements (e.g. Cr and Ni) and pyrite. Transmission electron microscope data reveal nanoscale C deposits juxtaposed with and overgrown by slightly larger aluminosilicate (Al-Si) glassy spheres, oxides, silicates, carbonated, phosphates and sulphates. Iron oxides (mainly hematite and magnetite) are the main bottom ash products of the oxidation of pyrite, sometimes via intermediate pyrrhotite formation. The presence of iron oxide nanocrystals mixed with silicate glass particles emphasises the complexity of coal and bottom ash micromineralogy. Given the potentially bioreactive nature of such transition metal-bearing materials, there is likely to be an increased health risk associated with their inhalation.
Earth Observations taken by the Expedition 20 crew
2009-06-03
ISS020-E-006563 (3 June 2009) --- Mount Tambora Volcano, Sumbawa Island in Indonesia is featured in this image photographed by an Expedition 20 crew member on the International Space Station. On April 10, 1815 the Tambora volcano produced the largest eruption in history. An estimated 150 cubic kilometers of tephra ? exploded rock and ash ? was produced, with ash from the eruption recognized at least 1,300 kilometers away to the northwest. While the April 10 eruption was catastrophic, historical records and geological analysis of eruption deposits indicate that the volcano had been active between 1812 and 1815. Enough ash was input into the atmosphere from the April 10 eruption to reduce incident sunlight on Earth?s surface and cause global cooling, resulting in the 1816 ?year without a summer?. This detailed photograph depicts the summit caldera of the volcano. The huge caldera ? six kilometers in diameter and 1,100 meters deep ? formed when Tambora?s estimated 4,000 meter-high peak was removed, and the magma chamber below emptied, during the April 10 eruption. Today the crater floor is occupied by an ephemeral fresh-water lake, recent sedimentary deposits, and minor lava flows and domes emplaced during the 19th and 20th centuries. Layered tephra deposits are visible along the northwestern crater rim. Active fumaroles, or steam vents, are still present within the caldera. In 2004 scientists discovered the remains of a village and two adults buried under approximately three meters of ash in a gully on Tambora?s flank - remnants of the former Kingdom of Tambora preserved by the 1815 eruption that destroyed it. The similarity of the Tambora remains to those associated with the 79 AD eruption of Mount Vesuvius has led to the site being called ?the Pompeii of the East.?
Pavlović, Pavle; Mitrović, Miroslava; Djurdjević, Lola
2004-05-01
This ecophysiological research on the ash deposits from the "Nikola Tesla-A" thermal power station in Serbia covered 10 plant species (Tamarix gallica, Populus alba, Spiraea van-hauttei, Ambrosia artemisifolia, Amorpha fruticosa, Eupatorium cannabinum, Crepis setosa, Epilobium collinum, Verbascum phlomoides, and Cirsium arvense). This paper presents the results of a water regime analysis, photosynthetic efficiency and trace elements (B, Cu, Mn, Zn, Pb, and Cd) content in vegetative plant parts. Water regime parameters indicate an overall stability in plant-water relations. During the period of summer drought, photosynthetic efficiency (Fv/Fm) was low, ranging from 0.429 to 0.620 for all the species that were analyzed. An analysis of the tissue trace elements content showed a lower trace metal concentration in the plants than in the ash, indicating that heavy metals undergo major concentration during the combustion process and some are not readily taken up by plants. The Zn and Pb concentrations in all of the examined species were normal whereas Cu and Mn concentrations were in the deficiency range. Boron concentrations in plant tissues were high, with some species even showing levels of more than 100 microg/g (Populus sp., Ambrosia sp., Amorpha sp., and Cirsium sp.). The presence of Cd was not detected. In general, it can be concluded from the results of this research that biological recultivation should take into account the existing ecological, vegetation, and floristic potential of an immediate environment that is abundant in life forms and ecological types of plant species that can overgrow the ash deposit relatively quickly. Selected species should be adapted to toxic B concentrations with moderate demands in terms of mineral elements (Cu and Mn).
NASA Astrophysics Data System (ADS)
Hardiman, Mark; Lane, Christine; Blockley, Simon P. E.; Moreno, Ana; Valero-Garcés, Blas; Ortiz, José E.; Torres, Trino; Lowe, John J.; Menzies, Martin A.
2010-05-01
Past volcanic eruptions often leave visible ash layers in the geological record, for example in marine or lake sedimentary sequences. Recent developments, however, have shown that non-visible volcanic ash layers are also commonly preserved in sedimentary deposits. These augment the record of past volcanic events by demonstrating that past ash dispersals have been more numerous and widely disseminated in Europe than previously appreciated. The dispersal ‘footprints' of some large late Pleistocene European eruptions are examined here in the light of the recent Eyjafjallajökull eruption. For example, the Vedde Ash which was erupted from Iceland around 12 thousand years ago, delivered distal (and non-visible) glass deposits as far south as Switzerland and as far east as the Ural Mountains in Russia, with an overall European distribution remarkably similar to the dominant tracks of the recent Eyjafjallajökull plumes. The Eyjafjallajökull eruption has demonstrated that relatively small amounts of distal volcanic ash in the atmosphere can seriously disrupt aviation activity, with attendant economic and other consequences. It has raised fundamental questions about the likelihood of larger or more prolonged volcanic activity in the near future, and the possibility of even more serious consequences than those experienced recently. Given that there are several other volcanic centres that could cause such disruption in Europe (e.g. Campania and other volcanic centres in Italy; Aegean volcanoes), a key question is whether there are parts of Europe less prone to ash plumes and which could therefore operate as emergency air traffic hubs during times of ash dispersal. Although not generated to answer this question, the recent geological record might provide a basis for seeking the answer. For example, four palaeo-records covering the time frame of 8 - 40 Ka BP that are geographically distributed across Spain have been examined for non-visible distal ash content. All four have proved to be almost devoid of volcanic ash, which contrasts with results obtained from sites throughout central and northern Europe. This suggests that Spain has remained free of ashfall events throughout the late Pleistocene, or that any ash dispersal over Spain has been short-lived and/or infrequent. This appears to accord with the pattern of dispersal of Eyjafjallajökull ash clouds over April to May 2010. Most of the active period was characterised by low eruptive columns and the tropospheric dispersal of ash. Under these conditions, ash dispersal was multi-directional from eastern Europe to Greenland and beyond, but did not encroach on to the Iberian peninsula. In contrast, when the eruptive columns became more elevated and entrained in the jet stream, the dispersal directions were more uni-directional and passed over Iberia and North Africa. Thus the apparent lack of volcanic ash in Iberia (10 - 40ka) may have as much to do with eruptive column height and volcano location as with circulation patterns (tropospheric v. stratospheric). A more comprehensive assessment of geological records of non-visible ash layers in selected sites may hold the key to examining this matter more robustly.
Maier, K.L.; Crundwell, Martin P.; Coble, Matthew A.; Kingsley-Smith, Peter R.; Graham, Stephan A.
2016-01-01
This study presents new radiometric ages from volcanic ash beds within a c. 1900 m thick, progradational, deep-water clastic slope succession of late Miocene age exposed along the north Taranaki coast of the North Island, New Zealand. The ash beds yield U–Pb zircon ages ranging from 10.63 ± 0.65 Ma to 8.97 ± 0.22 Ma. The new ages are compatible with and provide corroboration of New Zealand Tongaporutuan Stage planktic foraminiferal and bolboformid biostratigraphic events identified in the same section. The close accord between these two age datasets provides a stratigraphically consistent and coherent basis for examining margin evolution. The arrival of a prograding clastic wedge and ensuing upward shoaling is recorded by sedimentation rates c. 2000 m/Ma–1 that are an order of magnitude higher than sedimentation rates on the precursor deep basin floor. This outcrop study provides new constraints for interpreting analogous subsurface deposits in Taranaki Basin and complements the regional late Miocene biostratigraphic dating framework.
NASA Astrophysics Data System (ADS)
Crouch, John F.; Pardo, Natalia; Miller, Craig A.
2014-10-01
The 6 August 2012 eruption of Mt. Tongariro from Upper Te Maari Crater in the central North Island of New Zealand was the first volcanic eruption observed by an operational weather radar in New Zealand, and is believed to be one of only a small number of eruptions observed by a dual-polarisation radar worldwide. The eruption was also observed by a GeoNet webcam, and detailed ash deposit studies have permitted analysis of the plume characteristics. A combination of radar and webcam imagery show 5 pulses within the first 13 min of the eruption, and also the subsequent ash transport downwind. Comparison with ash samples show the radar was likely detecting ash particles down to about 0.5 mm diameter. The maximum plume height estimated by the radar is 7.8 ± 1.0 km above mean sea level (amsl), although it is possible this may be a slight under estimation if very small ash particles not detected by the radar rose higher and comprised the very top of the plume. The correlation coefficient and differential reflectivity fields that are additionally measured by the dual polarisation radar provide extra information about the structure and composition of the eruption column and ash cloud. The correlation coefficient easily discriminates between the eruption column and the ash plume, and provides some information about the diversity of ash particle size within both the ash plume and the subsequent detached ash cloud drifting downwind. The differential reflectivity shows that the larger ash particles are falling with a horizontal orientation, and indicates that ice nucleation and aggregation of fine ash particles was probably occurring at high altitudes within 20-25 min of the eruption.
Experimental aggregation of volcanic ash: the role of liquid bonding
NASA Astrophysics Data System (ADS)
Mueller, S.; Kueppers, U.; Jacob, M.; Ayris, P. M.; Dingwell, D. B.
2015-12-01
Explosive volcanic eruptions may release vast quantities of ash. Because of its size, it has the greatest dispersal potential and can be distributed globally. Ash may pose severe risks for 1) air traffic, 2) human and animal health, 3) agriculture and 4) infrastructure. Such ash particles can however cluster and form ash aggregates that range in size from millimeters to centimeters. During their growth, weight and aerodynamic properties change. This leads to significantly changed transport and settling behavior. The physico-chemical processes involved in aggregation are quantitatively poorly constrained. We have performed laboratory ash aggregation experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. Solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (e.g., air flow rate, gas temperature, humidity, liquid composition). In this manner we simulate the variable gas-particle flow conditions expected in eruption plumes and pyroclastic density currents. We have used 1) soda-lime glass beads as an analogue material and 2) natural volcanic ash from Laacher See Volcano (Germany). In order to influence form, size, stability and the production rate of aggregates, a range of experimental conditions (e.g., particle concentration, degree of turbulence, temperature and moisture in the process chamber and the composition of the liquid phase) have been employed. We have successfully reproduced several features of natural ash aggregates, including round, internally structured ash pellets up to 3 mm in diameter. These experimental results help to constrain the boundary conditions required for the generation of spherical, internally-structured ash aggregates that survive deposition and are preserved in the volcanological record. These results should also serve as input parameters for models of ash transport and ash mass distribution.
USDA-ARS?s Scientific Manuscript database
Determining the deposition and field persistence of mycoinsecticides is essential in the development of effective and economical application strategies, including specifically the timing and frequency of spray applications. In this study we used three methods to evaluate the persistence of Beauveri...
Memorial to Robert Leland Smith 1920-2016
Bacon, Charles R.
2016-01-01
Robert L. Smith, renowned volcanologist and distinguished scientist with the U.S. Geological Survey (USGS), was a world authority on ash-flow tuffs, silicic volcanism, and caldera structures. Bob died peacefully in Sacramento, California, June 17, 2016, a few days short of his ninety-sixth birthday. His publications on ash flows and their deposits brought about an international revolution in understanding of explosive silicic volcanism and, in his fifty-year career, he profoundly influenced USGS programs and countless scientists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehner, A.P.
1981-01-01
Groups of 102 Male Syrian Golden hamsters were chronically exposed to approx. 70 micrograms/l respirable Nickel Enriched Fly Ash aerosol (high NEFA group), approx. 17 micrograms/l (low NEFA group), or approx. 70 micrograms/l FA 6 hrs/day, 5 days/week for 4, 8, 12, 16, and 20 months. Identical control groups received sham exposures. The NEFA particles of respirable size contained approximately 6% nickel, compared to about 0.3% for FA. Exposure to NEFA had no significant effect on the apparent well being, body weight and life span of the animals although heavy deposits of NEFA in the lungs were found. The lungmore » weights and mean lung volumes of the high NEFA and FA exposed animals were significantly higher and larger, respectively, than for the low NEFA and control groups. There was a 100% incidence of dust deposition (anthracosis) and significantly higher incidence plus severity of interstitial reaction and bronchiolization in the dust-exposed groups than the controls. The severity of lung reactions was significantly lower in the low NEFA group than the high NEFA and FA groups. The results of this study conclude that the addition of nickel to fly ash under these conditions did not significantly (P< 0.05) enhance the pathogenicity (including carcinogenicity) of fly ash in this animal model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
James C. Hower; Uschi M. Graham; Alan Dozier
2008-11-15
A combination of high-resolution transmission electron microscopy, scanning transmission electron microscopy, and electron energy-loss spectroscopy (HRTEM-STEM-EELS) was used to study fly ashes produced from the combustion of an eastern Kentucky coal at a southeastern-Kentucky wall-fired pulverized coal utility boiler retrofitted for low-NOx combustion. Fly ash was collected from individual hoppers in each row of the electrostatic precipitators (ESP) pollution-control system, with multiple hoppers sampled within each of the three rows. Temperatures within the ESP array range from about 200 {degree}C at the entry to the first row to <150{degree}C at the exit of the third row. HRTEM-STEM-EELS study demonstrated themore » presence of nanoscale (10 s nm) C agglomerates with typical soot-like appearance and others with graphitic fullerene-like nanocarbon structures. The minute carbon agglomerates are typically juxtaposed and intergrown with slightly larger aluminosilicate spheres and often form an ultrathin halo or deposit on the fly ash particles. The STEM-EELS analyses revealed that the nanocarbon agglomerates host even finer (<3 nm) metal and metal oxide particles. Elemental analysis indicated an association of Hg with the nanocarbon. Arsenic, Se, Pb, Co, and traces of Ti and Ba are often associated with Fe-rich particles within the nanocarbon deposits. 57 refs., 5 figs.« less
Using the New Two-Phase-Titan to Evaluate Potential Lahar Hazard at Villa la Angostura, Argentina
NASA Astrophysics Data System (ADS)
Sheridan, M. F.; Cordoba, G. A.; Viramonte, J. G.; Folch, A.; Villarosa, G.; Delgado, H.
2013-05-01
The 2011 eruption of Puyehue Volcano, located in the Cordon del Caulle volcanic complex, Chile, produced an ash plume that mainly affected downwind areas in Argentina. This plume forced air transport in the region to be closed for several weeks. Tephra fall deposits from this eruption affected many locations and pumice deposits on lakes killed most of the fish. As the ash emission occurred during the southern hemisphere winter (June), ash horizons were inter layered with layers of snow. This situation posed a potential threat for human settlements located downslope of the mountains. This was the case at Villa la Angostura, Neuquen province, Argentina, which sits on a series of fluvial deposits that originate in three major basins: Piedritas, Colorado, and Florencia. The Institute of Geological Survey of Argentina (SEGEMAR) estimated that the total accumulated deposit in each basin contains a ratio of approximately 30% ash and 70% snow. The CyTED-Ceniza Iberoamerican network worked together with Argentinean, Colombian and USA institutions in this hazard assessment. We used the program Two-Phase-Titan to model two scenarios in each of the basins. This computer code was developed at SUNY University at Buffalo supported by NSF Grant EAR 711497. Two-Phase-Titan is a new depth-averaged model for two phase flows that uses balance equations for multiphase mixtures. We evaluate the stresses using a Coulomb law for the solid phase and the typical hydraulic shallow water approach for the fluid phase. The linkage for compositions in the range between the pure end-member phases is accommodated by the inclusion of a phenomenological-based drag coefficient. The model is capable of simulating the whole range of particle volumetric fractions, from pure fluid flows to pure solid avalanches. The initial conditions, volume and solid concentration, required by Two-Phase-Titan were imposed using the SEGEMAR estimation of total deposited volume, assuming that the maximum volume that can flow at once in each of the basins is one half of the total. A second scenario assumed that half of the maximum could also happen. The volumetric solid concentration was chosen to be 30%, in agreement with the estimates of the deposited volume of the ash layers. The Argentinean National Commission of Space (CONAE) initially provided us with a digital elevation model (DEM) of 15 meters resolution. In the six simulations that we performed with this DEM we found that in all cases, the flow coming down slope in the Florencia basin stopped at the same place. A detailed survey that included a field inspection allowed us to discover that the DEM does not adequately reproduce the topography; it shows a non-existent barrier. Subsequently CONAE produced a 10 meter DEM of the area. Using this new DEM the simulation reached places not predicted by the program using the 15 meter DEM.
NASA Astrophysics Data System (ADS)
Fernandez-Turiel, Jose-Luis; Saavedra, Julio; Perez-Torrado, Francisco-Jose; Rodriguez-Gonzalez, Alejandro; Carracedo, Juan-Carlos; Lobo, Agustin; Rejas, Marta; Gallardo, Juan-Fernando; Osterrieth, Margarita; Carrizo, Julieta; Esteban, Graciela; Martinez, Luis-Dante; Gil, Raul-Andres; Ratto, Norma; Baez, Walter
2015-04-01
We present new data about a major eruption -spreading approx. 110 km3 ashes over 440.000 km2- long thought to have occurred around 4200 years ago in the Cerro Blanco Volcanic Complex (CBVC) in the Central Andes of NW Argentina (Southern Puna, 26°45' S, 67°45' W). This eruption may be the biggest during the past five millennia in the Central Volcanic Zone of the Andes, and possibly one of the largest Holocene eruptions in the world. Discrimination and correlation of pyroclastic deposits of this eruption of Cerro Blanco was conducted comparing samples of proximal (domes, pyroclastic flow and fall deposits) with distal ash fall deposits (up to 400 km from de vent). They have been characterized using optical and electron microscopy (SEM), X-ray diffraction, particle-size distribution by laser diffraction and electron microprobe and HR-ICP-MS with laser ablation for major and trace element composition of glass, feldspars and biotite. New and published 14C ages were calibrated using Bayesian statistics. An one-at-a-time inversion method was used to reconstruct the eruption conditions using the Tephra2 code (Bonadonna et al. 2010, https://vhub.org/resources/tephra2). This method allowed setting the main features of the eruption that explains the field observations in terms of thickness and grain size distributions of the ash fall deposit. The main arguments that justify the correlation are four: 1) Compositional coincidence for glass, feldspars, and biotite in proximal and distal materials; 2) Stratigraphic and geomorphological relationships, including structure and thickness variation of the distal deposits; 3) Geochronological consistency, matching proximal and distal ages; and 4) Geographical distribution of correlated outcrops in relation to the eruption centre at the coordinates of Cerro Blanco. With a magnitude of 7.0 and a volcanic explosivity index or VEI 7, this eruption of ~4200 BP at Cerro Blanco is the largest in the last five millennia known in the Central Volcanic Zone of the Andes. The implications of these results go far beyond having an excellent chronostratigraphic marker to reconstruct the Holocene geologic history of a large area of South America. Besides the effects directly associated with eruptive process, a deposit of tephra is very ephemeral and rapidly is reworked and redeposited. The interaction of the huge amount of ashes of this eruption with the wind and water in the large watersheds of the region must mobilize enormous amounts of both particulate and chemical elements to the large Chacopampean Plain. How impacted this eruption on the environmental, pollen, faunal and archaeological mid-Holocene records are features currently under study. On the other hand, the occurrence of Holocene volcanism in the southern Puna leads to consider new scenarios of volcanic hazard over large and densely populated areas in South America. Financial support was provided by the QUECA Project (MINECO, CGL2011-23307). Part of the analytical work was carried out in the Geochemistry Facility of labGEOTOP in the ICTJA-CSIC, infrastructure co-funded by ERDF-EU (Ref. CSIC08-4E-001).
NASA Astrophysics Data System (ADS)
Waythomas, C. F.; Wallace, K. L.; Schwaiger, H.
2012-12-01
Akutan Volcano in the eastern Aleutian Islands of Alaska is one of the most historically active volcanoes in the Aleutian arc (43 eruptions in about the past 250 years). Explosive eruptions pose major hazards to aircraft flying north Pacific air routes and to local infrastructure on Akutan and neighboring Unalaska Island. Air travel, infrastructure, and population in the region have steadily increased during the past several decades, and thus it is important to better understand the frequency, magnitude, and characteristics of tephra-producing eruptions. The most recent eruption was a VEI 2 event on March 8-May 21, 1992 that resulted in minor ash emissions and trace amounts of proximal fallout. Nearly continuous low-level emission of ash and steam is typical of historical eruptions, and most of the historical events have been similar in magnitude to the 1992 event. The most recent major eruption occurred about 1600 yr. B.P. and likely produced the ca. 2-km diameter summit caldera and inundated valleys that head on the volcano with pyroclastic-flow and lahar deposits that are tens of meters thick. The 1600 yr. B.P. eruption covered most of Akutan Island with up to 2.5 m of coarse scoriaceous tephra fall, including deposits 0.5-1 m thick near the City of Akutan. Tephra-fall deposits associated with this eruption exhibit a continuous sequence of black, fine to coarse scoriaceous lapilli overlain by a lithic-rich facies and finally a muddy aggregate-rich facies indicating water involvement during the latter stages of the eruption. Other tephra deposits of Holocene age on Akutan Island include more than a dozen discrete fine to coarse ash beds and 3-6 beds of scoriaceous, coarse lapilli tephra indicating that there have been several additional major eruptions (>VEI 3) of Akutan Volcano during the Holocene. Radiocarbon dates on these events are pending. In addition to tephra falls from Akutan, other fine ash deposits are found on the island that originated from other Aleutian arc volcanoes. Tephra deposits from typical VEI 2 historical eruptions are not well preserved on the island so tephra-fall frequency estimated from stratigraphic studies is underestimated. Akutan Island is home to the largest seafood processing plant in North America and has a workforce of more than one thousand people. Other infrastructure consists of a recently constructed paved airfield on neighboring Akun Island (25 km east of the active vent) and a new boat harbor at the head of Akutan Harbor. Plans to develop greenhouses, tourism, and increased cold storage capacity on Akutan and Akun Islands also are evolving. To support the power demands of the development efforts, The City of Akutan is considering the utilization of geothermal resources on the island that are located in Hot Springs Bay valley northwest of the city. All of the existing and planned infrastructure, water supply, and residential areas are about 12 km downwind (east) of the volcano and are at risk from ash-producing eruptions. The historical eruptive history suggests that VEI 2 eruptions are plausible in the near future and the Holocene tephra-fall record indicates that large eruptions (VEI 4 or larger) occur about every few thousand years. Numerical modeling of tephra fallout based on the record of ash-producing eruptions will be used to improve tephra-fall hazard assessments for the area.
The Effect of Baggase Ash on Fly Ash-Based Geopolimer Binder
NASA Astrophysics Data System (ADS)
Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Banugraha, R.; Alfi, M.; Abdullah, M. M. A. B.
2018-06-01
Geopolymer concrete is an environmentally friendly concrete. However, the geopolymer binder has a problem with setting time; mainly the composition comprises high calcium fly ash. This study utilized bagasse ash to improve setting time on fly ash-based geopolymer binder. The characterization of bagasse ash was carried out by using chemical and phase analysis, while the morphology characterization was examined by scanning electron microscope (SEM). The setting time test and the compressive strength test used standard ASTM C 191-04 and ASTM C39 / C39M respectively. The compressive strength of the samples determined at 3, 28 and 56 days. The result compared the requirement of the standards.
Khan, M. Rashid
1990-01-01
A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.
Cabezas-Cartes, Facundo; Kubisch, Erika Leticia; Ibargüengoytía, Nora Ruth
2014-03-01
The locomotor performance of lizards depends on their morphological and physiological adaptations to the habitat. However, when the habitat changes dramatically, for example, by a volcanic eruption, the performance of lizards may be affected. We registered the vegetation cover, the surface covered by ash, the presence of crevices suitable for Phymaturus and the rocks slopes to analyze the effects of ash accumulation produced by the eruption of Puyehue-Cordon Caulle volcanic complex on microhabitat use and availability of the Phymaturus spectabilis lizard. In addition, we studied the effect of ashes and slope on the locomotor performance of P. spectabilis by registering the maximum speed in sprint runs and long runs under four different treatments (cork and on the level, ashes and on the level, cork and slope, and ashes and slope). P. spectabilis selected microhabitats unvegetated, with crevices and steep slopes. Regarding locomotor performance, the speed of lizards was negatively affected by the presence of ash only in sprint runs on the level and in long runs with slope. The slope had a negative impact on the speed in all the treatments. These results show that the presence of volcanic ashes in the substrate might have affected the locomotor performance of the lizards, especially in long runs, and hence, the interaction of individuals with the environment, that is, escaping from predators and social behavior. © 2013 Wiley Periodicals, Inc.
Metal roof corrosion related to volcanic ash deposition
NASA Astrophysics Data System (ADS)
Oze, C.; Cole, J. W.; Scott, A.; Wilson, T.; Wilson, G.; Gaw, S.; Hampton, S.; Doyle, C.; Li, Z.
2013-12-01
Volcanoes produce a wide range of hazards capable of leading to increased rates of corrosion to the built environment. Specifically, widely distributed volcanic ash derived from explosive volcanic eruptions creates both short- and long-term hazards to infrastructure including increased corrosion to exposed building materials such as metal roofing. Corrosion has been attributed to volcanic ash in several studies, but these studies are observational and are beset by limitations such as not accounting for pre-existing corrosion damage and/or other factors that may have also directly contributed to corrosion. Here, we evaluate the corrosive effects of volcanic ash, specifically focusing on the role of ash leachates, on a variety of metal roofing materials via weathering chamber experiments. Weathering chamber tests were carried out for up to 30 days using a synthetic ash dosed with an acidic solution to produce a leachate comparable to a real volcanic ash. Visual, chemical and surface analyses did not definitively identify significant corrosion in any of the test roofing metal samples. These experiments attempted to provide quantitative information with regards to the rates of corrosion of different types of metal roof materials. However, they demonstrate that no significant corrosion was macroscopically or microscopically present on any of the roofing surfaces despite the presence of corrosive salts after a duration of thirty days. These results suggest ash leachate-related corrosion is not a major or immediate concern in the short-term (< 1 month).
Douillet, Guilhem Amin; Pacheco, Daniel Alejandro; Kueppers, Ulrich; Letort, Jean; Tsang-Hin-Sun, Ève; Bustillos, Jorge; Hall, Minard; Ramón, Patricio; Dingwell, Donald B
A series of pyroclastic density currents were generated at Tungurahua volcano (Ecuador) during a period of heightened activity in August 2006. Dense pyroclastic flows were confined to valleys of the drainage network, while dilute pyroclastic density currents overflowed on interfluves where they deposited isolated bodies comprising dune bedforms of cross-stratified ash exposed on the surface. Here, the description, measurement, and classification of more than 300 dune bedforms are presented. Four types of dune bedforms are identified with respect to their shape, internal structure, and geometry (length, width, thickness, stoss and lee face angles, and stoss face length). (1) "Elongate dune bedforms" have smooth shapes and are longer (in the flow direction) than wide or thick. Internal stratification consists of stoss-constructional, thick lensoidal layers of massive and coarse-grained material, alternating with bedsets of fine laminae that deposit continuously on both stoss and lee sides forming aggrading structures with upstream migration of the crests. (2) "Transverse dune bedforms" show linear crests perpendicular to the flow direction, with equivalent lengths and widths. Internally, these bedforms exhibit finely stratified bedsets of aggrading ash laminae with upstream crest migration. Steep truncations of the bedsets are visible on the stoss side only. (3) "Lunate dune bedforms" display a barchanoidal shape and have stratification patterns similar to those of the transverse ones. Finally, (4) "two-dimensional dune bedforms" are much wider than long, exhibit linear crests and are organized into trains. Elongate dune bedforms are found exclusively in proximal deposition zones. Transverse, lunate, and two-dimensional dune bedforms are found in distal ash bodies. The type of dune bedform developed varies spatially within an ash body, transverse dune bedforms occurring primarily at the onset of deposition zones, transitioning to lunate dune bedforms in intermediate zones, and two-dimensional dune bedforms exclusively on the lateral and distal edges of the deposits. The latter are also found where flows moved upslope. Elongate dune bedforms were deposited from flows with both granular-based and tractional flow boundaries that possessed high capacity and competence. They may have formed in a subcritical context by the blocking of material on the stoss side. We do not interpret them as antidune or "chute-and-pool" structures. The dimensions and cross-stratification patterns of transverse dune bedforms are interpreted as resulting from low competence currents with a significant deposition rate, but we rule out their interpretation as "antidunes". A similar conclusion holds for lunate dune bedforms, whose curved shape results from a sedimentation rate dependent on the thickness of the bedform. Finally, two-dimensional dune bedforms were formed where lateral transport exceeds longitudinal transport; i.e., in areas where currents were able to spread laterally in low velocity zones. We suggest that the aggrading ash bedsets with upstream crest migration were formed under subcritical flow conditions where the tractional bedload transport was less important than the simultaneous fallout from suspension. This produced differential draping with no further reworking. We propose the name "regressive climbing dunes" for structures produced by this process. A rapid decrease in current velocity, possibly triggered by hydraulic jumps affecting the entire parent flows, is inferred to explain their deposition. This process can in principle hold for any kind of particulate density current.
NASA Astrophysics Data System (ADS)
Smith, M. Elliot; Cassel, Elizabeth J.; Jicha, Brian R.; Singer, Brad S.; Canada, Andrew S.
2017-12-01
Hinterland basins can accumulate high resolution archives of orogenic processes and continental climate, but are challenging to reconstruct due to tectonic overprinting and the inherent complexity of their lithofacies assemblages. The Cordilleran hinterland of northeast Nevada has been interpreted to have overlain a flattened Farallon slab from the Late Cretaceous to Eocene. Slab removal and advection of asthenospheric mantle beneath Nevada have been invoked to explain a southwestward migrating wave of Eocene to Oligocene volcanism and proposed as a driver for topographic uplift. However, the timing of slab removal and possible subsequent delamination of North American lithospheric mantle can only ambiguously be related to the surface record. Subsequent Neogene extension and basin filling has complicated the correlation and interpretation of strata that record these events. Here we apply single crystal sanidine 40Ar/39Ar geochronology to 26 ash beds in northeast Nevada to reconstruct Paleogene geographic and hydrologic evolution. We use these ages and legacy geochronology to compare lithofacies and isotope proxy records of meteoric waters to regional tectonics and global climate, and assess competing tectonic interpretations for lake basin formation. Lakes formed locally prior to ca. 48.7 Ma in northeast Nevada, coeval with foreland lakes of the Green River Formation. The most expansive phase of lacustrine deposition resulted in onlap onto locally derived fluvial deposits and folded Paleozoic bedrock, and occurred between ca. 43.4 and ca. 40.8 Ma. Elko Formation strata exhibit a basin-wide transition from fluvial-lacustrine to fluctuating profundal lithofacies at ca. 42.7 Ma, suggesting a shift towards regional hydrologic closure. The stromatolitic upper Elko Formation is intercalated with ash fall tuffs and several partially welded to unwelded ignimbrites from increasingly proximal volcanism. Elko Formation deposition ended by ca. 40.4 Ma. 40Ar/39Ar ages for seven ash beds in the Dead Horse Formation at Copper Basin in northern Elko County indicate intermittent ash bed deposition between 45.2 Ma and 38.6 Ma, and an episode of lacustrine deposition between 39.8 Ma and 38.6 Ma that post-dates the main phase of Lake Elko. δD values of volcanic glass sampled from dated ash beds reflect changes in the hydrogen isotope compositions of local Eocene waters, and systematically vary by 80-102‰ according to their depositional environment. The Elko Formation and overlying volcanic strata are overlain regionally by a pronounced unconformity of ∼20 m.y. In the Copper Basin area, deposition continued locally into the Oligocene in the hanging wall of a ductile detachment. The geochronologic and isotopic framework presented here permits reanalysis of the Piñon Range carbonate proxy record that was previously interpreted to record both regional uplift and the middle Eocene climatic optimum. New data suggest instead that isotope values of hydration waters within the Elko Formation were strongly influenced by evaporation, and a change from lacustrine to non-lacustrine conditions can account for the δ18O shift that was interpreted to reflect regional uplift. Moreover, the end of Elko Formation deposition predated the middle Eocene climatic optimum. We interpret the overall record of drainage ponding and paleovalley inundation, progressively more evaporative lacustrine conditions, increasingly proximal volcanism, and subsequent prolonged unconformity to reflect the surface effects of progressive NE to SW removal of the Farallon slab.
Estimating Losses from Volcanic Ash in case of a Mt. Baekdu Eruption
NASA Astrophysics Data System (ADS)
Yu, Soonyoung; Yoon, Seong-Min; Kim, Sung-Wook; Choi, Eun-Kyeong
2014-05-01
We will present the preliminary result of economic losses in South Korea in case of a Mt. Baedu eruption. The Korean peninsula has Mt. Baekdu in North Korea, which will soon enter an active phase, according to volcanologists. The anticipated eruption will be explosive given the viscous and grassy silica-rich magma, and is expected to be one of the largest in recent millennia. We aim to assess the impacts of this eruption to South Korea and help government prepare for the volcanic disasters. In particular, the economic impact from volcanic ash is estimated given the distance from Mt. Baedu to South Korea. In order to scientifically estimate losses from volcanic ash, we need volcanic ash thickness, inventory database, and damage functions between ash thickness and damage ratios for each inventory item. We use the volcanic ash thickness calculated by other research groups in Korea, and they estimated the ash thickness for each eruption scenario using average wind fields. Damage functions are built using the historical damage data in the world, and inventory database is obtained from available digital maps in Korea. According to the preliminary results, the economic impact from volcanic ash is not significant because the ash is rarely deposited in South Korea under general weather conditions. However, the ash can impact human health and environment. Also worst case scenarios can have the significant economic impacts in Korea, and may result in global issues. Acknowledgement: This research was supported by a grant [NEMA-BAEKDUSAN-2012-1-3] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea.
NASA Astrophysics Data System (ADS)
Rolandi, G.; Maraffi, S.; Petrosino, P.; Lirer, L.
1993-11-01
The Ottaviano eruption occurred in the late neolithic (8000 y B.P.). 2.40 km 3 of phonolitic pyroclastic material (0.61 km 3 DRE) were emplaced as pyroclastic flow, surge and fall deposits. The eruption began with a fall phase, with a model column height of 14 km, producing a pumice fall deposit (LA). This phase ended with short-lived weak explosive activity, giving rise to a fine-grained deposit (L1), passing to pumice fall deposits as the result of an increasing column height and mass discharge rate. The subsequent two fall phases (producing LB and LC deposits), had model column heights of 20 and 22 km with eruption rates of 2.5 × 10 7 and 2.81 × 10 7 kg/s, respectively. These phases ended with the deposition of ash layers (L2 and L3), related to a decreasing, pulsing explosive activity. The values of dynamic parameters calculated for the eruption classify it as a sub-plinian event. Each fall phase was characterized by variations in the eruptive intensity, and several pyroclastic flows were emplaced (F1 to F3). Alternating pumice and ash fall beds record the waning of the eruption. Finally, owing to the collapse of a eruptive column of low gas content, the last pyroclastic flow (F4) was emplaced.
Theory and practice of corrosion related to ashes and deposits in a WtE boiler.
Verbinnen, Bram; De Greef, Johan; Van Caneghem, Jo
2018-03-01
Corrosion of heat-exchanging components is one of the main operational problems in Waste-to-Energy plants, limiting the electrical efficiency that can be reached. Corrosion is mainly related to the devolatilization and/or formation of chlorides, sulphates and mixtures thereof on the heat-exchanging surfaces. Theoretical considerations on this corrosion were already put forward in literature, but this paper now for the first time combines theory with a large scale sampling campaign of several Waste-to-Energy plants. Based on the outcome of elemental and mineralogical analysis, the distribution of Cl and S in ashes sampled throughout the plant during normal operation is explained. Cl concentrations are high (15-20%) in the first empty pass, decrease in the second and third empty pass, but increase again in the convective part, whereas the S concentrations show an inverse behavior, with the highest concentrations (30%) observed in the second and third empty pass. Sampling of deposits on specific places where corrosion possibly occurred, gives a better insight in the mechanisms related to corrosion phenomena in real-scale WtE plants and provides practical evidence for some phenomena that were only assumed on the basis of theory or lab scale experiments before. More specific, it confirms the role of oxygen content, temperatures in the different stages of the boiler, the presence of polysulphates, Pb and Zb, and the concentrations of HCl and SO 2 in the flue gas for different types of boiler corrosion. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozhkin, Anatoly V.; Brown, Thomas A.; Anderson, Patricia M.
One problem with developing continuous chronologies of paleoenvironmental change in northern areas of the Far East using 14C is the low organic content in lake sediments. However, Holocene age-models can be supplemented by widespread tephra deposits reported in the Magadan region. The best documented of these tephras has been correlated to the KO tephra from southern Kamchatka dated to 7600 BP. Though a key chronostratigraphic marker, no detailed compendium of the distribution of this tephra and its associated 14C dates has been available from sites in the northern Far East. We provide such a summary. Known locally as the Elikchanmore » tephra, lake cores indicate an ash fall that extended ~1800 km north of the Kamchatkan caldera with a ~500 km wide trajectory in the Magadan region. Other Holocene tephras preserved in lake sediments have poorer age control and possibly date to ~2500 BP, ~2700 BP and ~6000 BP. These ashes seem to be restricted to coastal or near-coastal sites. Finally, a single record of a ~25,000 BP tephra has also been documented ~100 km to the northeast of Magadan.« less
Lozhkin, Anatoly V.; Brown, Thomas A.; Anderson, Patricia M.; ...
2016-08-12
One problem with developing continuous chronologies of paleoenvironmental change in northern areas of the Far East using 14C is the low organic content in lake sediments. However, Holocene age-models can be supplemented by widespread tephra deposits reported in the Magadan region. The best documented of these tephras has been correlated to the KO tephra from southern Kamchatka dated to 7600 BP. Though a key chronostratigraphic marker, no detailed compendium of the distribution of this tephra and its associated 14C dates has been available from sites in the northern Far East. We provide such a summary. Known locally as the Elikchanmore » tephra, lake cores indicate an ash fall that extended ~1800 km north of the Kamchatkan caldera with a ~500 km wide trajectory in the Magadan region. Other Holocene tephras preserved in lake sediments have poorer age control and possibly date to ~2500 BP, ~2700 BP and ~6000 BP. These ashes seem to be restricted to coastal or near-coastal sites. Finally, a single record of a ~25,000 BP tephra has also been documented ~100 km to the northeast of Magadan.« less
NASA Astrophysics Data System (ADS)
Langmann, Baerbel; ZakšEk, Klemen; Hort, Matthias
2010-01-01
In August 2008, Kasatochi volcano on the Aleutian Islands erupted without much advance warning. Volcanic ash released during this eruption quickly settled out of the atmosphere, mainly into the NE Pacific Ocean. The amount of volcanic ash, as well as the ash fall area and volume into the NE Pacific Ocean, remains speculative, as only a limited number of measurements is available. We used a three-dimensional atmosphere/chemistry-aerosol model to determine the atmospheric distribution of SO2 and volcanic ash and its fallout after the eruption of Kasatochi volcano. In a first step, modeled atmospheric SO2 distributions are compared with satellite data, thereby evaluating the model capabilities to reasonably reproduce atmospheric transport patterns. For modeled volcanic ash mass a considerable reduction of the atmospheric content already occurred by 10 August, the second day after the eruption in accordance with satellite observations. Gravitational settling is the most efficient removal process for volcanic ash mass, exceeding dry and wet deposition by far. Assuming an ash volume of 0.3 km3 released during the eruption of Kasatochi volcano and a median ash particle diameter of 4 μm, the mass of volcanic ash removed at ground within the 0.1 mm isopach covers an area of 7.6 × 105 km2 over the NE Pacific Ocean and makes up 49% of the removed material out of the atmosphere. The amount of ash and that of iron attached to it is sufficient to explain measured seawater CO2 decrease at the ocean station Papa in August 2008 induced by iron fertilization and subsequent phytoplankton production.
Construction of a Dry Ash Dam with Soilbags and Slope Stability Analysis
NASA Astrophysics Data System (ADS)
Li, Hui; Song, Yingjun; Gao, Jiaorong; Li, Longhua; Zhou, Yuqi; Qi, Hui
2017-12-01
In thermal power plants, it is necessary to build ash dams to store fly ash, which is the by-product after the combustion of coals. To solve the problem of lacking rockfill materials in Africa, A new technology of constructing ash dams using solibags filled with local sands is proposed and the method of analyzing its slope stability is suggested. The design of the ash dam using soilbags in Lamb Thermal Power Plant of Kenya is introduced in detail. The slope stability of the soilbags-constructed ash dam was analyzed by adopting the suggested method. The results show that the soilbags filled with ash or sands have high compressive strength, and the primary dam constructed with soilbags can effectively retain the backfill ash and the stacking dam reinforced with soilbags can stand stable even with the slope of 1:1.5.
Ocean iron-fertilisation by volcanic ash
NASA Astrophysics Data System (ADS)
Langmann, B.; Zaksek, K.; Hort, M. K.; Duggen, S.
2009-12-01
Marine primary productivity (MPP) can be limited by the availability of macro-nutrients like nitrate and phosphate. In so-called ‘High-Nutrient-Low-Chlorophyll’ (HNLC) areas, macro-nutrient concentrations are high, but iron is the key biologically limiting micro-nutrient for primary production. Three major sources for iron supply into the ocean have been considered so far: upwelling of deep ocean water, advection from the continental margins and atmospheric deposition with aeolian dust deposition commonly assumed to dominate external iron supply to the open ocean. Iron supply to HNLC regions can affect climate relevant ocean-atmosphere exchanges of chemical trace species, e.g. organic carbon aerosols, DMS and CO2. Marine aerosols can act as efficient cloud condensation nuclei and significantly influence cloud properties and thus the Earth’s radiative budget via the indirect aerosol effects whereas a drawdown of atmospheric CO2 due to ocean fertilisation can have important implications for the global CO2 budget. Recent laboratory experiments suggest that material from volcanic eruptions such as ash may also affect the MPP through rapid iron-release on contact with seawater. Direct evidence, however, that volcanic activity can cause natural iron-fertilisation and MPP increase has been lacking so far. Here first evidence for a large-scale phytoplankton bloom in the NE Pacific resulting from volcanic ash fall after the eruption of Kasatochi volcano in August 2008 is presented. Atmospheric and oceanic conditions were favourable to generate this phytoplankton bloom. We present satellite observations to show the connection between volcanic ash fall and oceanic MPP. In addition, three-dimensional atmosphere/chemistry-aerosol model results are presented showing the atmospheric distribution of volcanic ash and its fall-out after the eruption of Kasatochi volcano. The amount of ash and that of iron attached to it is sufficient to explain measured seawater CO2 decrease at the ocean station Papa in August 2008 as well as the phytoplankton bloom in the Gulf of Alaska.
Lallement, Mailén; Macchi, Patricio J; Vigliano, Pablo; Juarez, Santiago; Rechencq, Magalí; Baker, Matthew; Bouwes, Nicolaas; Crowl, Todd
2016-01-15
Events such as volcanic eruptions may act as disturbance agents modifying the landscape spatial diversity and increasing environmental instability. On June 4, 2011 the Puyehue-Cordon Caulle volcanic complex located on Chile (2236 m.a.s.l., 40° 02' 24" S- 70° 14' 26" W) experience a rift zone eruption ejecting during the first day 950 million metric tons into the atmosphere. Due to the westerly winds predominance, ash fell differentially upon 24 million ha of Patagonia Argentinean, been thicker deposits accumulated towards the West. In order to analyze changes on stream fish assemblages we studied seven streams 8, 19 and 30 months after the eruption along the ash deposition gradient, and compare those data to pre eruption ones. Habitat features and structure of the benthic macroinvertebrate food base of fish was studied. After the eruption, substantial environmental changes were observed in association with the large amount of ash fallout. In western sites, habitat loss due to ash accumulation, changes in the riparian zone and morphology of the main channels were observed. Turbidity was the water quality variable which reflected the most changes throughout time, with NTU values decreasing sharply from West to East sites. In west sites, increased Chironomid densities were recorded 8 months after the initial eruption as well as low EPT index values. These relationships were reversed in the less affected streams farther away from the volcano. Fish assemblages were greatly influenced both by habitat and macroinvertebrate changes. The eruption brought about an initial sharp decline in fish densities and the almost total loss of young of the year in the most western streams affecting recruitment. This effect diminished rapidly with distance from the emission center. Thirty months after the eruption, environmental changes are still occurring as a consequence of basin wide ash remobilization and transport.
The optimum content of rubber ash in concrete: flexural strength
NASA Astrophysics Data System (ADS)
Senin, M. S.; Shahidan, S.; Shamsuddin, S. M.; Ariffin, S. F. A.; Othman, N. H.; Rahman, R.; Khalid, F. S.; Nazri, F. M.
2017-11-01
Discarded scrap tyres have become one of the major environmental problems nowadays. Several studies have been carried out to reuse waste tires as an additive or sand replacement in concrete with appropriate percentages of tire rubber, called as rubberized concrete to solve this problem. The main objectives of this study are to investigate the flexural strength performance of concrete when adding the rubber ash and also to analyse the optimum content of rubber ash in concrete prisms. The performance total of 30 number of concrete prisms in size of 100mm x 100mm x 500 mm were investigated, by partially replacement of rubber ash with percentage of 0%, 3%, 5%, 7% and 9% from the volume of the sand. The flexural strength is increased when percentage of rubber ash is added 3% from control concrete prism, RA 0 for both concrete prism age, 7 days and 28 days with value 1.21% and 0.976% respectively. However, for RA 5, RA 7 and RA 9, the flexural strength was decreased compared to the control for both age, 7 days and 28 days. In conclusion, 3% is the optimum content of rubber ash in concrete prism for both concrete age
NASA Astrophysics Data System (ADS)
Jensen, B. J. L.; Mackay, H.; Pyne-O'Donnell, S.; Plunkett, G.; Hughes, P. D. M.; Froese, D. G.; Booth, R.
2014-12-01
Cryptotephras (tephra not visible to the naked eye) form the foundation of the tephrostratigraphic frameworks used in Europe to date and correlate widely distributed geologic, paleoenvironmental and archaeological records. Pyne-O'Donnell et al. (2012) established the potential for developing a similar crypto-tephrostratigraphy across eastern North America by identifying multiple tephra, including the White River Ash (east; WRAe), St. Helens We and East Lake, in a peat core located in Newfoundland. Following on from this work, several ongoing projects have examined additional peat cores from Michigan, New York State, Maine, Nova Scotia and Newfoundland to build a tephrostratigraphic framework for this region. Using the precedent set by recent research by Jensen et al.(in press) that correlated the Alaskan WRAe to the European cryptotephra AD860B, unknown tephras identified in this work were not necessarily assumed to be from "expected" source areas (e.g. the Cascades). Here we present several examples of the preservation of tephra layers with an intercontinental distribution (i.e. WRAe and Ksudach 1), from relatively small magnitude events (i.e. St. Helens layer T, Mono Crater), and the first example of a Mexican ash in the NE (Volcan Ceboruco, Jala pumice). There are several implications of the identification of these units. These far-travelled ashes: (1) highlight the need to consider "ultra" distal source volcanoes for unknown cryptotephra deposits,. (2) present an opportunity for physical volcanologists to examine why some eruptions have an exceptional distribution of ash that is not necessarily controlled by the magnitude of the event. (3) complicate the idea of using tephrostratigraphic frameworks to understand the frequency of eruptions towards aiding hazard planning and prediction (e.g. Swindles et al., 2011). (4) show that there is a real potential to link tropical and mid to high-latitude paleoenvironmental records. Jensen et al. (in press) Transatlantic correlation of the Alaskan White River Ash. Geology. Pyne-O'Donnell et al. (2012). High-precision ultra-distal Holocene tephrochronology in North America. Quaternary Science Reviews, 52, 6-11. Swindles et al. (2011). A 7000 yr perspective on volcanic ash clouds affecting northern Europe. Geology, 39, 887-890.
The enormous Chillos Valley Lahar: An ash-flow-generated debris flow from Cotopaxi Volcano, Ecuador
Mothes, P.A.; Hall, M.L.; Janda, R.J.
1998-01-01
The Chillos Valley Lahar (CVL), the largest Holocene debris flow in area and volume as yet recognized in the northern Andes, formed on Cotopaxi volcano's north and northeast slopes and descended river systems that took it 326 km north-northwest to the Pacific Ocean and 130+ km east into the Amazon basin. In the Chillos Valley, 40 km downstream from the volcano, depths of 80-160 m and valley cross sections up to 337000m2 are observed, implying peak flow discharges of 2.6-6.0 million m3/s. The overall volume of the CVL is estimated to be ???3.8 km3. The CVL was generated approximately 4500 years BP by a rhyolitic ash flow that followed a small sector collapse on the north and northeast sides of Cotopaxi, which melted part of the volcano's icecap and transformed rapidly into the debris flow. The ash flow and resulting CVL have identical components, except for foreign fragments picked up along the flow path. Juvenile materials, including vitric ash, crystals, and pumice, comprise 80-90% of the lahar's deposit, whereas rhyolitic, dacitic, and andesitic lithics make up the remainder. The sand-size fraction and the 2- to 10-mm fraction together dominate the deposit, constituting ???63 and ???15 wt.% of the matrix, respectively, whereas the silt-size fraction averages less than ???10 wt.% and the clay-size fraction less than 0.5 wt.%. Along the 326-km runout, these particle-size fractions vary little, as does the sorting coefficient (average = 2.6). There is no tendency toward grading or improved sorting. Limited bulking is recognized. The CVL was an enormous non-cohesive debris flow, notable for its ash-flow origin and immense volume and peak discharge which gave it characteristics and a behavior akin to large cohesive mudflows. Significantly, then, ash-flow-generated debris flows can also achieve large volumes and cover great areas; thus, they can conceivably affect large populated regions far from their source. Especially dangerous, therefore, are snowclad volcanoes with recent silicic ash-flow histories such as those found in the Andes and Alaska.
Possible large-volume mafic explosive eruptions in the Izu arc recorded in IODP Site U1436
NASA Astrophysics Data System (ADS)
Tamura, Y.; Jutzeler, M.; Schindlbeck, J. C.; Nichols, A. R.; DeBari, S.; Gill, J.; Busby, C. J.; Blum, P.
2014-12-01
The Izu-Bonin-Mariana volcanic arc system is an excellent example of an intraoceanic convergent margin where the effects of crustal anatexis and assimilation are considered to be minimal. The Izu fore arc is a repository of ashes erupted in the Izu-Bonin frontal arc because the prevailing wind blows from west to east. IODP Site U1436 (proposed Site IBM-4GT), located at 32°23.88'N, 140°21.93'E, lies in the western part of the Izu fore arc basin, ~60 km east of the arc-front volcano Aogashima, ~170 km west of the axis of the Izu-Bonin Trench, 1.5 km west of ODP Site 792, and at 1776 mbsl. It was drilled in April-May 2014, during IODP Expedition 350, as a 150 m deep geotechnical test hole for potential future deep drilling at proposed Site IBM-4 using the D/V Chikyu. The stratigraphic record of Late Pleistocene mafic and silicic explosive volcanic products from the arc front consists of tuffaceous mud interstratified with mafic and evolved ash and lapilli, including distinctive black glassy mafic ash layers. These distinctive intervals are basaltic andesite and the most mafic deposits analyzed shipboard at Site U1436. The facies appeared to be unusually homogeneous in componentry and texture; the overwhelmingly glassy nature of the ash suggests subaqueous explosive eruption, and its good sorting suggests deposition by vertical settling through the water column from an ash plume that reached the atmosphere. An alterative hypothesis is that the ash layers have been redeposited in bathymetric lows by submarine density currents. These black glassy mafic ash layers attracted a great deal of interest among the science party because, if the first hypothesis is correct, they could record large-volume mafic explosive eruptions. As a result three more holes were drilled at Site U1436, in order to recover undisturbed examples of these layers. Samples from each hole are currently undergoing post-cruise geochemical (major, traces and volatiles) and componentry analysis to test these two hypotheses in more detail.
NASA Astrophysics Data System (ADS)
van Otterloo, Jozua; Cas, Raymond A. F.; Sheard, Malcolm J.
2013-08-01
The ˜5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin-medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water-magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a "magmatic horizon" of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW-SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.
Wang, Xiaona; Agathokleous, Evgenios; Qu, Laiye; Fujita, Saki; Watanabe, Makoto; Tamai, Yutaka; Mao, Qiaozhi; Koyama, Akihiro; Koike, Takayoshi
2018-03-15
With the rapid industrial development and modern agricultural practices, increasing nitrogen (N) deposition can cause nutrient imbalance in immature volcanic ash soil commonly found in Japan. Larch species, widely distributed in northeast Eurasia, are associated with ectomycorrhizal (ECM) fungi which play a critical role in nutrient acquisition for their hosts. In this study, we investigated species richness and diversity of ECM fungi associated with a hybrid larch (F 1 ) and its parents, Dahurian larch (Larix gmelinii var. japonica) and Japanese larch (L. kaempferi), under simulated N deposition (0 and 100kgha -1 yr -1 ) with/without phosphorous (P) (0 and 50kgha -1 yr -1 ). Seedlings planted in immature volcanic ash with low nutrient availability were subjected to the N and P treatments for fifteen months. We found that response of ECM community structure to the increased nutrient availability depended on host genotypes. Nutrient addition significantly affected ECM structure in Japanese larch, but no such significant effect was found for Dahurian larch. Effects of the nutrient addition to ECM fungal community in F 1 were intermediate. F 1 was tolerant to high N loading, which was due to consistent, relatively high association with Suillus sp. and Hebeloma sp. F 1 showed heterosis in relative biomass, which was most apparent under high N treatments. This co-variation of ECM fungal community structure and F 1 biomass in response to N loading suggest that ECM community structure might play an important role in host growth. The present findings indicate effects of N deposition on ECM fungal community structure can depend on larch species, thus it is challenging to predict general trends. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Damby, D. E.; Horwell, C. J.; Baxter, P. J.; Delmelle, P.; Donaldson, K.; Dunster, C.; Fubini, B.; Murphy, F. A.; Nattrass, C.; Sweeney, S.; Tetley, T. D.; Tomatis, M.
2013-07-01
Ashfall into heavily populated areas during the October-November 2010 eruption of Merapi volcano, Indonesia created anxiety regarding the growing impacts to health as the eruption escalated and the hazard zone widened. We made a preliminary assessment of the respiratory hazards to human health of the tephra deposits (ashfall, lahar, and PDC surge) from the eruption using a laboratory protocol specifically developed to study the toxic potential of volcanic ash particles. Twenty samples collected from a range of locations were analysed for health-pertinent mineralogical parameters (grain size, crystalline silica content, morphology, surface area, bulk chemistry, and leachable elements) and bio-reactivity (hydroxyl radical generation, haemolytic potential, oxidative capacity, pro-inflammatory response). The grain size pertinent to respiratory health was variable, ranging from 1.4-15.6 vol.% sub-4 μm and 3.0-28.9 vol.% sub-10 μm diameter material. No fibre-like particles were observed. Cristobalite was present in all samples, ranging from 1.9-9.5 wt.%, but surface reactivity and in vitro toxicity assays showed low reactivity for all samples tested. The risk of direct exposure to ash from fallout was in any case low due to seasonal rains limiting its re-suspension and the immediate and effective clean-up of communities by local people who supplied the ash to the Indonesian construction industry for use as aggregate. However, mining of the lahar and thick PDC deposits in the valleys draining the volcano is performed on a vast, industrial scale, which could result in high occupational exposure to thousands of sand miners at Merapi during the dry seasons. Further study of the health hazard of the mined Merapi deposits is warranted.
Eco-friendly fly ash utilization: potential for land application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malik, A.; Thapliyal, A.
2009-07-01
The increase in demand for power in domestic, agricultural, and industrial sectors has increased the pressure on coal combustion and aggravated the problem of fly ash generation/disposal. Consequently the research targeting effective utilization of fly ash has also gained momentum. Fly ash has proved to be an economical substitute for expensive adsorbents as well as a suitable raw material for brick manufacturing, zeolite synthesis, etc. Fly ash is a reservoir of essential minerals but is deficient in nitrogen and phosphorus. By amending fly ash with soil and/or various organic materials (sewage sludge, bioprocess materials) as well as microbial inoculants likemore » mycorrhizae, enhanced plant growth can be realized. Based on the sound results of large scale studies, fly ash utilization has grown into prominent discipline supported by various internationally renowned organizations. This paper reviews attempts directed toward various utilization of fly ash, with an emphasis on land application of organic/microbial inoculants amended fly ash.« less
Preliminary volcano-hazard assessment for Mount Spurr Volcano, Alaska
Waythomas, Christopher F.; Nye, Christopher J.
2001-01-01
Mount Spurr volcano is an ice- and snow-covered stratovolcano complex located in the north-central Cook Inlet region about 100 kilometers west of Anchorage, Alaska. Mount Spurr volcano consists of a breached stratovolcano, a lava dome at the summit of Mount Spurr, and Crater Peak vent, a small stratocone on the south flank of Mount Spurr volcano. Historical eruptions of Crater Peak occurred in 1953 and 1992. These eruptions were relatively small but explosive, and they dispersed volcanic ash over areas of interior, south-central, and southeastern Alaska. Individual ash clouds produced by the 1992 eruption drifted east, north, and south. Within a few days of the eruption, the south-moving ash cloud was detected over the North Atlantic. Pyroclastic flows that descended the south flank of Crater Peak during both historical eruptions initiated volcanic-debris flows or lahars that formed temporary debris dams across the Chakachatna River, the principal drainage south of Crater Peak. Prehistoric eruptions of Crater Peak and Mount Spurr generated clouds of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. A flank collapse on the southeast side of Mount Spurr generated a large debris avalanche that flowed about 20 kilometers beyond the volcano into the Chakachatna River valley. The debris-avalanche deposit probably formed a large, temporary debris dam across the Chakachatna River. The distribution and thickness of volcanic-ash deposits from Mount Spurr volcano in the Cook Inlet region indicate that volcanic-ash clouds from most prehistoric eruptions were as voluminous as those produced by the 1953 and 1992 eruptions. Clouds of volcanic ash emitted from the active vent, Crater Peak, would be a major hazard to all aircraft using Ted Stevens Anchorage International Airport and other local airports and, depending on wind direction, could drift a considerable distance beyond the volcano. Ash fall from future eruptions could disrupt many types of economic and social activities, including oil and gas operations and shipping activities in the Cook Inlet area. Eruptions of Crater Peak could involve significant amounts of ice and snow that would lead to the formation of large lahars, formation of volcanic debris dams, and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.
Methane in the Upper Silesian Coal Basin (Poland) - problem of reserves and exploitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojcik, A.J.
1995-08-01
The Upper Silesian Coal Basin (USCB) is the best recognized and the most productive coal basin in Poland. The USCB is primarily defined by the extent of Carboniferous coal-bearing formations. The sedimentary fill displays the stratigraphic record of major progressive inversion phases of the entire Moravo-Silesian basin during the late and post-geosynclinal period of the Variscan orogeny. According to the last estimates the coal reserves occurring above the depth limit of 1500 in are as follows: documented reserves - 58 billion tons, prognostic reserves - 46 billion tons, total - 104 billion tons. The coal type is predominantly vitrinitic, andmore » ash content is reported to be in the range of 11-17% and average sulphur content is 1.13%. The rank of USCB coal is largely controlled by complex coalification processes. It ranges from high volatile bituminous B, through medium volatile bituminous to high rank special coal semi anthracite and anthracite. The methane content of coal seams in USCB varies in a very broad range of 0-22 m{sup 3}/t coal (dry, ash free basis). The average gas content increases considerably within the depth range 600-1000 in from 0.99 to 4.68 m{sup 3}/t coal (daf). In deeper horizons it is more or less stable varying within the range of 4.7-7.0 m{sup 3}/t coal (daf). By this estimate, on average, the methane content is about 12,5 m{sup 3}/ton. There are several estimates of coal-bed methane resources in the USCB based on different methods. The resources are as follows: documented deposits in active mines to 1000 m: 370 BCM, undeveloped deposits to 1000 in: 340 BCM, deposit between 1000 and 1500 m: 590 BCM, total: 1300 BCM. The coalbed gas from this basin is primarily composed of saturated hydrocarbons and Nitrogen which amount to 97 volume percent. The rest is dominant by Carbon dioxide and Hydrogen.« less
Optimal likelihood-based matching of volcanic sources and deposits in the Auckland Volcanic Field
NASA Astrophysics Data System (ADS)
Kawabata, Emily; Bebbington, Mark S.; Cronin, Shane J.; Wang, Ting
2016-09-01
In monogenetic volcanic fields, where each eruption forms a new volcano, focusing and migration of activity over time is a very real possibility. In order for hazard estimates to reflect future, rather than past, behavior, it is vital to assemble as much reliable age data as possible on past eruptions. Multiple swamp/lake records have been extracted from the Auckland Volcanic Field, underlying the 1.4 million-population city of Auckland. We examine here the problem of matching these dated deposits to the volcanoes that produced them. The simplest issue is separation in time, which is handled by simulating prior volcano age sequences from direct dates where known, thinned via ordering constraints between the volcanoes. The subproblem of varying deposition thicknesses (which may be zero) at five locations of known distance and azimuth is quantified using a statistical attenuation model for the volcanic ash thickness. These elements are combined with other constraints, from widespread fingerprinted ash layers that separate eruptions and time-censoring of the records, into a likelihood that was optimized via linear programming. A second linear program was used to optimize over the Monte-Carlo simulated set of prior age profiles to determine the best overall match and consequent volcano age assignments. Considering all 20 matches, and the multiple factors of age, direction, and size/distance simultaneously, results in some non-intuitive assignments which would not be produced by single factor analyses. Compared with earlier work, the results provide better age control on a number of smaller centers such as Little Rangitoto, Otuataua, Taylors Hill, Wiri Mountain, Green Hill, Otara Hill, Hampton Park and Mt Cambria. Spatio-temporal hazard estimates are updated on the basis of the new ordering, which suggest that the scale of the 'flare-up' around 30 ka, while still highly significant, was less than previously thought.
NASA Astrophysics Data System (ADS)
Buckland, Hannah M.; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.
2018-01-01
Interactions between clasts in pyroclastic density currents (PDCs) generate volcanic ash that can be dispersed to the atmosphere in co-PDC plumes, and due to its small size, is far-travelled. We designed a series of experiments to determine the effects of pyroclast vesicularity and crystal content on the efficiency and type of ash generated by abrasion. Two different pyroclastic materials were used: (1) basaltic-andesite pyroclasts from Fuego volcano (Guatemala) with 26-46% vesicularity and high groundmass crystallinity and (2) tephri-phonolite Avellino pumice (Vesuvius, Italy) with 55-75% vesicularity and low groundmass crystallinity. When milled, both clast types produced bimodal grain size distributions with fine ash modes between 4 and 5φ (32-63 μm). Although the vesicular Avellino pumice typically generated more ash than the denser Fuego pyroclasts, the ash-generating potential of a single pyroclast was independent of density, and instead governed by heterogeneous crystal and vesicle textures. One consequence of these heterogeneities was to cause the vesicular Avellino clasts to split in addition to abrading, which further enhanced abrasion efficiency. The matrix characteristics also affected ash shape and componentry, which will influence the elutriation and transport properties of ash in the atmosphere. The experimental abrasion successfully replicated some of the characteristics of natural co-PDC ash samples, as shown by similarities in the Adherence Factor, which measures the proportion of attached matrix on phenocrysts, of both the experimentally generated ash and natural co-PDC ash samples. Our results support previous studies, which have shown that abrasion is an effective mechanism for generating fine ash that is similar in size ( 5φ; 30 μm) to that found in co-PDC deposits. We further show that both the abundance and nature (shape, density, components, size distribution) of those ash particles are strongly controlled by the matrix properties of the abraded pyroclasts.
Fiske, R.S.; Rose, T.R.; Swanson, D.A.; Champion, D.E.; McGeehin, J.P.
2009-01-01
K??lauea may be one of the world's most intensively monitored volcanoes, but its eruptive history over the past several thousand years remains rather poorly known. Our study has revealed the vestiges of thin basaltic tephra deposits, overlooked by previous workers, that originally blanketed wide, near-summit areas and extended more than 17 km to the south coast of Hawai'i. These deposits, correlative with parts of tephra units at the summit and at sites farther north and northwest, show that K??lauea, commonly regarded as a gentle volcano, was the site of energetic pyroclastic eruptions and indicate the volcano is significantly more hazardous than previously realized. Seventeen new calibrated accelerator mass spectrometry (AMS) radiocarbon ages suggest these deposits, here named the Kulanaokuaiki Tephra, were emplaced ca. A.D. 400-1000, a time of no previously known pyroclastic activity at the volcano. Tephra correlations are based chiefly on a marker unit that contains unusually high values of TiO2 and K2O and on paleomagnetic signatures of associated lava flows, which show that the Kulanaokuaiki deposits are the time-stratigraphic equivalent of the upper part of a newly exhumed section of the Uw??kahuna Ash in the volcano's northwest caldera wall. This section, thought to have been permanently buried by rockfalls in 1983, is thicker and more complete than the previously accepted type Uw??kahuna at the base of the caldera wall. Collectively, these findings justify the elevation of the Uw??kahuna Ash to formation status; the newly recognized Kulanaokuaiki Tephra to the south, the chief focus of this study, is defined as a member of the Uw??kahuna Ash. The Kulanaokuaiki Tephra is the product of energetic pyroclastic falls; no surge- or pyroclastic-flow deposits were identified with certainty, despite recent interpretations that Uw??kahuna surges extended 10-20 km from K??lauea's summit. ?? 2009 Geological Society of America.
NASA Astrophysics Data System (ADS)
Cimarelli, C.; Di Traglia, F.; Vona, A.,; Taddeucci, J.
2012-04-01
A broad range of low- to mid-intensity explosive activity is dominated by the emission of ash-sized pyroclasts. Among this activity, Violent Strombolian phases characterize the climax of many mafic explosive eruptions. Such phases last months to years, and produce ash-charged plumes several kilometers in height, posing severe threats to inhabited areas. To tackle the dominant processes leading to ash formation during Violent Strombolian eruptions, we investigated the magma rheology and the field and textural features of products from the 11 ka Croscat basaltic complex scoria cone in the Quaternary Garrotxa Volcanic Field (GVF). Field, grain-size, chemical (XRF, FE-SEM and electron microprobe) and textural analyses of the Croscat pyroclastic succession outlined the following eruption evolution: activity at Croscat began with fissural, Hawaiian-type fountaining that rapidly shifted towards Strombolian style from a central vent. Later, a Violent Strombolian explosion included several stages, with different emitted volumes and deposit features indicative of differences within the same eruptive style: at first, quasi-sustained fire-fountaining with ash jet and plume produced a massive, reverse to normal graded, scoria deposit; later, a long lasting series of ash-explosions produced a laminated scoria deposit. The eruption ended with a lava flow breaching the western-side of the volcano. Scoria clasts from the Croscat succession ubiquitously show micrometer- to centimeter-sized, microlite-rich domains (MRD) intermingled with volumetrically dominant, microlite-poor domains (MPD). MRD magmas resided longer in a relatively cooler, degassed zone lining the conduit walls, while MPD ones travelled faster along the central, hotter streamline, the two interminging along the interface between the two velocity zones. The preservation of two distinct domains in the short time-scale of the eruption was favoured by their rheological contrast related to the different microlite abundances. The proportion of MPD and MRD, in agreement with bubble-number density (BND), in different tephra layers reflects the extent of the fast- and slow-flowing zones, thus reflecting the ascent velocity profile of magma during the different phases. Recent works (Kueppers et al. 2006, "Explosive energy" during volcanic eruptions from fractal analysis of pyroclasts) indicate that fractal fragmentation theory may allow for quantifying fragmentation processes during explosive volcanic eruptions by calculating the fractal dimension (D) of the size distribution of pyroclasts. At Croscat, BND and MPD/MRD volume ratio decreased during the violent Strombolian activity while D increased, suggesting that the decrease in the magma flow rate was accompanied by the increase in fragmentation efficiency, i.e. by the increase in the ash production capability. This trend may be tentatively attributed to an increased rheological stiffness of the magma progressively enhancing its brittle, more efficient fragmentation.
Doherty, David J.; McBroome, Lisa Ann; Kuntz, Mel A.
1979-01-01
A 10,365 ft (3,159 m) geothermal test well was drilled in the spring of 1979 at the Idaho National Engineering Laboratory, eastern Snake River Plain, Idaho: The majority of rock types encountered in the borehole are of volcanic origin. An upper section above 2,445 ft (745 m) consists of basaltic lava flows and interbedded .sediments of alluvial, lacustrine, and volcanic origin. A lower section below 2,445 ft (745 m) consists exclusively of rhyolitic welded ash-flow tuffs, air-fall ash deposits, nonwelded ash-flow ruffs, and volcaniclastic sediments. The lithology and thickness of the rhyolitic rocks suggest that they are part of an intracaldera fill.
NASA Astrophysics Data System (ADS)
Tauanov, Z.; Abylgazina, L.; Spitas, C.; Itskos, G.; Inglezakis, V.
2017-09-01
Coal fly ash (CFA) is a waste by-product of coal combustion. Kazakhstan has vast coal deposits and is major consumer of coal and hence produces huge amounts of CFA annually. The government aims to recycle and effectively utilize this waste by-product. Thus, a detailed study of the physical and chemical properties of material is required as the data available in literature is either outdated or not applicable for recently produced CFA samples. The full mineralogical, microstructural and thermal characterization of three types of coal fly ash (CFA) produced in two large Kazakhstani power plants is reported in this work. The properties of CFAs were compared between samples as well as with published values.
2006-01-12
This MGS MOC image shows a group of tapered ridges, known as yardangs, which formed by wind erosion of a relatively easily-eroded material, most likely sedimentary rock or volcanic ash deposits containing some fraction of sand-sized grains
Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant
NASA Astrophysics Data System (ADS)
Izzati Raihan Ramzi, Nurul; Shahidan, Shahiron; Zulkhairi Maarof, Mohamad; Ali, Noorwirdawati
2016-11-01
The objective of this study is to determine the physical and chemical characteristics of Coal Bottom Ash (CBA) obtained from Tanjung Bin Power Plant Station and compare them with the characteristics of natural river sand (as a replacement of fine aggregates). Bottom ash is the by-product of coal combustion during the electricity generating process. However, excess bottom ash production due to the high production of electricity in Malaysia has caused several environmental problems. Therefore, several tests have been conducted in order to determine the physical and chemical properties of bottom ash such as specific gravity, density, particle size distribution, Scanning Electron Microscopic (SEM) and X- Ray Fluorescence (XRF) in the attempt to produce sustainable material from waste. The results indicated that the natural fine aggregate and coal bottom ash have very different physical and chemical properties. Bottom ash was classified as Class C ash. The porous structure, angular and rough texture of bottom ash affected its specific gravity and particle density. From the tests, it was found that bottom ash is recommended to be used in concrete as a replacement for fine aggregates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, W.J.; DeMaris, P.J.; Bauer, R.A.
One of the largest deposits of low-sulfur coal in the Illinois Basin is in the so-called Hornsby District of Christian, Macoupin, and Montgomery Counties. An estimated resource of 1.17 billion tons of Herrin (No. 6) Coal, containing less than 2.5% sulfur, occurs here. Although the Hornsby deposit is thick, lies at moderate depth, and is close to market and labor supply, it has been barely touched by mining. The primary deterrent to mining this high-quality product has been fear of unstable roof conditions. Low-sulfur Hornsby coal contains about 1.5% less ash and 2% more moisture than does adjacent high-sulfur coal.more » The lower ash content probably reflects scarcity of pyrite. The reason for the difference in moisture content is unknown. High- and low-sulfur coal are nearly identical in heating value.« less
The suitability of ultrafine coal as an industrial boiler fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barratt, D.J.; Roberts, P.T.
1989-07-01
Coal that was finely ground to a mean particle size of 12 /mu/m produced a hotter, shorter flame compared to normal pulverized fuel in a pilot scale combustor. Measurements indicated that, should this fuel be fired in an industrial boiler, the rate of ash deposition on the walls and convection tubes could be low, but that the thin ash deposits that were produced might be more highly insulating and would therefore require more frequent cleaning. A mathematical model, using reactivity and pyrolysis data measured in laboratory-scale apparatus, has been used to predict the heat release rate within a boiler. Thismore » would be sufficiently high to allow a premium-quality finely ground coal to be burned in many boilers originally designed for oil firing, provided that burner mixing patterns were optimized.« less
Generation of fine hydromagmatic ash by growth and disintegration of glassy rinds
Mastin, L.G.
2007-01-01
The deposits of mafic hydromagmatic eruptions are more fine grained and variable in vesicularity than dry magmatic deposits. Blocky, equant shapes of many hydromagmatic clasts also contrast with droplet, thread, and bubble wall morphology of dry magmatic fragments. Small (?? 180 ??m), blocky hydromagmatic pyroclasts have traditionally been interpreted to result from discrete vapor explosions, although such explosions tend to occur only under certain conditions. This paper considers a process of hydromagmatic ash formation that involves repeated growth and disintegration of glassy rinds on pyroclast surfaces as they deform within turbulent flows. This process, termed "turbulent shedding", may occur during the expansion phase of vapor explosions or during turbulent but nonexplosive mixing of magma with water, steam, or water sprays. The occurrence of turbulent shedding and the resulting fragment sizes depend on the timescale for rind growth and the timescale between disturbances that remove or disintegrate glassy rinds. Turbulent shedding is directly observable in some small littoral jets at Kilauea. Calculations suggest that, in the presence of liquid water or water sprays, glassy rinds having a thickness of microns to millimeters should form in milliseconds to seconds. This is similar to the timescale between turbulent velocity fluctuations that can shred lava globules and remove such rinds. The fraction of a deposit consisting of fine ash should increase with the duration of this process: Large-scale Surtseyan jets generate hundreds or thousands of shedding events; bubble bursts or tephra jets at Kilauea's coast may produce only a few.
Preparation of Al-Si Master Alloy by Electrochemical Reduction of Fly Ash in Molten Salt
NASA Astrophysics Data System (ADS)
Liu, Aimin; Li, Liangxing; Xu, Junli; Shi, Zhongning; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen; Yu, Jiangyu; Chen, Gong
2014-05-01
An electrochemical method on preparation of Al-Si master alloy was investigated in fluoride-based molten salts of 47.7wt.%NaF-43.3wt.%AlF3-4wt.%CaF2 containing 5 wt.% fly ash at 1233 K. The cathodic products obtained by galvanostatic electrolysis were analyzed by means of x-ray diffraction, x-ray fluorescence, scanning electron microscopy, and energy-dispersive spectrometry. The result showed that the compositions of the products are Al, Si, and Al3.21Si0.47. Meanwhile, the cathodic electrochemical process was studied by cyclic voltammetry, and the results showed the reduction peak of aluminum deposition is at -1.3 V versus the platinum quasi-reference electrode in 50.3wt.%NaF-45.7wt.%AlF3-4wt.%CaF2 molten salts, while the reduction peak at -1.3 V was the co-deposition of aluminum and silicon when the fly ash was added. The silicon and iron were formed via both co-deposition and aluminothermic reduction. In the electrolysis experiments, current efficiency first increased to a maximum value of 40.7% at a current density of 0.29 A/cm2, and then it decreased with the increase of current density. With the electrolysis time lasting, the content of aluminum in the alloys decreased from 76.05 wt.% to 48.29 wt.% during 5 h, while the content of silicon increased from 15.94 wt.% to 37.89 wt.%.
NASA Astrophysics Data System (ADS)
Salomatov, V. V.; Kuznetsov, G. V.; Syrodoy, S. V.
2017-11-01
The results of the numerical simulation of heat transfer from the combustion products of coal and coal-water fuels (CWF) to the internal environment. The mathematical simulation has been carried out on the sample of the pipe surfaces of the combustion chamber of the boiler unit. The change in the characteristics of heat transfer (change of thermochemical characteristics) in the conditions of formation of the ash deposits have been taken into account. According to the results of the numerical simulation, the comparative analysis of the efficiency of heat transfer has been carried out from the furnace environment to the inside pipe coolant (water, air, or water vapor) from the combustion of coal and coal-water fuels. It has been established that, in the initial period of the boiler unit operation during coal fuel combustion the efficiency of heat transfer from the combustion products of the internal environment is higher than when using CWF. The efficiency of heat transfer in CWF combustion conditions is more at large times (τ≥1.5 hours) of the boiler unit. A significant decrease in heat flux from the combustion products to the inside pipe coolant in the case of coal combustion compared to CWF has been found. It has been proved that this is due primarily to the fact that massive and strong ash deposits are formed during coal combustion.
NASA Astrophysics Data System (ADS)
Ficken, Cari D.; Wright, Justin P.
2017-01-01
Many ecosystems experience drastic changes to soil nutrient availability associated with fire, but the magnitude and duration of these changes are highly variable among vegetation and fire types. In pyrogenic pine savannas across the southeastern United States, pulses of soil inorganic nitrogen (N) occur in tandem with ecosystem-scale nutrient losses from prescribed burns. Despite the importance of this management tool for restoring and maintaining fire-dependent plant communities, the contributions of different mechanisms underlying fire-associated changes to soil N availability remain unclear. Pulses of N availability following fire have been hypothesized to occur through (1) changes to microbial cycling rates and (2) direct ash deposition. Here, we document fire-associated changes to N availability across the growing season in a longleaf pine savanna in North Carolina. To differentiate between possible mechanisms driving soil N pulses, we measured net microbial cycling rates and changes to soil δ15N before and after a burn. Our findings refute both proposed mechanisms: we found no evidence for changes in microbial activity, and limited evidence that ash deposition could account for the increase in ammonium availability to more than 5-25 times background levels. Consequently, we propose a third mechanism to explain post-fire patterns of soil N availability, namely that (3) changes to plant sink strength may contribute to ephemeral increases in soil N availability, and encourage future studies to explicitly test this mechanism.
Human Footprints in Relation to the 1790 Eruption of Kilauea
NASA Astrophysics Data System (ADS)
Swanson, D. A.; Rausch, J.
2008-12-01
In 1790, a party of warriors and their families was decimated by an explosive eruption of Kilauea; fatality estimates range from about 80 to 5,405. In 1920, thousands of footprints made by barefoot walkers in wet accretionary lapilli ash were found within a few kilometers southwest of Kilauea's summit. In 1921, Jaggar related the footprints to survivors or rescuers of the 1790 eruption, mainly because he assumed that few people visited the supposedly forbidden area except in 1790. Archaeologists from Hawai'i Volcanoes National Park recently questioned whether the footprints were made at that time and by warriors, citing a wide range of directions that people were walking and evidence of extensive human use of the area. Forensic and anthropologic studies indicate that a human foot is about 15 percent of an individual's height. A man's foot may be slightly more that 15 percent, a women's slightly less, but nonetheless the height can be estimated to within a few centimeters. We measured the heel-big toe length of more than 400 footprints and calculated an average height of 1.5 m, including some children only a little more than 1 m tall. Few calculated heights are 1.75 m or more. Early Europeans described Hawaiian warriors as tall, one missionary estimating an average height of 1.78 m. A footprint may be larger than a foot, particularly in slippery, wet ash, so our estimates of heights are probably somewhat too large. The data indicate that most of the footprints were made by women and children, not by men, much less warriors. We traced the footprint-bearing ash into the tephra section on the southwest side of Kilauea's caldera. It occurs high in the section, resting on older explosive deposits. Its surface is indented by small lithic lapilli, which fell into the ash while it was still wet; a few even landed in footprints. The lithic lapilli are at the edge of a thick block and lapilli deposit that fell from a high eruption column; the column reached well into the jet stream, because its fallout was mainly dispersed east-southeastward by westerlies, a wind direction found only at high altitudes in Hawai'i. Surges associated with the high eruption column swept over the southwest and west rims of the caldera. These relations indicate that the accretionary lapilli (footprints) ash was an early stage of a powerful eruption involving both high columns and lithic surges. Hawaiian oral tradition says that the 1790 eruption was large, and Jaggar calculated a column height probably greater than 9 km (30,000 ft) based on observations of a pillar (eruption column) seen over Mauna Loa when viewed from the north. This is about halfway through the jet stream. Our work found two deposits of the late 1700s dispersed east of Kilauea's summit. The younger was probably erupted in 1790. A reconstruction of events in 1790 suggests that the accretionary lapilli ash fell early in the eruption, blown southwestward into areas where family groups, mainly women and children, were chipping glass from old pahoehoe for tools. They probably sought shelter while the ash was falling. but once it stopped, they slogged through the mud, leaving footprints in the 2-cm-thick deposit.. Meanwhile, the warriors and their families, camped at Kilauea's summit (supposedly for 3 days) waiting for the eruption to end, saw the sky clear following the ash eruption and started walking southwestward along the west side of the summit area. Then the most powerful stage of the eruption began, sending surges westward across the path of the doomed group, killing many. Afterwards, any survivors or rescuers who walked on the accretionary lapilli ash, by now dry, left no footprints that are preserved.
Ongoing hydrothermal heat loss from the 1912 ash-flow sheet, Valley of Ten Thousand Smokes, Alaska
Hogeweg, N.; Keith, T.E.C.; Colvard, E.M.; Ingebritsen, S.E.
2005-01-01
The June 1912 eruption of Novarupta filled nearby glacial valleys on the Alaska Peninsula with ash-flow tuff (ignimbrite), and post-eruption observations of thousands of steaming fumaroles led to the name 'Valley of Ten Thousand Smokes' (VTTS). By the late 1980s most fumarolic activity had ceased, but the discovery of thermal springs in mid-valley in 1987 suggested continued cooling of the ash-flow sheet. Data collected at the mid-valley springs between 1987 and 2001 show a statistically significant correlation between maximum observed chloride (Cl) concentration and temperature. These data also show a statistically significant decline in the maximum Cl concentration. The observed variation in stream chemistry across the sheet strongly implies that most solutes, including Cl, originate within the area of the VTTS occupied by the 1912 deposits. Numerous measurements of Cl flux in the Ukak River just below the ash-flow sheet suggest an ongoing heat loss of ???250 MW. This represents one of the largest hydrothermal heat discharges in North America. Other hydrothermal discharges of comparable magnitude are related to heat obtained from silicic magma bodies at depth, and are quasi-steady on a multidecadal time scale. However, the VTTS hydrothermal flux is not obviously related to a magma body and is clearly declining. Available data provide reasonable boundary and initial conditions for simple transient modeling. Both an analytical, conduction-only model and a numerical model predict large rates of heat loss from the sheet 90 years after deposition.
Pöykiö, R; Rönkkömäki, H; Nurmesniemi, H; Perämäki, P; Popov, K; Välimäki, I; Tuomi, T
2009-03-15
In Finland, the new limit values for maximal allowable heavy metal concentrations for materials used as an earth construction agent came into force in July 2006. These limit values are applied if ash is utilized, e.g. in roads, cycling paths, pavements, car parks, sport fields, etc. In this study we have determined the most important chemical and physical properties of the cyclone fly ash originating from the grate-fired boiler incinerating forest residues (i.e. wood chips, sawdust and bark) at a small municipal district heating plant (6 MW), Northern Finland. This study clearly shows that elements are enriched in cyclone fly ash, since the total element concentrations in the cyclone fly ash were within 0.2-10 times higher than those in the bottom ash. The total concentrations of Cd (25 mg kg(-1); d.w.), Zn (3630 mg kg(-1); d.w.), Ba (4260 mg kg(-1); d.w.) and Hg (1.7 mg kg(-1); d.w.) exceeded the limit values, and therefore the cyclone fly ash cannot be used as an earth construction agent. According to the leached amounts of Cr (38 mg kg(-1); d.w.), Zn (51 mg kg(-1); d.w.) and sulphate (50,000 mg kg(-1); d.w.), the cyclone fly ash is classified as a hazardous waste, and it has to be deposited in a hazardous waste landfill.
JV Task 107- Pilot-Scale Emission Control Technology Testing for Constellation Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Jones; Brandon Pavlish; Stephen Sollom
2007-06-30
An Indonesian, Colombian, and Russian coal were tested in the Energy & Environmental Research Center's combustion test facility for their performance and an evaluation of mercury release and capture with selected additives in both electrostatic precipitator and baghouse configurations. Sorbents included the carbon-based materials NORIT DARCO Hg, Sorbent Technologies B-PAC and B-PAC LC, STI Rejects provided by Constellation Energy, and Envergex e-Sorb, along with ChemMod's high-temperature additive. Each coal was evaluated over several days and compared. Ash-fouling tests were conducted, and mercury levels were monitored using continuous mercury monitors (CMMs). The Ontario Hydro mercury sampling method was also utilized. Themore » Indonesian coal had the lowest ash content, lowest sulfur content, and lowest energy content of the three coals tested. The Colombian coal had the highest mercury content and did contain a significant level of selenium which can interfere with the ability of a CMM to monitor mercury in the gas stream. All sorbents displayed very favorable results. In most cases, mercury removal greater than 86% could be obtained. The Indonesian coal displayed the best mercury removal with sorbent addition. A maximum removal of 97% was measured with this coal using Envergex's carbon-based sorbent at a rate of 4 lb/Macf across an electrostatic precipitator. The high ash and selenium content of the Colombian coal caused it to be a problematic fuel, and ash plugging of the test furnace was a real concern. Problems with the baghouse module led to limited testing. Results indicated that native capture across the baghouse for each coal type was significant enough not to warrant sorbent addition necessary. The fouling potential was the lowest for the Indonesian coal. Low sulfur content contributes to the poor potential for fouling, as witnessed by the lack of deposits during testing. The Russian and Colombian coals had a much higher potential for fouling primarily because of their high ash contents, but the potential was highest for the Colombian coal. Of the three coals tested, the Colombian would be the least desirable.« less
Tentative to use wastes from thermal power plants for construction building materials
NASA Astrophysics Data System (ADS)
Bui, Quoc-Bao; Phan, To-Anh-Vu; Tran, Minh-Tung; Le, Duc-Hien
2018-04-01
Thermal power plants (TPP) generates wastes (bottom and fly ashes) which become a serious environmental problem in Vietnam. Indeed, although in several countries fly ash can be used for cement industry, fly ash from actual TPP in Vietnam does not have enough good quality for cement production, because the fly ash treatment phase has not yet included in the generations of existing Vietnamese TPP. That is why bottom ash and fly ash purely become wastes and their evacuation is an urgent demand of the society. This paper presents an investigation using fly and bottom ashes in the manufacturing of construction materials. The main aims of this study is to reduce environmental impacts of fly and bottom ashes, and to test another non-conventional binder to replace cement in the manufacture of unburnt bricks. Several proportions of fly ash, bottom ash, cement, gravel, sand and water were tested to manufacture concretes. Then, geopolymer was prepared from the fly ash and an activator. Specimens were tested in uniaxial compressions. Results showed that the cement concrete tested had the compressive strengths which could be used for low rise constructions and the material using geopolymer could be used for non-load-bearing materials (unburnt bricks).
NASA Technical Reports Server (NTRS)
Self, S.; Rampino, M. R.
1981-01-01
The 1883 eruption of Krakatau was a modest ignimbrite-forming event. The deposits are primarily coarse-grained dacitic, non-welded ignimbrite. Large explosions produced pyroclastic flows that entered the sea, generating destructive tsunami. Grain-size studies of the ignimbrite suggest that these explosions were not driven by magma-seawater interaction. The total bulk volume of pyroclastic deposits, including co-ignimbrite ash, is estimated to be 18-21 cu km.
Wilcox, R.E.; Naeser, C.W.
1992-01-01
For many years the numerous deposits of so-called 'Pearlette volcanic ash' in the Great Plains region of the United States were considered to be the remnants of the same volcanic event, and were used as a time-stratigraphic marker of probable Middle Pleistocene age. Although a few early workers had suggested that more than one air-fall event might be represented among the Pearlette occurrences, it was not until the latter half of the present century, after identification of volcanic ash beds by detailed chemical and mineralogical methods had been developed, that it could be established that the 'Pearlette family' of volcanic ashes included three ash beds of subtly differing characteristics. Development of isotopic methods of age determination has established that the ages of the three are significantly different (2.09, 1.29, and 0.60 Ma). The area of distribution of the Pearlette family ash beds was found to include not only the Great Plains, but also to extend across the Rocky Mountain and the Basin and Range provinces to the Pacific Ocean. The search for the sources of these three similar appearing ash beds, facilitated greatly by information gained from concurrent mapping projects underway in areas of major Late Cenozoic volcanic activity in western United States, ultimately led to the sites of the caldera-forming eruptions in the Yellowstone National Park region. ?? 1992.
[Volatile ashes and their biological effect. 2. Fibrogenic effect of volatile ashes].
Woźniak, H; Wiecek, E; Lao, I; Wojtczak, J
1989-01-01
In experiments on white Wistar rats fibrogenic effects of 6 samples of fly-ashes collected from electric precipitators in power engineering plants have been evaluated. The coal came from different national deposits. All the ashes have been found to contain: quartz and mullite, 3 ashes contained additionally orthoclase, whereas 1, apart from quartz and mullite, contained kaolinite; naturally radioactive elements (Ra226, K40, Th228) and trace elements (As, Ba, Be, Cd, Ce, Cu, Fe, Pa, Mo, Ni, Pb, Se, U Zu). Experimental pneumoconiosis was induced through intratracheal administration of single doses of 50 mg of dust; the experiment was carried out at 3 time intervals of 3, 6 and 9 months. The fibrogenic activity was evaluated both qualitatively (histopathological methods) and quantitatively (lung weight, hydroxyproline content in lungs, dust elimination from lungs); control groups consisted of animals which obtained NaCl solution and quartz sands. Fly-ashes were found to exhibit different fibrogenic effects, yet, their fibrogenic activity was weaker, compared to quartz sands. No clear correlation was found between fibrogenic effects of ashes and test physico-chemical properties, such as the content of SiO2, trace elements or naturally radioactive elements. Analysis of occupational diseases (for the period section): (1979-1983) demonstrated occupational diseases of dust-related aetiology among power engineering workers, pneumoconioses, constituting 7.8% of 127 cases of occupational diseases.
NASA Astrophysics Data System (ADS)
Prata, Fred; Woodhouse, Mark; Huppert, Herbert E.; Prata, Andrew; Thordarson, Thor; Carn, Simon
2017-09-01
The separation of volcanic ash and sulfur dioxide (SO2) gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21-28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing
fed with ash from pyroclastic density currents (PDCs) occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.
STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Hurt; Eric Suuberg; John Veranth
2002-09-10
The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourthmore » project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.« less
NASA Astrophysics Data System (ADS)
Afiza Mohammed, Syakirah; Rehan Karim, Mohamed
2017-06-01
Worldwide annual production of coal bottom ash waste was increased in the last decade and is being dumped on landfill over the years. Its improper disposal has become an environmental concern and resulted in a waste of recoverable resources. There is a pressing and on-going need to develop new recycling methods for coal bottom ash. The utilization of coal bottom ash in highway engineering is one of the options to reduce the environmental problems related to the disposal of bottom ash. The present review describe the physical and chemical properties of coal bottom ash waste and its current application as highway embankment material, as acoustic absorbing material and as aggregate replacement in asphalt mixtures. The purpose of this review is to stimulate and promote the effective recycling of coal bottom ash in highway engineering industry.
Carrillo, Uara; Díaz-Villanueva, Verónica; Modenutti, Beatriz
2018-04-15
Volcanic eruptions are extreme perturbations that affect ecosystems. These events can also produce persistent effects in the environment for several years after the eruption, with increased concentrations of suspended particles and the introduction of elements in the water column. On 4th June 2011, the Puyehue-Cordón Caulle Volcanic Complex (40.59°S-72.11°W, 2200m.a.s.l.) erupted explosively in southern Chile. The area affected by the volcano was devastated; a thick layer of volcanic ash (up to 30cm) was deposited in areas 50 km east of the volcano towards Argentina. The aim of the present study was to evaluate the effect of volcanic ash deposits on stream ecosystems four years after the eruption, comparing biofilm stoichiometry, alkaline phosphatase activity, and primary producer's assemblage in streams which were severely affected by the volcano with unaffected streams. We confirmed in the laboratory that ash deposited in the catchment of affected streams still leach phosphorus (P) into the water four years after eruption. Results indicate that affected streams still receive volcanic particles and that these particles release P, thus stream water exhibits high P concentration. Biofilm P content was higher and the C:P ratio lower in affected streams compared to unaffected streams. As a consequence of less P in unaffected streams, the alkaline phosphatase activity was higher compared to affected streams. Cyanobacteria increased their abundances (99.9% of total algal biovolume) in the affected streams suggesting that the increase in P may positively affect this group. On the contrary, unaffected streams contained a diatom dominant biofilm. In this way, local heterogeneity was created between sub-catchments located within 30 km of each other. These types of events should be seen as opportunities to gather valuable ecological information about how severe disturbances, like volcanic eruptions, shape landscapes and lotic systems for several years after the event. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chunga, K.; Maurizio, M.; Garces, D.; Quiñonez, M. F.; Peña, G. E.
2015-12-01
Late Holocene sequences of loose to weakly consolidated sand and clay sediments intercalated with volcanic-ash layers (particles transported by fall-out), are outcrops on a sea cliff in the Jaramijó bay area (situated 7 km away in the East direction from Manta city, Manabí, at the middle section of Ecuador's Pacific coastline). The main geomorphologic feature in the site is the wave-cut beach platform permanently exposed at the lowest tides and an 18 m-high coastal cliff retreat with an estimated rate of ca. 2.5 meter/year (Chunga, 2014). One of the most remarkable geoarchaeological evidences found in this outcrop, it is the remains of two large bones (ie., radius and radial) of the human forearm of ca. 800 years ago (with archaeological vestiges of the Manteña culture) covered by a 8 to 25 cm-thick volcanic ash layer, stratigraphically at the top, an erosive contact with chaotic deposition of medium to fine-grained sand which indicates a potential tsunami deposit. Moreover, several volcanic ash and lahar layers are well distinguished on the sea cliff, which are associated with pyroclastic products transported as lahars from the Quilotoa and Cotopaxi, Pululahua volcanic structures (northern Andes in Ecuador) situated at a distance between of 150-190 kilometers (Mothes and Hall, 2008; Usselman, 2006). It is not excluded that previous pre-Columbian cultures also have been displaced in the last 2,000 years by disastrous geological events such as subduction earthquakes, local tsunami and volcanic lahar-ash deposits. All of these stratigraphic and palaeoseismologic features will allow us to understand the catastrophic geological events that abruptly shaped the landscape, furthermore, to investigate the changes of moderate to high Late Holocene progradation rates of the Jaramijó bay coastline.
JV Task 108 - Circulating Fluidized-Bed Combustion and Combustion Testing of Turkish Tufanbeyli Coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas Hajicek; Jay Gunderson; Ann Henderson
2007-08-15
Two combustion tests were performed at the Energy & Environmental Research Center (EERC) using Tufanbeyli coal from Turkey. The tests were performed in a circulating fluidized-bed combustor (CFBC) and a pulverized coal-fired furnace, referred to as the combustion test facility (CTF). One of the goals of the project was to determine the type of furnace best suited to this coal. The coal is high in moisture, ash, and sulfur and has a low heating value. Both the moisture and the sulfur proved problematic for the CTF tests. The fuel had to be dried to less than 37% moisture before itmore » could be pulverized and further dried to about 25% moisture to allow more uniform feeding into the combustor. During some tests, water was injected into the furnace to simulate the level of flue gas moisture had the fuel been fed without drying. A spray dryer was used downstream of the baghouse to remove sufficient sulfur to meet the EERC emission standards permitted by the North Dakota Department of Health. In addition to a test matrix varying excess air, burner swirl, and load, two longer-term tests were performed to evaluate the fouling potential of the coal at two different temperatures. At the lower temperature (1051 C), very little ash was deposited on the probes, but deposition did occur on the walls upstream of the probe bank, forcing an early end to the test after 2 hours and 40 minutes of testing. At the higher temperature (1116 C), ash deposition on the probes was significant, resulting in termination of the test after only 40 minutes. The same coal was burned in the CFBC, but because the CFBC uses a larger size of material, it was able to feed this coal at a higher moisture content (average of 40.1%) compared to the CTF (ranging from 24.2% to 26.9%). Sulfur control was achieved with the addition of limestone to the bed, although the high calcium-to-sulfur rate required to reduce SO{sub 2} emissions resulted in heat loss (through limestone calcination) and additional ash handling. A more efficient downstream sulfur scrubber capable of operation at a much lower Ca/S ratio would result in significantly higher boiler efficiency for this coal. At the operating temperature of a typical CFBC, bed agglomeration and convective pass fouling are not likely to be significant problems with this fuel. Compared to pulverized coal-firing, CFBC technology is clearly the better choice for this fuel. It provides more efficient sulfur capture, lower NO{sub x} emissions, better solids-handling capability, and can utilize a wetter feedstock, requiring less crushing and sizing. The lower operating temperature of CFBC boilers (820 C) reduces the risk of fouling and agglomeration. Care must be taken to minimize heat loss in the system to accommodate the low heating value of the coal.« less
Evaluation of the mechanical properties of class-F fly ash.
Kim, Bumjoo; Prezzi, Monica
2008-01-01
Coal-burning power plants in the United States (US) generate more than 70 million tons of fly ash as a by-product annually. Recycling large volumes of fly ash in geotechnical applications may offer an attractive alternative to the disposal problem as most of it is currently dumped in ponds or landfills. Class-F fly ash, resulting from burning of bituminous or anthracite coals, is the most common type of fly ash in the US. In the present study, the mechanical characteristics (compaction response, compressibility, and shear strength) of class-F fly ash were investigated by performing various laboratory tests (compaction test, one-dimensional compression test, direct shear test and consolidated-drained triaxial compression test) on fly ash samples collected from three power plants in the state of Indiana (US). Test results have shown that despite some morphological differences, class-F fly ash exhibits mechanical properties that are, in general, comparable to those observed in natural sandy soils.
Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Zevenhoven, Maria; Hupa, Mikko
2017-06-01
In this work, potential for thermochemical conversion of biomass residues from an integrated sugar-ethanol process and the fate of ash and ash-forming elements in the process are presented. Ash, ash-forming elements, and energy flows in the process were determined using mass balances and analyses of eight different biomass samples for ash contents, elemental compositions, and heating values. The results show that the ash content increases from the sugarcane to the final residue, vinasse. The cane straw, which is left in the field, contains one-third of the energy and 25% of the K and Cl while the vinasse contains 2% of the energy and 40% of the K and Cl in the cane. K and Cl in biomass fuels cause corrosion and fouling problems in boilers and gasifiers. Over 85% of these elements in the straw are water soluble indicating that water leaching would improve it for utilization in thermochemical conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rytuba, J.J.; Arribas, A.; Cunningham, C.G.; McKee, E.H.; Podwysocki, M.H.; Smith, James G.; Kelly, W.C.; Arribas, A.
1990-01-01
The Rodalquilar caldera complex is located in the western part of the Cabo de Gata volcanic field in southeastern Spain and is the first documented example of epithermal gold-alunite mineralization within a caldera in Europe. The Rodalquilar caldera is an oval collapse structure having a maximum diameter of 8 km and formed at 11 Ma from eruption of the Cinto ash-flow tuff. The oval Lomilla caldera, with a diameter of 2 km, is nested within the central resurgent dome of the older Rodalquilar caldera. The Lomilla caldera resulted from the eruption of the Lazaras ash-flow tuff which was ponded within the moat of the Rodalquilar caldera. The last phase of volcanic activity in the caldera complex was the emplacement of hornblende andesite flows and intrusions. This magmatic event resulted in structural doming of the caldera, opening of fractures and faults, and provided the heat source for the large hydrothermal systems which deposited quartz-alunite type gold deposits and base metal vein systems. The gold-alunite deposits are enclosed in areas of intense acid sulfate alteration and localized in ring and radial faults and fractures present in the east wall of the Lomilla caldera. Like other acid-sulfate type deposits, the Rodalquilar gold-alunite deposits are closely related in time and space to porphyritic, intermediate composition magma emplaced along caldera structures but unrelated to the caldera forming magmatic system. ?? 1990 Springer-Verlag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovorka, S.D.; Nance, H.S.
1994-12-31
The Austin Chalk of north Texas was deposited on a deep-water shelf north of the Sea Marcos Platform during a worldwide Coniacian and Santonian sea-level highstand. Transgressive (lowermost lower Austin Chalk), highstand (uppermost lower Austin Chalk), and regressive (middle and upper Austin Chalk) phases of cyclic chalk and marl sedimentation are recognized in excavations and tunnels created in Ellis County for the Superconducting Super Collider provide new evidence of sediment transport during Austin Chalk deposition. During transgression, bottom currents syndepositionally reworked nannoplankton oozes, incising channels as much as 120 ft across and 8 ft deep. Weakly burrowed channel fills havingmore » preservation of fine lamination document rapid infilling. Channel fills are composed of pyritized and carbonized wood and Inoceramus lag deposits, pellets, echinoderm fragments, and globigerinid grainstones, and coccolith ooze. During maximum highstand, bottom reworking was suppressed. Detrital content of highstand marls is low (>20 percent); organic content is high (1.4 to 3.5 percent). Coccolith preservation is excellent because of minimal diagenetic alteration. Regression is marked by resumed channel cutting and storm-bed winnowing in the middle and upper Austin Chalk. Suppressed resistivity log response and recessive weathering characteristics of the middle Austin Chalk are not primarily related to depositional environment but rather to increased input of volcanic ash during the accumulation of this interval. Early stabilization of ash produced clay-coated microfabrics in sediments that are otherwise similar to the transgressive deposits.« less
Lung burden of a glass fiber by inhalation.
Tanaka, I; Akiyama, T; Kido, M
1991-01-01
Pulmonary deposition and clearance of deposited particles from lungs are very important factors in order to induce pneumoconioses. In this paper, five Wistar male rats were exposed to glass fiber particles (mass median aerodynamic diameter (MMAD), 2.8 microns) for 6 hrs/day, 5 days/week for 4 weeks. The average exposure concentration was controlled by a continuous fluidized bed with a screw feeder and an overflow pipe at 0.79 mg/m3 during the exposure period. The fibrous particles concentrations in the exposure chamber were monitored by a light scattering method and showed to be constant during the exposure. The rats were sacrificed at 24 hours after the termination of the exposure and then the wet lung weight and the silica concentration in the lungs were measured. The lungs were treated for low temperature ashing (ca. 150 degrees C) by a plasma asher. After ashing, these samples were melted with sodium carbonate in platinum pot for the measurement of the silica content by the absorption spectrophotometry. The maximum content of SiO2 was 45 micrograms in the exposed rats and 20 micrograms in the control. The deposited amount of SiO2 by the exposure to glass fiber was 25 micrograms. The apparent deposition fraction defined as the deposited amount in the lungs to the amount of the inhaled glass fiber during the exposure was 6.8%. There was no significant difference of the apparent deposition fraction at same MMAD between glass fiber in this study and non-fibrous particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jake, T.R.
1987-09-01
Evaluations were made of sedimentation patterns and depositional environments from approximately 450 core logs and 225 surface exposures in the Upper Potomac coalfield. The relationships between the clastic depositional facies and the distribution and quality of the Bakerstown and upper Freeport coals were also investigated. Data from 61 Bakerstown and 35 upper Freeport coal samples from selected cores indicate a change from uniform coal quality to highly variable coal quality when moving from related interchannel and bay-fill facies to channel, channel-fill, levee, and crevasse-splay facies. Areas of uniform coal quality range from 20-26% ash and 55-62% fixed carbon (weight percent,more » dry basis), whereas areas of highly variable coal quality range from 26-54% ash and 33-55% fixed carbon. The channel and related facies represent areas where increased fresh water was introduced into the topogenous swamp system, causing increased microbial degradation and the concentration of authigenic minerals within the peat material. These conditions, combined with the introduction of detrital minerals, resulted in areas of lower quality coal.« less
Mellors, R.A.; Waitt, R.B.; Swanson, D.A.
1988-01-01
Several hot-rock avalanches have occurred during the growth of the composite dome of Mount St. Helens, Washington between 1980 and 1987. One of these occurred on 9 May 1986 and produced a fan-shaped avalanche deposit of juvenile dacite debris together with a more extensive pyroclastic-flow deposit. Laterally thinning deposits and abrasion and baking of wooden and plastic objects show that a hot ash-cloud surge swept beyond the limits of the pyroclastic flow. Plumes that rose 2-3 km above the dome and vitric ash that fell downwind of the volcano were also effects of this event, but no explosion occurred. All the facies observed originated from a single avalanche. Erosion and melting of craterfloor snow by the hot debris caused debris flows in the crater, and a small flood that carried juvenile and other clasts north of the crater. A second, broadly similar event occured in October 1986. Larger events of this nature could present a significant volcanic hazard. ?? 1988 Springer-Verlag.
Faecal-wood biomass co-combustion and ash composition analysis.
Somorin, Tosin Onabanjo; Kolios, Athanasios J; Parker, Alison; McAdam, Ewan; Williams, Leon; Tyrrel, Sean
2017-09-01
Fuel blending is a widely used approach in biomass combustion, particularly for feedstocks with low calorific value and high moisture content. In on-site sanitation technologies, fuel blending is proposed as a pre-treatment requirement to reduce moisture levels and improve the physiochemical properties of raw faeces prior to drying. This study investigates the co-combustion performance of wood dust: raw human faeces blends at varying air-to-fuel ratios in a bench-scale combustor test rig. It concludes with ash composition analyses and discusses their potential application and related problems. The study shows that a 50:50 wood dust (WD): raw human faeces (FC) can reduce moisture levels in raw human faeces by ∼40% prior to drying. The minimum acceptable blend for treating moist faeces without prior drying at a combustion air flow rate of 14-18 L/min is 30:70 WD: FC. For self-sustained ignition and flame propagation, the minimum combustion temperature required for conversion of the fuel to ash is ∼400 °C. The most abundant elements in faecal ash are potassium and calcium, while elements such as nickel, aluminium and iron are in trace quantities. This suggests the potential use of faecal ash as a soil conditioner, but increases the tendency for fly ash formation and sintering problems.
Removal of arsenic from toxic ash after combustion of impregnated wood
NASA Astrophysics Data System (ADS)
Ottosen, L. M.; Pedersen, A. J.; Kristensen, I. V.; Ribeiro, A. B.
2003-05-01
ln the next ten years the amounts of waste wood impregnated with Cu, Cr and As (CCA) is expected to increase dramatically. Mixed with municipal solid waste for incineration the wood constitutes a problem because As emission is not hindered through common flue gas treatment. Furthermore the ashes will contain higher concentrations of Cu, Cr and As. In different countries initiatives has been taken or are implemented to sort the impregnated wood from other waste and handle the wood separately. This handling can involve combustion in special plants. This paper deals with electrodialytic treatment of ash from combustion of CCA treated wood. The total concentrations in the ash were very high: 69gCu/kg, 62gCr/kg and 35gAs/kg. A SEM/EDX analysis showed that Cr was mainly build into the matrix structure of the ash. Cu, too, but some Cu was also precipitated on the surface of the particles. As, on the other hand, was only found associated with Ca and thus probably in a soluble form. As is the main problem of the ash due to the high toxicity and mobility and thus the treatment aims at removing this element. It was shown that during 5 days of electrodialytic treatment 92% As could be removed.
NASA Astrophysics Data System (ADS)
Langmann, B.; Hort, M. K.
2010-12-01
During the eruption of Eyjafjallajoekull on Iceland in April/May 2010 air traffic over Europe was repeatedly interrupted because of volcanic ash in the atmosphere. This completely unusual situation in Europe leads to the demand of improved crisis management, e.g. European wide regulations of volcanic ash thresholds and improved forecasts of theses thresholds. However, the quality of the forecast of fine volcanic ash concentrations in the atmosphere depends to a great extent on a realistic description of the erupted mass flux of fine ash particles, which is rather uncertain. Numerous aerosol measurements (ground based and satellite remote sensing, and in situ measurements) all over Europe have tracked the volcanic ash clouds during the eruption of Eyjafjallajoekull offering the possibility for an interdisciplinary effort between volcanologists and aerosol researchers to analyse the release and dispersion of fine volcanic ash in order to better understand the needs for realistic volcanic ash forecasts. This contribution describes the uncertainties related to the amount of fine volcanic ash released from Eyjafjallajoekull and its influence on the dispersion of volcanic ash over Europe by numerical modeling. We use the three-dimensional Eulerian atmosphere-chemistry/aerosol model REMOTE (Langmann et al., 2008) to simulate the distribution of volcanic ash as well as its deposition after the eruptions of Eyjafjallajoekull during April and May 2010. The model has been used before to simulate the fate of the volcanic ash after the volcanic eruptions of Kasatochi in 2008 (Langmann et al., 2010) and Mt. Pinatubo in 1991. Comparing our model results with available measurements for the Eyjafjallajoekull eruption we find a quite good agreement with available ash concentrations data measured over Europe as well as with the results from other models. Langmann, B., K. Zakšek and M. Hort, Atmospheric distribution and removal of volcanic ash after the eruption of Kasatochi volcano: A regional model study, J. Geophys. Res., 115, D00L06, doi:10.1029/2009JD013298, 2010. Langmann, B., S. Varghese, E. Marmer, E. Vignati, J. Wilson, P. Stier and C. O’Dowd, Aerosol distribution over Europe: A model evaluation study with detailed aerosol microphysics, Atmos. Chem. Phys. 8, 1591-1607, 2008.
Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous.
Lee, Cin-Ty A; Jiang, Hehe; Ronay, Elli; Minisini, Daniel; Stiles, Jackson; Neal, Matthew
2018-03-08
On greater than million year timescales, carbon in the ocean-atmosphere-biosphere system is controlled by geologic inputs of CO 2 through volcanic and metamorphic degassing. High atmospheric CO 2 and warm climates in the Cretaceous have been attributed to enhanced volcanic emissions of CO 2 through more rapid spreading at mid-ocean ridges and, in particular, to a global flare-up in continental arc volcanism. Here, we show that global flare-ups in continental arc magmatism also enhance the global flux of nutrients into the ocean through production of windblown ash. We show that up to 75% of Si, Fe and P is leached from windblown ash during and shortly after deposition, with soluble Si, Fe and P inputs from ash alone in the Cretaceous being higher than the combined input of dust and rivers today. Ash-derived nutrient inputs may have increased the efficiency of biological productivity and organic carbon preservation in the Cretaceous, possibly explaining why the carbon isotopic signature of Cretaceous seawater was high. Variations in volcanic activity, particularly continental arcs, have the potential of profoundly altering carbon cycling at the Earth's surface by increasing inputs of CO 2 and ash-borne nutrients, which together enhance biological productivity and burial of organic carbon, generating an abundance of hydrocarbon source rocks.
NASA Astrophysics Data System (ADS)
Damiano, Emilia; Greco, Roberto; Guida, Andrea; Olivares, Lucio; Picarelli, Luciano
2017-04-01
Layered pyroclastic deposits covering steep slopes, characteristic of large mountainous areas of Campania (southern Italy), are often affected by shallow landslides triggered by heavy rainfall events. In fact, the equilibrium of such deposits is usually guaranteed by the contribution to soil shear strength offered by soil suction, which decreases during wetting. As the return period of the triggering events has been in many cases not extreme, other factors concur to establish triggering conditions. In this respect, heterogeneities, strongly affecting transient infiltration, may in some cases play a crucial role. In this study, the effect of the presence of soil layers, characterized by markedly different hydraulic properties, on the rainwater infiltration process is investigated. In fact, the pyroclastic covers of Campania, being the result of the deposition of materials originated by several eruptions of the nearby volcanic complexes, usually consist of alternating layers of ashes (silty sands) and pumices (gravel with sand). The presence of coarse-textured pumices between finer ashes strongly affects the infiltration process. In fact, the pumices, which are characterized by saturated hydraulic conductivity larger than ashes, are capable of retaining less water than ashes in unsaturated conditions, so that their unsaturated hydraulic conductivity is usually very small. Hence, depending on the water potential distribution throughout the cover at the onset of rainfall, pumices may act as a barrier to the propagation of the wet front (the so-called capillary barrier effect), or, approaching saturation, let the water pass through them very quickly. Such a complex behavior has been studied by means of a series of infiltration experiments carried out in an instrumented flume in the Geotechnical Laboratory of the University of Campania (http://www.dicdea.unina2.it/it/dipartimento/laboratori/laboratorio-di-geotecnica). Starting from different initial moisture conditions, small scale physical models of layered slopes, with various geometry and inclination, have been subjected to rainfalls of various intensities. During the infiltration processes and the following water redistribution phases, soil moisture and matric potential have been measured at various locations by means of TDR probes and tensiometers, respectively. The interpretation of the experimental results has been aided by a 2D mathematical model based on the integration of Richards' equation with the finite differences method. The obtained results indicate that a layer of dry pumices may induce lateral redistribution of water through the overlying ashes. In steep sloping deposits, this may favor the establishment of downslope directed subsurface runoff, which drains part of the infiltrating water towards the toe of the slope. In real slopes, depending on local morphology, such a downslope flow may have a beneficial effect on slope stability, as some water is drained out of the slope, or may even contribute to the establishment of triggering conditions, as it can result in flow concentration leading to local failure.
Pollastro, R.M.
1981-01-01
Cores from the Smoky Hill Chalk Member of the Cretaceous Niobrara Formation have several zones containing authigenic kaolinite as spherical, moldic, polycrystalline aggregates that occur within single or multichambered foraminiferal tests and are commonly associated with framboidal pyrite. Such kaolinite is inferred to result from volcanic ash deposited during chalk sedimentation. Shortly after burial, a colloidal aluminous gel or solution formed from the unstable ash and moved into organic-rich foraminiferal tests, where sulfate-reducing bacteria created a favorable microenvironment for the simultaneous crystallization of kaolinite and pyrite. -Author
The heat exchanger of small pellet boiler for phytomass
NASA Astrophysics Data System (ADS)
Mičieta, Jozef; Lenhard, Richard; Jandačka, Jozef
2014-08-01
Combustion of pellets from plant biomass (phytomass) causes various troubles. Main problem is slagging ash because of low melting temperature of ash from phytomass. This problem is possible to solve either improving energetic properties of phytomass by additives or modification of boiler construction. A small-scale boiler for phytomass is different in construction of heat exchanger and furnace mainly. We solve major problem - slagging ash, by decreasing combustion temperature via redesign of pellet burner and boiler body. Consequence of lower combustion temperature is also lower temperature gradient of combustion gas. It means that is necessary to design larger heat exchanging surface. We plane to use underfed burner, so we would utilize circle symmetry heat exchanger. Paper deals design of heat exchanger construction with help of CFD simulation. Our purpose is to keep uniform water flux and combustion gas flux in heat exchanger without zone of local overheating and excess cooling.
NASA Spacecraft Views Erupting Chilean Volcano
2015-03-13
On March 3, 2015, Chile's Villarrica volcano erupted, forcing the evacuation of thousands of people. The eruption deposited a layer of ash over the volcano's eastern slope, blanketing and darkening the normal winter snow cover. The eruption and its effects were captured by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft on March 9. Black flows on the other flanks are mud and ash flows. Vegetation is displayed in red colors. The thermal infrared image shows hot spots (white colored) at the summit crater, indicating continuing volcanic activity. The ash blanket is warmer (brighter) than the cold snow (black). The image covers an area of 13.5 by 16.5 kilometers, and is located at 39.4 degrees south, 71.9 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19241
Douillet, Guilhem Amin; Tsang-Hin-Sun, Ève; Kueppers, Ulrich; Letort, Jean; Pacheco, Daniel Alejandro; Goldstein, Fabian; Von Aulock, Felix; Lavallée, Yan; Hanson, Jonathan Bruce; Bustillos, Jorge; Robin, Claude; Ramón, Patricio; Hall, Minard; Dingwell, Donald B
The deposits of the pyroclastic density currents from the August 2006 eruption of Tungurahua show three facies associations depending on the topographic setting: the massive, proximal cross-stratified, and distal cross-stratified facies. (1) The massive facies is confined to valleys on the slopes of the volcano. It contains clasts of >1 m diameter to fine ash material, is massive, and interpreted as deposited from dense pyroclastic flows. Its surface can exhibit lobes and levees covered with disk-shaped and vesicular large clasts. These fragile large clasts must have rafted at the surface of the flows all along the path in order to be preserved, and thus imply a sharp density boundary near the surface of these flows. (2) The proximal cross-stratified facies is exposed on valley overbanks on the upper part of the volcano and contains both massive coarse-grained layers and cross-stratified ash and lapilli bedsets. It is interpreted as deposited from (a) dense pyroclastic flows that overflowed the gentle ridges of valleys of the upper part of the volcano and (b) dilute pyroclastic density currents created from the dense flows by the entrainment of air on the steep upper flanks. (3) The distal cross-stratified facies outcrops as spatially limited, isolated, and wedge-shaped bodies of cross-stratified ash deposits located downstream of cliffs on valleys overbanks. It contains numerous aggrading dune bedforms, whose crest orientations reveal parental flow directions. A downstream decrease in the size of the dune bedforms, together with a downstream fining trend in the grain size distribution are observed on a 100-m scale. This facies is interpreted to have been deposited from dilute pyroclastic density currents with basal tractional boundary layers. We suggest that the parental flows were produced from the dense flows by entrainment of air at cliffs, and that these diluted currents might rapidly deposit through "pneumatic jumps". Three modes are present in the grain size distribution of all samples independently of the facies, which further supports the interpretation that all three facies derive from the same initial flows. This study emphasizes the influence of topography on small volume pyroclastic density currents, and the importance of flow transformation and flow-stripping processes.
Fujiwara, Hiroshi; Kuramochi, Hidetoshi; Nomura, Kazutaka; Maeseto, Tomoharu; Osako, Masahiro
2017-11-01
Large volumes of decontamination wastes (DW) generated by off-site decontamination activities in Fukushima Prefecture have been incinerated since 2015. The behavior of radioactive cesium during incineration of DW was investigated at a working incineration plant. The incineration discharged bottom ash (BA) and fly ash (FA) with similar levels of radiocesium, and the leachability of the radiocesium from both types of ash was very low (<1%). These results are significantly different from those obtained for the incineration of contaminated municipal solid waste (CMSW) reported in earlier studies. The source of radiocesium in DW-FA is chiefly small particles derived from DW and DW-BA blown into the flue gas, not the deposition of gaseous synthesized radiocesium compounds on the surfaces of ash particles in the flue gas as observed in CMSW incineration. This source difference causes the behavior of radiocesium during waste incineration to differ between DW and CMSW. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Satellite Eyes Iceland Volcano Cauldron
2010-04-18
On Saturday, April 17, 2010, NASA Earth Observing-1 EO-1 spacecraft obtained this pair of images of the continuing eruption of Iceland Eyjafjallajökull volcano. On the left, new black ash deposits are visible on the ground.
Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?
NASA Astrophysics Data System (ADS)
White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.
2013-12-01
Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image velocimetry (PIV). Scanning Electron Microscopy (SEM) of ash particles collected in localized deposition areas is used to correlate the PIV results to particle shape. In addition, controlled wind tunnel experiments are used to determine particle fate and transport in a turbulent boundary layer for a mixed particle population. Collectively, these studies will provide an improved understanding of the effects of particle shape on sedimentation and dispersion, and foundational data for the predictive modeling of the fate and transport of fine ash particles suspended in the atmosphere.
Hydrothermal carbonization of rice husk for fuel upgrading
NASA Astrophysics Data System (ADS)
Suteerawattananonda, N.; Kongkaew, N.; Patumsawad, S.
2018-01-01
The biomass is popularly used as renewable energy. In Thailand rice is the most consume agricultural products. Agricultural residues from rice husk can be an energy resource. However, alkali and alkali earth materials (AAEMs) in biomass ash are the causes of corrosion and erosion problem in the heat exchanger equipment, while the acidity of ash affects the slagging agglomeration problem. Reduction of alkali and alkali earth materials can minimize the problem. In order to challenge the reduction of alkali and alkali earth materials in biomass ash, hydrothermal carbonization process was selected. Thai rice husk was used as sample to compare the result of treatment. The rice husk was heated under the condition of different temperature ranged from 180°C to 250°C, at operate pressure ranges from 12 bar to 42 bar with residence holding reaction time 1 hour. The results of proximate analysis show that the percentage by mass of fixed carbon are increased 2 times, but volatile matter is decreased by 40% and ash content is decreased by 11% due to the increment of temperature. Meanwhile, the X-Ray fluorescence (XRF) analysis results show the decreasing of alkali and alkali earth materials are reduced.
Samolczyk, Mary; Vallance, James W.; Cubley, Joel; Osborn, Gerald; Clark, Douglas H.
2016-01-01
The oldest postglacial lapilli–ash tephra recognized in sedimentary records surrounding Mount Rainier (Washington State, USA) is R tephra, a very early Holocene deposit that acts as an important stratigraphic and geochronologic marker bed. This multidisciplinary study incorporates tephrostratigraphy, radiocarbon dating, petrography, and electron microprobe analysis to characterize R tephra. Tephra samples were collected from Tipsoo Lake and a stream-cut exposure in the Cowlitz Divide area of Mount Rainier National Park. Field evidence from 25 new sites suggests that R tephra locally contains internal bedding and has a wider distribution than previously reported. Herein, we provide the first robust suite of geochemical data that characterize the tephra. Glass compositions are heterogeneous, predominantly ranging from andesite to rhyolite in ash- to lapilli-sized clasts. The mineral assemblage consists of plagioclase, orthopyroxene, clinopyroxene, and magnetite with trace apatite and ilmenite. Subaerial R tephra deposits appear more weathered in hand sample than subaqueous deposits, but weathering indices suggest negligible chemical weathering in both deposits. Statistical analysis of radiocarbon ages provides a median age for R tephra of ∼10 050 cal years BP, and a 2σ error range between 9960 and 10 130 cal years BP.
The First Historical Eruption of Kambalny Volcano in 2017 .
NASA Astrophysics Data System (ADS)
Gordeev, E.
2017-12-01
The first historical eruption at Kambalny volcano began about 21:20 UTC on March 24, 2017 with powerful ash emissions up to 6 km above sea level from the pre-summit crater. According to tephrochronological data, it is assumed that the strong eruptions of the volcano occurred 200 (?) and 600 years ago. KVERT (Kamchatka Volcanic Eruption Response Team) of the Institute of Volcanology and Seismology FEB RAS has been monitoring Kambalny volcano since 2002. KVERT worked closely with AMC Elizovo and Tokyo VAAC during the eruption at Kambalny volcano in 2017. The maximum intensity of ash emissions occurred on 25-26 March: a continuous plume laden with ash particles spread over several thousand kilometers, changing the direction of propagation from the volcano from the south-west to the south and south-east. On 27-29 March, the ash plume extended to the west, on 30 March - to the southeast of the volcano. On March 31 and April 01, the volcano was relatively quiet. The resumption of the volcano activity after two days of rest was expressed in powerful ash emissions up to 7 km above sea level. Gas-steam plumes containing some amount of ash were noted on 02-05 April, and powerful ash emissions up to 7 km above sea level occurred on 09 April. The explosive activity at the volcano ended on 11 April. The area of ash deposits was about 1500 km2, the total area covered by ash falls, for example, on 25 March, was about 650 thousand km2. To monitor and study the Kambalny volcano eruption we mainly used satellite images of medium resolution available in the information system "Monitoring volcanic activity in Kamchatka and Kurile Islands" (VolSatView). This work was supported by the Russian Science Foundation, project No. 16-17-00042.
NASA Astrophysics Data System (ADS)
Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al
2016-06-01
Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.
Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems
NASA Astrophysics Data System (ADS)
Bohna, Nathaniel Allan
Plasma sprayed (PS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded by the buildup of fly-ash deposits which can arise from the fuel source (coal/biomass) used in the combustion process in gas turbines. Fly-ash from the integrated gasification combined cycle (IGCC) process can result from coal-based syngas and also from ambient air which passes through the system. TBCs are also exposed to harsh gas environments containing CO2, SO2, and steam. As presented in this thesis, degradation from the combined effects of fly-ash and harsh gas atmosphere can severely limit TBC lifetimes. It is well established that degradation at very high temperatures (≥1250°C) from deposits consisting of the oxides CaO-MgO-Al2O3-SiO 2 results from extensive liquid silicate infiltration into the porous top coat of the YSZ. This infiltration causes early failure resulting from chemical and/or mechanical damage to the ceramic layer. Damage resulting from liquid infiltration, however, is not typically considered at relatively lower temperatures around 1100°C because liquid silicates would not be expected to form from the oxides in the deposit. A key focus of this study is to assess the mode and extent of TBC degradation at 1100°C in cases when some amount of liquid forms owing to the presence of K2SO4 as a minor ash constituent. Two types of liquid infiltrations are observed depending on the principal oxide (i.e., CaO or SiO2) in the deposit. The degradation is primarily the result of mechanical damage, which results from infiltration caused by the interaction of liquid K2SO4 with either the CaO or SiO2. The TBCs used in this work are representative of commonly used coatings used in the hottest sections of land-based gas turbines. The specimens consist of 7YSZ top coats deposited on superalloy (Rene' N5 and PWA 1484) substrates that had been coated with NiCoCrAlY bond coats. Two different top coats are studied: conventional low-density 7YSZ, and also dense vertically cracked coatings. The specific mechanisms of liquid infiltration resulting from CaO and SiO2 are studied by conducting isothermal exposures followed by detailed characterizations. The resulting consequences on cyclic lifetimes are also determined. Further, the cyclic lifetimes are studied in several gas atmospheres to examine the combined effect of deposit and gas atmosphere on TBC lifetime. This work identifies a TBC degradation mechanism which had previously not been considered. It will be clearly shown that deposit-induced attack of TBCs can be highly detrimental at an intermediate temperature like 1100°C.
Combustion of anaerobically digested humus as a fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayhanian, M.; Jenkins, B.M.; Baxter, L.L.
Two pilot scale combustion experiments were conducted to explore the application of an anaerobically digested humus as fuel for commercial boilers. The experiments were performed in a fluidized bed combustor (FBC) and a multifuel suspension combustor (MFC). The results obtained indicate that the humus, blended with another conventional fuel (e.g., wood), can be used as a fuel in commercial boilers. Preliminary results of ash deposit analyses from the MFC indicate that the rate of deposition was low compared to high fouling biomass fuels such as straws, and similar to deposits obtained from wood.
High-performance self-compacting concrete with the use of coal burning waste
NASA Astrophysics Data System (ADS)
Bakhrakh, Anton; Solodov, Artyom; Naruts, Vitaly; Larsen, Oksana; Alimov, Lev; Voronin, Victor
2017-10-01
Today, thermal power plants are the main producers of energy in Russia. Most of thermal power plants use coal as fuel. The remaining waste of coal burning is ash, In Russia ash is usually kept at dumps. The amount of utilized ash is quite small, less than 13%. Meanwhile, each ash dump is a local ecological disaster. Ash dumps take a lot of place and destroy natural landscape. The use of fly ash in building materials can solve the problem of fly ash dumps in Russia. A lot of papers of scientists are devoted to the use of fly ash as filler in concrete. The main advantage of admixing fly ash in concrete is decrease of amount of used cement. This investigation was held to find out if it is possible to utilize fly ash by its use in high amounts in self-compacting concrete. During experiments three mixtures of SCC with different properties were obtained. The first one is experimental and shows the possibility of obtaining SCC with high compressive strength with 60% of fly ash from the mass of cement. Two other mixtures were optimized with the help of the math planning method to obtain high 7-day and 28-day high compressive strength.
Zhang, Mengmei; Buekens, Alfons; Li, Xiaodong
2018-05-31
In this study, ash samples were collected from five locations situated in the boiler of a circulating fluidised bed municipal solid waste incinerator (high- and low-temperature superheater, evaporator tubes and upper and lower economiser). These samples represent a huge range of flue gas temperatures and were characterised for their particle size distribution, surface characteristics, elemental composition, chemical forms of carbon and chlorine and distribution of polychlorinated dibenzo-p-dioxins (PCDD), dibenzofurans (PCDF) and biphenyls (PCB). Enrichment of chlorine, one of the main elements of organochlorinated pollutants, and copper, zinc and lead, major catalytic metals for dioxin-like compounds, was observed in lower-temperature ash deposits. The speciation of carbon and chlorine on ash surfaces was established, showing a positive correlation between organic chlorine and oxygen-containing carbon functional groups. The load of PCDD/F and PCB (especially dioxin-like PCB) tends to rise rapidly with falling temperature of flue gas, reaching their highest value in economiser ashes. The formation of PCDD/F congeners through the chlorophenol precursor route apparently was enhanced downstream the boiler. Principal component analysis (PCA) was applied to study the links between the ash characteristics and distribution of chloro-aromatics. The primary purpose of this study is improving the understanding of any links between the characteristics of ash from waste heat systems and its potential to form PCDD/F and PCB. The question is raised whether further characterisation of fly ash may assist to establish a diagnosis of poor plant operation, inclusive the generation, destruction and eventual emission of persistent organic pollutants (POPs).
RECONNAISSANCE FOR URANIUM IN ASPHALT-BEARING ROCKS IN THE WESTERN UNITED STATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hail, W.J. Jr.
1957-01-01
An appraisal of asphait-bearing rocks as potential sources of uranium was made during 1953 and 1954 in 45 areas in Calif., Utah, Wyo., Mont., N. Mex., Tex., Okla., and Mo. A total of 202 samples from these areas was analyzed for uranium. The oldest rocks sampled are Ordovician in age, and the youngest are Recent. Although none of the deposits are of value at this time as a source of U, some of the deposits may constitute a low-grade U resource, but recovery of the U will depend upon the primary use of the asphalt. Significant amounts of U lnmore » the ash of oil extracted from these rocks were found in samples from 7 of the 45 areas examined. These areas are Chalome Creek, McKittrick, Edna, and Los Alamos Calif.; Vernal, Utah; Sulphur, Okla.; and Ellis, Mo. The average U content in the ash of the extracted oil of samples from these 7 areas ranges from 0.028 to 0.376%. All except the Chalone Creek area contain large estimated reserves of asphalt-bearing rock, ranging from 15 million to almost 2 billion tons. The average U content of samples from 13 additiomal areas ranges from 0.020 to 0.06B% in the ash of the extracted oil. Many of these areas contain very large reserves of asphalt-bearing rocks. It is believed that most of the asphalt deposits are oil residues, and that the U was introduced during or after the late stages of oil movement and loss of the lighter oil fractions. (auth)« less
NASA Astrophysics Data System (ADS)
Ohkura, Hiroshi
Full polarimetric SAR images of ALOS PALSAR of Shinmoe-dake volcano in Japan were analyzed. The volcano erupted in January, 2011 and volcano ash deposited more than 10 cm in 12 km (2) and 1 m in 2 km (2) . Two images before and after the eruption were compared based on a point view of the four-component scattering model to detect changes of polarimetric scattering characteristics. The main detected changes are as follows. Total power of the four-component scattering model decreased on a farslope after the eruption. An incident angle on a farslope is larger than the angle on a foreslope. Decrease of surface roughness due to deposited volcanic ashes makes back-scattering smaller in the area of a larger incidence angle. However the rate of the double-bounce component got higher in a forest at the foot of a mountain slope and on a plain, where the ground surface is almost horizontal and the incident angle is relatively-large. Decrease of roughness of the forest floor increases forward scattering on the floor of the larger incident angle. This increases the double-bounced scattering due to bouncing back between the forest floor and trunks which stand "perpendicularly" on the almost horizontal forest floor. The rate of the surface scattering component got higher around an area where layover occurred. In the study area, most of layovers occurred at a ridge where an incidence angle was small. Decrease of surface roughness due to the ash deposit increases the surface scattering power in the area of the small incidence angle.
Preparation and combustion of coal-water fuel from the Sin Pun coal deposit, southern Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
In response to an inquiry by the Department of Mineral Resources in Thailand, the Energy & Environmental Research Center (EERC) prepared a program to assess the responsiveness of Sin Pun lignite to the temperature and pressure conditions of hot-water drying. The results indicate that drying made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 27 wt% for the raw coal to about 15 wt% for the hot-water-dried (HWD) coals. The energy density for a pumpable coal-water fuel (CWF) indicates an increasemore » from 4500 to 6100 Btu/lb by hot-water drying. Approximately 650 lb of HWD Sin Pun CWF were fired in the EERC`s combustion test facility. The fuel burned extremely well, with no feed problems noted during the course of the test. Fouling and slagging deposits each indicated a very low rate of ash deposition, with only a dusty layer formed on the cooled metal surfaces. The combustor was operated at between 20% and 25% excess air, resulting in a flue gas SO{sub 2} concentration averaging approximately 6500 parts per million.« less
NASA Astrophysics Data System (ADS)
Fotakis, M.; Tsikritzis, L.; Tzimkas, N.; Kolovos, N.; Tsikritzi, R.
2008-08-01
West Macedonia Lignite Center (WMLC), located in Northwest Greece, releases into the atmosphere about 21,400 tons/year of fly ash through the stacks of four coal fired plants. The lignite ash contains naturally occurring radionuclides, which are deposited on the WMLC basin. This work investigates the natural radioactivity of twenty six ash samples, laboratory produced from combustion of lignite, which was sampled perpendicularly to the benches of the Kardia mine. The concentrations of radionuclides 40K, 235U, 238U, 226Ra, 228Ra and 232Th, were measured spectroscopically and found round one order of magnitude as high as those of lignite. Subsequently the Radionuclide Partitioning Coefficients of radionuclides were calculated and it was found that they are higher for 232Th, 228Ra and 40K, because the latter have closer affinity with the inorganic matrix of lignite. During combustion up to one third of the naturally occurring radioisotopes escape from the solid phase into the flue gases. With comparison to relative global data, the investigated ash has been found to have relatively high radioactivity, but the emissions of the WMLC radionuclides contribute only 0.03% to the mean annual absorbed dose.
Baba, Alper; Kaya, Abidin
2004-11-01
Use of lignite in power generation has led to increasing environmental problems associated not only with gaseous emissions, but also with the disposal of ash residues. In particular, use of low quality coals with high ash content results in huge quantities of both fly and bottom ashes to be disposed of. A main problem related to coal ash disposal is the heavy metal content of the residue. In this regard, experimental results of numerous studies indicate that toxic trace metals may leach when fly and bottom ashes are in contact with water. In this study, fly and bottom ash samples obtained from thermal power plants, namely Yenikoy, Kemerkoy and Yatagan, located at the southwestern coast of Turkey, were subjected to toxicity tests such as the extraction (EP) and toxicity characteristic leaching (TCLP) procedures of the US Environmental Protection Agency (USEPA) and the so-called 'Method A' extraction procedure of the American Society of Testing and Material (ASTM). The geochemical composition of ash samples showed variations depending on the coal burned in the plants. Furthermore, the EP, TCLP and ASTM toxicity tests showed variations such that the ash samples were classified as 'toxic waste' based on EP and TCLP results whereas they were classified as 'non-toxic' based on ASTM results, indicating test results are pH dependent. When the extraction results were compared with the chemical composition of water samples obtained in the vicinity of the thermal power plants, it was found that the results obtained using the ASTM procedure cannot be used to predict subsurface contamination whereas the EP and TCLP procedures can be used.
2000-04-26
On April 3, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra Satellite captured this image of the erupting Mt. Usu volcano in Hokkaido, Japan. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image the Earth for the next 6 years to map and monitor the changing surface of our planet. This false color infrared image of Mt Usu volcano is dominated by Lake Toya, an ancient volcanic caldera. On the south shore is the active Usu volcano. On Friday, March 31, more than 11,000 people were evacuated by helicopter, truck and boat from the foot of Usu, that began erupting from the northwest flank, shooting debris and plumes of smoke streaked with blue lightning thousands of feet in the air. Although no lava gushed from the mountain, rocks and ash continued to fall after the eruption. The region was shaken by thousands of tremors before the eruption. People said they could taste grit from the ash that was spewed as high as 2,700 meters (8,850 ft) into the sky and fell to coat surrounding towns with ash. "Mount Usu has had seven significant eruptions that we know of, and at no time has it ended quickly with only a small scale eruption," said Yoshio Katsui, a professor at Hokkaido University. This was the seventh major eruption of Mount Usu in the past 300 years. Fifty people died when the volcano erupted in 1822, its worst known eruption. In the image, most of the land is covered by snow. Vegetation, appearing red in the false color composite, can be seen in the agricultural fields, and forests in the mountains. Mt. Usu is crossed by three dark streaks. These are the paths of ash deposits that rained out from eruption plumes two days earlier. The prevailing wind was from the northwest, carrying the ash away from the main city of Date. Ash deposited can be traced on the image as far away as 10 kilometers (16 miles) from the volcano. http://photojournal.jpl.nasa.gov/catalog/PIA02608
Ordovician ash geochemistry and the establishment of land plants
2012-01-01
The colonization of the terrestrial environment by land plants transformed the planetary surface and its biota, and shifted the balance of Earth’s biomass from the subsurface towards the surface. However there was a long delay between the formation of palaeosols (soils) on the land surface and the key stage of plant colonization. The record of palaeosols, and their colonization by fungi and lichens extends well back into the Precambrian. While these early soils provided a potential substrate, they were generally leached of nutrients as part of the weathering process. In contrast, volcanic ash falls provide a geochemically favourable substrate that is both nutrient-rich and has high water retention, making them good hosts to land plants. An anomalously extensive system of volcanic arcs generated unprecedented volumes of lava and volcanic ash (tuff) during the Ordovician. The earliest, mid-Ordovician, records of plant spores coincide with these widespread volcanic deposits, suggesting the possibility of a genetic relationship. The ash constituted a global environment of nutrient-laden, water-saturated soil that could be exploited to maximum advantage by the evolving anchoring systems of land plants. The rapid and pervasive inoculation of modern volcanic ash by plant spores, and symbiotic nitrogen-fixing fungi, suggests that the Ordovician ash must have received a substantial load of the earliest spores and their chemistry favoured plant development. In particular, high phosphorus levels in ash were favourable to plant growth. This may have allowed photosynthesizers to diversify and enlarge, and transform the surface of the planet. PMID:22925460
The impact of the characteristics of volcanic ash on forecasting.
NASA Astrophysics Data System (ADS)
Beckett, Frances; Hort, Matthew; Millington, Sarah; Stevenson, John; Witham, Claire
2013-04-01
The eruption of Eyjafjallajökull during April - May 2010 and Grímsvötn in May 2011, Iceland, caused the widespread dispersion of volcanic ash across the NE Atlantic, and ultimately into UK and European airspace. This resulted in thousands of flights to and from affected countries across Europe to be cancelled. The Met Office, UK, is the home of the London VAAC, a Volcanic Ash Advisory Centre, and as such is responsible for providing reports and forecasts for the movement of volcanic ash clouds covering the UK, Iceland and the north-eastern part of the North Atlantic ocean. To forecast the dispersion of volcanic ash requires that the sedimentation of ash particles through the atmosphere is effectively modelled. The settling velocity of an ash particle is a function of its size, shape and density, plus the density and viscosity of the air through which it is falling. We consider the importance of characterising the physical properties of ash when modelling the long range dispersion of ash particles through the atmosphere. Using the Reynolds number dependent scheme employed by NAME, the Lagrangian particle model used operationally by the Met Office, we calculate the settling velocity and thus the maximum travel distance of an ash particle through an idealised atmosphere as a function of its size, shape and density. The results are compared to measured particle sizes from deposits across Europe following the eruption of Eyjafjallajökull in 2010. Further, the particle size distribution (PSD) of ash in a volcanic cloud with time is modelled using NAME: the particle density distribution and particle shape factor are varied and the modelled PSD compared to the PSD measured in the ash cloud during the eruption of Eyjafjallajökull in 2010 by the FAAM research aircraft. The influence of the weather on PSD is also considered by comparing model output using an idealised atmosphere to output using NWP driven meteorological fields. We discuss the sensitivity of forecasts of the dispersion of volcanic ash to the representation of particle characteristics in NAME, the importance of representing the weather in ash fall models, and the implications of these results for the operational forecasting of volcanic ash dispersion at the London VAAC.
Reconstructing the deadly eruptive events of 1790 CE at Kīlauea Volcano, Hawai‘i
Swanson, Don; Weaver, Samantha J; Houghton, Bruce F.
2014-01-01
A large number of people died during an explosive eruption of Kīlauea Volcano in 1790 CE. Detailed study of the upper part of the Keanakāko‘i Tephra has identified the deposits that may have been responsible for the deaths. Three successive units record shifts in eruption style that agree well with accounts of the eruption based on survivor interviews 46 yr later. First, a wet fall of very fine, accretionary-lapilli–bearing ash created a “cloud of darkness.” People walked across the soft deposit, leaving footprints as evidence. While the ash was still unconsolidated, lithic lapilli fell into it from a high eruption column that was seen from 90 km away. Either just after this tephra fall or during its latest stage, pulsing dilute pyroclastic density currents, probably products of a phreatic eruption, swept across the western flank of Kīlauea, embedding lapilli in the muddy ash and crossing the trail along which the footprints occur. The pyroclastic density currents were most likely responsible for the fatalities, as judged from the reported condition and probable location of the bodies. This reconstruction is relevant today, as similar eruptions will probably occur in the future at Kīlauea and represent its most dangerous and least predictable hazard.
NASA Astrophysics Data System (ADS)
Reckziegel, F.; Bustos, E.; Mingari, L.; Báez, W.; Villarosa, G.; Folch, A.; Collini, E.; Viramonte, J.; Romero, J.; Osores, S.
2016-07-01
Atmospheric dispersion of volcanic ash from explosive eruptions or from subsequent fallout deposit resuspension causes a range of impacts and disruptions on human activities and ecosystems. The April-May 2015 Calbuco eruption in Chile involved eruption and resuspension activities. We overview the chronology, effects, and products resulting from these events, in order to validate an operational forecast strategy for tephra dispersal. The modelling strategy builds on coupling the meteorological Weather Research and Forecasting (WRF/ARW) model with the FALL3D dispersal model for eruptive and resuspension processes. The eruption modelling considers two distinct particle granulometries, a preliminary first guess distribution used operationally when no field data was available yet, and a refined distribution based on field measurements. Volcanological inputs were inferred from eruption reports and results from an Argentina-Chilean ash sample data network, which performed in-situ sampling during the eruption. In order to validate the modelling strategy, results were compared with satellite retrievals and ground deposit measurements. Results indicate that the WRF-FALL3D modelling system can provide reasonable forecasts in both eruption and resuspension modes, particularly when the adjusted granulometry is considered. The study also highlights the importance of having dedicated datasets of active volcanoes furnishing first-guess model inputs during the early stages of an eruption.
STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Hurt; Eric Suuberg; John Veranth
2004-02-13
The overall objective of the present project was to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific issues addressed included: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity based on pilot-plant studies; and (3) the kinetics and mechanism of ash ozonation. This laboratory data has provided scientific and engineering support and underpinning for parallel process development activities.more » The development work on the ash ozonation process has now transitioned into a scale-up and commercialization project involving a multi-industry team and scheduled to begin in 2004. This report describes and documents the laboratory and pilot-scale work in the above three areas done at Brown University and the University of Utah during this three-year project.« less
NASA Astrophysics Data System (ADS)
Yang, Yong-bin; Zhang, Yan; Zhong, Qiang; Jiang, Tao; Li, Qian; Xu, Bin
The occurrence of different ringing behaviors in oxidized pellet kiln for two kinds of coal (A and B) with similar properties, is difficult to explain based on the relationship between kiln ringing and coal properties. In this paper, the interaction of coal ash with pellet scrap powder was considered by studying the cohering behavior of powders consisting of them. The results showed that the cohering briquette strength of pellet scrap powder increased considerably when mixed with a small amount of coal ash; a maximum could be reached when the mass percent ratio of coal ash was 1.5%; the strength of powder mixed with coal B ash was always higher in same firing system. This obviously illustrated that coal B caused a more serious ringing problem. The relevant mechanism was that the stronger reactivity of coal B ash made cohering briquette have a more perfect crystallization and a more compact structure.
Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.
Lee, H K; Kim, H K; Hwang, E A
2010-02-01
Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.
Glass-ceramic from mixtures of bottom ash and fly ash.
Vu, Dinh Hieu; Wang, Kuen-Sheng; Chen, Jung-Hsing; Nam, Bui Xuan; Bac, Bui Hoang
2012-12-01
Along with the gradually increasing yield of the residues, appropriate management and treatment of the residues have become an urgent environmental protection problem. This work investigated the preparation of a glass-ceramic from a mixture of bottom ash and fly ash by petrurgic method. The nucleation and crystallization kinetics of the new glass-ceramic can be obtained by melting the mixture of 80% bottom ash and 20% fly ash at 950 °C, which was then cooled in the furnace for 1h. Major minerals forming in the glass-ceramics mainly are gehlenite (Ca(2)Al(2)SiO(7)) & akermanite (Ca(2)MgSiO(7)) and wollastonite (CaSiO(3)). In addition, regarding chemical/mechanical properties, the chemical resistance showing durability, and the leaching concentration of heavy metals confirmed the possibility of engineering and construction applications of the most superior glass-ceramic product. Finally, petrurgic method of a mixture of bottom ash and fly ash at 950 °C represents a simple, inexpensive, and energy saving method compared with the conventional heat treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Macorps, Elodie; Charbonnier, Sylvain J.; Varley, Nick R.; Capra, Lucia; Atlas, Zachary; Cabré, Josep
2018-01-01
The July 2015 block-and-ash flow (BAF) events represent the first documented series of large-volume and long-runout BAFs generated from sustained dome collapses at Volcán de Colima. This eruption is particularly exceptional at this volcano due to (1) the large volume of BAF material emplaced (0.0077 ± 0.001 km3), (2) the long runout reached by the associated BAFs (max. 10 km), and (3) the short period ( 18 h) over which two main long-sustained dome collapse events occurred (on 10 and 11 July, respectively). Stratigraphy and sedimentology of the 2015 BAF deposits exposed in the southern flank of the volcano based on lithofacies description, grain size measurements and clast componentry allowed the recognition of three main deposit facies (i.e., valley-confined, overbank and ash-cloud surge deposits). Correlations and lithofacies variations inside three main flow units from both the valley-confined and overbank deposits left from the emplacement of the second series of BAFs on 11 July provide detailed information about: (1) the distribution, volumes and sedimentological characteristics of the different units; (2) flow parameters (i.e., velocity and dynamic pressure) and mobility metrics as inferred from associated deposits; and (3) changes in the dynamics of the different flows and their material during emplacement. These data were coupled with geomorphic analyses to assess the role of the topography in controlling the behaviour and impacts of the successive BAF pulses on the volcano flanks. Finally, these findings are used to propose a conceptual model for transport and deposition mechanisms of the July 2015 BAFs at Volcán de Colima. In this model, deposition occurs by rapid stepwise aggradation of successive BAF pulses. Flow confinement in a narrow and sinuous channel enhance the mobility and runout of individual channelized BAF pulses. When these conditions occur, the progressive valley infilling from successive sustained dome-collapse events promote the overspill and lateral spreading of the upper and marginal regions of the main flow body, generating highly mobile overbank flows that travel outside of the main valley. Volume- and distance-dependent critical channel capacities for the generation of overbank flows are used to better estimate the inundation area of these hazardous unconfined pyroclastic flows. These results highlight the importance of including and correctly assessing the hazards posed by large volume and long runout BAFs associated with frequent, small VEI, sustained dome-collapse eruptions.
Primary and secondary fragmentation of crystal-bearing intermediate magma
NASA Astrophysics Data System (ADS)
Jones, Thomas J.; McNamara, Keri; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.; Scheu, Bettina; Edwards, Robyn
2016-11-01
Crystal-rich intermediate magmas are subjected to both primary and secondary fragmentation processes, each of which may produce texturally distinct tephra. Of particular interest for volcanic hazards is the extent to which each process contributes ash to volcanic plumes. One way to address this question is by fragmenting pyroclasts under controlled conditions. We fragmented pumice samples from Soufriere Hills Volcano (SHV), Montserrat, by three methods: rapid decompression in a shock tube-like apparatus, impact by a falling piston, and milling in a ball mill. Grain size distributions of the products reveal that all three mechanisms produce fractal breakage patterns, and that the fractal dimension increases from a minimum of 2.1 for decompression fragmentation (primary fragmentation) to a maximum of 2.7 by repeated impact (secondary fragmentation). To assess the details of the fragmentation process, we quantified the shape, texture and components of constituent ash particles. Ash shape analysis shows that the axial ratio increases during milling and that particle convexity increases with repeated impacts. We also quantify the extent to which the matrix is separated from the crystals, which shows that secondary processes efficiently remove adhering matrix from crystals, particularly during milling (abrasion). Furthermore, measurements of crystal size distributions before (using x-ray computed tomography) and after (by componentry of individual grain size classes) decompression-driven fragmentation show not only that crystals influence particular size fractions across the total grain size distribution, but also that free crystals are smaller in the fragmented material than in the original pumice clast. Taken together, our results confirm previous work showing both the control of initial texture on the primary fragmentation process and the contributions of secondary processes to ash formation. Critically, however, our extension of previous analyses to characterisation of shape, texture and componentry provides new analytical tools that can be used to assess contributions of secondary processes to ash deposits of uncertain or mixed origin. We illustrate this application with examples from SHV deposits.
NASA Astrophysics Data System (ADS)
Stenchikov, Georgiy; Ukhov, Alexander; Ahmadov, Ravan
2017-04-01
Big explosive volcanic eruptions emit in the atmosphere, among other species, millions of tons of SO2, water vapor, and solid particles, volcanic ash. SO2 is oxidized to produce sulfate aerosols that are transported globally and cause widespread long-term climate effects. Ash particles deposit within a few months, as they are relatively large, and, it is believed, do not produce long-term climate effects. However, at the initial stage of the evolution of a volcanic cloud SO2, volcanic water, sulfate, and ash coexist and their chemical, microphysical, and radiation interaction might be important to precondition the long-term formation and transport of a volcanic aerosol cloud. To better understand this initial stage of a volcanic impact we simulate the aerosol plume from the largest 20th-century eruption of Mt. Pinatubo in the Philippines in June 1991 using the specifically modified Weather Research and Forecasting model coupled with chemistry (WRF-Chem). Ash, SO2, and sulfate emission, transport, dispersion, chemical transformation and deposition are calculated using the GOCART aerosol and chemistry scheme. Effect of volcanic aerosol interaction with radiation (short and long wave) is assessed using RRTMG radiative transfer model. The simulations are conducted for two months in the equatorial belt (45S, 45N) with the periodic boundary conditions in longitude and imposing aerosols and chemicals from the MERRA2, and meteorology from the ERA-Interim along the belt's borders in latitude. The simulations reveal the vertical separation of the aerosol plume due to aerosol (both ash and sulfate) gravitational settling and a complex dynamic evolution of the multi-layer cloud with sharp gradients of radiative heating within the plume that affects the cloud dispersion and the equilibrium altitude that are crucially important for the further large-scale plume evolution.
Gould, Juli R; Ayer, Tracy; Fraser, Ivich
2011-04-01
Spathius agrili Yang (Hymenoptera: Braconidae) can be successfully reared on emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), larvae feeding in chambers drilled in small ash twigs that are wrapped with floral tape. Females maintained in groups with males for one week can receive enough sperm for production of female progeny throughout their lives. Volatiles released by emerald ash borer adults feeding on ash foliage increased parasitoid fecundity over ash foliage alone or no stimulus. The temperature at which the parasitoids were reared ranged from 20 to 25 degrees C in a daily cycle; however, raising the daily maximum temperature to 28 degrees C did not affect parasitoid longevity or fecundity. Adult females lived between 12 and 127 d, with an average of 60.8 +/- 4.5 d. Males lived slightly longer, with an average of 66 +/- 4.5 d. The first clutch of eggs was laid when the female was between 2 and 42 d old, with the average preoviposition period lasting 11.4 +/- 1.4 or 19.5 +/- 2.0 d in 2007 and 2009 trials, respectively. A higher proportion of the emerald ash borer larvae were feeding and thus attractive to parasitoids in the 2009 trial, and female S. agrili laid an average of 9.5 +/- 1.0 clutches containing 5.4 +/- 0.2 eggs, for an average of 51.2 eggs per female. Approximately three quarters of the progeny were female. The number of eggs per clutch was significantly greater when deposited on larger emerald ash borer larvae, further highlighting the need for quality larvae in rearing. Chilling S. agrili pupae at 10 degrees C to stockpile them for summer release was not successful; chilling resulted in lower survival and lower fecundity of emerging progeny. Female S. agrili proved capable of attacking emerald ash borer larvae through even the thickest bark of an ash tree that was 30-cm diameter at breast height. Even emerald ash borer larvae that were creating overwintering chambers in the outer sapwood of the tree were successfully attacked, suggesting that S. agrili could be reared on field collected logs infested with emerald ash borer.
Leachability of uranium and other elements from freshly erupted volcanic ash
Smith, D.B.; Zielinski, R.A.; Rose, W.I.
1982-01-01
A study of leaching of freshly erupted basaltic and dacitic air-fall ash and bomb fragment samples, unaffected by rain, shows that glass dissolution is the dominant process by which uranium is initially mobilized from air-fall volcanic ash. Si, Li, and V are also preferentially mobilized by glass dissolution. Gaseous transfer followed by fixation of soluble uranium species on volcanic-ash particles is not an important process affecting uranium mobility. Gaseous transfer, however, may be important in forming water-soluble phases, adsorbed to ash surfaces, enriched in the economically and environmentally important elements Zn, Cu, Cd, Pb, B, F, and Ba. Quick removal of these adsorbed elements by the first exposure of freshly erupted ash to rain and surface water may pose short-term hazards to certain forms of aquatic and terrestrial life. Such rapid release of material may also represent the first step in transportation of economically important elements to environments favorable for precipitation into deposits of commercial interest. Ash samples collected from the active Guatemalan volcanoes Fuego and Pacaya (high-Al basalts) and Santiaguito (hornblende-hypersthene dacite); bomb fragments from Augustine volcano (andesite-dacite), Alaska, and Heimaey (basalt), Vestmann Islands, Iceland; and fragments of "rhyolitic" pumice from various historic eruptions were subjected to three successive leaches with a constant water-to-ash weight ratio of 4:1. The volcanic material was successively leached by: (1) distilled-deionized water (pH = 5.0-5.5) at room temperature for 24 h, which removes water-soluble gases and salts adsorbed on ash surfaces during eruption; (2) dilute HCl solution (pH = 3.5-4.0) at room temperature for 24 h, which continues the attack initiated by the water and also attacks acid-soluble sulfides and oxides; (3) a solution 0.05 M in both Na,CO, and NaHCO, (pH = 9.9) at 80°C for one week, which preferentially dissolves volcanic glass. The first two leaches mimic interaction of ash with rain produced in the vicinity of an active eruption. The third leach accelerates the effect of prolonged contact of volcanic ash with alkaline ground water present during ash diagenesis.
Marine mesocosm bacterial colonisation of volcanic ash
NASA Astrophysics Data System (ADS)
Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert
2015-04-01
Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the physico-chemical composition of the substrate. Knowledge on pioneer bacterial colonisation may increase our understanding on the resilience of coral reefs to natural "catastrophes", such as volcanic ash fallout.
Wildfire ash: its production and hydro-eco-geomorphic effects in forested landscapes
NASA Astrophysics Data System (ADS)
Doerr, S. H.; Bodi, M.; Santin, C.; Balfour, V.; Woods, S.; Mataix-Solera, J.; Cerda, A.; Shakesby, R.
2012-12-01
Fire, whether ignited naturally or by humans, is one of the most important disturbance agents in many of the world's forested ecosystems. Amongst its direct consequences is the deposition of a range of solid and largely powdery residues on the ground consisting of charred organic material including charcoal and residual mineral material. This fragile 'ash' layer can be removed in large quantities from hillslopes within days by wind or water erosion, with the latter facilitating its transfer to the hydrological system. Probably as a result of its ephemeral nature and not being soil, vegetation or litter, ash has seen limited attention in studies on hydrological impacts of wildfire. Those few studies available show that ash can substantially affect the hydrological system. When present on hillslopes as a water-absorbent layer, it can reduce surface runoff, protect soil against rainsplash erosion, and its leachates can reportedly reduce soil erodibility by promoting flocculation of dispersed clays. In contrast, however, ash can also increase surface runoff by blocking soil pores or by forming a crust. Furthermore, ash is thought capable of promoting debris flows. Its net effect probably depends on the nature of the ash and soil including their respective water repellency levels, the pore size distribution of the soil, and general terrain and rainfall characteristics. Being very mobile, ash can be the source of substantial organic and inorganic sediment inputs, and of solute influxes into the fluvial system. These can affect water quality sometimes with detrimental effects on aquatic organisms and domestic water supply. This presentation aims to provide an overview of the current knowledge base regarding the production and potential effects of wildfire ash on the hydrological system in and beyond forested landscapes..The late Scott Woods examining a thick ash layer following a severe fire in a conifer forest. Montana, USA.
NASA Astrophysics Data System (ADS)
Rose, T. R.; Fiske, R. S.; Swanson, D.
2011-12-01
Small, well-formed Pele's tears containing anomalously high values of MgO were recently discovered in outcrops of the upper Kulanaokuaiki Tephra at and near the base of Uwekahuna Bluff, the western wall of Kilauea Caldera. Electron microprobe analyses of more than 60 high-MgO tears, which are 1-3 mm in diameter, show that most contain 11 to 12 wt. % MgO with a few approaching 13 % MgO. Separate microprobe analyses for sulfur and chlorine of 20 grains revealed no appreciable amounts of either, indicating the magma was largely degassed. Polished-section studies employing an analytical scanning electron microscope show most tears are composed of pure microvesicular glass with scattered skeletal olivine crystals and rare chromite. The abundance of skeletal olivine appears to increase with decreasing MgO content of the glass. These tears contain among the highest known MgO values of any material erupted subaerially from Kilauea. The high-MgO tears occur in a 1-6 cm thick layer of medium-coarse lithic-crystal-vitric ash. The top of this layer consists of 2-3 mm of very fine lithic-crystal ash. The lithics and many of the olivine crystals in this layer are highly oxidized. This deposit is at the top of a sequence of several lithic beds that are interspersed with thinner vitric units totaling about 75 cm in thickness. It is overlain by 9-13 cm of medium pumice lapilli and coarse vitric ash at the top of the "Bluff base" and "mid-Bluff" tephra sections described by Fiske et al. (2009). This high-MgO glass layer has been found thus far in only one other locality, a 2 m-deep soils study pit within Kipuka Puaulu, 3.5 km northwest of the caldera. Based upon stratigraphic relationships and preliminary microprobe data, a few other likely exposures of the high-MgO deposit have been identified north and west of the caldera. The high-MgO vitric ash in the upper Kulanaokuaiki Tephra has a primitive composition that suggests little if any shallow level storage of magma. Instead, the magma probably rose rapidly from deep within, or below, the volcano just before its eruption. Remnants of the Kulanaokuaiki-3 scoria deposit, a subunit of the upper Kulanaokuaiki Tephra, are preserved over wide areas 7-12 km south and southeast of the summit and have characteristics also suggesting rapid rise and eruption (Fiske et al., this meeting). Some relatively primitive vitric ash occurs in the younger Keanakako`i Tephra (Garcia et al., this meeting) and can be interpreted to indicate little if any shallow storage. Thus the high-MgO glass reported here may be an end member in a family of relatively primitive compositions that can erupt under some circumstances at Kilauea's summit. Most recent tephra deposits at and near Kilauea's summit are attributed to phreatic or phreatomagmatic explosive eruptions that originated at relatively shallow depth. One important implication of our findings is that some highly energetic pyroclastic eruptions at Kilauea likely originated at far greater depths.
Impact of solid discharges from coal usage in the Southwest.
Jones, D G; Straughan, I R
1978-12-01
The Southwestern region of the United States is extremely wealthy in low sulfur coal resources which must be eventually utilized in response to national energy balance priorities. Fly ash and scrubber sludge can be safely disposed of using properly managed techniques to ensure that any potential impact from elements such as boron, molybdenum, or selenium is rendered insignificant. Alternative methods of solids utilization are presently being developed. Fly ash is presently being marketed commercially as an additive for concrete manufacture. Successful experiments have been completed to demonstrate the manufacture of commercial-grade wallboard from scrubber sludge. Also, greenhouse studies and field experiments have been conducted to demonstrate increased yields of selected crops grown on typical soils amended with fly ash in amounts ranging from 2% to 8%, by weight. These studies also indicate that barium and strontium may be good monitoring indices for determining atmospheric deposition of fly ash, due to their concentration ratios in soil and vegetation samples. Further studies are being conducted to confirm encouraging irrigation and crop-yield data obtained with fly ash amended soils. Finally, the composition of many fly ashes and soils are similar in the Southwest, and there are no anticipated solid discharges from coal usage which cannot be rendered insignificant with proper management of existing and emerging methods of treatment. Compared with the water availability impact of coal usage in the Southwest, the impact of solid waste discharges are insignificant.
NASA Astrophysics Data System (ADS)
Yamada, M.; Fujino, S.; Satake, K.
2017-12-01
The 7.3 ka eruption of Kikai volcano, southern Kyushu, Japan, is one of the largest caldera-forming eruption in the world. Given that a huge caldera was formed in shallow sea area during the eruption, a tsunami must have been generated by a sea-level change associated. Pyroclastic flow and tsunami deposits by the eruption have been studied around the caldera, but they are not enough to evaluate the tsunami size. The goal of this study is to unravel sizes of tsunami and triggering caldera collapse by numerical simulations based on a widely-distributed tsunami deposit associated with the eruption. In this presentation, we will provide an initial data on distribution of the 7.3 ka tsunami deposit contained in sediment cores taken at three coastal lowlands in Wakayama, Tokushima, and Oita prefectures (560 km, 520 km, and 310 km north-east from the caldera, respectively). A volcanic ash from the eruption (Kikai Akahoya tephra: K-Ah) is evident in organic-rich muddy sedimentary sequence in all sediment cores. Up to 6-cm-thick sand layer, characterized by a grading structure and sharp bed boundary with lower mud, is observed immediately beneath the K-Ah tephra in all study sites. These sedimentary characteristics and broad distribution indicate that the sand layer was most likely deposited by a tsunami which can propagate to a wide area, but not by a local storm surge. Furthermore, the stratigraphic relationship implies that the study sites must have been inundated by the tsunami prior to the ash fall. A sand layer is also evident within the K-Ah tephra layer, suggesting that the sand layer was probably formed by a subsequent tsunami wave during the ash fall. These geological evidences for the 7.3 ka tsunami inundation will contribute to a better understanding of the caldera collapse and the resultant tsunami, but also of the tsunami generating system in the eruptive process.
Volcanic geology of Furnas Volcano, São Miguel, Azores
NASA Astrophysics Data System (ADS)
Guest, J. E.; Gaspar, J. L.; Cole, P. D.; Queiroz, G.; Duncan, A. M.; Wallenstein, N.; Ferreira, T.; Pacheco, J.-M.
1999-09-01
Furnas is the easternmost of the three active central volcanoes on the island of São Miguel in the Azores. Unlike the other two central volcanoes, Sete Cidades and Fogo, Furnas does not have a well-developed edifice, but consists of a steep-sided caldera complex 8×5 km across. It is built on the outer flanks of the Povoação/Nordeste lava complex that forms the eastern end of São Miguel. Constructive flanks to the volcano exist on the southern side where they form the coastal cliffs, and to the west. The caldera margins tend to reflect the regional/local tectonic pattern which has also controlled the distribution of vents within the caldera and areas of thermal springs. Activity at Furnas has been essentially explosive, erupting materials of trachytic composition. Products associated with the volcano include plinian and sub-plinian pumice deposits, ignimbrites and surge deposits, phreatomagmatic ashes, block and ash deposits and dome materials. Most of the activity has occurred from vents within the caldera, or on the caldera margin, although strombolian eruptions with aa flows of ankaramite and hawaiite have occurred outside the caldera. The eruptive history consists of at least two major caldera collapses, followed by caldera infilling. Based on 14C dates, it appears that the youngest major collapse occurred about 12,000-10,000 years BP. New 14C dates for a densely welded ignimbrite suggest that a potential caldera-forming eruption occurred at about 30,000 years BP. Recent eruptions (<5000 years old) were mainly characterised by alternating episodes of magmatic and phreatomagmatic activity of plinian and sub-plinian magnitude, forming deposits of interbedded ash and lapilli. An historical eruption is documented in 1630 AD; new evidence suggests that another occurred during the early occupation of the area at about 1440 AD.
Integrated coal cleaning, liquefaction, and gasification process
Chervenak, Michael C.
1980-01-01
Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.
NASA Astrophysics Data System (ADS)
Wattimena, Oswyn K.; Antoni, Hardjito, Djwantoro
2017-09-01
There are more than four decades since the last 1970s where geopolymers concrete was first introduced and developed to use as a replacement to conventional concrete material which uses cement as a binder. And since the last two decades, geopolymers which utilized fly ash as aluminosilicate source material, i.e. fly ash based geopolymers, have been investigated. Many researchers present how to produce the best fly ash based geopolymer with a various source of constituent material as well as mixing formula to achieve exceptional concrete performance. Although there is a similar trend towards factors affecting the result of fly ash based geopolymer synthesis, there is still remain a wide range in mixture proportion. The considerable variation in fly ash characteristics as source material in the synthesis can very likely be one of the causes of this problem. This paper attempts to identify the effect of source material variation of geopolymer concrete, particularly which use fly ash as source material and focuses on the variation of its characteristics and the effects to properties of concrete. From the reviews it concluded that different sources (and even the same source, but different batch) of fly ash materials will give some different characteristics of the fly ash, where it would affect the synthesis process of the fly ash based geopolymer concretes.
Ash-flow tuffs: Their origin, geologic relations, and identification
Ross, Clarence S.; Smith, Robert L.
1961-01-01
Pyroclastic materials, which are interpreted as having been deposited by flowage as a suspension of ash in volcanic gas, are becoming widely recognized as major geologic episodes. These may be unconsolidated, indurated by partial welding, or welded into a compact rock. Many students are working on these materials and the interest in them is so widespread that need for a coordinated treatise on them has developed. This report deals with the history of the concept of their origin; gives detailed descriptions of their character and mode of occurrence; gives criteria for their recognition; and considers their distribution and consolidation.
NASA Astrophysics Data System (ADS)
Proussevitch, Alexander
2014-05-01
Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.
Weibel, Gisela; Eggenberger, Urs; Schlumberger, Stefan; Mäder, Urs K
2017-04-01
This study focusses on chemical and mineralogical characterization of fly ash and leached filter cake and on the determination of parameters influencing metal mobilization by leaching. Three different leaching processes of fly ash from municipal solid waste incineration (MSWI) plants in Switzerland comprise neutral, acidic and optimized acidic (+ oxidizing agent) fly ash leaching have been investigated. Fly ash is characterized by refractory particles (Al-foil, unburnt carbon, quartz, feldspar) and newly formed high-temperature phases (glass, gehlenite, wollastonite) surrounded by characteristic dust rims. Metals are carried along with the flue gas (Fe-oxides, brass) and are enriched in mineral aggregates (quartz, feldspar, wollastonite, glass) or vaporized and condensed as chlorides or sulphates. Parameters controlling the mobilization of neutral and acidic fly ash leaching are pH and redox conditions, liquid to solid ratio, extraction time and temperature. Almost no depletion for Zn, Pb, Cu and Cd is achieved by performing neutral leaching. Acidic fly ash leaching results in depletion factors of 40% for Zn, 53% for Cd, 8% for Pb and 6% for Cu. The extraction of Pb and Cu are mainly limited due to a cementation process and the formation of a PbCu 0 -alloy-phase and to a minor degree due to secondary precipitation (PbCl 2 ). The addition of hydrogen peroxide during acidic fly ash leaching (optimized acidic leaching) prevents this reduction through oxidation of metallic components and thus significantly higher depletion factors for Pb (57%), Cu (30%) and Cd (92%) are achieved. The elevated metal depletion using acidic leaching in combination with hydrogen peroxide justifies the extra effort not only by reduced metal loads to the environment but also by reduced deposition costs. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Seligman, A. N.; Bindeman, I. N.
2013-12-01
The use of δD of ash as a reliable recorder of δD (and δ18O) values of paleoprecipitation in paleoclimate and paleoaltimetry research still requires experimental verification and testing. It is currently assumed that ash is deposited with a water content of no significance, and that within a few thousand years it becomes sufficiently (up to 4 wt.% H2O) hydrated, although the rate of hydration and whether or not the initial isotopic signature is held, are not well understood. We report analyses of δD and H2O of distal ash from recent eruptions (1980 Mount St. Helens, 1992 Mt. Spurr, and 1974 Volcán de Fuego) that were collected syneruption, in addition to scoria ranging in age from ~50 to 7300 years old from Klyuchevskoy volcano (Kamchatka, Russia), using the TC/EA - MAT 253 continuous flow system. Natural variability of studied samples in wt.% H2O (δD in ‰), with errors represented as 1 s.d. for the average, for recent ash eruptions, range from 0.1 × 0.07 (-102 × 4.7) for Volcán de Fuego up to 0.7 × 0.10 (-104 × 3.5) for Mount St. Helens. Ash from the Mt. Spurr eruption averaged 0.4 × 0.04 (-109 × 4.0), and we plan to also analyze ash from Mt. Pinatubo. The δD values are consistent with a magmatic degassing trend, where the last remaining water is depleted in deuterium, suggesting ash may be deposited with up to 0.7 wt.% H2O as primary magmatic water. Klyuchevskoy scoria (basaltic andesite) shows a general trend of increasing wt.% H2O with increasing age: the youngest samples (<2.0 ka) have ~0.2 wt.% water (-99 to -109 ‰), which is likely primary magmatic, while the older samples (4.7-7.3 ka) generally have a higher water concentration (~0.3-0.5 wt.%); likely local meteoric water based on δD values that are lower than degassed magmatic δD values and higher water content. The samples between ~2.3 and 3.6 ka (0.1 to 0.4 wt.% water) have variable water concentrations due to variations in porosity and therefore surface area between the different scoria. We do not observe a trend between the SiO2 wt.% (51-56 wt.%) and the water content of the samples. The δD values (between -99 × 5.6 and -121 × 1.2 per mil are near equilibrium with local postglacial meteoric waters, when incorporating a -30‰ fractionation, and provide a trend between δD and wt.% H2O, where higher water concentrations are associated with lower δD values. We also report preliminary results of δ18O in extracted water, using experimentally hydrated dacite and rhyolite glass, and a large set of natural ash (ash described above and ash from the Lava Creek Tuff of Yellowstone). These results show water-glass fractionations between -11.5 and -12.7 for experimental glasses and -2.2 to -11.4 for natural ash. We are looking into using δ18Owater in glass as a more robust and retentive proxy of past environmental waters for paleoclimate and paleoaltimetry research.
NASA Astrophysics Data System (ADS)
Carto, S. L.; Eyles, N.
2009-05-01
A central challenge to the 'Snowball Earth' hypothesis is whether the sedimentary rocks deposited during the Neoproterozoic (c. 750-570 Ma) are glacial tillites that accumulated under global ice sheets during this era. This uncertainty stems from the fact that diamictites are not uniquely glacial in origin, as the slumping and mixing of sediment downslope can also produce diamictites. A key deposit in this debate is the Squantum 'tillite' (ca. 595-570 Ma) preserved in the Boston Basin in Massachusetts, USA, which originated as an arc- related basin within the Avalon island arc terrane during the Neoproterozoic. Detailed field examinations of the Squantum by the author suggest that it owes its origin to the downslope transport of large volumes of unstable volcanic and sedimentary debris from steep basin margin slopes. No evidence of a glacial environment was identified. Thin-section analysis of this deposit has revealed a significant volcanic influence on sedimentation in the form of hitherto unrecognized volcanic lapilli tuff horizons and turbidites consisting of reworked ash in strata associated with Squantum diamictite. These results point to deposition related to tectonic activity and basin development rather than severe global glacial conditions. In light of these results, the Squantum diamictite was compared to the volcaniclastic mass flows deposits exposed along the active Lesser Antilles Arc in the Caribbean. Many of these flows are transported into the adjacent Grenada back-arc Basin by debris flows and turbidity currents resulting in the deposition of volcaniclastic conglomerates, diamictites and thin ash turbidites. Gross stratigraphic and sedimentological similarities of the mass flow facies in the Caribbean can be identified with the Squantum deposits, suggesting that appropriate depositional analogs for the Squantum can be found along the Lesser Antilles Arc. The significance of these results is that they emphasize the importance of detailed field examination of deposits uncritically labeled as Neoproterozoic 'tillites' by paleoclimate modelers.
Riehle, J.R.; Ager, T.A.; Reger, R.D.; Pinney, D.S.; Kaufman, D.S.
2008-01-01
Recently discovered Lethe tephra has been proposed as a latest Pleistocene marker bed in Bristol Bay lowland NE to the Cook Inlet region, Alaska, on the basis of correlations involving a single "Lethe average" glass composition. Type deposits in the Valley of Ten Thousand Smokes, however, are chemically heterogeneous-individual lapilli as well as aggregate ash deposits have glass compositions that range from the average mode to much higher SiO2 and K2O. Moreover, a lake-sediment core from the Cook Inlet region contains one ash deposit similar to "Lethe average" and other, closely underlying deposits that resemble a mixture of the average mode and high-Si high-K mode of proximal deposits. Synthesis of previously published radiocarbon ages indicates a major eruption mainly of "Lethe average" mode about 13,000 14C yr BP. As many as six deposits in the Cook Inlet region-five chiefly "Lethe average" mode-range from about 13,000 to 15-16,000 14C yr BP, and an early Holocene deposit in the Bristol Bay lowland extends the minimum age range of Lethe tephra throughout this region to 8000 14C yr BP. Because of the appearance of "Lethe average" composition in multiple deposits spanning thousands of years, we urge caution when using a Lethe-like composition as a basis for inferring a latest Pleistocene age of a tephra deposit in south-central Alaska. Linear variation plots suggest that magma mixing caused the Lethe heterogeneity; multiple magmas were involved as well in other large pyroclastic eruptions such as Katmai (Alaska) and Rotorua (New Zealand). Lethe is an example of a heterogeneous tephra that may be better compared with other tephras by use of plots of individual analytical points rather than by calculating similarity coefficients based on edited data. ?? 2006 Elsevier Ltd and INQUA.
NASA Astrophysics Data System (ADS)
Porritt, L. A.; Cas, R. A. F.
2009-01-01
An integrated approach involving volcanology, geochemistry and numerical modelling has enabled the reconstruction of the volcanic history of the Fox kimberlite pipe. The observed deposits within the vent include a basal massive, poorly sorted, matrix supported, lithic fragment rich, eruption column collapse lapilli tuff. Extensive vent widening during the climactic magmatic phase of the eruption led to overloading of the eruption column with cold dense country rock lithic fragments, dense juvenile pyroclasts and olivine crystals, triggering column collapse. > 40% dilution of the kimberlite by granodiorite country rock lithic fragments is observed both in the physical componentry of the rocks and in the geochemical signature, where enrichment in Al 2O 3 and Na 2O compared to average values for coherent kimberlite is seen. The wide, deep, open vent provided a trap for a significant proportion of the collapsing column material, preventing large scale run-away in the form of pyroclastic flow onto the ground surface, although minor flows probably also occurred. A massive to diffusely bedded, poorly sorted, matrix supported, accretionary-lapilli bearing, lithic fragment rich, lapilli tuff overlies the column collapse deposit providing evidence for a late phreatomagmatic eruption stage, caused by the explosive interaction of external water with residual magma. Correlation of pipe morphology and internal stratigraphy indicate that widening of the pipe occurred during this latter stage and a thick granodiorite cobble-boulder breccia was deposited. Ash- and accretionary lapilli-rich tephra, deposited on the crater rim during the late phreatomagmatic stage, was subsequently resedimented into the vent. Incompatible elements such as Nb are used as indicators of the proportion of the melt fraction, or kimberlite ash, retained or removed by eruptive processes. When compared to average coherent kimberlite the ash-rich deposits exhibit ~ 30% loss of fines whereas the column collapse deposit exhibits ~ 50% loss. This shows that despite the poorly sorted nature of the column collapse deposit significant elutriation has occurred during the eruption, indicating the existence of a high sustained eruption column. The deposits within Fox record a complex eruption sequence showing a transition from a probable violent sub-plinian style eruption, driven by instantaneous exsolution of magmatic volatiles, to a late phreatomagmatic eruption phase. Mass eruption rate and duration of the sub-plinian phase of the eruption have been determined based on the dimensions of milled country-rock boulders found within the intra-vent deposits. Calculations show a short lived eruption of one to eleven days for the sub-plinian magmatic phase, which is similar in duration to small volume basaltic eruptions. This is in general agreement with durations of kimberlite eruptions calculated using entirely different approaches and parameters, such as predictions of magma ascent rates in kimberlite dykes.
Isomer composition of polychlorinated naphthalenes (PCNs) was measured for municipal waste incinerator fly ash samples,and for emission samples produced from soot and copper deposit experiments conducted at EPA. Two types of PCN isomer patterns were identified. One pattern cxonta...
The use of fly ash in highway construction U.S. 84/98 Adams County.
DOT National Transportation Integrated Search
2000-05-01
Much attention has been focused in recent years on conserving natural resources and energy. Numerous waste products and/or byproducts from various industrial and commercial processes, normally deposited in landfills, have been proposed for use as alt...
Thermal history of the unsaturated zone at Yucca Mountain, Nevada, USA
Whelan, J.F.; Neymark, L.A.; Moscati, R.J.; Marshall, B.D.; Roedder, E.
2008-01-01
Secondary calcite, silica and minor amounts of fluorite deposited in fractures and cavities record the chemistry, temperatures, and timing of past fluid movement in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a high-level radioactive waste repository. The distribution and geochemistry of these deposits are consistent with low-temperature precipitation from meteoric waters that infiltrated at the surface and percolated down through the unsaturated zone. However, the discovery of fluid inclusions in calcite with homogenization temperatures (Th) up to ???80 ??C was construed by some scientists as strong evidence for hydrothermal deposition. This paper reports the results of investigations to test the hypothesis of hydrothermal deposition and to determine the temperature and timing of secondary mineral deposition. Mineral precipitation temperatures in the unsaturated zone are estimated from calcite- and fluorite-hosted fluid inclusions and calcite ??18O values, and depositional timing is constrained by the 207Pb/235U ages of chalcedony or opal in the deposits. Fluid inclusion Th from 50 samples of calcite and four samples of fluorite range from ???35 to ???90 ??C. Calcite ??18O values range from ???0 to ???22??? (SMOW) but most fall between 12 and 20???. The highest Th and the lowest ??18O values are found in the older calcite. Calcite Th and ??18O values indicate that most calcite precipitated from water with ??18O values between -13 and -7???, similar to modern meteoric waters. Twenty-two 207Pb/235U ages of chalcedony or opal that generally postdate elevated depositional temperatures range from ???9.5 to 1.9 Ma. New and published 207Pb/235U and 230Th/Uages coupled with the Th values and estimates of temperature from calcite ??18O values indicate that maximum unsaturated zone temperatures probably predate ???10 Ma and that the unsaturated zone had cooled to near-present-day temperatures (24-26 ??C at a depth of 250 m) by 2-4 Ma. The evidence of elevated temperatures persisting in ash flow tuffs adjacent to parent calderas for as much as ???8 Ma is a new finding, but consistent with thermal modeling. Simulations using the HEAT code demonstrate that prolonged cooling of the unsaturated zone is consistent with magmatic heat inputs and deep-seated (sub-water table) hydrothermal activity generated by the large magma body ???8 km to the north that produced the 15-11 Ma ash flows and ash falls that make up Yucca Mountain. The evidence discussed in this and preceding papers strongly supports unsaturated zone deposition of the secondary minerals from descending meteoric waters. Although depositional temperatures reflect conductive (and possibly vapor-phase convective) heating of the unsaturated zone related to regional magmatic sources until perhaps 6 Ma, depositional conditions similar to the present-day unsaturated zone have prevailed for at least the past 2-4 Ma.
NASA Astrophysics Data System (ADS)
de Moor, J. M.; Fischer, T. P.; Hilton, D. R.; Hauri, E.; Jaffe, L. A.; Camacho, J. T.
2005-08-01
On 10 May 2003, Anatahan volcano (located at 16°21' N 145°40' E on the Mariana arc) entered its first historical eruptive episode, sending ash to > 12 km into the atmosphere. Abundant accretionary lapilli, quenched pumice textures, and hydrothermal minerals in the earliest eruptive deposits indicate hydromagmatic interaction and active mining of the pre-eruptive hydrothermal system. Whole-rock compositions of the products erupted within the first week are chemically homogenous, with SiO 2 ˜61%, MgO ˜2.1%, K 2O ˜1.4%, Na 2O ˜4.1% and Fe 2O 3 ˜9.1%. The products are classified as medium-K andesites with tholeiitic affinity. Slightly more silicic matrix glass compositions (up to 63% SiO 2 in microlite-rich matrices) overlap with whole rock, suggesting limited crystal fractionation with microlite crystallization responsible for the more evolved residual melt. Decreasing corrected LOI values (2.3-1.4 wt.%) upsection are consistent with waning hydrothermal mineral contributions as the eruption progressed. Oxygen fugacity calculations based on the ferric to ferrous iron ratio of bulk samples indicate an oxidized magma with ΔNNO ˜+1. Two-pyroxene equilibrium thermometry suggests magmatic temperatures of 1050-1100 °C. Matrix glass volatile contents show a degassed residual melt, with < 0.5 wt.% H 2O, 1000-2000 ppm Cl, 480-780 ppm F, 50-150 ppm S, and < 5 ppm CO 2. A magmatic SO 2 flux of 3-4.5 kt/day was measured by COSPEC on 21 May. Ash leachate data indicate a decreasing S/Cl ratio (3.3-0.7) in the eruptive plume between 10 and 21 May, with a relatively constant Cl concentration. Assuming a constant Cl flux, an SO 2 flux of 14-22 kt/day is calculated for 10 May. The average S concentration from ash leachates (1230 mg/kg) suggests that at least 25% of the SO 2 (˜60 kt) erupted from Anatahan between 10 and 21 May was removed from the plume by the precipitation of sulphate salts in the eruption column, adsorbtion onto ash particles and subsequent deposition. Molar ratios in ash leachates elucidate CaSO 4 and NaCl as the most likely soluble salts formed in the plume. Total element abundances, molar S/Ca > 1 and Ca, Mg, Na, and K ratios in the leachates suggest a hydrothermal fluid contribution to elements present as water soluble salts adsorbed onto ash. Sulfur budget calculations based on estimates of pre-eruptive magmatic and residual melt S contents, mass of erupted magma, and total SO 2 output fluxes require an additional source of S other than the erupted magma. Multiple lines of evidence, including high SO 2 emissions early in the eruption, the presence of accretionary lapilli and hydrothermal minerals in the early eruptive deposits, quenched pumice textures, and cation and anion ratios and abundances in ash leachates suggest that a S-rich free volatile phase exsolved from a large magma body. Magmatic volatiles were stored as components of the hydrothermal system (pressurized gases, hydrothermal fluids, and/or hydrothermal minerals) to be remobilized early in the eruption to contribute to the total SO 2 output.
NASA Astrophysics Data System (ADS)
Matson, Ernest A.
1989-01-01
Stable C isotope ratios (δ13C-PDB), percentages of organic matter, and HCl insoluble ash and soluble carbonates, extractable Fe, Al, Si and P were used to determine the distribution and accumulation of terrestrial material in reef-flat moats and lagoons of two high islands (Guam and Saipan) in the western tropical Pacific. Carbonate sediments of a reef-flat moat infiltrated by seepage of aquifer waters (but without surface runoff) were depleted in both P (by 38%) and 13C (by 41%) and enriched in Si (by 100%) relative to offshore lagoon sediments. Iron and ash accumulated in depositional regimes regardless of the occurrence of runoff but was depleted from coarse-grained carbonates in turbulent regimes. Aluminum (>ca. 10 to 20 μmol g-1), Fe (>ca. 1 to 3 μmol g-1) and ash (>0.5%) indicated terrigenous influence which was corroborated by depletions in both 13C and P. Low-salinity geochemical segregation, natural biochemical accumulation, as well as long-shore currents and eddies help sequester these materials nearshore.
Direct synthesis of carbon nanofibers from South African coal fly ash
NASA Astrophysics Data System (ADS)
Hintsho, Nomso; Shaikjee, Ahmed; Masenda, Hilary; Naidoo, Deena; Billing, Dave; Franklyn, Paul; Durbach, Shane
2014-08-01
Carbon nanofibers (CNFs), cylindrical nanostructures containing graphene, were synthesized directly from South African fly ash (a waste product formed during the combustion of coal). The CNFs (as well as other carbonaceous materials like carbon nanotubes (CNTs)) were produced by the catalytic chemical vapour deposition method (CCVD) in the presence of acetylene gas at temperatures ranging from 400°C to 700°C. The fly ash and its carbonaceous products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), laser Raman spectroscopy and Brunauer-Emmett-Teller (BET) surface area measurements. It was observed that as-received fly ash was capable of producing CNFs in high yield by CCVD, starting at a relatively low temperature of 400°C. Laser Raman spectra and TGA thermograms showed that the carbonaceous products which formed were mostly disordered. Small bundles of CNTs and CNFs observed by TEM and energy-dispersive spectroscopy (EDS) showed that the catalyst most likely responsible for CNF formation was iron in the form of cementite; X-ray diffraction (XRD) and Mössbauer spectroscopy confirmed these findings.
Determination of coal ash content by the combined x-ray fluorescence and scattering spectrum
NASA Astrophysics Data System (ADS)
Mikhailov, I. F.; Baturin, A. A.; Mikhailov, A. I.; Borisova, S. S.; Fomina, L. P.
2018-02-01
An alternative method is proposed for the determination of the inorganic constituent mass fraction (ash) in solid fuel by the ratio of Compton and Rayleigh X-ray scattering peaks IC/IR subject to the iron fluorescence intensity. An original X-ray optical scheme with a Ti/Mo (or Sc/Cu) double-layer secondary radiator allows registration of the combined fluorescence-and-scattering spectrum at the specified scattering angle. An algorithm for linear calibration of the Compton-to-Rayleigh IC/IR ratio is proposed which uses standard samples with two certified characteristics: mass fractions of ash (Ad) and iron oxide (WFe2O3). Ash mass fractions have been determined for coals of different deposits in the wide range of Ad from 9.4% to 52.7% mass and WFe2O3 from 0.3% to 4.95% mass. Due to the high penetrability of the probing radiation with energy E > 17 keV, the sample preparation procedure is rather simplified in comparison with the traditional method of Ad determination by the sum of fluorescence intensities of all constituent elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Harrington
2004-10-25
The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through themore » Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to the TSPA, which uses the ASHPLUME software described and used in this model report. Thus, ASHPLUME software inputs are inputs to this model report for ASHPLUME runs in this model report. However, ASHPLUME software inputs are outputs of this model report for ASHPLUME runs by TSPA.« less
NASA Astrophysics Data System (ADS)
Karolina, Rahmi; Panatap Simanjuntak, Murydrischy
2018-03-01
Self Compacting Concrete (SCC) is a technology which is developing today in which concrete solidifies by itself without using vibrator. Casting conventional concrete which has a lot of reinforcement bars sometimes finds difficulty in achieving optimal solidity. The method used to solve this problem is by using SCC technology. SCC was made by using filler, volcanic ash, and lime ash as the filling materials so that the concrete became more solid and hollow space could be filled up. The variation of using these two materials was 10%, 15%, 20%, and 25% of the cementitious mass and using 1% of superplasticizer from cementitious material. The supporting testing was done by using the test when the concrete was still fluid and when it was solid. Malleable concrete was tested by using EFNARC 2002 standard in slump flow test, v-funnel test, l-shaped box test, and j-ring test to obtain filling ability and passing ability. In this malleable lime concrete test, there was the decrease, compared with normal SCC concrete without adding volcanic ash and lime ash. Testing was also done in solid concrete in compressive strength, tensile strength, and concrete absorption. The result of the testing showed that the optimum tensile strength in Variation 1, without volcanic ash and lime ash – with 1% of superplasticizer was 39.556 MPa, the optimum tensile strength in Variation 1, without volcanic ash and lime ash- with 1% of super-plasticizer was 3.563 MPa, while the value of optimum absorption which occurred in Variation 5 (25% of volcanic ash + 25% of lime ash + 50% of cement + 1% of superplasticizer) was 1.313%. This was caused by the addition of volcanic ash and lime ash which had high water absorption.
NASA Astrophysics Data System (ADS)
Lane, C. S.; Blockley, S. P. E.; Lotter, A. F.; Finsinger, W.; Filippi, M. L.; Matthews, I. P.
2012-03-01
This paper summarises the results of tephrochronological investigations into a suite of central and southern European records, which include: Rotmeer, southern Germany; Soppensee and Rotsee, central Swiss Plateau; Lago di Lavarone and Lago Piccolo di Avigliana, Italian southern Alpine foreland. These sites provide records of palaeoenvironmental changes for the Last Glacial to Interglacial Transition (LGIT) at the boundary between North Atlantic and Mediterranean climatic influences. Chemical characterisation of glass shards in volcanic ash layers indicates that multiple volcanic sources have contributed to the central European tephra record. Amongst other volcanic markers, the Laacher See Tephra, originating from the Eifel region of Germany c. 12.9 ± 0.1 ka, and the Vedde Ash from Iceland c. 12.1 ± 0.1 ka, are found co-located within the sediments of Rotmeer, Soppensee, Rotsee and Lago Piccolo di Avigliana. These key horizons, which bracket the onset of the Younger Dryas stadial, provide precise calendrically-dated tie points around which a detailed picture of the timing of local and regional environmental transitions can be constructed. Using the co-located tephra layers the re-colonisation of Northern Italian catchment areas by Quercus is shown to occur just prior to the deposition of the Laacher See Tephra layer, whereas to the North of the Alps Quercus and other thermophilous trees do not reappear until several centuries after the deposition of the Vedde Ash. Furthermore, the discovery of the Vedde Ash in Lago Piccolo di Avigliana and Lago di Lavarone is indicative of atmospheric transport of polar air into southern Europe during the Younger Dryas stadial, matching evidence proposed for such transport of polar air during the Last Glacial Maximum (LGM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staub, J.R.; Richards, B.K.
1992-01-01
Coals from the No. 5 Block beds (Westphalian D) are noted for their low ash and sulfur content. Beds are multiple benched, with rock partings separating individual benches. Benches have limited continuity and, where thick are dominated by bright, high ash coal at the base and dull, low ash coal in their upper portions. The duller coals contain more exinite and inertinite group macerals than the brighter coals. The depositional setting is an alluvial plain environment with channel systems separated by distances of about 20 km. The channel systems were flanked by clastic swamps for distances of up to 7more » km or more on either side. Areas of flood plain most distant from the channels were sites where peat accumulated and these zones were about 8 km across. High energy, low frequency flood events introduced fine grained sediment into the peat swamps resulting in thin layers of sediment being deposited on top of the peat. These sediment layers are thicker in areas where the underlying coal is the thickest. These thick coal areas are topographically negative. This relationship between coal and parting thickness and topography indicates that these peat swamps were low-lying or planar. Individual coal benches contain abundant amounts of preserved cellular tissue (telocollinite, semifusinite, fusinite) at most locations indicating that woody arborescent like vegetation was widespread in the swamps suggesting a planar morphology. The high concentrations of exinite and inertinite group macerals found in the upper portions of individual benches resulted from decomposition and oxidation of the peat in subaerial to aquatic planar swamp environments.« less
Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace.
Zhao, Peng; Ni, Guohua; Jiang, Yiman; Chen, Longwei; Chen, Mingzhou; Meng, Yuedong
2010-09-15
Due to the toxicity of dioxins, furans and heavy metals, there is a growing environmental concern on municipal solid waste incinerator (MSWI) fly ash in China. The purpose of this study is directed towards the volume-reduction of fly ash without any additive by thermal plasma and recycling of vitrified slag. This process uses extremely high-temperature in an oxygen-starved environment to completely decompose complex waste into very simple molecules. For developing the proper plasma processes to treat MSWI fly ash, a new crucible-type plasma furnace was built. The melting process metamorphosed fly ash to granulated slag that was less than 1/3 of the volume of the fly ash, and about 64% of the weight of the fly ash. The safety of the vitrified slag was tested. The properties of the slag were affected by the differences in the cooling methods. Water-cooled and composite-cooled slag showed more excellent resistance against the leaching of heavy metals and can be utilized as building material without toxicity problems. Copyright 2010 Elsevier B.V. All rights reserved.
CO2 mineral sequestration in oil-shale wastes from Estonian power production.
Uibu, Mai; Uus, Mati; Kuusik, Rein
2009-02-01
In the Republic of Estonia, local low-grade carbonaceous fossil fuel--Estonian oil-shale--is used as a primary energy source. Combustion of oil-shale is characterized by a high specific carbon emission factor (CEF). In Estonia, the power sector is the largest CO(2) emitter and is also a source of huge amounts of waste ash. Oil-shale has been burned by pulverized firing (PF) since 1959 and in circulating fluidized-bed combustors (CFBCs) since 2004-2005. Depending on the combustion technology, the ash contains a total of up to 30% free Ca-Mg oxides. In consequence, some amount of emitted CO(2) is bound by alkaline transportation water and by the ash during hydraulic transportation and open-air deposition. The goal of this study was to investigate the possibility of improving the extent of CO(2) capture using additional chemical and technological means, in particular the treatment of aqueous ash suspensions with model flue gases containing 10-15% CO(2). The results indicated that both types of ash (PF and CFBC) could be used as sorbents for CO(2) mineral sequestration. The amount of CO(2) captured averaged 60-65% of the carbonaceous CO(2) and 10-11% of the total CO(2) emissions.
Utilization of Yatagan Power Plant Fly Ash in Production of Building Bricks
NASA Astrophysics Data System (ADS)
Önel, Öznur; Tanriverdi, Mehmet; Cicek, Tayfun
2017-12-01
Fly ash is a by-product of coal combustion, which accumulates in large quantities near the coal-fired power plants as waste material. Fly ash causes serious operational and environmental problems. In this study, fly ash from Yatağgan thermal power plant was used to produce light-weight building bricks. The study aimed to reduce the problems related to fly ash by creating a new area for their use. The optimum process parameters were determined for the production of real size bricks to be used in construction industry. The commercial size bricks (200 × 200 × 90-110 mm) were manufactured using pilot size equipment. Mechanical properties, thermal conductivity coefficients, freezing and thawing strengths, water absorption rates, and unit volume weights of the bricks were determined. Etringite (Ca6Al2 (SO4)3 (OH)12 25(H2O)) and Calcium Silicate Hydrate (2CaO.SiO2.4H2O) were identified as the binding phases in the real size brick samples after 2 days of pre-curing and 28 days curing at 50° C and 95% relative moisture. The water absorption rate was found to be 27.7 % in terms of mass. The mechanical and bending strength of the brick samples with unit volume weight of 1.29 g.cm-3 were determined as 6.75 MPa and 1,56 MPa respectively. The thermal conductivity of the fly ash bricks was measured in average as 0,340 W m-1 K-1. The fly ash sample produced was subjected to toxic leaching tests (Toxic Property Leaching Procedure (EPA-TCLP 1311), Single-step BATCH Test and Method-A Disintegration Procedure (ASTM)). The results of these tests suggested that the materials could be classified as non-hazardous wastes / materials.
A.P. Schmitz; J.D. Carstens
2017-01-01
Kentucky coffeetree, Gymnocladus dioicus, is a picturesque shade tree adaptable to urban conditions and drought, with no serious insect or disease problems. These traits make G. dioicus a promising candidate among diverse tree genera to replace ash (Fraxinus) trees affected by the emerald ash borer (Agrilus...
Acute and subchronic inhalation exposures of hamsters to nickel-enriched fly ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehner, A.P.; Moss, O.R.; Milliman, E.M.
1979-08-01
One 6-h inhalation exposure of hamsters to Ni-enriched fly ash (NEFA) aerosol (respirable aerosol concentration approx. 200 ..mu..g/liter) deposited about 80 ..mu..g in the deep lung, of which 75 ..mu..g was still present 30 days postexposure. The animals tolerated the exposure well during the 30-day postexposure observation period. Two-month exposures of hamsters to NEFA or fly ash (FA) aerosols (approx. 185 ..mu..g/liter) resuled in a deep lung burden of about 5.7 mg, dark discoloration of lungs, heavily dust-laden macrophages, and significantly higher lung weights than in controls, but only minimal inflammatory reaction and no deaths. There was no difference betweenmore » NEFA and FA effects. The NEFA contained 9% Ni; FA contained 0.03% Ni. The results of this study indicate low acute and subchronic toxicity and slow lung clearance of NEFA and FA.« less
Lowe, John; Barton, Nick; Blockley, Simon; Ramsey, Christopher Bronk; Cullen, Victoria L; Davies, William; Gamble, Clive; Grant, Katharine; Hardiman, Mark; Housley, Rupert; Lane, Christine S; Lee, Sharen; Lewis, Mark; MacLeod, Alison; Menzies, Martin; Müller, Wolfgang; Pollard, Mark; Price, Catherine; Roberts, Andrew P; Rohling, Eelco J; Satow, Chris; Smith, Victoria C; Stringer, Chris B; Tomlinson, Emma L; White, Dustin; Albert, Paul; Arienzo, Ilenia; Barker, Graeme; Boric, Dusan; Carandente, Antonio; Civetta, Lucia; Ferrier, Catherine; Guadelli, Jean-Luc; Karkanas, Panagiotis; Koumouzelis, Margarita; Müller, Ulrich C; Orsi, Giovanni; Pross, Jörg; Rosi, Mauro; Shalamanov-Korobar, Ljiljiana; Sirakov, Nikolay; Tzedakis, Polychronis C
2012-08-21
Marked changes in human dispersal and development during the Middle to Upper Paleolithic transition have been attributed to massive volcanic eruption and/or severe climatic deterioration. We test this concept using records of volcanic ash layers of the Campanian Ignimbrite eruption dated to ca. 40,000 y ago (40 ka B.P.). The distribution of the Campanian Ignimbrite has been enhanced by the discovery of cryptotephra deposits (volcanic ash layers that are not visible to the naked eye) in archaeological cave sequences. They enable us to synchronize archaeological and paleoclimatic records through the period of transition from Neanderthal to the earliest anatomically modern human populations in Europe. Our results confirm that the combined effects of a major volcanic eruption and severe climatic cooling failed to have lasting impacts on Neanderthals or early modern humans in Europe. We infer that modern humans proved a greater competitive threat to indigenous populations than natural disasters.
Numerical investigation of slag formation in an entrained-flow gasifier
NASA Astrophysics Data System (ADS)
Zageris, G.; Geza, V.; Jakovics, A.
2018-05-01
A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification in account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and viable solutions such as radial inlet positioning for decreasing the amount of undesirable deposits are proposed. We also conclude that the particular chemical reactions that take place inside the gasifier play a significant role in determining how slagging occurs inside a gasifier.
Oldest human footprints dated by Ar/Ar
NASA Astrophysics Data System (ADS)
Scaillet, Stéphane; Vita-Scaillet, Grazia; Guillou, Hervé
2008-11-01
Fossilized human trackways are extremely rare in the geologic record. These bear indirect but invaluable testimony of human/hominid locomotion in open air settings and can provide critical information on biomechanical changes relating to bipedalism evolution throughout the primitive human lineage. Among these, the "Devil's footsteps" represent one of the best preserved human footprints suite recovered so far in a Pleistocene volcanic ash of the Roccamonfina volcano (southern Italy). Until recently, the age of these footprints remained speculative and indirectly correlated with a loosely dated caldera-forming eruption that produced the Brown Leucitic Tuff. Despite extensive hydrothermal alteration of the pyroclastic deposit and variable contamination with excess 40Ar, detailed and selective 40Ar/ 39Ar laser probe analysis of single leucite crystals recovered from the ash deposit shows that the pyroclastic layer and the footprints are 345 ± 6 kyr old (1 σ), confirming for the first time that these are the oldest human trackways ever dated, and that they were presumably left by the modern human predecessor, Homo heidelbergensis, close to Climatic Termination IV.
A study of pyrolysis of oil shale of the Leningrad deposit by solid heat carrier
NASA Astrophysics Data System (ADS)
Gerasimov, G. Ya; Khaskhachikh, V. V.; Potapov, O. P.
2017-11-01
The investigation of the oil shale pyrolysis with a solid heat carrier was carried out using the experimental retorting system that simulates the Galoter industrial process. This system allows verifying both fractional composition of the oil shale and solid heat carrier, and their ratio and temperature. The oil shale of the Leningradsky deposit was used in the work, and quartz sand was used as the solid heat carrier. It is shown that the yield of the shale oil under the pyrolysis with solid heat carrier exceeds by more than 20% the results received in the standard Fisher retort. Using ash as the solid heat carrier results in a decrease in the yield of oil and gas with simultaneous increase in the amount of the solid residue. This is due to the chemical interaction of the acid components of the vapor-gas mixture with the oxides of alkaline-earth metals that are part of the ash.
Development of Ceramic Coating on Metal Substrate using Industrial Waste and Ore Minerals
NASA Astrophysics Data System (ADS)
Bhuyan, S. K.; Thiyagarajan, T. K.; Mishra, S. C.
2017-02-01
The technological advancement in modern era has a boon for enlightening human life; but also is a bane to produce a huge amount of (industrial) wastes, which is of great concern for utilization and not to create environmental threats viz. polution etc. In the present piece of research work, attempts have been made to utilize fly ash (wastes of thermal power plants) and along with alumina bearing ore i.e. bauxite, for developing plasma spray ceramic coatings on metals. Fly ash and with 10 and 20% bauxite addition is used to deposit plasma spray coatings on a metal substrate. The surface morphology of the coatings deposited at different power levels of plasma spraying investigated through SEM and EDS analysis. The coating thickness is measured. The porosity levels of the coatings are evaluated. The coating hardness isalso measured. This piece of research work will be beneficial for future development and use of industrial waste and ore minerals for high-valued applications.
Chemical conversion of sulphur dioxide on Eyjafjallajökull's volcanic ash from the 2010 eruption
NASA Astrophysics Data System (ADS)
Dupart, Yoan; Burel, Laurence; Delichere, Pierre; George, Christian; D'Anna, Barbara
2013-04-01
Volcanic eruptions induce important climatic and weather modifications. When volcanic ashes are emitted into the atmosphere they can travel for several weeks according to their size distribution and altitude of the emission. Eyjafjallajökull eruption, between April 14th and May 23th, is considered as a medium-size eruption. The upper level winds advected ashes over the UK and continental Europe. During volcanic eruptions high amounts of SO2 were injected into the atmosphere (from 50 to 200 ppbv)[1]. Previous works showed that SO2 could be convert into sulfate on mineral dust surfaces under dark conditions[2]. However, no conversion has been studied with real volcanic ashes and under day conditions (light exposure). For this study, real Eyjafjallajökull's ashes samples, collected on the 2010.04.18 at Seljavellir, were used. The ashes were deposited on a horizontal cylindrical coated-wall flow tube reactor surrounded by 5 fluorescent lamps (340-420 nm). The kinetic studies revealed that the presence of UV-A irradiation enhanced the conversion of SO2 on ashes samples. Moreover chemical analyses as XPS, Ion Chromatography and SEM were performed on volcanic ashes before and after exposition to SO2. XPS and ion chromatography analyzes showed that the presence of light increase the SO2 uptake on ashes surfaces and convert it into ions sulphate. Beside SEM analyses disclosed that the conversion takes place systematically on an iron oxide site . By combining kinetics and chemical analysis we are able to propose a new mechanism for the SO2 conversion on mineral surfaces under light conditions. 1. Self, S., et al., Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth and Planetary Science Letters, 2006. 248(1-2): p. 518-532. 2. Zhang et al., Heterogeneous Reactions of Sulfur Dioxide on Typical Mineral Particles, J. Phys. Chem. B, 2006
Woch, Marcin W; Radwańska, Magdalena; Stanek, Małgorzata; Łopata, Barbara; Stefanowicz, Anna M
2018-06-11
The aim of the study was to assess the relationships between vegetation, physicochemical and microbial properties of substrate at coal ash and sludge disposal sites. The study was performed on 32 plots classified into 7 categories: dried ash sedimentation ponds, dominated by a grass Calamagrostis epigejos (AH-Ce), with the admixture of Pinus sylvestris (AH-CePs) or Robinia pseudoacacia (AH-CeRp), dry ash landfill dominated by Betula pendula and Pinus sylvestris (AD-BpPs) or Salix viminalis (AD-Sv) and coal sludge pond with drier parts dominated by Tussilago farfara (CS-Tf) and the wetter ones by Cyperus flavescens (CS-Cf). Ash sites were covered with soil layer imported as a part of technical reclamation. Ash had relatively high concentrations of some alkali and alkaline earth metals, Mn and pH, while coal sludge had high water and C, S, P and K contents. Concentrations of heavy metals were lower than allowable limits in all substrate types. Microbial biomass and, particularly, enzymatic activity in ash and sludge were generally low. The only exception were CS-Tf plots characterized by the highest microbial biomass, presumably due to large deposits of organic matter that became available for aerobic microbial biomass when water level fell. The properties of ash and sludge adversely affected microbial biomass and enzymatic activity as indicated by significant negative correlations between the content of alkali/alkaline earth metals, heavy metals, and macronutrients with enzymatic activity and/or microbial biomass, as well as positive correlations of these parameters with metabolic quotient (qCO 2 ). Plant species richness and cover were relatively high, which may be partly associated with alleviating influence of soil covering the ash. The effect of the admixture of R. pseudoacacia or P. sylvestris to stands dominated by C. epigejos was smaller than expected. The former species increased NNH 4 , NNO 3 and arylsulfatase activity, while the latter reduced activity of the enzyme. Copyright © 2018 Elsevier B.V. All rights reserved.
2002-12-04
Like many of the craters in the Oxia Palus region of Mars, Trouvelot Crater, shown in this NASA Mars Odyssey image, hosts an eroded, light-toned, sedimentary deposit on its floor. Compared with the much larger example in Becquerel Crater to the NE, the Trouvelot deposit has been so eroded by the scouring action of dark, wind-blown sand that very little of it remains. Tiny outliers of bright material separated from the main mass attest to the once, more really extensive coverage by the deposit. A similar observation can be made for White Rock, the best known example of a bright, crater interior deposit. The origin of the sediments in these deposits remains enigmatic but they are likely the result of fallout from ash or dust carried by the thin martian atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA04017
Economic characteristics of the peat deposits of Costa Rica: preliminary study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, A.D. Malavassi, L.; Raymond, R. Jr.; Mora, S.
1985-01-01
Recent field and laboratory studies have established the presence of numerous extensive peat deposits in Costa Rica. Three of these were selected for initial investigation: (1) the cloud-forest histosols of the Talamanca Mountain Range; (2) the Rio Medio Queso flood plain deposits near the northern Costa Rican border; and (3) a tropical jungle swamp deposit on the northeastern coastal plain. In the Talamanca area, 29 samples were collected from eight sites. Due to the high moisture and cool temperatures of the cloud forest, the peats in this area form blanket-like deposits (generally <1 meter thick) over a wide area (>150more » km/sup 2/). These peats are all highly decomposed (avg. 28% fiber), high in ash (avg. 21%), and extensively bioturbated. Relative to all other sites visited, these peats are lowest in moisture (avg. 84%), pH (avg. 4.4), fixed carbon (avg. 23%), and sulfur (avg. 0.2%). However, they have the highest bulk densities (avg. 0.22 g/cc), volatile matter contents (avg. 55%), and nitrogen. Their heating value averaged 7700 BTUs/lb., dry. In the Rio Medio Queso area, 28 samples were collected, representing one transect of the 70 km/sup 2/ flood plain. The peats here occurred in several layers (each <1-1/2 meters thick), interfingering with river flood plain sediments. These peats have the highest calorific values (avg. 8000 BTUs/lb., dry), fixed carbon (avg. 30%), and ash (avg. 22%) and have an average pH of 5.4 and a bulk density of 0.20 g/cc. These results represent only the first part of a long-term, extensive survey of Costa Rica's peat resources. However, they suggest that large, economically-significant peat deposits may be present in this country. 5 refs., 8 figs., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Égüez, Natalia; Mallol, Carolina; Mangado, Xavier; Tejero, José Miguel; Fullola, Josep Maria
2014-05-01
We present preliminary data from ongoing microstratigraphic investigations of Cova del Parco (Lleida, Spain), a Magdalenian karstic cave site in North western Catalonia. Excavations of the Upper Magdalenian levels are currently underway, with radiometric dates between 15,690 and 16,390 cal BP. This period has yielded a complex anthropogenic sedimentary deposit including combustion features and local accumulations of anthropogenic debris near the cave walls. On of the working hypothesis is that the Magdalenian hunter-gatherers who occupied the site did so for short periods, possibly seasonally. Support of this hypothesis comes the presence of overlapping, very thin flat combustion structures, which appear to have been short-lived and close to each other in time. In order to investigate this issue, we carried out micromorphological analysis of some of the mentioned combustion features. Preliminary results show significant microstratification and presence of unburned spherulites mixed in with reprecipitated calcitic wood ash, both of which point towards the existence of hiatuses between combustion events. This is supported by the observation of scattered, lightly burned microscopic flint and bone fragments in the sediment between ash layers, which could represent renewed occupation floor debris. Our case study adds to the growing number of combustion feature microstratigraphic investigations contributing to a correct characterization of anthropogenic palimpsest deposits. Key words: Microstratigraphy; Micromorphology; Magdalenian; Combustion features; Wood ash; Palimpsest; Iberian Peninsula.
Earth observations taken by the Expedition 14 crew
2007-03-21
ISS014-E-17165 (21 March 2007) --- A plume at Shiveluch Volcano, Kamchatka Peninsula, Russia is featured in this image photographed by an Expedition 14 crewmember on the International Space Station. Shiveluch, one of Kamchatka's most active volcanoes, began its latest activity with gas and steam emissions in mid-late March 2007. This image was captured around mid-morning on or around March 21 2007, and shows a steam plume, probably containing minor amounts of ash, blowing westward from the summit of the volcano. The crewmembers were transiting the southern tip of Russia's Kamchatka Peninsula; with a clear view of the volcano about 5 degrees north of the ground track of the station. Subsequent eruptions on March 29 and 30 have been recorded by the Kamchatka Volcano Observatory and NASA. The volcano's southern flank, clearly visible in this northeast-looking oblique view, comprises a horseshoe-shaped caldera from a late Pleistocene eruption, subsequently blanketed by additional ash deposits, and highlighted by the snow cover. The peak of Shiveluch is a distinctive brown color due to the removal of snow, exposure of rock forming the summit, and deposits of new ash. The relatively smooth landscape of the south contrasts with the large, steep valleys on the northern slope of the volcano. Low clouds wrap around the eastern part of the mountain, obscuring the lower elevations.
NASA Astrophysics Data System (ADS)
Maeno, Fukashi; Nakada, Setsuya; Oikawa, Teruki; Yoshimoto, Mitsuhiro; Komori, Jiro; Ishizuka, Yoshihiro; Takeshita, Yoshihiro; Shimano, Taketo; Kaneko, Takayuki; Nagai, Masashi
2016-05-01
The phreatic eruption at Ontake volcano on 27 September 2014, which caused the worst volcanic disaster in the past half-century in Japan, was reconstructed based on observations of the proximal pyroclastic density current (PDC) and fallout deposits. Witness observations were also used to clarify the eruption process. The deposits are divided into three major depositional units (Units A, B, and C) which are characterized by massive, extremely poorly sorted, and multimodal grain-size distribution with 30-50 wt% of fine ash (silt-clay component). The depositional condition was initially dry but eventually changed to wet. Unit A originated from gravity-driven turbulent PDCs in the relatively dry, vent-opening phase. Unit B was then produced mainly by fallout from a vigorous moist plume during vent development. Unit C was derived from wet ash fall in the declining stage. Ballistic ejecta continuously occurred during vent opening and development. As observed in the finest population of the grain-size distribution, aggregate particles were formed throughout the eruption, and the effect of water in the plume on the aggregation increased with time and distance. Based on the deposit thickness, duration, and grain-size data, and by applying a scaling analysis using a depth-averaged model of turbulent gravity currents, the particle concentration and initial flow speed of the PDC at the summit area were estimated as 2 × 10-4-2 × 10-3 and 24-28 m/s, respectively. The tephra thinning trend in the proximal area shows a steeper slope than in similar-sized magmatic eruptions, indicating a large tephra volume deposited over a short distance owing to the wet dispersal conditions. The Ontake eruption provided an opportunity to examine the deposits from a phreatic eruption with a complex eruption sequence that reflects the effect of external water on the eruption dynamics.
Size limits for rounding of volcanic ash particles heated by lightning
Vasseur, Jérémie; Llewellin, Edward W.; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B.
2017-01-01
Abstract Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high‐temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1‐D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension‐driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first‐order estimate of lightning conditions in volcanic plumes. PMID:28781929
Size limits for rounding of volcanic ash particles heated by lightning.
Wadsworth, Fabian B; Vasseur, Jérémie; Llewellin, Edward W; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B
2017-03-01
Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters-capillary, Fourier, Stark, Biot, and Peclet numbers-to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.
Size limits for rounding of volcanic ash particles heated by lightning
NASA Astrophysics Data System (ADS)
Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B.
2017-03-01
Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.
Impact of solid discharges from coal usage in the southwest
Jones, D. G.; Straughan, I. R.
1978-01-01
The Southwestern region of the United States is extremely wealthy in low sulfur coal resources which must be eventually utilized in response to national energy balance priorities. Fly ash and scrubber sludge can be safely disposed of using properly managed techniques to ensure that any potential impact from elements such as boron, molybdenum, or selenium is rendered insignificant. Alternative methods of solids utilization are presently being developed. Fly ash is presently being marketed commercially as an additive for concrete manufacture. Successful experiments have been completed to demonstrate the manufacture of commercial-grade wallboard from scrubber sludge. Also, greenhouse studies and field experiments have been conducted to demonstrate increased yields of selected crops grown on typical soils amended with fly ash in amounts ranging from 2% to 8%, by weight. These studies also indicate that barium and strontium may be good monitoring indices for determining atmospheric deposition of fly ash, due to their concentration ratios in soil and vegetation samples. Further studies are being conducted to confirm encouraging irrigation and crop-yield data obtained with fly ash amended soils. Finally, the composition of many fly ashes and soils are similar in the Southwest, and there are no anticipated solid discharges from coal usage which cannot be rendered insignificant with proper management of existing and emerging methods of treatment. Compared with the water availability impact of coal usage in the Southwest, the impact of solid waste discharges are insignificant. PMID:738243
Probabilistic detection of volcanic ash using a Bayesian approach.
Mackie, Shona; Watson, Matthew
2014-03-16
Airborne volcanic ash can pose a hazard to aviation, agriculture, and both human and animal health. It is therefore important that ash clouds are monitored both day and night, even when they travel far from their source. Infrared satellite data provide perhaps the only means of doing this, and since the hugely expensive ash crisis that followed the 2010 Eyjafjalljökull eruption, much research has been carried out into techniques for discriminating ash in such data and for deriving key properties. Such techniques are generally specific to data from particular sensors, and most approaches result in a binary classification of pixels into "ash" and "ash free" classes with no indication of the classification certainty for individual pixels. Furthermore, almost all operational methods rely on expert-set thresholds to determine what constitutes "ash" and can therefore be criticized for being subjective and dependent on expertise that may not remain with an institution. Very few existing methods exploit available contemporaneous atmospheric data to inform the detection, despite the sensitivity of most techniques to atmospheric parameters. The Bayesian method proposed here does exploit such data and gives a probabilistic, physically based classification. We provide an example of the method's implementation for a scene containing both land and sea observations, and a large area of desert dust (often misidentified as ash by other methods). The technique has already been successfully applied to other detection problems in remote sensing, and this work shows that it will be a useful and effective tool for ash detection. Presentation of a probabilistic volcanic ash detection schemeMethod for calculation of probability density function for ash observationsDemonstration of a remote sensing technique for monitoring volcanic ash hazards.
NASA Astrophysics Data System (ADS)
Rath, C. A.; Browne, B. L.
2011-12-01
Augustine Volcano (Alaska) is the most active volcano in the eastern Aleutian Islands, with 6 violent eruptions over the past 200 years and at least 12 catastrophic debris-avalanche deposits over the past ~2,000 years. The frequency and destructive nature of these eruptions combined with the proximity of Augustine Volcano to commercial ports and populated areas represents a significant hazard to the Cook Inlet region of Alaska. The focus of this study examines the relationship between debris-avalanche events and the subsequent emplacement of pyroclastic density currents by comparing the stratigraphic, granulometric, and petrographic characteristics of pyroclastic deposits emplaced following the 1883 A.D. Burr Point debris-avalanche and those emplaced following the ~370 14C yr B.P. West Island debris-avalanche. Data from this study combines grain size and componentry analysis of pyroclastic deposits with density, textural, and compositional analysis of juvenile clasts contained in the pyroclastic deposits. The 1883 A.D. Burr Point pyroclastic unit immediately overlies the 1883 debris avalanche deposit and underlies the 1912 Katmai ash. It ranges in thickness from 4 to 48 cm and consists of fine to medium sand-sized particles and coarser fragments of andesite. In places, this unit is normally graded and exhibits cross-bedding. Many of these samples are fines-enriched, with sorting coefficients ranging from -0.1 to 1.9 and median grain size ranging from 0.1 to 2.4 mm. The ~370 14C yr B.P. West Island pyroclastic unit is sandwiched between the underlying West Island debris-avalanche deposit and the overlying 1912 Katmai Ash deposit, and at times a fine-grained gray ash originating from the 1883 eruption. West Island pyroclastic deposit is sand to coarse-sand-sized and either normally graded or massive with sorting coefficients ranging from 0.9 to 2.8 and median grain sizes ranging from 0.4 to 2.6 mm. Some samples display a bimodal distribution of grain sizes, while most display a fines-depleted distribution. Juvenile andesite clasts exist as either subrounded to subangular fragments with abundant vesicles that range in color from white to brown or dense clasts characterized by their porphyritic and glassy texture. Samples from neither eruption correlate in sorting or grain size with distance from the vent. Stratigraphic and granulometric data suggest differences in the manner in which these two pyroclastic density currents traveled and groundmass textures are interpreted as recording differences in how the two magmas ascended and erupted, whereas juvenile Burr Point clasts resemble other lava flows erupted from Augustine Volcano, vesicular and glassy juvenile West Island clasts bear resemblance to clasts derived from so-called "blast-generated" pyroclastic density deposits at Mt. St. Helens in 1980 and Bezymianny in 1956.
Hackley, P.C.; Martinez, M.
2007-01-01
About 7??Mt of high volatile bituminous coal are produced annually from the four coal zones of the Upper Paleocene Marcelina Formation at the Paso Diablo open-pit mine of western Venezuela. As part of an ongoing coal quality study, we have characterized twenty-two coal channel samples from the mine using organic petrology techniques. Samples also were analyzed for proximate-ultimate parameters, forms of sulfur, free swelling index, ash fusion temperatures, and calorific value. Six of the samples represent incremental benches across the 12-13??m thick No. 4 bed, the stratigraphically lowest mined coal, which is also mined at the 10??km distant Mina Norte open-pit. Organic content of the No. 4 bed indicates an upward increase of woody vegetation and/or greater preservation of organic material throughout the life of the original mire(s). An upward increase in telovitrinite and corresponding decrease in detrovitrinite and inertinite illustrate this trend. In contrast, stratigraphically higher coal groups generally exhibit a 'dulling upward' trend. The generally high inertinite content, and low ash yield and sulfur content, suggest that the Paso Diablo coals were deposited in rain-fed raised mires, protected from clastic input and subjected to frequent oxidation and/or moisture stress. However, the two thinnest coal beds (both 0.7??m thick) are each characterized by lower inertinite and higher telovitrinite content relative to the rest of Paso Diablo coal beds, indicative of less well-established raised mire environments prior to drowning. Foreland basin Paleocene coals of western Venezuela, including the Paso Diablo deposit and time-correlative coal deposits of the Ta??chira and Me??rida Andes, are characterized by high inertinite and consistently lower ash and sulfur relative to Eocene and younger coals of the area. We interpret these age-delimited coal quality characteristics to be due to water availability as a function of the tectonic control of subsidence rate. It is postulated that slower subsidence rates dominated during the Paleocene while greater foreland basin subsidence rates during the Eocene-Miocene resulted from the loading of nappe thrust sheets as part of the main construction phases of the Andean orogen. South-southeastward advance and emplacement of the Lara nappes during the oblique transpressive collision of the Caribbean and South American tectonic plates in the Paleocene was further removed from the sites of peat deposition, resulting in slower subsidence rates. Slower subsidence in the Paleocene may have favored the growth of raised mires, generating higher inertinite concentrations through more frequent moisture stress. Consistently low ash yield and sulfur content would be due to the protection from clastic input in raised mires, in addition to the leaching of mineral matter by rainfall and the development of acidic conditions preventing fixation of sulfur. In contrast, peat mires of Eocene-Miocene age encountered rapid subsidence due to the proximity of nappe emplacement, resulting in lower inertinite content, higher and more variable sulfur content, and higher ash yield.
Wildland fire ash: future research directions
NASA Astrophysics Data System (ADS)
Bodí, Merche B.; Martins, Deborah A.; Cerdà, Artemi; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Mataix-Solera, Jorge
2014-05-01
Ash is a key component of the forest fires affected land (Cerdà, 1998; Bodí et al., 2011; Pereira et al., 2013a). Ash controls the hydrological processes and determines the water repellency (Dlapa et al., 2012) and the infiltration rates (Cerdà and Doerr, 2008;). Moreover, ash is the key factor on runoff initiation and then on the soil erosion. Little is known about the impact of ash in different ecosystems, but during the last decade a substantial increase in the papers that show the role of ash in the Earth and Soil System were published (Bodí et al., 2012; Pereira et al., 2013b).. Ash is being found as the key component of the post-fire pedological, geomorphological and hydrological response after forest fires (Fernández et al., 2012; Martín et al., 2012; Bodí et al., 2013; Guénon et al., 2013; Pereira et al., 2013c). A recent State-of-the-Art review about wildland fire ash (Bodí et al., 2014) compiles the knowledge regarding the production, composition and eco-hydro-geomorphic effects of wildland fire ash. In the present paper we indicate the knowledge gaps detected and suggest topics that need more research effort concerning: i) data collection and analysis techniques: a) To develop standardized sampling techniques that allow cross comparison among sites and avoid inclusion of the underlying soil unless the burned surface soil forms part of the ash layer, b) To develop standardized methods to define and characterize ash, including its color, physical properties such as particle size distribution or density, proportion of pyrogenic C, chemical and biological reactivity and persistence in the environment, c) To validate, calibrate and test measurements collected through remote sensing with on-the-ground measurements. ii) ash production, deposition redistribution and fate: d) To untangle the significance of the effects of maximum temperature reached during combustion versus the duration of heating, e) To understand the production of ash by measuring its depth, density, and size fraction distribution compared to that of the underlying soil, f) To measure the spatial variability of ash at the plot or hillslope scale, g) To address issues of how much ash stays on site after fire, especially how much is incorporated into underlying soil layers, compared to how much is eroded by wind and water and becomes incorporated into depositional environments located away from the site. iii) ash effects h) To study the connectivity of patches of ash to make progress in understanding the role of ash in infiltration, the generation of runoff and erosion, i) To take into account the role of ash in the fate of the ecosystem immediately after the fire, as well as the combination of ash and other cover, such as the needles, in the post-fire period, j) To study the amount and forms of C in ash, including studies characterizing its chemical and biological reactivity and degradability in soil and sedimentary environments, k) To understanding the legacy of atmospherically-deposited elements (e.g. P, Si, Mn) and dust to fully understand the complex chemistry of ash, and at the same time assess its effects on human health. iii) enhance collaboration across the globe on the multidisciplinary topic of ash research since research in large areas of the world that burn (e.g., Africa and Russia) is underrepresented. We are sure that several activities, such as land and water supply management, risk reduction, and planning for societal and ecosystem resilience in the face of a changing climate, will benefit from the insights gained from the ash research community. Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE FP7 project 603498 supported this research. References: Bodí, M. B., Mataix-Solera, J., Doerr, S. H., Cerdà, A. 2011.The wettability of ash from burned vegetation and its relatioship to Mediterranean plant species type, burn. Geoderma 160: 599-607. Bodí, M.B. Doerr, S.H., Cerdà, A. and Mataix-Solera, J. 2012. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soils. Geoderma, 191, 14-23. http://dx.doi.org/10.1016/j.geoderma.2012.01.006 Bodí, M.B., Muñoz-Santa, I., Armero, C., Doerr, S.H., Mataix-Solera, J., Cerdà, A. 2013. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena, 108, 14-24. http://dx.doi.org/10.1016/j.catena.2012.04.002 Bodí, Merche B., Martin, Deborah A., Balfour, Victoria N., Santín, Cristina, Doerr, Stefan H., Pereira, Paulo, Cerdà, Artemi, Mataix-Solera, Jorge, Wildland fire ash: Production, composition and eco-hydro-geomorphic effects, Earth Science Reviews (2014), doi: 10.1016/j.earscirev.2013.12.007 Cerdà, A. 1998. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12, 1031-1042. Cerdà, A. y Doerr, S.H. 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74 , 256- 263. doi:10.1016/S0341-8162(02)00027-9 Dlapa, P., Bodí, M.B., Mataix-Solera, J., Cerdà, A., &, Doerr, S.H. 2013. FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition. Catena, 108, 35-43. Doi:10.1016/j.catena.2012.02.011 Fernández, C., Vega, J. A., Jiménez, E., Vieira, D. C. S., Merino, A., Ferreiro, A., Fonturbel, T. 2012. Seeding and mulching + seeding effects on post-fire runoff, soil erosion and species diversity in Galicia (NW Spain). Land Degradation & Development, 23: 150- 156. DOI 10.1002/ldr.1064 Guénon, R., Vennetier, M., Dupuy, N., Roussos, S., Pailler, A., Gros, R. 2013. Trends in recovery of Mediterranean soil chemical properties and microbial activities after infrequent and frequent wildfires. Land Degradation & Development, 24: 115- 128. DOI 10.1002/ldr.1109 Martín, A., Díaz-Raviña, M., Carballas, T. 2012. Short- and medium-term evolution of soil properties in Atlantic forest ecosystems affected by wildfires. Land Degradation & Development, 23: 427- 439. DOI 10.1002/ldr.1078 Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., Cerdà, A., Burguet, M. 2013a. Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal, Hydrological Processes, DOI: 10.1002/hyp.9907 Pereira, P., Cerda, A., Jordan, A., Bolutiene, V., Pranskevicius, M., Ubeda, X., Mataix-Solera, J. 2013b. Spatio-temporal vegetation recuperation after a grassland fire in Lithuania, Procedia Environmental Sciences, 19, 856-864. DOI:10.1016/j.proenv.2013.06.095. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Martin, D., Jordan, A. and Burguet, M. 2013c. Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania. Solid Earth, 4, 153-165. www.solid-earth.net/4/153/2013/ doi:10.5194/se-4-153-2013
Lahars of Mount Pinatubo, Philippines
Newhall, Christopher G.; Stauffer, Peter H.; Hendley, James W.
1997-01-01
On June 15, 1991, Mount Pinatubo in the Philippines exploded in the second largest volcanic eruption on Earth this century. This eruption deposited more than 1 cubic mile (5 cubic kilometers) of volcanic ash and rock fragments on the volcano's slopes. Within hours, heavy rains began to wash this material down into the surrounding lowlands in giant, fast-moving mudflows called lahars. In the next four rainy seasons, lahars carried about half of the deposits off the volcano, causing even more destruction in the lowlands than the eruption itself.
The 7-8 August 2008 eruption of Kasatochi Volcano, central Aleutian Islands, Alaska
NASA Astrophysics Data System (ADS)
Waythomas, Christopher F.; Scott, William E.; Prejean, Stephanie G.; Schneider, David J.; Izbekov, Pavel; Nye, Christopher J.
2010-12-01
Kasatochi volcano in the central Aleutian Islands erupted unexpectedly on 7-8 August 2008. Kasatochi has received little study by volcanologists and has had no confirmed historical eruptions. The island is an important nesting area for seabirds and a long-term biological study site of the U.S. Fish and Wildlife Service. After a notably energetic preeruptive earthquake swarm, the volcano erupted violently in a series of explosive events beginning in the early afternoon of 7 August. Each event produced ash-gas plumes that reached 14-18 km above sea level. The volcanic plume contained large amounts of SO2 and was tracked around the globe by satellite observations. The cumulative volcanic cloud interfered with air travel across the North Pacific, causing many flight cancelations that affected thousands of travelers. Visits to the volcano in 2008-2009 indicated that the eruption generated pyroclastic flows and surges that swept all flanks of the island, accumulated several tens of meters of pyroclastic debris, and increased the diameter of the island by about 800 m. Pyroclastic flow deposits contain abundant accidental lithic debris derived from the inner walls of the Kasatochi crater. Juvenile material is crystal-rich silicic andesite that ranges from slightly pumiceous to frothy pumice. Fine-grained pyroclastic surge and fall deposits with accretionary lapilli cover the lithic-rich pyroclastic flow deposits and mark a change in eruptive style from episodic explosive activity to more continuous ash emission with smaller intermittent explosions. Pyroclastic deposits completely cover the island, but wave erosion and gully development on the flanks have begun to modify the surface mantle of volcanic deposits.
NASA Technical Reports Server (NTRS)
Koeberl, Christian
1989-01-01
The analysis of samples of volcanic ash dust layers from the Lewis Cliff/Beardmore Glacier in Antarctica shows that some of the samples contain Ir concentrations up to 7.5 ppb. It is shown that the Ir is positively correlated with Se, As, Sb, and other volcanogenic elements. The results show that Ir may be present in some volcanic ash deposits, suggesting that the Ir in the K/T boundary clays is not necessarily of cosmic origin, but may have originated from mantle reservoirs tapped during extensive volcanic eruptions possibly triggered by impact events.
NASA Astrophysics Data System (ADS)
Alvarado, Guillermo E.; Soto, Gerardo J.
2002-01-01
The pyroclastic flow that issued from the Arenal summit crater on 28 August 1993 came from the collapse of the crater wall of the cone and the drainage of a lava pool. The 3-km-long pyroclastic flow, 2.2±0.8×106 m3 in volume, was confined to narrow valleys (30-100 m wide). The thickness of the pyroclastic deposit ranged from 1 to 10 m, and its temperature was about 400 °C, although single bombs were up to 1,000 °C. The deposit is clast-supported, has a bimodal grain size distribution, and consists of an intimate mixture of finely pulverized rock ash, lapilli, small blocks, and cauliflower bread-crusted bombs, in which are set meter-size lava fragments and juvenile and non-juvenile angular blocks, and bombs up to 7 m in diameter. Large faceted blocks make up 50% of the total volume of the deposit. The cauliflower bombs have deep and intricate bread-crust texture and post-depositional vesiculation. It is proposed that the juvenile material was produced entirely from a lava pool, whereas faceted non-juvenile blocks come from the crater-wall collapse. The concentration and maximum diameter of cauliflower bread-crusted bombs increases significantly from the base (rockslide + pyroclastic flow) to the top (the pyroclastic flow) of the deposit. An ash cloud deposited accretionary lapilli in the proximal region (outside of the pyroclastic flow deposit), and very fine ash fell in the distal region (between 5 and 30 km). The accretionary lapilli deposit is derived from the fine, elutriated products of the flow as it moved. A turbulent overriding surge blew down the surrounding shrubbery in the flow direction. The pyroclastic flow from August 1993, similar to the flows of June 1975, May 1998, August 2000, and March 2001, slid and rolled rather than being buoyed up by gas. They grooved, scratched, and polished the surfaces over which they swept, similar to a Merapi-type pyroclastic flow. However, the mechanism of the outpouring of a lava pool and the resulting flows composed of high- to moderate-vesiculated, cauliflower bread-crusted bombs and juvenile blocks have not been described before. High-frequency earthquake swarms, followed by an increase in low-frequency volcanic events, preceded the 1975, 1993, and 2000 eruptions 2-4 months before. These pyroclastic flow events, therefore, may be triggered by internal expansion of the unstable cone in the upper part because of a slight change in the pressure of the magma column (gas content and/or effusive rate). This phenomenon has important short-term, volcanic hazard implications for touristic development of some parts on the flanks of the volcano.
NASA Astrophysics Data System (ADS)
Luhr, J. F.; Navarro, C.; Connor, C. B.; Connor, L.
2006-12-01
The 18-20 January 1913 VEI-4 eruption of Volcán de Colima closed out a century-scale eruptive cycle, left the summit a deep jagged crater 100 m shorter than before, sent pyroclastic flows out to 15 km on the S flank, and culminated in a Plinian column that resulted in ashfall as far as 725 km to the NE at Saltillo. Historical accounts allow a rough delineation of where distal ash did and did not fall. Today in the field, the 1913 Plinian fall deposit can be traced across the upper flanks of Nevado de Colima, but only to distances of 13 km from the vent. Beyond that point all evidence of the eruption has been eroded from Earth's surface in the past 93 years. We studied the proximal 1913 fall deposit at 45 locations. At 27 locations the 1913 deposit is a single fall unit, up to 80 cm thick. At the other locations, 2-3 individual scoria-fall layers are separated by charcoal- bearing fine-ash horizons, which we interpret as pyroclastic-surge deposits. At locations with multiple units and complex lower 1913 stratigraphy, bulk compositional data on scoriae provided insight regarding to the base of the 1913 deposit. Particular uncertainty clouds field identification of the scoria-fall deposit from the similar VEI-4 eruption in 1818. Granulometric data for the 1913 deposit were obtained by sieving both scoria- fall and fine-ash layers. The 1913 scoriae are relatively homogeneous hornblende andesites with ~58 wt.% SiO2, more mafic than all of the andesitic lava flows that preceded it starting in 1869 and have followed since 1961 (~60% SiO2). The 1913 scoriae have plagioclase > orthopyroxene > clinopyroxene > hornblende > titanomagnetite. The hornblende phenocrysts are greenish brown in color and have clean rims against the vesiculated glassy matrix, indicating that the hornblende remained stable until eruptive quenching. We used electron and ion microprobes to analyze a series of glass inclusions trapped within orthopyroxene phenocrysts for major, minor, and volatile elements. The 1913 glass inclusions are very homogeneous in composition and contain ~6 wt.% H2O, ~80 ppm CO2, ~1,500 ppm S, ~2,800 ppm Cl, and ~600 ppm F. The H2O and CO2 data indicate a minimum solubility pressure of ~2,250 bars, and a minimum depth of ~8 km for the pre-eruptive 1913 magma reservoir. Field and laboratory data for the 1913 tephra-fall deposit are used with the TEPHRA2 forward model and inversion algorithms to quantify eruption parameters (e.g., volume, column height, and wind structure), together with uncertainties in these parameters.
Structure, properties, and surfactant adsorption behavior of fly ash carbon
NASA Astrophysics Data System (ADS)
Kulaots, Indrek
The objective of this research was to suggest methods by which certain problems associated with use of coal fly ash as a pozzolanic agent in concrete mixtures could be alleviated, guided by a better characterization of fly ash properties. A sample suite of eighty fly ashes was gathered from utilities across the world (mainly US-based) and included ashes from coals ranging in rank from bituminous to lignite. The widely used foam index test is used to characterize ashes with respect to their propensity to adsorb surfactants (called Air Entraining Admixtures or AEAs) used to impart freeze-thaw resistance to concrete. In ash-containing concrete mixtures, AEAs are adsorbed from the polar concrete-water solution onto non-polar unburned carbon surfaces in the ash. The AEA uptake by fly ashes only crudely correlates with the amount of carbon in the fly ash, because carbon surface area, accessibility and polarity all play a role in determining adsorption capacities. Fly ash carbon particle size distribution is also a key factor. Fine carbon particles in fly ash fractions of <106mum are responsible for about 90% of surfactant adsorption capacity. Surfactant adsorption on fly ash carbon is, in the foam index test, a dynamic process. The time of the test (typically <10 minutes) is not long enough to permit penetration of small porosity by the relatively large AEA molecules, and only the most readily available adsorption surface near the geometrical surface of the carbon particles is utilized. The nature of the foam index test was also examined, and it is recommended that a more standardized test procedure based upon pure reagents be adopted for examining the nature of fly ashes. Several possible reagents were identified. Room temperature fly ash ozonation is a powerful technique that allows increasing fly ash surface polarity in a relatively short time and thus is very effective for decreasing the AEA uptake capacity. Depending on the ozone input concentration, sample amount and contact time, surfactant uptake capacity decreases by a factor of two or more following reaction of only 0--1g O3/kg-ash, bringing many ashes into compliance with AEA uptake requirements.
Laitinen, Juha; Koponen, Hanna; Sippula, Olli; Korpijärvi, Kirsi; Jumpponen, Mika; Laitinen, Sirpa; Aatamila, Marjaleena; Tissari, Jarkko; Karhunen, Tommi; Ojanen, Kari; Jokiniemi, Jorma; Korpinen, Leena
2017-10-01
Fly and bottom ashes are collected at power plants to reduce the environmental effects of energy production. However, handling the ashes causes health problems for operators, maintenance workers and truck drivers at the power plants. Hence, we evaluated ash loaders' peak inhalation exposures to the chemical components of ash and diesel exhausts in open and closed ash loading stations at biomass-fuelled combined heat and power plants. We also carried out chemical and morphological analyses of the ashes to evaluate their health hazard potential in order to find practical technical measures to reduce workers' exposure. On the basis of X-ray diffraction analyses, the main respirable crystalline ash compounds were SiO 2 , CaSO 4 , CaO, Ca 2 Al 2 SiO 7 , NaCl and Ca 3 Al 2 O 6 in the fly ashes and SiO 2 , KAlSi 3 O 8 , NaAlSi 3 O 8 and Ca 2 Al 2 SiO 7 in the bottom ashes. The short-term exposure levels of respirable crystalline silica, inhalable inorganic dust, Cr, Mn, Ni and nitric oxide exceeded their Finnish eight hours occupational exposure limit values in the closed ash loading station. According to our observations, more attention should be paid to the ash-moistening process, the use of tank trucks instead of open cassette flatbed trucks, and the sealing of the loading line from the silo to the truck which would prevent spreading the ash into the air. The idling time of diesel trucks should also be limited, and ash loading stations should be equipped with exhaust gas ventilators. If working conditions make it impossible to keep to the OEL values, workers must use respirators and protect their eyes and skin. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Harvey, Natalie J.; Huntley, Nathan; Dacre, Helen F.; Goldstein, Michael; Thomson, David; Webster, Helen
2018-01-01
Following the disruption to European airspace caused by the eruption of Eyjafjallajökull in 2010 there has been a move towards producing quantitative predictions of volcanic ash concentration using volcanic ash transport and dispersion simulators. However, there is no formal framework for determining the uncertainties of these predictions and performing many simulations using these complex models is computationally expensive. In this paper a Bayesian linear emulation approach is applied to the Numerical Atmospheric-dispersion Modelling Environment (NAME) to better understand the influence of source and internal model parameters on the simulator output. Emulation is a statistical method for predicting the output of a computer simulator at new parameter choices without actually running the simulator. A multi-level emulation approach is applied using two configurations of NAME with different numbers of model particles. Information from many evaluations of the computationally faster configuration is combined with results from relatively few evaluations of the slower, more accurate, configuration. This approach is effective when it is not possible to run the accurate simulator many times and when there is also little prior knowledge about the influence of parameters. The approach is applied to the mean ash column loading in 75 geographical regions on 14 May 2010. Through this analysis it has been found that the parameters that contribute the most to the output uncertainty are initial plume rise height, mass eruption rate, free tropospheric turbulence levels and precipitation threshold for wet deposition. This information can be used to inform future model development and observational campaigns and routine monitoring. The analysis presented here suggests the need for further observational and theoretical research into parameterisation of atmospheric turbulence. Furthermore it can also be used to inform the most important parameter perturbations for a small operational ensemble of simulations. The use of an emulator also identifies the input and internal parameters that do not contribute significantly to simulator uncertainty. Finally, the analysis highlights that the faster, less accurate, configuration of NAME can, on its own, provide useful information for the problem of predicting average column load over large areas.
Zhu, Li; Chen, Mingliang; Dong, Yingchao; Tang, Chuyang Y; Huang, Aisheng; Li, Lingling
2016-03-01
Oil-in-water (O/W) emulsion is considered to be difficult to treat. In this work, a low-cost multi-layer-structured mullite-titania composite ceramic hollow fiber microfiltration membrane was fabricated and utilized to efficiently remove fine oil droplets from (O/W) emulsion. In order to reduce membrane cost, coal fly ash was effectively recycled for the first time to fabricate mullite hollow fiber with finger-like and sponge-like structures, on which a much more hydrophilic TiO2 layer was further deposited. The morphology, crystalline phase, mechanical and surface properties were characterized in details. The filtration capability of the final composite membrane was assessed by the separation of a 200 mg·L(-1) synthetic (O/W) emulsion. Even with this microfiltration membrane, a TOC removal efficiency of 97% was achieved. Dilute NaOH solution backwashing was used to effectively accomplish membrane regeneration (∼96% flux recovery efficiency). This study is expected to guide an effective way to recycle waste coal fly ash not only to solve its environmental problems but also to produce a high-valued mullite hollow fiber membrane for highly efficient separation application of O/W emulsion with potential simultaneous functions of pure water production and oil resource recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparison between volcanic ash satellite retrievals and FALL3D transport model
NASA Astrophysics Data System (ADS)
Corradini, Stefano; Merucci, Luca; Folch, Arnau
2010-05-01
Volcanic eruptions represent one of the most important sources of natural pollution because of the large emission of gas and solid particles into the atmosphere. Volcanic clouds can contain different gas species (mainly H2O, CO2, SO2 and HCl) and a mix of silicate-bearing ash particles in the size range from 0.1 μm to few mm. Determining the properties, movement and extent of volcanic ash clouds is an important scientific, economic, and public safety issue because of the harmful effects on environment, public health and aviation. In particular, real-time tracking and forecasting of volcanic clouds is key for aviation safety. Several encounters of en-route aircrafts with volcanic ash clouds have demonstrated the harming effects of fine ash particles on modern aircrafts. Alongside these considerations, the economical consequences caused by disruption of airports must be also taken into account. Both security and economical issues require robust and affordable ash cloud detection and trajectory forecasting, ideally combining remote sensing and modeling. We perform a quantitative comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of volcanic ash cloud mass and Aerosol Optical Depth (AOD) with the FALL3D ash dispersal model. MODIS, aboard the NASA-Terra and NASA-Aqua polar satellites, is a multispectral instrument with 36 spectral bands from Visible (VIS) to Thermal InfraRed (TIR) and spatial resolution varying between 250 and 1000 m at nadir. The MODIS channels centered around 11 and 12 mm have been used for the ash retrievals through the Brightness Temperature Difference algorithm and MODTRAN simulations. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles that outputs, among other variables, cloud column mass and AOD. We consider the Mt. Etna volcano 2002 eruptive event as a test case. Results show a good agreement between the mean AOT retrieved and the spatial ash dispersion in the different images, while the modeled FALL3D total mass retrieved results significantly overestimated.
NASA Astrophysics Data System (ADS)
Antoni, Herianto, Jason Ghorman; Anastasia, Evelin; Hardjito, Djwantoro
2017-09-01
Fly ash with high calcium oxide content when used as the base material in geopolymer concrete could cause flash setting or rapid hardening. However, it might increase the compressive strength of geopolymer concrete. This rapid hardening could cause problems if the geopolymer concrete is used on a large scale casting that requires a long setting time. CaO content can be indicated by pH values of the fly ash, while higher pH is correlated with the rapid setting time of fly ash-based geopolymer. This study investigates the addition of acid solution to reduce the initial pH of the fly ash and to prolong the setting time of the mixture. The acids used in this study are hydrochloric acid (HCl), sulfuric acid (H2 SO4), nitric acid (HNO3) and acetic acid (CH3 COOH). It was found that the addition of acid solution in fly ash was able to decrease the initial pH of fly ash, however, the initial setting time of geopolymer was not reduced. It was even faster than that of the control mixture. The acid type causes various influence, depending on the fly ash properties. In addition, the use of acid solution in fly ash reduces the compressive strength of geopolymer mortar. It is concluded that the addition of acid solution cannot prolong the rapid hardening of high calcium fly ash geopolymer, and it causes adverse effect on the compressive strength.
Probabilistic detection of volcanic ash using a Bayesian approach
NASA Astrophysics Data System (ADS)
Mackie, Shona; Watson, Matthew
2014-03-01
Airborne volcanic ash can pose a hazard to aviation, agriculture, and both human and animal health. It is therefore important that ash clouds are monitored both day and night, even when they travel far from their source. Infrared satellite data provide perhaps the only means of doing this, and since the hugely expensive ash crisis that followed the 2010 Eyjafjalljökull eruption, much research has been carried out into techniques for discriminating ash in such data and for deriving key properties. Such techniques are generally specific to data from particular sensors, and most approaches result in a binary classification of pixels into "ash" and "ash free" classes with no indication of the classification certainty for individual pixels. Furthermore, almost all operational methods rely on expert-set thresholds to determine what constitutes "ash" and can therefore be criticized for being subjective and dependent on expertise that may not remain with an institution. Very few existing methods exploit available contemporaneous atmospheric data to inform the detection, despite the sensitivity of most techniques to atmospheric parameters. The Bayesian method proposed here does exploit such data and gives a probabilistic, physically based classification. We provide an example of the method's implementation for a scene containing both land and sea observations, and a large area of desert dust (often misidentified as ash by other methods). The technique has already been successfully applied to other detection problems in remote sensing, and this work shows that it will be a useful and effective tool for ash detection.
Retention of elemental mercury in fly ashes in different atmospheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.A. Lopez-Anton; M. Diaz-Somoano; M.R. Martinez-Tarazona
2007-01-15
Mercury is an extremely volatile element, which is emitted from coal combustion to the environment mostly in the vapor phase. To avoid the environmental problems that the toxic species of this element may cause, control technologies for the removal of mercury are necessary. Recent research has shown that certain fly ash materials have an affinity for mercury. Moreover, it has been observed that fly ashes may catalyze the oxidation of elemental mercury and facilitate its capture. However, the exact nature of Hg-fly ash interactions is still unknown, and mercury oxidation through fly ash needs to be investigated more thoroughly. Inmore » this work, the influence of a gas atmosphere on the retention of elemental mercury on fly ashes of different characteristics was evaluated. The retention capacity was estimated comparatively in inert and two gas atmospheres containing species present in coal gasification and coal combustion. Fly ashes produced in two pulverized coal combustion (PCC) plants, produced from coals of different rank (CTA and CTSR), and a fly ash (CTP) produced in a fluidized bed combustion (FBC) plant were used as raw materials. The mercury retention capacity of these fly ashes was compared to the retention obtained in different activated carbons. Although the capture of mercury is very similar in the gasification atmosphere and N{sub 2}, it is much more efficient in a coal combustion retention, being greater in fly ashes from PCC than those from FBC plants. 22 refs., 6 figs., 3 tabs.« less
Ash deposits - Initiating the change from empiricism to generic engineering. Part 2: Initial results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wessel, R.A.; Wagoner, C.L.
1986-01-01
The goal is to develop and use calculations and measurements from several engineering disciplines that exceed the demonstrated limitations of present empirical techniques for predicting slagging/fouling behavior. In Part I of this paper, general relationships were presented for assessing effects of deposits and sootblowing on the real-time performance of heat transfer surfaces in pilot- and commercial-scale steam generators. In Part 2, these concepts are applied to the gas-side fouling of heat exchanger tubes. Deposition and heat transfer are calculated for superheater tubes in laboratory and utility furnaces. Numerical results for deposit thickness and heat flux are presented. Comparisons with datamore » show agreement, demonstrating that the broad-base engineering approach is promising.« less
Geochemistry and mineralogy of fly-ash from the Mae Moh lignite deposit, Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, B.R.; Powell, M.A.; Fyfe, W.S.
The concentration of 21 elements in fly ash from three boilers (75 MW, 150 MW, and 300 MW) at the EGAT power plant, Mae Moh, Thailand, were determined by INAA. The concentration of 10 major elements was determined by XRF. As, Co, Cr, Ni, Mo, and Sb generally increase in concentration going from bottom ash (BA) through the sequence of electrostatic precipitator ashes (ESPA) and reach maxima of As (352 ppm), Co (45 ppm), Cr (105 ppm), Mo (32 ppm), Ni (106 ppm), and Sb (15 ppm) in the ESPA. Ce, Cs, Fe, Hf, La, Sc, Ta, Tb, and Ybmore » did not exhibit concentration trends or are variable except in the case of one boiler, which showed an increase going from BA to ESPA. Only Br decreased in composition going from BA to ESPA. Rb, Sm, U, and Th showed marked variation in trends. The major elements identified by EDS were Al, Si, S, K, Ca, Fe, and Ba, with minor amounts of Mg, Na, Ti, Mn, and Sr. Al, Si, K, and Ca occur together and are present in most of the fly-ash particles. Ba was found as a major component with Ca, Al, and Si. Fe and Ca are usually associated with sulfur. Some small spheres (< 5 {mu}m) are comprised almost entirely of Fe (probably as oxide). Symplectite textures are noted in high-Fe phases. All elements except Br are significantly enriched in the fly ash relative to the coal, which contains 35% ash. Particle chemistry is consistent with the major mineral phases identified by XRD, which include: quartz, magnetite, mullite, gehlenite, anorthite, hematite, anhydrite, and clinopyroxene.« less
NASA Astrophysics Data System (ADS)
Venkatasubramanian, C.; Muthu, D.; Aswini, G.; Nandhini, G.; Muhilini, K.
2017-07-01
The studies on durability of concrete have attracted attention in the recent years and its long term strength depends on quality of ingredients used in production of concrete. Now a days, the availability of ingredients is limited and in order to overcome this problem, research studies focuses on some alternate materials in the concrete production process. Also, Incorporation of waste materials consumes less energy leading to reduction of emission of green house gases. The application of fly ash and cow dung ash as a pozzolanic binder instead of cement and coir fibers finds extensive application in the manufacturing process of building materials. In this project an attempt has been made to utilize cow dung ash and coconut fiber as a replacement material of cement in the production of concrete. The cement is partially replaced with cow dung ash by about 2.5, 3 & 3.5 % by weight and with 1% of coconut fiber. The Compressive and Tensile strengths of concrete were found at different curing periods (7,14 & 28 days). From this study, it is inferred that these replacements will have a reasonable improvement in the strength properties of concrete by about 55-70%. The substitution of CDA, CF is economical in terms of cost and this usage eliminates the problem of landfills, reducing the environmental risk, maintaining the ecological balance, which is very much required for our nation.
Review of palm oil fuel ash and ceramic waste in the production of concrete
NASA Astrophysics Data System (ADS)
Natasya Mazenan, Puteri; Sheikh Khalid, Faisal; Shahidan, Shahiron; Shamsuddin, Shamrul-mar
2017-11-01
High demand for cement in the concrete production has been increased which become the problems in the industry. Thus, this problem will increase the production cost of construction material and the demand for affordable houses. Moreover, the production of Portland cement leads to the release of a significant amount of CO2 and other gases leading to the effect on global warming. The need for a sustainable and green construction building material is required in the construction industry. Hence, this paper presents utilization of palm oil fuel ash and ceramic waste as partial cement replacement in the production of concrete. Using both of this waste in the concrete production would benefit in many ways. It is able to save cost and energy other than protecting the environment. In short, 20% usage of palm oil fuel ash and 30% replacement of ceramic waste as cement replacement show the acceptable and satisfactory strength of concrete.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persson, S.A.; Ahlberg, M.; Berghem, L.
1988-04-01
Male Syrian golden hamsters were given 15 weekly intratracheal instillations with suspensions of coal fly ash or oil fly ash. Controls were instilled with saline containing gelatine (0.5 g/100 mL) or to check particle effects with suspensions of hematite (Fe/sub 2/O/sub 3/). The common weekly dose was 4.5 mg/hamster. In addition, one subgroup of hamsters was treated with oil fly ash at a weekly dose of 3.0 mg/hamster and another with coal fly ash at a weekly dose of 6.0 mg/hamster. Other groups of hamsters were treated with suspensions of benzo(a)pyrene (BaP) or with suspensions on coal fly ash, oilmore » fly ash, or Fe/sub 2/O/sub 3/ coated with BaP. The mass median aerodynamic diameters of the coal and oil fly ashes were 4.4 microns and 28 microns, respectively. Hamsters treated with oil fly ash showed a higher frequency of bronchiolar-alveolar hyperplasia than hamsters in the other treatment groups. Squamous dysplasia and squamous metaplasia were most frequent in animals treated with suspensions of BaP or BaP-coated particles. The earliest appearance of a tumor, the highest incidence of tumors, and the highest incidence of malignant tumors were observed in hamsters treated with oil fly ash coated with BaP. Squamous cell carcinoma and adenosquamous carcinoma were the most frequent malignant tumors. No malignant tumors and only few benign tumors were observed in hamsters instilled with suspensions of fly ash not coated with BaP. The present study gives no indication that coal fly ash could create more serious health problems than oil fly ash.« less
State of volcanic ash dispersion prediction
NASA Astrophysics Data System (ADS)
Eliasson, Jonas; Palsson, Thorgeir; Weber, Konradin
2017-04-01
The Eyjafjallajokull 2010 and Grimsvotn 2011 eruptions created great problems for commercial aviation in Western Europe and in the North Atlantic region. Comparison of satellite images of the visible and predicted ash clouds showed the VAAC prediction to be much larger than the actual ash clouds. No official explanation of this discrepancy exists apart from the definition of the ash cloud boundary. Papers on simulation of the Eyjafjallajökull ash cloud in peer reviewed journals, typically attempted to simulate the VAAC predictions rather than focusing on the satellite pictures. Sporadic measurements made in-situ showed much lower ash concentrations over Europe than the predicted values. Two of the weak points in ash cloud prediction have been studied in airborne measurements of volcanic ash by the Universities in Kyoto Japan, Iceland and Düsseldorf Germany of eruptions in Sakurajima, Japan. It turns out that gravitational deformation of the plume and a streak fallout process make estimated ash content of clouds larger than the actual, both features are not included in the simulation model. Tropospheric plumes tend to ride in stable inversions this causes gravitational flattening (pancaking) of the volcanic plume, while diffusion in the mixing layer is insignificant. New rules from ICAO, effective from November 2014, reiterate that jetliners should avoid visible ash, this makes information on visible ash important. A procedure developed by JMÁs Tokyo VAAC uses satellite images of visible ash to correct the prediction. This and the fact that meteorological data necessary to model gravitational dispersion and streak fallout do not exist in the international database available to the VAAĆs. This shows that close monitoring by airborne measurements and satellite and other photographic surveillance is necessary.
Cryptotephras: the revolution in correlation and precision dating1
DAVIES, SIWAN M
2015-01-01
From its Icelandic origins in the study of visible tephra horizons, tephrochronology took a remarkable step in the late 1980 s with the discovery of a ca. 4300-year-old microscopic ash layer in a Scottish peat bog. Since then, the search for these cryptotephra deposits in distal areas has gone from strength to strength. Indeed, a recent discovery demonstrates how a few fine-grained glass shards from an Alaskan eruption have been dispersed more than 7000 km to northern Europe. Instantaneous deposition of geochemically distinct volcanic ash over such large geographical areas gives rise to a powerful correlation tool with considerable potential for addressing a range of scientific questions. A prerequisite of this work is the establishment of regional tephrochronological frameworks that include well-constrained age estimates and robust geochemical signatures for each deposit. With distal sites revealing a complex record of previously unknown volcanic events, frameworks are regularly revised, and it has become apparent that some closely timed eruptions have similar geochemical signatures. The search for unique and robust geochemical fingerprints thus hinges on rigorous analysis by electron microprobe and laser ablation-inductively coupled plasma-mass spectrometry. Historical developments and significant breakthroughs are presented to chart the revolution in correlation and precision dating over the last 50 years using tephrochronology and cryptotephrochronology. PMID:27512240
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, L.; Wang, W.; Pallapolu, V. R.
2011-11-01
A previous study demonstrated that paper sludges with high ash contents can be converted to ethanol by simultaneous saccharification and fermentation (SSF) or simultaneous saccharification and co-fermentation (SSCF). High ash content in the sludge, however, limited solid loading in the bioreactor, causing low product concentration. To overcome this problem, sludges were de-ashed before SSF and SSCF. Low ash content in sludges also increased the ethanol yield to the extent that the enzyme dosage required to achieve 70% yield in the fermentation process was reduced by 30%. High solid loading in SSF and SSCF decreased the ethanol yield. High agitation andmore » de-ashing of the sludges were able to restore the part of the yield loss caused by high solid loading. Substitution of the laboratory fermentation medium (peptone and yeast extract) with corn steep liquor did not bring about any adverse effects in the fermentation. Fed-batch operation of the SSCF and SSF using low-ash content sludges was effective in raising the ethanol concentration, achieving 47.8 g/L and 60.0 g/L, respectively.« less
Claridge, G.G.C.; Campbell, I.B.
2007-01-01
A small sedimentary deposit near Gneiss Point on the western side of McMurdo Sound, previously identified as shale, is described. The deposit is phillipsite, a zeolite that is believed to have formed from the deposition and alteration of volcanic ash in a small ice-marginal saline lake. Other previously recorded occurrences of phillipsite in the dry valleys are believed to be several million years old. A similar age for this deposit is suggested for the Gneiss Point deposit. This is consistent with other weathering and landscape features found in the immediate area, including traces of halloysite in soils. The deposit is very close to sea level but could not have formed if the site had been below sea level, indicating that there has been very little uplift following that which caused the sea to retreat from the Wright Fiord.
Eocene Yegua Formation (Claiborne group) and Jackson group lignite deposits of Texas
Hook, Robert W.; Warwick, Peter D.; Swanson, Sharon M.; Hackley, Paul C.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.
2011-01-01
The lignite deposits within the upper Eocene Yegua Formation (Claiborne Group) and the overlying Jackson Group are among the coal resources that were not quantitatively assessed as part of the U.S. Geological Survey's (USGS) National Coal Resource Assessment (NCRA) program in the Gulf Coastal Plain coal province. In the past, these lignite-bearing stratigraphic units often have been evaluated together because of their geographic and stratigraphic proximity (Fisher, 1963; Kaiser, 1974; Kaiser et al., 1980; Jackson and Garner, 1982; Kaiser, 1996) (Figures 1, 2). The term “Yegua-Jackson trend“ is used informally herein for the lignite-bearing outcrops of these Late Eocene deposits in Texas. Lignite beds in the Yegua-Jackson trend generally are higher both in ash yield and sulfur content than those of the underlying Wilcox Group (Figure 2). Recent studies (Senkayi et al., 1987; Ruppert et al., 1994; Warwick et al., 1996, 1997) have shown that some lignite beds within the Yegua-Jackson trend contain partings of volcanic ash and host elevated levels of trace elements that have been identified as potentially hazardous air pollutants (HAPs) in the United States Clean Air Amendments of 1990. Lignite beds within the Yegua Formation are thin (less than or equal to 6 ft) and laterally discontinuous in comparison with most Wilcox Group deposits (Ayers, 1989a); in contrast, the Jackson Group lignite beds range up to 12 ft in total thickness and are relatively continuous laterally, extending nearly 32 mi along strike.
NASA Astrophysics Data System (ADS)
Doronzo, Domenico; Dellino, Pierfrancesco; Sulpizio, Roberto; Lucchi, Federico
2017-04-01
In order to obtain significant volcanological results from computer simulations of explosive eruptions, one either needs a systematic statistical approach to test a wide range of initial and boundary conditions, or needs using a well-constrained field case study. Here we followed the second approach, using data obtained from field mapping of the Grotta dei Palizzi 2 pyroclastic deposits (Vulcano Island, Italy) as input for numerical modeling. This case study deals with impulsive phreatomagmatic explosions that generated ash-rich pyroclastic density currents, interacting with the high topographic obstacle of the La Fossa Caldera rim. We demonstrate that by merging field data with 3D numerical simulation it is possible to highlight the details of the dynamical current-terrain interaction, and to interpret the lithofacies variations of the associated deposits as a function of topography-induced sedimentation rate. Results suggest that a value of the sedimentation rate lower than 5 kg/m2s at the bed load can still be sheared by the overlying current, producing tractional structures in the deposit. Instead, a sedimentation rate in excess of that threshold can preclude the formation of tractional structures, producing thick massive deposits. We think that the approach used in this study could be applied to other case studies to confirm or refine such threshold value of the sedimentation rate, which is to be considered as an upper value as for the limitations of the numerical model.
NASA Astrophysics Data System (ADS)
Valverde, Viviana; Mothes, Patricia; Andrade, Daniel
2014-05-01
A mineralogical analysis was done on 70 volcanic ashes; 9 corresponding to proximal samples of seven volcanoes: Cotopaxi (4500 yBP), Guagua Pichincha (3300 yBP, 1000 yBP and 1660 yAD), Cuicocha (3100 yBP), Pululahua (2400 yBP), Ninahuilca (2350 yBP and 4600 yBP) and 61 to distal ashes collected at eight archaeological sites in the Coastal, Sierra and Amazon regions of Ecuador. Cultural vestiges are from Pre-ceramic, Formative, Regional Development and Integration periods, with the exception of a site denominated Hacienda Malqui, which also has Inca vestiges. The sampling process was done in collaboration with various archaeologists in 2011-2013. The volcanic ashes were washed, dried and divided in order to obtain a representative fraction and their later analysis with binocular microscope. The microscope analysis allowed determination of the characteristics of each component of volcanic ash. These main elements are: pumice fragments, minerals, volcanic glass, lithics and exogenous material (non volcanic). The petrographic analysis of distal volcanic ash layers at each archaeological site was correlated by their components and characteristics with proximal volcanic ashes of source volcanoes. Some correlations permitted obtaining a relative age for the layers of distal volcanic ash in the archaeological sites. The petrographic analysis showed a correlation between the archaeological sites of Las Mercedes - Los Naranjos, Rumipamba and El Condado (located west of Quito) with the eruptive activity of Guagua Pichincha volcano (3300 yBP, 1000 yBP and 1660 yAD) and Pululahua volcano (2400 yBP). Also, a correlation with eruptive activity of Ninahuilca (2350 yBP), Cotopaxi (4500 yBP) and Quilotoa (800 yBP) volcanoes at Hda. Malqui (60 km west of Latacunga) was provided by mineralogy of the respective ashes expulsed by these volcanoes. The ash layers at Cuyuja (50 km east of Quito) are mostly superficial; they are associated with Quilotoa's 800 yBP plinian. Finally at the Huapula and Pablo VI sites (in the western Amazon region of Ecuador), the reworked ashes are predominantly of Sangay volcano (in permanent eruptive activity since 1628). Finally, the work shared between archaeologists and volcanologists allowed us to discover more deposits of volcanic ashes at archaeological sites. These layers sometimes have more than 30 cm thickness in distal regions, such as the thick ash layer left by Pululahua's 2400 yBP eruption, a fact which helps us to comprehend the impact of volcanoes on past cultures.
NASA Astrophysics Data System (ADS)
Goldstein, Fabian; Varley, Nick; Bustillos, Jorge; Kueppers, Ulrich; Lavallee, Yan; Dingwell, Donald B.
2010-05-01
Sudden transitions from effusive to explosive eruptive behaviour have been observed at several volcanoes. As a result of explosive activity, pyroclastic density currents represent a major threat to life and infrastructure, mostly due to their unpredictability, mass, and velocity. Difficulties in direct observation force us to deduce crucial information from their deposits. Here, we present data from field work performed in 2009 on primary deposits from recent explosive episodes at Volcán de Colima (Mexico) and Tungurahua (Ecuador). Volcán de Colima, located 40km away from the Capital city Colima with 300,000 inhabitants, has been active since 1999. Activity has been primarily characterized by the slow effusion of lava dome with the daily occurrence of episodic gas (and sometimes ash) explosion events. During a period of peak activity in 2005, explosive eruptions repeatedly destroyed the dome and column collapse resulted in several PDCs that travelled down the W, S, and SE flanks. Tungurahua looms over the 20,000 inhabitants of the city of Baños, located 5km away, and is considered one of the most active volcanoes in Ecuador. The most recent eruptive cycle began in 1999 and climaxed in July and August of 2006 with the eruptions of several PDCs that traveled down the western flanks, controlled by the hydrological network. During two field campaigns, we collected an extensive data set of porosity and grain size distribution on PDCs at both volcanoes. The deposits have been mapped in detail and the porosity distribution of clasts across the surface of the deposits has been measured at more than 30 sites (> 3.000 samples). Our porosity distribution data (mean porosity values range between 17 and 24%) suggests an influence of run out distance and lateral position. Preliminary results of grain size analysis of ash and lapilli (< 5mm) has been performed at approximately 50 sites at varying longitudinal, lateral and vertical positions, and show a correlation with run-out distance, morphology, and stratigraphic context. Sedimentary structures such as dunes, grain size distribution, and the observed damage to vegetation help depict the progression of the flow and its dynamics. We also present optical microscopic analysis of ash and lapilli particles which portray the fundamental processes occurring during PDCs.
Glass-ceramics from municipal incinerator fly ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boccaccini, A.R.; Petitmermet, M.; Wintermantel, E.
1997-11-01
In countries where the population density is high and the availability of space for landfilling is limited, such as the west-European countries and Japan, the significance of municipal solid waste incineration, as part of the waste management strategy, is continuously increasing. In Germany and Switzerland, for example, more than {approximately}40% of unrecycled waste is being or will be incinerated. Also, in other countries, including the US, the importance of waste incineration will increase in the next few years. Although incineration reduces the volume of the waste by {approximately} 90%, it leaves considerable amounts of solid residues, such as bottom andmore » boiler ashes, and filter fly ashes. Consequently, new technological options for the decontamination and/or inertization of incinerator filter fly ash are being developed with the objective of rendering a product that can be reused or, at least, be deposited in standard landfill sites with no risk. The proposed alternatives include immobilization by cement-based techniques, wet chemical treatments and thermal treatments of vitrification. Of these, vitrification is the most promising solution, because, if residues are melted at temperatures > 1,300 C, a relatively inert glass is produced. In the present investigation, glass-ceramics were obtained by a controlled crystallization heat treatment of vitrified incinerator filter fly ashes. The mechanical and other technical properties of the products were measured with special emphasis on assessing their in vitro toxic potential.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takano, Shin-Ichi; Kiga, Takashi; Miyamae, Shigehiro
1994-12-31
In some future, it is expected for Japanese power stations to be hard to get a high-grade coal like a bituminous coal. We conducted therefore pilot scale tests of pulverized blends of bituminous coal and anthracite using a 1.2MWt tunnel furnace in order to evaluate the applicability of the blends of bituminous coal and anthracite to conventional pulverized coal firing boilers. One kind of bituminous coal and two kinds of anthracite, one was of low ash content and another was of high ash content, were prepared for the test. Previously to pilot scale tests, coal properties and ash properties ofmore » the blends of bituminous coal and anthracite were analyzed to estimate the characteristics of combustion, ash deposition, and so on. In the test, we investigated the combustion efficiency, NOx emission, characteristics of ignition stability and grindability changing the blend rate of anthracite. Results of our study indicated that the critical restrictions on the blending rate of anthracite were unburnt carbon in fly ash and NOx emission as for coals tested. The acceptable limitation on blending rate of anthracite was 10 and 20%, respectively for two kinds of conventional pulverized coal fired boiler. Concerning to the grindability, it became worse with increasing the blending rate of anthracite from grindability test using a roller mill, while it became better estimating from HGI.« less
Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio
2017-01-01
Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕp) ranging 10−7-10−3 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for ϕp ~ 10−3. Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing ϕp. Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of ϕp. These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters. PMID:28045056
Del Bello, Elisabetta; Taddeucci, Jacopo; De' Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio
2017-01-03
Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕ p ) ranging 10 -7 -10 -3 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for ϕ p ~ 10 -3 . Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing ϕ p . Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of ϕ p . These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters.
Flood, Seismic or Volcanic Deposits? New Insights from X-Ray Computed Tomography
NASA Astrophysics Data System (ADS)
Van Daele, M. E.; Moernaut, J.; Vermassen, F.; Llurba, M.; Praet, N.; Strupler, M. M.; Anselmetti, F.; Cnudde, V.; Haeussler, P. J.; Pino, M.; Urrutia, R.; De Batist, M. A. O.
2014-12-01
Event deposits, such as e.g. turbidites incorporated in marine or lacustrine sediment sequences, may be caused by a wide range of possible triggering processes: failure of underwater slopes - either spontaneous or in response to earthquake shaking, hyperpycnal flows and floods, volcanic processes, etc. Determining the exact triggering process remains, however, a major challenge. Especially when studying the event deposits on sediment cores, which typically have diameters of only a few cm, only a small spatial window is available to analyze diagnostic textural and facies characteristics. We have performed X-ray CT scans on sediment cores from Chilean, Alaskan and Swiss lakes. Even when using relatively low-resolution CT scans (0.6 mm voxel size), many sedimentary structures and fabrics that are not visible by eye, are revealed. For example, the CT scans allow to distinguish tephra layers that are deposited by fall-out, from those that reached the basin by river transport or mud flows and from tephra layers that have been reworked and re-deposited by turbidity currents. The 3D data generated by the CT scans also allow to examine relative orientations of sedimentary structures (e.g. convolute lamination) and fabrics (e.g. imbricated mud clasts), which can be used to reconstruct flow directions. Such relative flow directions allow to determine whether a deposit (e.g. a turbidite) had one or several source areas, the latter being typical for seismically triggered turbidites. When the sediment core can be oriented (e.g. using geomagnetic properties), absolute flow directions can be reconstructed. X-ray CT scanning, at different resolution, is thus becoming an increasingly important tool for discriminating the exact origin of EDs, as it can help determining whether e.g. an ash layer was deposited as fall out from an ash cloud or fluvially washed into the lake, or whether a turbidite was triggered by an earthquake or a flood.
New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica
Dunbar, Nelia W.; Iverson, Nels A.; Van Eaton, Alexa R.; Sigl, Michael; Alloway, Brent V.; Kurbatov, Andrei V.; Mastin, Larry G.; McConnell, Joseph R.; Wilson, Colin J. N.
2017-01-01
Multiple, independent time markers are essential to correlate sediment and ice cores from the terrestrial, marine and glacial realms. These records constrain global paleoclimate reconstructions and inform future climate change scenarios. In the Northern Hemisphere, sub-visible layers of volcanic ash (cryptotephra) are valuable time markers due to their widespread dispersal and unique geochemical fingerprints. However, cryptotephra are not as widely identified in the Southern Hemisphere, leaving a gap in the climate record, particularly during the Last Glacial Maximum (LGM). Here we report the first identification of New Zealand volcanic ash in Antarctic ice. The Oruanui supereruption from Taupo volcano (25,580 ± 258 cal. a BP) provides a key time marker for the LGM in the New Zealand sector of the SW Pacific. This finding provides a high-precision chronological link to mid-latitude terrestrial and marine sites, and sheds light on the long-distance transport of tephra in the Southern Hemisphere. As occurred after identification of the Alaskan White River Ash in northern Europe, recognition of ash from the Oruanui eruption in Antarctica dramatically increases the reach and value of tephrochronology, providing links among climate records in widely different geographic areas and depositional environments.
Rosenbaum, J.G.
1993-01-01
Rock magnetic studies of tuffs are essential to the interpretation of paleomagnetic data derived from such rocks, provide a basis for interpretation of aeromagnetic data over volcanic terranes, and yield insights into the depositional and cooling histories of ash flow sheets. A rhyolitic ash flow sheet, the Miocene-aged Tiva Canyon Member of the Paintbrush Tuff, contains both titanomagnetite phenocrysts, present in the magma prior to eruption, and cubic Fe-oxide microcrystals that grew after emplacement. Systematic variations in the quantity and magnetic grain size of the microcrystals produce large variations in magnetic properties through a section of the ash flow sheet penetrated in a borehole on the Nevada Test Site. Microcrystals are important contributors to remanent magnetization and magnetic susceptibility in two 15-m-thick zones at the top and bottom. Within these zones the size of microcrystals decreases both toward the quenched margins and toward the interior of the sheet. The decrease in microcrystal size toward the interior of the sheet is interpreted to indicate the presence of a cooling break; possibly represented by a concentration of pumice. -from Author
Volcanic Lightning in the Laboratory: The Effect of Ultra-Rapid Melting on Ash Particles
NASA Astrophysics Data System (ADS)
Mueller, S.; Keller, F.; Helo, C.; Buhre, S.; Castro, J. M.
2016-12-01
Lightning discharge is a common process occurring at explosive volcanic eruptions. During the formation of ash plumes, the dynamical interaction of ash particles creates charges which can, given a sufficiently large charge gradient, cause lightning discharges within the plume (`plume lightning') or from ground to plume (`near-vent lightning'), respectively. Given the extreme heat release during the short duration of a discharge (potentially > 30.000 K), it is likely that the ash particles suspended in a plume are, in any form, affected by volcanic lightning. Genareau et al. (2015) found evidence of glass spherules and glass aggregates in ash deposits of two explosive eruptions (Eyjafjallajökull, Mt. Redoubt), and linked them to short-term melting processes induced by volcanic lightning (analogue to fulgurites). In order to systematically investigate the potential impact of lightning on air-suspended ash we have designed a new experimental setup. An electric arc between two electrodes is generated by a 400 Amp arc welding device. Ash-sized sample material is then blown into the established lightning arc, and a certain proportion of the injected silicate glasses and/or minerals is melted due to the high temperatures in and around the plasma channel. In a first set of experiments, we have used natural volcanic ash from Laacher See Tephra (Eifel, Germany) in distinct size fractions between 36 and 250 microns, in order to qualitatively investigate melting and amalgamation features. Spherule and aggregate textures similar to those reported by Genareau et al. (2015) were successfully reproduced during these experiments. In a second set of experiments, homogenized phonolitic glass fragments, in different size fractions, were subjected to the electric arc and subsequently analyzed under the EMP, in order to investigate effects of "flash melting" on major element glass chemistry. Genareau K, Wardman JB, Wilson TM, McNutt SR, Izbekov P (2015): Lightning-induced volcanic spherules. Geology, doi:10.1130/G36255.1
TASK 3.4--IMPACTS OF COFIRING BIOMASS WITH FOSSIL FUELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher J. Zygarlicke; Donald P. McCollor; Kurt E. Eylands
2001-08-01
With a major worldwide effort now ongoing to reduce greenhouse gas emissions, cofiring of renewable biomass fuels at conventional coal-fired utilities is seen as one of the lower-cost options to achieve such reductions. The Energy & Environmental Research Center has undertaken a fundamental study to address the viability of cofiring biomass with coal in a pulverized coal (pc)-fired boiler for power production. Wheat straw, alfalfa stems, and hybrid poplar were selected as candidate biomass materials for blending at a 20 wt% level with an Illinois bituminous coal and an Absaloka subbituminous coal. The biomass materials were found to be easilymore » processed by shredding and pulverizing to a size suitable for cofiring with pc in a bench-scale downfired furnace. A literature investigation was undertaken on mineral uptake and storage by plants considered for biomass cofiring in order to understand the modes of occurrence of inorganic elements in plant matter. Sixteen essential elements, C, H, O, N, P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, B, Mo, and Cl, are found throughout plants. The predominant inorganic elements are K and Ca, which are essential to the function of all plant cells and will, therefore, be evenly distributed throughout the nonreproductive, aerial portions of herbaceous biomass. Some inorganic constituents, e.g., N, P, Ca, and Cl, are organically associated and incorporated into the structure of the plant. Cell vacuoles are the repository for excess ions in the plant. Minerals deposited in these ubiquitous organelles are expected to be most easily leached from dry material. Other elements may not have specific functions within the plant, but are nevertheless absorbed and fill a need, such as silica. Other elements, such as Na, are nonessential, but are deposited throughout the plant. Their concentration will depend entirely on extrinsic factors regulating their availability in the soil solution, i.e., moisture and soil content. Similarly, Cl content is determined less by the needs of the plant than by the availability in the soil solution; in addition to occurring naturally, Cl is present in excess as the anion complement in K fertilizer applications. An analysis was performed on existing data for switchgrass samples from ten different farms in the south-central portion of Iowa, with the goal of determining correlations between switchgrass elemental composition and geographical and seasonal changes so as to identify factors that influence the elemental composition of biomass. The most important factors in determining levels of various chemical compounds were found to be seasonal and geographical differences related to soil conditions. Combustion testing was performed to obtain deposits typical of boiler fouling and slagging conditions as well as fly ash. Analysis methods using computer-controlled scanning electron microscopy and chemical fractionation were applied to determine the composition and association of inorganic materials in the biomass samples. Modified sample preparation techniques and mineral quantification procedures using cluster analysis were developed to characterize the inorganic material in these samples. Each of the biomass types exhibited different inorganic associations in the fuel as well as in the deposits and fly ash. Morphological analyses of the wheat straw show elongated 10-30-{micro}m amorphous silica particles or phytoliths in the wheat straw structure. Alkali such as potassium, calcium, and sodium is organically bound and dispersed in the organic structure of the biomass materials. Combustion test results showed that the blends fed quite evenly, with good burnout. Significant slag deposit formation was observed for the 100% wheat straw, compared to bituminous and subbituminous coals burned under similar conditions. Although growing rapidly, the fouling deposits of the biomass and coal-biomass blends were significantly weaker than those of the coals. Fouling was only slightly worse for the 100% wheat straw fuel compared to the coals. The wheat straw ash was found to show the greatest similarity from the fuel to the ash analyzed. A high percentage of particles from both fuel and ash samples contained both Si and K. While Cl was a significant component in the fuel, very little was detected in the ash sample.« less
Effect of chemical admixtures on properties of high-calcium fly ash geopolymer
NASA Astrophysics Data System (ADS)
Rattanasak, Ubolluk; Pankhet, Kanokwan; Chindaprasirt, Prinya
2011-06-01
Owing to the high viscosity of sodium silicate solution, fly ash geopolymer has the problems of low workability and rapid setting time. Therefore, the effect of chemical admixtures on the properties of fly ash geopolymer was studied to overcome the rapid set of the geopolymer in this paper. High-calcium fly ash and alkaline solution were used as starting materials to synthesize the geopolymer. Calcium chloride, calcium sulfate, sodium sulfate, and sucrose at dosages of 1wt% and 2wt% of fly ash were selected as admixtures based on concrete knowledge to improve the properties of the geopolymer. The setting time, compressive strength, and degree of reaction were recorded, and the microstructure was examined. The results show that calcium chloride significantly shortens both the initial and final setting times of the geopolymer paste. In addition, sucrose also delays the final setting time significantly. The degrees of reaction of fly ash in the geopolymer paste with the admixtures are all higher than those of the control paste. This contributes to the obvious increases in compressive strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Y.D.; Lee, K.B.; Islam, S.Z.
2008-07-01
In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulatemore » and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450{sup o}C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m{sup 3}/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.« less
Coruh, Semra; Ergun, Osman Nuri
2010-01-15
Increasing amounts of residues and waste materials coming from industrial activities in different processes have become an increasingly urgent problem for the future. The release of large quantities of heavy metals into the environment has resulted in a number of environmental problems. The present study investigated the safe disposal of the zinc leach residue waste using industrial residues such as fly ash, phosphogypsum and red mud. In the study, leachability of heavy metals from the zinc leach residue has been evaluated by mine water leaching procedure (MWLP) and toxicity characteristic leaching procedure (TCLP). Zinc removal from leachate was studied using fly ash, phosphogypsum and red mud. The adsorption capacities and adsorption efficiencies were determined. The adsorption rate data was analyzed according to the pseudo-second-order kinetic, Elovich kinetic and intra-particle diffusion kinetic models. The pseudo-second-order kinetic was the best fit kinetic model for the experimental data. The results show that addition of fly ash, phosphogypsum and red mud to the zinc leach residue drastically reduces the heavy metal content in the leachate and could be used as liner materials.
NASA Astrophysics Data System (ADS)
Lucchitta, Baerbel K.
2010-10-01
The paper reviews the evolution of hypotheses of lakes in Valles Marineris through observations made from the time of Mariner and continuing through the Viking, MGS, MO, MEx, and MRO missions. Several pertinent findings from these missions are addressed, including: The morphology and composition of the interior layered deposits (ILD); the question whether ILD are deposited inside the troughs or exhumed from the walls; the possible existence of ancestral basins; the derivation of water; arguments for an origin as aqueous, eolian, or pyroclastic sediments, or sub/ice volcanoes; origin of inclined layers, mounds and moats; and age relations of features within and peripheral to the troughs. A possible scenario begins with the collapse of ice-charged ground into ancestral basins along structural planes of weakness due to Tharsis stresses, about 3.5 Ga ago. The basins rapidly filled with water from ground ice, subterranean aquifers, or nearby valley networks. The water spilled out of the peripheral troughs and flowed across high plateaus into early outflow channels. The ancestral basins then filled with sediments derived from valley networks or from trapped eolian or pyroclastic deposits. Alternatively, volcanoes rose under the water or ice to form tuyas. The water was highly acidic, and sediments may have been deposited directly as evaporites or were later altered to evaporites by the brines or by hydrothermal activity. Percolating fluids produced iron oxide concretions. Similar alteration would have affected the putative volcanoes. Most of the ILD were emplaced early in the troughs' history. Shortly thereafter, more water erupted from the peripheral troughs and formed additional chaos and outflow channels. The ancestral basins were breached by erosion and tectonism, and the through-going Coprates/Ius graben system developed. Major lakes within the Valles Marineris dried up and vigorous wind erosion reduced the friable, evaporite-rich sediments to isolated mounds. Simultaneously, the iron oxide concretions weat hered out to form lag deposits mostly at the base of scarps. During that time, some of the ILD may have become tilted by structural deformation. Alternatively, inclined beds on the mounds may have come from draping by volcanic ash or eolian deposits, or by gravity sliding on the steep, evaporite-charged flanks of the mounds. Inclined layers could be readily explained if the ILD were tuyas. Landslides fell into the newly created voids and occasional sliding persisted throughout most of the troughs' history. Minor volcanic activity continued and may have spewed mafic ash onto the eroded ILD-mound surfaces and onto the trough floors. Eventually, only wind persisted, producing yardangs on the ILD and reworking ash, trapped eolian sediments, and debris eroded from the ILD.
NASA Astrophysics Data System (ADS)
Durant, Adam J.
2007-12-01
Volcanic clouds and tephra fallout present a hazard to aviation, human and animal health (direct inhalation or ingestion, contamination of water supplies), and infrastructure (building collapse, burial of roads and railways, agriculture, abrasive and chemical effects on machinery). Understanding sedimentation processes is a fundamental component in the prediction of volcanic cloud lifetime and fallout at the ground, essential in the mitigation of these hazards. The majority of classical volcanic ash transport and dispersion models (VATDM) are based solely on fluid dynamics. The non-agreement between VATDM and observed regional-scale tephra deposit characteristics is especially obvious at large distances from the source volcano. In meteorology, the processes of hydrometeor nucleation, growth and collection have been long-established as playing a central role in sedimentation and precipitation. Taking this as motivation, the hypothesis that hydrometeor formation drives sedimentation from volcanic clouds was tested. The research objectives of this dissertation are: (1) To determine the effectiveness of tephra particles in the catalysis of the liquid water to ice phase transformation, with application to ice hydrometeor formation in volcanic clouds. (2) To determine the sedimentological characteristics of distal (100s km) tephra fallout from recent volcanic clouds. (3) To assess particle fallout rates from recent volcanic clouds in the context of observed deposit characteristics. (4) To assess the implications of hydrometeor formation on the enhancement of volcanic sedimentation and the potential for cloud destabilization from volcanic hydrometeor sublimation. Dissertation Overview. The following chapters present the analysis, results and conclusions of heterogeneous ice nucleation experiments and sedimentological characterization of several recent tephra deposits. The dissertation is organized in three chapters, each prepared in journal article format. In Chapter 1, single ash particle freezing experiments were carried out to investigate the effect of ash particle composition and surface area on water drop freezing temperature. In Chapter 2, the tephra deposit from the 18 May 1980 eruption of Mount St. Helens, USA, was reanalyzed using laser diffraction particle size analysis and hydrometeor-induced sedimentation mechanisms are considered. In Chapter 3, fallout from the 18 August 1992 and 16--17 September 1992 eruptions of Mount Spurr, USA, was analyzed and particle sedimentation and cloud microphysics were modeled to assess the potential for cloud destabilization from hydrometeor sublimation.
Sediment delivery after a wildfire
Reneau, Steven L.; Katzman, D.; Kuyumjian, G.A.; Lavine, A.; Malmon, D.V.
2007-01-01
We use a record of sedimentation a small reservoir within the Cerro Grande burn area, New Mexico, to document postfire delivery of ash, other fine-grained sediment carried in suspension within floods, and coarse-grained sediment transported as bedload over a five-year period. Ash content of sediment layers is estimated using fallout 137Cs as a tracer, and ash concentrations are shown to rapidly decrease through a series of moderate-intensity convective storms in the first rainy season after the fire. Over 90% of the ash was delivered to the reservoir in the first year, and ash concentrations in suspended sediment were negligible after the second year. Delivery of the remainder of the fine sediment also declined rapidly after the first year despite the occurrence of higher-intensity storms in the second year. Fine sediment loads after five years remained significantly above prefire averages. Deposition of coarse-grained sediment was irregular in time and was associated with transport by snowmelt runoff of sediment stored along the upstream channel during short-duration summer floods. Coarse sediment delivery in the first four years was strongly correlated with snowmelt volume, suggesting a transport-limited system with abundant available sediment. Transport rates of coarse sediment declined in the fifth year, consistent with a transition to a more stable channel as the accessible sediment supply was depleted and the channel bed coarsened. Maximum impacts from ash and other fine-grained sediment therefore occurred soon after the fire, whereas the downstream impacts from coarse-grained sediment were attenuated by the more gradual process of bedload sediment transport. ?? 2007 Geological Society of America.
Kowallis, B.J.; Christiansen, E.H.; Everett, B.H.; Crowley, K.D.; Naeser, C.W.; Miller, D.S.; Deino, A.L.
1993-01-01
Secondary age standards are valuable in intra- and interlaboratory calibration. At present very few such standards are available for fission track dating that is older than Tertiary. Several altered volcanic ash beds occur in the Middle Jurassic Carmel Formation in southwestern Utah. The formation was deposited in a shallow marine/sabhka environment. Near Gunlock, Utah, eight ash beds have been identified. Sanidines from one of the ash beds (GUN-F) give a single-crystal laser-probe 40Ar/39Ar age of 166.3??0.8 Ma (2??). Apatite and zircon fission track ages range from 152-185 Ma with typically 15-20 Ma errors (2??). Track densities in zircons are high and most grains are not countable. Apatites are fairly common in most of the ash beds and have reasonable track densities ranging between 1.2-1.5 ?? 106 tracks/cm2. Track length distributions in apatites are unimodal, have standard deviations <1??m, and mean track lengths of about 14-14.5 ??m. High Cl apatites (F:Cl:OH ratio of 39:33:28) are particularly abundant and large in ash GUN-F, and are fairly easy to concentrate, but the concentrates contain some siderite, most of which can be removed by sieving. GUN-F shows evidence of some reworking and detriaal contamination based on older single grain 40Ar/39Ar analyses and some rounding of grains, but the apatite population appears to be largely uncontaminated. At present BJK has approximately 12 of apatite separate from GUN-F. ?? 1993.
Recovery of lead from smelting fly ash of waste lead-acid battery by leaching and electrowinning.
Chen, Chuh-Shun; Shih, Yu-Jen; Huang, Yao-Hui
2016-06-01
Fly ash that was enriched with lead (Pb), formed as an intermediate in waste lead-acid battery (WLAB) smelting, was recycled by the hydro-electrometallurgy. Characterization of fly ash thereof indicated that the Pb was in the forms of PbSO4 (anglesite) and Pb2OSO4 (lanarkite). Nitric acid and sodium hydroxide were firstly used to study the leaching of the fly ash sample, which was affected by leachant dosage and solid-to-liquid ratio (S/L). At an S/L of 60gL(-1), the leachability of Pb was 43% and 67% in 2M acidic and basic solutions, respectively, based on an average 70wt% of Pb in the original fly ash. Anglesite was completely soluble in NaOH and lanarkite was mildly soluble in HNO3. Pb was recovered from the pregnant leach solution within an electrolytic cell constructed with graphite or RuO2/IrO2-coated titanium (Ti-DSA) anodes and a stainless steel cathode. Properties of anodes deposited with lead dioxides were analyzed by cyclic voltammetry. The optimized parameters of electrowinning were 2M NaOH leachant, a current density of 0.75Adm(-2) and an electrolytic process duration of 120min, which yielded a Pb removal of higher than 99% and a specific energy consumption of 0.57Whg(-1). This process constitutes an eco-friendly and economic alternative to the presently utilized secondary pyrometallurgy for treating lead-containing fly ash. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comments on "Failures in detecting volcanic ash from a satellite-based technique"
Prata, F.; Bluth, G.; Rose, B.; Schneider, D.; Tupper, A.
2001-01-01
The recent paper by Simpson et al. [Remote Sens. Environ. 72 (2000) 191.] on failures to detect volcanic ash using the 'reverse' absorption technique provides a timely reminder of the danger that volcanic ash presents to aviation and the urgent need for some form of effective remote detection. The paper unfortunately suffers from a fundamental flaw in its methodology and numerous errors of fact and interpretation. For the moment, the 'reverse' absorption technique provides the best means for discriminating volcanic ash clouds from meteorological clouds. The purpose of our comment is not to defend any particular algorithm; rather, we point out some problems with Simpson et al.'s analysis and re-state the conditions under which the 'reverse' absorption algorithm is likely to succeed. ?? 2001 Elsevier Science Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Walker, S. L.; Baker, E. T.; Leybourne, M. I.; de Ronde, C. E.; Greene, R.; Faure, K.; Chadwick, W.; Dziak, R. P.; Lupton, J. E.; Lebon, G.
2010-12-01
Monowai cone is a large, active, basaltic stratovolcano, part of the submarine Monowai volcanic center (MVC) located at ~26°S on the Kermadec-Tonga arc. At other actively erupting submarine volcanoes, magma extrusions and hydrothermal vents have been located only near the summit of the edifice, generating plumes enriched with hydrothermal components and magmatic gasses that disperse into the ocean environment at, or shallower than, the summit depth. Plumes found deeper than summit depths are dominated by fresh volcaniclastic ash particles, devoid of hydrothermal tracers, emplaced episodically by down-slope gravity flows, and transport fine ash to 10’s of km from the active eruptions. A water column survey of the MVC in 2004 mapped intensely hydrothermal-magmatic plumes over the shallow (~130 m) summit of Monowai cone and widespread plumes around its flanks. Due to the more complex multiple parasitic cone and caldera structure of MVC, we analyzed the dissolved and particulate components of the flank plumes for evidence of additional sources. Although hydrothermal plumes exist within the adjacent caldera, none of the parasitic cones on Monowai cone or elsewhere within the MVC were hydrothermally or volcanically active. The combination of an intensely enriched summit plume, sulfur particles and bubbles at the sea surface, and ash-dominated flank plumes indicate Monowai cone was actively erupting at the time of the 2004 survey. Monowai cone is thus the fourth erupting submarine volcano we have encountered, and all have had deep ash plumes distributed around their flanks [the others are: Kavachi (Solomon Island arc), NW Rota-1 (Mariana arc) and W Mata (NE Lau basin)]. These deep ash plumes are a syneruptive phenomenon, but it is unknown how they are related to eruptive style and output, or to the cycles of construction and collapse that occur on the slopes of submarine volcanoes. Repeat multibeam bathymetric surveys have documented two large-scale sector collapse events at Monowai and one at NW Rota-1, as well as constructional deposits extending down the flanks of these volcanoes. Acoustic records at Monowai and NW Rota-1 suggest sector collapse events are infrequent while eruptions, and the resulting supply of depositional material, have been nearly continuous. The sector collapse events occurred at times remote from our plume surveys, so, large landslide events are not a prerequisite for the presence of deep ash plumes. Despite a wide range of summit depths (<10 m at Kavachi to 1500 m at W Mata), lava types (basaltic-andesite, boninite, and basalt), and eruptive styles (Surtseyan, Strombolian, and effusive flows with active pillow formation), the deep particle plumes at each of these volcanoes are remarkably similar in their widespread distribution (to 10’s of km from the summit and at multiple depths down the flanks) and composition (dominantly fresh volcanic ash). Moderate eruption rates, lava-seawater interaction and steep slopes below an eruptive vent may be sufficient to initiate the transport of fine ash into the ocean environment and distal sediments via these types of plumes.
Probabilistic detection of volcanic ash using a Bayesian approach
Mackie, Shona; Watson, Matthew
2014-01-01
Airborne volcanic ash can pose a hazard to aviation, agriculture, and both human and animal health. It is therefore important that ash clouds are monitored both day and night, even when they travel far from their source. Infrared satellite data provide perhaps the only means of doing this, and since the hugely expensive ash crisis that followed the 2010 Eyjafjalljökull eruption, much research has been carried out into techniques for discriminating ash in such data and for deriving key properties. Such techniques are generally specific to data from particular sensors, and most approaches result in a binary classification of pixels into “ash” and “ash free” classes with no indication of the classification certainty for individual pixels. Furthermore, almost all operational methods rely on expert-set thresholds to determine what constitutes “ash” and can therefore be criticized for being subjective and dependent on expertise that may not remain with an institution. Very few existing methods exploit available contemporaneous atmospheric data to inform the detection, despite the sensitivity of most techniques to atmospheric parameters. The Bayesian method proposed here does exploit such data and gives a probabilistic, physically based classification. We provide an example of the method's implementation for a scene containing both land and sea observations, and a large area of desert dust (often misidentified as ash by other methods). The technique has already been successfully applied to other detection problems in remote sensing, and this work shows that it will be a useful and effective tool for ash detection. Key Points Presentation of a probabilistic volcanic ash detection scheme Method for calculation of probability density function for ash observations Demonstration of a remote sensing technique for monitoring volcanic ash hazards PMID:25844278
Hildreth, W.
1983-01-01
On June 6-8, 1912, ??? 15 km3 of magma erupted from the Novarupta caldera at the head of the Valley of Ten Thousand Smokes (VTTS), producing ??? 20 km3 of air-fall tephra and 11-15 km3 of ash-flow tuff within ??? 60 hours. Three discrete periods of ash-fall at Kodiak correlate, respectively, with Plinian tephra layers designated A, CD, and FG by Curtis (1968) in the VTTS. The ash-flow sequence overlapped with but outlasted pumice fall A, terminating within 20 hours of the initial outbreak and prior to pumice fall C. Layers E and H consist mostly of vitric dust that settled during lulls, and Layer B is the feather edge of the ash flow. The fall units filled and obscured the caldera, but arcuate and radial fissures outline a 6-km2 depression. The Novarupta lava dome and its ejecta ring were emplaced later within the depression. At Mt. Katmai, 10 km east of the 1912 vent, a 600-m-deep caldera of similar area also collapsed at about this time, probably owing to hydraulic connection with the venting magma system; but all known ejecta are thought to have erupted at Novarupta. Mingling of three distinctive magmas during the eruption produced an abundance of banded pumice, and mechanical mixing of chilled ejecta resulted in deposits with a wide range of bulk composition. Pumice in the initial fall unit (A) is 100% rhyolite, but fall units atop the ash flow are > 98% dacite; black andesitic scoria is common only in the ash flows and in near-vent air-fall tephra. Pumice counts show the first half of the ash-flow deposit to be 91-98% rhyolite, but progressive increases of dacite and andesite eventually reduced the rhyolitic component to 20 km to the lowermost VTTS, and deposited 1-8 m of debris there. Rhyolitic ejecta contain only 1-2% phenocrysts but andesite and dacite have 30-45%. Quartz is present and augite absent only in the rhyolite, but all ejecta contain plagioclase, orthopyroxene, titanomagnetite, ilmenite, apatite, and pyrrhotite; rare olivine occurs in the andesite. The zoning ranges of phenocrysts in the rhyolitic and intermediate ejecta do not overlap. New chemical data show the bulk SiO2 range to be: rhyolite 77 ?? 0.6, dacite 66-64.5, and andesite 61.5-58.5%. The dacitic and andesitic ejecta contrast in color and density, and it is not certain whether they form a compositional continuum. Analyses reported by Fenner within the 66-76% SiO2 range were of banded pumice and lava and of bulk tephra that mechanically fractionated and mixed during flight. Despite the gap of 10% SiO2, Fe-Ti-oxide temperatures show a continuous range from rhyolite (805-850??C) through dacite (855-955??C) to andesite (955-990??C). Thermal continuity and isotopic and trace-element data suggest that all were derived from a single magmatic system, whether or not they were physically contiguous before eruption. If the rhyolitic liquid separated from dacitic magma, extraction was so efficient that no dacitic phenocrysts were retained and no bulk compositions in the range 66-76% SiO2 were created; if it were a partial me
Retrieval of volcanic ash height from satellite-based infrared measurements
NASA Astrophysics Data System (ADS)
Zhu, Lin; Li, Jun; Zhao, Yingying; Gong, He; Li, Wenjie
2017-05-01
A new algorithm for retrieving volcanic ash cloud height from satellite-based measurements is presented. This algorithm, which was developed in preparation for China's next-generation meteorological satellite (FY-4), is based on volcanic ash microphysical property simulation and statistical optimal estimation theory. The MSG satellite's main payload, a 12-channel Spinning Enhanced Visible and Infrared Imager, was used as proxy data to test this new algorithm. A series of eruptions of Iceland's Eyjafjallajökull volcano during April to May 2010 and the Puyehue-Cordón Caulle volcanic complex eruption in the Chilean Andes on 16 June 2011 were selected as two typical cases for evaluating the algorithm under various meteorological backgrounds. Independent volcanic ash simulation training samples and satellite-based Cloud-Aerosol Lidar with Orthogonal Polarization data were used as validation data. It is demonstrated that the statistically based volcanic ash height algorithm is able to rapidly retrieve volcanic ash heights, globally. The retrieved ash heights show comparable accuracy with both independent training data and the lidar measurements, which is consistent with previous studies. However, under complicated background, with multilayers in vertical scale, underlying stratus clouds tend to have detrimental effects on the final retrieval accuracy. This is an unresolved problem, like many other previously published methods using passive satellite sensors. Compared with previous studies, the FY-4 ash height algorithm is independent of simultaneous atmospheric profiles, providing a flexible way to estimate volcanic ash height using passive satellite infrared measurements.
NASA Astrophysics Data System (ADS)
Sun, L.; Khan, S.; Godet, A.
2017-12-01
This study used ground-based hyperspectral imaging to map an outcrop of the Eagle Ford Group in west Texas. The Eagle Ford Group consists of alternating layers of mudstone - wackestone, grainstone - packstone facies and volcanic ash deposits with high total organic carbon content deposited during the Late Cenomanian - Turonian time period. It is one of the few unconventional source rock and reservoirs that have surface representations. Ground-based hyperspectral imaging scanned an outcrop and hand samples at close ranges with very fine spatial resolution (centimeter to sub-millimeter). Spectral absorption modeling of clay minerals and calcite with the modified Gaussian model (MGM) allowed quantification of variations of mineral abundances. Petrographic analysis confirmed mineral identifications and shed light on sedimentary textures. Major element geochemistry confirmed the mineral quantification. Enrichment of molybdenum (Mo) and uranium (U) indicated "unrestricted marine" paleo-hydrogeology and anoxic to euxinic paleo-redox bottom water conditions. Mineral quantification resulted in mapping of mudstone - wackestone, grainstone - packstone facies and claystones (volcanic ash beds). The lack of spatial associations between the grainstones and claystones on the outcrop calls into question the hypothesis that the primary productivity is controlled by iron availability from volcanic ash beds. Hyperspectral remote sensing data also helped in creating a virtual outcrop model with detailed mineralogical compositions, and provided reservoir analog to extract compositional and geo-mechanical characteristics and variations. The utilization of these new techniques in geo-statistical analysis provides a workflow for employing remote sensing in resource exploration and exploitation.
NASA Astrophysics Data System (ADS)
Sun, Lei; Khan, Shuhab; Godet, Alexis
2018-01-01
This study used ground-based hyperspectral imaging to map an outcrop of the Eagle Ford Group in west Texas. The Eagle Ford Group consists of alternating layers of mudstone - wackestone, grainstone - packstone facies and volcanic ash deposits with high total organic content deposited during the Cenomanian - Turonian time period. It is one of the few unconventional source rock and reservoirs that have surface representations. Ground-based hyperspectral imaging scanned an outcrop and hand samples at close ranges with very fine spatial resolution (centimeter to sub-millimeter). Spectral absorption modeling of clay minerals and calcite with the modified Gaussian model (MGM) allowed quantification of variations of mineral abundances. Petrographic analysis confirmed mineral identifications and shed light on sedimentary textures, and major element geochemistry supported the mineral quantification. Mineral quantification resulted in mapping of mudstone - wackestone, grainstone - packstone facies and bentonites (volcanic ash beds). The lack of spatial associations between the grainstones and bentonites on the outcrop calls into question the hypothesis that the primary productivity is controlled by iron availability from volcanic ash beds. Enrichment of molybdenum (Mo) and uranium (U) indicated "unrestricted marine" paleo-hydrogeology and anoxic to euxinic paleo-redox bottom water conditions. Hyperspectral remote sensing data also helped in creating a virtual outcrop model with detailed mineralogical compositions, and provided reservoir analog to extract compositional and geo-mechanical characteristics and variations. The utilization of these new techniques in geo-statistical analysis provides a workflow for employing remote sensing in resource exploration and exploitation.
Allcott, Glenn H.
1970-01-01
The mineralized zone at the remotely located Ash Sha'ib ancient mine contains only a small tonnage of moderately low grade sulfide- bearing rock. Based on present data the gross value of the deposit, with a value of $25.00 or more per ton, is $20,000,000. A belt of metasedimentary rocks, intruded by gabbro to the south and granite to the north, was the host for fissure vein-replacement type mineralization. Most of the mineralization is in a siliceous dolomite transected by fissures. The main sulfide mineral is sphalerite, but minor amounts of chalcopyrlte and argentlferous galena contribute to the value of the mineralized sections.
Aspects on the analysis of 210Po.
Henricsson, F; Ranebo, Y; Holm, E; Roos, P
2011-05-01
There has been little development regarding analysis of polonium (Po) in environmental samples since the 1960 ies. This is due to the straightforward spontaneous deposition of this element on silver (Ag), nickel (Ni) or copper (Cu) without any radiochemical separation. For many years, no radiochemical yield determinant was used and it was generally supposed that the yield was 100% after two depositions. Counting was often done using ZnS scintillation counter coupled to a photomultiplier tube. However, the use of the yield determinants (208)Po and (209)Po and the development of alpha spectrometry showed that the yield was lower. Furthermore, the tendency of Po to volatilize at low temperatures constrains the sample preparation techniques; dry-ashing cannot be used. But during the wet-ashing procedure, there are still some losses. The aim of this study was to evaluate the Po losses during wet-ashing by the use of a double-tracer technique. We have found that the losses were about 30% when open glass beakers were used and about 17% when the samples were digested in microwave oven. When long-necked bottles (Kjeldahl flasks) were used, a loss of about 20% was registered. It has also been observed that (210)Pb to some extent is plating out together with its daughter nuclide Po during the electrochemical deposition. This will result in a systematic error since an unknown amount of supported (210)Po will be produced from the (210)Pb decay depending on the fraction of (210)Pb being deposited on the disc and the waiting time between deposition and measurement of the sample. A further consequence of this is that in the assessment of the (210)Pb content in the sample, very often the remaining liquid is stored after deposition for build-up of (210)Po. Since some (210)Pb is lost on the disc, the result for (210)Pb will be too low. Both these systematic errors give rise to a too high (210)Po/(210)Pb ratio. The fraction of (210)Pb which is plating out has been assessed in this study for different matrices and is about 50-90%. During the measurement by solid state Si-detectors, some Po is evaporated in the vacuum conditions contaminating the detectors. Experiments have here been done by heating the discs after deposition which indicate that less Po is evaporated from Ag than from Ni. The losses from Ag are less than that from the other metals probably due to a deeper penetration into the surface of Po. We conclude that in most aspects, Ag is better to use than the other plating metals. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can't see . . . things like information about what kinds of minerals make up the landforms. Mars scientists once thought, for instance, that these unusual features might be vast hills of salt, the dried up remains of a long-ago, evaporated lake. Not so, said an instrument on the Mars Global Surveyor spacecraft, which revealed that the bright material is probably made up of volcanic ash or windblown dust instead. And talk about a cyclical 'ashes to ashes, dust to dust' story! Particles of this material fell and fell until they built up quite a sedimentary deposit, which was then only eroded away again by the wind over time, leaving the spiky terrain seen today. It looks white, but its apparent brightness arises from the fact that the surrounding material is so dark. Of course, good eyesight always helps in understanding. A camera on Mars Global Surveyor with close-up capabilities revealed that sand dunes are responsible for the smudgy dark material in the bright sediment and around it. But that's not all. The THEMIS camera on the Mars Odyssey spacecraft that took this image reveals that this ashy or dusty deposit once covered a much larger area than it does today. Look yourself for two small dots of white material on the floor of a small crater nearby (center right in this image). They preserve a record that this bright deposit once reached much farther. Since so little of it remains, you can figure that the material probably isn't very hard, and simply blows away. One thing's for sure. No one looking at this image could ever think that Mars is a boring place. With all of its bright and dark contrasts, this picture would be perfect for anyone who loves Ansel Adams and his black-and-white photography.
Raja, R; Nayak, A K; Shukla, A K; Rao, K S; Gautam, Priyanka; Lal, B; Tripathi, R; Shahid, M; Panda, B B; Kumar, A; Bhattacharyya, P; Bardhan, G; Gupta, S; Patra, D K
2015-11-01
Thermal power stations apart from being source of energy supply are causing soil pollution leading to its degradation in fertility and contamination. Fine particle and trace element emissions from energy production in coal-fired thermal power plants are associated with significant adverse effects on human, animal, and soil health. Contamination of soil with cadmium, nickel, copper, lead, arsenic, chromium, and zinc can be a primary route of human exposure to these potentially toxic elements. The environmental evaluation of surrounding soil of thermal power plants in Odisha may serve a model study to get the insight into hazards they are causing. The study investigates the impact of fly ash-fugitive dust (FAFD) deposition from coal-fired thermal power plant emissions on soil properties including trace element concentration, pH, and soil enzymatic activities. Higher FAFD deposition was found in the close proximity of power plants, which led to high pH and greater accumulation of heavy metals. Among the three power plants, in the vicinity of NALCO, higher concentrations of soil organic carbon and nitrogen was observed whereas, higher phosphorus content was recorded in the proximity of NTPC. Multivariate statistical analysis of different variables and their association indicated that FAFD deposition and soil properties were influenced by the source of emissions and distance from source of emission. Pollution in soil profiles and high risk areas were detected and visualized using surface maps based on Kriging interpolation. The concentrations of chromium and arsenic were higher in the soil where FAFD deposition was more. Observance of relatively high concentration of heavy metals like cadmium, lead, nickel, and arsenic and a low concentration of enzymatic activity in proximity to the emission source indicated a possible link with anthropogenic emissions.
NASA Astrophysics Data System (ADS)
Carter, Adam J.; Ramsey, Michael S.; Durant, Adam J.; Skilling, Ian P.; Wolfe, Amy
2009-02-01
Textural characteristics of recently emplaced volcanic materials provide information on the degassing history, volatile content, and future explosive activity of volcanoes. Thermal infrared (TIR) remote sensing has been used to derive the micron-scale roughness (i.e., surface vesicularity) of lavas using a two-component (glass plus blackbody) spectral deconvolution model. We apply and test this approach on TIR data of pyroclastic flow (PF) deposits for the first time. Samples from two PF deposits (January 2005: block-rich and March 2000: ash-rich) were collected at Bezymianny Volcano (Russia) and analyzed using (1) TIR emission spectroscopy, (2) scanning electron microscope (SEM)-derived roughness (profiling), (3) SEM-derived surface vesicularity (imaging), and (4) thin section observations. Results from SEM roughness (0.9-2.8 μm) and SEM vesicularity (18-26%) showed a positive correlation. These were compared to the deconvolution results from the laboratory and spaceborne spectra, as well as to field-derived percentages of the block and ash. The spaceborne results were within 5% of the laboratory results and showed a positive correlation. However, a negative correlation between the SEM and spectral results was observed and was likely due to a combination of factors; an incorrect glass end-member, particle size effects, and subsequent weathering/reworking of the PF deposits. Despite these differences, this work shows that microscopic textural heterogeneities on PF deposits can be detected with TIR remote sensing using a technique similar to that used for lavas, but the results must be carefully interpreted. If applied correctly, it could be an important tool to map recent PF deposits and infer the causative eruption style/mechanism.
NASA Astrophysics Data System (ADS)
Tramutoli, V.; Filizzola, C.; Marchese, F.; Paciello, R.; Pergola, N.; Sannazzaro, F.
2010-12-01
Volcanic ash clouds, besides to be an environmental issue, represent a serious problem for air traffic and an important economic threat for aviation companies. During the recent volcanic crisis due to the April-May 2010 eruption of Eyjafjöll (Iceland), ash clouds became a real problem for common citizens as well: during the first days of the eruption thousands of flights were cancelled disrupting hundred of thousands of passengers. Satellite remote sensing confirmed to be a crucial tool for monitoring this kind of events, spreading for thousands of kilometres with a very rapid space-time dynamics. Especially weather satellites, thanks to their high temporal resolution, may furnish a fundamental contribution, providing frequently updated information. However, in this particular case ash cloud was accompanied by a sudden and significant emission of water vapour, due to the ice melting of Eyjafjallajökull glacier, making satellite ash detection and discrimination very hard, especially in the first few days of the eruption, exactly when accurate information were mostly required in order to support emergency management. Among the satellite-based techniques for near real-time detection and tracking of ash clouds, the RST (Robust Satellite Technique) approach, formerly named RAT - Robust AVHRR Technique, has been long since proposed, demonstrating high performances both in terms of reliability and sensitivity. In this paper, results achieved by using RST-based detection schemes, applied during the Eyjafjöll eruption were presented. MSG-SEVIRI (Meteosat Second Generation - Spinning Enhanced and Visible Infrared Imager) records, with a temporal sampling of 15 minutes, were used applying a standard as well as an advanced RST configuration, which includes the use of SO2 absorption band together with TIR and MIR channels. Main outcomes, limits and possible future improvements were also discussed.
NASA Technical Reports Server (NTRS)
Seshadri, K.; Rosner, D. E.
1985-01-01
An application of an optical polarization technique in a combustion environment is demonstrated by following, in real-time, growth rates of boric oxide condensate on heated platinum ribbons exposed to seeded propane-air combustion gases. The results obtained agree with the results of earlier interference measurements and also with theoretical chemical vapor deposition predictions. In comparison with the interference method, the polarization technique places less stringent requirements on surface quality, which may justify the added optical components needed for such measurements.
NASA Technical Reports Server (NTRS)
Murray, John; Vernier, Jean-Paul; Fairlie, T. Duncan; Pavolonis, Michael; Krotkov, Nickolay A.; Lindsay, Francis; Haynes, John
2013-01-01
Although significant progress has been made in recent years, estimating volcanic ash concentration for the full extent of the airspace affected by volcanic ash remains a challenge. No single satellite, airborne or ground observing system currently exists which can sufficiently inform dispersion models to provide the degree of accuracy required to use them with a high degree of confidence for routing aircraft in and near volcanic ash. Toward this end, the detection and characterization of volcanic ash in the atmosphere may be substantially improved by integrating a wider array of observing systems and advancements in trajectory and dispersion modeling to help solve this problem. The qualitative aspect of this effort has advanced significantly in the past decade due to the increase of highly complementary observational and model data currently available. Satellite observations, especially when coupled with trajectory and dispersion models can provide a very accurate picture of the 3-dimensional location of ash clouds. The accurate estimate of the mass loading at various locations throughout the entire plume, however improving, remains elusive. This paper examines the capabilities of various satellite observation systems and postulates that model-based volcanic ash concentration maps and forecasts might be significantly improved if the various extant satellite capabilities are used together with independent, accurate mass loading data from other observing systems available to calibrate (tune) ash concentration retrievals from the satellite systems.
Objective rapid delineation of areas at risk from block-and-ash pyroclastic flows and surges
Widiwijayanti, C.; Voight, B.; Hidayat, D.; Schilling, S.P.
2009-01-01
Assessments of pyroclastic flow (PF) hazards are commonly based on mapping of PF and surge deposits and estimations of inundation limits, and/or computer models of varying degrees of sophistication. In volcanic crises a PF hazard map may be sorely needed, but limited time, exposures, or safety aspects may preclude fieldwork, and insufficient time or baseline data may be available for reliable dynamic simulations. We have developed a statistically constrained simulation model for block-and-ash type PFs to estimate potential areas of inundation by adapting methodology from Iverson et al. (Geol Soc America Bull 110:972-984, (1998) for lahars. The predictive equations for block-and-ash PFs are calibrated with data from several volcanoes and given by A = (0.05 to 0.1) V2/3, B = (35 to 40) V2/3, where A is cross-sectional area of inundation, B is planimetric area and V is deposit volume. The proportionality coefficients were obtained from regression analyses and comparison of simulations to mapped deposits. The method embeds the predictive equations in a GIS program coupled with DEM topography, using the LAHARZ program of Schilling (1998). Although the method is objective and reproducible, any PF hazard zone so computed should be considered as an approximate guide only, due to uncertainties on the coefficients applicable to individual PFs, the authenticity of DEM details, and the volume of future collapses. The statistical uncertainty of the predictive equations, which imply a factor of two or more in predicting A or B for a specified V, is superposed on the uncertainty of forecasting V for the next PF to descend a particular valley. Multiple inundation zones, produced by simulations using a selected range of volumes, partly accommodate these uncertainties. The resulting maps show graphically that PF inundation potentials are highest nearest volcano sources and along valley thalwegs, and diminish with distance from source and lateral distance from thalweg. The model does not explicitly consider dynamic behavior, which can be important. Ash-cloud surge impact limits must be extended beyond PF hazard zones and we provide several approaches to do this. The method has been used to supply PF and surge hazard maps in two crises: Merapi 2006; and Montserrat 2006-2007. ?? Springer-Verlag 2008.
NASA Astrophysics Data System (ADS)
Muller, J.; Kylander, M. E.; Wust, R. A.; Weiss, D. J.
2005-12-01
This study presents one of the first applications of geochemical proxies to define changes in vegetation, hydrology and atmospheric dust recorded in a peat deposit in the Southern Hemisphere. The Lynch's Crater archive has captured local, regional and global environmental changes and reveals dynamic ecosystem changes as a result of climate shifts over the past 55,000 yrs BP. The 13 m peat record consists of 1.5 m of ombrotrophic peat underlain by a minerotrophic peat. The ombrotrophic section consists of low inorganic content ("ash") and low pH, as expected in of an ombrotrophic environment. The minerotrophic section contains several layers, up to a few cm thick, where abundant sponge spicules, diatom fragments and detrital quartz are indicative of high algal and protista productivity. These layers are characterised by high (up to 50%) ash, indicating persistent flooding of the peat deposits of Lynch's Crater and signalling periods of change in precipitation in North Queensland, Australia. Geochemical data are used to differentiate between climatic episodes associated with flooding events and internal and external atmospheric dust fluxes. Lead isotopes with lithogenic and chalcophile elements tell us that two distinctive sources are prevalent in the Lynch's Crater record. Most of the inorganic fractions of the deposits have the same geochemical signatures as the rocks and sediments of the crater wall, with low As concentrations, high Al, Ti and Sc concentrations and a more radiogenic Pb isotope signature. Influence from long-range dust is distinguished in the lower sections of the core (~35,000-55,000 cal yrs BP) where increases in As concentrations and less radiogenic Pb isotopes are found. Leading up to the Holocene (~35,000-10,000) the influence of increased dust influx becomes more significant (increasing lithogenics, chalcophiles and ash content) and where possible long-range sources are still active, but diluted by a prevailing dominance of the local sources. During the Holocene Pb isotope signatures remain similar but lithogenic and chalcophile concentrations decrease significantly and coincide with the lowest ash values (~4%) in the core. The research shows Lynch's Crater is a sensitive record of past atmospheric dust cylces and precipitation regimes leading to an invaluable record of past environmental change in the Southern Hemisphere.
Zhu, Xianqing; Li, Xian; Xiao, Li; Zhang, Xiaoyong; Tong, Shan; Wu, Chao; Ashida, Ryuichi; Liu, Wenqiang; Miura, Kouichi; Yao, Hong
2016-05-01
In this work, two extracts (Soluble and Deposit) were produced by degradative solvent extraction of biomass wastes from 250 to 350°C. The feasibilities of using Soluble and Deposit as additives for coke-making were investigated for the first time. The Soluble and Deposit, having significantly higher carbon content, lower oxygen content and extremely lower ash content than raw biomasses. All Solubles and most of Deposits can melt completely at the temperature ranged from 80 to 120°C and 140 to 180°C, respectively. The additions of Soluble or Deposit into the coke-making coal significantly improved their thermoplastic properties with as high as 9°C increase of the plastic range. Furthermore, the addition of Deposit or Soluble also markedly enhanced the coke quality through increasing coke strength after reaction (CSR) and reducing coke reactivity index (CRI). Therefore, the Soluble and Deposit were proved to be good additives for coke-making. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterisation and properties of alkali activated pozzolanic materials
NASA Astrophysics Data System (ADS)
Bordeian, Georgeta Simona
Many of the waste materials produced from modem heavy industries are pozzalans, which develop cementitious properties when finely divided in the presence of free lime. This property allows a potential industrial use for this waste as a cement replacement material in concrete. An example of such a waste material is blast furnace slag from the smelting of iron and steel. The US produces 26 million tons of blast furnace slag annually. Most of the slag is slowly cooled in air and it makes a poor pozzolan. Only 1.6 million tons of the slag is available in the granulated form, which is suitable as a cementitious and pozzolanic admixture. Most European countries are well endowed with coal-fired power stations and this produces fly and bottom ash, flue gas desulphurisation (FGD) gypsum. However, less than 25% of the total ash from power stations has found an industrial use mainly in cement and concrete industry. This creates a massive waste-disposal problem. Disposal of unused fly ash in open tips and ponds, for example, creates pollution problems since the drainage of effluents from the ash in the deposit ponds threaten water supplies by polluting the ground water with traces of toxic chemicals.Recent research has concentrated on the alkali activation of waste pozzolanic materials, especially ground blast furnace slag. This thesis has investigated the alkali activation of low calcium fly ashes. These form very poor pozzolans and the alkali activation of the fly ash offers the opportunity for the large scale use of fly ash. Water glass was selected as a suitable activator for the fly ash. A comprehensive series of tests have been carried out to gain information on the effect of different parameters, such as proportion and composition of the constituent materials, curing conditions and casting methods, in developing high performance construction materials. Laboratory investigations were carried out to determine the following characteristics of alkali activated materials: density, water absorption, apparent porosity and coefficient of saturation, drying shrinkage, compressive creep, compressive, flexural and tensile splitting strength, dynamic modulus of elasticity, accelerated weathering (freeze-thaw cycle) resistance, fire resistance (temperatures up to 600°C), microstructure, macrostructure and investigation of hydration phases by SEM, ED AX, Digital-mapping and X-ray diffraction.The influence of key parameters e.g. slag content, curing method, water/binder ratio and water glass hardener content on the mechanical properties were determined. Optimisation of the alkali-activation of fly ash materials was achieved by blending this with other pozzolans such as silica fume and slags. Mechanical properties were further improved by using moulding pressures and by thermal treatment. The use of short fibre reinforcements was investigated to overcome microcracking, volumetric deformation and creep in the materials. The free shrinkage and creep of the materials agree with the model developed by Mangat and Azari for fibre reinforced Portland cement composites. Other additives were also investigated to improve workability, frost and water resistance and physical properties of the alkali activated materials. The fundamental relationships between chemical composition, hydration phases,microstructure and engineering properties (strength, durability and stability) of alkali activated materials were investigated. It is clear that strength development is a function of the hydration products developed and these are affected by the mix composition and the curing temperature. The current work found parameters such as the Si/Al ratio, the Ca/Si ratio and the Na20 content to be important. These chemical parameters decide the principal phases in the hydration products formed in alkali activated materials, between calcium silicate hydrate (C-S-H) and zeolite of the form (R[2]0 n Al[2]O[3] x SiO[2] r H[2]O).Overall the thesis shows the great potential of alkali activated materials to produce high strength construction materials. Limitation in the shrinkage of the materials can be overcome by the use of fibre reinforcement. At the end of the thesis limitations and suggestions for further work are made.
Catalog of Mount St. Helens 2004 - 2005 Tephra Samples with Major- and Trace-Element Geochemistry
Rowe, Michael C.; Thornber, Carl R.; Gooding, Daniel J.; Pallister, John S.
2008-01-01
This open-file report presents a catalog of information about 135 ash samples along with geochemical analyses of bulk ash, glass and individual mineral grains from tephra deposited as a result of volcanic activity at Mount St. Helens, Washington, from October 1, 2004 until August 15, 2005. This data, in conjunction with that in a companion report on 2004?2007 Mount St. Helens dome samples by Thornber and others (2008a) are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, ed., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data presented here. All ash samples reported herein are currently archived at the David A. Johnston Cascades Volcano Observatory in Vancouver, Washington. The Mount St. Helens 2004?2005 Tephra Sample Catalogue along with bulk, glass and mineral geochemistry are tabulated in 6 worksheets of the accompanying Microsoft Excel file, of2008-1131.xls. Samples in all tables are organized by collection date. Table 1 is a detailed catalog of sample information for tephra deposited downwind of Mount St. Helens between October 1, 2004 and August 18, 2005. Table 2 provides major- and trace-element analyses of 8 bulk tephra samples collected throughout that interval. Major-element compositions of 82 groundmass glass fragments, 420 feldspar grains, and 213 mafic (clinopyroxene, amphibole, hypersthene, and olivine) mineral grains from 12 ash samples collected between October 1, 2004 and March 8, 2005 are presented in tables 3 through 5. In addition, trace-element abundances of 198 feldspars from 11 ash samples (same samples as major-element analyses) are provided in table 6. Additional mineral and bulk ash analyses from 2004 and 2005 ash samples are published in chapters 30 (oxide thermometry; Pallister and others, 2008), 32 (amphibole major elements; Thornber and others, 2008b) and 37 (210Pb; 210Pb/226Pa; Reagan and others, 2008) of U.S. Geological Survey Professional Paper 1750 (Sherrod and others, 2008). A brief overview of sample collection methods is given below as an aid to deciphering the tephra sample catalog. This is followed by an explanation of the categories of sample information (column headers) in table 1. A summary of the analytical methods used to obtain the geochemical data in this report introduces the presentation of major- and trace-element geochemistry of Mount St. Helens 2004?2005 tephra samples in tables 2?6. Rhyolite glass standard analyses are reported (Appendix 1) to demonstrate the accuracy and precision of similar glass analyses presented herein.
John, D.A.
1995-01-01
Steeply tilted late Oligocene caldera systems in the Stillwater caldera complex record a number of unusual features including extreme thickness of caldera-related deposits, lack of evidence for structural doming of the calderas and preservation of vertical compositional zoning in the plutonic rocks. The Stillwater caldera complex comprises three partly overlapping ash-flow calderas and subjacent plutonic rocks that were steeply tilted during early Miocene extension. The Job Canyon caldera, the oldest (ca. 29-28 Ma) caldera, consists of two structural blocks. The 25 to 23 Ma Poco Canyon and Elevenmile Canyon calderas and underlying Freeman Creek pluton overlap in time and space with each other. Caldera collapse occurred mostly along subvertical ring-fracture faults that penetrated to depths of >5 km and were repeatedly active during eruption of ash-flow tuffs. The calderas collapsed as large piston-like blocks, and there is no evidence for chaotic collapse. Preserved parts of caldera floors are relatively flat surfaces several kilometers across. -from Author
Lowe, John; Barton, Nick; Blockley, Simon; Ramsey, Christopher Bronk; Cullen, Victoria L.; Davies, William; Gamble, Clive; Grant, Katharine; Hardiman, Mark; Housley, Rupert; Lane, Christine S.; Lee, Sharen; Lewis, Mark; MacLeod, Alison; Menzies, Martin; Müller, Wolfgang; Pollard, Mark; Price, Catherine; Roberts, Andrew P.; Rohling, Eelco J.; Satow, Chris; Smith, Victoria C.; Stringer, Chris B.; Tomlinson, Emma L.; White, Dustin; Albert, Paul; Arienzo, Ilenia; Barker, Graeme; Borić, Dušan; Carandente, Antonio; Civetta, Lucia; Ferrier, Catherine; Guadelli, Jean-Luc; Karkanas, Panagiotis; Koumouzelis, Margarita; Müller, Ulrich C.; Orsi, Giovanni; Pross, Jörg; Rosi, Mauro; Shalamanov-Korobar, Ljiljiana; Sirakov, Nikolay; Tzedakis, Polychronis C.
2012-01-01
Marked changes in human dispersal and development during the Middle to Upper Paleolithic transition have been attributed to massive volcanic eruption and/or severe climatic deterioration. We test this concept using records of volcanic ash layers of the Campanian Ignimbrite eruption dated to ca. 40,000 y ago (40 ka B.P.). The distribution of the Campanian Ignimbrite has been enhanced by the discovery of cryptotephra deposits (volcanic ash layers that are not visible to the naked eye) in archaeological cave sequences. They enable us to synchronize archaeological and paleoclimatic records through the period of transition from Neanderthal to the earliest anatomically modern human populations in Europe. Our results confirm that the combined effects of a major volcanic eruption and severe climatic cooling failed to have lasting impacts on Neanderthals or early modern humans in Europe. We infer that modern humans proved a greater competitive threat to indigenous populations than natural disasters. PMID:22826222
Combustion experiments in a laboratory-scale fixed bed reactor were performed to determine the role of temperature and time in PCDD/F formation allowing a global kinetic expression to be written for PCDD/F formation due to soot oxidation in fly ash deposits. Rate constants were c...
Decomposition of Metrosideros polymorpha leaf litter along elevational gradients in Hawaii
Paul G. Scowcroft; Douglas R. Turner; Peter M. Vitousek
2000-01-01
We examined interactions between temperature, soil development, and decomposition on three elevational gradients, the upper and lower ends of each being situated on a common lava flow or ash deposit. We used the reciprocal transplant technique to estimate decomposition rates of Metrosideros polymorpha leaf litter during a three-year period at warm...
Production of thermal insulation blocks from bottom ash of fluidized bed combustion system.
Mandal, A K; Sinha, O P
2017-08-01
The issues of disposal and environmental problems are increased by the generation of bottom ash from the thermal power plants day by day; hence, its recycling is required. The present study aimed to make thermal insulation blocks using as raw material bottom ash and iron ore slime as a binder and to characterize their engineering properties. Two different fineness values of bottom ash were considered with varying amounts of iron ore slime (0-10%) to make the blocks. Blocks were dried followed by firing at 1000, 1100 and 1200°C, respectively. Cold crushing strength, density and thermal conductivity of these fired blocks showed increasing behaviour with firing temperature, fineness of bottom ash and iron ore slime content. In contrast, a reverse trend was observed in the case of porosity. With increasing firing temperature, the formation of lower melting phases like iron silicate followed by iron aluminium silicate was observed, which imparts the strength inside the blocks. The coarser particles of bottom ash increase the interparticle spaces, which enhances the apparent porosity, resulting in higher thermal insulation property in the blocks. Blocks having better thermal insulation property could be possible to make effectively from coarse bottom ash by adding iron ore slime as a binder.
NASA Astrophysics Data System (ADS)
Hemmi, R.; Yoshida, S.; Nemoto, Y.; Kotake, N.
2010-12-01
The early-to-middle Holocene outcrops of Izu-Oshima island, 100 km SSW of Tokyo, comprise sand- to gravel-size pyroclasts, and exhibit undulating layered structures, with each wavelet typically measuring 5-10 m high. These outcrops were traditionally interpreted as exemplary subaerial "ash-fall" deposits in volcanology textbooks (e.g. Schmincke 2006). Our detailed sedimentological analyses, however, have revealed that it is of pyroclastic density-current origin, the majority of which formed in shallow-marine settings. The present study focuses on the outcrops along the western coast of the Island, where the three-dimensional architecture of the outcrops is superbly exposed, and the existing archaeological framework provides a reliable chronostratigraphic control. The outcrops contain abundant compound bedforms, where small bedforms (dunes/antidunes) occur within the larger bedforms. The compound bedforms exhibit four-fold hierarchy (ranks 1 to 4), and bedforms for each scale display dominantly upstream-accreting geometry. The largest scale (Rank 1) of these bedforms show wavy parallel-bedding geometry (each wavelet typically measuring 5-10 m high and 50-100 m wide). We interpreted the large-scale architecture as sediment waves (gigantic antidunes) similar to the one reported from the shallow-marine deposits associated with AD 79 Mt. Vesuvius eruptions (Milia et al. 2008). Moreover, we have identified crustacean burrows and other trace fossils indicative of a nearshore shallow-marine environment. The pervasive occurrence of these fossils throughout the outcrops and abundant water-escape structures also suggests their subaqueous origin. On the other hand, evidence of subaerial deposition (e.g., paleosols and rootlets) or subaerial reworking (e.g., lahar) is absent, except for some spots on several regional unconformities that divide 10’s-m-thick sediment-wave deposits. On some of these unconformities, ribbon- to fan-shaped lava and/or ancient human-dwelling sites (5.0-7.5 ka) are locally present. These observations suggest that the deposition of the pyroclastic and lava flow occurred near the coastline, with rapid fluctuations of relative sea level. Earlier workers suggested that these outcrops were “subaerial ash-fall” deposits, with each dm-thick layer representing a small eruption that occurred at about 150-year interval from 20 ka to 5 ka, with the total number of eruptions reaching or possibly exceeding 100 (Tazawa 1980). However, we suggest that these layers form several 10’s-m-thick unconformity-bounded units (sediment waves). Together with the abundant shallow-marine trace fossils, we believe that these outcrops are of subaqueous pyroclastic-flow origin, recording less frequent but much bigger catastrophic eruptions than previously thought. Without recognizing the stratal packaging patterns on the 2-D/3-D vertical cross-sections, these outcrops can easily be mistaken for ash-fall deposits, and the magnitude of eruptions can be vastly underestimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, T.R.; Miles, T.R. Jr.; Baxter, L.L.
1995-04-15
Alkali in the ash of annual crop biomass fuels creates serious fouling and slagging in conventional boilers. Even with the use of sorbents and other additives, power plants can only fire limited amounts of these fuels in combination with wood. The National Renewable Energy Laboratory (NREL), US Department of Energy, and the biomass power industry carried out eight full-scale firing tests and several laboratory experiments to study the nature and occurrence of deposits with the goal of increasing the quantities of these biofuels that can be used. This report describes the results of the laboratory and power plant tests thatmore » included: tracking and analyzing fuels and deposits by various methods; recording operating conditions; and extensive laboratory testing. The paper describes the occurrence of deposits, fuel and deposit analyses, boiler design and operation, fouling and slagging indicators, and recommendations. 37 refs., 41 figs., 17 tabs.« less
NASA Astrophysics Data System (ADS)
Walter, Thomas R.; Navarro, Carlos; Arambula, Raul; Salzer, Jackie; Reyes, Gabriel
2016-04-01
Colima is one of the most active volcanoes in Latin America, with frequent dome building eruptions and pyroclastic flow hazards. In July 2015 Colima had a new climax of eruptive activity, profoundly changing the summit morphology and redistributing volcanic ashes to the lower volcano apron. These unconsolidated ashes are prone to be mobilized by rainfall events, and therefore required close monitoring. A major hurricane then had landfall in western Mexico in October 2015, accumulating c. 450 mm of rainfall at a meteorological station at Nevado de Colima (3461 m) and immense lahar and ash deposit mobilization from Colima Volcano. Hurricane Patricia was the largest ever recorded category 5 storm, directly crossing the state of Colima. Due to the successful scientific advice and civil protection no human losses were directly associated to this lahar hazards. We have conducted drone overflight in profound valleys that directed the pyroclastic flows and lahars two days before and three days after the hurricane. Over 8,000 close range aerial photographs could be recorded, along with GPS locations of ground stations. Images were processed using the structure from motion methodology, and digital elevation models compared. Erosion locally exceeded 10 m vertically and caused significant landscape change. Mass mobilization unloaded the young pyroclastic deposits and led to significant underground heat loss and water boiling in the affected areas. We also firstly report the use of camera array set-ups along the same valley to monitor lahar deposition and erosion from different perspectives. Combining these photos using photogrammetric techniques allow time series of digital elevation change studies at the deepening erosional ravines, with large potential for future geomorphic monitoring. This study shows that photo monitoring is very useful for studying the link of volcano landscape evolution and hydrometerological extremes and for rapid assessment of indirect volcanic hazards.
NASA Astrophysics Data System (ADS)
Folch, A.
2012-08-01
Tephra transport models try to predict atmospheric dispersion and sedimentation of tephra depending on meteorology, particle properties, and eruption characteristics, defined by eruption column height, mass eruption rate, and vertical distribution of mass. Models are used for different purposes, from operational forecast of volcanic ash clouds to hazard assessment of tephra dispersion and fallout. The size of the erupted particles, a key parameter controlling the dynamics of particle sedimentation in the atmosphere, varies within a wide range. Largest centimetric to millimetric particles fallout at proximal to medial distances from the volcano and sediment by gravitational settling. On the other extreme, smallest micrometric to sub-micrometric particles can be transported at continental or even at global scales and are affected by other deposition and aggregation mechanisms. Different scientific communities had traditionally modeled the dispersion of these two end members. Volcanologists developed families of models suitable for lapilli and coarse ash and aimed at computing fallout deposits and for hazard assessment. In contrast, meteorologists and atmospheric scientists have traditionally used other atmospheric transport models, dealing with finer particles, for tracking motion of volcanic ash clouds and, eventually, for computing airborne ash concentrations. During the last decade, the increasing demand for model accuracy and forecast reliability has pushed on two fronts. First, the original gap between these different families of models has been filled with the emergence of multi-scale and multi-purpose models. Second, new modeling strategies including, for example, ensemble and probabilistic forecast or model data assimilation are being investigated for future implementation in models and or modeling strategies. This paper reviews the evolution of tephra transport and dispersal models during the last two decades, presents the status and limitations of the current modeling strategies, and discusses some emergent perspectives expected to be implemented at operational level during the next few years. Improvements in both real-time forecasting and long-term hazard assessment are necessary to loss prevention programs on a local, regional, national and international level.