Sample records for ash samples produced

  1. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales, Almir, E-mail: almir@ufscar.b; Lima, Sofia Araujo, E-mail: sofiaalima@yahoo.com.b

    2010-06-15

    Sugarcane today plays a major role in the worldwide economy, and Brazil is the leading producer of sugar and alcohol, which are important international commodities. The production process generates bagasse as a waste, which is used as fuel to stoke boilers that produce steam for electricity cogeneration. The final product of this burning is residual sugarcane bagasse ash (SBA), which is normally used as fertilizer in sugarcane plantations. Ash stands out among agroindustrial wastes because it results from energy generating processes. Many types of ash do not have hydraulic or pozzolanic reactivity, but can be used in civil construction asmore » inert materials. The present study used ash collected from four sugar mills in the region of Sao Carlos, SP, Brazil, which is one of the world's largest producers of sugarcane. The ash samples were subjected to chemical characterization, sieve analysis, determination of specific gravity, X-ray diffraction, scanning electron microscopy, and solubilization and leaching tests. Mortars and concretes with SBA as sand replacement were produced and tests were carried out: compressive strength, tensile strength and elastic modulus. The results indicated that the SBA samples presented physical properties similar to those of natural sand. Several heavy metals were found in the SBA samples, indicating the need to restrict its use as a fertilizer. The mortars produced with SBA in place of sand showed better mechanical results than the reference samples. SBA can be used as a partial substitute of sand in concretes made with cement slag-modified Portland cement.« less

  2. Comparison of heterogeneous photolytic reduction of Hg(II) in the coal fly ashes and synthetic aerosols

    NASA Astrophysics Data System (ADS)

    Tong, Yindong; Eichhorst, Terry; Olson, Michael R.; Rutter, Andrew P.; Shafer, Martin M.; Wang, Xuejun; Schauer, James J.

    2014-03-01

    In this study, we examined the heterogeneous reduction of Hg(II) on the coal fly ash samples and synthetic aerosols under different light conditions in a controlled laboratory reactor. Three types of coal fly ashes were studied: a high carbon fly ash from a stoker boiler, a low carbon/low sulfate fly ash from a pulverized coal combustor burning low sulfur coal, and a high sulfate fly ash from a pulverized coal combustor burning high sulfur coal. The rate of Hg(II) reduction on the three diverse fly ash samples was found to be relatively fast with an average half-life of 1.6 h under clear sky atmospheric conditions (under the irradiance of 1000 W/m2). The reduction rate in the low sulfate/low carbon fly ash was approximately 1.5 times faster than with the other coal fly ash samples. Synthetic aerosols made of carbon black and levoglucosan produced Hg(II) reduction rates similar to coal fly ashes. However, aerosols composed of adipic acid resulted in reduction rates that were 3-5 times faster. The sensitivity of adipic acid reduction to light source wavelength was found to be greater than for the coal fly ash and other synthetic aerosols. Aerosols made from the water extracts of coal fly ash samples produced reduction rates equal to or slightly higher than with the native fly ash suggesting that the soluble components of fly ash play a significant role in the reduction mechanism. The measured reduction rates are likely important in the chemical processing of mercury in power plant plumes and potentially in the atmosphere and should be considered for incorporation in atmospheric transport models that are used to understand the fate of atmospheric mercury.

  3. Mineralogical, Microstructural and Thermal Characterization of Coal Fly Ash Produced from Kazakhstani Power Plants

    NASA Astrophysics Data System (ADS)

    Tauanov, Z.; Abylgazina, L.; Spitas, C.; Itskos, G.; Inglezakis, V.

    2017-09-01

    Coal fly ash (CFA) is a waste by-product of coal combustion. Kazakhstan has vast coal deposits and is major consumer of coal and hence produces huge amounts of CFA annually. The government aims to recycle and effectively utilize this waste by-product. Thus, a detailed study of the physical and chemical properties of material is required as the data available in literature is either outdated or not applicable for recently produced CFA samples. The full mineralogical, microstructural and thermal characterization of three types of coal fly ash (CFA) produced in two large Kazakhstani power plants is reported in this work. The properties of CFAs were compared between samples as well as with published values.

  4. The use of shale ash in dry mix construction materials

    NASA Astrophysics Data System (ADS)

    Gulbe, L.; Setina, J.; Juhnevica, I.

    2017-10-01

    The research was made to determine the use of shale ash usage in dry mix construction materials by replacing part of cement amount. Cement mortar ZM produced by SIA Sakret and two types of shale ashes from Narva Power plant (cyclone ash and electrostatic precipitator ash) were used. Fresh mortar properties, hardened mortar bulk density, thermal conductivity (λ10, dry) (table value) were tested in mortar ZM samples and mortar samples in which 20% of the amount of cement was replaced by ash. Compressive strenght, frost resistance and resistance to sulphate salt solutions were checked. It was stated that the use of electrostatic precipitator ash had a little change of the material properties, but the cyclone ash significantly reduced the mechanical strength of the material.

  5. Lab-scale ash production by abrasion and collision experiments of porous volcanic samples

    NASA Astrophysics Data System (ADS)

    Mueller, S. B.; Lane, S. J.; Kueppers, U.

    2015-09-01

    In the course of explosive eruptions, magma is fragmented into smaller pieces by a plethora of processes before and during deposition. Volcanic ash, fragments smaller than 2 mm, has near-volcano effects (e.g. increasing mobility of PDCs, threat to human infrastructure) but may also cause various problems over long duration and/or far away from the source (human health and aviation matters). We quantify the efficiency of ash generation during experimental fracturing of pumiceous and scoriaceous samples subjected to shear and normal stress fields. Experiments were designed to produce ash by overcoming the yield strength of samples from Tenerife (Canary Islands, Spain), Sicily and Lipari Islands (Italy), with this study having particular interest in the < 355 μm fraction. Fracturing within volcanic conduits, plumes and pyroclastic density currents (PDCs) was simulated through a series of abrasion (shear) and collision (normal) experiments. An understanding of these processes is crucial as they are capable of producing very fine ash (< 10 μm). These particles can remain in the atmosphere for several days and may travel large distances ( 1000s of km). This poses a threat to the aviation industry and human health. From the experiments we establish that abrasion produced the finest-grained material and up to 50% of the generated ash was smaller than 10 μm. In comparison, the collision experiments that applied mainly normal stress fields produced coarser grain sizes. Results were compared to established grain size distributions for natural fall and PDC deposits and good correlation was found. Energies involved in collision and abrasion experiments were calculated and showed an exponential correlation with ash production rate. Projecting these experimental results into the volcanic environment, the greatest amounts of ash are produced in the most energetic and turbulent regions of volcanic flows, which are proximal to the vent. Finest grain sizes are produced in PDCs and can be observed as co-ignimbrite clouds above density currents. Finally, a significant dependency was found between material density and the mass of fines produced, also observable in the total particle size distribution: higher values of open porosity promote the generation of finer-grained particles and overall greater ratios of ash. While this paper draws on numerous previous studies of particle comminution processes, it is the first to analyze and compare results of several comminution experiments with each other in order to characterize these mechanisms.

  6. Environmentally-Friendly Dense and Porous Geopolymers Using Fly Ash and Rice Husk Ash as Raw Materials

    PubMed Central

    Ziegler, Daniele; Formia, Alessandra; Tulliani, Jean-Marc; Palmero, Paola

    2016-01-01

    This paper assesses the feasibility of two industrial wastes, fly ash (FA) and rice husk ash (RHA), as raw materials for the production of geopolymeric pastes. Three typologies of samples were thus produced: (i) halloysite activated with potassium hydroxide and nanosilica, used as the reference sample (HL-S); (ii) halloysite activated with rice husk ash dissolved into KOH solution (HL-R); (iii) FA activated with the alkaline solution realized with the rice husk ash (FA-R). Dense and porous samples were produced and characterized in terms of mechanical properties and environmental impact. The flexural and compressive strength of HL-R reached about 9 and 43 MPa, respectively. On the contrary, the compressive strength of FA-R is significantly lower than the HL-R one, in spite of a comparable flexural strength being reached. However, when porous samples are concerned, FA-R shows comparable or even higher strength than HL-R. Thus, the current results show that RHA is a valuable alternative to silica nanopowder to prepare the activator solution, to be used either with calcined clay and fly ash feedstock materials. Finally, a preliminary evaluation of the global warming potential (GWP) was performed for the three investigated formulations. With the mix containing FA and RHA-based silica solution, a reduction of about 90% of GWP was achieved with respect to the values obtained for the reference formulation. PMID:28773587

  7. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  8. Re-cycling of sugar-ash: a raw feed material for rotary kilns.

    PubMed

    Kantiranis, Nikolaos

    2004-01-01

    Large amounts of sugar-ash, a material rich in calcium carbonate, are produced as a by-product in the Greek Sugar Industry. This work explores the possibility of re-cycling sugar-ash for use in the lime industry. A representative sample of sugar-ash from the Plati Imathias sugar plant was studied by PXRD, TG/DTG, calcination experiments at temperatures between 650 and 1150 degrees C and experiments to determine the quality of the quicklime produced at temperatures between 850 and 1150 degrees C following methods described in ASTM C110 standard. The sugar-ash was found to consist of 90 wt% calcium rich minerals (calcite and monohydrocalcite) and 10 wt% amorphous material. Traces of quartz were also detected. The quicklime of highest quality was produced at 950 degrees C. It is concluded that this "useless" material (sugar-ash) can be re-cycled for use in rotary kilns in the lime industry at calcination temperatures up to 950-1000 degrees C.

  9. Clast comminution during pyroclastic density current transport: Mt St Helens

    NASA Astrophysics Data System (ADS)

    Dawson, B.; Brand, B. D.; Dufek, J.

    2011-12-01

    Volcanic clasts within pyroclastic density currents (PDCs) tend to be more rounded than those in fall deposits. This rounding reflects degrees of comminution during transport, which produces an increase in fine-grained ash with distance from source (Manga, M., Patel, A., Dufek., J. 2011. Bull Volcanol 73: 321-333). The amount of ash produced due to comminution can potentially affect runout distance, deposit sorting, the volume of ash lofted into the upper atmosphere, and increase internal pore pressure (e.g., Wohletz, K., Sheridan, M. F., Brown, W.K. 1989. J Geophy Res, 94, 15703-15721). For example, increased pore pressure has been shown to produce longer runout distances than non-comminuted PDC flows (e.g., Dufek, J., and M. Manga, 2008. J. Geophy Res, 113). We build on the work of Manga et al., (2011) by completing a pumice abrasion study for two well-exposed flow units from the May 18th, 1980 eruption of Mt St Helens (MSH). To quantify differences in comminution from source, sampling and the image analysis technique developed in Manga et al., 2010 was completed at distances proximal, medial, and distal from source. Within the units observed, data was taken from the base, middle, and pumice lobes within the outcrops. Our study is unique in that in addition to quantifying the degree of pumice rounding with distance from source, we also determine the possible range of ash sizes produced during comminution by analyzing bubble wall thickness of the pumice through petrographic and SEM analysis. The proportion of this ash size is then measured relative to the grain size of larger ash with distance from source. This allows us to correlate ash production with degree of rounding with distance from source, and determine the fraction of the fine ash produced due to comminution versus vent-fragmentation mechanisms. In addition we test the error in 2D analysis by completing a 3D image analysis of selected pumice samples using a Camsizer. We find that the roundness of PDC pumice at MSH increases with distance from source, as does the quantity of fine-grained ash. In addition, we have made the first steps towards determining the proportion of fine ash produced by comminution with distance from source. These results are being tested by numerical methods to understand the effect of an increase in fine ash on overall flow dynamics of the PDCs in which they were produced.

  10. Firing system modification to alter ash properties for reduction of deposition and slagging under low NOx firing conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, D.; Lewis, R.; Tobiasz, R.

    1998-07-01

    The composition and properties of ash formed during coal firing have a major impact on boiler performance. Higher ash content in the coal can mean higher costs associated with coal handling, transportation, ash removal and ash disposal along with higher costs due to the increased ash content's deleterious effects on pulverizing, combustion and heat transfer. ABB C-E Services, Inc. has conducted research what might be done to minimize the adverse effects of ash on boiler performance for many years. Recently, ABB C-E Services has studied the effects of firing system modifications on ash composition and properties and the effect thesemore » firing system modifications have on overall furnace performance. The subject of this paper is the impact of the installation of the CFS{trademark} yaw angles were varied and particle samples were collected at the waterwalls for the different yaw angles tested. These ash samples were analyzed for ash composition. The results showed that with a larger CFS{trademark} yaw angle (the air stream directed more towards the boiler walls) the base/acid ratio, iron content and sulfur content of the particle samples collected at the waterwall were reduced. This effect is due to several contributing factors: (1) an oxidizing environment produced by injecting more air toward the walls; and (2) an aerodynamic change which impacts the particle combustion time/temperature history.« less

  11. Leachate Geochemical Results for Ash Samples from the June 2007 Angora Wildfire Near Lake Tahoe in Northern California

    USGS Publications Warehouse

    Hageman, Philip L.; Plumlee, Geoffrey S.; Martin, Deborah A.; Hoefen, Todd M.; Adams, Monique; Lamothe, Paul J.; Todorov, Todor I.; Anthony, Michael W.

    2008-01-01

    This report releases leachate geochemical data for ash samples produced by the Angora wildfire that burned from June 24 to July 2, 2007, near Lake Tahoe in northern California. The leaching studies are part of a larger interdisciplinary study whose goal is to identify geochemical characteristics and properties of the ash that may adversely affect human health, water quality, air quality, animal habitat, endangered species, debris flows, and flooding hazards. The leaching study helps characterize and understand the interactions that occur when the ash comes in contact with rain or snowmelt, and helps identify the constituents that may be mobilized as run-off from these materials. Similar leaching studies were conducted on ash and burned soils from the October 2007 southern California wildfires (Hageman and others, 2008; Plumlee and others, 2007).

  12. Firing system modification to alter ash properties for reduction of deposition and slagging under low NOx firing conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, D.; Lewis, R.; Tobiasz, R.

    1998-12-31

    The composition and properties of ash formed during coal firing have a major impact on boiler performance. Higher ash content in the coal can mean higher costs associated with coal handling, transportation, ash removal and ash disposal along with higher costs due to the increased ash content`s deleterious effects on pulverizing, combustion and heat transfer. ABB C-E Services, Inc. has conducted research for many years on what might be done to minimize the adverse effects of ash on boiler performance. Recently, ABB C-E Services has studied the effects of firing system modifications on ash composition and properties and the effectmore » these firing system modifications have on overall furnace performance. The subject of this paper is the impact of the installation of the CFS Concentric Firing System on the propensity for boiler wall ash deposition. For this study, CFS yaw angles were varied and particle samples were collected at the waterwalls for the different yaw angles tested. These ash samples were analyzed for ash composition. The results showed that with a larger CFS yaw angle (the air stream directed more towards the boiler walls) the base/acid ratio, iron content and sulfur content of the particle samples collected at the waterwall were reduced. This effect is due to several contributing factors: (1) an oxidizing environment produced by injecting more air toward the walls; and (2) an aerodynamic change which impacts the particle combustion time/temperature history.« less

  13. Naturally Occurring Radionuclides of Ash Produced by Coal Combustion. The Case of the Kardia Mine in Northern Greece

    NASA Astrophysics Data System (ADS)

    Fotakis, M.; Tsikritzis, L.; Tzimkas, N.; Kolovos, N.; Tsikritzi, R.

    2008-08-01

    West Macedonia Lignite Center (WMLC), located in Northwest Greece, releases into the atmosphere about 21,400 tons/year of fly ash through the stacks of four coal fired plants. The lignite ash contains naturally occurring radionuclides, which are deposited on the WMLC basin. This work investigates the natural radioactivity of twenty six ash samples, laboratory produced from combustion of lignite, which was sampled perpendicularly to the benches of the Kardia mine. The concentrations of radionuclides 40K, 235U, 238U, 226Ra, 228Ra and 232Th, were measured spectroscopically and found round one order of magnitude as high as those of lignite. Subsequently the Radionuclide Partitioning Coefficients of radionuclides were calculated and it was found that they are higher for 232Th, 228Ra and 40K, because the latter have closer affinity with the inorganic matrix of lignite. During combustion up to one third of the naturally occurring radioisotopes escape from the solid phase into the flue gases. With comparison to relative global data, the investigated ash has been found to have relatively high radioactivity, but the emissions of the WMLC radionuclides contribute only 0.03% to the mean annual absorbed dose.

  14. Gypsum treated fly ash as a liner for waste disposal facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivapullaiah, Puvvadi V., E-mail: siva@civil.iisc.ernet.in; Baig, M. Arif Ali, E-mail: reach2arif@gmail.com

    2011-02-15

    Fly ash has potential application in the construction of base liners for waste containment facilities. While most of the fly ashes improve in the strength with curing, the ranges of permeabilities they attain may often not meet the basic requirement of a liner material. An attempt has been made in the present context to reduce the hydraulic conductivity by adding lime content up to 10% to two selected samples of class F fly ashes. The use of gypsum, which is known to accelerate the unconfined compressive strength by increasing the lime reactivity, has been investigated in further improving the hydraulicmore » conductivity. Hydraulic conductivities of the compacted specimens have been determined in the laboratory using the falling head method. It has been observed that the addition of gypsum reduces the hydraulic conductivity of the lime treated fly ashes. The reduction in the hydraulic conductivity of the samples containing gypsum is significantly more for samples with high amounts of lime contents (as high as 1000 times) than those fly ashes with lower amounts of lime. However there is a relatively more increase in the strengths of the samples with the inclusion of gypsum to the fly ashes at lower lime contents. This is due to the fact that excess lime added to fly ash is not effectively converted into pozzolanic compounds. Even the presence of gypsum is observed not to activate these reactions with excess lime. On the other hand the higher amount of lime in the presence of sulphate is observed to produce more cementitious compounds which block the pores in the fly ash. The consequent reduction in the hydraulic conductivity of fly ash would be beneficial in reducing the leachability of trace elements present in the fly ash when used as a base liner.« less

  15. Grain shape of basaltic ash populations: implications for fragmentation

    NASA Astrophysics Data System (ADS)

    Schmith, Johanne; Höskuldsson, Ármann; Holm, Paul Martin

    2017-02-01

    Here, we introduce a new quantitative method to produce grain shape data of bulk samples of volcanic ash, and we correlate the bulk average grain shape with magma fragmentation mechanisms. The method is based on automatic shape analysis of 2D projection ash grains in the size range 125-63 μm. Loose bulk samples from the deposits of six different basaltic eruptions were analyzed, and 20,000 shape measurements for each were obtained within 45 min using the Particle Insight™ dynamic shape analyzer (PIdsa). We used principal component analysis on a reference grain dataset to show that circularity, rectangularity, form factor, and elongation best discriminate between the grain shapes when combined. The grain population data show that the studied eruptive environments produce nearly the same range of grain shapes, although to different extents. Our new shape index (the regularity index (RI)) places an eruption on a spectrum between phreatomagmatic and dry magmatic fragmentation. Almost vesicle-free Surtseyan ash has an RI of 0.207 ± 0.002 (2σ), whereas vesiculated Hawaiian ash has an RI of 0.134 ± 0.001 (2σ). These two samples define the end-member RI, while two subglacial, one lacustrine, and another submarine ash sample show intermediate RIs of 0.168 ± 0.002 (2σ), 0.175 ± 0.002 (2σ), 0.187 ± 0.002 (2σ), and 0.191 ± 0.002 (2σ), respectively. The systematic change in RI between wet and dry eruptions suggests that the RI can be used to assess the relative roles of magmatic vs. phreatomagmatic fragmentation. We infer that both magmatic and phreatomagmatic fragmentation processes played a role in the subglacial eruptions.

  16. Utilization of Yatagan Power Plant Fly Ash in Production of Building Bricks

    NASA Astrophysics Data System (ADS)

    Önel, Öznur; Tanriverdi, Mehmet; Cicek, Tayfun

    2017-12-01

    Fly ash is a by-product of coal combustion, which accumulates in large quantities near the coal-fired power plants as waste material. Fly ash causes serious operational and environmental problems. In this study, fly ash from Yatağgan thermal power plant was used to produce light-weight building bricks. The study aimed to reduce the problems related to fly ash by creating a new area for their use. The optimum process parameters were determined for the production of real size bricks to be used in construction industry. The commercial size bricks (200 × 200 × 90-110 mm) were manufactured using pilot size equipment. Mechanical properties, thermal conductivity coefficients, freezing and thawing strengths, water absorption rates, and unit volume weights of the bricks were determined. Etringite (Ca6Al2 (SO4)3 (OH)12 25(H2O)) and Calcium Silicate Hydrate (2CaO.SiO2.4H2O) were identified as the binding phases in the real size brick samples after 2 days of pre-curing and 28 days curing at 50° C and 95% relative moisture. The water absorption rate was found to be 27.7 % in terms of mass. The mechanical and bending strength of the brick samples with unit volume weight of 1.29 g.cm-3 were determined as 6.75 MPa and 1,56 MPa respectively. The thermal conductivity of the fly ash bricks was measured in average as 0,340 W m-1 K-1. The fly ash sample produced was subjected to toxic leaching tests (Toxic Property Leaching Procedure (EPA-TCLP 1311), Single-step BATCH Test and Method-A Disintegration Procedure (ASTM)). The results of these tests suggested that the materials could be classified as non-hazardous wastes / materials.

  17. Leaching kinetics of As, Mo, and Se from acidic coal fly ash samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Ghanashyam; Donahoe, Rona J.; Bhattacharyya, Siddhartha

    Annually, coal-fired electric power plants produce large volumes potentially hazardous coal combustion products (CCPs) including fly ash. Since majority of the coal fly ash and other CCPs deposited in dry land fills or wet lagoons, they pose risk of contamination to local environment and hydrogeology. In this study, we present results of leaching kinetics for As, Mo, and Se from three acidic fly ash samples. This study shows that the leachate concentrations of As, Mo, and Se increase over time. Three kinetics equations, pseudo-second order, Elovich, and power-function, are able to adequately describe the experimental leaching kinetics data. Experimental leachingmore » data and modeling results indicate that the rate limiting leaching of As, Mo, and Se is largely controlled by the dissolution of the fly ash particles. Furthermore, it is important to adopt effective containment/treatment schemes to avoid potential and persistent dispersion of trace elements from ash disposal facilities to surrounding environment for a long time.« less

  18. Leaching kinetics of As, Mo, and Se from acidic coal fly ash samples

    DOE PAGES

    Neupane, Ghanashyam; Donahoe, Rona J.; Bhattacharyya, Siddhartha; ...

    2017-07-03

    Annually, coal-fired electric power plants produce large volumes potentially hazardous coal combustion products (CCPs) including fly ash. Since majority of the coal fly ash and other CCPs deposited in dry land fills or wet lagoons, they pose risk of contamination to local environment and hydrogeology. In this study, we present results of leaching kinetics for As, Mo, and Se from three acidic fly ash samples. This study shows that the leachate concentrations of As, Mo, and Se increase over time. Three kinetics equations, pseudo-second order, Elovich, and power-function, are able to adequately describe the experimental leaching kinetics data. Experimental leachingmore » data and modeling results indicate that the rate limiting leaching of As, Mo, and Se is largely controlled by the dissolution of the fly ash particles. Furthermore, it is important to adopt effective containment/treatment schemes to avoid potential and persistent dispersion of trace elements from ash disposal facilities to surrounding environment for a long time.« less

  19. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant.

    PubMed

    Allegrini, E; Boldrin, A; Jansson, S; Lundtorp, K; Fruergaard Astrup, T

    2014-04-15

    The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Causes of Variability in the Effects of Vegetative Ash on Post-Fire Runoff and Erosion

    NASA Astrophysics Data System (ADS)

    Balfour, V.; Woods, S.

    2008-12-01

    Vegetative ash formed during forest wildfires has varying effects on post-fire runoff and erosion. In some cases the ash layer reduces runoff and erosion by storing rainfall and by protecting the soil surface from surface sealing and rainsplash detachment. In other cases, the ash layer increases runoff and erosion by forming a surface crust, clogging soil pores, and providing a ready source of highly erodible fine material. Since only a handful of studies have measured the hydrogeomorphic effect of ash, it is unclear whether the observed variability in its effect reflects initial spatial variability in the ash properties due to factors such as fuel type and fire severity, or differences that develop over time due to compaction and erosion or exposure of the ash to rainfall and air. The goal of our research was to determine if the observed differences in the effect of ash on runoff and erosion are due to: 1) variability in initial ash hydrologic properties due to differences in combustion temperature and fuel type, or 2) variability in ash hydrologic properties caused by mineralogical phase changes that develop after the ash is exposed to water. We created ash in the laboratory using wood and needles of Lodgepole pine (Pinus contorta), Ponderosa pine (Pinus Ponderosa) and Douglas fir (Pseudotsuga menziesii) and at 100° C temperature increments from 300 to 900° C. A subsample of ash from each fuel type / temperature combination was saturated, left undisturbed for 24 hours and then oven dried at 104° C. Dry and wetted ash samples were characterized in terms of: structure (using a scanning electron microscope), carbon content, mineralogy (using X-ray diffraction), porosity, water retention properties and hydraulic conductivity. Ash produced at the higher combustion temperatures from all three fuel types contained lime (CaO), which on wetting was transformed to portlandite (Ca(OH)2) and calcite (CaCO3). This mineralogical transformation resulted in irreversible hardening and crusting of the ash, and hardened ash had a significantly lower hydraulic conductivity than unhardened ash. Ash produced by high severity fires may undergo this same hardening and crusting process after it is wetted by rainfall whereas ash produced by lower severity fires will not, and this may explain in part the contrasting hydrogeomorphic effects of ash that have been reported in the literature.

  1. Sakurajima volcano: a physico-chemical study of the health consequences of long-term exposure to volcanic ash

    NASA Astrophysics Data System (ADS)

    Hillman, S. E.; Horwell, C. J.; Densmore, A. L.; Damby, D. E.; Fubini, B.; Ishimine, Y.; Tomatis, M.

    2012-05-01

    Regular eruptions from Sakurajima volcano, Japan, repeatedly cover local urban areas with volcanic ash. The frequency of exposure of local populations to the ash led to substantial concerns about possible respiratory health hazards, resulting in many epidemiological and toxicological studies being carried out in the 1980s. However, very few mineralogical data were available for determination of whether the ash was sufficiently fine to present a respiratory hazard. In this study, we review the existing studies and carry out mineralogical, geochemical and toxicological analyses to address whether the ash from Sakurajima has the potential to cause respiratory health problems. The results show that the amount of respirable (<4 μm) material produced by the volcano is highly variable in different eruptions (1.1-18.8 vol.%). The finest samples derive from historical, plinian eruptions but considerable amounts of respirable material were also produced from the most recent vulcanian eruptive phase (since 1955). The amount of cristobalite, a crystalline silica polymorph which has the potential to cause chronic respiratory diseases, is ~3-5 wt.% in the bulk ash. Scanning electron microscope and transmission electron microscope imaging showed no fibrous particles similar to asbestos particles. Surface reactivity tests showed that the ash did not produce significant amounts of highly reactive hydroxyl radicals (0.09-1.35 μmol m-2 at 30 min.) in comparison to other volcanic ash types. A basic toxicology assay to assess the ability of ash to rupture the membrane of red blood cells showed low propensity for haemolysis. The findings suggest that the potential health hazard of the ash is low, but exposure and respiratory conditions should still be monitored given the high frequency and durations of exposure.

  2. Potential use of fly ash to soil treatment in the Morava region

    NASA Astrophysics Data System (ADS)

    Bulíková, Lucia; Kresta, František; Rochovanský, Martin

    2017-09-01

    Soil treatment by binders is a standard technology and leads to optimal utilization of excavated soils in road constructions. Soil treatment is controlled in the Czech Republic by EN 14227-15 and Technical Requirement TP 94. Soil treatment using fly ash has not been performed in the Czech Republic, although there is a sufficient normative base. Fly ash produced by burning of hard coal in the Moravian region was tested as a potential binder. Fly ash samples were mixed with loess loams (CI). Tested siliceous fly ash of class F (ASTM C618) did not showed hydraulic properties but it showed positive effect on reducing maximum dry density of mixtures, increasing the IBI value (Immediate bearing index) and decreasing tendency to volume changes when the amount of fly ash was increased. The results of laboratory tests demonstrate the possibility of using fly ashes as a binder for soil treatment.

  3. Investigation of air-entraining admixture dosage in fly ash concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ley, M.T.; Harris, N.J.; Folliard, K.J.

    The amount of air-entraining admixture (AEA) needed to achieve a target air content in fresh concrete can vary significantly with differences in the fly ash used in the concrete. The work presented in this paper evaluates the ability to predict the AEA dosage on the basis of tests on the fly ash alone. All results were compared with the dosage of AEA required to produce an air content of 6% in fresh concrete. Fly ash was sampled from six separate sources. For four of these sources, samples were obtained both before and after the introduction of 'low-NOx burners'. Lack ofmore » definitive data about the coal itself or the specifics of the burning processes prevents the ability to draw specific conclusions about the impact of low-NOx burners on AEA demand. Nevertheless, the data suggest that modification of the burning process to meet environmental quality standards may affect the fly ash-AEA interaction.« less

  4. The mechanical and physical properties of concrete containing polystyrene beads as aggregate and palm oil fuel ash as cement replacement material

    NASA Astrophysics Data System (ADS)

    Adnan, Suraya Hani; Abadalla, Musab Alfatih Salim; Jamellodin, Zalipah

    2017-10-01

    One of the disadvantages of normal concrete is the high self-weight of the concrete. Density of the normal concrete is in the range of 2200 kg/m3 to 2600 kg/ m3. This heavy self-weight make it as an uneconomical structural material. Advantages of expended polystyrene beads in lightweight concrete is its low in density which can reduce the dead load (self-weight) Improper disposal of the large quantity of palm oil fuel ash which has been produced may contribute to environmental problem in future. In this study, an alternative of using palm oil fuel ash as a cement replacement material is to improve the properties of lightweight concrete. The tests conducted in this study were slump test, compression strength, splitting tensile and water absorption test. These samples were cured under water curing condition for 7, 28 and 56 days before testing. Eight types of mixtures were cast based on percentage (25%, 50%) of polystyrene beads replacement for control samples and (25%, 50%) of polystyrene beads by different ratio 10%, 15%, and 20% replacement of palm oil fuel ash, respectively. Samples with 25% polystyrene beads and 10% palm oil fuel ash obtained the highest compressive strength which is 16.8 MPa, and the splitting tensile strength is 1.57 MPa. The water absorption for samples 25%, 50% polystyrene and 20% palm oil fuel ash is 3.89% and 4.67%, respectively which is lower compared to control samples.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, A.N.; Thomas, M.D.A.

    An investigation of fly ash (FA) produced from various blends of coal and petroleum coke (pet coke) fired at Belledune Generating Station, New Brunswick, Canada, was conducted to establish its performance relative to FA derived from coal-only combustion and its compliance with CSA A3000. The FA samples were beneficiated by an electrostatic separation process to produce samples for testing with a range of loss-on-ignition (LOI) values. The results of these studies indicate that the combustion of pet coke results in very little inorganic residue (for example, typically less than 0.5% ash) and the main impact on FA resulting from themore » co-combustion of coal and up to 25% pet coke is an increase in the unburned carbon content and LOI values. The testing of FA after beneficiation indicates that FA produced from fuels with up to 25% pet coke performs as good as FA produced from the same coal without pet coke.« less

  6. Metal roof corrosion related to volcanic ash deposition

    NASA Astrophysics Data System (ADS)

    Oze, C.; Cole, J. W.; Scott, A.; Wilson, T.; Wilson, G.; Gaw, S.; Hampton, S.; Doyle, C.; Li, Z.

    2013-12-01

    Volcanoes produce a wide range of hazards capable of leading to increased rates of corrosion to the built environment. Specifically, widely distributed volcanic ash derived from explosive volcanic eruptions creates both short- and long-term hazards to infrastructure including increased corrosion to exposed building materials such as metal roofing. Corrosion has been attributed to volcanic ash in several studies, but these studies are observational and are beset by limitations such as not accounting for pre-existing corrosion damage and/or other factors that may have also directly contributed to corrosion. Here, we evaluate the corrosive effects of volcanic ash, specifically focusing on the role of ash leachates, on a variety of metal roofing materials via weathering chamber experiments. Weathering chamber tests were carried out for up to 30 days using a synthetic ash dosed with an acidic solution to produce a leachate comparable to a real volcanic ash. Visual, chemical and surface analyses did not definitively identify significant corrosion in any of the test roofing metal samples. These experiments attempted to provide quantitative information with regards to the rates of corrosion of different types of metal roof materials. However, they demonstrate that no significant corrosion was macroscopically or microscopically present on any of the roofing surfaces despite the presence of corrosive salts after a duration of thirty days. These results suggest ash leachate-related corrosion is not a major or immediate concern in the short-term (< 1 month).

  7. Evaluation of interactions between soil and coal fly ash leachates using column percolation tests.

    PubMed

    Tsiridis, V; Petala, M; Samaras, P; Sakellaropoulos, G P

    2015-09-01

    The aim of this work was the assessment of the environmental impact of different origin fly ashes with regard to their final disposal. The experimental procedure included the performance of single column tests and column tests of fly ash and soil in series. The appraisal of the potential environmental hazards was implemented using physicochemical analyses and bioassays. Two different fly ash samples were examined, one fly ash produced from the combustion of sub-bituminous coal (CFA) and one fly ash produced from the combustion of lignite (LFA). Single column percolation tests were performed according to NEN 7343 protocol, while fly ash/soil experiments were conducted incorporating slight modifications to this protocol. The study focused on the release of metals Ba, Cr, Cu, Mo, Se and Zn and the ecotoxic behavior of leachates on crustacean Daphnia magna and bacteria Vibrio fischeri. The infiltration of the leachates of both fly ashes through soil affected considerably their leaching profile. The transport of Cu and Zn was facilitated by the dynamic leaching conditions and influenced by the pH of the leachates. Moreover, the release and bioavailability of Cr, Cu and Zn was probably altered during the infiltration experiments and organisms' response was not always correlated with the concentration of metals. Nevertheless, the results are signalling that possible manipulations and final disposal of fly ash should be considered when environmental threats are investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Synthesis of geopolymer composites from a mixture of ferronickel slag and fly ash

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Zhang, Kang; Feng, Enjuan; Zhao, Hongyi; Liu, Futian

    2017-03-01

    The synthesis of geopolymers using ferronickel slag and fly ash under alkaline activation was studied. In order to study the effects of different fly ash content on the mechanical properties of the geopolymers produced, the compressive strength of samples was tested at 3, 7, 28 days. The results showed that when the fly ash content was 40%, the compressive strength reached the highest (110.32MPa) at 28 days. XRD analysis showed that the ferronickel slag geopolymers had amorphous aluminosilicate phase formation, indicating that the hydration reaction occurred. FTIR analysis showed the reaction of the geopolymers generated at Si-O-T (Si, Al) and Al-O-Si three-dimensional network. In SEM images, the structure of the geopolymers with 40% fly ash was more compact and cohesive.

  9. Bio fuel ash in a road construction: impact on soil solution chemistry.

    PubMed

    Thurdin, R T; van Hees, P A W; Bylund, D; Lundström, U S

    2006-01-01

    Limited natural resources and landfill space, as well as increasing amounts of ash produced from incineration of bio fuel and municipal solid waste, have created a demand for useful applications of ash, of which road construction is one application. Along national road 90, situated about 20 km west of Sollefteå in the middle of Sweden, an experiment road was constructed with a 40 cm bio fuel ash layer. The environmental impact of the ash layer was evaluated from soil solutions obtained by centrifugation of soil samples taken on four occasions during 2001-2003. Soil samples were taken in the ash layer, below the ash layer at two depths in the road and in the ditch. In the soil solutions, pH, conductivity, dissolved organic carbon (DOC) and the total concentration of cations (metals) and anions were determined. Two years after the application of the ash layers in the test road, the concentrations in the ash layer of K, SO4, Zn, and Hg had increased significantly while the concentration of Se, Mo and Cd had decreased significantly. Below the ash layer in the road an initial increase of pH was observed and the concentrations of K, SO4, Se, Mo and Cd increased significantly, while the concentrations of Cu and Hg decreased significantly in the road and also in the ditch. Cd was the element showing a potential risk of contamination of the groundwater. The concentrations of Ca in the ash layer indicated an ongoing hardening, which is important for the leaching rate and the strength of the road construction.

  10. Study on the Volatility of Cesium in Dry Ashing Pretreatment and Dissolution of Ash by Microwave Digestion System - 13331

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kwang-Soon; Lee, Chang Heon; Ahn, Hong-Joo

    2013-07-01

    Based on the regulation of the activity concentration of Cs-137, Co-58, Co-60, Fe-55, Ni-59, Ni-63, Sr-90, Nb-94, and Tc-99, and the total alpha from the radioactive waste acceptance criteria, the measurement of the activity concentration of these nuclides in low and intermediate levels of radioactive waste such as in paper, cotton, vinyl and plastic samples was investigated. A dry ashing method was applied to obtain a concentration effect of the samples. Owing to the temperature dependence of the volatility for cesium, the temperature of 300 to 650 deg. C was examined. It was found that 450 deg. C is themore » optimum dry ashing temperature. After dry ashing, the produced ash was dissolved with HNO{sub 3}, HCl, and HF by a high-performance microwave digestion system. The ash sample, for the most part, was completely dissolved with 10 mL of HNO{sub 3}, 4 mL of HCl, and 0.25 mL of HF by a high-performance microwave digestion system using a nova high temperature rotor at 250 deg. C for 90 min until reaching 0.2 g. To confirm the reliability of cesium loss after the performance of the dry ashing procedure, a cesium standard solution for AAS and a Cs-137 standard solution for gamma spectrometry were added to a paper towel or a planchet of stainless steel, respectively. Cesium was measured by AAS, ICP-MS, and gamma spectrometry. The volatility of cesium did not occur until 450 deg. C ashing. (authors)« less

  11. Chemical and ecotoxicological characterization of ashes obtained from sewage sludge combustion in a fluidised-bed reactor.

    PubMed

    Lapa, N; Barbosa, R; Lopes, M H; Mendes, B; Abelha, P; Boavida, D; Gulyurtlu, I; Oliveira, J Santos

    2007-08-17

    In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub-products of such type of thermal processes.

  12. Enhancing the compressive strength of landfill soil using cement and bagasse ash

    NASA Astrophysics Data System (ADS)

    Azim, M. A. M.; Azhar, A. T. S.; Tarmizi, A. K. A.; Shahidan, S.; Nabila, A. T. A.

    2017-11-01

    The stabilisation of contaminated soil with cement and agricultural waste is a widely applied method which contributes to the sustainability of the environment. Soil may be stabilised to increase strength and durability or to prevent erosion and other geotechnical failure. This study was carried out to evaluate the compressive strength of ex-landfill soil when cement and bagasse ash (BA) are added to it. Different proportions of cement (5%, 10%, 15% and 20%) was added to sample weights without BA. On the other hand, the cement in a different batch of sample weights was replaced by 2.5%, 5%, 7.5% and 10% of BA. All samples were allowed to harden and were cured at room temperature for 7, 14 and 28 days respectively. The strength of the contaminated soil was assessed using an unconfined compressive strength test (UCS). The laboratory tests also included the index properties of soil, cement and bagasse ash in raw form. The results indicated that the samples with cement achieved the highest compressive strength measuring 4.39 MPa. However, this study revealed that the use of bagasse ash produced low quality products with a reduction in strength. For example, when 5% of cement was replaced with 5% ash, the compressive strength decreased by about 54% from 0.72 MPa to 0.33 MPa. Similarly, the compressive strength of each sample after a curing period of 28 days was higher compared to samples cured for 7 and 14 days respectively. This is proved that a longer curing period is needed to increase the compressive strength of the samples.

  13. Predicting Water Quality Problems Associated with Coal Fly Ash Disposal Facilities Using a Trace Element Partitioning Study

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Donahoe, R. J.; Graham, E. Y.

    2006-12-01

    For much of the U.S., coal-fired power plants are the most important source of electricity for domestic and industrial use. Large quantities of fly ash and other coal combustion by-products are produced every year, the majority of which is impounded in lagoons and landfills located throughout the country. Many older fly ash disposal facilities are unlined and have been closed for decades. Fly ash often contains high concentrations of toxic trace elements such as arsenic, boron, chromium, molybdenum, nickel, selenium, lead, strontium and vanadium. Trace elements present in coal fly ash are of potential concern due to their toxicity, high mobility in the environment and low drinking water MCL values. Concern about the potential release of these toxic elements into the environment due to leaching of fly ash by acid rain, groundwater or acid mine drainage has prompted the EPA to develop national standards under the subtitle D of the Resource Conservation and Recovery Act (RCRA) to regulate ash disposal in landfills and surface impoundments. An attempt is made to predict the leaching of toxic elements into the environment by studying trace element partitioning in coal fly ash. A seven step sequential chemical extraction procedure (SCEP) modified from Filgueiras et al. (2002) is used to determine the trace element partitioning in seven coal fly ash samples collected directly from electric power plants. Five fly ash samples were derived from Eastern Bituminous coal, one derived from Western Sub-bituminous coal and the other derived from Northern Lignite. The sequential chemical extraction procedure gives valuable information on the association of trace elements: 1) soluble fraction, 2) exchangeable fraction, 3) acid soluble fraction, 4) easily reducible fraction, 5) moderately reducible fraction, 6) poorly reducible fraction and 7) oxidizable organics/sulfide fraction. The trace element partitioning varies with the composition of coal fly ash which is influenced by the type of coal burned. Preliminary studies show that in some fly ash samples, significant amounts of As, B, Mo, Se, Sr and V are associated with the soluble and exchangeable fraction, and thus would be highly mobile in the environment. Lead, on the other hand, is mainly associated with the amorphous Fe and Mn oxide fractions and would be highly immobile in oxidizing conditions, but mobile in reducing conditions. Ni and Cr show different associations in different fly ash samples. In most fly ash samples, significant amounts of the trace elements are associated with more stable fractions that do not threaten the environment. The study of trace element partitioning in coal fly ash thus helps us to predict their leaching behavior under various conditions.

  14. Respiratory Health Effects of Volcanic Ash - a new Approach

    NASA Astrophysics Data System (ADS)

    Horwell, C. J.; Fenoglio, I.; Sparks, R. J.; Ragnarsdottir, K. V.; Fubini, B.

    2003-12-01

    Attempts to characterise the toxicity of volcanic ash have focused on the presence of the crystalline silica polymorph cristobalite, which is known to cause silicosis and lung cancer in industrial settings. Within the lung, it is the surface of the particles which will react with endogenous molecules. Free radicals, produced on particle surfaces, can react with DNA and other cellular components, instigating a chain of toxic events. For the first time, the ability of volcanic ash to form free radicals has been assessed using Electron Paramagnetic Resonance techniques specific to the hydroxyl radical. Respirable (< 4 microns) crystalline silica, separated from volcanic ash from the Soufriere Hills volcano, Montserrat, West Indies, did not produce hydroxyl free radicals or surface radicals. However, the ash, itself, generated up to 3 times more hydroxyl radicals than a quartz of known toxicity. The cause of the reactivity is reduced iron on the surface of iron-rich minerals such as amphiboles and pyroxenes. Fresh volcanic ash generates more free radicals than weathered volcanic ash which will have oxidised (and leached away) surface iron. These results have implications for volcanic health hazard research as it was previously assumed that volcanoes which did not produce respirable crystalline silica presented a lesser respiratory health hazard. The International Volcanic Health Hazard Network (IVHHN) promotes research into the health effects of volcanic emissions. Under the auspices of IVHHN, volcanic ash samples from volcanoes world-wide are being analysed for surface reactivity, grain-size distribution and composition to form a comprehensive database for use by volcano observatories, emergency managers, medical practitioners and researchers. The results will highlight volcanoes which have the potential to cause a respiratory health hazard through generation of iron-catalysed free radicals, as well as more conventional markers such as concentration of respirable particles. At the onset of new eruptions, the database will be used to aid the rapid assessment of health hazard from volcanic ash.

  15. Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods.

    PubMed

    Rasoulnia, P; Mousavi, S M; Rastegar, S O; Azargoshasb, H

    2016-06-01

    Each year a tremendous volume of V-Ni rich ashes is produced by fuel oil consuming power plants throughout the world. Recovery of precious metals existing in these ashes is very important from both economic and environmental aspects. The present research was aimed at investigating bioleaching potential of Penicillium simplicissimum for the recovery of metals from power plant residual ash (PPR ash) using different bioleaching methods such as one-step, two-step, and spent-medium bioleaching at 1% (w/v) pulp density. Furthermore, the effects of thermal pretreatment on leaching of V, Ni, and Fe, as major elements present in PPR ash, were studied. Thermal pretreatment at various temperatures removed the carbonaceous and volatile fraction of the ash and affected the fungal growth and metal leachability. The highest extraction yields of V and Ni were achieved for the original PPR ash, using spent-medium bioleaching in which nearly 100% of V and 40% of Ni were extracted. The maximum extraction yield of Fe (48.3%) was obtained for the pretreated PPR ash at 400°C by spent-medium bioleaching. In addition, the fungal growth in pure culture was investigated through measurement of produced organic acids via high performance liquid chromatography (HPLC). Chemical leaching experiments were performed, using commercial organic acids at the same concentrations as those produced under optimum condition of fungal growth (5237ppm citric, 3666ppm gluconic, 1287ppm oxalic and 188ppm malic acid). It was found that in comparison to chemical leaching, bioleaching improved V and Ni recovery up to 19% and 12%, respectively. Moreover, changes in physical and chemical properties as well as morphology of the samples utilizing appropriate analytical methods such as XRF, XRD, FTIR, and FE-SEM were comprehensively investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Spatial trends in S and Cl in ash leachates of the May 18th, 1980 eruption of Mt. St Helens

    NASA Astrophysics Data System (ADS)

    Ayris, Paul M.; Delmelle, Pierre; Durant, Adam J.; Damby, David E.; Maters, Elena C.

    2014-05-01

    It has long been known that surficial deposits of salts and acids on volcanic ash particles derive from interactions of ash with sulphur and halide species within the eruption plume and volcanic cloud. These compounds are mobilised as ash particles are wetted, and beneficial or detrimental environmental and health impacts may be induced where the most concentrated solutions are produced. However, limited mechanistic understanding of gas-ash interactions currently precludes prediction of the spatial distribution or variation in leachate chemistry and concentration following an eruption. Sampling and leachate analysis of freshly-fallen ash therefore offers the sole method by which such variations can be observed. Previous ash leachate studies often involve a limited number of ash samples, and utilise a 'one-dimensional' analysis that considers variation in terms of absolute distance from the source volcano. Here, we demonstrate that extensive sampling and a 'two-dimensional' analysis can uncover more complex spatial trends. We compiled over 358 leachate compositions from the May 18th 1980 eruption of Mt. St. Helens. Of the water-extracted leachates, only 95 compositions from ash sampled at 45 localities between 35 and 1129 km from the volcano are sufficiently documented to be retrospectively comparable. To consider the effects of intra-deposit variability, we calculated average concentrations of leachate data within 11×22 km grid cells across the region, and defined a data quality parameter to reflect confidence in the derived values. To investigate any dependence of leachate composition on the grain size distribution, we generated an interpolated map of geometric specific surface area variation across the deposit, normalising ash leachate data to the calculated specific surface area at the corresponding sampling location. The data treatment identifies S and Cl enrichments in proximal blast deposits; relatively constant Cl concentrations across the ashfall deposits; and a core region of depleted S concentrations in ashfall deposits between 240 and 400 km from the volcano, coinciding with the distal thickening of the deposit attributed to particle aggregation and enhanced fallout. Blast deposit enrichments can be attributed to pre-eruptive uptake of SO2 and HCl gases within the cryptodome, while ashfall deposit trends could reflect differences in the rates of HCl and SO2 uptake by ash, modified by in-plume aggregation processes. However, to validate and interpret such trends with greater confidence would have required a greater spatial density and temporal resolution of sampling, with comprehensive characterisation of the recovered ash and the surrounding deposit. In the future, rigorous study and sampling of equivalent extent to that in the aftermath of the historic Mt. St. Helens eruption is likely required to extend insight into processes affecting the spatial distribution of leachate chemistry.

  17. Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of Cork oak (Quercus Suber)

    USGS Publications Warehouse

    Ubeda, X.; Pereira, P.; Outeiro, L.; Martin, D.A.

    2009-01-01

    Cork oak, (Quercus suber) is widely distributed in the Mediterranean region, an area subject to frequent fires. The ash produced by burning can have impacts on the soil status and water resources that can differ according to the temperature reached during fire and the characteristics of the litter, defined as the dead organic matter accumulated on the soil surface prior to the fire. The aim of this work is to determine the physical and chemical characteristics of ash produced in laboratory experiments to approximate conditions typical of fires in this region. The litter of Quercus suber collected from two different plots on the Iberian Peninsula, Mas Bassets (Catalonia) and Albufeira (Portugal), was combusted at different temperatures for 2h. We measured Mass Loss (ML per cent), ash colour and CaCO3 content, pH, Electrical Conductivity (EC) and the major cations (Ca2+, Mg2+, K+ and Na+) released from ash slurries created by mixing ash with deionized water. The results showed that ML per cent is higher at all temperatures in Albufeira samples compared to Mas Bassets samples, except at 550??C, and the rate of loss increases faster with temperature than the Mas Bassets samples. At 150??C the ash colour is yellowish, becoming reddish at 200- 250??C and black at 300??C. Above 400??C the ash is grey/white. This thermal degradation is mostly observed in Albufeira litter. The formation of CaCO3 was identified at a lower temperature in Albufeira litter. At temperatures <300??C, pH and EC values are lower, rising at higher temperatures, especially in Albufeira slurries. The concentration of cations at lower temperatures does not differ substantially from the unburned sample except for Mg2+. The cation concentration increases at medium temperatures and decrease at higher temperatures, especially the concentration of divalent cations. The monovalent cations showed a larger concentration at moderate temperatures, mainly in Albufeira ash slurries. The analysis of the Ca:Mg ratio also showed that for the same temperature, a higher severity results for Albufeira litter. Potential negative effects on soil properties are observed at medium and higher temperatures. These negative effects include a higher percentage of mass loss, meaning more soil may be exposed to erosion, higher pH values and greater cation release from ash, especially monovalalent cations (K+,Na+) in higher proportions than the divalent ions (Ca2+, Mg2+), that can lead to impacts on soil physical properties like aggregate stability. Furthermore, the ions in ash may alter soil chemistry which may be detrimental to some plants thus altering the recovery of these ecosystems after fire. Low intensity prescribed fire can be a useful tool to land management in these sites, due to the reduced effects of fire temperatures on the physical and chemical properties of surface litter, and can reduce the risk of high temperature wildland fires by reducing fuel loadings. From the perspective of water resources, lower fire temperatures produce fewer impacts on the chemistry of overland flow and there is less probability that the soil surface will be eroded. Copyright ?? 2009 John Wiley & Sons, Ltd.

  18. Reference data set of volcanic ash physicochemical and optical properties

    NASA Astrophysics Data System (ADS)

    Vogel, A.; Diplas, S.; Durant, A. J.; Azar, A. S.; Sunding, M. F.; Rose, W. I.; Sytchkova, A.; Bonadonna, C.; Krüger, K.; Stohl, A.

    2017-09-01

    Uncertainty in the physicochemical and optical properties of volcanic ash particles creates errors in the detection and modeling of volcanic ash clouds and in quantification of their potential impacts. In this study, we provide a data set that describes the physicochemical and optical properties of a representative selection of volcanic ash samples from nine different volcanic eruptions covering a wide range of silica contents (50-80 wt % SiO2). We measured and calculated parameters describing the physical (size distribution, complex shape, and dense-rock equivalent mass density), chemical (bulk and surface composition), and optical (complex refractive index from ultraviolet to near-infrared wavelengths) properties of the volcanic ash and classified the samples according to their SiO2 and total alkali contents into the common igneous rock types basalt to rhyolite. We found that the mass density ranges between ρ = 2.49 and 2.98 g/cm3 for rhyolitic to basaltic ash types and that the particle shape varies with changing particle size (d < 100 μm). The complex refractive indices in the wavelength range between λ = 300 nm and 1500 nm depend systematically on the composition of the samples. The real part values vary from n = 1.38 to 1.66 depending on ash type and wavelength and the imaginary part values from k = 0.00027 to 0.00268. We place our results into the context of existing data and thus provide a comprehensive data set that can be used for future and historic eruptions, when only basic information about the magma type producing the ash is known.

  19. CORRELATION OF POLYCHLORINATED NAPHTHALENES WITH POLYCHLORINATED DIBENZOFURANS FORMED FROM WASTE INCINERATION

    EPA Science Inventory

    Isomer composition of polychlorinated naphthalenes (PCNs) was measured for municipal waste incinerator fly ash samples,and for emission samples produced from soot and copper deposit experiments conducted at EPA. Two types of PCN isomer patterns were identified. One pattern cxonta...

  20. Heavy metal leaching from coal fly ash amended container substrates during Syngonium production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Q.S.; Chen, J.J.; Li, Y.C.

    2008-02-15

    Coal fly ash has been proposed to be an alternative to lime amendment and a nutrient source of container substrates for ornamental plant production. A great concern over this proposed beneficial use, however, is the potential contamination of surface and ground water by heavy metals. In this study, three fly ashes collected from Florida, Michigan, and North Carolina and a commercial dolomite were amended in a basal substrate. The formulated substrates were used to produce Syngonium podophyllum Schott 'Berry Allusion' in 15-cm diameter containers in a shaded greenhouse. Leachates from the containers were collected during the entire six months ofmore » plant production and analyzed for heavy metal concentrations. There were no detectable As, Cr, Hg, Pb, and Se in the leachates; Cd and Mo were only detected in few leachate samples. The metals constantly detected were Cu, Mn, Ni, and Zn. The total amounts of Cu, Mn, Ni, and Zn leached during the six-month production period were 95, 210, 44, and 337 {mu} g per container, indicating that such amounts in leachates may contribute little to contamination of surface and ground water. In addition, plant growth indices and fresh and dry weights of S. podophyllum 'Berry Allusion' produced from fly ash and dolomite-amended substrates were comparable except for the plants produced from the substrate amended with fly ash collected from Michigan which had reduced growth indices and fresh and dry weights. Thus, selected fly ashes can be alternatives to commercial dolomites as amendments to container substrates for ornamental plant production. The use of fly ashes as container substrate amendments should represent a new market for the beneficial use of this coal combustion byproduct.« less

  1. Concentration of heavy metals in ash produced from Lithuanian forests

    NASA Astrophysics Data System (ADS)

    Baltrenaite, Edita; Pereira, Paulo; Butkus, Donatas; Úbeda, Xavier

    2010-05-01

    Wood ash contains important amounts of heavy metals. This quantity depends on burned specie, temperature of exposition and heat duration time. Due the high mineralization imposed by the temperatures, ash is used as lime product in agriculture and forests. Also, after a forest fire large quantities of ash are produced and distributed in soil surface. This mineralized organic matter can induce important environmental problems, including soil toxicity provoked by heavy metals leachates from ash. There is an extensive literature about heavy metals contents on ash in different species. However, it recently highlighted that the same species placed in different environments can respond diversely to same temperatures. This question is of major importance because temperature effects on severity can be a function of the plant communities instead of specie characteristics. These findings add a higher degree of complexity in the understanding of temperature effects on ash composition and consequent availability of heavy metals. The aim of this study is to compare the ash chemical heavy metal composition, Cobalt (Co), Chromium (Cr), Cooper (Cu), Silver (Ag), Lead (Pb), Nickel (Ni), Manganese (Mn) and Zinc (Zn), from Pinus sylvestris and Betula pendula, collected in key and representative areas of Lithuanian forests, located in southern, coastal and central part. Samples were collected from alive trees, taken to laboratory and air dried. Subsequently were crushed and submitted to muffle furnace at temperature of 550°C during two hours. The ash samples were digested and in a HNO3-HCl solution and then analysed with AAS. Comparisons between species and sites were performed with a Non-parametric one-way ANOVA‘s on rank transformed data followed by Tukey‘s HSD, significant at a p<0.05. Results showed significant difference between Co and Ag concentrations between Pinus sylvestris and Betula pendula. Also, significantly different concentrations of Pb, Cu, Ni and Mn were determined among investigated sites. No significant difference was found for Zn and Cr among investigated sites. Variation of metals between sites and stands can be explained by their age, flammability difference between plant communities and anthropogenic heavy metal load. These and other aspects will be discussed with more detail in the communication.

  2. Evaluation of Pollutant Leaching Potential of Coal Ashes for Recycling

    NASA Astrophysics Data System (ADS)

    Park, D.; Woo, N. C.; Kim, H.; Yoon, H.; Chung, D.

    2011-12-01

    By 2009, coal ashes produced from coal-based power plants in Korea have been reused as cement supplement materials; however, the rest is mostly disposed in landfills inside the plant properties. Continuous production of coal ashes and limited landfill sites require more recycles of coal ashes as base materials, specifically in constructions of roads and of huge industrial complex. Previous researches showed that coal ashes could contain various metals such as arsenic(As), chromium(Cr), lead(Pb), nickel(Ni), selenium(Se), etc. In this study, we collected four types of bottom ashes and two of fly ashes from four coal-based power plants. These ash samples were tested with distilled water through the column leaching process in oxidized conditions. The column test results were compared with those of total digestion, sequential extraction processes and TCLP. Concentrations of metals in outflows from columns are generally greater in fly ashes than in bottom ashes, specifically for As, Se, B, Sr and SO4. Only one fly ash (J2-F) shows high concentrations of arsenic and selenium in leachate. Sequential extraction results indicate that these metals are in readily soluble forms, such as adsorbed, carbonated, and reducible forms. Results of TCLP analysis indicate no potential contaminants leached from the ashes. In conclusion, recycling of coal combustion ashes could be encouraged with proper tests such as sequential and leaching experiments.

  3. Relating the physical properties of volcanic rocks to the characteristics of ash generated by experimental abrasion

    NASA Astrophysics Data System (ADS)

    Buckland, Hannah M.; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.

    2018-01-01

    Interactions between clasts in pyroclastic density currents (PDCs) generate volcanic ash that can be dispersed to the atmosphere in co-PDC plumes, and due to its small size, is far-travelled. We designed a series of experiments to determine the effects of pyroclast vesicularity and crystal content on the efficiency and type of ash generated by abrasion. Two different pyroclastic materials were used: (1) basaltic-andesite pyroclasts from Fuego volcano (Guatemala) with 26-46% vesicularity and high groundmass crystallinity and (2) tephri-phonolite Avellino pumice (Vesuvius, Italy) with 55-75% vesicularity and low groundmass crystallinity. When milled, both clast types produced bimodal grain size distributions with fine ash modes between 4 and 5φ (32-63 μm). Although the vesicular Avellino pumice typically generated more ash than the denser Fuego pyroclasts, the ash-generating potential of a single pyroclast was independent of density, and instead governed by heterogeneous crystal and vesicle textures. One consequence of these heterogeneities was to cause the vesicular Avellino clasts to split in addition to abrading, which further enhanced abrasion efficiency. The matrix characteristics also affected ash shape and componentry, which will influence the elutriation and transport properties of ash in the atmosphere. The experimental abrasion successfully replicated some of the characteristics of natural co-PDC ash samples, as shown by similarities in the Adherence Factor, which measures the proportion of attached matrix on phenocrysts, of both the experimentally generated ash and natural co-PDC ash samples. Our results support previous studies, which have shown that abrasion is an effective mechanism for generating fine ash that is similar in size ( 5φ; 30 μm) to that found in co-PDC deposits. We further show that both the abundance and nature (shape, density, components, size distribution) of those ash particles are strongly controlled by the matrix properties of the abraded pyroclasts.

  4. Gaseous fuels production from dried sewage sludge via air gasification.

    PubMed

    Werle, Sebastian; Dudziak, Mariusz

    2014-07-01

    Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic. © The Author(s) 2014.

  5. Fermentation and chemical treatment of pulp and paper mill sludge

    DOEpatents

    Lee, Yoon Y; Wang, Wei; Kang, Li

    2014-12-02

    A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

  6. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  7. Resuspension of ash after the 2014 phreatic eruption at Ontake volcano, Japan

    NASA Astrophysics Data System (ADS)

    Miwa, Takahiro; Nagai, Masashi; Kawaguchi, Ryohei

    2018-02-01

    We determined the resuspension process of an ash deposit after the phreatic eruption of September 27th, 2014 at Ontake volcano, Japan, by analyzing the time series data of particle concentrations obtained using an optical particle counter and the characteristics of an ash sample. The time series of particle concentration was obtained by an optical particle counter installed 11 km from the volcano from September 21st to October 19th, 2014. The time series contains counts of dust particles (ash and soil), pollen, and water drops, and was corrected to calculate the concentration of dust particles based on a polarization factor reflecting the optical anisotropy of particles. The dust concentration was compared with the time series of wind velocity. The dust concentration was high and the correlation coefficient with wind velocity was positive from September 28th to October 2nd. Grain-size analysis of an ash sample confirmed that the ash deposit contains abundant very fine particles (< 30 μm). Simple theoretical calculations revealed that the daily peaks of the moderate wind (a few m/s at 10 m above the ground surface) were comparable with the threshold wind velocity for resuspension of an unconsolidated deposit with a wide range of particle densities. These results demonstrate that moderate wind drove the resuspension of an ash deposit containing abundant fine particles produced by the phreatic eruption. Histogram of polarization factors of each species experimentally obtained. The N is the number of analyzed particles.

  8. Discussion on 'characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption' by Lu et al.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James C. Hower; Bruno Valentim; Irena J. Kostova

    2008-03-15

    Mercury capture by coal-combustion fly ash is a function of the amount of Hg in the feed coal, the amount of carbon in the fly ash, the type of carbon in the fly ash (including variables introduced by the rank of the feed coal), and the flue gas temperature at the point of ash collection. In their discussion of fly ash and Hg adsorption, Lu et al. (Energy Fuels 2007, 21, 2112-2120) had some fundamental flaws in their techniques, which, in turn, impact the validity of analyzed parameters. First, they used mechanical sieving to segregate fly ash size fractions. Mechanicalmore » sieving does not produce representative size fractions, particularly for the finest sizes. If the study samples were not obtained correctly, the subsequent analyses of fly ash carbon and Hg cannot accurately represent the size fractions. In the analysis of carbon forms, it is not possible to accurately determine the forms with scanning electron microscopy. The complexity of the whole particles is overlooked when just examining the outer particle surface. Examination of elements such as Hg, present in very trace quantities in most fly ashes, requires careful attention to the analytical techniques. 36 refs., 3 figs., 1 tab.« less

  9. Quantity, composition and water contamination potential of ash produced under different wildfire severities.

    PubMed

    Santín, Cristina; Doerr, Stefan H; Otero, Xosé L; Chafer, Chris J

    2015-10-01

    Wildfires frequently threaten water quality through the transfer of eroded ash and soil into rivers and reservoirs. The ability to anticipate risks for water resources from wildfires is fundamental for implementing effective fire preparedness plans and post-fire mitigation measures. Here we present a new approach that allows quantifying the amount and characteristics of ash generated under different wildfire severities and its respective water contamination potential. This approach is applied to a wildfire in an Australian dry sclerophyll eucalypt forest, but can be adapted for use in other environments. The Balmoral fire of October 2013 affected 12,694 ha of Sydney's forested water supply catchment. It produced substantial ash loads that increased with fire severity, with 6, 16 and 34 Mg ha(-1) found in areas affected by low, high and extreme fire severity, respectively. Ash bulk density was also positively related to fire severity. The increase with fire severity in the total load and bulk density of the ash generated is mainly attributed to a combination of associated increases in (i) total amount of fuel affected by fire and (ii) contribution of charred mineral soil to the ash layer. Total concentrations of pollutants and nutrients in ash were mostly unrelated to fire severity and relatively low compared to values reported for wildfire ash in other environments (e.g. 4.0-7.3mg As kg(-1); 2.3-4.1 B mg kg(-1); 136-154 P mg kg(-1)). Solubility of the elements analysed was also low, less than 10% of the total concentration for all elements except for B (6-14%) and Na (30-50%). This could be related to a partial loss of soluble components by leaching and/or wind erosion before the ash sampling (10 weeks after the fire and before major ash mobilisation by water erosion). Even with their relatively low concentrations of potential pollutants, the substantial total ash loads found here represent a water contamination risk if transported into the hydrological network during severe erosion events. For example, up to 4 Mg of ash-derived P could be delivered into a single water supply reservoir. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Microscopy Characterization of Silica-Rich Agrowastes to be used in Cement Binders: Bamboo and Sugarcane Leaves.

    PubMed

    Roselló, Josefa; Soriano, Lourdes; Santamarina, M Pilar; Akasaki, Jorge L; Melges, José Luiz P; Payá, Jordi

    2015-10-01

    Agrowastes are produced worldwide in huge quantities and they contain interesting elements for producing inorganic cementing binders, especially silicon. Conversion of agrowastes into ash is an interesting way of yielding raw material used in the manufacture of low-CO2 binders. Silica-rich ashes are preferred for preparing inorganic binders. Sugarcane leaves (Saccharum officinarum, SL) and bamboo leaves (Bambusa vulgaris, BvL and Bambusa gigantea, BgL), and their corresponding ashes (SLA, BvLA, and BgLA), were chosen as case studies. These samples were analyzed by means of optical microscopy, Cryo-scanning electron microscopy (SEM), SEM, and field emission scanning electron microscopy. Spodograms were obtained for BvLA and BgLA, which have high proportions of silicon, but no spodogram was obtained for SLA because of the low silicon content. Different types of phytoliths (specific cells, reservoirs of silica in plants) in the studied leaves were observed. These phytoliths maintained their form after calcination at temperatures in the 350-850°C range. Owing to the chemical composition of these ashes, they are of interest for use in cements and concrete because of their possible pozzolanic reactivity. However, the presence of significant amounts of K and Cl in the prepared ashes implies a limitation of their applications.

  11. National Coal Quality Inventory (NACQI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale,more » and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.« less

  12. Physicochemical and toxicological profiling of ash from the 2010 and 2011 eruptions of Eyjafjallajökull and Grímsvötn volcanoes, Iceland using a rapid respiratory hazard assessment protocol.

    PubMed

    Horwell, C J; Baxter, P J; Hillman, S E; Calkins, J A; Damby, D E; Delmelle, P; Donaldson, K; Dunster, C; Fubini, B; Kelly, F J; Le Blond, J S; Livi, K J T; Murphy, F; Nattrass, C; Sweeney, S; Tetley, T D; Thordarson, T; Tomatis, M

    2013-11-01

    The six week eruption of Eyjafjallajökull volcano in 2010 produced heavy ash fall in a sparsely populated area of southern and south eastern Iceland and disrupted European commercial flights for at least 6 days. We adopted a protocol for the rapid analysis of volcanic ash particles, for the purpose of informing respiratory health risk assessments. Ash collected from deposits underwent a multi-laboratory physicochemical and toxicological investigation of their mineralogical parameters associated with bio-reactivity, and selected in vitro toxicology assays related to pulmonary inflammatory responses. Ash from the eruption of Grímsvötn, Iceland, in 2011 was also studied. The results were benchmarked against ash from Soufrière Hills volcano, Montserrat, which has been extensively studied since the onset of eruptive activity in 1995. For Eyjafjallajökull, the grain size distributions were variable: 2-13 vol% of the bulk samples were <4 µm, with the most explosive phases of the eruption generating abundant respirable particulate matter. In contrast, the Grímsvötn ash was almost uniformly coarse (<3.5 vol%<4 µm material). Surface area ranged from 0.3 to 7.7 m2 g(-1) for Eyjafjallajökull but was very low for Grímsvötn (<0.6 m2 g(-1)). There were few fibre-like particles (which were unrelated to asbestos) and the crystalline silica content was negligible in both eruptions, whereas Soufrière Hills ash was cristobalite-rich with a known potential to cause silicosis. All samples displayed a low ability to deplete lung antioxidant defences, showed little haemolysis and low acute cytotoxicity in human alveolar type-1 like epithelial cells (TT1). However, cell-free tests showed substantial hydroxyl radical generation in the presence of hydrogen peroxide for Grímsvötn samples, as expected for basaltic, Fe-rich ash. Cellular mediators MCP-1, IL-6, and IL-8 showed chronic pro-inflammatory responses in Eyjafjallajökull, Grímsvötn and Soufrière Hills samples, despite substantial differences in the sample mineralogy and eruptive styles. The value of the pro-inflammatory profiles in differentiating the potential respiratory health hazard of volcanic ashes remains uncertain in a protocol designed to inform public health risk assessment, and further research on their role in volcanic crises is warranted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Evaluation of ash from some tropical plants of Nigeria for the control of Sclerotium rolfsii Sacc. on wheat (Triticum aestivum L.).

    PubMed

    Enikuomehin, O A; Ikotun, T; Ekpo, E J

    1998-01-01

    Eleven ash samples, from organs of nine tropical plants, were screened for their abilities to inhibit mycelial growth and sclerotial germination of a Nigerian isolate of Sclerotium rolfsii on agar and in the soil. Ten ash samples showed some activity against mycelial growth of S. rolfsii in vitro. Ash samples from Delonix regia stem wood, Mangifera indica leaf and Vernonia amygdalina leaf were most effective as each totally inhibited mycelial growth of S. rolfsii in vitro. Ocimum gratissimum leaf ash, D. regia wood ash and Musa paradisiaca flower bract ash inhibited sclerotial germination on agar. Nine ash samples protected seeds against pre-emergence rot. Ash from M. indica leaf, V. amygdalina leaf and Azadirachta indica leaf protected seedlings against post-emergence infection. Eichornia crassipes ash, which was ineffective in vitro, offered some protection to seeds in soil against pre-emergence rot. The study demonstrates potentials of ash samples from tropical plants in control of S. rolfsii on wheat.

  14. Fire severity effects on ash extractable Total Phosphorous

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Úbeda, Xavier; Martin, Deborah

    2010-05-01

    Phosphorous (P) is a crucial element to plant nutrition and limits vegetal production. The amounts of P in soil are lower and great part of this nutrient is absorbed or precipitated. It is well known that fire has important implications on P cycle, that can be lost throughout volatilization, evacuated with the smoke, but also more available to transport after organic matter mineralization imposed by the fire. The release of P depends on ash pH and their chemical and physical characteristics. Fire temperatures impose different severities, according to the specie affected and contact time. Fire severity is often evaluated by ash colour and this is a low-cost and excellent methodology to assess the fire effects on ecosystems. The aim of this work is study the ash properties physical and chemical properties on ash extractable Total Phosphorous (TP), collected in three wildfires, occured in Portugal, (named, (1) Quinta do Conde, (2) Quinta da Areia and (3) Casal do Sapo) composed mainly by Quercus suber and Pinus pinaster trees. The ash colour was assessed using the Munsell color chart. From all three plots we analyzed a total of 102 ash samples and we identified 5 different ash colours, ordered in an increasing order of severity, Very Dark Brown, Black, Dark Grey, Very Dark Grey and Light Grey. In order to observe significant differences between extractable TP and ash colours, we applied an ANOVA One Way test, and considered the differences significant at a p<0.05. The results showed that significant differences in the extractable TP among the different ash colours. Hence, to identify specific differences between each ash colour, we applied a post-hoc Fisher LSD test, significant at a p<0.05. The results obtained showed significant differences between the extractable TP from Very dark Brown and Black ash, produced at lower severities, in relation to Dark Grey, Very Dark Grey and Light Grey ash, generated at higher severities. The means of the first group were higher than the observed in the second one. This indicates that ash produced lower temperatures release in solution higher amounts of TP. These divergences occur due temperature of combustion, affected specie, ash pH values and CaCO3 content, which affects the quantity of this element in solution. Discussions about these effects will be accurate in the communication.

  15. Arsenic and selenium capture by fly ashes at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Antonia Lopez-Anton; Mercedes Diaz-Somoano; D. Alan Spears

    2006-06-15

    Arsenic and selenium compounds may be emitted to the environment during coal conversion processes, although some compounds are retained in the fly ashes, in different proportions depending on the characteristics of the ashes and process conditions. The possibility of optimizing the conditions to achieve better trace element retention appears to be an attractive, economical option for reducing toxic emissions. This approach requires a good knowledge of fly ash characteristics and a thorough understanding of the capture mechanism involved in the retention. In this work the ability of two fly ashes, one produced in pulverized coal combustion and the other inmore » fluidized bed combustion, to retain arsenic and selenium compounds from the gas phase in coal combustion and coal gasification atmospheres was investigated. To explore the possible simultaneous retention of mercury, the influence of the unburned coal particle content was also evaluated. Retention capacities between 2 and 22 mg g{sup -1} were obtained under different conditions. The unburned coal particle content in the fly ash samples does not significantly modify retention capacities. 21 refs., 6 figs., 5 tabs.« less

  16. Furthering the investigation of eruption styles through quantitative shape analyses of volcanic ash particles

    NASA Astrophysics Data System (ADS)

    Nurfiani, D.; Bouvet de Maisonneuve, C.

    2018-04-01

    Volcanic ash morphology has been quantitatively investigated for various aims such as studying the settling velocity of ash for modelling purposes and understanding the fragmentation processes at the origin of explosive eruptions. In an attempt to investigate the usefulness of ash morphometry for monitoring purposes, we analyzed the shape of volcanic ash particles through a combination of (1) traditional shape descriptors such as solidity, convexity, axial ratio and form factor and (2) fractal analysis using the Euclidean Distance transform (EDT) method. We compare ash samples from the hydrothermal eruptions of Iwodake (Japan) in 2013, Tangkuban Perahu (Indonesia) in 2013 and Marapi (Sumatra, Indonesia) in 2015, the dome explosions of Merapi (Java, Indonesia) in 2013, the Vulcanian eruptions of Merapi in 2010 and Tavurvur (Rabaul, Papaua New Guinea) in 2014, and the Plinian eruption of Kelud (Indonesia) in 2014. Particle size and shape measurements were acquired from a Particle Size Analyzer with a microscope camera attached to the instrument. Clear differences between dense/blocky particles from hydrothermal or dome explosions and vesicular particles produced by the fragmentation of gas-bearing molten magma are well highlighted by conventional shape descriptors and the fractal method. In addition, subtle differences between dense/blocky particles produced by hydrothermal explosions, dome explosions, or quench granulation during phreatomagmatic eruptions can be evidenced with the fractal method. The combination of shape descriptors and fractal analysis is therefore potentially able to distinguish between juvenile and non-juvenile magma, which is of importance for eruption monitoring.

  17. Controls on the surface chemical reactivity of volcanic ash investigated with probe gases

    NASA Astrophysics Data System (ADS)

    Maters, Elena C.; Delmelle, Pierre; Rossi, Michel J.; Ayris, Paul M.; Bernard, Alain

    2016-09-01

    Increasing recognition that volcanic ash emissions can have significant impacts on the natural and human environment calls for a better understanding of ash chemical reactivity as mediated by its surface characteristics. However, previous studies of ash surface properties have relied on techniques that lack the sensitivity required to adequately investigate them. Here we characterise at the molecular monolayer scale the surfaces of ash erupted from Eyjafjallajökull, Tungurahua, Pinatubo and Chaitén volcanoes. Interrogation of the ash with four probe gases, trimethylamine (TMA; N(CH3)3), trifluoroacetic acid (TFA; CF3COOH), hydroxylamine (HA; NH2OH) and ozone (O3), reveals the abundances of acid-base and redox sites on ash surfaces. Measurements on aluminosilicate glass powders, as compositional proxies for the primary constituent of volcanic ash, are also conducted. We attribute the greater proportion of acidic and oxidised sites on ash relative to glass surfaces, evidenced by comparison of TMA/TFA and HA/O3 uptake ratios, in part to ash interaction with volcanic gases and condensates (e.g., H2O, SO2, H2SO4, HCl, HF) during the eruption. The strong influence of ash surface processing in the eruption plume and/or cloud is further supported by particular abundances of oxidised and reduced sites on the ash samples resulting from specific characteristics of their eruptions of origin. Intense interaction with water vapour may result in a higher fraction of oxidised sites on ash produced by phreatomagmatic than by magmatic activity. This study constitutes the first quantification of ash chemical properties at the molecular monolayer scale, and is an important step towards better understanding the factors that govern the role of ash as a chemical agent within atmospheric, terrestrial, aquatic or biotic systems.

  18. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments.

    PubMed

    Mõtlep, Riho; Sild, Terje; Puura, Erik; Kirsimäe, Kalle

    2010-12-15

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Predicting the ability to produce emerald ash borer: a comparison of riparian and upland ash forests in southern lower Michigan

    Treesearch

    Susan J. Crocker; Deborah G. McCullough; Nathan W. Siegert

    2009-01-01

    Concern for the future of ash trees in the United States has risen since the 2002 discovery of emerald ash borer (EAB) (Agrilus planipennis Fairmaire) in southeastern Michigan. The ability of ash forests in the Southern Lower Peninsula of Michigan to produce EAB was compared by physiographic class and stand size. Results showed that EAB production...

  20. Characterization and processing of heat treated aluminium matrix composite

    NASA Astrophysics Data System (ADS)

    Doifode, Yogesh; Kulkarni, S. G.

    2018-05-01

    The present study is carried out to determine density and porosity of Aluminium bagasse ash reinforced composite produced by powder metallurgy method. Bagasse ash is used as reinforcement material having high silica and alumina contents and varied from 5 weight % to 40 weight%. The manufactured composite is heat treated, the main objective of heat treatment is to prepare the material structurally and physically fit for engineering application. The results showed that the density decreases with percentage increase in reinforcement of bagasse ash from 2.6618 gm/cm3 to 1.9830 gm/cm3 with the minimum value at 40 weight% bagasse ash without heat treatment whereas after heat treatment density of composite increases due filling up of voids and porous holes. Heat treatment processing is the key to this improvement, with the T6 heat treated composite to convene the reduced porosity of composite. Consequently aluminium metal matrix composite combines the strength of the reinforcement to achieve a combination of desirable properties not available in any single material. It may observe that porosity in case of powder metallurgy samples showed more porosity portions compare to the casting samples. In order to achieve optimality in structure and properties of Bagasse ash-reinforcement heat treatment techniques have evolved. Generally, the ceramic reinforcements increase the density of the base alloy during fabrication of composites. However, the addition of lightweight reinforcements reduces the density of the hybrid composites. The results also showed that, the density varies from to with minimum value at 40 wt. % BA. The results of the statistical analysis showed that there are significant differences among the means of each property of the composites at various levels of BA replacement .It was concluded that bagasse ash can be used as reinforcement and the produced composites have low density and heat treatment reduces porosity which could be used in automobile industry for the production of engine parts.

  1. Sustainable asphalt pavement: Application of slaughterhouse waste oil and fly ash in asphalt binder

    NASA Astrophysics Data System (ADS)

    Sanchez Ramos, Jorge Luis

    Increasing energy costs, lack of sufficient natural resources and the overwhelming demand for petroleum has stimulated the development of alternative binders to modify or replace petroleum-based asphalt binders. In the United States, the petroleum-based asphalt binder is mainly used to produce the Hot Mix Asphalt (HMA). There are approximately 4000 asphalt plants that make 500 million tons of asphalt binder valued at roughly 3 billion/year. The instability of the world's oil market has pushed oil prices to more than 80 per barrel in 2012, which increased the cost of asphalt binder up to $570 per ton. Therefore, there is a timely need to find alternative sustainable resources to the asphalt binder. This paper investigates the possibility of the partial replacement of the asphalt binder with slaughterhouse waste and/or fly ash. In order to achieve this objective, the asphalt binder is mixed with different percentages of waste oil and/or fly ash. In order to investigate the effect of these additives to the performance of the asphalt binder, a complete performance grade test performed on multiple samples. The results of the performance grade tests are compared with a control sample to observe how the addition of the waste oil and/or fly ash affects the sample. Considering the increasing cost and demand of asphalt, the use of slaughterhouse waste oil and/or fly ash as a partial replacement may result in environmental and monetary improvements in the transportation sector.

  2. Lube oil-dependent ash chemistry on soot oxidation reactivity in a gasoline direct-injection engine

    DOE PAGES

    Choi, Seungmok; Seong, Heeje

    2016-09-30

    Gasoline particulate filters (GPF) are considered an enabling technology to meet stringent particulate matter (PM) regulations for gasoline direct-injection (GDI) engines, which are known to produce significant PM emissions. While ash loading in filters has been recognized to be detrimental in filter performance by increasing back pressure, increased ash fractions in soot were observed to enhance soot oxidation. In this study, GDI soot samples derived from different gasoline/lube oil blends were evaluated to identify potential promoting factors when formulated lube oils were dosed into gasoline fuel. Ca-derived ash enhanced soot oxidation remarkably, while P- and ZDDP-derived ash deteriorated soot oxidation.more » It is apparent that the promoting effect of lube oil-derived ash is due mainly to the Ca component that is the most abundant among additive components in lube oil. Bulk and surface analyses of these ash compounds indicate that Ca-derived ash would be complex compounds, while the contribution of CaSO 4, which is one of the most abundant ash compounds from diesel engines, is almost negligible. For the validation of the ash promoting impact in filters, the regeneration experiments were compared for a TWC-coated GPF in a GDI engine before and after ash loading was performed. The pressure drop of the ash-loaded GPF decreased noticeably in the initial regeneration stage and it increased gradually, whereas that of no ash-loaded GPF increased gradually without any reduction. So, it is concluded that the ash layer in the GPF assisted soot oxidation in the early regeneration stage when it was in close contact with soot.« less

  3. Lube oil-dependent ash chemistry on soot oxidation reactivity in a gasoline direct-injection engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Seungmok; Seong, Heeje

    Gasoline particulate filters (GPF) are considered an enabling technology to meet stringent particulate matter (PM) regulations for gasoline direct-injection (GDI) engines, which are known to produce significant PM emissions. While ash loading in filters has been recognized to be detrimental in filter performance by increasing back pressure, increased ash fractions in soot were observed to enhance soot oxidation. In this study, GDI soot samples derived from different gasoline/lube oil blends were evaluated to identify potential promoting factors when formulated lube oils were dosed into gasoline fuel. Ca-derived ash enhanced soot oxidation remarkably, while P- and ZDDP-derived ash deteriorated soot oxidation.more » It is apparent that the promoting effect of lube oil-derived ash is due mainly to the Ca component that is the most abundant among additive components in lube oil. Bulk and surface analyses of these ash compounds indicate that Ca-derived ash would be complex compounds, while the contribution of CaSO 4, which is one of the most abundant ash compounds from diesel engines, is almost negligible. For the validation of the ash promoting impact in filters, the regeneration experiments were compared for a TWC-coated GPF in a GDI engine before and after ash loading was performed. The pressure drop of the ash-loaded GPF decreased noticeably in the initial regeneration stage and it increased gradually, whereas that of no ash-loaded GPF increased gradually without any reduction. So, it is concluded that the ash layer in the GPF assisted soot oxidation in the early regeneration stage when it was in close contact with soot.« less

  4. Leachability of uranium and other elements from freshly erupted volcanic ash

    USGS Publications Warehouse

    Smith, D.B.; Zielinski, R.A.; Rose, W.I.

    1982-01-01

    A study of leaching of freshly erupted basaltic and dacitic air-fall ash and bomb fragment samples, unaffected by rain, shows that glass dissolution is the dominant process by which uranium is initially mobilized from air-fall volcanic ash. Si, Li, and V are also preferentially mobilized by glass dissolution. Gaseous transfer followed by fixation of soluble uranium species on volcanic-ash particles is not an important process affecting uranium mobility. Gaseous transfer, however, may be important in forming water-soluble phases, adsorbed to ash surfaces, enriched in the economically and environmentally important elements Zn, Cu, Cd, Pb, B, F, and Ba. Quick removal of these adsorbed elements by the first exposure of freshly erupted ash to rain and surface water may pose short-term hazards to certain forms of aquatic and terrestrial life. Such rapid release of material may also represent the first step in transportation of economically important elements to environments favorable for precipitation into deposits of commercial interest. Ash samples collected from the active Guatemalan volcanoes Fuego and Pacaya (high-Al basalts) and Santiaguito (hornblende-hypersthene dacite); bomb fragments from Augustine volcano (andesite-dacite), Alaska, and Heimaey (basalt), Vestmann Islands, Iceland; and fragments of "rhyolitic" pumice from various historic eruptions were subjected to three successive leaches with a constant water-to-ash weight ratio of 4:1. The volcanic material was successively leached by: (1) distilled-deionized water (pH = 5.0-5.5) at room temperature for 24 h, which removes water-soluble gases and salts adsorbed on ash surfaces during eruption; (2) dilute HCl solution (pH = 3.5-4.0) at room temperature for 24 h, which continues the attack initiated by the water and also attacks acid-soluble sulfides and oxides; (3) a solution 0.05 M in both Na,CO, and NaHCO, (pH = 9.9) at 80°C for one week, which preferentially dissolves volcanic glass. The first two leaches mimic interaction of ash with rain produced in the vicinity of an active eruption. The third leach accelerates the effect of prolonged contact of volcanic ash with alkaline ground water present during ash diagenesis.

  5. Using Cementitious Materials Such as Fly Ash to Replace a Part of Cement in Producing High Strength Concrete in Hot Weather

    NASA Astrophysics Data System (ADS)

    Turuallo, Gidion; Mallisa, Harun

    2018-03-01

    The use of waste materials in concrete gave many advantages to prove the properties of concrete such as its workability, strength and durability; as well to support sustaianable development programs. Fly ash was a waste material produced from coal combustion. This research was conducted to find out the effect of fly ash as a part replacement of cement to produce high strength concrete. The fly ash, which was used in this research, was taken from PLTU Mpanau Palu, Central Sulawesi. The water-binder ratio used in this research was 0.3 selected from trial mixes done before. The results of this research showed that the strength of fly ash concretes were higher than concrete with PCC only. The replacement of cement with fly ash concrete could be up to 20% to produce high strength concrete.

  6. Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Maozhe; Blanc, Denise, E-mail: denise.blanc-biscarat@insa-lyon.fr; Gautier, Mathieu

    2013-05-15

    Highlights: ► We used sewage sludge ashes in ready-mix concrete recipe. ► SSAs were used as a substitution of cement. ► Compressive strength of ready-mix concrete incorporating SSAs were similar as blank one. ► Contaminants leaching from concrete monoliths were above threshold limits. - Abstract: Ashes produced by thermal treatments of sewage sludge exhibit common properties with cement. For example, major elements present in SSA are the same of major elements of cement. Hydraulic properties of SSA are quite the same of cement ones. They may therefore be used to substitute part of cement in concrete or other cementitious materials,more » provided that technical prescriptions are satisfied and that environmental risks are not significantly increased. The objective of the present study was to determine the appropriate substitution ratios to satisfy both technical and environmental criteria. In a first step, the elemental composition and particle size distribution of the ashes were measured. Then the ashes were used along with Portland cement and sand at different ratios of substitution to produce mortar and concrete which were cured for up to 90 days into parallelepipedic or cylindrical monoliths. The mechanical properties of the monoliths were measured using standard procedures for flexural and compressive strengths, and compared to blanks containing no ashes. The environmental criteria were assessed using leaching tests conducted according to standard protocols both on the ashes and the monoliths, and compared to the blanks. Results showed that the characteristics of the ashes ranged between those of cement and sand because of their larger particle size and higher content in SiO{sub 2} as compared to cement. The monoliths made with the highest substitution ratios exhibited a significant decrease in flexural and compressive strengths. However, when the ashes were used in partial substitution of cement at appropriate ratios, the concrete monoliths exhibited similar compressive strengths as the blank samples. The most appropriate ratios were found to be 10% substitution of cement and 2% substitution of sand. The leaching tests conducted on the ashes in their powdery form revealed that amongst the potential contaminants analyzed only Mo and Se were leached at concentrations above the threshold limits considered. The leaching tests conducted on concrete monoliths showed however that none of the contaminants monitored, including Mo and Se, were leached above the limits. In addition, whether concrete recipe incorporated ashes or not, similar concentrations were measured for each potential contaminant in the leachates. This result indicated that mixing ash with cement and sand to produce mortar or concrete induced a stabilization of Mo and Se and thereby constituted in itself a good treatment of the ashes.« less

  7. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash.

    PubMed

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-07-15

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO₂. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials' thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Using a Scheffé-based mixture design, targeting applications with low thermal conductivity, light weight and moderate strength and allowing for a maximum of five percent by mass of rice hull ash in consideration of the waste utilization of all three components, it has been determined that an 85-10-5 by weight ratio of CFA-CBA-RHA activated with 80-20 by mass ratio of 12 M NaOH and sodium silicate (55% H₂O, modulus = 3) produced geopolymers with a compressive strength of 18.5 MPa, a volumetric weight of 1660 kg/m³ and a thermal conductivity of 0.457 W/m-°C at 28-day curing when pre-cured at 80 °C for 24 h. For this study, the estimates of embodied energy and CO₂ were all below 1.7 MJ/kg and 0.12 kg CO₂/kg, respectively.

  8. Slags and ashes from municipal waste incineration in Poland - mineralogical and chemical composition

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr; Michalik, Marek

    2013-04-01

    In the next few years there will be a large change in the waste management system in Poland. Its primary aim will be reduction of the amount of landfilled waste by enhancing level of recycling, waste segregation, composting of biomass and incineration. The biggest investment during this transformation is construction of nine incinerators with assumed slags production around 200 thousand tons per year. Slag production is accompanied by fly ash generating. This ash can be a valuable raw material as fly ash from the power industry. Waste management system transformation will cause big increase in slag production in comparison to the present amount and will require taking necessary steps to ensure environmental safety. For this purpose, studies of slags and fly ashes in terms of environmental risk and potential impact on human health are significant. The object of the study are fly ashes and slags produced in the biggest municipal waste incineration power plant in Poland. Two series of samples obtained in municipal waste incineration process were studied in order to characterize mineralogical and chemical composition and to determine the concentrations of heavy metals and their possible negative environmental impact. Characteristics of these materials will be the basis for determining their value in application, for example in building industry. Mineralogical characteristic of slags was based on X-ray diffraction. Characteristic of structures and forms of occurrence of mineral phases was based on the optical microscopy and SEM imaging coupled with EDS analysis. Chemical analysis were performed using ICP-MS/ICP-AES methods. They allowed to follow variability between studied samples and gave basic information about metals. Metals in samples of slag and ashes are present as component of mineral phases and in the form of metallic inclusions in glass or minerals. Potentially hazardous concentrations for environment are observed for copper (330-4900ppm), zinc (1500-8100ppm) and lead (50-2400ppm). All samples are rich in amorphous phase. Municipal slags are rich in Si, Ca and Al, whereas Fe and Na are minor component. Fly ashes from incineration of waste are similar to Ca-type ashes from power industry. They are rich in Ca and Si and they contain minor amount of Al, K and Na. The main mineral components of municipal slags are quartz, gehlenite, calcite and lime. They are present in all samples. Smaller quantities of apatite, wollastonite, feldspar, anhydrite and magnetite were also detected. In addition to main components, two groups of associated minerals can be identified. The first group is represented by wollastonite and apatite, whereas in the second group magnetite and feldspar or anhydrite were detected. Moreover, if feldspar is present in the sample there is no anhydrite. Also the presence of magnetite is correlated with the absence of wollastonite and apatite. In all fly ash samples quartz, calcite, anhydrite, lime and halite or sylvite are present. Minor components are periclase, portlandite and syngenite, wollastonite and meionite. Here we can observe also some dependence. When halite and syngenite are present in sample there is no wollastonite and when gelenite is present, portlandite is absent.

  9. Characterization of humidity-controlling porous ceramics produced from coal fly ash and waste catalyst by co-sintering

    NASA Astrophysics Data System (ADS)

    Lin, Kae-Long; Ma, Chih-Ming; Lo, Kang-Wei; Cheng, Ta-Wui

    2018-04-01

    In this study, the following operating conditions were applied to develop humidity-controlling porous ceramic (HCPC) products: sintering temperatures of 800-1000 °C and percentages of coal fly ash in waste catalyst of 0%-40%. The HCPC samples then underwent a flexural strength test, to determine their quality according to the Chinese National Standards (CNS 3298). Their microstructures, crystal structures, and pore volume were determined in terms of equilibrium moisture content, water vapor adsorption/desorption, and hygroscopic sorption properties over 48 h. Nitrogen adsorption/desorption isotherms showed a hydrophobic behavior (type H3 isotherm). The water vapor adsorption/desorption and hygroscopic sorption properties satisfied the JIS A1470 intensity specification for building materials (>29 g/m2). At sintering temperatures of 950-1000 °C, HCPC samples for coal fly ash containing 20%-30% waste catalyst met the JIS A1470 intensity specifications for building materials (<29 g/m2).

  10. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures.

    PubMed

    Collivignarelli, Carlo; Sorlini, Sabrina

    2002-01-01

    This study is aimed at assessing the feasibility of concrete production using stabilized m.s.w. (municipal solid waste) incineration fly ashes in addition to natural aggregates. The tested fly ashes were washed and milled, then stabilized by a cement-lime process and finally were reused as a "recycled aggregate" for cement mixture production, in substitution of a natural aggregate (with dosage of 200-400 kg m(-3)). These mixtures, after curing, were characterized with conventional physical-mechanical tests (compression, traction, flexure, modulus of elasticity, shrinkage). In samples containing 200 kg(waste) m(-3)(concrete), a good compressive strength was achieved after 28 days of curing. Furthermore, concrete leaching behavior was evaluated by means of different leaching tests, both on milled and on monolithic samples. Experimental results showed a remarkable reduction of metal leaching in comparison with raw waste. In some cases, similar behavior was observed in "natural" concrete (produced with natural aggregates) and in "waste containing" concrete.

  11. Potentially harmful elements released by volcanic ashes: Examples from the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Cangemi, Marianna; Speziale, Sergio; Madonia, Paolo; D'Alessandro, Walter; Andronico, Daniele; Bellomo, Sergio; Brusca, Lorenzo; Kyriakopoulos, Konstantinos

    2017-05-01

    We have performed leaching experiments on the fine (< 2 mm) particulate sampled in seven active and quiescent volcanic systems in the Mediterranean area. We reacted the particulate both in pure water and in a synthetic gastric solution. The amount of As, Mn, Pb, Ba, U and Ni leached by pure water exceeded the MAC limits for drinking water in all the materials under investigation. We defined a tolerable ash intake index (TAI) to evaluate the impact of ash ingestion, and we find that 0.2 g and 12 g of ingested fine ash from Vesuvius and Vulcano are enough to exceed the safety limits for Pb and As. Six grams of fine ashes from Stromboli are sufficient to overstep the safety limits for As. Based on our mineralogical characterisation of the particulate, we expect that the submillimetric ash fraction, with a higher surface/volume ratio, releases a greater relative amount of trace metals, which are concentrated in the thin surface layer produced by the reaction of the pristine volcanic particles with coexisting volcanic gases. This means that our measurements represent lower bounds to the actual amount of metal released in aqueous solutions by the volcanic ashes from the locations under investigation. Our results place the first constraints on the mobilisation of toxic elements from volcanic ash, which are necessary to assess the associated potential health risk of volcanic areas.

  12. Identification and evolution of the juvenile component in 2004-2005 Mount St. Helens ash: Chapter 29 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Rowe, Michael C.; Thornber, Carl R.; Kent, Adam J.R.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Petrologic studies of volcanic ash are commonly used to identify juvenile volcanic material and observe changes in the composition and style of volcanic eruptions. During the 2004-5 eruption of Mount St. Helens, recognition of the juvenile component in ash produced by early phreatic explosions was complicated by the presence of a substantial proportion of 1980-86 lava-dome fragments and glassy tephra, in addition to older volcanic fragments possibly derived from crater debris. In this report, we correlate groundmass textures and compositions of glass, mafic phases, and feldspar from 2004-5 ash in an attempt to identify juvenile material in early phreatic explosions and to distinguish among the various processes that generate and distribute ash. We conclude that clean glass in the ash is derived mostly from nonjuvenile sources and is not particularly useful for identifying the proportion of juvenile material in ash samples. High Li contents (>30 μg/g) in feldspars provide a useful tracer for juvenile material and suggest an increase in the proportion of the juvenile component between October 1 and October 4, 2004, before the emergence of hot dacite on the surface of the crater on October 11, 2004. The presence of Li-rich feldspar out of equilibrium (based on Liplagioclase/melt partitioning) with groundmass and bulk dacite early in the eruption also suggests vapor enrichment in the initially erupted dacite. If an excess vapor phase was, indeed, present, it may have provided a catalyst to initiate the eruption. Textural and compositional comparisons between dome fault gouge and the ash produced by rockfalls, rock avalanches, and vent explosions indicate that the fault gouge is a likely source of ash particles for both types of events. Comparison of the ash from vent explosions and rockfalls suggests that the fault gouge and new dome were initially heterogeneous, containing a mixture of conduit and crater debris and juvenile material, but became increasingly homogeneous, dominated by juvenile material, by early January 2005.

  13. Coal desulfurization by a microwave process. Technical progress report, February 1981-May 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavitsanos, P.D.; Golden, J.A.; Bleiler, K.W.

    1981-01-01

    Desulfurization experiments were carried out using the 6KW, 2450 MHz Flow Reactor System. The program has been directed toward the combination of physical separation and microwave exposure with NaOH to increase sulfur removal. The following treatment sequence has been used with good results: (1) expose 1/4 to 1 in. raw coal to microwaves; (2) crush the treated coal and separate the sample into float/sink fractions; (3) add NaOH to the float fraction and re-expose the sample to microwaves; and (4) wash, add NaOH and expose to microwaves. This procedure has produced up to 89% sulfur removal and as low asmore » 0.31 numberS/10/sup 6/ Btu. Ash analyses on these samples showed as high as 40% reduction. The calorific value was increased in almost all samples. Data on sulfur, ash and calorific values are summarized.« less

  14. Fly-ash geo-polymer foamed concrete

    NASA Astrophysics Data System (ADS)

    Kargin, Aleksey; Baev, Vladimir; Mashkin, Nikolay

    2017-01-01

    In recent years, the interest of researchrs in using fly-ash as a raw material for the geo-polymer synthesis is increasing. Kuzbass region (in Russia) has a large amount of ash wastes generated, which defined the relevace of the study performed in this paper. Results of investigating load-bearing capacity of structural insulating material produced by geo-polymerization of fly-ash of Kemerovo hydro-electric power plant with the addition of complex activator are described in the paper. Hydrogen peroxide solution was used as the foaming agent. The activation time, the temperature of isothermal holding and hardening in normal conditions for all samples were constant. The compressive strength and the mean density of geo-polymer foamed concrete were determined. The influence of the material composition on its properties was revealed. It is found that of the geo-polymer foamed concrete with the optimum composition has hardness of 1,1-3,5 MPa at the density of 400 to 900 kg/m3. Thus, the production of the fly-ash geo-polymer concretes and mortars is feasible, justified and promising.

  15. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia--the impact of new circulating fluidized bed technology.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-03-01

    Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated - two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides and for (40)K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide ((210)Pb and (40)K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides ((238)U, (226)Ra, (210)Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, (226)Ra and (228)Ra. A part of (226)Ra input activity, unlike (228)Ra, was undetectable in the solid ash fractions of the boiler. Most probably it is released to the surrounding environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Volcanic Ash fall Impact on Vegetation, Colima 2005

    NASA Astrophysics Data System (ADS)

    Garcia, M. G.; Martin, A.; Fonseca, R.; Nieto, A.; Radillo, R.; Armienta, M.

    2007-05-01

    An ash sampling network was established arround Colima Volcano in 2005. Ash fall was sampled on the North, Northeast, East, Southeast, South, Southwest and West of the volcano. Samples were analyzed for ash components, geochemistry and leachates. Ash fall ocurred on April (12), May (10, 23), June (2, 6, 9, 10, 12, 14), July (27), September (27), October (23) and November (24). Most of the ash is made of andesitic dome-lithics but shows diferences in crystal, juvenile material and lithic content. In May, some samples contained grey and dark pumice (scoria). Texture varies from phi >4 to phi 0. Leachate concentration were low: SO4 (7.33-54.19) Cl- (2.29-4.97) and F- (0.16-0.37). During 2005, Colima Volcano's ash fall rotted some of the guava and peach fruits and had a drying effect on spearment and epazote plants. Even these small ash amounts could have hindered sugar cane and agave growth.

  17. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts

    NASA Astrophysics Data System (ADS)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea

    2015-04-01

    Of the five classical factors of soil formation, climate, parent material, topography, time, organisms, and recently recognized human activity, it is the latter factor which discretely includes fire and post-burn impact. However, it is considered that soil undergoing fire just experience a temporary removal of the top organic horizon, thus slightly modified and often labeled as 'temporarily disturbed' soil or soil 'under restoration/rehabilitation'. In fact the suggested seventh factor, post-burned produced ash, can act both dependently and independently of the other soil forming factors (Levin et al., 2013; Certini 2013). They are interdependent in cases where ash influences occur on time scales similar to 'natural' soil formation (Keesstra et ai., 2014) such as changes in vegetation. On the other hand, in post-fire areas a strong dependency is expected between soil-water retention mechanism, climate and topography. Wild-land fires exert many changes on the physical, chemical, mineralogical, biological, and morphological properties of soil that, in turn, affect the soil's hydrology and nutrient flux, modifying its ability to support vegetation and resist erosion. The ash produced by forest fires is a complex mixture composed of organic and inorganic particles characterized by vary physical-chemical and morphological properties. The importance of this study is straightforwardly related to the frequency and large-scales wildfires in Mediterranean region. In fact, wildfires are major environmental and land management concern in the world, where the number and severity of wildfires has increased during the past decades (Bodi, 2013). Certini (2013) assumed that cumulatively all of the vegetated land is burned in about 31 years annually affecting 330-430 Mha (over 3% of the Earth's surface) and wide range of land cover types worldwide including forests, peatlands, shrublands and grasslands. Whereas, the fire is identified as an important factor in soil formation, the produced ash has significant and not always constructive pedological, ecological, hydrological and geomorphological effects and impacts (Shakesby, 2011). Abundant scientific information is assembled either from control fires by collecting samples before and after wildfire event, or conducting laboratory experiments exanimating data under truly isolated conditions (Lugassi et al., 2013). However, an integration and synthesis of the knowledge about ash including deeper understanding of inter-correlation between chemical, physical and morphological compounds in open post-burn environment and its possible interactions in soil formation or impact on soil composition are highly needed. The main aim of the presented study was to advance the science of soil-fire relationship by recognizing the remains ash as a new soil-forming factor, on par with the traditionally recognized factors: parent material, topography, time, climate, organisms, and recently recognized human activity as the sixth factor. This research was conducted to develop new methods to assess impacts and quantify the contributions/influences of post-fire products, mainly ash, on soil composition and soil properties in post-burned environment. We conducted several controlled experiments using 40 soil samples (typical Mediterranean Rendzina soil, pH 6.84, a grayish-brown, humus- and free calcium carbonate- rich, intra-zonal). The samples include bare soils and different types and loads of forest litter, were exposed to different temperatures (200° C, 400° C and 600° C) in a muffle furnace for 2 hours (Pereira et al. 2011) as fire temperature plays a key role in determining ash properties. The ash produced at a low temperatures (50% carbon and retains many of the structural characteristics of the parent material. At higher temperatures, the residue ash is greyish, consisted of very fine particles that preserve almost none of the original structural characteristics of the fuel (Woods and Balfour, 2008) creating gradient of layered ash with diverse physicochemical properties. The obtained post-burned soils were processed as following: 1. loss of mass (ML); 2. ash layers sampling - the produced ash layers were collected separately; 3. grinding; 4. color - the Munsell colour chart; 5. spectroscopy- each sample was analysed by two spectrometer, first is the Ocean Optics USB4000 (0.35-1.05 μm) portable system across visible and near infrared (VNIR) region using contact Halogen illumination, second is the Bruker Tensor II (2.35-25 μm) across mid infrared (MIR) region by Furrier transform IR (FTIR) system using the Pike EasiDiff diffuse reflectance spectroscopy (DRS) optical bench; 6. pH and electrical conductivity (EC) including total dissolve solids (TDS) and salinity (S) measurements. The result of high concentration of carbonates, oxides, and hydroxides of basic cations decreasing EC levels caused by high pH (>8) there the CaCO3 surfaces are negatively charged and variation of mineralogical composition introducing very detailed list of minerals (high concentration of Nickeline NiAs, Cuprite Cu2O, Rehodochrosite MnCO3 and Nitrolite Na2Al2Si3O102H2O in the top-layers and mixtures e.g. Kaolinite/Smectite (85% Kaol.) Al2Si2O5(OH)4+(Na,Ca)0.33(Al,Mg)2Si4O10(OH)2nH2O and Mesolite + Hydroxyapophyllite Na2Ca2Al6Si9O308H2O + KCa4Si8O20(OH,F)8H2O between ash and post-burn top-soil layers. Bodí M.B., Muñoz-Santa I., Armero C., Doerr S.H., Mataix-Solera J., Cerdà A., 2013. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena, vol. 108, pp. 14-24. Certini G., Scalenghe R., Woods W.W., 2013. The impact of warfare on the soil environment. Earth-Science Reviews, vol. 127, pp. 1-15. Keesstra S.D., Temme A.J.A.M., Schoorl J.M., Visser S.M., 2014. Evaluating the hydrological component of new catchment-scale sediment delivery model LAPSUS-D. Geomorphology, vol. 212, pp. 97-107. Levin N., Levental S., Morag H., 2013. The effect of wildfires on vegetation cover and dune activity in Australia's desert dunes: a multisensor analysis International Journal of Wildland Fire, vol. 21 (4), pp. 459-475. Lugassi R., Ben-Dor E., Eshel G., 2013. Reflectance spectroscopy of soils post-heating'Assessing thermal alterations in soil minerals. Geoderma, vol. 231, pp. 268-279. Pereira P., Úbeda X., Martin D., Mataix-Solera J., Guerrero C. 2011. Effects of a low prescribed fire in ash water soluble elements in a Cork Oak (Quercus suber) forest located in Northeast of Iberian Peninsula, Environmental Research, vol. 111(2), pp. 237-247. Shakesby R.A., 2011. Post-wildfire soil erosion in the Mediterranean: Review and future research directions Earth Science Reviews, vol. 105, pp. 71-100. Woods, S.W., Balfour, V.N. 2010. The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils, Journal of Hydrology, vol. 393, pp. 274-286.

  18. Physical-durable performance of concrete incorporating high loss on ignition-fly ash

    NASA Astrophysics Data System (ADS)

    Huynh, Trong-Phuoc; Ngo, Si-Huy; Hwang, Chao-Lung

    2018-04-01

    This study investigates the feasibility of using raw fly ash with a high loss on ignition in concrete. The fly ash-free concrete samples were prepared with different water-to-binder (w/b) ratios of 0.35, 0.40, and 0.45, whereas the fly ash concrete samples were prepared with a constant w/b of 0.40 and with various fly ash contents (10%, 20%, and 30%) as a cement substitution. The physical properties and durability performance of the concretes were evaluated through fresh concrete properties, compressive strength, strength efficiency of cement, ultrasonic pulse velocity, and resistance to sulfate attack. Test results show that the w/b ratio affected the concrete properties significantly. The incorporation of fly ash increased the workability and reduced the unit weight of fresh concrete. In addition, the fly ash concrete samples containing up to 20% fly ash exhibited an improved strength at long-term ages. Further, all of the fly ash concrete samples showed a good durability performance with ultrasonic pulse velocity value of greater than 4100 m/s and a comparable sulfate resistance to the no-fly ash concrete.

  19. The environmental status of coal ash produced in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, L.A.

    1996-12-31

    From the 6.1 million tons of coal ash produced by Israeli power stations during the 1982--95 period, 65% were utilized for cement production, 18% served to construct embankments around the Hadera coastal power station, and the remaining 17% were disposed to the sea, according to permits issued by the governmental authorities. The coal imported to Israel is typically low-sulfur, beneficiated bituminous coal, and ash produced from it is alkaline and characterized by low concentrations of trace elements. According to the results of leaching tests, the potential release of trace elements from the ash is low, thus there is only amore » minor risk of contaminating groundwater under disposal or utilization sites. However, while the annual ash production increases and is planned to reach one million tons in the year 2000, the promotion of ash employment for new applications, for example as a road base material or for shore extension projects, is still prevented by the absence of regulations fixing the environmental status of coal ash.« less

  20. NDA issues with RFETS vitrified waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurd, J.; Veazey, G.

    1998-12-31

    A study was conducted at Los Alamos National Laboratory (LANL) for the purpose of determining the feasibility of using a segmented gamma scanner (SGS) to accurately perform non-destructive analysis (NDA) on certain Rocky Flats Environmental Technology Site (RFETS) vitrified waste samples. This study was performed on a full-scale vitrified ash sample prepared at LANL according to a procedure similar to that anticipated to be used at RFETS. This sample was composed of a borosilicate-based glass frit, blended with ash to produce a Pu content of {approximately}1 wt %. The glass frit was taken to a degree of melting necessary tomore » achieve a full encapsulation of the ash material. The NDA study performed on this sample showed that SGSs with either {1/2}- or 2-inch collimation can achieve an accuracy better than 6 % relative to calorimetry and {gamma}-ray isotopics. This accuracy is achievable, after application of appropriate bias corrections, for transmissions of about {1/2} % through the waste form and counting times of less than 30 minutes. These results are valid for ash material and graphite fines with the same degree of plutonium particle size, homogeneity, sample density, and sample geometry as the waste form used to obtain the results in this study. A drum-sized thermal neutron counter (TNC) was also included in the study to provide an alternative in the event the SGS failed to meet the required level of accuracy. The preliminary indications are that this method will also achieve the required accuracy with counting times of {approximately}30 minutes and appropriate application of bias corrections. The bias corrections can be avoided in all cases if the instruments are calibrated on standards matching the items.« less

  1. Fly Ash-based Geopolymer Lightweight Concrete Using Foaming Agent

    PubMed Central

    Al Bakri Abdullah, Mohd Mustafa; Hussin, Kamarudin; Bnhussain, Mohamed; Ismail, Khairul Nizar; Yahya, Zarina; Razak, Rafiza Abdul

    2012-01-01

    In this paper, we report the results of our investigation on the possibility of producing foam concrete by using a geopolymer system. Class C fly ash was mixed with an alkaline activator solution (a mixture of sodium silicate and NaOH), and foam was added to the geopolymeric mixture to produce lightweight concrete. The NaOH solution was prepared by dilute NaOH pellets with distilled water. The reactives were mixed to produce a homogeneous mixture, which was placed into a 50 mm mold and cured at two different curing temperatures (60 °C and room temperature), for 24 hours. After the curing process, the strengths of the samples were tested on days 1, 7, and 28. The water absorption, porosity, chemical composition, microstructure, XRD and FTIR analyses were studied. The results showed that the sample which was cured at 60 °C (LW2) produced the maximum compressive strength for all tests, (11.03 MPa, 17.59 MPa, and 18.19 MPa) for days 1, 7, and 28, respectively. Also, the water absorption and porosity of LW2 were reduced by 6.78% and 1.22% after 28 days, respectively. The SEM showed that the LW2 sample had a denser matrix than LW1. This was because LW2 was heat cured, which caused the geopolymerization rate to increase, producing a denser matrix. However for LW1, microcracks were present on the surface, which reduced the compressive strength and increased water absorption and porosity. PMID:22837687

  2. Fly ash-based geopolymer lightweight concrete using foaming agent.

    PubMed

    Al Bakri Abdullah, Mohd Mustafa; Hussin, Kamarudin; Bnhussain, Mohamed; Ismail, Khairul Nizar; Yahya, Zarina; Razak, Rafiza Abdul

    2012-01-01

    In this paper, we report the results of our investigation on the possibility of producing foam concrete by using a geopolymer system. Class C fly ash was mixed with an alkaline activator solution (a mixture of sodium silicate and NaOH), and foam was added to the geopolymeric mixture to produce lightweight concrete. The NaOH solution was prepared by dilute NaOH pellets with distilled water. The reactives were mixed to produce a homogeneous mixture, which was placed into a 50 mm mold and cured at two different curing temperatures (60 °C and room temperature), for 24 hours. After the curing process, the strengths of the samples were tested on days 1, 7, and 28. The water absorption, porosity, chemical composition, microstructure, XRD and FTIR analyses were studied. The results showed that the sample which was cured at 60 °C (LW2) produced the maximum compressive strength for all tests, (11.03 MPa, 17.59 MPa, and 18.19 MPa) for days 1, 7, and 28, respectively. Also, the water absorption and porosity of LW2 were reduced by 6.78% and 1.22% after 28 days, respectively. The SEM showed that the LW2 sample had a denser matrix than LW1. This was because LW2 was heat cured, which caused the geopolymerization rate to increase, producing a denser matrix. However for LW1, microcracks were present on the surface, which reduced the compressive strength and increased water absorption and porosity.

  3. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash

    PubMed Central

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-01-01

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Using a Scheffé-based mixture design, targeting applications with low thermal conductivity, light weight and moderate strength and allowing for a maximum of five percent by mass of rice hull ash in consideration of the waste utilization of all three components, it has been determined that an 85-10-5 by weight ratio of CFA-CBA-RHA activated with 80-20 by mass ratio of 12 M NaOH and sodium silicate (55% H2O, modulus = 3) produced geopolymers with a compressive strength of 18.5 MPa, a volumetric weight of 1660 kg/m3 and a thermal conductivity of 0.457 W/m-°C at 28-day curing when pre-cured at 80 °C for 24 h. For this study, the estimates of embodied energy and CO2 were all below 1.7 MJ/kg and 0.12 kg CO2/kg, respectively. PMID:28773702

  4. Glass import and production in Hispania during the early medieval period: The glass from Ciudad de Vascos (Toledo)

    PubMed Central

    2017-01-01

    One hundred and forty-one glass fragments from medieval Ciudad de Vascos (Toledo, Spain) were analysed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The glasses fall into three types according to the fluxing agents used: mineral natron, soda-rich plant ash, and a combination of soda ash and lead. The natron glasses can be assigned to various established primary production groups of eastern Mediterranean provenance. Different types of plant ash glasses indicate differences in the silica source as well as the plant ash component, reflecting changing supply mechanisms. While the earlier plant ash groups can be related to Islamic glasses from the Near East, both in terms of typology and composition, the chemical signature of the later samples appear to be specific to glass from the Iberian Peninsula. This has important implications for our understanding of the emerging glass industry in Spain and the distribution patterns of glass groups and raw materials. The plant ash that was used for the Vascos glasses is rich in soda with low levels of potash, similar to ash produced in the eastern Mediterranean. It could therefore be possible that Levantine plant ash was imported and used in Islamic period glass workshops in Spain. Unlike central and northern Europe where an independent glass industry based on potassium-rich wood ash developed during the Carolingian period, the prevalence of soda ash and soda ash lead glass on the Iberian Peninsula indicates its commercial and technological interconnection with the Islamic east. Our study thus traces several stages leading to the development of a specifically Spanish primary glassmaking industry. PMID:28746419

  5. Environmental impact assessment of wood ash utilization in forest road construction and maintenance--A field study.

    PubMed

    Oburger, Eva; Jäger, Anna; Pasch, Alexander; Dellantonio, Alex; Stampfer, Karl; Wenzel, Walter W

    2016-02-15

    The ever increasing use of wood material as fuel for green energy production requires innovative, environmentally safe strategies for recycling of the remaining wood ash. Utilizing wood ash in forest road construction and maintenance to improve mechanical stability has been suggested as a feasible recycling option. To investigate the environmental impact of wood ash application in forest road maintenance, a two-year field experiment was conducted at two Austrian forest sites (Kobernausserwald (KO) (soil pH 5.5) and Weyregg (WE) (pH 7.7)) differing in their soil chemical properties. Two different ashes, one produced by grate incineration (GA) and the other by fluidized bed incineration in a mixture with 15 vol% burnt lime (FBA), were incorporated in repeated road sections at a 15:85% (V/V) ash-to-soil rate. Leaching waters from the road body were collected and analyzed for 32 environmentally relevant parameters over two years. Upon termination of the experiment, sub-road soil samples were collected and analyzed for ash-related changes in soil chemistry. Even though a larger number of parameters was affected by the ash application at the alkaline site (WE), we observed the most pronounced initial increases of pH as well as Al, As, Fe, Mn, Ni, Co, Cu, Mo, and NO2(−) concentrations in leachates beneath GA-treated road bodies at Kobernausserwald due to the lower soil buffer capacity at this site. Despite the observed effects our results indicate that, when specific requirements are met (i.e. appropriate ash quality, sufficient soil buffer capacity below the road body, and single time-point ash incorporation within several decades), wood ash application in forest road construction is generally environmentally acceptable.

  6. Mineral content of the honey produced in Zulia state, Venezuela.

    PubMed

    Sulbarán de Ferrer, Betzabé; Ojeda de Rodríguez, Graciela; Peña, Jorge; Martínez, Janeth; Morán, María

    2004-09-01

    The mineral content of the honey produced in five zones of the Zulia state, Venezuela, during dry and rainy seasons was determined. The analyzed elements were: sodium, potassium (by emission spectroscopy), calcium, magnesium, copper, iron, manganese (by atomic absorption spectroscopy), phosphorus (phosphate ions, by colorimetric method), and ash content of raw honey samples directly collected from different beekeepers. The mean values for Na, K, Ca, Mg, Cu, Fe, Mn, and P were 353+84; 1774+138; 237+66; 52+24; 0.76+0.43; 13.5+10.23; 0.92+0.42 and 1642+323 mg/kg respectively. The mean ash content was 0.431+0.15%. Potassium was the most abundant of the elements determined. This results confirm that Zulian honey can be considered a good source of minerals.

  7. Aluminum-fly ash metal matrix composites for automotive parts. [Reports for April 1 to June 30, 1999, and July 1 to September 30, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, David; Purgert, Robert; Rhudy, Richard

    1999-10-15

    Some highlights are: (1) During this quarter's field trials, sand mold castings of parts and permanent mold tensile testing bars, K mold bars, and ingots were made from aluminum alloy-fly ash melts. (2) Another objective was met, i.e., to use class ''F'' type precipitator fly ash consisting of particle sizes less than 100 microns. It was possible to pour the composite melt into the sand mold through a filter. (3) Trials were run to determine the required amount of the wetting agent, magnesium, to ensure appropriate mixing of the aluminum alloy and fly ash. The magnesium content required to mixmore » ''F'' fly ash was much lower compared to that required to mix hybrid ''C-F'' fly ash in similar melts. Fly ash particles of less than 100 microns were mixed in aluminum melt. Large scale field trials were undertaken at Eck Industries with the goal of standardizing procedures for producing aluminum-fly ash composite melts and to analyze the structure and properties of the resulting material. Limited testing of tensile properties has been done on pressure die cast parts, and attempts are underway to improve the distribution of fly ash in both sand cast and pressure die cast samples. Eck Industries performed radiographic, heat treatment, and tensile tests on permanent mold cast tensile test bars. After fly ash mixing experiments, the Lanxide high speed-high shear mixer (originally designed for mixing Al-SiC melts) was employed in an attempt to avoid fly ash agglomeration. It led to demixing (instead of deagglomerating) of some fly ash. However, the permanent mold tensile bars poured after high shear mixing displayed good distribution of fly ash in castings. A modified impeller design is being considered for high speed-high shear mixing of aluminum-fly ash melts.« less

  8. Investigation of polycyclic aromatic hydrocarbon content in fly ash and bottom ash of biomass incineration plants in relation to the operating temperature and unburned carbon content.

    PubMed

    Košnář, Zdeněk; Mercl, Filip; Perná, Ivana; Tlustoš, Pavel

    2016-09-01

    The use of biomass fuels in incineration power plants is increasing worldwide. The produced ashes may pose a serious threat to the environment due to the presence of polycyclic aromatic hydrocarbons (PAHs), because some PAHs are potent carcinogens, mutagens and teratogens. The objective of this study was to investigate the content of total and individual PAHs in fly and bottom ash derived from incineration of phytomass and dendromass, because the data on PAH content in biomass ashes is limited. Various operating temperatures of incineration were examined and the relationship between total PAH content and unburned carbon in ashes was also considered. The analysis of PAHs was carried out in fly and bottom ash samples collected from various biomass incineration plants. PAH determination was performed using gas chromatography coupled with mass spectrometry. The correlations between the low, medium and high molecular weight PAHs and each other in ashes were conducted. The relationship between PAH content and unburned carbon, determined as a loss on ignition (L.O.I.) in biomass ashes, was performed using regression analysis. The PAH content in biomass ashes varied from 41.1±1.8 to 53,800.9±13,818.4ng/g dw. This variation may be explained by the differences in boiler operating conditions and biomass fuel composition. The correlation coefficients for PAHs in ash ranged from 0.8025 to 0.9790. The regression models were designed and the coefficients of determination varied from 0.908 to 0.980. The PAH content in ash varied widely with fuel type and the effect of operating temperature on PAH content in ash was evident. Fly ashes contained higher amounts of PAHs than bottom ashes. The low molecular weight PAHs prevailed in tested ashes. The exponential relationship between the PAH content and L.O.I. for fly ashes and the linear for bottom ashes was observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Characterization of black carbon and organic contaminants in wood ash from different feedstocks and types of furnaces

    NASA Astrophysics Data System (ADS)

    Merino, Agustin; Rey-Salgueiro, Ledicia; Omil, Beatriz; Martinez-Carballo, Elena; Simal-Gandara, Jesus

    2015-04-01

    Due to their important concentration of nutrient and charcoal, wood ash from biomass power plants (WA) can be used as a fertilizer and organic amendment in intensively managed soils. Unlike biochar produced in under anoxic conditions, the nature of the organic compounds present in wood ash has been scarcely studied. Due to the incomplete combustion, wood ash may contain a wide range of organic compounds, from charred to highly condensed refractory biomass, which determines the possibilities of WA as an organic amendment. In addition, the possible environmental risk of this practice must be assessed by determining the content of water-soluble and insoluble organic contaminants. due to the incomplete combustion of organic matter, organic pollutants, such as Polycyclic Aromatic Hydrocarbons (PAHs), can be formed and can remain in the combustion residue. Also, the four alkyl benzene volatile organic compounds (benzene, toluene, ethylbenzene, and the ortho, para, and meta xylenes) can be formed, depending on certain conditions during combustion. For this study 15 biomass power stations in Spain were selected. In all of them the feedstock is pine or eucalyptus branches and bark. Nine of them were bottom wood ash generated from wood fires furnaces, obtained from grate-fired or water-tube boilers. Whereas four of them were fly ash, obtained in cyclone separators. The samples were collected following a common procedure to ensure the representiveness of the sampling. Bottom ash samples were fraccionated in three fractions: < 2mm, 2-5 mm and > 5mm. Each fraction was characterized for organic matter and BTEX, styrene and total petroleum hydrocarbons Polycyclic Aromatic Hydrocarbons. For each analyzes, three replicates were analyzed per sample. Mixes wood ash shows higher amounts of charred material than fly ash. The 13 C CPMAS NMR, DSC/TG and FTIR analysis showed the loss of carbohydrates and aliphatic constituents and revealed the formation of aromatic compounds. The atomic H/C ratios, NMR spectra, DSC and FTIR confirmed the presence of condensed structures, specially in the coarse particles. However, the different wood ash showed an important range of properties revealing the presence from charred material to charcoal containing condensed structures (H/C ratios lower than 0.6; aromaticity higher than 80 % and T50-DSC higher than 500 °C). Typical organic pollutants including those water-soluble such as BTEX plus styrene, but also those water-insoluble such as polycyclic aromatic hydrocarbons (PAHs), together with aliphatic hydrocarbons, were examined in the ash. Their contents were related to degree of combustion of the biomass, determined through the content and composition of the organic matter in the wood ash. The sum of BTEX plus styrene varied from non-detected to 30 mg/kg, and the total amounts of PAHs (total PAHs) ranged between non-detected and 422 µg/kg, not exceeding the regulated limits. This research provides basic information for the evaluation of the environmental risk and potential uses of WW incinerator bottom ash The results demonstrate the important variability in the charred material properties of the different power plants and size-particles. The organic compounds contents are also variable, but in all cases were levels of pollutants in all the samples were below the limits for both soil and industrial use (Environmental Protection Agency in the European Union and the USA.

  10. Deposition and immersion-mode nucleation of ice by three distinct samples of volcanic ash

    NASA Astrophysics Data System (ADS)

    Schill, G. P.; Genareau, K.; Tolbert, M. A.

    2015-07-01

    Ice nucleation of volcanic ash controls both ash aggregation and cloud glaciation, which affect atmospheric transport and global climate. Previously, it has been suggested that there is one characteristic ice nucleation efficiency for all volcanic ash, regardless of its composition, when accounting for surface area; however, this claim is derived from data from only two volcanic eruptions. In this work, we have studied the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman microscopy coupled to an environmental cell. Ash from the Fuego (basaltic ash, Guatemala), Soufrière Hills (andesitic ash, Montserrat), and Taupo (Oruanui eruption, rhyolitic ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. In the present study, we find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice from 225 to 235 K at ice saturation ratios of 1.05 ± 0.01, comparable to the mineral dust proxy kaolinite. Since depositional ice nucleation will be more important at colder temperatures, fine volcanic ash may represent a global source of cold-cloud ice nuclei. For immersion freezing relevant to mixed-phase clouds, however, only the Oruanui ash exhibited appreciable heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  11. 238Pu recovery and salt disposition from the molten salt oxidation process

    NASA Astrophysics Data System (ADS)

    Remerowski, M. L.; Stimmel, Jay J.; Wong, Amy S.; Ramsey, Kevin B.

    2000-07-01

    We have begun designing and optimizing our recovery and recycling processes by experimenting with samples of "spent salt" produced by MSO treatment of surrogate waste in the reaction vessel at the Naval Surface Warfare Center-Indian Head. One salt was produced by treating surrogate waste containing pyrolysis ash spiked with cerium. The other salt contains residues from MSO treatment of materials similar to those used in 238Pu processing, e.g., Tygon tubing, PVC bagout bags, HDPE bottles. Using these two salt samples, we will present results from our investigations.

  12. Physico-chemical properties of biodiesel manufactured from waste frying oil using domestic adsorbents

    PubMed Central

    Ismail, Samir Abd-elmonem A; Ali, Rehab Farouk M

    2015-01-01

    We have evaluated the efficiency of sugar cane bagasse ash (SCBA), date palm seed carbon (DPSC), and rice husk ash (RHA) as natural adsorbents and compared them with the synthetic adsorbent Magnesol XL for improving the quality of waste frying oil (WFO) and for the impact on the physicochemical properties of the obtained biodiesel. We measured moisture content, refractive index (RI), density, acid value (AV), iodine value (IV), peroxide value (PV), and saponification value (SV), as well as fatty acid profile. Purification treatments with various levels of adsorbents caused significant (P ≤ 0.05) decreases in free fatty acids (FFAs), PVs, and IVs. The highest yields (86.45 and 87.80%) were observed for biodiesel samples produced from WFO treated with 2% Magnesol and 3% of RHA, respectively, followed by samples treated with 2 and 3% of DPSC or RHA. Pre-treatments caused a significant decrease in the content of C 18:2 linoleic acids, consistent with a significant increase in the content of monounsaturated and saturated fatty acids (MUFA) in the treated samples. The highest oxidation value (COX) (1.30) was observed for biodiesel samples produced from WFO without purification treatments. However, the lowest values (0.44–0.73) were observed for biodiesel samples produced from WFO treated with different levels of adsorbents. Our results indicate that pre-treatments with different levels of adsorbents regenerated the quality of WFO and improved the quality of the obtained biodiesel. PMID:27877789

  13. Physico-chemical properties of biodiesel manufactured from waste frying oil using domestic adsorbents

    NASA Astrophysics Data System (ADS)

    Ismail, Samir Abd-elmonem A.; Ali, Rehab Farouk M.

    2015-06-01

    We have evaluated the efficiency of sugar cane bagasse ash (SCBA), date palm seed carbon (DPSC), and rice husk ash (RHA) as natural adsorbents and compared them with the synthetic adsorbent Magnesol XL for improving the quality of waste frying oil (WFO) and for the impact on the physicochemical properties of the obtained biodiesel. We measured moisture content, refractive index (RI), density, acid value (AV), iodine value (IV), peroxide value (PV), and saponification value (SV), as well as fatty acid profile. Purification treatments with various levels of adsorbents caused significant (P ≤ 0.05) decreases in free fatty acids (FFAs), PVs, and IVs. The highest yields (86.45 and 87.80%) were observed for biodiesel samples produced from WFO treated with 2% Magnesol and 3% of RHA, respectively, followed by samples treated with 2 and 3% of DPSC or RHA. Pre-treatments caused a significant decrease in the content of C 18:2 linoleic acids, consistent with a significant increase in the content of monounsaturated and saturated fatty acids (MUFA) in the treated samples. The highest oxidation value (COX) (1.30) was observed for biodiesel samples produced from WFO without purification treatments. However, the lowest values (0.44-0.73) were observed for biodiesel samples produced from WFO treated with different levels of adsorbents. Our results indicate that pre-treatments with different levels of adsorbents regenerated the quality of WFO and improved the quality of the obtained biodiesel.

  14. COAL-FIRED POWER PLANT ASH UTILIZATION IN THE TVA REGION

    EPA Science Inventory

    The report gives results of a study: (1) to summarize (a) production of coal ash nationally and by TVA's 12 major ash-producing steam/electric power plants, and (b) the physical/chemical characteristics of coal ash that affect ash disposal and/or use; (2) to review reported metho...

  15. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects

    USGS Publications Warehouse

    Bodi, Merche B.; Martin, Deborah; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Cerda, Artemi; Mataix-Solera, Jorge

    2014-01-01

    Fire transforms fuels (i.e. biomass, necromass, soil organic matter) into materials with different chemical and physical properties. One of these materials is ash, which is the particulate residue remaining or deposited on the ground that consists of mineral materials and charred organic components. The quantity and characteristics of ash produced during a wildland fire depend mainly on (1) the total burned fuel (i.e. fuel load), (2) fuel type and (3) its combustion completeness. For a given fuel load and type, a higher combustion completeness will reduce the ash organic carbon content, increasing the relative mineral content, and hence reducing total mass of ash produced. The homogeneity and thickness of the ash layer can vary substantially in space and time and reported average thicknesses range from close to 0 to 50 mm. Ash is a highly mobile material that, after its deposition, may be incorporated into the soil profile, redistributed or removed from a burned site within days or weeks by wind and water erosion to surface depressions, footslopes, streams, lakes, reservoirs and, potentially, into marine deposits.Research on the composition, properties and effects of ash on the burned ecosystem has been conducted on material collected in the field after wildland and prescribed fires as well as on material produced in the laboratory. At low combustion completeness (typically T < 450 °C), ash is organic-rich, with organic carbon as the main component. At high combustion completeness (T > 450 °C), most organic carbon is volatized and the remaining mineral ash has elevated pH when in solution. It is composed mainly of calcium, magnesium, sodium, potassium, silicon and phosphorous in the form of inorganic carbonates, whereas at T > 580 °C the most common forms are oxides. Ash produced under lower combustion completeness is usually darker, coarser, and less dense and has a higher saturated hydraulic conductivity than ash with higher combustion completeness, although physical reactions with CO2 and when moistened produce further changes in ash characteristics.As a new material present after a wildland fire, ash can have profound effects on ecosystems. It affects biogeochemical cycles, including the C cycle, not only within the burned area, but also globally. Ash incorporated into the soil increases temporarily soil pH and nutrient pools and changes physical properties such as albedo, soil texture and hydraulic properties including water repellency. Ash modifies soil hydrologic behavior by creating a two-layer system: the soil and the ash layer, which can function in different ways depending on (1) ash depth and type, (2) soil type and (3) rainfall characteristics. Key parameters are the ash's water holding capacity, hydraulic conductivity and its potential to clog soil pores. Runoff from burned areas carries soluble nutrients contained in ash, which can lead to problems for potable water supplies. Ash deposition also stimulates soil microbial activity and vegetation growth.Further work is needed to (1) standardize methods for investigating ash and its effects on the ecosystem, (2) characterize ash properties for specific ecosystems and wildland fire types, (3) determine the effects of ash on human and ecosystem health, especially when transported by wind or water, (4) investigate ash's controls on water and soil losses at slope and catchment scales, (5) examine its role in the C cycle, and (6) study its redistribution and fate in the environment.

  16. Ash aggregation enhanced by deposition and redistribution of salt on the surface of volcanic ash in eruption plumes.

    PubMed

    Mueller, Sebastian B; Ayris, Paul M; Wadsworth, Fabian B; Kueppers, Ulrich; Casas, Ana S; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B

    2017-03-31

    Interactions with volcanic gases in eruption plumes produce soluble salt deposits on the surface of volcanic ash. While it has been postulated that saturation-driven precipitation of salts following the dissolution of ash surfaces by condensed acidic liquids is a primary mechanism of salt formation during an eruption, it is only recently that this mechanism has been subjected to detailed study. Here we spray water and HCl droplets into a suspension of salt-doped synthetic glass or volcanic ash particles, and produce aggregates. Deposition of acidic liquid droplets on ash particles promotes dissolution of existing salts and leaches cations from the underlying material surface. The flow of liquid, due to capillary forces, will be directed to particle-particle contact points where subsequent precipitation of salts will cement the aggregate. Our data suggest that volcanically-relevant loads of surface salts can be produced by acid condensation in eruptive settings. Several minor and trace elements mobilised by surface dissolution are biologically relevant; geographic areas with aggregation-mediated ash fallout could be "hotspots" for the post-deposition release of these elements. The role of liquids in re-distributing surface salts and cementing ash aggregates also offers further insight into the mechanisms which preserve well-structured aggregates in some ash deposits.

  17. Ash aggregation enhanced by deposition and redistribution of salt on the surface of volcanic ash in eruption plumes

    PubMed Central

    Mueller, Sebastian B.; Ayris, Paul M.; Wadsworth, Fabian B.; Kueppers, Ulrich; Casas, Ana S.; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B.

    2017-01-01

    Interactions with volcanic gases in eruption plumes produce soluble salt deposits on the surface of volcanic ash. While it has been postulated that saturation-driven precipitation of salts following the dissolution of ash surfaces by condensed acidic liquids is a primary mechanism of salt formation during an eruption, it is only recently that this mechanism has been subjected to detailed study. Here we spray water and HCl droplets into a suspension of salt-doped synthetic glass or volcanic ash particles, and produce aggregates. Deposition of acidic liquid droplets on ash particles promotes dissolution of existing salts and leaches cations from the underlying material surface. The flow of liquid, due to capillary forces, will be directed to particle-particle contact points where subsequent precipitation of salts will cement the aggregate. Our data suggest that volcanically-relevant loads of surface salts can be produced by acid condensation in eruptive settings. Several minor and trace elements mobilised by surface dissolution are biologically relevant; geographic areas with aggregation-mediated ash fallout could be “hotspots” for the post-deposition release of these elements. The role of liquids in re-distributing surface salts and cementing ash aggregates also offers further insight into the mechanisms which preserve well-structured aggregates in some ash deposits. PMID:28361966

  18. Chemical and engineering properties of fired bricks containing 50 weight percent of class F fly ash

    USGS Publications Warehouse

    Chou, I.-Ming; Patel, V.; Laird, C.J.; Ho, K.K.

    2001-01-01

    The generation of fly ash during coal combustion represents a considerable solid waste disposal problem in the state of Illinois and nationwide. In fact, the majority of the three million tons of fly ash produced from burning Illinois bituminous coals is disposed of in landfills. The purpose of this study was to obtain a preliminary assessment of the technical feasibility of mitigating this solid waste problem by making fired bricks with the large volume of fly ash generated from burning Illinois coals. Test bricks were produced by the extrusion method with increasing amounts (20-50% by weight) of fly ash as a replacement for conventional raw materials. The chemical characteristics and engineering properties of the test bricks produced with and without 50 wt% of fly ash substitutions were analyzed and compared. The properties of the test bricks containing fly ash were at least comparable to, if not better than, those of standard test bricks made without fly ash and met the commercial specifications for fired bricks. The positive results of this study suggest that further study on test bricks with fly ash substitutions of greater than 50wt% is warranted. Successful results could have an important impact in reducing the waste disposal problem related to class F fly ash while providing the brick industry with a new low cost raw material. Copyright ?? 2001 Taylor & Francis.

  19. Treatability of stabilize landfill leachate by using pressmud ash as an adsorbent

    NASA Astrophysics Data System (ADS)

    Azme, N. N. Mohd; Murshed, M. F.

    2018-04-01

    Leachate is a liquid produced from the landfill that contains high concentration of heavy metals, chemicals and nutrient loading. The treatability of these contaminants are complicated since the current treatment technology are costly and site specific. Therefore, this study was conducted to evaluate the treatability of stabilized landfill leachate by using waste (pressmud ash) as an absorbent. Pressmud ash was prepared by burning at different temperature from 100 to 700 degree Celsius and test at 24 hours shaking time, pH 8, and 4000 rpm. Leachate samples were collected from municipal solid waste (MSW) Pulau Burung Sanitary Landfill (PBSL) and were analyzed for heavy metal, COD, ammonia and colour. This study was performed in two phases i) leachate characteristic, ii) treatability assessment by using pressmud ash. Pressmud was sampled from the sugar mill, Malaysian Sugar Manufacturing (MSM) Sdn Bhd, Seberang Perai, Pulau Pinang. The pressmud with 400°C are highly potential material with a low cost which can be a good adsorbent was capable reducing efficiencies of COD (60.76%), ammonia (64.37%) and colour (35.78%) from real wastewater leachate. Pressmud showed good sorption capability. Surface modification with burning greatly enhanced the reducing efficiency of sugar waste based adsorbent with adsorption efficiency.

  20. Pulmonary epithelial response in the rat lung to instilled Montserrat respirable dusts and their major mineral components.

    PubMed

    Housley, D G; Bérubé, K A; Jones, T P; Anderson, S; Pooley, F D; Richards, R J

    2002-07-01

    The Soufriere Hills, a stratovolcano on Montserrat, started erupting in July 1995, producing volcanic ash, both from dome collapse pyroclastic flows and phreatic explosions. The eruptions/ash resuspension result in high concentrations of suspended particulate matter in the atmosphere, which includes cristobalite, a mineral implicated in respiratory disorders. To conduct toxicological studies on characterised samples of ash, together with major components of the dust mixture (anorthite, cristobalite), and a bioreactive mineral control (DQ12 quartz). Rats were challenged with a single mass (1 mg) dose of particles via intratracheal instillation and groups sacrificed at one, three, and nine weeks. Acute bioreactivity of the particles was assessed by increases in lung permeability and inflammation, changes in epithelial cell markers, and increase in the size of bronchothoracic lymph nodes. Data indicated that respirable ash derived from pyroclastic flows (20.1% cristobalite) or phreatic explosion (8.6% cristobalite) had minimal bioreactivity in the lung. Anorthite showed low bioreactivity, in contrast to pure cristobalite, which showed progressive increases in lung damage. Results suggests that either the percentage mass of cristobalite particles present in Montserrat ash was not sufficient as a catalyst in the lung environment, or its surface reactivity was masked by the non-reactive volcanic glass components during the process of ash formation.

  1. The effects of fire temperatures on water soluble heavy metals.

    NASA Astrophysics Data System (ADS)

    Pereira, P.; Ubeda, X.; Martin, D. A.

    2009-04-01

    Fire ash are majority composed by base cations, however the mineralized organic matter, led also available to transport a higher quantity of heavy metals that potentially could increase a toxicity in soil and water resources. The amount availability of these elements depend on the environment were the fire took place, burning temperature and combusted tree specie. The soil and water contamination from fire ash has been neglected, because the majority of studies are focused on base cations dynamic. Our research, beside contemplate major elements, is focused in to study the behavior of heavy metals released from ash slurries created at several temperatures under laboratory environment, prescribed fires and wildland fires. The results presented in these communication are preliminary and study the presence of Aluminium (Al3+), Manganese (Mn2+), Iron (Fe2+) and Zinc (Zn2+) of ash slurries generated in laboratory environment at several temperatures (150°, 200°, 250°, 300°, 350°, 400°,450°, 500°, 550°C) from Quercus suber, Quercus robur, Pinus pinea and Pinus pinaster and from a low medium temperature prescribed fire in a forest dominated Quercus suber trees. We observed that ash produced at lower and medium temperatures (<300-400°C) released in water higher contents of Al3+ than unburned sample, especially in Quercus species and Mn2+ in Pinus ashes. Fe2+ and Zn2+ showed a reduced concentration in test solution in relation to unburned sample at all temperatures of exposition. In the results obtained from prescribed fire, we identify a higher release of Al3+ and a decrease of the remain elements. The solubilization of these elements are related with pH levels and ash calcite content, because their ability to capture ions in solution. Moreover, the amount and the type of ions released in relation to unburned sample vary in each specie. In this study Al3+ release is related with Quercus species and Mn2+ with Pinus species. Fire ashes can be an environmental problem, because at long term can increase soil acidity. After all base cations have being leached, pH values decrease, and the heavy metals remaining in the ash are easily transported with unknown impacts on soil and water resources. Research is needed in the study at long term of the effects of fire in metals accumulation in soil resources, and all these aspects will be discussed. Keywords: Fire ash, heavy metals, Quercus suber, Quercus robur, Pinus pinea, Pinus pinaster, prescribed fire, pH, Calcite

  2. Physiological responses of emerald ash borer larvae to feeding on different ash species reveal putative resistance mechanisms and insect counter-adaptations.

    PubMed

    Rigsby, C M; Showalter, D N; Herms, D A; Koch, J L; Bonello, P; Cipollini, D

    2015-07-01

    Emerald ash borer, Agrilus planipennis Fairmaire, an Asian wood-boring beetle, has devastated ash (Fraxinus spp.) trees in North American forests and landscapes since its discovery there in 2002. In this study, we collected living larvae from EAB-resistant Manchurian ash (Fraxinus mandschurica), and susceptible white (Fraxinus americana) and green (Fraxinus pennsylvanica) ash hosts, and quantified the activity and production of selected detoxification, digestive, and antioxidant enzymes. We hypothesized that differences in larval physiology could be used to infer resistance mechanisms of ash. We found no differences in cytochrome P450, glutathione-S-transferase, carboxylesterase, sulfotransferase, and tryptic BApNAase activities between larvae feeding on different hosts. Despite this, Manchurian ash-fed larvae produced a single isozyme of low electrophoretic mobility that was not produced in white or green ash-fed larvae. Additionally, larvae feeding on white and green ash produced two serine protease isozymes of high electrophoretic mobility that were not observed in Manchurian ash-fed larvae. We also found lower activity of β-glucosidase and higher activities of monoamine oxidase, ortho-quinone reductase, catalase, superoxide dismutase, and glutathione reductase in Manchurian ash-fed larvae compared to larvae that had fed on susceptible ash. A single isozyme was detected for both catalase and superoxide dismutase in all larval groups. The activities of the quinone-protective and antioxidant enzymes are consistent with the resistance phenotype of the host species, with the highest activities measured in larvae feeding on resistant Manchurian ash. We conclude that larvae feeding on Manchurian ash could be under quinone and oxidative stress, suggesting these may be potential mechanisms of resistance of Manchurian ash to EAB larvae, and that quinone-protective and antioxidant enzymes are important counter-adaptations of larvae for dealing with these resistance mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Study on the valorization routes of ashes from thermoelectric power plants working under mono-and co-combustion regimes

    NASA Astrophysics Data System (ADS)

    Barbosa, Rui Pedro Fernandes

    The main objective of this thesis was to study new valorization routes of ashes produced in combustion and co-combustion processes. Three main valorization pathways were analyzed: (i)production of cement mortars, (ii) production of concretes, and (iii) use as chemical agents to remove contaminants from wastewaters. Firstly, the ashes produced during the mono-combustion of coal, co-combustion of coal and meat and bone meal (MBM), and mono-combustion of MBM were characterized. The aim of this study was to understand the ashes properties in extreme levels of substitution of coal by a residue with a high contamination of specific metals. The substitution of coal by MBM produced ashes with higher content of heavy metals. Secondly, the ashes coming from an industrial power plant working under mono-combustion(coal) and co-combustion conditions (coal+sewage sludge+MBM) were studied. The use of cofuels did not promote significant changes in the chemical and ecotoxicological properties of ashes. Fly ashes were successfully stabilized/solidified in cement mortar, and bottom and circulating ashes were successfully used as raw materials in concrete. The third step involved the characterization and valorization of biomass ashes resulting from the combustion of forestry residues. The highest concentrations of metals/metalloids were found in the lowest particle size fractions of ashes. Biomass ashes successfully substituted cement and natural aggregates in concretes, without compromising their mechanical, chemical, and ecotoxicological properties. Finally, the biomass ashes were tested as chemical agents to remove contaminants from wastewaters. The removal of P, mainly phosphates, and Pb from wastewaters was assayed. Biomass ashes presented a high capacity to remove phosphates. As fly ashes were more efficient in removing phosphates, they were further used to remove Pb from wastewaters. Again, they presented a high efficiency in Pb removal. New potential valorization routes for these ashes are now opened, contributing to improve their valorization rates.

  4. The Application of FT-IR Spectroscopy for Quality Control of Flours Obtained from Polish Producers

    PubMed Central

    Ceglińska, Alicja; Reder, Magdalena; Ciemniewska-Żytkiewicz, Hanna

    2017-01-01

    Samples of wheat, spelt, rye, and triticale flours produced by different Polish mills were studied by both classic chemical methods and FT-IR MIR spectroscopy. An attempt was made to statistically correlate FT-IR spectral data with reference data with regard to content of various components, for example, proteins, fats, ash, and fatty acids as well as properties such as moisture, falling number, and energetic value. This correlation resulted in calibrated and validated statistical models for versatile evaluation of unknown flour samples. The calibration data set was used to construct calibration models with use of the CSR and the PLS with the leave one-out, cross-validation techniques. The calibrated models were validated with a validation data set. The results obtained confirmed that application of statistical models based on MIR spectral data is a robust, accurate, precise, rapid, inexpensive, and convenient methodology for determination of flour characteristics, as well as for detection of content of selected flour ingredients. The obtained models' characteristics were as follows: R2 = 0.97, PRESS = 2.14; R2 = 0.96, PRESS = 0.69; R2 = 0.95, PRESS = 1.27; R2 = 0.94, PRESS = 0.76, for content of proteins, lipids, ash, and moisture level, respectively. Best results of CSR models were obtained for protein, ash, and crude fat (R2 = 0.86; 0.82; and 0.78, resp.). PMID:28243483

  5. Characteristics of coking coal burnout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, M.; Bailey, J.G.

    An attempt was made to clarify the characteristics of coking coal burnout by the morphological analysis of char and fly ash samples. Laboratory-scale combustion testing, simulating an ignition process, was carried out for three kinds of coal (two coking coals and one non-coking coal for reference), and sampled chars were analyzed for size, shape and type by image analysis. The full combustion process was examined in industrial-scale combustion testing for the same kinds of coal. Char sampled at the burner outlet and fly ash at the furnace exit were also analyzed. The difference between the char type, swelling properties, agglomeration,more » anisotropy and carbon burnout were compared at laboratory scale and at industrial scale. As a result, it was found that coking coals produced chars with relatively thicker walls, which mainly impeded char burnout, especially for low volatile coals.« less

  6. Effects of sodium hydroxide (NaOH) solution concentration on fly ash-based lightweight geopolymer

    NASA Astrophysics Data System (ADS)

    Ibrahim, W. M. W.; Hussin, K.; Abdullah, M. M. A.; Kadir, A. A.; Deraman, L. M.

    2017-09-01

    In this study, the effects of NaOH concentration on properties of fly ash-based lightweight geopolymer were investigated. Lightweight geopolymer was produced using fly ash as source materials and synthetic foaming agents as air entraining agent. The alkaline solutions used in this study are combination of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) solution. Different molarities of NaOH solution (6M, 8M, 10M, 12M, and 14M) are taken for preparation of 50 x 50 x 50 mm cubes of lightweight geopolymer. The ratio of fly ash/alkaline solution, Na2SiO3/NaOH solution, foaming agent/water and foam/geopolymer paste were kept constant at 2.0, 2.5, 1:10 and 1:1 respectively. The samples were cured at 80°C for 24 hours and left at room temperature for tested at 7 days of ageing. Physical and mechanical properties such as density, water absorption, compressive strength and microstructure property were determined from the cube dried samples. The results show that the NaOH molarity had effects on the properties of lightweight geopolymer with the optimum NaOH molarity found is 12M due to the high strength of 15.6 MPa, lower water absorption (7.3%) and low density (1440 kg/m3). Microstructure analysis shows that the lightweight geopolymer contain some porous structure and unreacted fly ash particles remains.

  7. INVESTIGATION OF PRIMARY FINE PARTICULATE MATTER FROM COAL COMBUSTION BY COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY

    EPA Science Inventory

    The particle size distributions, morphologies, and chemical composition distributions of 14 coal fly ash (CFA) samples produced by the combustion of four western U.S. coals (two subbituminous, one lignite, and one bituminous) and three eastern U.S. coals (all bituminous) have bee...

  8. Biomimetic thermal barrier coating in jet engine to resist volcanic ash deposition

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Major, Zsuzsanna; Schulz, Uwe; Muth, Tobias; Lavallée, Yan; Hess, Kai-Uwe; Dingwell, Donald B.

    2017-04-01

    The threat of volcanic ash to aviation safety is attracting extensive attention when several commercial jet aircraft were damaged after flying through volcanic ash clouds from the May 1980 eruptions of Mount St. Helen in Washington, U.S. and especially after the air traffic disruption in 2010 Eyjafjallajökull eruption. A major hazard presented by volcanic ash to aircraft is linked to the wetting and spreading of molten ash droplets on engine component surfaces. Due to the fact ash has a lower melting point, around 1100 °C, than the gas temperature in the hot section (between 1400 to 2000 °C), this cause the ash to melt and potentially stick to the internal components (e.g., combustor and turbine blades), this cause the ash to melt and potentially stick to the internal components of the engine creating, substantial damage or even engine failure after ingestion. Here, inspiring form the natural surface of lotus leaf (exhibiting extreme water repellency, known as 'lotus effect'), we firstly create the multifunctional surface thermal barrier coatings (TBCs) by producing a hierarchical structure with femtosecond laser pulses. In detail, we investigate the effect of one of primary femtosecond laser irradiation process parameter (scanning speed) on the hydrophobicity of water droplets onto the two kinds of TBCs fabricated by electron-beam physical vapor deposition (EB-PVD) and air plasma spray (APS), respectively as well as their corresponding to morphology. It is found that, comparison with the original surface (without femtosecond laser ablation), all of the irradiated samples demonstrate more significant hydrophobic properties due to nanostructuring. On the basis of these preliminary room-temperature results, the wettability of volcanic ash droplets will be analysed at the high temperature to constrain the potential impact of volcanic ash on the jet engines.

  9. The Largest Holocene Eruption of the Central Andes Found

    NASA Astrophysics Data System (ADS)

    Fernandez-Turiel, J.; Rodriguez-Gonzalez, A.; Saavedra, J.; Perez-Torrado, F.; Carracedo, J.; Osterrieth, M.; Carrizo, J.; Esteban, G.

    2013-12-01

    We present new data and interpretation about a major eruption -spreading ˜110 km3 ashes over 440.000 km2- long thought to have occurred around 4200 years ago in the Cerro Blanco Volcanic Complex (CBVC) in NW Argentina. This eruption may be the biggest during the past five millennia in the Central Volcanic Zone of the Andes, and possibly one of the largest Holocene eruptions in the world. The environmental effects of this voluminous eruption are still noticeable, as evidenced by the high content of arsenic and other trace elements in the groundwaters of the Chacopampean Plain. The recognition of this significant volcanic event may shed new light on interpretations of critical changes observed in the mid-Holocene paleontological and archaeological records, and offers researchers an excellent, extensive regional chronostratigraphic marker for reconstructing mid-Holocene geological history over a wide geographical area of South America. More than 100 ashes were sampled in Argentina, Chile and Uruguay during different field campaigns. Ash samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), grain size distributions laser diffraction, and geochemically by electron microprobe (EMPA) and laser ablation-HR-ICP-MS. New and published 14C ages were calibrated to calendar years BP. The age of the most recent CBVC eruption is 4407-4093 cal y BP, indirectly dated by 14C of associated organic sediment within the lower part of a proximal fall deposit of this event (26°53'16.05"S-67°44'48.68"W). This is the youngest record of a major volcanic event in the Southern Puna. This age is consistent with other radiocarbon dates of organic matter in palaeosols underlying or overlying distal ash fall deposits. Based on their products, all of rhyolitic composition, we have distinguished 8 main episodes during the evolution of the most recent CBVC eruption: 1) the eruption began with a white rhyolite lava dome extrusion; 2) followed by a Plinian proximal and distal dispersal of purely fallout (˜110 km3, bulk volume); 3) the eruptive column collapsed, producing white co-ignimbrite lag breccia, ignimbrite flow deposits, and associated surge and ash cloud deposits (~1 km3); 4) a resurgent white rhyolite lava dome was extruded that 5) collapsed to produce several lateral blasts directed into the Cerro Blanco caldera that emplaced lithic-rich block-and-ash flow deposits; 6) a new pinkish rhyolite lava dome extruded and 7) also laterally collapsed forming new lithic-rich block-and-ash flow deposits within the same caldera; finally, 8) the development of a post-eruption geothermal field that produced white sinter deposits within the Cerro Blanco caldera. Financial support was provided by the QUECA Project (MINECO, CGL2011-23307).

  10. Emerald ash borer infestation of ash stumps

    Treesearch

    Robert A. Haack; Toby R. Petrice

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Buprestidae), was first found in North America in 2002. Eradication efforts are currently underway for this insect in both Canada and the United States. As part of the eradication program, thousands of ash trees are cut and chipped. Ash trees are known to produce stump sprouts, and therefore...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang

    This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presentedmore » a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.« less

  12. Active mineral additives of sapropel ashes

    NASA Astrophysics Data System (ADS)

    Khomich, V. A.; Danilina, E. V.; Krivonos, O. I.; Plaksin, G. V.

    2015-01-01

    The goal of the presented research is to establish a scientific rational for the possibility of sapropel ashes usage as an active mineral additive. The research included the study of producing active mineral additives from sapropels by their thermal treatment at 850900 °C and afterpowdering, the investigation of the properties of paste matrix with an ash additive, and the study of the ash influence on the cement bonding agent. Thermogravimetric analysis and X-ray investigations allowed us to establish that while burning, organic substances are removed, clay minerals are dehydrated and their structure is broken. Sapropel ashes chemical composition was determined. An amorphous ash constituent is mainly formed from silica of the mineral sapropel part and alumosilicagels resulted from clay minerals decomposition. Properties of PC 400 and PC 500A0 sparopel ash additives were studied. Adding ashes containing Glenium plasticizer to the cement increases paste matrix strength and considerably reduces its water absorption. X-ray phase analysis data shows changes in the phase composition of the paste matrix with an ash additive. Ash additives produce a pozzolanic effect on the cement bonding agent. Besides, an ash additive due to the alumosilicagels content causes transformation from unstable calcium aluminate forms to the stable ones.

  13. Influence of Cements Containing Calcareous Fly Ash as a Main Component Properties of Fresh Cement Mixtures

    NASA Astrophysics Data System (ADS)

    Gołaszewski, Jacek; Kostrzanowska-Siedlarz, Aleksandra; Ponikiewski, Tomasz; Miera, Patrycja

    2017-10-01

    The main goal of presented research was to examine usability of cements containing calcareous fly ash (W) from technological point of view. In the paper the results of tests concerning the influence of CEM II and CEM IV cements containing fly ash (W) on rheological properties, air content, setting times and plastic shrinkage of mortars are presented and discussed. Moreover, compatibility of plasticizers with cements containing fly ash (W) was also studied. Additionally, setting time and hydration heat of cements containing calcareous fly ash (W) were determined. In a broader aspect, the research contributes to promulgation of the possibility of using calcareous fly ash (W) in cement and concrete technology, what greatly benefits the environment protection (utilization of waste fly ash). Calcareous fly ash can be used successfully as the main component of cement. Cements produced by blending with processed fly ash or cements produced by interginding are characterized by acceptable technological properties. In respect to CEM I cements, cements containing calcareous fly ash worsen workability, decrease air content, delay setting time of mixtures. Cements with calcareous fly ash show good compatibility with plasticizers.

  14. A robust method to forecast volcanic ash clouds

    USGS Publications Warehouse

    Denlinger, Roger P.; Pavolonis, Mike; Sieglaff, Justin

    2012-01-01

    Ash clouds emanating from volcanic eruption columns often form trails of ash extending thousands of kilometers through the Earth's atmosphere, disrupting air traffic and posing a significant hazard to air travel. To mitigate such hazards, the community charged with reducing flight risk must accurately assess risk of ash ingestion for any flight path and provide robust forecasts of volcanic ash dispersal. In response to this need, a number of different transport models have been developed for this purpose and applied to recent eruptions, providing a means to assess uncertainty in forecasts. Here we provide a framework for optimal forecasts and their uncertainties given any model and any observational data. This involves random sampling of the probability distributions of input (source) parameters to a transport model and iteratively running the model with different inputs, each time assessing the predictions that the model makes about ash dispersal by direct comparison with satellite data. The results of these comparisons are embodied in a likelihood function whose maximum corresponds to the minimum misfit between model output and observations. Bayes theorem is then used to determine a normalized posterior probability distribution and from that a forecast of future uncertainty in ash dispersal. The nature of ash clouds in heterogeneous wind fields creates a strong maximum likelihood estimate in which most of the probability is localized to narrow ranges of model source parameters. This property is used here to accelerate probability assessment, producing a method to rapidly generate a prediction of future ash concentrations and their distribution based upon assimilation of satellite data as well as model and data uncertainties. Applying this method to the recent eruption of Eyjafjallajökull in Iceland, we show that the 3 and 6 h forecasts of ash cloud location probability encompassed the location of observed satellite-determined ash cloud loads, providing an efficient means to assess all of the hazards associated with these ash clouds.

  15. Retention of elemental mercury in fly ashes in different atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.A. Lopez-Anton; M. Diaz-Somoano; M.R. Martinez-Tarazona

    2007-01-15

    Mercury is an extremely volatile element, which is emitted from coal combustion to the environment mostly in the vapor phase. To avoid the environmental problems that the toxic species of this element may cause, control technologies for the removal of mercury are necessary. Recent research has shown that certain fly ash materials have an affinity for mercury. Moreover, it has been observed that fly ashes may catalyze the oxidation of elemental mercury and facilitate its capture. However, the exact nature of Hg-fly ash interactions is still unknown, and mercury oxidation through fly ash needs to be investigated more thoroughly. Inmore » this work, the influence of a gas atmosphere on the retention of elemental mercury on fly ashes of different characteristics was evaluated. The retention capacity was estimated comparatively in inert and two gas atmospheres containing species present in coal gasification and coal combustion. Fly ashes produced in two pulverized coal combustion (PCC) plants, produced from coals of different rank (CTA and CTSR), and a fly ash (CTP) produced in a fluidized bed combustion (FBC) plant were used as raw materials. The mercury retention capacity of these fly ashes was compared to the retention obtained in different activated carbons. Although the capture of mercury is very similar in the gasification atmosphere and N{sub 2}, it is much more efficient in a coal combustion retention, being greater in fly ashes from PCC than those from FBC plants. 22 refs., 6 figs., 3 tabs.« less

  16. Synthetic studies toward 7-epi-sesquithujene, bicyclic sesquiterpene antennally active to emerald ash borer

    USDA-ARS?s Scientific Manuscript database

    Emerald ash borer, Agrilus planipennis, is an invasive beetle that has been causing extensive mortality of ash trees since arriving in North America in 2002. 7-epi-Sesquithujene (1) is produced by stressed ash and elicits a strong EAD response on the emerald ash borer antennae. In the course of ma...

  17. Characterization of fly ash from low-sulfur and high-sulfur coal sources: Partitioning of carbon and trace elements with particle size

    USGS Publications Warehouse

    Hower, J.C.; Trimble, A.S.; Eble, C.F.; Palmer, C.A.; Kolker, A.

    1999-01-01

    Fly ash samples were collected in November and December of 1994, from generating units at a Kentucky power station using high- and low-sulfur feed coals. The samples are part of a two-year study of the coal and coal combustion byproducts from the power station. The ashes were wet screened at 100, 200, 325, and 500 mesh (150, 75, 42, and 25 ??m, respectively). The size fractions were then dried, weighed, split for petrographic and chemical analysis, and analyzed for ash yield and carbon content. The low-sulfur "heavy side" and "light side" ashes each have a similar size distribution in the November samples. In contrast, the December fly ashes showed the trend observed in later months, the light-side ash being finer (over 20 % more ash in the -500 mesh [-25 ??m] fraction) than the heavy-side ash. Carbon tended to be concentrated in the coarse fractions in the December samples. The dominance of the -325 mesh (-42 ??m) fractions in the overall size analysis implies, though, that carbon in the fine sizes may be an important consideration in the utilization of the fly ash. Element partitioning follows several patterns. Volatile elements, such as Zn and As, are enriched in the finer sizes, particularly in fly ashes collected at cooler, light-side electrostatic precipitator (ESP) temperatures. The latter trend is a function of precipitation at the cooler-ESP temperatures and of increasing concentration with the increased surface area of the finest fraction. Mercury concentrations are higher in high-carbon fly ashes, suggesting Hg adsorption on the fly ash carbon. Ni and Cr are associated, in part, with the spinel minerals in the fly ash. Copyright ?? 1999 Taylor & Francis.

  18. Utilization of western coal fly ash in construction of highways in the Midwest

    DOT National Transportation Integrated Search

    2000-03-01

    Coal burning utilities in the Midwest are increasingly using sub-bituminous coal from Wyoming. These utilities typically produce fly ash, which, because of its high calcium oxide content, may be classified as Class C fly ash. These ashes are characte...

  19. Mapping ash properties using principal components analysis

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Brevik, Eric; Cerda, Artemi; Ubeda, Xavier; Novara, Agata; Francos, Marcos; Rodrigo-Comino, Jesus; Bogunovic, Igor; Khaledian, Yones

    2017-04-01

    In post-fire environments ash has important benefits for soils, such as protection and source of nutrients, crucial for vegetation recuperation (Jordan et al., 2016; Pereira et al., 2015a; 2016a,b). The thickness and distribution of ash are fundamental aspects for soil protection (Cerdà and Doerr, 2008; Pereira et al., 2015b) and the severity at which was produced is important for the type and amount of elements that is released in soil solution (Bodi et al., 2014). Ash is very mobile material, and it is important were it will be deposited. Until the first rainfalls are is very mobile. After it, bind in the soil surface and is harder to erode. Mapping ash properties in the immediate period after fire is complex, since it is constantly moving (Pereira et al., 2015b). However, is an important task, since according the amount and type of ash produced we can identify the degree of soil protection and the nutrients that will be dissolved. The objective of this work is to apply to map ash properties (CaCO3, pH, and select extractable elements) using a principal component analysis (PCA) in the immediate period after the fire. Four days after the fire we established a grid in a 9x27 m area and took ash samples every 3 meters for a total of 40 sampling points (Pereira et al., 2017). The PCA identified 5 different factors. Factor 1 identified high loadings in electrical conductivity, calcium, and magnesium and negative with aluminum and iron, while Factor 3 had high positive loadings in total phosphorous and silica. Factor 3 showed high positive loadings in sodium and potassium, factor 4 high negative loadings in CaCO3 and pH, and factor 5 high loadings in sodium and potassium. The experimental variograms of the extracted factors showed that the Gaussian model was the most precise to model factor 1, the linear to model factor 2 and the wave hole effect to model factor 3, 4 and 5. The maps produced confirm the patternd observed in the experimental variograms. Factor 1 and 2 maps showed high values in one area of the plot, while factors 3,4 and 5 had a cycled pattern. Using a PCA we resume the information of all dataset and we identify that ash properties have a different distribution in the studied area, that may be attributed to the different fire severities. References Bodi, M., Martin, D.A., Santin, C., Balfour, V., Doerr, S.H., Pereira, P., Cerda, A., Mataix-Solera, J. (2014) Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 130, 103-127. Cerdà A, Doerr SH. (2008) The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 74, 256-263. Jordan, A., Zavala, L., Granjed, A.J., Gordillo-Rivero, A.J., Garcia-Moreno, J., Pereira, P., Barcenas-Moreno, G., Celis, R., Jimenez-Compan, E., Alanis, N. Wettability of ash conditions splash erosion and runoff rates in the postfire. Science of the Total Environment, 572, 1261-1268. Pereira, P. Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2015b) Modelling the impacts of wildfire on ash thickness in a short-term period. Land Degradation and Development, 26, 180-192. Pereira, P., Brevik, E., Cerda, A., Ubeda, X., Novara, A., Francos, M., Comino, R., Bogunovic, I., Khaledian, Y. Mapping ash extractable elements using principal component analysis In: Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B. (eds) Soil mapping and process modelling for sustainable land use management (Elsevier Publishing House) ISBN: 9780128052006 Pereira, P., Cerdà, A., Jordan, A., Zavala, L., Mataix-Solera, J., Arcenegui, V., Misiune, I., Keesstra, S., Novara, A. (2016) Vegetation recovery after a grassland fire in Lithuania. The effects of fire severity, slope position and aspect. Land Degradation and Development, 27, 1523-1534. Pereira, P., Rein, G., Martin, D. Editorial: Past and Present Post-Fire Environments. Science of the Total Environment, 573, 442-436. Pereira, P., Jordan, A., Cerdà, A., Martin, D. Editorial: The role of ash in fire-affected ecosystems. Catena, 135, 337-379.

  20. Mode of occurrence of arsenic in feed coal and its derivative fly ash, Black Warrior Basin, Alabama

    USGS Publications Warehouse

    Zielinski, R.A.; Foster, A.L.; Meeker, G.P.; Brownfield, I.K.

    2007-01-01

    An arsenic-rich (As = 55 ppm) bituminous feed coal from the Black Warrior Basin, Alabama and its derivative fly ash (As = 230 ppm) were selected for detailed investigation of arsenic residence and chemical forms. Analytical techniques included microbeam analysis, selective extraction, and As K-edge X-ray absorption fine-structure (XAFS) spectroscopy. Most As in the coal is contained in a generation of As-bearing pyrite (FeS2) that formed in response to epigenetic introduction of hydrothermal fluids. XAFS results indicate that approximately 50% of the As in the coal sample occurs as the oxidized As(V) species, possibly the result of incipient oxidation of coal and pyrite prior to our analysis. Combustion of pyrite and host coal produced fly ash in which 95% of As is present as As(V). Selective extraction of the fly ash with a carbonate buffer solution (pH = 10) removed 49% of the As. A different extraction with an HCl-NH2OH mixture, which targets amorphous and poorly crystalline iron oxides, dissolved 79% of the As. XAFS spectroscopy of this highly acidic (pH = 3.0) fly ash indicated that As is associated with some combination of iron oxide, oxyhydroxide, or sulfate. In contrast, a highly alkaline (pH = 12.7) fly ash from Turkey shows most As associated with a phase similar to calcium orthoarsenate (Ca3(AsO4)2). The combined XAFS results indicate that fly ash acidity, which is determined by coal composition and combustion conditions, may serve to predict arsenic speciation in fly ash.

  1. Distribution and mass of tephra-fall deposits from volcanic eruptions of Sakurajima Volcano based on posteruption surveys

    NASA Astrophysics Data System (ADS)

    Oishi, Masayuki; Nishiki, Kuniaki; Geshi, Nobuo; Furukawa, Ryuta; Ishizuka, Yoshihiro; Oikawa, Teruki; Yamamoto, Takahiro; Nanayama, Futoshi; Tanaka, Akiko; Hirota, Akinari; Miwa, Takahiro; Miyabuchi, Yasuo

    2018-04-01

    We estimate the total mass of ash fall deposits for individual eruptions of Sakurajima Volcano, southwest Japan based on distribution maps of the tephra fallout. Five ash-sampling campaigns were performed between 2011 and 2015, during which time Sakurajima continued to emit ash from frequent Vulcanian explosions. During each survey, between 29 and 53 ash samplers were installed in a zone 2.2-43 km downwind of the source crater. Total masses of erupted tephra were estimated using several empirical methods based on the relationship between the area surrounded by a given isopleth and the thickness of ash fall within each isopleth. We obtained 70-40,520 t (4.7 × 10-8-2.7 × 10-5-km3 DRE) as the minimum estimated mass of erupted materials for each eruption period. The minimum erupted mass of tephra produced during the recorded events was calculated as being 890-5140 t (5.9 × 10-7-3.6 × 10-6-km3 DRE). This calculation was based on the total mass of tephra collected during any one eruptive period and the number of eruptions during that period. These values may thus also include the contribution of continuous weak ash emissions before and after prominent eruptions. We analyzed the meteorological effects on ash fall distribution patterns and concluded that the width of distribution area of an ash fall is strongly controlled by the near-ground wind speed. The direction of the isopleth axis for larger masses is affected by the local wind direction at ground level. Furthermore, the wind direction influences the direction of the isopleth axes more at higher altitude. While a second maximum of ash fall can appear, the influence of rain might only affect the finer particles in distal areas.

  2. Amelioration of soil PAH and heavy metals by combined application of fly ash and biochar

    NASA Astrophysics Data System (ADS)

    Masto, Reginald; George, Joshy; Ansari, Md; Ram, Lal

    2016-04-01

    Generation of electricity through coal combustion produces huge quantities of fly ash. Sustainable disposal and utilization of these fly ash is a major challenge. Fly ash along with other amendments like biochar could be used for amelioration of soil. In this study, fly ash and biochar were used together for amelioration of polycyclic aromatic hydrocarbon (PAH) contaminated soil. Field experiment was conducted to investigate the effects of fly ash and biochar on the amelioration of soil PAH, and the yield of Zea mays. The treatments were control, biochar (4 t/ha), fly ash (4 t/ha), ash + biochar ( 2 + 2 t/ha). Soil samples were collected after the harvest of maize crop and analysed for chemical and biological parameters. Thirteen PAHs were analysed in the postharvest soil samples. Soil PAHs were extracted in a microwave oven at 120 °C using hexane : acetone (1:1) mixture. The extracted solutions were concentrated, cleaned and the 13 PAHs [Acenaphthene (Ace), fluorene (Flr), phenanthrene (Phn), anthracene(Ant), pyrene(Pyr), benz(a)anthracene (BaA), chrysene (Chy), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene, benzo(g,h,i)perylene (BghiP), dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene)(Inp)] were analysed using GC-MS. The mean pH increased from 6.09 in control to 6.64 and 6.58 at biochar and fly ash treated soils, respectively. N content was not affected, whereas addition of biochar alone and in combination with fly ash, has significantly increased the soil organic carbon content. P content was almost double in combined (9.06 mg/kg) treatment as compared to control (4.32 mg/kg). The increase in K due to biochar was 118%, whereas char + ash increased soil K by 64%. Soil heavy metals were decreased: Zn (-48.4%), Ni (-41.4%), Co (-36.9%), Cu (-35.7%), Mn (-34.3%), Cd (-33.2%), and Pb (-30.4%). Soil dehydrogenase activity was significantly increased by ash and biochar treatments and the maximum activity was observed for the combined treatment. Peroxidase, phenol oxidase, and catalase activities were not affected by these treatments. Acid phosphatase activity decreased, whereas alkaline phosphatase activity increased due to biochar and fly ash treatment. Microbial biomass carbon increased significantly (P < 0.05) with biochar (+27.9%), fly ash (19.8%), and char + ash (+27.9%) applications. Maize grain yield was increased by biochar (+11.4%) and char + ash (+28.1%) treatments. The total PAH concentration decreased from 4191 μg/kg in control to 1930 μg/kg in fly ash; 1509 μg/kg in biochar and 1011 μg/kg in ash + char treatments. Among the different PAHs the concentration was higher for BkF, which decreased from 713 μg/kg in control to 139 - 315 μg/kg under different treatments. Overall, combined application of fly ash and biochar was found to be effective in amelioration of soil quality parameters and improving crop yield.

  3. Pulmonary epithelial response in the rat lung to instilled Montserrat respirable dusts and their major mineral components

    PubMed Central

    Housley, D; Berube, K; Jones, T; Anderson, S; Pooley, F; Richards, R

    2002-01-01

    Background: The Soufriere Hills, a stratovolcano on Montserrat, started erupting in July 1995, producing volcanic ash, both from dome collapse pyroclastic flows and phreatic explosions. The eruptions/ash resuspension result in high concentrations of suspended particulate matter in the atmosphere, which includes cristobalite, a mineral implicated in respiratory disorders. Aims: To conduct toxicological studies on characterised samples of ash, together with major components of the dust mixture (anorthite, cristobalite), and a bioreactive mineral control (DQ12 quartz). Methods: Rats were challenged with a single mass (1 mg) dose of particles via intratracheal instillation and groups sacrificed at one, three, and nine weeks. Acute bioreactivity of the particles was assessed by increases in lung permeability and inflammation, changes in epithelial cell markers, and increase in the size of bronchothoracic lymph nodes. Results: Data indicated that respirable ash derived from pyroclastic flows (20.1% cristobalite) or phreatic explosion (8.6% cristobalite) had minimal bioreactivity in the lung. Anorthite showed low bioreactivity, in contrast to pure cristobalite, which showed progressive increases in lung damage. Conclusion: Results suggests that either the percentage mass of cristobalite particles present in Montserrat ash was not sufficient as a catalyst in the lung environment, or its surface reactivity was masked by the non-reactive volcanic glass components during the process of ash formation. PMID:12107295

  4. Reuse of Coconut Shell, Rice Husk, and Coal Ash Blends in Geopolymer Synthesis

    NASA Astrophysics Data System (ADS)

    Walmiki Samadhi, Tjokorde; Wulandari, Winny; Prasetyo, Muhammad Iqbal; Rizki Fernando, Muhammad

    2017-10-01

    Mixtures of biomass and coal ashes are likely to be produced in increasing volume as biomass-based energy production is gaining importance in Indonesia. This work highlights the reuse of coconut shell ash (CSA), rice husk ash (RHA), and coal fly ash (FA) for geopolymer synthesis by an activator solution containing concentrated KOH and Na2SiO3. Ash blend compositions are varied according to a simplex-centroid mixture experimental design. Activator to ash mass ratios are varied from 0.8 to 2.0, the higher value being applied for ash compositions with higher Si/Al ratio. The impact of ash blend composition on early strength is adequately modeled by an incomplete quadratic mixture model. Overall, the ashes can produce geopolymer mortars with an early strength exceeding the Indonesian SNI 15-2049-2004 standard minimum value of 2.0 MPa. Good workability of the geopolymer is indicated by their initial setting times which are longer than the minimum value of 45 mins. Geopolymers composed predominantly of RHA composition exhibit poor strength and excessive setting time. FTIR spectroscopy confirms the geopolymerization of the ashes by the shift of the Si-O-Si/Al asymmetric stretching vibrational mode. Overall, these results point to the feasibility of geopolymerization as a reuse pathway for biomass combustion waste.

  5. Differential characteristics in the chemical composition of bananas from Tenerife (Canary Islands) and Ecuador.

    PubMed

    Forster, Markus Paul; Rodríguez Rodríguez, Elena; Díaz Romero, Carlos

    2002-12-18

    The contents of moisture, protein, ash, ascorbic acid, glucose, fructose, total sugars, and total and insoluble fiber were determined in cultivars of bananas (Gran Enana and Pequeña Enana) harvested in Tenerife and in bananas (Gran Enana) from Ecuador. The chemical compositions in the bananas from Tenerife and from Ecuador were clearly different. The cultivar did not influence the chemical composition, except for insoluble fiber content. Variations of the chemical composition were observed in the bananas from Tenerife according to cultivation method (greenhouse and outdoors), farming style (conventional and organic), and region of production (north and south). A highly significant (r = 0.995) correlation between glucose and fructose was observed. Correlations of ash and protein contents tend to separate the banana samples according to origin. A higher content of protein, ash, and ascorbic acid was observed as the length of the banana decreased. Applying factor analysis, the bananas from Ecuador were well separated from the bananas produced in Tenerife. An almost total differentiation (91.7%) between bananas from Tenerife and bananas from Ecuador was obtained by selecting protein, ash, and ascorbic acid content and applying stepwise discriminant analysis. By selecting the bananas Pequeña Enana and using discriminant analysis, a clear separation of the samples according to the region of production and farming style was observed.

  6. Evaluation of the Biotoxicity of Tree Wood Ashes in Zebrafish Embryos.

    PubMed

    Consigli, Veronica; Guarienti, Michela; Bilo, Fabjola; Benassi, Laura; Depero, Laura E; Bontempi, Elza; Presta, Marco

    2016-10-01

    Ashes derived from biomass combustion and used as soil fertilizers can generate negative environmental and human health risks, related to leaching of heavy metals and other putative toxic elements. Tree wood ash composition may vary depending on geographical location and surrounding industrial processes. In this study, we evaluated the biotoxicity of lixiviated tree wood ash samples from trees of the Ash (Fraxinus), Cherry (Pronus), Hazel (Corylus), and Black locust (Robinia) genus collected in an industrialized region in Northern Italy. Elemental chemical analysis of the samples was performed by total reflection X-ray fluorescence technique and their biotoxicity was assessed in zebrafish (Danio rerio) embryos. Ashes from Ash, Cherry, and Hazel trees, but not Black locust trees, had a high concentration of heavy metals and other putative toxic elements. Accordingly, a dose-dependent increase in mortality rate and morphological and teratogenic defects was observed in zebrafish embryos treated with lixiviated Ash, Cherry, and Hazel tree wood samples, whereas the toxicity of Black locust tree wood ashes was negligible. In conclusion, lixiviated wood ashes from different plants show a different content of toxic elements that correlate with their biotoxic effects on zebrafish embryos. Tree wood ashes derived from biomass combustion may represent a potential risk for the environment and human health.

  7. Effect of rice husk ash mass on sustainability pyrolysis zone of fixed bed downdraft gasifier with capacity of 10 kg/hour

    NASA Astrophysics Data System (ADS)

    Surjosatyo, Adi; Haq, Imaduddin; Dafiqurrohman, Hafif; Gibran, Felly Rihlat

    2017-03-01

    The formation of pyrolysis sustainability (Sustainable Pyrolysis) is the objective of the gasification process. Pyrolysis zone in the gasification process is the result of the endothermic reaction that get heat from oxidation (combustion) of the fuel with oxygen, where cracking biomass rice husk result of such as charcoal, water vapor, steam tar, and gas - gas (CO, H 2, CH 4, CO 2 and N 2) and must be maintained at a pyrolysis temperature to obtain results plentiful gas (producer gas) or syngas (synthetic gas). Obtaining continuously syngas is indicated by flow rate (discharge) producer gas well and the consistency of the flame on the gas burner, it is highly influenced by the gasification process and the operation of the gasifier and the mass balance (mass balance) between the feeding rate of rice husk with the disposal of ash (ash removal). In experiments conducted is using fixed bed gasifier type downdraft capacity of 10 kg/h. Besides setting the mass of rice husks into the gasifier and disposal arrangements rice husk ash may affect the sustainability of the pyrolysis process, but tar produced during the gasification process causes sticky rice husk ash in the plenum gasifier. Modifications disposal system rice husk ash can facilitate the arrangement of ash disposal then could control the temperature pyrolysis with pyrolysis at temperatures between 500-750 ° C. The experimental study was conducted to determine the effect of mass quantities of rice husk ash issued against sustainability pyrolysis temperature which is obtained at each time disposal of rice husk ash to produce 60-90 grams of ash issued. From some experimental phenomena is expected to be seen pyrolysis and its effect on the flow rate of syngas and the stability of the flame on the gas burner so that this research can find a correlation to obtain performance (performance) gasifier optimal.

  8. Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants, Turkey.

    PubMed

    Ozden, Banu; Guler, Erkan; Vaasma, Taavi; Horvath, Maria; Kiisk, Madis; Kovacs, Tibor

    2018-08-01

    Coal, residues and waste produced by the combustion of the coal contain naturally occurring radionuclides such as 238 U, 226 Ra, 210 Pb, 232 Th and 40 K and trace elements such as Cd, Cr, Pb, Ni and Zn. In this work, coal and its combustion residues collected from Yatagan and Yenikoy coal fired thermal power plants (CPPs) in Turkey were studied to determine the concentrations of natural radionuclides and trace elements, and their enrichments factors to better understand the radionuclide concentration processes within the combustion system. In addition, the utilization of coal fly ash as a secondary raw material in building industry was also studied in terms of radiological aspects. Fly ash samples were taken at different stages along the emission control system of the thermal power plants. Activity concentrations of naturally occurring radionuclides were determined with Canberra Broad Energy Germanium (BEGe) detector BE3830-P and ORTEC Soloist PIPS type semiconductor detector. The particle size distribution and trace elements contents were determined in various ash fractions by the laser scattering particle size distribution analyzer and inductively coupled plasma (ICP-OES). From the obtained data, natural radionuclides tend to condense on fly ash with and the activity concentrations increase as the temperature drop in CPPs. Measured 210 Pb and 210 Po concentration varied between 186 ± 20-1153 ± 44 Bq kg -1 , and 56 ± 5-1174 ± 45 Bq kg -1 , respectively. The highest 210 Pb and 210 Po activity concentrations were determined in fly ash taken from the temporary storage point as 1153 ± 44 Bq kg -1 and 1174 ± 45 Bq kg -1 , respectively. There were significant differences in the activity concentrations of some natural radionuclide and trace elements (Pb and Zn) contents in ash fractions among the sampling point inside both of the plants (ANOVA, p < 0.001). Coal and ash sample analysis showed an increase activity concentration and enrichment factors towards the electrostatic precipitators for both of the power plants. The enrichment factors for Zn follow a similar trend as Pb, increasing in value towards the end of the emission control system. The calculated activity indexes were above 1.0 value for both of the power plants, assuming the utilization of fly ash at 100%. It can be concluded that the reuse of fly ash as a secondary raw material may not be hazardous depending on the percentage of utilization of ash. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Trace and major element pollution originating from coal ash suspension and transport processes.

    PubMed

    Popovic, A; Djordjevic, D; Polic, P

    2001-04-01

    Coal ash obtained by coal combustion in the "Nikola Tesla A" power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. Considering concentrations of seven trace elements as well as five major elements in extracts from a total of 12 samples, it can be concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  10. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, April 1, 1997--June 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harb, J.N.

    This report describes work performed in the fifteenth quarter of a fundamental study to examine the effect of staged combustion on ash formation and deposition. Efforts this quarter included addition of a new cyclone for improved particle sampling and modification of the existing sampling probe. Particulate samples were collected under a variety of experimental conditions for both coals under investigation. Deposits formed from the Black Thunder coal were also collected. Particle size and composition from the Pittsburgh No. 8 ash samples support previously reported results. In addition, the authors ability to distinguish char/ash associations has been refined and applied tomore » a variety of ash samples from this coal. The results show a clear difference between the behavior of included and excluded pyrite, and provide insight into the extent of pyrite oxidation. Ash samples from the Black Thunder coal have also been collected and analyzed. Results indicate a significant difference in the particle size of {open_quotes}unclassifiable{close_quotes} particles for ash formed during staged combustion. A difference in composition also appears to be present and is currently under investigation. Finally, deposits were collected under staged conditions for the Black Thunder coal. Specifically, two deposits were formed under similar conditions and allowed to mature under either reducing or oxidizing conditions in natural gas. Differences between the samples due to curing were noted. In addition, both deposits showed skeletal ash structures which resulted from in-situ burnout of the char after deposition.« less

  11. Deposition or not? The fate of volcanic ash after aggregation processes

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Wadsworth, Fabian B.; Ayris, Paul M.; Casas, Ana S.; Cimarelli, Corrado; Ametsbichler, Jonathan; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B.

    2017-04-01

    In the course of explosive volcanic eruptions, large amounts of ash are released into the atmosphere and may subsequently pose a threat to infrastructure, such as aviation industry. Ash plume forecasting is therefore a crucial tool for volcanic hazard mitigation but may be significantly affected by aggregation, altering the aerodynamic properties of particles. Models struggle with the implementation of aggregation since external conditions promoting aggregation have not been completely understood; in a previous study we have shown the rapid generation of ash aggregates through liquid bonding via the use of fluidization bed technology and further defined humidity and temperature ranges necessary to trigger aggregation. Salt (NaCl) was required for the recovery of stable aggregates, acting as a cementation agent and granting aggregate cohesion. A numerical model was used to explain the physics behind particle aggregation mechanisms and further predicted a dependency of aggregation efficiency on liquid binder viscosity. In this study we proof the effect of viscosity on particle aggregation. HCl and H2SO4 solutions were diluted to various concentrations resulting in viscosities between 1 and 2 mPas. Phonolitic and rhyolitic ash samples as well as soda-lime glass beads (serving as analogue material) were fluidized in the ProCell Lab® of Glatt Ingenieurtechnik GmbH and treated with the acids via a bottom-spray technique. Chemically driven interaction between acid liquids and surfaces of the three used materials led to crystal precipitation. Salt crystals (e.g. NaCl) have been confirmed through scanning electron microscopy (SEM) and leachate analysis. Both volcanic ash samples as well as the glass beads showed a clear dependency of aggregation efficiency on viscosity of the sprayed HCl solution. Spraying H2SO4 provoked a collapse of the fluidized bed and no aggregation has been observed. This is accounted by the high hygroscopicity of H2SO4. Dissolving CaCl2 (known to be a highly hygroscopic salt) in de-ionized water yielded comparable results without observable aggregation. In case of successful aggregation, concentration of salts has been found to be in the range of published values. We conclude that non-hygroscopic salt crystal precipitation from an aqueous liquid interacting with the glass phase in volcanic ash is a very efficient way to produce cohesive ash aggregates that can survive external forces acting during transport and sedimentation. Our parameterization of ash aggregation processes shall now be implemented in ash plume dispersal modelling for improved and more accurate ash distribution forecasting in the event of explosive volcanic eruptions.

  12. Understanding and integrating native knowledge to determine and identify high quality ash resources

    Treesearch

    Suzanne Greenlaw; Marla R. Emery; Robin W. Kimmerer; Michael. Bridgen

    2010-01-01

    Black ash (Fraxinus nigra) is spiritually, economically, and culturally connected to Native American tribes throughout its range. Considered a cultural keystone species, black ash can be pounded and split along its growth rings to produce exceptionally strong and pliable strips to weave into baskets. Black ash harvesters and basketmakers (...

  13. Transformations of inorganic coal constituents in combustion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon themore » size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles What determines their composition Whether or not particles deposit How combustion conditions, including reactor size, affect these processes remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.« less

  14. Economical and Environmentally Benign Extraction of Rare Earth Elements (REES) from Coal & Coal Byproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Gary

    This final report provides a complete summary of the activities, results, analytical discussion, and overall evaluation of the project titled “Economical and Environmentally Benign Extraction of Rare Earth Elements (REES) from Coal & Coal Byproducts” under DOE Award Number DE-FE-0027155 that started in March 2016 and ended December 2017. Fly ash was selected as the coal-byproduct source material due to fact that it is readily available with no need for extensive methods to obtain the material, it is produced in large quantities (>50 million tons per year) and had REE concentrations similar to other coal-byproducts. The selected fly ash usedmore » throughout this project was from the Mill Creek power generating facility operated by Louisville Gas and Electric located in Louisville, KY and was subjected to a variety of physical and chemical characterization tests. Results from fusion extractions showed that the selected fly-ash had a TREE+Y concentration of 480 ppm with critical REEs concentration of 200 ppm. The fly ash had an outlook ratio of 1.25 and an estimated value of $16-$18 worth of salable REEs per 1-tonne of fly ash. Additional characterizations by optical evaluation, QEMSCAN, XRD, size fractionation, and SEM analysis showed the fly ash consisted of small glassy spherules with a size range between 1 to 110 µm (ave. diam. of 13 um), was heterogeneous in chemical composition (main crystalline phases: aluminum oxides and iron oxides) and was primarily an amorphous material (75 to 80%). A simple stepped approach was completed to estimate the total REE resource quantity. The approach included REE characterization of the representative samples, evaluation of fly-ash availability, and final determination estimated resource availability with regards to REE grade on a regional and national scale. This data represents the best available information and is based upon the assumptions that the power generating facility where the fly-ash was obtained will use the same coal sources (actual mines were identified), the coal materials will have relatively consistent REE concentrations, and the REE extraction process developed during this project can achieve 42% REE recovery (validated and confirmed). Calculations indicated that the estimated REE resource is approximately 175,000 tonnes with a current estimated value of $3,330MM. The proposed REE extraction and production process developed during this project used four fundamental steps; 1) fly-ash pretreatment to enhance REE extraction, 2) REE extraction by acid digestion, 3) REE separation/concentration by carbon adsorption and column chromatography, and 4) REE oxide production. Secondary processing steps to manage process residuals and additional processing techniques to produce value-added products were incorporated into the process during the project. These secondary steps were not only necessary to manage residuals, but also provided additional revenue streams that offset operational and capital expenditures. The process produces one value product stream (production of zeolite Na-P1), a solids waste stream, and one liquid stream that met RCRA discharge requirements. Based upon final design criteria and operational parameters, the proposed system could produce approximately 200 grams of REOs from 1-tonne of fly-ash, thereby representing a TREE+Y recovery of 42% (project target of > 25%). A detailed economic model was developed to evaluate both CAPEX and OPEX estimates for systems with varying capacities between 100 kg to 200 tonnes of fly ash processed per day. Using a standard system capacity of 10 tonne/day system, capital costs were estimated at $88/kg fly ash while operating costs were estimated at approximately $450/kg fly ash. This operating cost estimate includes a revenue of $495/tonne of fly ash processed from the value-added product produced from the system (zeolite Na-P1). Although operating cost savings due to zeolite production were significant, the capital + operating cost for a 10 tonne system was more expensive than the total dollar value of REEs present in the fly ash material. Specifically, the estimated cost per 1-tonne of fly ash treated is approximately $540 while the estimated value of REEs in the fly ash is $18-$20/tonne. This is an excessive difference showing that the proposed process is not economically feasible strictly on the basis of REE revenue compared to extraction costs. Although the current proposed system does not produce sufficient quantities of REEs or additional revenue sources to offset operational and capital costs, supplementary factors including US strategic concerns, commercial demands, and defense department requirements must be factored. At this time, the process developed during this project provides foundational information for future development of simple processes that require low capital investment and one that will extract a valuable quality and quantity of REE oxides from industrial waste.« less

  15. The Effect of Alkaline Activator Ratio on the Compressive Strength of Fly Ash-Based Geopolymer Paste

    NASA Astrophysics Data System (ADS)

    Lăzărescu, A. V.; Szilagyi, H.; Baeră, C.; Ioani, A.

    2017-06-01

    Alkaline activation of fly ash is a particular procedure in which ash resulting from a power plant combined with a specific alkaline activator creates a solid material when dried at a certain temperature. In order to obtain desirable compressive strengths, the mix design of fly ash based geopolymer pastes should be explored comprehensively. To determine the preliminary compressive strength for fly ash based geopolymer paste using Romanian material source, various ratios of Na2SiO3 solution/ NaOH solution were produced, keeping the fly ash/alkaline activator ratio constant. All the mixes were then cured at 70 °C for 24 hours and tested at 2 and 7 days, respectively. The aim of this paper is to present the preliminary compressive strength results for producing fly ash based geopolymer paste using Romanian material sources, the effect of alkaline activators ratio on the compressive strength and studying the directions for future research.

  16. Surface mechanical behaviour of composite Ni-P-fly ash/zincate coated aluminium alloy

    NASA Astrophysics Data System (ADS)

    Panagopoulos, C. N.; Georgiou, E. P.

    2009-04-01

    Ni-P-fly ash coatings were produced on zincate coated 5083 wrought aluminium alloy substrates with the aid of an electroless deposition technique. Structural and chemical characterization of the produced coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-P-fly ash coating was found to consist of an amorphous Ni-P matrix with dispersed fly ash particles. The wear resistance of the Ni-P-fly ash coating on zincate treated aluminium alloy was observed to be higher than that of the bare aluminium alloy, when sliding against a stainless steel counterface. In addition, the adhesion between the Ni-P-fly ash/zincate coating and the aluminium alloy substrate was also studied with a scratch testing apparatus. The adhesion strength of Ni-P-fly ash/zincate coating on the aluminium alloy substrate was observed to be higher in comparison to the Ni-P/zincate coating on the same aluminium alloy.

  17. Case study of fly ash brick manufacturing units at Kota in Rajasthan

    NASA Astrophysics Data System (ADS)

    Sharma, Y.; Saxena, B. K.; Rao, K. V. S.

    2018-03-01

    Kota Super Thermal Power Station of 1240 MW is located at Kota in Rajasthan, India. The quantity of fly ash generated by it is about 1.64 to 2.03 million tonnes per year. This fly ash is being utilized for making bricks, tiles, portland pozzolana cement, construction of highways, and other purposes. 1.79 million tonnes of fly ash was utilized for different applications in one year duration from April 01st, 2015 to March 31st, 2016. Out of this total utilization, 0.6439 million tonnes (36.06 %) of fly ash was used for making bricks, blocks, and tiles. In this paper, a case study of two fly ash brick manufacturing units using fly ash produced from Kota Super Thermal Power Station is described. These units produce about 15,000 and 20,000 bricks respectively by employing 10 and 16 workers each and are making a profit of about Rs. 6,000 and Rs. 8,000 per day in one shift.

  18. Rice Husk Ash to Stabilize Heavy Metals Contained in Municipal Solid Waste Incineration Fly Ash: First Results by Applying New Pre-treatment Technology

    PubMed Central

    Benassi, Laura; Franchi, Federica; Catina, Daniele; Cioffi, Flavio; Rodella, Nicola; Borgese, Laura; Pasquali, Michela; Depero, Laura E.; Bontempi, Elza

    2015-01-01

    A new technology was recently developed for municipal solid waste incineration (MSWI) fly ash stabilization, based on the employment of all waste and byproduct materials. In particular, the proposed method is based on the use of amorphous silica contained in rice husk ash (RHA), an agricultural byproduct material (COSMOS-RICE project). The obtained final inert can be applied in several applications to produce “green composites”. In this work, for the first time, a process for pre-treatment of rice husk, before its use in the stabilization of heavy metals, based on the employment of Instant Pressure Drop technology (DIC) was tested. The aim of this work is to verify the influence of the pre-treatment on the efficiency on heavy metals stabilization in the COSMOS-RICE technology. DIC technique is based on a thermomechanical effect induced by an abrupt transition from high steam pressure to a vacuum, to produce changes in the material. Two different DIC pre-treatments were selected and thermal annealing at different temperatures were performed on rice husk. The resulting RHAs were employed to obtain COSMOS-RICE samples, and the stabilization procedure was tested on the MSWI fly ash. In the frame of this work, some thermal treatments were also realized in O2-limiting conditions, to test the effect of charcoal obtained from RHA on the stabilization procedure. The results of this work show that the application of DIC technology into existing treatment cycles of some waste materials should be investigated in more details to offer the possibility to stabilize and reuse waste. PMID:28793605

  19. Ambient airborne solids concentrations including volcanic ash at Hanford, Washington sampling sites subsequent to the Mount St. Helens eruption

    NASA Technical Reports Server (NTRS)

    Sehmel, G. A.

    1982-01-01

    Airborne solids concentrations were measured on a near daily basis at two Hanford, Washington sites after the eruption of Mount St. Helens on May 18, 1980. These sites are about 211 km east of Mount St. Helens. Collected airborne solids included resuspended volcanic ash plus normal ambient solids. Average airborne solids concentrations were greater at the Hanford meteorological station sampling site which is 24 km northwest of the Horn Rapids dam sampling site. These increased concentrations reflect the sampling site proximity to greater ash fallout depths. Both sites are in low ash fallout areas although the Hanford meteorological station site is closer to the greater ash fallout areas. Airborne solids concentrations were decreased by rain, but airborne solids concentrations rapidly increased as surfaces dried. Airborne concentrations tended to become nearly the same at both sampling sites only for July 12 and 13.

  20. Optoelectronic system of online measurements of unburned carbon in coal fly ash

    NASA Astrophysics Data System (ADS)

    Golas, Janusz; Jankowski, Henryk; Niewczas, Bogdan; Piechna, Janusz; Skiba, Antoni; Szkutnik, Wojciech; Szkutnik, Zdzislaw P.; Wartak, Ryszarda; Worek, Cezary

    2001-08-01

    Carbon-in-ash level is an important consideration for combustion efficiency as well as ash marketing. The optoelectronic analyzing system for on-line determination and monitoring of the u burned carbon content of ash samples is presented. The apparatus operates on the principle that carbon content is proportional to the reflectance of IR light. Ash samples are collected iso kinetically from the flue gas duct and placed in a sample tube with a flat glass bottom. The same is then exposed to a light. The reflectance intensity is used by the system's computer to determine residual carbon content from correlation curves. The sample is then air purged back to the duct or to the attached sample canister to enable laboratory check analysis. The total cycle time takes between 5 and 10 minutes. Real time result of carbon content with accuracy 0.3-0.7 percent are reported and can be used for boiler controlling.

  1. Characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption

    USGS Publications Warehouse

    Lu, Y.; Rostam-Abadi, M.; Chang, R.; Richardson, C.; Paradis, J.

    2007-01-01

    Nine fly ash samples were collected from the particulate collection devices (baghouse or electrostatic precipitator) of four full-scale pulverized coal (PC) utility boilers burning eastern bituminous coals (EB-PC ashes) and three cyclone utility boilers burning either Powder River Basin (PRB) coals or PRB blends,(PRB-CYC ashes). As-received fly ash samples were mechanically sieved to obtain six size fractions. Unburned carbon (UBC) content, mercury content, and Brunauer-Emmett-Teller (BET)-N2 surface areas of as-received fly ashes and their size fractions were measured. In addition, UBC particles were examined by scanning electron microscopy, high-resolution transmission microscopy, and thermogravimetry to obtain information on their surface morphology, structure, and oxidation reactivity. It was found that the UBC particles contained amorphous carbon, ribbon-shaped graphitic carbon, and highly ordered graphite structures. The mercury contents of the UBCs (Hg/UBC, in ppm) in raw ash samples were comparable to those of the UBC-enriched samples, indicating that mercury was mainly adsorbed on the UBC in fly ash. The UBC content decreased with a decreasing particle size range for all nine ashes. There was no correlation between the mercury and UBC contents of different size fractions of as-received ashes. The mercury content of the UBCs in each size fraction, however, generally increased with a decreasing particle size for the nine ashes. The mercury contents and surface areas of the UBCs in the PRB-CYC ashes were about 8 and 3 times higher than UBCs in the EB-PC ashes, respectively. It appeared that both the particle size and surface area of UBC could contribute to mercury capture. The particle size of the UBC in PRB-CYC ash and thus the external mass transfer was found to be the major factor impacting the mercury adsorption. Both the particle size and surface reactivity of the UBC in EB-PC ash, which generally had a lower carbon oxidation reactivity than the PRB-PC ashes, appeared to be important for the mercury adsorption. ?? 2007 American Chemical Society.

  2. Cellular Mutagenicity and Heavy Metal Concentrations of Leachates Extracted from the Fly and Bottom Ash Derived from Municipal Solid Waste Incineration

    PubMed Central

    Chen, Po-Wen; Liu, Zhen-Shu; Wun, Min-Jie; Kuo, Tai-Chen

    2016-01-01

    Two incinerators in Taiwan have recently attempted to reuse the fly and bottom ash that they produce, but the mutagenicity of these types of ash has not yet been assessed. Therefore, we evaluated the mutagenicity of the ash with the Ames mutagenicity assay using the TA98, TA100, and TA1535 bacterial strains. We obtained three leachates from three leachants of varying pH values using the toxicity characteristic leaching procedure test recommended by the Taiwan Environmental Protection Agency (Taiwan EPA). We then performed the Ames assay on the harvested leachates. To evaluate the possible relationship between the presence of heavy metals and mutagenicity, the concentrations of five heavy metals (Cd, Cr, Cu, Pb, and Zn) in the leachates were also determined. The concentrations of Cd and Cr in the most acidic leachate from the precipitator fly ash and the Cd concentration in the most acidic leachate from the boiler fly ash exceeded the recommended limits. Notably, none of the nine leachates extracted from the boiler, precipitator, or bottom ashes displayed mutagenic activity. This data partially affirms the safety of the fly and bottom ash produced by certain incinerators. Therefore, the biotoxicity of leachates from recycled ash should be routinely monitored before reusing the ash. PMID:27827867

  3. Microstructural and strength improvements through the use of Na{sub 2}CO{sub 3} in a cementless Ca(OH){sub 2}-activated Class F fly ash system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Dongho; Jun, Yubin; Jeong, Yeonung

    2015-01-15

    This study explores the beneficial effects of Na{sub 2}CO{sub 3} as an additive for microstructural and strength improvements in a Ca(OH){sub 2}-activated fly ash system. NaOH-activated fly ash samples were also tested to compare the effect of Na{sub 2}CO{sub 3}. Compressive strength testing, XRD, SEM/BSE/EDS, {sup 29}Si/{sup 27}Al MAS-NMR, MIP and TGA were performed. The testing results indicate that the use of Na{sub 2}CO{sub 3} for Ca(OH){sub 2}-activation led to a noticeable improvement in strength and microstructure, primarily due to (1) more dissolution of raw fly ash at an early age, (2) more formation of C–S–H [or C–S–H(I)], (3) porositymore » reduction, and (4) pore-size refinement. We also found that (1) an early high alkalinity from the NaOH formation was not a major cause of strength, (2) geopolymer was not formed despite the early NaOH formation, and (3) no visible pore-filling action of CaCO{sub 3} was observed. However, Na{sub 2}CO{sub 3} did not produce any improvement in strength for NaOH-activated fly ash. -- Highlights: •The use of Na{sub 2}CO{sub 3} significantly improved strength and microstructure. •The use of Na{sub 2}CO{sub 3} induced more dissolution of raw fly ash at early ages. •The use of Na{sub 2}CO{sub 3} promoted more C–S–H [or C–S–H(I)] formation. •The use of Na{sub 2}CO{sub 3} reduced total porosity and refined pore-size distribution. •The use of Na{sub 2}CO{sub 3} produced neither geopolymer formations nor pore-filling actions from CaCO{sub 3}.« less

  4. The measurement of unburned carbon in fly ash using infrared photoacoustics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waller, D.J.; Brown, R.C.

    1995-12-31

    Unburned carbon in fly ash yields valuable information on coal combustion efficiency in coal-fired boilers. The carbon content of fly ash is also an important parameters in the sale of fly ash for Portland cement. Unfortunately, a reliable and inexpensive instrument for measuring unburned carbon is not commercially available. The authors have developed an off-line instrument that detects carbon in fly ash via the photoacoustic effect. In this process, amplitude-modulated radiation is absorbed by a bulk sample of fly ash. The wavelength of the radiation is chosen such that mineral compounds and moisture in the fly ash are transparent tomore » the radiation but carbon is strongly absorbing. The modulated absorption generates a periodic pressure wave at the surface of the sample which propagates through the surrounding air as an acoustic wave. This wave is detected by a sensitive microphone, and is dependent on the carbon content of the sample. The resulting instrument has been used to measure fly ash carbon concentrations from less than 0.1% to nearly 7% by mass. The precision of these measurements is nominally within 4%, which is equivalent to the precision of the chemical analysis used to develop the calibration standards. The applicability of a theoretical model to the empirical results is discussed with respect to fly ash sample preparation.« less

  5. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    DOEpatents

    Huibers, Derk T. A.; Johanson, Edwin S.

    1983-01-01

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  6. On the removal of hexavalent chromium from a Class F fly ash.

    PubMed

    Huggins, F E; Rezaee, M; Honaker, R Q; Hower, J C

    2016-05-01

    Coarse and fine samples of a Class F fly ash obtained from commercial combustion of Illinois bituminous coal have been exposed to two long-term leaching tests designed to simulate conditions in waste impoundments. ICP-AES analysis indicated that the coarse and fine fly ash samples contained 135 and 171mg/kg Cr, respectively. Measurements by XAFS spectroscopy showed that the ash samples originally contained 5 and 8% of the chromium, respectively, in the hexavalent oxidation state, Cr(VI). After exposure to water for more than four months, the percentage of chromium as Cr(VI) in the fly-ash decreased significantly for the coarse and fine fly-ash in both tests. Combining the XAFS data with ICP-AES data on the concentration of chromium in the leachates indicated that, after the nineteen-week-long, more aggressive, kinetic test on the coarse fly ash, approximately 60% of the Cr(VI) had been leached, 20% had been reduced to Cr(III) and retained in the ash, and 20% remained as Cr(VI) in the ash. In contrast, during the six-month-long baseline test, very little Cr was actually leached from either the coarse or the fine fly-ash (<0.1mg/kg); rather, about 66% and 20%, respectively, of the original Cr(VI) in the coarse and fine fly-ash was retained in the ash in that form, while the remainder, 34% and 80%, respectively, was reduced and retained in the ash as Cr(III). The results are interpreted as indicating that Cr(VI) present in Class F fly-ash can be reduced to Cr(III) when in contact with water and that such chemical reduction can compete with physical removal of Cr(VI) from the ash by aqueous leaching. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The environmental consequences of the oil shale utilization in Jordan: The effect of combustion processes

    NASA Astrophysics Data System (ADS)

    El-Hasan, Tayel

    2015-04-01

    The geochemical analysis of the upper Cretaceous organic rich oil shale of El-Lajjoun revealed that it contains considerable concentrations of trace element when compared to the average world shale. The aim of this study was to deduce the effect of various combustion processes on the geochemical and mineralogical characteristics of the produced ashes.The oil shale powder samples were burned under Aerobic Combustion Process (ACP) at 700˚C, 850˚C and 1000˚C respectively, beside the anaerobic (pyrolysis) combustion process (PCP) at 600, 650, 700, 750 and 800˚C respectively.The ashes produced from the (ACP) caused almost all major oxides contents to increase with increasing burning temperature, particularly SiO2 and CaO were nearly doubled at temperature 1000 ˚C. Moreover, trace elements showed the same trend where ashes at higher temperatures (i.e. 1000 ˚C) have doubled its contents of trace elements such as Cr, Ni, Zn, Cu and U. This was reflected through enrichment of calcite and quartz beside the anhydrite as the main mineral phases in the ACP ashes. As for the PCP ash show similar trend but relatively with lower concentrations as evident from its lowerEnrichment Factor (EF) values. This might be due to the higher organic matter remained in the PCP ashes compared with ACP ashes. However, PCP is more likely associated with toxic Cd and Asgasses as evident from their lowerconcentrations in the ashes.Moreover, recent results using the synchrotron-based XANES technique confirm that toxic elements are found in higher oxidation state due to ACP. The investigation was concerned on As and Cr. Thechromium in the original shales was in the form of Cr (III) and then it was converted to Cr(VI) in the ashes due of the ACP. Similarly, As (III) the XANES results showed that it was converted into As(V) too. These findingsare alarming and should be taken seriously. Because elements with higher oxidation states became more mobile, thus they can easily leached from the ash tailing into the nearby water resources. The most important species is Cr(VI) because itis easily leachable and very harmful species. It could cause pollution to surface and ground water resources.Therefore, allot of concerns should be paid on the ongoing oil shale utilization enterprises due to its pollution potential.Further investigation regarding the speciation of vanadium and cadmium are on the way.

  8. Environmentally-mediated ash aggregate formation: example from Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Ayris, Paul M.; Bernard, Benjamin; Delmelle, Pierre; Douillet, Guilhem A.; Lavallée, Yan; Mueller, Sebastian B.; Dingwell, Donald B.; Dobson, Kate J.

    2016-04-01

    Volcanic ash is generated during explosive eruptions through an array of different processes; it can be produced in large quantities and can, in some circumstances, have the potential for far-reaching impacts beyond the flanks of the volcano. Aggregation of ash particles can significantly impact the dispersal within the atmosphere, and its subsequent deposition into terrestrial or aquatic environments. However, our understanding of the complex interplay of the boundary conditions which permit aggregation to occur remain incomplete. Tungurahua volcano, Ecuador, has been intermittently active since 1999. In August 2006, a series of pyroclastic density currents (PDC) were generated during a series of dry, Vulcanian explosions and travelled down the western and northern flanks of the volcano. In some locations, the related PDC deposits temporarily dammed the Chambo river, and the residual heat within those deposits produced vigorous steam plumes. During several field campaigns (2009-2015), we mapped, sampled, and analysed the related deposits. At the base of the Rea ravine, a large delta fan of PDC deposits had dammed the river over a length of several hundred metres. In several outcrops adjacent to the river and in small erosional gullies we found a peculiar stratigraphic layer (up to ten centimetres thick) at the top of the PDC deposits. As this layer is capped by a thin fall unit of coarse ash that we also find elsewhere at the top of the August 2006 deposits, the primary nature is without doubt. In this unit, we observed abundant ash aggregates up to eight millimetres in diameter within a poorly sorted, ash-depleted lapilli tuff, primarily comprised of rounded pumiceous and scoriaceous clasts of similar size. Leaching experiments have shown that these aggregates contain several hundred ppm of soluble sulphate and chloride salts. Recent laboratory experiments (Mueller et al. 2015) have suggested that in order for accretionary lapilli to be preserved within ash deposits likely requires a combination of sufficient humidity and a pre-existing soluble salt load on aggregating ash particles. We suggest that steam pluming from the dammed Chambo river, coupled with soluble salts emplaced by gas-ash interactions between ejection and deposition, provided a unique opportunity for the formation of accretionary lapilli with sufficient mechanical strength to survive deposition, accounting for their presence in a deposit otherwise absent of such aggregates. This possibility provides an important reminder of the role played by external environmental triggers in shaping the properties volcanic ash deposits.

  9. Role of emerald ash borer (Coleoptera: Buprestidae) larval vibrations in host-quality assessment by Tetrastichus planipennisi (Hymenoptera: Eulophidae).

    PubMed

    Ulyshen, Michael D; Mankin, Richard W; Chen, Yigen; Duan, Jian J; Poland, Therese M; Bauer, Leah S

    2011-02-01

    The biological control agent Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) is a gregarious larval endoparasitoid of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive cambium-feeding species responsible for recent, widespread mortality of ash (Fraxinus spp.) in North America. T. planipennisi is known to prefer late-instar emerald ash borer, but the cues used to assess host size by this species and most other parasitoids of concealed hosts remain unknown. We sought to test whether vibrations produced by feeding emerald ash borer vary with larval size and whether there are any correlations between these cues and T. planipennisi progeny number (i.e., brood size) and sex ratio. The amplitudes and rates of 3-30-ms vibrational impulses produced by emerald ash borer larvae of various sizes were measured in the laboratory before presenting the larvae to T. planipennisi. Impulse-rate did not vary with emerald ash borer size, but vibration amplitude was significantly higher for large larvae than for small larvae. T. planipennisi produced a significantly higher proportion of female offspring from large hosts than small hosts and was shown in previous work to produce more offspring overall from large hosts. There were no significant correlations, however, between the T. planipennisi progeny data and the emerald ash borer sound data. Because vibration amplitude varied significantly with host size, however, we are unable to entirely reject the hypothesis that T. planipennisi and possibly other parasitoids of concealed hosts use vibrational cues to assess host quality, particularly given the low explanatory potential of other external cues. Internal chemical cues also may be important.

  10. Leaching characteristics of fly ash from thermal power plants of Soma and Tuncbilek, Turkey.

    PubMed

    Baba, Alper; Kaya, Abidin

    2004-02-01

    Use of lignite in power generation has led to increasing environmental problems associated not only with gaseous emissions but also with the disposal of ash residues. In particular, use of low quality coal with high ash content results in huge quantities of fly ash to be disposed of. The main problem related to fly ash disposal is the heavy metal content of the residue. In this regard, experimental results of numerous studies indicate that toxic trace metals may leach when fly ash contacts water. In this study, fly ash samples obtained from thermal power plants, namely Soma and Tunçbilek, located at the west part of Turkey, were subjected to toxicity tests such as European Committee for standardization (CEN) and toxicity characteristic leaching (TCLP) procedures of the U.S. Environmental Protection Agency (U.S. EPA). The geochemical composition of the tested ash samples from the power plant show variations depending on the coal burned in the plants. Furthermore, the CEN and TCLP extraction results showed variations such that the ash samples were classified as 'toxic waste' based on TCLP result whereas they were classified as 'non-toxic' wastes based on CEN results, indicating test results are pH dependent.

  11. Properties of Fly Ash Blocks Made from Adobe Mould

    NASA Astrophysics Data System (ADS)

    Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.

    2018-02-01

    Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.

  12. Properties of Fly Ash Blocks Made from Adobe Mould

    NASA Astrophysics Data System (ADS)

    Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.

    2018-06-01

    Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.

  13. Simultaneous determination of V, Ni and Fe in fuel fly ash using solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Cárdenas Valdivia, A; Vereda Alonso, E; López Guerrero, M M; Gonzalez-Rodriguez, J; Cano Pavón, J M; García de Torres, A

    2018-03-01

    A green and simple method has been proposed in this work for the simultaneous determination of V, Ni and Fe in fuel ash samples by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GFAAS). The application of fast programs in combination with direct solid sampling allows eliminating pretreatment steps, involving minimal manipulation of sample. Iridium treated platforms were applied throughout the present study, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9931. The concentrations found in the fuel ash samples analysed ranged from 0.66% to 4.2% for V, 0.23-0.7% for Ni and 0.10-0.60% for Fe. Precision (%RSD) were 5.2%, 10.0% and 9.8% for V, Ni and Fe, respectively, obtained as the average of the %RSD of six replicates of each fuel ash sample. The optimum conditions established were applied to the determination of the target analytes in fuel ash samples. In order to test the accuracy and applicability of the proposed method in the analysis of samples, five ash samples from the combustion of fuel in power stations, were analysed. The method accuracy was evaluated by comparing the results obtained using the proposed method with the results obtained by ICP OES previous acid digestion. The results showed good agreement between them. The goal of this work has been to develop a fast and simple methodology that permits the use of aqueous standards for straightforward calibration and the simultaneous determination of V, Ni and Fe in fuel ash samples by direct SS HR CS GFAAS. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effects of volcanic ash on the forest canopy insects of Montserrat, West Indies.

    PubMed

    Marske, Katharine A; Ivie, Michael A; Hilton, Geoff M

    2007-08-01

    The impact of ash deposition levels on canopy arthropods was studied on the West Indian island of Montserrat, the site of an ongoing volcanic eruption since 1995. Many of the island's natural habitats have been buried by volcanic debris, and remaining forests regularly receive volcanic ash deposition. To test the effect of ash on canopy arthropods, four study sites were sampled over a 15-mo period. Arthropod samples were obtained using canopy fogging, and ash samples were taken from leaf surfaces. Volcanic ash has had a significant negative impact on canopy arthropod populations, but the decline is not shared equally by all taxa present, and total population variation is within the variance attributed to other aboitic and biotic factors. The affected populations do not differ greatly from those of the neighboring island of St. Kitts, which has not been subject to recent volcanic activity. This indicates that observed effects on Montserrat's arthropod fauna have a short-term acute response to recent ash deposition rather than a chronic depression caused by repeated exposure to ash over the last decade.

  15. Study on surface morphology and physicochemical properties of raw and activated South African coal and coal fly ash

    NASA Astrophysics Data System (ADS)

    Mishra, S. B.; Langwenya, S. P.; Mamba, B. B.; Balakrishnan, M.

    South African coal and coal fly ash were selected as the raw materials to be used for study of their morphology and physicochemical properties and their respective activated carbons for adsorption applications. Coal and fly ash were individually steam activated at a temperature range of 550-1000 °C for 1 h in a muffle furnace using cylindrical stainless steel containers. Scanning electron micrographs revealed a change in surface morphology with more mineral matter available on the surface of the coal particles due to increased devolatilization. However, in the case of fly ash, the macerals coalesced to form agglomerates and the presence of unburnt carbon constituted pores of diameter between 50 and 100 nm. The BET surface area of coal improved significantly from 5.31 to 52.12 m 2/g whereas in case of fly ash the surface area of the raw sample which was originally 0.59 m 2/g and upon activation increased only up to 2.04 m 2/g. The chemical composition of the fly ash confirmed that silica was the major component which was approximately 60% by weight fraction. The impact of this study was to highlight the importance of using raw materials such as coal and a waste product, in the form of coal ash, in order to produce affordable activated carbon that can be used in drinking water treatment. This would therefore ensure that the quality of water supplied to communities for drinking is not contaminated especially by toxic organic compounds.

  16. Formation and use of coal combustion residues from three types of power plants burning Illinois coals

    USGS Publications Warehouse

    Demir, I.; Hughes, R.E.; DeMaris, P.J.

    2001-01-01

    Coal, ash, and limestone samples from a fluidized bed combustion (FBC) plant, a pulverized coal combustion (PC) plant, and a cyclone (CYC) plant in Illinois were analyzed to determine the combustion behavior of mineral matter, and to propose beneficial uses for the power plant ashes. Pyrite and marcasite in coal were converted during combustion to glass, hematite and magnetite. Calcite was converted to lime and anhydrite. The clay minerals were altered to mullite and glass. Quartz was partially altered to glass. Trace elements in coal were partially mobilized during combustion and, as a result, emitted into the atmosphere or adsorbed on fly ash or on hardware on the cool side of the power plants. Overall, the mobilities of 15 trace elements investigated were lower at the FBC plant than at the other plants. Only F and Mn at the FBC plant, F, Hg, and Se at the PC plant and Be, F, Hg, and Se at the CYC plant had over 50% of their concentrations mobilized. Se and Ge could be commercially recovered from some of the combustion ashes. The FBC ashes could be used as acid neutralizing agents in agriculture and waste treatment, and to produce sulfate fertilizers, gypsum wall boards, concrete, and cement. The PC and CYC fly ashes can potentially be used in the production of cement, concrete, ceramics, and zeolites. The PC and CYC bottom ashes could be used in stabilized road bases, as frits in roof shingles, and perhaps in manufacturing amber glass. ?? 2001 Elsevier Science Ltd. All rights reserved.

  17. Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment.

    PubMed

    Havukainen, Jouni; Nguyen, Mai Thanh; Hermann, Ludwig; Horttanainen, Mika; Mikkilä, Mirja; Deviatkin, Ivan; Linnanen, Lassi

    2016-03-01

    All life forms require phosphorus (P), which has no substitute in food production. The risk of phosphorus loss from soil and limited P rock reserves has led to the development of recycling P from industrial residues. This study investigates the potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment (ASH DEC) in Finland. An ASH DEC plant could receive 46-76 kt/a of sewage sludge ash to produce 51-85 kt/a of a P-rich product with a P2O5 content of 13-18%, while 320-750 kt/a of manure ash could be supplied to produce 350-830 kt/a of a P-rich product with a P content of 4-5%. The P2O5 potential in the total P-rich product from the ASH DEC process using sewage sludge and manure ash is estimated to be 25-47 kt/a, which is significantly more than the P fertilizer demand in Finland's agricultural industries. The energy efficiency of integrated incineration and the ASH DEC process is more dependent on the total solid content and the subsequent need for mechanical dewatering and thermal drying than on the energy required by the ASH DEC process. According to the results of this study, the treated sewage sludge and manure ash using the ASH DEC process represent significant potential phosphorus sources for P fertilizer production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Group-V atoms exchange due to exposure of InP surface to AsH3(+PH3) revealed by x-ray CTR scattering

    NASA Astrophysics Data System (ADS)

    Tabuchi, M.; Yamada, N.; Fujibayashi, K.; Takeda, Y.; Kamei, H.

    1996-05-01

    We conducted x-ray crystal truncation rod (CTR) measurements using synchro-tron radiation to analyze the As atom distribution in InP to the order of 1 ML. The InP samples which were only exposed to AsH3(+PH3) and capped by InP were investigated to study the effect of the purge sequence. The purge sequence is unavoidable to grow heteroepitaxial layers by OMVPE and is considered to affect largely the structure of the interface. From the results of the measurement and the computer simulation, the distribution of P and As atoms of the order of 1 ML was discussed as functions of the exposing time. It was shown that the number of As atoms contained in the samples saturated when the AsH3-exposure time is longer than 10 s. Comparing the profiles of AsH3-exposed samples with that of (AsH3 + PH3)-exposed samples, it was found that the As distribution in the buffer layer was suppressed in (AsH3 + PH3)-exposed samples. In order to obtain the sharp interfaces, the AsH3-exposure time must be shorter than 0.5 s.

  19. Ion Beam Analyses Of Bark And Wood In Environmental Studies

    NASA Astrophysics Data System (ADS)

    Lill, J.-O.; Saarela, K.-E.; Harju, L.; Rajander, J.; Lindroos, A.; Heselius, S.-J.

    2011-06-01

    A large number of wood and bark samples have been analysed utilizing particle-induced X-ray emission (PIXE) and particle-induced gamma-ray emission (PIGE) techniques. Samples of common tree species like Scots Pine, Norway Spruce and birch were collected from a large number of sites in Southern and Southwestern Finland. Some of the samples were from a heavily polluted area in the vicinity of a copper-nickel smelter. The samples were dry ashed at 550 °C for the removal of the organic matrix in order to increase the analytical sensitivity of the method. The sensitivity was enhanced by a factor of 50 for wood and slightly less for bark. The ashed samples were pressed into pellets and irradiated as thick targets with a millimetre-sized proton beam. By including the ashing procedure in the method, the statistical dispersion due to elemental heterogeneities in wood material could be reduced. As a by-product, information about the elemental composition of ashes was obtained. By comparing the concentration of an element in bark ash to the concentration in wood ash of the same tree useful information from environmental point of view was obtained. The obtained ratio of the ashes was used to distinguish between elemental contributions from anthropogenic atmospheric sources and natural geochemical sources, like soil and bedrock.

  20. Integrated coal cleaning, liquefaction, and gasification process

    DOEpatents

    Chervenak, Michael C.

    1980-01-01

    Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

  1. 40 CFR 240.211-3 - Recommended procedures: Operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... every 60 minutes and as changes are made. (5) Weights of bottom ash, grate siftings, and fly ash.... (10) Gross calorific value of daily representative samples of bottom ash, grate siftings, and fly ash...

  2. Factors affecting the geochemistry of a thick, subbituminous coal bed in the Powder River Basin: volcanic, detrital, and peat-forming processes

    USGS Publications Warehouse

    Crowley, S.S.; Ruppert, L.F.; Belkin, H.E.; Stanton, R.W.; Moore, T.A.

    1993-01-01

    The inorganic geochemistry and mineralogy of three cores from the Anderson-Dietz 1 coal bed, a 15.2-m-thick subbituminous coal bed in the Tongue River Member (Paleocene) of the Fort Union Formation, were examined (1) to determine if the cores could be correlated by geochemical composition alone over a total distance of 2 km and (2) to identify the major factors that influenced the geochemistry of the coal bed. Chemical data (46 elements on a coal-ash basis) for 81 coal samples and 4 carbonaceous rock samples, with most samples representing a 0.6-m-thick (2-ft) interval of core, were grouped into compositional clusters by means of cluster analysis. Seven major clusters were produced; two of these clusters can be used to correlate the coal bed throughout the study area. Data from scanning electron and optical microscope analyses indicate that several factors influenced the geochemistry of the Anderson-Dietz 1 coal bed. The majority of mineral grains in the coal bed are interpreted to be detrital (water borne); evidence includes the presence of rounded to subrounded quartz grains having two-phase, aqueous fluid inclusions characteristic of hydrothermal or low-to-moderate grade metamorphic quartz. These quartz grains are found throughout the coal bed but are most abundant in samples from the midpart of the bed, which was influenced by detrital input associated with the deposition of the clastic rocks that form the split between the Anderson and Dietz 1 coal beds 900 m to the east of the study area. In addition to the detrital minerals mentioned above, volcanic ash that was fluvially transported to the sites of peat deposition or possibly deposited as air-fall volcanic ash also affected the geochemistry of the coal bed. For example, crandallite(?), a mineral reported to form as an alteration product of volcanic ash, is found in seven samples from the coal bed. The presence of quartz grains containing silicate-melt inclusions in eight samples from the coal bed.provides further support for a volcanic ash component. Other factors that probably affected the geochemistry of the coal bed include (1) detrital input associated with the deposition of the roof rocks of the coal bed, (2) peat-forming processes and plant material, and (3) epigenetic ground-water flow. ?? 1993.

  3. EU landfill waste acceptance criteria and EU Hazardous Waste Directive compliance testing of incinerated sewage sludge ash.

    PubMed

    Donatello, S; Tyrer, M; Cheeseman, C R

    2010-01-01

    A hazardous waste assessment has been completed on ash samples obtained from seven sewage sludge incinerators operating in the UK, using the methods recommended in the EU Hazardous Waste Directive. Using these methods, the assumed speciation of zinc (Zn) ultimately determines if the samples are hazardous due to ecotoxicity hazard. Leaching test results showed that two of the seven sewage sludge ash samples would require disposal in a hazardous waste landfill because they exceed EU landfill waste acceptance criteria for stabilised non-reactive hazardous waste cells for soluble selenium (Se). Because Zn cannot be proven to exist predominantly as a phosphate or oxide in the ashes, it is recommended they be considered as non-hazardous waste. However leaching test results demonstrate that these ashes cannot be considered as inert waste, and this has significant implications for the management, disposal and re-use of sewage sludge ash.

  4. Soot, organics and ultrafine ash from air- and oxy-fired coal ...

    EPA Pesticide Factsheets

    This paper is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practically relevant stoichiometric ratios (SR = 1.2-1.4), but with the ability to maintain constant residence times (2.3 s). Experiments were conducted using a pulverized bituminous coal under air-combustion and three oxy-combustion inlet oxygen conditions (28, 32, and 36%). Size-classified fly ash samples were collected, and measurements focused on the composition of the total and ultrafine (<0.6 µm) fly ash produced, in particular the soot, elemental carbon (EC), and organic carbon (OC) fractions. Results indicate that although the total fly ash carbon, as measured by loss on ignition, was always acceptably low (<2%) with all three oxy-combustion conditions lower than air-combustion, the ultrafine fly ash for both air-fired and oxy-fired combustion conditions consists primarily of carbonaceous material (50-95%). Subsequent analyses of the carbonaceous component on particles <0.6 µm by a thermal optical method showed that large fractions (52-93%) consisted of OC rather than EC, as expected. This observation was supported by thermogravimetric analysis indicating that for the air, 28% oxy, and 32% oxy conditions, 14-71% of this material may be OC volatilizing between 100 and 550 °C with the remaining

  5. Apparatus and method for direct measurement of coal ash sintering and fusion properties at elevated temperatures and pressures

    DOEpatents

    Khan, M. Rashid

    1990-01-01

    A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.

  6. Alkali activation processes for incinerator residues management.

    PubMed

    Lancellotti, Isabella; Ponzoni, Chiara; Barbieri, Luisa; Leonelli, Cristina

    2013-08-01

    Incinerator bottom ash (BA) is produced in large amount worldwide and in Italy, where 5.1 millionstons of municipal solid residues have been incinerated in 2010, corresponding to 1.2-1.5 millionstons of produced bottom ash. This residue has been used in the present study for producing dense geopolymers containing high percentage (50-70 wt%) of ash. The amount of potentially reactive aluminosilicate fraction in the ash has been determined by means of test in NaOH. The final properties of geopolymers prepared with or without taking into account this reactive fraction have been compared. The results showed that due to the presence of both amorphous and crystalline fractions with a different degree of reactivity, the incinerator BA geopolymers exhibit significant differences in terms of Si/Al ratio and microstructure when reactive fraction is considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Possibilities of municipal solid waste incinerator fly ash utilisation.

    PubMed

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  8. Environmental chamber measurements of mercury flux from coal utilization by-products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pekney, Natalie J.; Martello, Donald; Schroeder, Karl

    2009-05-01

    An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7- day experiment averages ranging from -6.8 to 73 ng/m(2) h for the fly ash samples and -5.2 to 335 ng/m(2) h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples,more » the effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.« less

  9. Environmental chamber measurements of mercury flux from coal utilization by-products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pekney, N.J.; Martello, D.V.; Schroeder, K.T.

    2009-05-01

    An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7-day experiment averages ranging from -6.8 to 73 ng/m2 h for the fly ash samples and -5.2 to 335 ng/m2 h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples, themore » effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.« less

  10. Magmatic and fragmentation controls on volcanic ash surface chemistry

    NASA Astrophysics Data System (ADS)

    Ayris, Paul M.; Diplas, Spyros; Damby, David E.; Hornby, Adrian J.; Cimarelli, Corrado; Delmelle, Pierre; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The chemical effects of silicate ash ejected by explosive volcanic eruptions on environmental systems are fundamentally mediated by ash particle surfaces. Ash surfaces are a composite product of magmatic properties and fragmentation mechanisms, as well as in-plume and atmospheric alteration processes acting upon those surfaces during and after the eruption. Recent attention has focused on the capacity of alteration processes to shape ash surfaces; most notably, several studies have utilised X-ray photoelectron spectroscopy (XPS), a technique probing the elemental composition and coordination state of atoms within the top 10 nm of ash surfaces, to identify patterns of elemental depletions and enrichments relative to bulk ash chemical composition. Under the presumption of surface and bulk equivalence, any disparities have been previously attributed to surface alteration processes, but the ubiquity of some depletions (e.g., Ca, Fe) across multiple ash studies, irrespective of eruptive origin, could suggest these to be features of the surface produced at the instant of magma fragmentation. To investigate this possibility further, we conducted rapid decompression experiments at different pressure conditions and at ambient and magmatic temperature on porous andesitic rocks. These experiments produced fragmented ash material untouched by secondary alteration, which were compared to particles produced by crushing of large clasts from the same experiments. We investigated a restricted size fraction (63-90 μm) from both fragmented and crushed materials, determining bulk chemistry and mineralogy via XRF, SEM-BSE and EPMA, and investigated the chemical composition of the ash surface by XPS. Analyses suggest that fragmentation under experimental conditions partitioned a greater fraction of plagioclase-rich particles into the selected size fraction, relative to particles produced by crushing. Trends in surface chemical composition in fragmented and crushed particles mirror that partitioning effect, but crucially, disparities between surface and bulk chemistry remain evident. Simple glass-plagioclase mixing calculations suggest that this feature may indicate differences in bulk and surface mineral distributions; future QEMSCAN analysis will investigate this possibility further. Additionally, surface iron enrichments observed in our high temperature experiments suggest that hot oxidation effects can have a near-instantaneous, measurable effect on ash surface chemistry at the nanometre scale. Our preliminary results suggest that the chemical and mineral properties of the source magma, coupled with high temperature fragmentation processes, may have a significant influence on ash surface chemistry and mineralogy, and subsequently, on the post-eruptive alteration of ash particles and their reactivity within biotic and abiotic systems.

  11. Whole-coal versus ash basis in coal geochemistry: a mathematical approach to consistent interpretations

    USGS Publications Warehouse

    Geboy, Nicholas J.; Engle, Mark A.; Hower, James C.

    2013-01-01

    Several standard methods require coal to be ashed prior to geochemical analysis. Researchers, however, are commonly interested in the compositional nature of the whole-coal, not its ash. Coal geochemical data for any given sample can, therefore, be reported in the ash basis on which it is analyzed or the whole-coal basis to which the ash basis data are back calculated. Basic univariate (mean, variance, distribution, etc.) and bivariate (correlation coefficients, etc.) measures of the same suite of samples can be very different depending which reporting basis the researcher uses. These differences are not real, but an artifact resulting from the compositional nature of most geochemical data. The technical term for this artifact is subcompositional incoherence. Since compositional data are forced to a constant sum, such as 100% or 1,000,000 ppm, they possess curvilinear properties which make the Euclidean principles on which most statistical tests rely inappropriate, leading to erroneous results. Applying the isometric logratio (ilr) transformation to compositional data allows them to be represented in Euclidean space and evaluated using traditional tests without fear of producing mathematically inconsistent results. When applied to coal geochemical data, the issues related to differences between the two reporting bases are resolved as demonstrated in this paper using major oxide and trace metal data from the Pennsylvanian-age Pond Creek coal of eastern Kentucky, USA. Following ilr transformation, univariate statistics, such as mean and variance, still differ between the ash basis and whole-coal basis, but in predictable and calculated manners. Further, the stability between two different components, a bivariate measure, is identical, regardless of the reporting basis. The application of ilr transformations addresses both the erroneous results of Euclidean-based measurements on compositional data as well as the inconsistencies observed on coal geochemical data reported on different bases.

  12. Transformations of inorganic coal constituents in combustion systems. Volume 1, sections 1--5: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon themore » size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles? What determines their composition? Whether or not particles deposit? How combustion conditions, including reactor size, affect these processes? remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.« less

  13. Characterization of fine volcanic ash from explosive eruption from Sakurajima volcano, South Japan

    NASA Astrophysics Data System (ADS)

    Nanayama, F.; Furukawa, R.; Ishizuka, Y.; Yamamoto, T.; Geshi, N.; Oishi, M.

    2013-12-01

    Explosive volcanic eruptions can affect infrastructure and ecosystem by their dispersion of the volcanic particle. Characterization of volcanic particle expelled by explosive eruption is crucial for evaluating for quantitative hazard assessment by future volcanic eruption. Especially for fine volcanic ash less than 64 micron in diameter, it can disperse vast area from the source volcano and be easily remobilized by surface wind and precipitation after the deposition. As fine volcanic ash is not preserved well at the earth surface and in strata except for enormously large scale volcanic eruption. In order to quantify quantitative characteristics of fine volcanic ash particle, we sampled volcanic ash directly falling from the eruption cloud from Showa crater, the most active vent of Sakurajima volcano, just before landing on ground. We newly adopted high precision digital microscope and particle grain size analyzer to develop hazard evaluation method of fine volcanic ash particle. Field survey was performed 5 sequential days in January, 2013 to take tamper-proof volcanic ash samples directly obtained from the eruption cloud of the Sakurajima volcano using disposable paper dishes and plastic pails. Samples were taken twice a day with time-stamp in 40 localities from 2.5 km to 43 km distant from the volcano. Japan Meteorological Agency reported 16 explosive eruptions of vulcanian style occurred during our survey and we took 140 samples of volcanic ash. Grain size distribution of volcanic ash was measured by particle grain size analyzer (Mophologi G3S) detecting each grain with parameters of particle diameter (0.3 micron - 1 mm), perimeter, length, area, circularity, convexity, solidity, and intensity. Component of volcanic ash was analyzed by CCD optical microscope (VHX-2000) which can take high resolution optical image with magnifying power of 100-2500. We discriminated each volcanic ash particle by color, texture of surface, and internal structure. Grain size distributions of volcanic ash from Sakurajima volcano have basically characteristics of unimodal and gaussian. Mode of distributions are 150 - 200 micron at 5 km and 70-80 micron at 20 km respectively from the Showa crater. Mode and deviation of the grain size distribution are function of distance from the source. Fine volcanic ash less than 1 micron in diameter is few and exists in every samples. Component of volcanic ash samples are dark-colored dense glass shard (ca. 50%), light-colored dense glass shard (10%), variously colored and vesiculated glass shard (10%), free crystal (20%), lithic fragment (10%), and altered fragment (less than 5%) which are mostly having similar ratio in every location suggesting single source process of the eruption. We also found fine volcanic ash samples less than 10 micron are frequently aggregated. The present study includes the result of "Research and Development of Margin Assessment Methodology of Decay Heat Removal Function against External Hazards" entrusted to Japan Atomic Energy Agency by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

  14. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash.

    PubMed

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M; Thomsen, Tobias P; Ahrenfeldt, Jesper; Hauggaard-Nielsen, Henrik

    2017-03-01

    Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ashes, a material that is rich in phosphorus, but which is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock supply, phosphorus recovery from sewage sludge ashes has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of phosphorus extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of phosphorus were achieved with a single ED step for incineration ashes and a sequential combination of two ED steps for gasification ashes, which was due to a higher influence of iron and/or aluminium in phosphorus solubility for the latter. A product with lower level of metallic impurities and comparable to wet process phosphoric acid was eventually obtained from gasification ashes. Thus, gasification becomes an interesting alternative to incineration also in terms of phosphorus separation.

  15. Experimental constraints on phreatic eruption processes at Whakaari (White Island volcano)

    NASA Astrophysics Data System (ADS)

    Mayer, Klaus; Scheu, Bettina; Gilg, H. Albert; Heap, Michael J.; Kennedy, Ben M.; Lavallée, Yan; Letham-Brake, Mark; Dingwell, Donald B.

    2015-09-01

    Vigorous hydrothermal activity interspersed by sequences of phreatic and phreatomagmatic eruptions occur at Whakaari (White Island volcano), New Zealand. Here, we investigate the influence of sample type (hydrothermally altered cemented ash tuffs and unconsolidated ash/lapilli) and fragmentation mechanism (steam flashing versus gas expansion) on fragmentation and ejection velocities as well as on particle-size and shape. Our rapid decompression experiments show that fragmentation and ejection speeds of two ash tuffs, cemented by alunite and amorphous opal, increase with increasing porosity and that both are significantly enhanced in the presence of steam flashing. Ejection speeds of unconsolidated samples are higher than ejection speeds of cemented tuffs, as less energy is consumed by fragmentation. Fragmentation dominated by steam flashing results in increased fragmentation energy and a higher proportion of fine particles. Particle shape analyses before and after fragmentation reveal that both steam flashing and pure gas expansion produce platy or bladed particles from fracturing parallel to the decompression front. Neither fragmentation mechanisms nor sample type show a significant influence on the shape. Our results emphasize that, under identical pressure and temperature conditions, eruptions accompanied by the process of liquid water flashing to steam are significantly more violent than those driven simply by gas expansion. Therefore, phase changes during decompression and cementation are both important considerations for hazard assessment and modeling of eruptions in hydrothermally active environments.

  16. The maximum percentage of fly ash to replace part of original Portland cement (OPC) in producing high strength concrete

    NASA Astrophysics Data System (ADS)

    Mallisa, Harun; Turuallo, Gidion

    2017-11-01

    This research investigates the maximum percent of fly ash to replace part of Orginal Portland Cement (OPC) in producing high strength concrete. Many researchers have found that the incorporation of industrial by-products such as fly ash as in producing concrete can improve properties in both fresh and hardened state of concrete. The water-binder ratio was used 0.30. The used sand was medium sand with the maximum size of coarse aggregate was 20 mm. The cement was Type I, which was Bosowa Cement produced by PT Bosowa. The percentages of fly ash to the total of a binder, which were used in this research, were 0, 10, 15, 20, 25 and 30%; while the super platicizer used was typed Naptha 511P. The results showed that the replacement cement up to 25 % of the total weight of binder resulted compressive strength higher than the minimum strength at one day of high-strength concrete.

  17. Comprehensive Examination of Bottom Ash, Soil Dust, and Direct Emissions and Aging of Laboratory Biomass Burning as Potential Sources of Ice Nucleating Particles

    NASA Astrophysics Data System (ADS)

    Polen, M.; Jahl, L.; Jahn, L.; Somers, J.; Sullivan, R. C.

    2017-12-01

    Recent laboratory and field studies have found that biomass burning can produce ice nucleating particles (INP) with varying efficiencies depending on fuel and burn conditions. Few studies have examined the ice nucleating potential of bottom ash, which has the potential to be lofted during intense burning events. To date, no publications have examined the impact of atmospheric aging or lofted soil particles on INP emitted from biomass burning. This study investigated each of these aspects through laboratory biomass fuel combustion studies. We burned a number of grasses from different locations, and collected filter samples of fresh and photochemically aged biomass burning aerosol, as well as bottom ash collected after the burn. Some burns included soil that the grasses grew in to test for the importance of soil dust to INP emissions lofting during intense fires. The composition and mixing state of the aerosol was determined using a suite of online and offline single-particle techniques. Our findings suggest that bottom ash is a relatively weak INP, but all samples froze consistently at -20 °C < T < -25 °C. We also found that oxidation of the biomass burning aerosol typically enhances ice nucleating activity over fresh, unaged particles, increasing the ice active site surface density by up to a factor of 3 at T = -25 °C. Lastly, the presence of soil dust can greatly enhance INP concentrations for biomass burning events with an increase in the freezing temperature spectrum by > 3 °C. Detailed analysis of these samples aims to provide a clearer understanding of what components of biomass burning increase the ambient concentrations of ice nucleation active particles, and how their ice nucleation properties evolve during atmospheric aging.

  18. Ash cloud aviation advisories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, T.J.; Ellis, J.S.; Schalk, W.W.

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet andmore » every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.« less

  19. Constraining the alteration history of a Late Cretaceous Patagonian volcaniclastic bentonite-ash-mudstone sequence using K-Ar and 40Ar/39Ar isotopes

    NASA Astrophysics Data System (ADS)

    Warr, L. N.; Hofmann, H.; van der Pluijm, B. A.

    2017-01-01

    Smectite is typically considered unsuitable for radiometric dating, as argon (40Ar) produced from decay of exchangeable potassium (40K) located in the interlayer sites can be lost during fluid-rock interaction and/or during wet sample preparation in the laboratory. However, age analysis of Late Cretaceous Argentinian bentonites and associated volcaniclastic rocks from Lago Pellegrini, Northern Patagonia, indicates that, in the case of these very low-permeability rocks, the radioactive 40Ar was retained and thus can provide information on smectite age and the timing of rock alteration. This study presents isotopic results that indicate the ash-to-bentonite conversion and alteration of the overlying tuffaceous mudstones in Northern Patagonia was complete 13-17 my after middle Campanian sedimentation when the system isotopically closed. The general absence of illite in these smectite-rich lithologies reflects the low activity of K and the low temperature (<60 °C) of the formation waters that altered the parent ash.

  20. Development of a standard operating procedure for analysis of ammonia concentrations in coal fly ash.

    DOT National Transportation Integrated Search

    2015-04-01

    Research was performed to support the development and recommendation of a standard operating : procedure (SOP) for analyzing the ammonia content in fly ash intended for use in concrete. A review : of existing ash producers found that several differen...

  1. Geoenvironmental impacts of using high carbon fly ash in structural fill applications.

    DOT National Transportation Integrated Search

    2013-03-01

    Fly ash produced by power plants in the United States occasionally contains significant amounts of unburned carbon due to the : use of the increased prevalence of low nitrogen-oxide and sulphur-oxide burners in recent years. This ash cannot be reused...

  2. Optimising Ambient Setting Bayer Derived Fly Ash Geopolymers

    PubMed Central

    Jamieson, Evan; Kealley, Catherine S.; van Riessen, Arie; Hart, Robert D.

    2016-01-01

    The Bayer process utilises high concentrations of caustic and elevated temperature to liberate alumina from bauxite, for the production of aluminium and other chemicals. Within Australia, this process results in 40 million tonnes of mineral residues (Red mud) each year. Over the same period, the energy production sector will produce 14 million tonnes of coal combustion products (Fly ash). Both industrial residues require impoundment storage, yet combining some of these components can produce geopolymers, an alternative to cement. Geopolymers derived from Bayer liquor and fly ash have been made successfully with a compressive strength in excess of 40 MPa after oven curing. However, any product from these industries would require large volume applications with robust operational conditions to maximise utilisation. To facilitate potential unconfined large-scale production, Bayer derived fly ash geopolymers have been optimised to achieve ambient curing. Fly ash from two different power stations have been successfully trialled showing the versatility of the Bayer liquor-ash combination for making geopolymers. PMID:28773513

  3. Optimising Ambient Setting Bayer Derived Fly Ash Geopolymers.

    PubMed

    Jamieson, Evan; Kealley, Catherine S; van Riessen, Arie; Hart, Robert D

    2016-05-19

    The Bayer process utilises high concentrations of caustic and elevated temperature to liberate alumina from bauxite, for the production of aluminium and other chemicals. Within Australia, this process results in 40 million tonnes of mineral residues (Red mud) each year. Over the same period, the energy production sector will produce 14 million tonnes of coal combustion products (Fly ash). Both industrial residues require impoundment storage, yet combining some of these components can produce geopolymers, an alternative to cement. Geopolymers derived from Bayer liquor and fly ash have been made successfully with a compressive strength in excess of 40 MPa after oven curing. However, any product from these industries would require large volume applications with robust operational conditions to maximise utilisation. To facilitate potential unconfined large-scale production, Bayer derived fly ash geopolymers have been optimised to achieve ambient curing. Fly ash from two different power stations have been successfully trialled showing the versatility of the Bayer liquor-ash combination for making geopolymers.

  4. Mercury retention by fly ashes from coal combustion: Influence of the unburned carbon content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Anton, M.A.; Diaz-Somoano, M.; Martinez-Tarazona, M.R.

    2007-01-31

    The objective of this study was to evaluate the effect of unburned carbon particles present in fly ashes produced by coal combustion on mercury retention. To achieve this objective, the work was divided into two parts. The aim of the first part of the study was to estimate the amount of mercury captured by the fly ashes during combustion in power stations and the relationship of this retention to the unburned carbon content. The second part was a laboratory-scale study aimed at evaluating the retention of mercury concentrations greater than those produced in power stations by fly ashes of differentmore » characteristics and by unburned carbon particles. From the results obtained it can be inferred that the unburned carbon content is not the only variable that controls mercury capture in fly ashes. The textural characteristics of these unburned particles and of other components of fly ashes also influence retention.« less

  5. 40 CFR 98.296 - Data reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of trona or liquid alkaline feedstock for each manufacturing line (tons). (2) Annual production of... trona or liquid alkaline feedstock for each manufacturing line (tons). (6) Monthly production of soda... manufacturing lines located used to produce soda ash. (10) If you produce soda ash using the liquid alkaline...

  6. 40 CFR 98.296 - Data reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of trona or liquid alkaline feedstock for each manufacturing line (tons). (2) Annual production of... trona or liquid alkaline feedstock for each manufacturing line (tons). (6) Monthly production of soda... manufacturing lines located used to produce soda ash. (10) If you produce soda ash using the liquid alkaline...

  7. Demonstration of Regenerable, Large-Scale Ion Exchange System Using WBA Resin in Rialto, CA

    DTIC Science & Technology

    2012-12-01

    requirements. The system also has the flexibility to manually modify system parameters such as flow rates, pH set points, time cycles, etc. The system... flexibility to produce soda ash solutions that vary in concentration from 1 to 10% dry soda ash. The packaged soda ash system was engineered and...The dry soda ash was conveyed to a storage hopper (39.5 ft3) using a flexible screw conveyer. Soda ash solutions were prepared in a 100 gallon

  8. Formation of Humic Substances in Weathered MSWI Bottom Ash

    PubMed Central

    Zhang, Haixia; Shimaoka, Takayuki

    2013-01-01

    The study aimed at evaluating the humic substances (HSs) content from municipal solid waste incinerator (MSWI) bottom ash and its variation with time and the effect of temperature on HSs formation. The process suggested by IHSS was applied to extract HSs from two different bottom ash samples, and the extracted efficiency with NaOH and Na4P2O7 was compared. MSWI bottom ash samples were incubated at 37°C and 50°C for 1 year. HSs and nonhumic substances were extracted from the bottom ash sample with different incubated period by 0.1 M NaOH/Na4P2O7. Results show that the rate of humic acid formation increased originally with incubation time, reached a maximum at 12th week under 37°C and at 18th week under 50°C, and then decreased with time. More humic acid in MSWI bottom ash was formed under 50°C incubated condition compared with that incubated under 37°C. Also, the elemental compositions of HSs extracted from bottom ash are reported. PMID:23844394

  9. Effect of additional materials on the properties of glass-ceramic produced from incinerator fly ashes.

    PubMed

    Cheng, T W

    2004-07-01

    There are 21 Metro-waste incinerators in Taiwan under construction and are expected to be finished at year 2003. It is estimated that these incinerators will produce about two million tons of incinerator ash. In order to reduce the volume and eliminate contamination problems, high temperature molten technology studies have been conducted. The purpose of this research was that of trying to control the chemical composition of the glass-ceramic produced from incinerator fly ash, in order to improve the characteristics of the glass-ceramic. The experimental results showed that the additional materials, Mg(OH)2 and waste glass cullet, can change glass-ceramic phases from gehlenite to augite, pigeonite, and diopside. The physical, mechanical and chemical resistance properties of the glass-ceramic also showed much better characteristics than prepared glass-ceramic using incinerator fly ash alone.

  10. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic.

    PubMed

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos

    2008-08-15

    The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 degrees C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher concentrations in the residue solid ash of PVC as compared to those from the other types of plastic. The open-air burning of plastic material and their toxic emissions is of growing concern in areas of municipal solid waste where open-fires occur intentionally or accidentally. Another problem is building fires in which victims may suffer severe smoke inhalation from burning plastic materials in homes and in working places.

  11. Simulating intracrater ash recycling during mid-intensity explosive activity: high temperature laboratory experiments on natural basaltic ash

    NASA Astrophysics Data System (ADS)

    D'Oriano, Claudia; Pompilio, Massimo; Bertagnini, Antonella; Cioni, Raffaello; Pichavant, Michel

    2010-05-01

    Direct observations of mid-intensity eruptions, in which a huge amount of ash is generated, indicate that ash recycling is quite common. The recognition of juvenile vs. recycled fragments is not straightforward, and no unequivocal, widely accepted criteria exist to support this. The presence of recycled glassy fragments can hide primary magmatic information, introducing bias in the interpretations of the ongoing magmatic and volcanic activity. High temperature experiments were performed at atmospheric pressure on natural samples to investigate the effects of reheating on morphology, texture and composition of volcanic ash. Experiments simulate the transformation of juvenile glassy fragments that, falling into the crater or in the upper part of the conduit, are recycled by following explosions. Textural and compositional modifications obtained in laboratory are compared with similar features observed in natural samples in order to identify some main general criteria to be used for the discrimination of recycled material. Experiments were carried out on tephra produced during Strombolian activity, fire fountains and continuous ash emission at Etna, Stromboli and Vesuvius. Coarse glassy clasts were crushed in a nylon mortar in order to create an artificial ash, and then sieved to select the size interval of 1-0.71 mm. Ash shards were put in a sealed or open quartz tube, in order to prevent or to reproduce effects of air oxidation. The tube was suspended in a HT furnace at INGV-Pisa and kept at different temperatures (up to to 1110°C) for increasing time (0.5-12 hours). Preliminary experiments were also performed under gas flux conditions. Optical and electron microscope observations indicate that high temperature and exposure to the air induce large modifications on clast surface, ranging from change in color, to incipient plastic deformation till complete sintering. Significant change in color of clasts is strictly related to the presence of air, irrespective of temperature while sintering is favored by the high temperature and low fO2. Re-heating promotes nucleation and growth of crystals in the groundmass and associated change of glass composition, sometimes accompanied by growth and coalescence of vesicles in the size of 10-50 µm and cracking of the external surface.

  12. Geoenvironmental impacts of using high carbon fly ash in structural fill applications : [research summary].

    DOT National Transportation Integrated Search

    2013-03-01

    Coal power plants generate approximately 50% of the electricity in the : United States. As a result, large amounts of coal combustion byproducts, : especially fly ash, are produced annually. Only 40% of the fly ash : (mainly C and F-type classificati...

  13. Characterization of an Aggregation Pheromone in Hylesinus pruinosus (Coleoptera: Curculionidae: Scolytinae)

    Treesearch

    William Shepherd; Brian Sullivan; Bradley Hoosier; JoAnne Barrett; Tessa Bauman

    2010-01-01

    We conducted laboratory and field bioassays to characterize the pheromone system of an ash bark beetle, Hylesinus pruinosus Eichhoff (Coleoptera: Curculionidae: Scolytinae). Solitary females in newly initiated galleries in ash logs produced (+)-exo-brevicomin, whereas male beetles paired with females produced (+)-endo-brevicomin, lesser quantities of...

  14. Post-processing, energy production use of sugarcane bagasse ash

    USDA-ARS?s Scientific Manuscript database

    Sugarcane bagasse ash (SBA) is a multi-process by-product produced from the milling of sugarcane. Bagasse is the fibrous material remaining after removing the sugar, water, and other impurities from the sugarcane delivered to the mill. Louisiana produces an estimated 2.7 mt of bagasse each year. In ...

  15. Post-processing, energy production use of sugarcane bagasse ash

    USDA-ARS?s Scientific Manuscript database

    Sugarcane bagasse ash (SBA) is a multi-processed by-product produced from the milling of sugarcane. Bagasse is the fibrous material remaining after removing the sugar, water, and other impurities from the sugarcane delivered to the mill. Louisiana produces an estimated 3 million tons of bagasse each...

  16. Distribution of arsenic and mercury in lime spray dryer ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panuwat Taerakul; Ping Sun; Danold W. Golightly

    The partitioning of As and Hg in various components of lime spray dryer (LSD) ash samples from a coal-fired boiler was characterized to better understand the form and fate of these elements in flue gas desulfurization byproducts. LSD ash samples, collected from the McCracken Power Plant on the Ohio State University campus, were separated by a 140-mesh (106 {mu}m) sieve into two fractions: a fly-ash-/unburned-carbon-enriched fraction (> 106 {mu}m) and a calcium-enriched fraction (< 106 {mu}m). Unburned carbon and fly ash in the material > 106 {mu}m were subsequently separated by density using a lithium heteropolytungstate solution. The concentrations ofmore » As and Hg were significant in all fractions. The level of As was consistently greater in the calcium-enriched fraction, while Hg was evenly distributed in all components of LSD ash. Specific surface area was an important factor controlling the distribution of Hg in the different components of LSD ash, but not for As. Comparing the LSD ash data to samples collected from the economizer suggests that As was effectively captured by fly ash at 600{sup o}C, while Hg was not. Leaching tests demonstrated that As and Hg were more stable in the calcium-enriched fraction than in the fly-ash- or carbon-enriched fractions, potentially because of the greater pH of the leachate and subsequently greater stability of small amounts of calcium solids containing trace elements in these fractions. 37 refs., 8 figs., 2 tabs.« less

  17. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    NASA Astrophysics Data System (ADS)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to investigate the sintering process of volcanic ash. In order to analyze the mineral transformation and microstructure evolution, the qualitative as well as quantitative crystalline phase analysis of volcanic ash samples directly taken from furnace by per 100 oC in the range of between 100 and 1400 oC as well as evaluation of microstructure of volcanic ash taken from from furnace by per 20 oC in the range of between 1000 and 1300 oC has been made by X-ray diffraction (XRD) and observed by scanning electron microscopy (SEM). Finally, we obtain the viscosity temperature curve for volcanic ash during melting process on the basis of the characteristic temperature obtained by HSM.

  18. Heterogeneous Ice Nucleation by Soufriere Hills Volcanic Ash Immersed in Water Droplets.

    PubMed

    Mangan, T P; Atkinson, J D; Neuberg, J W; O'Sullivan, D; Wilson, T W; Whale, T F; Neve, L; Umo, N S; Malkin, T L; Murray, B J

    2017-01-01

    Fine particles of ash emitted during volcanic eruptions may sporadically influence cloud properties on a regional or global scale as well as influencing the dynamics of volcanic clouds and the subsequent dispersion of volcanic aerosol and gases. It has been shown that volcanic ash can trigger ice nucleation, but ash from relatively few volcanoes has been studied for its ice nucleating ability. In this study we quantify the efficiency with which ash from the Soufriere Hills volcano on Montserrat nucleates ice when immersed in supercooled water droplets. Using an ash sample from the 11th February 2010 eruption, we report ice nucleating efficiencies from 246 to 265 K. This wide range of temperatures was achieved using two separate droplet freezing instruments, one employing nanolitre droplets, the other using microlitre droplets. Soufriere Hills volcanic ash was significantly more efficient than all other ash samples that have been previously examined. At present the reasons for these differences are not understood, but may be related to mineralogy, amorphous content and surface chemistry.

  19. Heterogeneous Ice Nucleation by Soufriere Hills Volcanic Ash Immersed in Water Droplets

    PubMed Central

    Atkinson, J. D.; Neuberg, J. W.; O’Sullivan, D.; Wilson, T. W.; Whale, T. F.; Neve, L.; Umo, N. S.; Malkin, T. L.; Murray, B. J.

    2017-01-01

    Fine particles of ash emitted during volcanic eruptions may sporadically influence cloud properties on a regional or global scale as well as influencing the dynamics of volcanic clouds and the subsequent dispersion of volcanic aerosol and gases. It has been shown that volcanic ash can trigger ice nucleation, but ash from relatively few volcanoes has been studied for its ice nucleating ability. In this study we quantify the efficiency with which ash from the Soufriere Hills volcano on Montserrat nucleates ice when immersed in supercooled water droplets. Using an ash sample from the 11th February 2010 eruption, we report ice nucleating efficiencies from 246 to 265 K. This wide range of temperatures was achieved using two separate droplet freezing instruments, one employing nanolitre droplets, the other using microlitre droplets. Soufriere Hills volcanic ash was significantly more efficient than all other ash samples that have been previously examined. At present the reasons for these differences are not understood, but may be related to mineralogy, amorphous content and surface chemistry. PMID:28056077

  20. MAFALDA: An early warning modeling tool to forecast volcanic ash dispersal and deposition

    NASA Astrophysics Data System (ADS)

    Barsotti, S.; Nannipieri, L.; Neri, A.

    2008-12-01

    Forecasting the dispersal of ash from explosive volcanoes is a scientific challenge to modern volcanology. It also represents a fundamental step in mitigating the potential impact of volcanic ash on urban areas and transport routes near explosive volcanoes. To this end we developed a Web-based early warning modeling tool named MAFALDA (Modeling and Forecasting Ash Loading and Dispersal in the Atmosphere) able to quantitatively forecast ash concentrations in the air and on the ground. The main features of MAFALDA are the usage of (1) a dispersal model, named VOL-CALPUFF, that couples the column ascent phase with the ash cloud transport and (2) high-resolution weather forecasting data, the capability to run and merge multiple scenarios, and the Web-based structure of the procedure that makes it suitable as an early warning tool. MAFALDA produces plots for a detailed analysis of ash cloud dynamics and ground deposition, as well as synthetic 2-D maps of areas potentially affected by dangerous concentrations of ash. A first application of MAFALDA to the long-lasting weak plumes produced at Mt. Etna (Italy) is presented. A similar tool can be useful to civil protection authorities and volcanic observatories in reducing the impact of the eruptive events. MAFALDA can be accessed at http://mafalda.pi.ingv.it.

  1. Sinabung Volcanic Ash Utilization As The Additive for Paving Block Quality A and B

    NASA Astrophysics Data System (ADS)

    Sembiring, I. S.; Hastuty, I. P.

    2017-03-01

    Paving block is one of the building materials used as the top layer of the road structure besides asphalt and concrete. Paving block is made of mixed materials such as portland cement or other adhesive materials, water and aggregate. In this research, the material used as the additive of cement and concrete is volcanic ash from Mount Sinabung, it is based on the results of the material testing, Sinabung ash contains 74.3% silica (SiO2). The purpose of this research aims to analyze the behavior of the paving blocks quality A and B with and without a mixture of Sinabung ash, to analyze the workability of fresh concrete using Sinabung ash as an additive in concrete, and to compare the test results of paving blocks with and without using Sinabung ash. The samples that we made consist of four variations of the concrete mix to experiment a mixture of normal sample without additive, samples which are mixed with the addition of Sinabung ash 5%, 10%, 15%, 20% and 25% of the volume of concrete/m3. Each variation consists of 10 samples of the concrete with 28 days curing time period. We will do the compressive strength and water absorption test to the samples to determine whether the samples are in accordance with the type needed. According to the test result, paving blocks with Sinabung ash and curing time reach quality A at 0%, 5% and 10% mixture with the compressive strength of each 50.14 MPa, 46.20 MPa and 1.49Mpa, and reach quality B at 15%, 20 %,25% mixture with curing time and 0%, 5%, 10%, 15%, 20% and 25% mixture without curing time. According to the absorption values we got from the test which are 6.66%, 6.73%, 6.88%, 7.03%, 7.09% and 7.16%, the entire sample have average absorption exceeding SNI standardization which is above 6% and reach quality C. Based on compressive strength and absorption data obtained Sinabung ash can’t fully replace cement as the binder because of the low CaO content.

  2. Development of a standard operating procedure for analysis of ammonia concentrations in coal fly ash : [summary].

    DOT National Transportation Integrated Search

    2015-04-01

    Fly ash produced when pulverized coal is burned in electrical generators can be used as a : concrete additive with many benefits. However, fly ash can have a high ammonia content, : which is released when used in concrete, potentially exposing worker...

  3. Comparative Effect of Bio-waste Ashes on Strength Properties of Cement Mortar

    NASA Astrophysics Data System (ADS)

    Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad; Ahmed, Mohamed Anwar

    Biomass fuels produce about 400 million tonnes of ashes as waste material. This paper discusses the pozzolanic character of bio-waste ashes obtained from dry tree leaves (AML), Korai grass (KRI) and Tifton grass (TFT). Ashes were obtained by control incineration of the wastes at 600°C for 5 hours and mortar specimens were prepared by substituting cement with 10, 20 and 30% ash. Strength development of ash-blended mortar specimens was evaluated by conducting destructive tests as well as non-destructive tests till 91 days. X-ray diffraction, scanning electron microscopic and thermo-gravimetric techniques were used to analyze the influence of ash substitution on strength properties of blended-mortar. Pozzolanic reactivity of AML- and KRI-ash was confirmed, but TFT-ash did not show enough reactivity. Overall results confirmed that up to 20% substitution of cement can be made with AML- or KRI-ash with strength approaching 90% of that of control.

  4. The Complex Refractive Index of Volcanic Ash Aerosol Retrieved From Spectral Mass Extinction

    NASA Astrophysics Data System (ADS)

    Reed, Benjamin E.; Peters, Daniel M.; McPheat, Robert; Grainger, R. G.

    2018-01-01

    The complex refractive indices of eight volcanic ash samples, chosen to have a representative range of SiO2 contents, were retrieved from simultaneous measurements of their spectral mass extinction coefficient and size distribution. The mass extinction coefficients, at 0.33-19 μm, were measured using two optical systems: a Fourier transform spectrometer in the infrared and two diffraction grating spectrometers covering visible and ultraviolet wavelengths. The particle size distribution was measured using a scanning mobility particle sizer and an optical particle counter; values for the effective radius of ash particles measured in this study varied from 0.574 to 1.16 μm. Verification retrievals on high-purity silica aerosol demonstrated that the Rayleigh continuous distribution of ellipsoids (CDEs) scattering model significantly outperformed Mie theory in retrieving the complex refractive index, when compared to literature values. Assuming the silica particles provided a good analogue of volcanic ash, the CDE scattering model was applied to retrieve the complex refractive index of the eight ash samples. The Lorentz formulation of the complex refractive index was used within the retrievals as a convenient way to ensure consistency with the Kramers-Kronig relation. The short-wavelength limit of the electric susceptibility was constrained by using independently measured reference values of the complex refractive index of the ash samples at a visible wavelength. The retrieved values of the complex refractive indices of the ash samples showed considerable variation, highlighting the importance of using accurate refractive index data in ash cloud radiative transfer models.

  5. The in vitro respiratory toxicity of cristobalite-bearing volcanic ash.

    PubMed

    Damby, David E; Murphy, Fiona A; Horwell, Claire J; Raftis, Jennifer; Donaldson, Kenneth

    2016-02-01

    Ash from dome-forming volcanoes poses a unique hazard to millions of people worldwide due to an abundance of respirable cristobalite, a crystalline silica polymorph. Crystalline silica is an established respiratory hazard in other mixed dusts, but its toxicity strongly depends on sample provenance. Previous studies suggest that cristobalite-bearing volcanic ash is not as bio-reactive as may be expected for a dust containing crystalline silica. We systematically address the hazard posed by volcanic cristobalite by analysing a range of dome-related ash samples, and interpret the crystalline silica hazard according to the mineralogical nature of volcanic cristobalite. Samples are sourced from five well-characterized dome-forming volcanoes that span a range of magmatic compositions, specifically selecting samples rich in cristobalite (up to 16wt%). Isolated respirable fractions are used to investigate the in vitro response of THP-1 macrophages and A549 type II epithelial cells in cytotoxicity, cellular stress, and pro-inflammatory assays associated with crystalline silica toxicity. Dome-related ash is minimally reactive in vitro for a range of source compositions and cristobalite contents. Cristobalite-based toxicity is not evident in the assays employed, supporting the notion that crystalline silica provenance influences reactivity. Macrophages experienced minimal ash-induced cytotoxicity and intracellular reduction of glutathione; however, production of IL-1β, IL-6 and IL-8 were sample-dependent. Lung epithelial cells experienced moderate apoptosis, sample-dependent reduction of glutathione, and minimal cytokine production. We suggest that protracted interaction between particles and epithelial cells may never arise due to effective clearance by macrophages. However, volcanic ash has the propensity to incite a low, but significant, and sample-dependent response; the effect of this response in vivo is unknown and prolonged exposure may yet pose a hazard. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The bioreactivity of the sub-10 μm component of volcanic ash: Soufrière Hills volcano, Montserrat.

    PubMed

    Jones, Timothy; Bérubé, Kelly

    2011-10-30

    With the recent eruption of the Icelandic volcano Eyafallajökull and resulting ash cloud over much of Europe there was considerable concern about possible respiratory hazards. Volcanic ash can contain minerals that are known human respiratory health hazards such as cristobalite. Short-term ash exposures can cause skin sores, respiratory and ocular irritations and exacerbation of pre-existing lung conditions such as asthma. Long-term occupational level exposures to crystalline silicon dioxide can cause lung inflammation, oedema, fibrosis and cancer. The potential health effects would be dependent on factors including mineralogy, surface chemistry, size, and levels and duration of exposure. Bulk ash from the Soufrière Hills volcano was sourced and inhalable (<2.5 μm) ash samples prepared and physicochemically characterised. The fine ash samples were tested for bioreactivity by SDS-PAGE which determined the strength of binding between mineral grains and lung proteins. Selected proteins bound tightly to cristobalite, and bound loosely to other ash components. A positive correlation was seen between the amount of SiO(2) in the sample and the strength of the binding. The strength of binding is a function of the mineral's bioreactivity, and therefore, a potential geo-biomarker of respiratory risk. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.

    PubMed

    Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H

    2007-08-01

    Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.

  8. Identification of organically associated trace elements in wood and coal by inductively coupled plasma mass spectrometry.

    PubMed

    Richaud, R; Lazaro, M J; Lachas, H; Miller, B B; Herod, A A; Dugwell, D R; Kandiyoti, R

    2000-01-01

    1-Methyl-2-pyrrolidinone (NMP) was used to extract samples of wood (forest residue) and coal; the extracts were analysed by inductively coupled plasma mass spectrometry (ICP-MS) using two different sample preparation methods, in order to identify trace elements associated with the organic part of the samples. A sample of fly ash was similarly extracted and analysed in order to assess the behaviour of the mineral matter contained within the wood and coal samples. 32% of the biomass was extracted at the higher temperature and 12% at room temperature while only 12% of the coal was extracted at the higher temperature and 3% at room temperature. Less than 2% of the ash dissolved at the higher temperature. Size exclusion chromatograms of the extracts indicated the presence of significant amounts of large molecular mass materials (>1000 mu) in the biomass and coal extracts but not in the ash extract. Trace element analyses were carried out using ICP-MS on the acid digests prepared by 'wet ashing' and microwave extraction. Sixteen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sb, Se, V and Zn) were quantified, in the samples before extraction, in the extracts and in the residues. Concentrations of trace elements in the original biomass sample were lower than in the coal sample while the concentrations in the ash sample were the highest. The major trace elements in the NMP extracts were Ba, Cu, Mn and Zn from the forest residue; Ba, Cu, Mn, Pb and Zn from the coal; Cu and Zn from the ash. These elements are believed to be associated with the organic extracts from the forest residue and coal, and also from the ash. Be and Sb were not quantified in the extracts because they were present at too low concentrations; up to 40% of Mn was extracted from the biomass sample at 202 degrees C, while Se was totally extracted from the ash sample. For the forest residue, approximately 7% (at room temperature) and 45% (at 202 degrees C) of the total trace elements studied were in the extract; for the coal, approximately 8% (at room temperature) and 23% (at 202 degrees C) were in the extract. For the ash, only 1.4% of the trace elements were extracted at 202 degrees C, comprising 25% of Cd but less than 1% of Pb. Copyright 2000 John Wiley & Sons, Ltd.

  9. Generation of volcanic ash: a textural study of ash produced in various laboratory experiments

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; Kueppers, Ulrich; Dingwell, Donald B.

    2010-05-01

    In volcanology, ash is commonly understood as a fragment of a bubble wall that gets disrupted during explosive eruptions. Most volcanic ashes are indeed the product of explosive eruptions, but the true definition is however that of a particle size being inferior to 2 mm. The term does not hold any information about its genesis. During fragmentation, particles of all sizes in various amounts are generated. In nature, fragmentation is a brittle response of the material (whether a rock or magma) caused by changes in 1) strain rate and 2) temperature, and/or 3) chemical composition. Here we used different experimental techniques to produce ash and study their physical characteristics. The effects of strain rate were investigated by deforming volcanic rocks and magma (pure silicate melt and crystal-bearing magma) at different temperatures and stresses in a uniaxial compression apparatus. Failure of pure silicate melts is spontaneous and generates more ash particles than fragmentation of crystal-bearing melts. In the latter, the abundance of generated ash correlates positively with the strain rate. We complemented this investigation with a study of particles generated during rapid decompression of porous rocks, using a fragmentation apparatus. Products of decompression experiments at different initial applied pore pressure show that the amount of ash generated by bubble burst increase with the initial applied pressure and the open porosity. The effects of temperature were investigated by dropping pure silicate melts and crystal-bearing magma at 900 and 1100°C in water at room temperature. Quenching of the material is accompanied by rapid contraction and near instantaneous fragmentation. Pure silicate melts respond more violently to the interaction with water and completely fragmented into small particles, including a variety of ash morphologies and surface textures. Crystal-bearing magmas however fragmented only very partially when in contact with water and produced a few ash particles (< 0.05 g). The morphology and surface textures of the experimentally generated ash particles were imaged through scanning electron microscopy, and the observations will be discussed in terms of fragmentation processes.

  10. The analysis of mechanical properties of non autoclaved aerated concrete with the substitution of fly ash and bottom ash

    NASA Astrophysics Data System (ADS)

    Karolina, R.; Muhammad, F.

    2018-02-01

    Based on PP. No.85 of 1999 on the management of hazardous and toxic (B3), fly ash and bottom ash wastes are categorized into B3 waste because there are heavy metal oxide contents that can pollute the environment. One form of environmental rescue that can be applied is to utilize waste fly ash and bottom ash in the manufacture of concrete. In this research, fly ash and bottom ash waste are used as substitution of cement and fine aggregate to make lightweight concrete. The purpose of this research is to know the mechanical properties of non-autoclaved aerated lightweight concrete (NAAC) with FA and BA substitution to cement and fine aggregate which is expected to improve the quality of concrete. The NAAC lightweight concrete in this study is divided into 4 categories: normal NAAC lightweight concrete, NAAC lightweight NAAC substituted concrete with FA, NAAC lightweight concrete substituted with BA, and NAAC combined light weight from FA and BA with variations of 10%, 20% And 30%. The test specimen used in cylindrical shape, which was tested at the age of 28 days, amounted to 90 pieces and consisted of 10 variations. Each variation amounted to 9 samples. Based on the test results with FA and BA substitutions of 10%, 20%, and 30%, the highest compressive strength was achieved in samples with FA 30% of 12.687 MPa, maximum tensile strength achieved in samples with FA 30% of 1,540 MPa, The highest absorption was achieved in normal NAAC of 5.66%. Based on the weight of the contents of all samples, samples can be categorized in lightweight concrete, since the weight of the contents is less than 1900 kg / m3.

  11. Survival of emerald ash borer in chips

    Treesearch

    Deborah G. McCullough; Therese M. Poland; David L. Cappaert

    2005-01-01

    The ability of emerald ash borer (EAB), Agrilus planipennis Fairmaire, to survive following chipping or grinding of infested ash trees remains a critical question for regulatory officials. In October 2002, we felled eight infested ash trees and sampled sections of the trunk and large branches from each tree to estimate EAB density.

  12. Benefits of aggregates surface modification in concrete production

    NASA Astrophysics Data System (ADS)

    Junak, J.; Sicakova, A.

    2017-10-01

    In our study, recycled concrete aggregates (RCA), which surfaces had been modified by geopolymer material based on coal fly ash, were used to produce the concrete samples. In these samples, fraction 4/8 mm was replaced by recycled concrete aggregate with a range of 100%. To modify the surface of RCA was “Solo” and “Triple stage” modification used. On these samples real density, total water absorption and compressive strength were examined after 28, 90, 180 and 365 days of hardening. The highest compressive strength 56.8 MPa, after 365 days hardening, reached sample which had improved RCA surface by “Triple stage mixing”.

  13. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-12-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides in the oil shale combustion products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Seasonal Variations in Ash Content of Some Michigan Forest Floor Fuels

    Treesearch

    Robert M. Loomis

    1982-01-01

    Samples from the forest floor litter layer were collected seasonally from under medium to fully stocked larger sapling to sawtimber stands in Lower Michigan to study seasonal ash content changes. The total ash and silica-free ash content of tree foliage in the upper part of the litter layer differed little from season to season. Differences in ash content due to...

  15. Modeling ash fall distribution from a Yellowstone supereruption

    USGS Publications Warehouse

    Mastin, Larry G.; Van Eaton, Alexa R.; Lowenstern, Jacob B.

    2014-01-01

    We used the volcanic ash transport and dispersion model Ash3d to estimate the distribution of ashfall that would result from a modern-day Plinian supereruption at Yellowstone volcano. The simulations required modifying Ash3d to consider growth of a continent-scale umbrella cloud and its interaction with ambient wind fields. We simulated eruptions lasting 3 days, 1 week, and 1 month, each producing 330 km3 of volcanic ash, dense-rock equivalent (DRE). Results demonstrate that radial expansion of the umbrella cloud is capable of driving ash upwind (westward) and crosswind (N-S) in excess of 1500 km, producing more-or-less radially symmetric isopachs that are only secondarily modified by ambient wind. Deposit thicknesses are decimeters to meters in the northern Rocky Mountains, centimeters to decimeters in the northern Midwest, and millimeters to centimeters on the East, West, and Gulf Coasts. Umbrella cloud growth may explain the extremely widespread dispersal of the ∼640 ka and 2.1 Ma Yellowstone tephra deposits in the eastern Pacific, northeastern California, southern California, and South Texas.

  16. Progression of ash canopy thinning and dieback outward from the initial infestation of emerald ash borer (Coleoptera: Buprestidae) in southeastern Michigan.

    PubMed

    Smitley, David; Davis, Terrance; Rebek, Eric

    2008-10-01

    Our objective was to characterize the rate at which ash (Fraxinus spp.) trees decline in areas adjacent to the leading edge of visible ash canopy thinning due to emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Trees in southeastern Michigan were surveyed from 2003 to 2006 for canopy thinning and dieback by comparing survey trees with a set of 11 standard photographs. Freeways stemming from Detroit in all directions were used as survey transects. Between 750 and 1,100 trees were surveyed each year. A rapid method of sampling populations of emerald ash borer was developed by counting emerald ash borer emergence holes with binoculars and then felling trees to validate binocular counts. Approximately 25% of the trees surveyed for canopy thinning in 2005 and 2006 also were sampled for emerald ash borer emergence holes using binoculars. Regression analysis indicates that 41-53% of the variation in ash canopy thinning can be explained by the number of emerald ash borer emergence holes per tree. Emerald ash borer emergence holes were found at every site where ash canopy thinning averaged > 40%. In 2003, ash canopy thinning averaged 40% at a distance of 19.3 km from the epicenter of the emerald ash borer infestation in Canton. By 2006, the point at which ash trees averaged 40% canopy thinning had increased to a distance of 51.2 km away from Canton. Therefore, the point at which ash trees averaged 40% canopy thinning, a state of decline clearly visible to the average person, moved outward at a rate of 10.6 km/yr during this period.

  17. Primary and secondary fragmentation of crystal-bearing intermediate magma

    NASA Astrophysics Data System (ADS)

    Jones, Thomas J.; McNamara, Keri; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.; Scheu, Bettina; Edwards, Robyn

    2016-11-01

    Crystal-rich intermediate magmas are subjected to both primary and secondary fragmentation processes, each of which may produce texturally distinct tephra. Of particular interest for volcanic hazards is the extent to which each process contributes ash to volcanic plumes. One way to address this question is by fragmenting pyroclasts under controlled conditions. We fragmented pumice samples from Soufriere Hills Volcano (SHV), Montserrat, by three methods: rapid decompression in a shock tube-like apparatus, impact by a falling piston, and milling in a ball mill. Grain size distributions of the products reveal that all three mechanisms produce fractal breakage patterns, and that the fractal dimension increases from a minimum of 2.1 for decompression fragmentation (primary fragmentation) to a maximum of 2.7 by repeated impact (secondary fragmentation). To assess the details of the fragmentation process, we quantified the shape, texture and components of constituent ash particles. Ash shape analysis shows that the axial ratio increases during milling and that particle convexity increases with repeated impacts. We also quantify the extent to which the matrix is separated from the crystals, which shows that secondary processes efficiently remove adhering matrix from crystals, particularly during milling (abrasion). Furthermore, measurements of crystal size distributions before (using x-ray computed tomography) and after (by componentry of individual grain size classes) decompression-driven fragmentation show not only that crystals influence particular size fractions across the total grain size distribution, but also that free crystals are smaller in the fragmented material than in the original pumice clast. Taken together, our results confirm previous work showing both the control of initial texture on the primary fragmentation process and the contributions of secondary processes to ash formation. Critically, however, our extension of previous analyses to characterisation of shape, texture and componentry provides new analytical tools that can be used to assess contributions of secondary processes to ash deposits of uncertain or mixed origin. We illustrate this application with examples from SHV deposits.

  18. Volcanic Ash Cloud Altitude retrievals from passive satellite sensors: the 03-09 December 2015 Etna eruption.

    NASA Astrophysics Data System (ADS)

    corradini, stefano; merucci, luca; guerrieri, lorenzo; pugnaghi, sergio; mcgarragh, greg; carboni, elisa; ventress, lucy; grainger, roy; scollo, simona; pardini, federica; zaksek, klemen; langmann, baerbel; bancalá, severin; stelitano, dario

    2016-04-01

    The volcanic ash cloud altitude is one of the most important parameter needed for the volcanic ash cloud estimations (mass, effective radius and optical depth). It is essential by modelers to initialize the ash cloud transportation models, and by volcanologists to give insights into eruption dynamics. Moreover, it is extremely important in order to reduce the disruption to flights as a result of volcanic activity whilst still ensuring safe travel. In this work, the volcanic ash cloud altitude is computed from remote sensing passive satellite data (SEVIRI, MODIS, IASI and MISR) by using the most of the existing retrieval techniques. A novel approach, based on the CO2 slicing procedure, is also shown. The comparisons among different techniques are presented and advantages and drawbacks emphasized. As test cases Etna eruptions in the period between 03 and 09 December 2015 are considered. During this time four lava fountain events occurred at the Voragine crater, forming eruption columns higher than 12 km asl and producing copious tephra fallout on volcano flanks. These events, among the biggest of the last 20 years, produced emissions that reached the stratosphere and produced a circum-global transport throughout the northern hemisphere.

  19. Archaeomagnetic Directional Determinations On Various Archaeological Materials From The Late Minoan Destruction Site At Malia, Crete

    NASA Astrophysics Data System (ADS)

    Downey, W. S.

    An archaeomagnetic directional study of Late Minoan archaeological materials, (burnt mud brick, a clay/ash horizon and hearth material), was carried out at locations within the archaeological complex at Malia, Crete. The study aimed to establish the suitability of materials for archaeomagnetic sampling and to obtain archaeomagnetic directions for comparison with other Late Minoan "fired" sites on Crete. Results from 42 oriented samples measured on a fluxgate spinner magnetometer from homogeneously distributed burnt mud brick (constituting low elevation, in situ, partition walls), gave precise values of ancient field directions for, Malia Palace (area 13) and Maison äα. These directions are statistically identical (at a 95% confidence level) and also identical to directions obtained from other Late Minoan archaeological sites, on Crete. This, may suggest, simultaneous 'fire-involved' destruction. Other archaeomagnetic directions obtained from Malia (Quartier ɛ), from a 'clay/ash' horizon (34 samples) and hearth (19 samples), produced some spurious results, with detrimental consequences for directional accuracy. For the burnt mud brick, small viscous components were easily removed and evidence from coercivity spectra obtained, after step-wise alternating field demagnetizations, suggests that, the magnetic carriers are single domain, (low titanium), titanomagnetite.

  20. Elemental analyses of pine bark and wood in an environmental study.

    PubMed

    Saarela, K-E; Harju, L; Rajander, J; Lill, J-O; Heselius, S-J; Lindroos, A; Mattsson, K

    2005-05-01

    Bark and wood samples were taken from the same individuals of Scots pine (Pinus sylvestris L.) from a polluted area close to a Cu-Ni smelter in Harjavalta and from some relatively unpolluted areas in western Finland. The samples were analysed by thick-target particle induced X-ray emission (PIXE) after preconcentration by dry ashing at 550 degrees C. The elemental contents of pine bark and wood were compared to study the impact of heavy metal pollution on pine trees. By comparison of the elemental contents in ashes of bark and wood, a normalisation was obtained. For the relatively clean areas, the ratios of the concentration in bark ash to the concentration in wood ash for different elements were close to 1. This means that the ashes of Scots Pine wood and bark have quite similar elemental composition. For the samples from the polluted area the mean concentration ratios for some heavy metals were elevated (13-28), reflecting the effect of direct atmospheric contamination. The metal contents in the ashes of pine bark and wood were also compared to recommendations for ashes to be recycled back to the forest environment. Bark from areas close to emission sources of heavy metal pollution should be considered with caution if aiming at recycling the ash. Burning of bark fuel of pine grown within 6 km of the Cu-Ni smelter is shown to generate ashes with high levels of Cu, Ni as well as Cd, As and Pb.

  1. Ecotoxicological assessment of bluegill sunfish inhabiting a selenium-enriched fly ash stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reash, R.J.; Lohner, T.W.; Wood, K.V.

    1999-07-01

    Little Scary Creek (LSC), a 2nd-order tributary of the Kanawha River in West Virginia, receives treated fly ash produced during coal combustion. Selenium and other trace metals were determined in water column and sediment samples, caddisflies, and bluegill sunfish liver and gonads during 1995--96 to estimate pathways of selenium exposure and assess the likelihood of toxic effects. Selenium levels in LSC water and sediment samples, and in caddisflies were elevated compared to reference sites. Mean dry weight selenium concentrations in bluegill liver, ovary, and tested tissue equaled or exceeded published toxic thresholds. Other trace metals were significantly higher in LSCmore » bluegill. Leukopenia, elevated serum salts, and lowered liver weight were found in LSC bluegill. Fewer older bluegill were found in LSC. Sunfish in LSC are experiencing various kinds of sublethal stress, presumably due to metals exposure. However, major toxic effects that would be predicted to occur based on tissue selenium levels (complete reproductive failure or mortality) have not been observed in this population.« less

  2. Water Adsorption Isotherms on Fly Ash from Several Sources.

    PubMed

    Navea, Juan G; Richmond, Emily; Stortini, Talia; Greenspan, Jillian

    2017-10-03

    In this study, horizontal attenuated total reflection (HATR) Fourier-transform infrared (FT-IR) spectroscopy was combined with quartz crystal microbalance (QCM) gravimetry to investigate the adsorption isotherms of water on fly ash, a byproduct of coal combustion in power plants. Because of composition variability with the source region, water uptake was studied at room temperature as a function of relative humidity (RH) on fly ash from several regions: United States, India, The Netherlands, and Germany. The FT-IR spectra show water features growth as a function of RH, with water absorbing on the particle surface in both an ordered (ice-like) and a disordered (liquid-like) structure. The QCM data was modeled using the Brunauer, Emmett, and Teller (BET) adsorption isotherm model. The BET model was found to describe the data well over the entire range of RH, showing that water uptake on fly ash takes place mostly on the surface of the particle, even for poorly combusted samples. In addition, the source region and power-plant efficiency play important roles in the water uptake and ice nucleation (IN) ability of fly ash. The difference in the observed water uptake and IN behavior between the four samples and mullite (3Al 2 O 3 ·2SiO 2 ), the aluminosilicate main component of fly ash, is attributed to differences in composition and the density of OH binding sites on the surface of each sample. A discussion is presented on the RH required to reach monolayer coverage on each sample as well as a comparison between surface sites of fly ash samples and enthalpies of adsorption of water between the samples and mullite.

  3. Small explosions interrupt 3-year quiescence at Mount St. Helens, Washington

    USGS Publications Warehouse

    Myers, B.

    1992-01-01

    These ash-producing explosions are part of a series of at least 28 explosion-like seismic events that began on August 24, 989. Seismic signals from these events resemble those associated with confirmed ash-producing explosions in April-May 1986. Yet not all of the 1989-1991 events produced ash plumes. Excellent visual observations during four of the events indicated that neither a steam nor ash plume was generated. There is little information about the other events because they occurred when the mountain was not visible, nor was there physical evidence of ashfall or surface changes when scientists visited the crater days to weeks alter. Considerable deformation of the north side of the dome occurred during the series of explosion-like seismic events. Sections of the dome slumped northward and two new vents were formed. However, monitoring the changes associated with individual events was often impossible because several key electronic-distance-meter (EDM) targets and tiltmeters were destroyed by the series of events. 

  4. Artificial lightweight aggregates as utilization for future ashes - A case study.

    PubMed

    Sarabèr, Angelo; Overhof, Robert; Green, Terry; Pels, Jan

    2012-01-01

    In the future, more electricity in the Netherlands will be produced using coal with co-combustion. Due to this, the generated annual ash volume will increase and the chemical composition will be influenced. One of the options for utilization if present markets are saturated and for use of fly ashes with different compositions, is as raw material for lightweight aggregates. This was selected as one of the best utilizations options regarding potential ash volume to be applied, environmental aspects and status of technology. Because of this, a study has been performed to assess the potential utilization of fly ash for the production of lightweight aggregate. Lightweight aggregate has been produced in a laboratory scale rotary kiln. The raw material consisted of class F fly ash with high free lime content. An addition of 8% clay was necessary to get green pellets with sufficient green strength. The basic properties of the produced lightweight aggregate and its behaviour in concrete have been investigated. The concrete has a good compressive strength and its leaching behaviour meets the most stringent requirements of Dutch environmental regulations. The carbon foot print of concrete will be negatively influenced if only the concrete itself is taken into account, but the reduction of the volume weight has advantages regarding design, transport emissions and isolation properties which may counteract this. In the Dutch situation the operational costs are higher than expected potential selling price for the LWA, which implies that the gate fee for the fly ash is negative. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Morphology and petrography of volcanic ashes.

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1972-01-01

    Study of volcanic ash samples collected from a variety of recent eruptions using petrography, chemical analyses, and scanning electron microscopy to characterize each type and to relate ash morphology to magma composition and the type of eruption. The ashes are placed in the broad genetic categories of magmatic and phreatomagmatic. The morphology of ash particles from magmatic eruptions of high viscosity magma is governed primarily by vesicle density and shape. Ash particles from eruptions of low viscosity magmas are mostly droplets. The morphology of ash particles from phreatomagmatic eruptions is controlled by stresses within the chilled magma which result in fragmentation of the glass to form small blocky or pyramidal glass ash particles.

  6. Effect of Na2SiO3/NaOH on mechanical properties and microstructure of geopolymer mortar using fly ash and rice husk ash as precursor

    NASA Astrophysics Data System (ADS)

    Saloma, Hanafiah, Elysandi, Debby Orjina; Meykan, Della Garnesia

    2017-11-01

    Geopolymer concrete is an eco-friendly concrete that can reduce carbon emissions on the earth surface because it used industrial waste material such as fly ash, rice husk ash, bagasse ash, and palm oil fuel. Geopolymer is semi-crystalline amorphous materials which has irregular chemical bonds structure. The material is produced by geosynthesis of aluminosilicates and alkali-silicates which produce the Si-O-Al polymer structure. This research used the ratio of fly ash and rice husk ash as precursors e.g. 100:0, 75:25, 50:50, and 25:75. NaOH solutions of 14 M and Na2SiO3 solutions with the variation e.g. 2.5, 2.75, 3.00, and 3.25 were used as activators on mortar geopolymer mixture. The tests of fresh mortar were slump flow and setting time. The optimum compressive strength is 68.36 MPa for 28 days resulted from mixture using 100% fly ash and Na2SiO3 and NaOH with ratio 2.75. The largest value of slump flow test resulted from mixture using Na2SiO3 and NaOH with ratio 2.50 is 17.25 cm. Based on SEM test results, mortar geopolymer microstructure with mixture RHA 0% has less pores and denser CSH structure.

  7. Effects of Seedbed Density and Row Spacing on Growth and Nutrient Concentrations of Nuttall Oak and Green Ash Seedlings

    Treesearch

    Harvey E. Kennedy

    1988-01-01

    Larger size and higher percentages of plantable 1-0 and 2-0 green ash (Fraxinus pennsylvanica Marsh.) and Nuttall oak (Quercus nuttallii Palmer) seedlings were produced in the wider spacing-lower density plots. Greater numbers of plantable seedlings were produced in the higher density plots. Spacing significantly affected...

  8. Thermo-mechanical properties and microfabric of fly ash-stabilized gold tailings.

    PubMed

    Lee, Joon Kyu; Shang, Julie Q; Jeong, Sangseom

    2014-07-15

    This paper studies the changes in thermal conductivity, temperature, and unconfined compressive strength of gold tailings and fly ash mixtures during the curing period of 5 days. The microfabric of the cured mixtures was investigated with mercury intrusion porosimetry (MIP). The mixture samples were prepared at their maximum dry unit weight and optimum moisture content. Effect of adding fly ash to gold tailings (i.e., 0, 20, and 40% of the dry weight of tailings) was examined, and a comparison was made on samples prepared at the same fly ash content by replacing gold tailings with humic acid (i.e., gold tailings and humic acid ratios of 100:0, 90:10, and 80:20 by weight) or by varying pore fluid chemistry (i.e., water and salt solutions of 1M NaCl and CaCl2). The results show that the initial thermal conductivity of the samples is sensitive to the mixture proportion and a declination in the thermal conductivity is observed due to hydration of fly ash and evaporation. Inclusion of fly ash and salts into gold tailings improves the unconfined compressive strength but the presence of humic acid in samples leads to the decrease of the strength. MIP results reveal the pore structure changes associated with the packing states of the samples that reflect the influential factors considered. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Comparative study of the microstructural and magnetic properties of fly ashes obtained from different thermal power plants in West Bengal, India.

    PubMed

    Bhattacharjee, Ashis; Mandal, Haradhan; Roy, Madhusudan; Kusz, Joachim; Hofmeister, Wolfgang

    2013-10-01

    This paper deals with the physical nature of the fly ashes obtained from two thermal power plants, situated in West Bengal, India. The fly ash samples are characterized by using comprehensive techniques with an emphasis on their ultrafine nature. The particle sizes of the samples are estimated using scanning electron microcopy (SEM) and found to lie within 0.18-5.90 μm. For morphology and compositional analysis, we also use SEM coupled with energy dispersive X-ray spectrometry. From X-ray study of the fly ashes the nature of conglomeration is seen to be crystalline, and the major components are mullite (Al6Si2O13) and quartz (SiO2). The magnetic measurement of the fly ash samples was carried out by SQUID magnetometer. (57)Fe Mössbauer spectra are obtained using a conventional constant-acceleration spectrometer with a (57)Co/Rh Mössbauer source. The hyperfine parameters obtained, in general, support the findings as made from XRD analysis and provide a quantitative measure of different iron ions present in the samples. The paper presents experimental data on the physical aspects of the fly ash samples of the thermal power plants which comprise coarse, fine, and ultrafine magnetic particulate materials and attempts to provide an exhaustive analysis.

  10. Characterization and environmental risk assessment of heavy metals found in fly ashes from waste filter bags obtained from a Chinese steel plant.

    PubMed

    Zhou, Yun; Ning, Xun-an; Liao, Xikai; Lin, Meiqing; Liu, Jingyong; Wang, Jianghui

    2013-09-01

    The environmental risk of exposure to six heavy metals (Cu, Pb, Zn, Cr, Ni, and Cd) found in fly ashes from waste filter bags obtained from a steel plant was estimated based on the mineralogical compositions, total concentrations and speciation of the metals in the fly ashes. The results indicated that the fly ashes mainly consisted of hematite, magnetite, cyanite, spinel, coesite and amorphous materials. The concentrations of Zn and Pb were much higher than that of other materials. After Zn and Pb, Ni was present in the highest concentration, followed by Cu, Cr and Cd. Each heavy metal was distributed differently in fly ashes. The levels of Zn, Cd and Pb in the active fraction were very high, and ranged from 64.83 to 81.96%, 34.48 to 82.4% and 6.92 to 79.65% respectively, while Cu, Cr and Ni were mainly present in the residual fraction. The risk assessment code (RAC) values of fly ashes showed that the Zn and Cd present in the H3 sample presented a very high risk, with RAC values greater than 50%. The Cu present in the H3 sample, Cd in the H2 sample and Zn in the H4 and H5 samples presented a high risk. The Pb present in the H2 sample, Cd in the H4 sample, Ni in the H1 and H5 samples, and Zn in the H1 sample presented a medium risk. A low risk was presented by the Cu present in the H1, H2, H4 and H5 samples, the Pb in the H1, H3 and H5 samples, the Cd in the H1 and H5 samples, and the Ni in the H2 sample. No risk was presented by Cr in any sample. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Juvenile magma recognition and eruptive dynamics inferred from the analysis of ash time series: The 2015 reawakening of Cotopaxi volcano

    USGS Publications Warehouse

    Gaunt, H. Elizabeth; Bernard, Benjamin; Hidalgo, Silvana; Proano, Antonio; Wright, Heather M.; Mothes, Patricia; Criollo, Evelyn; Kueppers, Ulrich

    2016-01-01

    Forecasting future activity and performing hazard assessments during the reactivation of volcanoes remain great challenges for the volcanological community. On August 14, 2015 Cotopaxi volcano erupted for the first time in 73 years after approximately four months of precursory activity, which included an increase in seismicity, gas emissions, and minor ground deformation. Here we discuss the use of near real-time petrological monitoring of ash samples as a complementary aid to geophysical monitoring, in order to infer eruption dynamics and evaluate possible future eruptive activity at Cotopaxi. Twenty ash samples were collected between August 14 and November 23, 2015 from a monitoring site on the west flank of the volcano. These samples contain a range of grain types that we classified as: hydrothermal/altered, lithic, juvenile, and free crystals. The relative proportions of theses grains evolved as the eruption progressed, with increasing amounts of juvenile material and a decrease in hydrothermally altered material. In samples from the initial explosion, juvenile grains are glassy, microlite-poor and contain hydrothermal minerals (opal and alunite). The rising magma came in contact with the hydrothermal system under confinement, causing hydro-magmatic explosions that cleared the upper part of the plumbing system. Subsequently, the magmatic column produced a thermal aureole in the conduit and dried out the hydrothermal system, allowing for dry eruptions. Magma ascent rates were low enough to allow for efficient outgassing and microlite growth. Constant supply of magma from below caused quasi-continuous disruption of the uppermost magma volume through a combination of shear-deformation and gas expansion. The combination of increasing crystallinity of juvenile grains, and high measured SO2 flux indicate decreasing integrated magma ascent rates and clearing of the hydrothermal system along transport pathways in a system open to gas loss. The near real-time monitoring of ash samples combined with traditional geophysical monitoring techniques during the reawakening of Cotopaxi allowed us to gain a much clearer understanding of events than when using traditional geophysical monitoring alone.

  12. Volcanic ash aggregation in the lab - can we mimic natural processes?

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Jacob, Michael; Ayris, Paul; Cimarelli, Corrado; Dingwell, Donald B.; Guttzeit, Melanie; Hess, Kai-Uwe; Walter, Ulrich

    2015-04-01

    Explosive volcanic eruptions release large amounts of particles into the atmosphere. Volcanic ash, by definition pyroclasts smaller than 2 mm, can be distributed around the globe by prevailing winds. Ash poses hazards to aviation industry by melting in jet turbines, to human health by entering respiration systems and to society by damaging infrastructure. Under certain circumstances, ash particles can cluster together and build ash aggregates. Aggregates range in size from few mm to few cm and may exhibit complex internal stratigraphy. During growth, weight, density and aerodynamic properties change, leading to a significantly different settling behavior compared to individual ash particles. Although ash aggregation has been frequently observed in the geologic record, the physical and chemical mechanisms generating the aggregates remain poorly understood. During several field campaigns, we collected numerous ash aggregates and analyzed their textural, chemical and mechanical properties. Based on this knowledge, we have designed experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH, Germany. In this device, a continuous fluidized bed can be applied on solid particles and simulate gas-particle flow conditions as they would be expected in volcanic plumes or pyroclastic density currents. The geological record and direct observations have shown that both processes are capable of producing ash aggregates. As starting material we used Na-glass beads as an analogue and volcanic ash from Laacher See Volcano, Eifel Volcanic Field, Germany. We define parameters such as grainsize, specific surface area and concentration of the starting material, degree of turbulence, temperature and moisture in the process chamber and the composition of the liquid phase to influence form, size, stability and production rate of aggregates. We were able to experimentally produce round, unstructured ash pellets up to 5mm in diameter. A detailed textural description highlights the strongly different properties of single ash grains and ash aggregates. These experiments aim at experimentally constraining the boundary conditions required for the generation of strong ash aggregates. A better mechanistic understanding will serve for more adequate ash mass distribution modeling.

  13. Magmatic and Volcanic Processes Interpreted from Recent Ash Emissions from Nevado del Ruiz, Colombia

    NASA Astrophysics Data System (ADS)

    Wall, K. T.; Harpel, C. J.; Martinez, L. M.; Ceballos, J. A.; Cortés, G. P.

    2017-12-01

    Nevado del Ruiz is a composite volcano located in the Colombian Central Cordillera. It is the modern edifice of the Nevado del Ruiz Volcanic Complex that has been active since 1.8 Ma. Through historic times, Ruiz has exhibited decades-long eruptive stages that include minor explosions and fumarolic activity bracketing one major magmatic event. Modern eruptive activity began with seismic unrest in 1984, a small explosive eruption on September 11, 1985, and the catastrophic lahar-generating eruption of November 13, 1985. Since then, Ruiz has periodically erupted plumes up to a few kilometers above the crater, including a phreatomagmatic eruption on September 1, 1989, eruptions on May 29 (1 km plume) and June 30 (8 km plume) 2012, and frequent minor ash emissions from 2015 through the present. We have examined a suite of samples from the 1985, 1989, 2012, and 2015 eruptions to assess the origin of erupted materials (juvenile vs. non-juvenile) and nature of eruptive and subvolcanic processes (e.g. fresh intrusion, phreatic explosion). The November 1985 ash is dominated by beige to light gray pumice and free crystals, while samples from September 1985 and the 1989 through 2015 eruptions contain other fresh looking angular to subangular particles, including dense glassy to microcrystalline chips and vesicular glass shards. If juvenile, as we suspect, these components indicate phreatomagmatic to magmatic eruptive processes. Vesicular glass ranges from colorless to brown, often within the same sample, suggesting that bimodal magmatic sources, as recorded by mingled pumices of November 1985, have continued to play a role in eruptions at Ruiz. In particular, ash from 1989 contains vesicular glass that is 65% colorless to beige and 35% brown. Sparse, very dark brown vesicular glass appears in ash from June 2012—a larger eruption than that of May 2012—and is also observed in some 2015 samples, suggesting a more prominent mafic component. In addition to our observations from binocular microscopy, we will present results from SEM and electron microprobe analyses that further clarify the magmatic conditions that produced these dense and vesicular glassy components, and that test our hypothesis that these particles represent juvenile material from continued phreatomagmatic to magmatic eruptions at Ruiz.

  14. Effect of unground oil palm ash as mixing ingredient towards properties of concrete

    NASA Astrophysics Data System (ADS)

    Sulaiman, M. A.; Muthusamy, K.; Mat Aris, S.; Rasid, M. H. Mohd; Paramasivam, R.; Othman, R.

    2018-04-01

    Malaysia being one of the world largest palm oil producers generates palm oil fuel ash (POFA), a by-product in increasing quantity. This material which usually disposed as solid waste causes pollution to the environment. Success in converting this waste material into benefitting product would reduce amount of waste disposed and contributes towards cleaner environment. This research explores the potential of unground oil palm ash being used as partial sand replacement in normal concrete production. Experimental work has been conducted to determine the workability, compressive strength and flexural strength of concrete when unground oil palm ash is added as partial sand replacement. A total of five mixes containing various percentage of oil palm ash, which are 0%, 5%, 10%, 15% and 20% have been prepared. All specimens were water cured until the testing date. The slump test, compressive strength test and flexural strength test was conducted. The findings show that mix produced using 10% of palm oil fuel ash exhibit higher compressive strength and flexural strength as compared to control specimen. Utilization of unground oil palm ash as partial sand replacement would be able to reduce dependency of construction industry on natural sand supply and also as one of the solution to reuse palm oil industry waste.

  15. Mercury removal from coal combustion flue gas by modified fly ash.

    PubMed

    Xu, Wenqing; Wang, Hairui; Zhu, Tingyu; Kuang, Junyan; Jing, Pengfei

    2013-02-01

    Fly ash is a potential alternative to activated carbon for mercury adsorption. The effects of physicochemical properties on the mercury adsorption performance of three fly ash samples were investigated. X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy, and other methods were used to characterize the samples. Results indicate that mercury adsorption on fly ash is primarily physisorption and chemisorption. High specific surface areas and small pore diameters are beneficial to efficient mercury removal. Incompletely burned carbon is also an important factor for the improvement of mercury removal efficiency, in particular. The C-M bond, which is formed by the reaction of C and Ti, Si and other elements, may improve mercury oxidation. The samples modified with CuBr2, CuCl2 and FeCl3 showed excellent performance for Hg removal, because the chlorine in metal chlorides acts as an oxidant that promotes the conversion of elemental mercury (Hg0) into its oxidized form (Hg2+). Cu2+ and Fe3+ can also promote Hg0 oxidation as catalysts. HCl and O2 promote the adsorption of Hg by modified fly ash, whereas SO2 inhibits the Hg adsorption because of competitive adsorption for active sites. Fly ash samples modified with CuBr2, CuCl2 and FeCl3 are therefore promising materials for controlling mercury emissions.

  16. Trace elements in coal ash

    USGS Publications Warehouse

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    In this fact sheet, the form, distribution, and behavior of trace elements of environmental interest in samples of coal fly ash were investigated in response to concerns about element mobility in the event of an ash spill. The study includes laboratory-based leaching experiments to examine the behavior of trace elements, such as arsenic (As) and chromium (Cr), in response to key environmental factors including redox conditions (degree of oxygenation), which are known to vary with depth within coal ash impoundments and in natural ecosystems. The experiments show that As dissolves from samples of coal fly ash into simulated freshwater under both oxic (highly oxygenated) and anoxic (poorly oxygenated) conditions, whereas dissolved Cr concentrations are very redox dependent. This U.S. Geological Survey research helps define the distribution of elements such as As in coal ash and shows that element mobility can vary considerably under different conditions expected in the environment.

  17. Microwave digestion for the quantification of inorganic elements in coal and coal ash using ICP-OES.

    PubMed

    Low, Fiona; Zhang, Lian

    2012-11-15

    In this paper, microwave digestion conditions have been optimised to achieve complete recoveries for the ash-forming inorganic elements in coal and coal combustion fly ash, during the analysis by inductively coupled plasma optical emission spectroscopy (ICP-OES). The elements analysed include six major (Al, Ca, Fe, K, Mg and Na) and twelve trace (As, Ba, Be, Co, Cr, Cu, Li, Mn, Ni, Pb, Sr and V). Seven reference samples have been tested, including two standard coal references, SRM1632c and SARM19, their corresponding high-temperature ashes (HTAs), and three coal fly ash references, SRM1633c, SRM2690 and BCR38. The recoveries of individual elements in these samples have been examined intensively, as a function of the amount of hydrofluoric acid (HF, 0-2.0 ml), microwave power (900 W vs. 1200 W) and sample mass (0.05 g vs. 0.1 g). As have been confirmed, the recoveries of these individual elements varied significantly with the microwave digestion condition, elemental type and sample property. For the coal references and their HTAs, the use of HF can be ruled out for most of the elements, except K associated with feldspar, Pb and V. In particular, the recovery of Pb in coal is highly sample-specific and thus unpredictable. The majority of elements in fly ash references require the use of 0.1-0.2 ml HF for a complete recovery. Al in fly ash is the only exceptional element which gave incomplete recoveries throughout, suggesting the use of a complementary technique for its quantification. As has proven to be the only element inconsequential of sample type and digestion conditions, achieving complete recoveries for all cases. On the power parameter, using a higher power such as 1200 W is critical, which has proved to be an ultimatum for the recovery of certain elements, especially in fly ash. Halving sample mass from 0.1 g to 0.05 g was also found to be insignificant. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.

    PubMed

    Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas

    2015-11-01

    The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can constitute an attractive option of the waste management system, when physical-mechanical devices are not available or could not be implemented in old MSWI systems. The suggested procedure may lead to the improvement of recovery efficiency up to 83% for CRM and 94% for other valuable metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Development of Fly Ash-Based Sorbent to Capture CO2 from Flue Gas

    NASA Astrophysics Data System (ADS)

    Majchrzak-Kucęba, I.; Nowak, W.

    In the present work the thermogravimetric characterization of the sorption of carbon dioxide on polymer-modifiedmesoporous materials (MCM-41) from fly ashes is described. In order to obtain MCM-41 materials from three different types fly ashes,(including CFB fly ash) hydrothermal processesusing the supernatantsof coal fly ashes and surfactantsas the structure-directing agents,have been carried out. The obtained mesoporous materials were subjected to polyethylenimine (PEI) modification by their impregnation to obtain samples with PEl contents of 30, 50 and 70%, respectively. CO2 sorption/desorption tests on loaded PEl samples were carried out in a flow of a mixture of gasses (CO2-1O%, O2-10%, N2-80%) at different temperatures: 25 and 75°C. The highest CO2 sorption value was obtained for the sample that contained the best-quality MCM-41 and was impregnatedwith PEI in the amount of 50%. This sample at a temperatureof 75°C can take CO2 in an amount equivalent to 111.7 mgCO2/g sample weight. Under the same conditions, but without PEI impregnation, this sample can take CO2 in an amount equivalent to 3.2 mgCO2/g sample weight, thus 35 times less. The research of CO2 adsorption on polymer-modified mesoporous materials from fly ashes carried out within this work has shown that these materials are characterized by high CO2 adsorption capacity under conditions typical of coal combustionboiler flue gas and have the chance of becoming an efficient adsorbent for application to post-combustion CO2 separation. For PEI impregnated samples, a different behaviour of adsorption/desorption profiles has also been observed (both sorption and desorptionprogressesvery rapidly).

  20. Combined disc pelletisation and thermal treatment of MSWI fly ash.

    PubMed

    Huber, Florian; Herzel, Hannes; Adam, Christian; Mallow, Ole; Blasenbauer, Dominik; Fellner, Johann

    2018-03-01

    An environmentally friendly and cost efficient way for the management of municipal solid waste incineration (MSWI) fly ash represents its thermal co-treatment together with combustible waste. However, the safe introduction and storage of MSWI fly ash in the waste bunker is challenging and associated with severe problems (e.g. dust emissions, generation of undefined lumps and heat in case of moistened MSWI fly ash). Therefore, the aim of this study is to investigate the suitability of pelletisation as a pretreatment of MSWI fly ash. In particular, MSWI fly ash was characterised after sampling, pelletisation and thermal treatment and the transfer of constituents to secondary fly ash and flue gas was investigated. For this purpose, MSWI fly ash pellets with a water content of about 0.15 kg/kg and a diameter of about 8 mm have been produced by disc pelletiser and treated in an electrically heated pilot-scale rotary kiln at different temperatures, ranging from 450 °C to 1050 °C. The total contents of selected elements in the MSWI fly ash before and after thermal treatment and in the generated secondary fly ash have been analysed in order to understand the fate of each element. Furthermore, leachable contents of selected elements and total content of persistent organic pollutants of the thermally treated MSWI fly ash were determined. Due to the low total content of Hg (0.7 mg/kg) and the low leachate content of Pb (<0.36 mg/kg), even at the lowest treatment temperature of 450 °C, thermally treated MSWI fly ash pellets can be classified as non-hazardous waste. However, temperatures of at least 650 °C are necessary to decrease the toxic equivalency of PCDD/F and DL-PCB. The removal of toxic heavy metals like Cd and Pb is significantly improved at temperatures of 850 °C, 950 °C or even 1050 °C. The observed metal removal led to relatively high contents of e.g. Cu (up to 11,000 mg/kg), Pb (up to 91,000 mg/kg) and Zn (up to 21,000 mg/kg) in the secondary fly ash. This metal enriched secondary fly ash might represent a potential raw material for metal recovery (e.g. via acidic leaching). Due to the high content of total dissolved solids observed in the leachate of thermally treated MSWI fly ash pellets, a wet extraction procedure is suggested to enable its safe disposal at non-hazardous waste landfills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Liquid chromatography/mass spectrometry for the detection of ash tree metabolites following Emerald Ash Borer infestation.

    PubMed

    Stock, Naomi L; Doran, Michael C; Bonners, Ron F; March, Raymond E

    2018-03-15

    The Emerald Ash Borer (EAB), Agrilus planipennis, an invasive insect detected in the USA and Canada in 2002, is a threat to ash trees with both ecological and economic implications. Early detection of EAB-infestation is difficult due to lack of visible signs and symptoms in the early stages of attack, but is essential to prevent ash mortality. An efficient and reliable tool for the early detection of EAB-infestation would be advantageous. A mass spectrometry based metabolomics approach, using liquid chromatography/mass spectrometry (LC/MS), has been used to investigate the leaf metabolites of both healthy and EAB-infested trees. Leaves from 40 healthy and 40 EAB-infested trees were extracted and analyzed using LC/MS. Resulting data were examined to differentiate between foliage from healthy and EAB-infested trees. Possible biomarkers of EAB attack have been detected. Twenty-one metabolites with increased average ion intensity in EAB-infested ash tree samples and nine metabolites with increased average ion intensity in healthy ash tree samples were identified. Results of this study indicate that metabolomic screening of leaf samples using LC/MS can be useful as a potential tool for the early detection of EAB-infestation. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Control of binder viscosity and hygroscopicity on particle aggregation efficiency

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Delmelle, Pierre; Dingwell, Donald B.

    2016-04-01

    In the course of explosive volcanic eruptions, large amounts of ash are released into the atmosphere and may subsequently pose a threat to infrastructure, such as aviation industry. Ash plume forecasting is therefore a crucial tool for volcanic hazard mitigation but may be significantly affected by aggregation, altering the aerodynamic properties of particles. Models struggle with the implementation of aggregation since external conditions promoting aggregation have not been completely understood; in a previous study we have shown the rapid generation of ash aggregates through liquid bonding via the use of fluidization bed technology and further defined humidity and temperature ranges necessary to trigger aggregation. Salt (NaCl) was required for the recovery of stable aggregates, acting as a cementation agent and granting aggregate cohesion. A numerical model was used to explain the physics behind particle aggregation mechanisms and further predicted a dependency of aggregation efficiency on liquid binder viscosity. In this study we proof the effect of viscosity on particle aggregation. HCl and H2SO4 solutions were diluted to various concentrations resulting in viscosities between 1 and 2 mPas. Phonolitic and rhyolitic ash samples as well as soda-lime glass beads (serving as analogue material) were fluidized in the ProCell Lab® of Glatt Ingenieurtechnik GmbH and treated with the acids via a bottom-spray technique. Chemically driven interaction between acid liquids and surfaces of the three used materials led to crystal precipitation. Salt crystals (e.g. NaCl) have been confirmed through scanning electron microscopy (SEM) and leachate analysis. Both volcanic ash samples as well as the glass beads showed a clear dependency of aggregation efficiency on viscosity of the sprayed HCl solution. Spraying H2SO4 provoked a collapse of the fluidized bed and no aggregation has been observed. This is accounted by the high hygroscopicity of H2SO4. Dissolving CaCl2 (known to be a highly hygroscopic salt) in de-ionized water yielded comparable results without observable aggregation. In case of successful aggregation, concentration of salts has been found to be in the range of published values. We conclude that non-hygroscopic salt crystal precipitation from an aqueous liquid interacting with the glass phase in volcanic ash is a very efficient way to produce cohesive ash aggregates that can survive external forces acting during transport and sedimentation.

  3. Strategies for characterizing compositions of industrial pulp and paper sludge

    NASA Astrophysics Data System (ADS)

    Aslanzadeh, Solmaz; Kemal, Rahmat A.; Pribowo, Amadeus Y.

    2018-01-01

    The large quantities of waste sludge produced by the pulp and paper industry present significant environmental challenges. In order to minimize the amounts of waste, the pulp sludge should be utilized for productive applications. In order to find feasible solutions, the sludge need to be characterized. In this study, the potential of using acid pretreatment and ashing method to determine the chemical compositions of the sludge is investigated. This study shows that acid pretreatment could be used to dissolve and determine the composition of CaCO3 in the pulp sludge. CaCO3 removal also facilitates the measurement of fiber and ash (clay) contents by using the ashing method. The optimum acid concentration used to completely dissolve CaCO3 was determined using a titration method. Using this method, the measurement of the chemical composition of the sludge sample revealed that it consisted primarily of CaCO3 (55% w/w), clay (25%, w/w), and fibers (18%, w/w). Based on these chemical compositions, potential utilization for the sludge could be determined.

  4. Grain-size analysis of volcanic ash for the rapid assessment of respiratory health hazard.

    PubMed

    Horwell, Claire J

    2007-10-01

    Volcanic ash has the potential to cause acute and chronic respiratory diseases if the particles are sufficiently fine to enter the respiratory system. Characterization of the grain-size distribution (GSD) of volcanic ash is, therefore, a critical first step in assessing its health hazard. Quantification of health-relevant size fractions is challenging without state-of-the-art technology, such as the laser diffractometer. Here, several methods for GSD characterization for health assessment are considered, the potential for low-cost measurements is investigated and the first database of health-pertinent GSD data is presented for a suite of ash samples from around the world. Methodologies for accurate measurement of the GSD of volcanic ash by laser diffraction are presented by experimental analysis of optimal refractive indices for different magmatic compositions. Techniques for representative sampling of small quantities of ash are also experimentally investigated. GSD results for health-pertinent fractions for a suite of 63 ash samples show that the fraction of respirable (<4 microm) material ranges from 0-17 vol%, with the variation reflecting factors such as the style of the eruption and the distance from the source. A strong correlation between the amount of <4 and <10 microm material is observed for all ash types. This relationship is stable at all distances from the volcano and with all eruption styles and can be applied to volcanic plume and ash fallout models. A weaker relationship between the <4 and <63 microm fractions provides a novel means of estimating the quantity of respirable material from data obtained by sieving.

  5. Wet-dry cycles effect on ash water repellency. A laboratory experiment.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerdà, Artemi; Oliva, Marc; Mataix, Jorge; Jordán, Antonio

    2014-05-01

    In the immediate period after the fire, the ash layer has a strong influence on soil hydrological processes, as runoff, infiltration and erosion. Ash is very dynamic in the space and time. Until the first rainfall periods, ash is (re)distributed by the wind. After it can cover the soil surface, infiltrate or transported to other areas by water transport (Pereira et al., 2013a, b). This will have strong implications on nutrient redistribution and vegetation recovery. Ash layer may affect soil water repellency in different ways, depending on fire severity, soil properties and vegetation. Ash produced at low temperatures after low-severity burning is usually hydrophobic (Bodi et al., 2011, 2012). Wet-dry cycles have implications on ash physical and chemical properties, changing their effects in space and time. The aim of this study is to analyse the effects of fire temperature and severity on ash water repellency. Pinus sylvestris needles were collected in a Lithuania forest in Dzukija National Park (53º 54' N and 24º 22' E), transported to laboratory and washed with deionized water to remove soil particles and other residues. Needle samples were dried during 24 hours and exposed to different temperatures: 200, 300, 400 and 500 ºC, during 2 hours. Ash colour was analysed according to the Munsell Soil Color charts. Ash was black (10 YR 2/1) at 200 ºC, very dark grey (10YR 3/1) at 300 ºC, gray (10YR 5/1) at 400 ºC and light gray (10YR 7/1) at 500 ºC. Ten samples of ash released after each treatment were placed in plastic dishes (50 mm in diameter) in an amount enough to form a 5 mm thick layer, and ash water repellency was measured according to the Water Drop Penetration Test. Later, ash was carefully wetted with 15 ml of deionized water and placed in an oven during 4 days (96 hours), as in Bodí et al. (2012). This procedure was repeated 5 times in order to observe the effects of wet-dry cycles in ash water repellency. The results showed significant differences among wet-dry cycles (Chi Sqr = 184.13 p <0.001) and among temperatures, immediately after treatments (Kruskal-Wallis test: H = 13.64, p<0.01) and after first wet-dry cycle (Kruskal-Wallis test: H =13.85 p<0.01). In the second (Kruskal-Wallis test: =5.80, p >0.05), third (Kruskal-Wallis test: H =3.07, p>0.05), fourth (Kruskal-Wallis test: H=0.75, p>0.05) and fifth (Kruskal-Wallis test: H =0.199, p<0.05) wet-dry cycles, ash water repellency did not show significant differences. After wetting, ash water repellency decreased substantially in the first cycle. These results suggest that wet-dry cycles have important impacts in the reduction of ash water repellency. Nevertheless, this reduction at least in the first cycle is different according to the temperature/severity. Black ash (200 ºC) water repellency was significantly higher than the other temperatures/severities. Further research will be carried out using burned soils and different species. References Bodi, M.B., Doerr, S., Cerda, A., Mataix-Solera, J. (2012) Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma, 161, 14-23, 2011. DOI: 10.1016/j.geoderma.2012.01.006. Bodí, M.B., Mataix-Solera, J., Doerr, S.H., Cerdà, A. (2011). The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma 160, 599-607. DOI:10.1016/j.geoderma.2010.11.009. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2013a) Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development. DOI: 10.1002/ldr.2195. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Jordan, A. Burguet, M. (2013b) Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania, Solid Earth, 4, 153-165. DOI: 10.5194/se-4-153-2013.

  6. Kinetics of fly ash beneficiation by carbon burnout. [Quarterly report], October 1, 1995--January 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodoo, J.N.; Okoh, J.M.; Yilmaz, E.

    The objective is to investigate the kinetics of beneficiation of fly ash by carbon burnout. The three year project that was proposed is a joint venture between Delmarva Power, a power generating company on the eastern shore of Maryland, and the University of Maryland Eastern Shore. The studies have focused on the beneficiation of fly ash by carbon burnout. The increasing use of coal fly ash as pozzolanic material in Portland cement concrete means that there is the highest economic potential in marketability of large volumes of fly ash. For the concrete industry to consider large scale use the flymore » ash must be of the highest quality. This means that the residual carbon content of the fly ash must have an acceptable loss on ignition (LOI) value, usually between 7--2% residual carbon. The economic gains to be had from low-carbon ash is a fact that is generally accepted by the electricity generating companies. However, since the cost of producing low-carbon in large quantities, based on present technology, far outweighs any financial gains, no electrical power company using coal as its fuel at present considers the effort worthwhile. The concrete industry would use fly ash in cement concrete mix if it can be assured of its LOI value. At present no utility company would give such assurance. Hence with several million tons of fly ash produced by a single power plant per year all that can be done is to dump the fly ash in landfills. The kinetics of fly ash beneficiation have been investigated in the zone II kinetic regime, using a Cahn TG 121 microbalance in the temperature 550--750{degrees}C. The P{sub 02} and total surface area dependence of the reaction kinetics were determined using a vacuum accessory attached to the microbalance and a surface area analyzer (ASAP 2010), respectively.« less

  7. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOEpatents

    Beaufrere, A.H.

    1982-04-30

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas fired furnances or boilers. Two concentric shells define a combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  8. Seasonal changes in chemical and mineralogical composition of sewage sludge incineration residues and their potential for metallic elements and valuable components recovery

    NASA Astrophysics Data System (ADS)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2017-04-01

    Increasing energy needs, the implementation of the circular economy principles and rising environmental awareness caused that waste management is becoming a major social and economic issue. The EU Member States have committed to a significant reduction in the amount of waste produced and landfilled and to use their inherent energy and raw materials potential. One of the most reasonable option to fulfil these commitments is waste incineration. The aim of the waste incineration is to reduce their volume and toxicity by disinfection and detoxification at high temperatures. Thermal process and reduction of volume allows the recovery of minerals and metallic elements from residues as well as the energy production (waste-to-energy strategy) during incineration. As a result of waste incineration a variety of solid residues (bottom ash, fly ash, air pollution control residues) and technological waste (gas waste, wastewater) are produced. The goal of this study is to characterize fly ash and air pollution control (APC) residues formed as a result of municipal sewage sludge incineration in terms of their chemical and mineral composition and their extractive potential. Residues were sampled quarterly to study their seasonal changes in composition. The fly ash was a Si-P-C-Fe-Al dominated material, whereas the APC residues composition was dominated by Na-rich soluble phases. The removal of soluble phase ( 98% of the material) from the APC residues by dissolution in deionised water caused significant mass reduction and concentration of non-soluble elements. The main mineral phases in fly ash were quartz, hematite, Fe-PO4, whitlockite and feldspar, while in APC thenardite, and in lower amount calcite, apatite and quartz were present. The chemical composition of fly ash was practically invariable in different seasons, but significant differences were observed in APC residues. The lowest concentrations of all elements and the highest TOC content were measured in the samples collected in the spring 2016. The highest concentrations for most of the elements were measured in summer 2016 except for the Ca, Sn, Zn, Cd, Sb, and Ag which concentrations were the highest in the winter time 2015. Even though the seasonal changes in metallic and/or potentially valuable elements concentrations are visible their overall content is low. In addition they are dispersed within crystalline and amorphous phase, therefore it seems to be inappropriate to consider this material as a source of valuable elements. Due to high phosphorus content in the fly ash, equal to the low grade phosphorus ore, both in the form of phosphate minerals as well as dispersed within minerals can be treated as a potential source of this critical raw material. Acknowledgment: The study was supported by Polish National Science Centre. NCN grant No UMO-2014/15/B/ST10/04171

  9. Effect of Particle Non-Sphericity on Satellite Monitoring of Drifting Volcanic Ash Clouds

    NASA Technical Reports Server (NTRS)

    Krotkov, Nicholay A.; Flittner, D. E.; Krueger, A. J.; Kostinski, A.; Riley, C.; Rose, W.

    1998-01-01

    Volcanic eruptions loft gases and ash particles into the atmosphere and produce effects that are both short term (aircraft hazards, interference with satellite measurements) and long term (atmospheric chemistry, climate). Large (greater than 0.5mm) ash particles fall out in minutes [Rose et al, 1995], but fine ash particles can remain in the atmosphere for many days. This fine volcanic ash is a hazard to modem jet aircraft because the operating temperatures of jet engines are above the solidus temperature of volcanic ash, and because ash causes abrasion of windows and airframe, and disruption of avionics. At large distances(10(exp 2)-10(exp 4) km or more) from their source, drifting ash clouds are increasingly difficult to distinguish from meteorological clouds, both visually and on radar [Rose et al., 1995]. Satellites above the atmosphere are unique platforms for viewing volcanic clouds on a global basis and measuring their constituents and total mass. Until recently, only polar AVHRR and geostationary GOES instruments could be used to determine characteristics of drifting volcanic ash clouds using the 10-12 micron window [Prata 1989; Wen and Rose 1994; Rose and Schneider 1996]. The NASA Total Ozone Mapping Spectrometer (TOMS) instruments aboard the Nimbus-7, Meteor3, ADEOS, and Earth Probe satellites have produced a unique data set of global SO2 volcanic emissions since 1978 (Krueger et al., 1995). Besides SO2, a new technique has been developed which uses the measured spectral contrast of the backscattered radiances in the 330-380nm spectral region (where gaseous absorption is negligible) in conjunction with radiative transfer models to retrieve properties of volcanic ash (Krotkov et al., 1997) and other types of absorbing aerosols (Torres et al., 1998).

  10. Assessment of the potential respiratory hazard of volcanic ash from future Icelandic eruptions: A study of archived basaltic to rhyolitic ash samples

    USGS Publications Warehouse

    Damby, David; Horwell, Claire J.; Larsen, Gudrun; Thordarson, Thorvaldur; Tomatis, Maura; Fubini, Bice; Donaldson, Ken

    2017-01-01

    BackgroundThe eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011), Iceland, triggered immediate, international consideration of the respiratory health hazard of inhaling volcanic ash, and prompted the need to estimate the potential hazard posed by future eruptions of Iceland’s volcanoes to Icelandic and Northern European populations. MethodsA physicochemical characterization and toxicological assessment was conducted on a suite of archived ash samples spanning the spectrum of past eruptions (basaltic to rhyolitic magmatic composition) of Icelandic volcanoes following a protocol specifically designed by the International Volcanic Health Hazard Network. ResultsIcelandic ash can be of a respirable size (up to 11.3 vol.% < 4 μm), but the samples did not display physicochemical characteristics of pathogenic particulate in terms of composition or morphology. Ash particles were generally angular, being composed of fragmented glass and crystals. Few fiber-like particles were observed, but those present comprised glass or sodium oxides, and are not related to pathogenic natural fibers, like asbestos or fibrous zeolites, thereby limiting concern of associated respiratory diseases. None of the samples contained cristobalite or tridymite, and only one sample contained quartz, minerals of interest due to the potential to cause silicosis. Sample surface areas are low, ranging from 0.4 to 1.6 m2 g−1, which aligns with analyses on ash from other eruptions worldwide. All samples generated a low level of hydroxyl radicals (HO•), a measure of surface reactivity, through the iron-catalyzed Fenton reaction compared to concurrently analyzed comparative samples. However, radical generation increased after ‘refreshing’ sample surfaces, indicating that newly erupted samples may display higher reactivity. A composition-dependent range of available surface iron was measured after a 7-day incubation, from 22.5 to 315.7 μmol m−2, with mafic samples releasing more iron than silicic samples. All samples were non-reactive in a test of red blood cell-membrane damage. ConclusionsThe primary particle-specific concern is the potential for future eruptions of Iceland’s volcanoes to generate fine, respirable material and, thus, to increase ambient PM concentrations. This particularly applies to highly explosive silicic eruptions, but can also hold true for explosive basaltic eruptions or discrete events associated with basaltic fissure eruptions.

  11. Assessment of the potential respiratory hazard of volcanic ash from future Icelandic eruptions: a study of archived basaltic to rhyolitic ash samples.

    PubMed

    Damby, David E; Horwell, Claire J; Larsen, Gudrun; Thordarson, Thorvaldur; Tomatis, Maura; Fubini, Bice; Donaldson, Ken

    2017-09-11

    The eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011), Iceland, triggered immediate, international consideration of the respiratory health hazard of inhaling volcanic ash, and prompted the need to estimate the potential hazard posed by future eruptions of Iceland's volcanoes to Icelandic and Northern European populations. A physicochemical characterization and toxicological assessment was conducted on a suite of archived ash samples spanning the spectrum of past eruptions (basaltic to rhyolitic magmatic composition) of Icelandic volcanoes following a protocol specifically designed by the International Volcanic Health Hazard Network. Icelandic ash can be of a respirable size (up to 11.3 vol.% < 4 μm), but the samples did not display physicochemical characteristics of pathogenic particulate in terms of composition or morphology. Ash particles were generally angular, being composed of fragmented glass and crystals. Few fiber-like particles were observed, but those present comprised glass or sodium oxides, and are not related to pathogenic natural fibers, like asbestos or fibrous zeolites, thereby limiting concern of associated respiratory diseases. None of the samples contained cristobalite or tridymite, and only one sample contained quartz, minerals of interest due to the potential to cause silicosis. Sample surface areas are low, ranging from 0.4 to 1.6 m 2  g -1 , which aligns with analyses on ash from other eruptions worldwide. All samples generated a low level of hydroxyl radicals (HO • ), a measure of surface reactivity, through the iron-catalyzed Fenton reaction compared to concurrently analyzed comparative samples. However, radical generation increased after 'refreshing' sample surfaces, indicating that newly erupted samples may display higher reactivity. A composition-dependent range of available surface iron was measured after a 7-day incubation, from 22.5 to 315.7 μmol m -2 , with mafic samples releasing more iron than silicic samples. All samples were non-reactive in a test of red blood cell-membrane damage. The primary particle-specific concern is the potential for future eruptions of Iceland's volcanoes to generate fine, respirable material and, thus, to increase ambient PM concentrations. This particularly applies to highly explosive silicic eruptions, but can also hold true for explosive basaltic eruptions or discrete events associated with basaltic fissure eruptions.

  12. Glass-Ceramic Material from the SiO2-Al2O3-CaO System Using Sugar-Cane Bagasse Ash (SCBA)

    NASA Astrophysics Data System (ADS)

    Teixeira, S. R.; Romero, M.; Ma Rincón, J.; Magalhães, R. S.; Souza, A. E.; Santos, G. T. A.; Silva, R. A.

    2011-10-01

    Brazil is the world's largest producer of alcohol and sugar from sugarcane. Currently, sugarcane bagasse is burned in boilers to produce steam and electrical energy, producing a huge volume of ash. The major component of the ash is SiO2, and among the minor components there are some mineralizing agents or fluxing. Published works have shown the potential of transforming silicate-based residues into glass-ceramic products of great utility. This work reports the research results of SCBA use to produce glass-ceramics with wollastonite, rankinite and gehlenite as the major phases. These silicates have important applications as building industry materials, principally wollastonite, due to their special properties: high resistance to weathering, zero water absorption, and hardness among others. The glasses (frits) were prepared mixing ash, calcium carbonate and sodium or potassium carbonates as flux agents, in different concentrations. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The crystallization kinetics was evaluated using the Kissinger method, giving activation energies ranging from 200 to 600 kJ/mol.

  13. Leaching characteristics of solid wastes from thermal power plants of western Turkey and comparison of toxicity methodologies.

    PubMed

    Baba, Alper; Kaya, Abidin

    2004-11-01

    Use of lignite in power generation has led to increasing environmental problems associated not only with gaseous emissions, but also with the disposal of ash residues. In particular, use of low quality coals with high ash content results in huge quantities of both fly and bottom ashes to be disposed of. A main problem related to coal ash disposal is the heavy metal content of the residue. In this regard, experimental results of numerous studies indicate that toxic trace metals may leach when fly and bottom ashes are in contact with water. In this study, fly and bottom ash samples obtained from thermal power plants, namely Yenikoy, Kemerkoy and Yatagan, located at the southwestern coast of Turkey, were subjected to toxicity tests such as the extraction (EP) and toxicity characteristic leaching (TCLP) procedures of the US Environmental Protection Agency (USEPA) and the so-called 'Method A' extraction procedure of the American Society of Testing and Material (ASTM). The geochemical composition of ash samples showed variations depending on the coal burned in the plants. Furthermore, the EP, TCLP and ASTM toxicity tests showed variations such that the ash samples were classified as 'toxic waste' based on EP and TCLP results whereas they were classified as 'non-toxic' based on ASTM results, indicating test results are pH dependent. When the extraction results were compared with the chemical composition of water samples obtained in the vicinity of the thermal power plants, it was found that the results obtained using the ASTM procedure cannot be used to predict subsurface contamination whereas the EP and TCLP procedures can be used.

  14. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria.

    PubMed

    Lederer, Jakob; Trinkel, Verena; Fellner, Johann

    2017-02-01

    A number of studies present the utilization of fly ashes from municipal solid waste incineration (MSWI) in cement production as a recycling alternative to landfilling. While there is a lot of research on the impact of MSWI fly ashes utilization in cement production on the quality of concrete or the leaching of heavy metals, only a few studies have determined the resulting heavy metal content in cements caused by this MSWI fly ashes utilization. Making use of the case of Austria, this study (1) determines the total content of selected heavy metals in cements currently produced in the country, (2) designs a scenario and calculates the resulting heavy metal contents in cements assuming that all MSWI fly ashes from Austrian grate incinerators were used as secondary raw materials for Portland cement clinker production and (3) evaluates the legal recyclability of demolished concretes produced from MSWI fly ash amended cements based on their total heavy metal contents. To do so, data from literature and statistics are combined in a material flow analysis model to calculate the average total contents of heavy metals in cements and in the resulting concretes according to the above scenario. The resulting heavy metal contents are then compared (i) to their respective limit values for cements as defined in a new technical guideline in Austria (BMLFUW, 2016), and (ii) to their respective limit values for recycling materials from demolished concrete. Results show that MSWI fly ashes utilization increases the raw material input in cement production by only +0.9%, but the total contents of Cd by +310%, and Hg, Pb, and Zn by +70% to +170%. However these and other heavy metal contents are still below their respective limit values for Austrian cements. The same legal conformity counts for recycling material derived from concretes produced from the MSWI fly ash cements. However, if the MSWI fly ash ratio in all raw materials used for cement production were increased from 0.9% to 22%, which is suggested by some studies, the limit values for cements as defined by the BMLFUW (2016) will be exceeded. Furthermore, the concrete produced from this cement will not be recyclable anymore due to its high total heavy metal contents. This and the comparatively high contribution of MSWI fly ashes to total heavy metal contents in cements indicate their relatively low resource potential if compared to other secondary raw materials in the cement industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Constitution of Drop-Tube-Generated Coal Chars from Vitrinite- and Inertinite-Rich South African Coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louw, Enette B.; Mitchell, Gareth D.; Wang, Juan

    The structural transformations of coal and the resultant char morphologies are strongly dependent on the initial structure and degree of thermoplasticity achieved during coal-to-char transition. These are a function of petrographic composition, rank, particle size, and heating rate and strongly affect combustion behavior. This study compares the devolatilization and subsequent combustion behavior of an inertinite-rich (87.7% dmmf) and a vitrinite-rich (91.8% dmmf) South African coal, wet-screened to a narrow particle size distribution of 200 x 400 mesh. Pyrolysis chars were generated under rapid-heating conditions (104-105 °C/s) in a drop-tube reactor to closely resemble chars generated in pulverized combustion conditions. Themore » inertinite-rich coal took ~ 400 ms to devolatilize in the drop-tube, compared to only ~ 240 ms for the vitrinite-rich sample. The chemical and physical structure (the constitution) of the chars were investigated through a range of chemical, physical, and optical characteristics including the maceral differences, and high ash yields. To evaluate the combustion reactivity non-isothermal burn-out profiles were obtained through thermogravimetrical analyses (TGA) in air. The vitrinite-rich char had on average 20% higher reaction rates than the inertinite-rich char under the various combustion conditions. The char samples were de-ashed with HCl and HF acid which resulted in an increase in combustion reactivity. The maximum reaction rate of the high-ash (36% ash yield) inertinite-rich char increased with 80% after de-ashing. While the vitrinite-rich char with an ash yield of 15%, had a 20% increase in reactivity after de-ashing. The ash acted as a barrier, and the removal of ash most likely increased the access to reactive surface area. The chemical and physical structures of the chars were characterized through a range of different analytical techniques to quantify the factors contributing to reactivity differences. The morphologies of the chars were characterized with SEM and optical microscopy, while quantitative information on the ordered nature of chars was obtained through XRD on de-ashed chars. The inertinite-rich coal experienced limited fluidity during heat-treatment, resulting in slower devolatilization, limited growth in crystallite height (11.8 to 12.6Å), only rounding of particle edges, and producing > 40% of mixed-dense type chars. The vitrinite-char showed more significant structural transformations; producing mostly (80%) extensively swollen crassisphere, tenuisphere, and network-type chars, and XRD showed a large increase in crystallite height (4.3 to 11.7Å). Nitrogen adsorption and small-angle X-ray scattering (SAXS) were utilized to compare the nitrogen surface areas and pore size distributions. Both chars were mostly mesoporous but the inertinite-rich char had double the average pore size, which also resulted in a larger nitrogen surface area since nitrogen can only access surface areas in larger pores. The BET surface area was 3.9 and 2.7 m2/g for the inertinite- and vitrinite-rich chars respectively. SAXS data showed that the vitrinite-rich char had 60% higher frequencies of pores in the micropore range. Helium porosimetry indicated that the inertinite-rich coal and resultant char had higher densities than the vitrinite coal and char; 1.6 and 2.0 g/cm3, compared to 1.3 and 1.9 g/cm3 (dry basis). Non-isothermal TGA burnout profiles showed the inertinite-rich char had a burnout temperature of 680°C, slightly higher than the vitrinite-rich char’s 650 °C. This, along with the peak shape and position in the burnout profiles indicate that the vitrinite-rich char has a higher reactivity. The higher reactivity is due to a combination of factors likely including less organization, grater porosity and access to the reactive site, less ash blocking, and char morphology differences.« less

  16. Fluidized bed combustion bottom ash: A better and alternative geo-material resource for construction.

    PubMed

    Mandal, A K; Paramkusam, Bala Ramudu; Sinha, O P

    2018-04-01

    Though the majority of research on fly ash has proved its worth as a construction material, the utility of bottom ash is yet questionable due to its generation during the pulverized combustion process. The bottom ash produced during the fluidized bed combustion (FBC) process is attracting more attention due to the novelty of coal combustion technology. But, to establish its suitability as construction material, it is necessary to characterize it thoroughly with respect to the geotechnical as well as mineralogical points of view. For fulfilling these objectives, the present study mainly aims at characterizing the FBC bottom ash and its comparison with pulverized coal combustion (PCC) bottom ash, collected from the same origin of coal. Suitability of FBC bottom ash as a dike filter material in contrast to PCC bottom ash in replacing traditional filter material such as sand was also studied. The suitability criteria for utilization of both bottom ash and river sand as filter material on pond ash as a base material were evaluated, and both river sand and FBC bottom ash were found to be satisfactory. The study shows that FBC bottom ash is a better geo-material than PCC bottom ash, and it could be highly recommended as an alternative suitable filter material for constructing ash dikes in place of conventional sand.

  17. Development of the chemical and electrochemical coal cleaning process

    NASA Astrophysics Data System (ADS)

    Basilio, C. I.; Yoon, Roe-Hoan

    The continuous testing of the Chemical and Electrochemical Coal Cleaning (CECC) was completed successfully using Middle Wyodak and Elkhorn No. 3 coal samples. The CECC unit was run under the optimum conditions established for these coal samples. For the Middle Wyodak coal, the ash content was reduced from 6.96 percent to as low 1.61 percent, corresponding to an ash rejection (by weight) of about 83 percent. The ash and sulfur contents of the Elkhorn No. 3 coal were reduced to as low as 1.8 percent and 0.9 percent. The average ash and sulfur rejections were calculated to be around 84 percent and 47 percent. The CECC continuous unit was used to treat -325 mesh Elkhorn No. 3 coal samples and gave ash and sulfur rejection values of as high as 77 percent and 66 percent. In these test, the clean -325 mesh coal particles were separated from the liberated mineral matter through microbubble column flotation, instead of wet-screening.

  18. Formation of particulate matter monitoring during combustion of wood pellete with additives

    NASA Astrophysics Data System (ADS)

    Palacka, Matej; Holubčík, Michal; Vician, Peter; Jandačka, Jozef

    2016-06-01

    Application additives into the material for the production of wood pellets achieve an improvement in some properties such as pellets ash flow temperature and abrasion resistance. Additives their properties influence the course of combustion, and have an impact on the results of issuance. The experiment were selected additives corn starch and dolomite. Wood pellets were produced in the pelleting press and pelletizing with the additives. Selected samples were tested for the production of particulate matter (PM) during their direct burn. The paper analyzing a process of producing wood pellets and his effect on the final properties.

  19. Ash Analysis

    NASA Astrophysics Data System (ADS)

    Marshall, Maurice R.

    Ash refers to the inorganic residue remaining after either ignition or complete oxidation of organic matter in a foodstuff. A basic knowledge of the characteristics of various ashing procedures and types of equipment is essential to ensure reliable results. Two major types of ashing are used: dry ashing, primarily for proximate composition and for some types of specific mineral analyses; wet ashing (oxidation), as a preparation for the analysis of certain minerals. Microwave systems now are available for both dry and wet ashing, to speed the processes. Most dry samples (i.e., whole grain, cereals, dried vegetables) need no preparation, while fresh vegetables need to be dried prior to ashing. High-fat products such as meats may need to be dried and fat extracted before ashing. The ash content of foods can be expressed on either a wet weight (as is) or on a dry weight basis. For general and food-specific information on measuring ash content, see references (1-11).

  20. Mineralogy of ash of some American coals: variations with temperature and source

    USGS Publications Warehouse

    Mitchell, R.S.; Gluskoter, H.J.

    1976-01-01

    Ten samples of mineral-matter residue were obtained by the radio-frequency low-temperature ashing of subbituminous and bituminous coals. The low-temperature ash samples were then heated progressively from 400 ??C to 1400 ??C at 100 ??C intervals. Mineral phases present at each temperature interval were determined by X-ray diffraction analyses. The minerals originally present in the coals (quartz, kaolinite, illite, pyrite, calcite, gypsum, dolomite, and sphalerite) were all altered to higher temperature phases. Several of these phases, including kaolinite, metakaolinite, mullite, anhydrite, and anorthite, were found only in limited temperature ranges. Therefore the temperature of formation of the ashes in which they occur may be determined. Mineralogical differences were observed between coal samples from the Rocky Mountain Province, the Illinois Basin, and the Appalachians; and as a result of these mineralogical differences, different high-temperature phases resulted as the samples were heated. However, regional generalizations cannot be made until a greater number of samples have been studied. ?? 1976.

  1. Fly ash particles spheroidization using low temperature plasma energy

    NASA Astrophysics Data System (ADS)

    Shekhovtsov, V. V.; Volokitin, O. G.; Kondratyuk, A. A.; Vitske, R. E.

    2016-11-01

    The paper presents the investigations on producing spherical particles 65-110 μm in size using the energy of low temperature plasma (LTP). These particles are based on flow ash produced by the thermal power plant in Seversk, Tomsk region, Russia. The obtained spherical particles have no defects and are characterized by a smooth exterior surface. The test bench is designed to produce these particles. With due regard for plasma temperature field distribution, it is shown that the transition of fly ash particles to a state of viscous flow occurs at 20 mm distance from the plasma jet. The X-ray phase analysis is carried out for the both original state of fly ash powders and the particles obtained. This analysis shows that fly ash contains 56.23 wt.% SiO2; 20.61 wt.% Al2O3 and 17.55 wt.% Fe2O3 phases that mostly contribute to the integral (experimental) intensity of the diffraction maximum. The LTP treatment results in a complex redistribution of the amorphous phase amount in the obtained spherical particles, including the reduction of O2Si, phase, increase of O22Al20 and Fe2O3 phases and change in Al, O density of O22Al20 chemical unit cell.

  2. Differences in gasification behaviors and related properties between entrained gasifier fly ash and coal char

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing Gu; Shiyong Wu; Youqing Wu

    2008-11-15

    In the study, two fly ash samples from Texaco gasifiers were compared to coal char and the physical and chemical properties and reactivity of samples were investigated by scanning electron microscopy (SEM), SEM-energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), N{sub 2} and CO{sub 2} adsorption method, and isothermal thermogravimetric analysis. The main results were obtained. The carbon content of gasified fly ashes exhibited 31-37%, which was less than the carbon content of 58-59% in the feed coal. The fly ashes exhibited higher Brunauer-Emmett-Teller (BET) surface area, richer meso- and micropores, more disordered carbon crystalline structure, and better CO{sub 2} gasification reactivitymore » than coal char. Ashes in fly ashes occurred to agglomerate into larger spherical grains, while those in coal char do not agglomerate. The minerals in fly ashes, especial alkali and alkaline-earth metals, had a catalytic effect on gasification reactivity of fly ash carbon. In the low-temperature range, the gasification process of fly ashes is mainly in chemical control, while in the high-temperature range, it is mainly in gas diffusion control, which was similar to coal char. In addition, the carbon in fly ashes was partially gasified and activated by water vapor and exhibited higher BET surface area and better gasification activity. Consequently, the fact that these carbons in fly ashes from entrained flow gasifiers are reclaimed and reused will be considered to be feasible. 15 refs., 7 figs., 5 tabs.« less

  3. Rainfall and wet and dry cycle's impact on ash thickness. A laboratory experiment

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Keestra, Saskia; Peters, Piet; Cerdà, Artemi

    2016-04-01

    Ash is the most important and effective soil protection in the immediate period after the fire (Cerda and Doerr, 2008; Pereira et al., 2015a). This protection can last for days or weeks depending on the fire severity, topography of the burned area and post-fire meteorological conditions. In the initial period after the fire, ash is easily transported by wind. However after the first rainfalls, ash is eroded, or bind in soil surface (Pereira et al., 2013, 2015a). Ash thickness has implications on soil protection. The soil protection against the erosion and the ash capacity to retain water increases with the ash thickness (Bodi et al., 2014). Ash cover is very important after fire because store water and releases into soil a large amount of nutrients, fundamental to vegetation recuperation (Pereira et al., 2014). Despite the importance of ash thickness in post fire environments, little information is available about the effects of rainfall and wet and dry cycle's effects on ash thickness. This work aims to fill this gap. The objective of this study is to investigate the impacts of rainfall and wet and dry cycles in the ash thickness of two different under laboratory conditions. Litter from Oak (Quercus robur) and Spruce (Picea abis) were collected to and exposed during 2 hours to produce ash at 200 and 400 C. Subsequently a layer of 15 mm ash was spread on soil surface in small boxes (24x32 cm) and then subjected to rainfall simulation. Boxes were placed at a 17% of inclination and a rainfall intensity of 55 mm/h during 40 minutes was applied. After the rainfall simulation the plots were stored in an Oven at the temperature of 25 C during four days, in order to identify the effects of wet and dry cycles (Bodi et al., 2013). Ash thickness was measured after the first rainfall (AFR), before the second rainfall (BSR) - after the dry period of 4 days - and after the second rainfall (ASR). In each box a grid with 57 points was designed in order to analyse ash thickness AFR, BSR and ASR. The results showed that AFR, ash thickness was reduced by 7.97% (±18.13) and 32.02 % (±37.44) in the Oak ash produced at 200 C (Oak 200) and 400 C (Oak 400), respectively. The spruce ash layer produced at 200 (Spruce 200) decreased 7.26% (±15.11) and 13.11 % (±18.40) in the ash produced at 400 C (Spruce 400). Before the second rainfall we identified that Oak 200 ash layer reduced approximately 15.95 (±15.81) while Oak 400 decreased 47.98% (±28.97). Spruce 200 ash layer was reduced by 14.52 (±14.57) and Spruce 400 by 18.68 (±17.54). In the last rainfall experiment, it was observed that Oak 200 ash layer decreased 14.88 (±14.09) and Oak 400 ash layer 44.52 (±28.85). Spruce 200 ash layer reduced 13.10 (±14.76) and spruce 400 18.33 (±21.69). The spatial pattern (assessed with Moran's I index) of the ash later of Oak 200 and Oak 400 AFR was significantly clustered (p<0.001). The spatial pattern of Spruce 200 was random (p>0.05) and Spruce 400 significantly clustered (p<0.001). Before the second rainfall, the spatial pattern of Oak 200 and Oak 400 was significantly clustered at a p<0.05 and p<0.001. The same situation was identified in Spruce 200 and Spruce 400 (p<0.001). Finally, ASR, the spatial pattern observed in Oak 200 and Oak 400 was significantly clustered at a p<0.05 and p<0.001. This was also identified in Spruce 200 and Spruce 400. Overall, the thickness decrease was higher in the ash layers produced at high temperature. The differences were mainly observed in oak ash. The dry cycle did not have an important impact on ash thickness in both species as the second rainfall cycle. The results from the Moran's I analysis showed that after the rainfall experiment the ash was mainly concentrated in a specific part of the plot. In this case it was located in the bottom of the experimental plot. Acknowledgments The authors are thankful to the Soil Physics and Land Management Group from Wageningen University, The Netherlands for provide the infrastructure to develop this work, to the RECARE project (grant agreement n° 603498), and to the COST action ES1306: Connecting European Connectivity Research for funding a STSM at the Wageningen University. References Bodi, M., Martin, D.A., Santin, C., Balfour, V., Doerr, S.H., Pereira, P., Cerda, A., Mataix-Solera, J. (2014) Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 130, 103-127. Bodi, M.B., Doerr, S.H., Cerda, A., Mataix-Solera, J. (2013) Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma, 191, 14-23. Cerdà, A., Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 74, 256-263. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Jordan, A. Burguet, M. (2013) Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania, Solid Earth, 4, 153-165. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2015) Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, 26, 180-192. Pereira, P., Jordan, A., Cerda, A., Martin, D. 2015a. Editorial: The role of ash in fire-affected ecosystems, Catena, 135, 337 - 379. Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., Cerdà, A., Burguet, M. (2014)Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal, Hydrological Processes, 28, 3681-3690

  4. [Correlation of Persistent Free Radicals, PCDD/Fs and Metals in Waste Incineration Fly Ash].

    PubMed

    Wang, Tian-jiao; Chen, Tong; Zhan, Ming-xiu; Guo, Ying; Li, Xiao-dong

    2016-03-15

    Environmentally persistent free radicals (EPFRs) are relatively highly stable and found in the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Recent studies have concentrated on model dioxin formation reactions and there are few studies on actual waste incineration fly ash. In order to study EPFRs and the correlation with dioxins and heavy metals in waste incineration fly ash, the spins of EPFRs, concentration of PCDD/Fs and metals in samples from 6 different waste incinerators were detected. The medical waste incineration fly ash from Tianjin, municipal solid waste incineration fly ash from Jiangxi Province, black carbon and slag from municipal solid waste incinerator in Lanxi, Zhejiang Province, all contained EPFRs. Above all the signal in Tianjin sample was the strongest. Hydroxyl radicals, carbon-center radicals and semiquinone radicals were detected. Compared with other samples, Jiangxi fly ash had the highest toxic equivalent quantity (TEQ) of dioxins, up to 7.229 4 ng · g⁻¹. However, the dioxin concentration in the Tianjin sample containing the strongest EPFR signals was only 0.092 8 ng · g⁻¹. There was perhaps little direct numeric link between EPFRs and PCDD/Fs. But the spins of EPFRs in samples presented an increasing trend as the metal contents increased, especially with Al, Fe, Zn. The signal strength of radicals was purposed to be related to the metal contents. The concentration of Zn (0.813 7% ) in the Tianjin sample was the highest and this sample contained much more spins of oxygen-center radicals. We could presume the metal Zn had a greater effect on the formation of EPFRs, and was easier to induce the formation of radicals with a longer half-life period.

  5. Grimsvotn ash plume detection by ground-based elastic Lidar at Dublin Airport on May 2011

    NASA Astrophysics Data System (ADS)

    Lolli, S.; Martucci, G.; O'Dowd, C.; sauvage, L.; Nolan, P.

    2011-12-01

    Volcanic emissions comprising steam, ash, and gases are injected into the atmosphere and produce effects affecting Earth's climate. Volcanic ash is composed of non-spherical mineral and metal (particles spanning a large size range. The largest ones are likely to sediment quickly close to the eruption site. The ash component, and sulphate formed by subsequent oxidation of the SO2 occurring in clouds, poses a variety of hazards to humans and machinery on the ground, as well as damage to the aircrafts which fly through the ash layers. To mitigate such hazards the Irish Aviation Authority (IAA) equipped with an ALS Lidar, produced by LEOSPHERE, deployed at Dublin Airport, which provides real-time range-corrected backscatter signal and depolarization ratio profiles allowing the detection and monitoring of ash plumes. On May, 21st 2011, the Grimsvotn Icelandic volcano erupted, sending a plume of ash, smoke and steam 12 km into the air and causing flights to be disrupted at Iceland's main Keflavik airport and at a number of North European airports. Due to upper level global circulation, the ash plume moved from Iceland towards Ireland and North of Scotland, and was detected a number of times by the ALS Lidar above Dublin Airport between May, 21st and 25th. A preliminary analysis of the detected volcanic plume is presented here as well as a preliminary intercomparison of the microphysical and optical characteristics with the Eyjafjallajökull eruption in 2010.

  6. Attrition of coal ash particles in a fluidized-bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomeczek, J.; Mocek, P.

    2007-05-15

    Experimental data of ash-particles attrition in a fluidized bed is presented, and also the results of modeling. Five sizes of ash particles (1.02-1.25; 1.25-1.6; 1.6-2.0; 2.0-5.0; 5.0-10.0 mm) produced in an industrial CFB boiler were examined. A new model of mechanical attrition has been proposed which incorporates new parameters: the shape factor of particles and the ratio of the bed height to bed diameter, strongly influencing the rate of bed mass loss. The model describes very well experimental data for coal-ash particles attrition. The attrition-rate coefficient for ash particles was evaluated.

  7. Evaluation of physical health effects due to volcanic hazards: crystalline silica in Mount St. Helens volcanic ash.

    PubMed

    Dollberg, D D; Bolyard, M L; Smith, D L

    1986-03-01

    This investigation has shown that crystalline silica has been identified as being present in the Mount St. Helens volcanic ash at levels of 3 to 7 per cent by weight. This identification has been established using X-ray powder diffraction, infrared spectrophotometry, visible spectrophotometry, electron microscopy, and Laser Raman spectrophotometry. Quantitative analysis by IR, XRD, and visible spectrophotometry requires a preliminary phosphoric acid digestion of the ash sample to remove the plagioclase silicate material which interferes with the determination by these methods. Electron microscopic analysis as well as Laser Raman spectrophotometric analysis of the untreated ash confirms the presence of silica and at levels found by the XRD and IR analysis of the treated samples. An interlaboratory study of volcanic ash samples by 15 laboratories confirms the presence and levels of crystalline silica. Although several problems with applying the digestion procedure were observed in this hastily organized supply, all laboratories employing the digestion procedure reported the presence of crystalline silica. These results unequivocally put to rest the question of the presence of silica in the volcanic ash from eruptions of Mount St. Helens in 1980.

  8. Determination of the elastic modulus of fly ash-based stabilizer applied in the trackbed

    NASA Astrophysics Data System (ADS)

    Lojda, Vít; Lidmila, Martin; Pýcha, Marek

    2017-09-01

    This paper describes a unique application of a fly ash-based stabilizer in the trackbed of a railway main line. The key goals of the stabilizer application are to protect the subgrade against the ingress of rain water, to increase the frost resistance and to remediate the natural ground constituted of weathered rock. The stabilizer was designed as a mixture of fly ash, generated as a waste material from coal plants, gypsum, calcium oxide and water. The mixture recipe was developed in a laboratory over several years. In 2005, a trial section of a railway line with subgrade consisting of clay limestone (weathered marlite) was built in the municipality of Smiřice. Since then, periodical measurements including collection of samples for laboratory evaluation of the fly ash-based stabilizer have taken place. Over the time span of the measurements, changes in mineral composition and development of fly ash transforming structures leading to the formation of C-A-S-H gel were detected. This paper describes the experimental laboratory investigation of the influence of dynamic loading on the elastic modulus of fly ash stabilizer samples and the development of permanent deformation of the samples with increasing number of loading cycles.

  9. The Effect of Volcanic Ash Composition on Ice Nucleation Affinity

    NASA Astrophysics Data System (ADS)

    Genareau, K. D.; Cloer, S.; Primm, K.; Woods, T.; Tolbert, M. A.

    2017-12-01

    Understanding the role that volcanic ash plays in ice nucleation is important for knowledge of lightning generation in both volcanic plumes and in clouds developing downwind from active volcanoes. Volcanic ash has long been suggested to influence heterogeneous ice nucleation following explosive eruptions, but determining precisely how composition and mineralogy affects ice nucleation affinity (INA) is poorly constrained. For the study presented here, volcanic ash samples with different compositions and mineral/glass contents were tested in both the deposition and immersion modes, following the methods presented in Schill et al. (2015). Bulk composition was determined with X-ray fluorescence (XRF), grain size distribution was determined with laser diffraction particle size analysis (LDPSA), and mineralogy was determined with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results of the deposition-mode experiments reveal that there is no relationship between ice saturation ratios (Sice) and either mineralogy or bulk ash composition, as all samples have similar Sice ratios. In the immersion-mode experiments, frozen fractions were determined from -20 °C to -50 °C using three different amounts of ash (0.5, 1.0, and 2.0 wt% of slurry). Results from the immersion freezing reveal that the rhyolitic samples (73 wt% SiO2) nucleate ice at higher temperatures compared to the basaltic samples (49 wt% SiO2). There is no observed correlation between frozen fractions and mineral content of ash samples, but the two most efficient ice nuclei are rhyolites that contain the greatest proportion of amorphous glass (> 90 %), and are enriched in K2O relative to transition metals (MnO and TiO2), the latter of which show a negative correlation with frozen fraction. Higher ash abundance in water droplets increases the frozen fraction at all temperatures, indicating that ash amount plays the biggest role in ice nucleation. If volcanic ash can reach sufficient abundance (≥ 2 wt%) in hydrometeors, and be compositionally enriched in K2O relative to MnO and TiO2, the nucleation of ice should efficiently occur. These chemical relationships are not only important for understanding ice nucleation in volcanic plumes, but also for constraining the effect of composition on the INA of other atmospheric aerosols.

  10. Bifunctional heterogeneous catalysts from oil palm empty fruit bunches ash and alum for biodiesel synthesis simultaneously

    NASA Astrophysics Data System (ADS)

    Astar, Ismail; Usman, Thamrin; Wahyuni, Nelly; Rudiyansyah, Alimuddin, Andi Hairil

    2017-03-01

    Free fatty acids (FFA) contained in crude palm oil (CPO) and sludge oil has been used as the base material of biodiesel with the aid of a catalyst in the transesterification and esterification reactions. This study aims to synthesize and characterize bifunctional catalysts were synthesized from the ashes of palm empty fruit bunches (EFB) and alum based on the analysis of XRD, XRF and acidity test. Bifunctional catalyst obtained was used as a catalyst to production of biodiesel with different levels of FFA. The optimum ratio alum added was 0.2 mol at 3 hours of reaction time and 3% of catalyst by the FFA samples were used 67,40%. The catalyst with optimum alum mole variations subsequently used on samples with varying levels of FFA, namely 1.29%, 4.98%, 29.21%, 67.40% and 74.47%. Optimum conversion of methyl ester in the esterification reaction occurs in the sample with 67.40% FFA content, which reached 86.17%, while the conversion of methyl ester transesterification process optimum amounted to 45.70% in the samples with 4.98% FFA content. Methyl ester produced has a refractive index of 1.448 (29.8 ° C), density of 0.883 g / mL (25 °C) and a viscosity of 8.933 cSt (25 ° C). The results of GC-MS analysis showed that the main composition of methyl ester result of esterification of sludge oil methyl palmitate (36.84%), while the CPO transesterification shows the main composition of methyl ester is methyl oleic (38.87%). Based on the research results, the catalyst synthesized from alum and EFB ash can be used as a Bifunctional catalysts for biodiesel synthesis.

  11. Chemical and functional properties of cassava starch, durum wheat semolina flour, and their blends

    PubMed Central

    Oladunmoye, Olufunmilola O; Aworh, Ogugua C; Maziya-Dixon, Bussie; Erukainure, Ochuko L; Elemo, Gloria N

    2014-01-01

    High-quality cassava starch (HQCS) produced from high-yielding low-cyanide improved cassava variety, TMS 30572, was mixed with durum wheat semolina (DWS) on a replacement basis to produce flour samples containing 0, 20, 30, 50, 70, and 100% cassava starch. They were analyzed for chemical composition (proximate, amylose, free sugars, starch, wet gluten, and cyanide) and functional properties (pasting, swelling power, solubility, water absorption, water binding, starch damage, diastatic and α-amylase activity, dough mixing, and stability). Protein, carbohydrate, fat, and ash of flour samples ranged from 0.75–12.31%, 70.87–87.80%, 0.95–4.41%, and 0.12–0.83%, respectively. Cyanide levels in all the flour samples were less than 0.1 ppm. Amylose content varied between 19.49% for cassava and 28.19% for wheat, correlating significantly with protein (r = 0.95, P = 0.004) and ash contents (r = 0.92, P = 0.01) at 5%. DWS and HQCS had similar pasting temperatures (50.2–53°C), while other pasting properties increased with increasing levels of HQCS. Dough mixing stability of samples decreased with increasing levels of HQCS. All the flour samples had α-amylase activity greater than 200. Both HQCS and DWS compare favorably well in swelling power (7.80–9.01%); but the solubility of wheat starch doubled that of cassava. Starch damage varied between 3.3 and 7.2 AACC for semolina and starch, with the latter having higher absorption rate (97%), and the former, higher absorption speed (67 sec). Results obtained showed positive insight into cassava–wheat blend characteristics. Data thus generated provide additional opportunities of exploiting cassava utilization and hence boost its value–addition potentials for product development. PMID:24804071

  12. Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant

    NASA Astrophysics Data System (ADS)

    Izzati Raihan Ramzi, Nurul; Shahidan, Shahiron; Zulkhairi Maarof, Mohamad; Ali, Noorwirdawati

    2016-11-01

    The objective of this study is to determine the physical and chemical characteristics of Coal Bottom Ash (CBA) obtained from Tanjung Bin Power Plant Station and compare them with the characteristics of natural river sand (as a replacement of fine aggregates). Bottom ash is the by-product of coal combustion during the electricity generating process. However, excess bottom ash production due to the high production of electricity in Malaysia has caused several environmental problems. Therefore, several tests have been conducted in order to determine the physical and chemical properties of bottom ash such as specific gravity, density, particle size distribution, Scanning Electron Microscopic (SEM) and X- Ray Fluorescence (XRF) in the attempt to produce sustainable material from waste. The results indicated that the natural fine aggregate and coal bottom ash have very different physical and chemical properties. Bottom ash was classified as Class C ash. The porous structure, angular and rough texture of bottom ash affected its specific gravity and particle density. From the tests, it was found that bottom ash is recommended to be used in concrete as a replacement for fine aggregates.

  13. Immersion freezing induced by different kinds of coal fly ash: Comparing particle generation methods and measurement techniques

    NASA Astrophysics Data System (ADS)

    Grawe, Sarah; Augustin-Bauditz, Stefanie; Clemen, Hans-Christian; Eriksen-Hammer, Stine; Lubitz, Jasmin; Schneider, Johannes; Stratmann, Frank; Wex, Heike

    2017-04-01

    To date, a lot of effort has been put into the identification and characterization of atmospheric ice nucleating particles (INPs), which may influence both weather and climate. The majority of studies focuses on INPs from natural origin such as biological particles or mineral dust particles (Hoose and Möhler 2012, Murray et al. 2012). Combustion ashes, being possible sources of anthropogenic INPs, have rarely been investigated in the past. Ash particles may be emitted into the atmosphere either by the action of wind from ash deposits on the ground (bottom ash), or during the combustion process (fly ash). Two recent studies (Umo et al., 2015; Grawe et al., 2016) identified fly ash from coal combustion as the most efficient of the investigated samples (including also bottom ashes from wood and coal combustion). These results motivate the here presented study in which we investigated the immersion freezing behavior of four coal fly ash samples taken from the filters of different coal-fired power plants in Germany. A combination of two instruments was used to capture the temperature range from 0 °C to the homogeneous freezing limit at around -38 °C. Firstly, the new Leipzig Ice Nucleation Array (LINA) was used, where droplets from an ash-water suspension are pipetted onto a cooled plate. Secondly, we used the Leipzig Aerosol Cloud Interaction Simulator (LACIS; Hartmann et al., 2011), a laminar flow tube in which every droplet contains a single size-segregated ash particle. Here, it was possible to study the effect of different kinds of particle generation, i.e., atomization of an ash-water suspension, and aerosolization of dry ash material. The composition of the ash particles was investigated by means of single particle aerosol mass spectrometry and particles were sampled on filters for environmental scanning electron microscope analysis. Our measurements show that all four fly ash samples feature a similar immersion freezing behavior (ice fractions vary by a factor of 5 at most) when particles are generated via dry dispersion. Furthermore, we found that the ice nucleation ability of all samples is lowered significantly when changing from dry to wet particle generation. The aim of the study is to identify possible reasons for these observations. References: S. Grawe, S. Augustin-Bauditz, S. Hartmann, L. Hellner, J. B. C. Pettersson, A. Prager, F. Stratmann, and H. Wex, Atmos. Chem. Phys., 16, 13911-13928, 2016 S. Hartmann, D. Niedermeier, J. Voigtländer, T. Clauß, R. A. Shaw, H. Wex, A. Kiselev, and F. Stratmann, Atmos. Chem. Phys., 11, 1753-1767, 2011 C. Hoose and O. Möhler, Atmos. Chem. Phys., 12, 9817-9854, 2012 B. J. Murray, D. O'Sullivan, J. D. Atkinson, and M. E. Webb, Chem. Soc. Rev., 41, 6519-6554, 2012 N. S. Umo, B. J. Murray, M. T. Baeza-Romero, J. M. Jones, A. R. Lea-Langton, T. L. Malkin, D. O'Sullivan, L. Neve, J. M. C. Plane, and A. Williams, Atmos. Chem. Phys., 15, 5195-5210, 2015

  14. Preparation of Cu and Fly Ash Composite by Powder Metallurgy Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chew, P. Y.; Lim, P. S.; Ng, M. C.

    2011-03-30

    Cu and Fly Ash (FA) mixtures with different weight percentages were prepared. Pellets of the mixture powder were produced with the dimension of 17.7 mm in diameter and 10-15 mm in height. These different composites were compacted at a constant pressure of 280 MPa. One of the selected weight percentages was then compacted to form into pellet and sintered at different temperatures which were at 900, 950 and 1000 deg. C respectively for 2 hours. Density of green pellet was measured before sintered in furnace. After sintering, all the pellets with different temperatures were re-weighed and sintered density were calculated.more » The densification of the green and sintered pellets was required to be measured as one of the parameter in selection of the best material properties. Porosity of the pellet shall not be ignored in order to analyze the close-packed particles stacking in the pellet. SEM micrograph had been captured to observe the presence of pores and agglomeration of particles in the sample produced.« less

  15. Spatial variation of peat soil properties in the oil-producing region of northeastern Sakhalin

    NASA Astrophysics Data System (ADS)

    Lipatov, D. N.; Shcheglov, A. I.; Manakhov, D. V.; Zavgorodnyaya, Yu. A.; Rozanova, M. S.; Brekhov, P. T.

    2017-07-01

    Morphology and properties of medium-deep oligotrophic peat, oligotrophic peat gley, pyrogenic oligotrophic peat gley, and peat gley soils on subshrub-cotton grass-sphagnum bogs and in swampy larch forests of northeastern Sakhalin have been studied. Variation in the thickness and reserves of litters in the studied bog and forest biogeocenoses has been analyzed. The profile distribution and spatial variability of moisture, density, ash, and pHKCl in separate groups of peat soils have been described. The content and spatial variability of petroleum hydrocarbons have been considered in relation to the accumulation of natural bitumoids by peat soils and the technogenic pressing in the oil-producing region. Variation of each parameter at different distances (10, 50, and 1000 m) has been estimated using a hierarchical sampling scheme. The spatial conjugation of soil parameters has been studied by factor analysis using the principal components method and Spearman correlation coefficients. Regression equations have been proposed to describe relationships of ash content with soil density and content of petroleum hydrocarbons in peat horizons.

  16. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells.

    PubMed

    León-Mejía, Grethel; Silva, Luis F O; Civeira, Matheus S; Oliveira, Marcos L S; Machado, Miriana; Villela, Izabel Vianna; Hartmann, Andreas; Premoli, Suziane; Corrêa, Dione Silva; Da Silva, Juliana; Henriques, João Antônio Pêgas

    2016-12-01

    Exposure to coal and coal ashes can cause harmful effects in in vitro and in vivo systems, mainly by the induction of oxidative damage. The aim of this work was to assess cytotoxic and genotoxic effects using the V79 cell line treated with coal and coal fly ash particles derived from a coal power plant located in Santa Catarina, Brazil. Two coal samples (COAL11 and COAL16) and two coal fly ash samples (CFA11 and CFA16) were included in this study. COAL16 was co-firing with a mixture of fuel oil and diesel oil. The comet assay data showed that exposure of V79 cells to coal and coal fly ash particles induced primary DNA lesions. Application of lesion-specific endonucleases (FPG and ENDO III) demonstrated increased DNA effects indicating the presence of high amounts of oxidative DNA lesions. The cytokinesis-block micronucleus cytome assay analysis showed that exposure of V79 cells to high concentrations of coal and coal fly ash particles induced cytotoxic effects (apoptosis and necrosis) and chromosomal instability (nucleoplasmic bridges, nuclear buds, and micronucleus (MN) formation). These results may be associated with compounds contained in the surface of the particles as hazardous elements, ultrafine/nanoparticles, and polycyclic aromatic hydrocarbons (PAHs) which were detected in the samples. Graphical abstract ᅟ.

  17. ENVIRONMENTAL EVALUATION FOR UTILIZATION OF ASH IN SOIL STABILIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David J. Hassett; Loreal V. Heebink

    2001-08-01

    The Minnesota Pollution Control Agency (MPCA) approved the use of coal ash in soil stabilization, indicating that environmental data needed to be generated. The overall project goal is to evaluate the potential for release of constituents into the environment from ash used in soil stabilization projects. Supporting objectives are: (1) To ensure sample integrity through implementation of a sample collection, preservation, and storage protocol to avoid analyte concentration or loss. (2) To evaluate the potential of each component (ash, soil, water) of the stabilized soil to contribute to environmental release of analytes of interest. (3) To use laboratory leaching methodsmore » to evaluate the potential for release of constituents to the environment. (4) To facilitate collection of and to evaluate samples from a field runoff demonstration effort. The results of this study indicated limited mobility of the coal combustion fly ash constituents in laboratory tests and the field runoff samples. The results presented support previous work showing little to negligible impact on water quality. This and past work indicates that soil stabilization is an environmentally beneficial CCB utilization application as encouraged by the U.S. Environmental Protection Agency. This project addressed the regulatory-driven environmental aspect of fly ash use for soil stabilization, but the demonstrated engineering performance and economic advantages also indicate that the use of CCBs in soil stabilization can and should become an accepted engineering option.« less

  18. Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan.

    PubMed

    Yang, Renbo; Liao, Wing-Ping; Wu, Pin-Han

    2012-08-15

    Approximately 19.2% of Taiwan's municipal solid waste (MSW) that passes through incineration disposal is converted into ashes (including bottom ash and fly ash). Although bottom ash can pass nearly all of the standards of the toxicity characteristic leaching procedure (TCLP), its high chloride content makes its reuse limited; it generally cannot be used as a fine aggregate material in concrete applications. This research examined washing four types of bottom ash (BA) and fly ash (FA) with water to reduce their chloride content. The optimal water intensity for washing pretreated bottom ash was found to be 7-8L of water per kg of bottom ash, and the optimal water intensity for washing untreated fly ash was found to be 20-25 L of water per kg of fly ash. Based on regression analyses of the chloride concentrations of the leachates and their electrical conductivity (EC) values, each MSW incineration plant has its own ash characteristics as well as a specific regression line in bottom or fly ash leachate. Clearly, it is possible to monitor the EC values of the leachates online by estimation from regression equations to determine the chloride concentrations in the leachates. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  19. Obtaining of granular fertilizers based on ashes from combustion of waste residues and ground bones using phosphorous solubilization by bacteria Bacillus megaterium.

    PubMed

    Rolewicz, M; Rusek, P; Borowik, K

    2018-06-15

    The article presents research results on obtaining phosphorus granulated fertilizers on the basis of microbiologically activated sewage sludge ashes, ground bones and dried blood from meat industry. Granulation tests were carried out using a laboratory pan granulator as well as on an experimental pilot plant. The aim of the studies was to select the proper composition of the mixture of raw materials and binding agents to obtain granulated fertilizers from waste materials such as MSSA and MBM and bacteria lyophilisate. Obtained fertilizer samples were subjected to physical tests (granulation tests etc.) and quality assessment. The tests confirmed that it was possible to produce granulated phosphate fertilizers using the Bacillus megaterium for solubilization of phosphorus in a simple process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Structure, properties, and surfactant adsorption behavior of fly ash carbon

    NASA Astrophysics Data System (ADS)

    Kulaots, Indrek

    The objective of this research was to suggest methods by which certain problems associated with use of coal fly ash as a pozzolanic agent in concrete mixtures could be alleviated, guided by a better characterization of fly ash properties. A sample suite of eighty fly ashes was gathered from utilities across the world (mainly US-based) and included ashes from coals ranging in rank from bituminous to lignite. The widely used foam index test is used to characterize ashes with respect to their propensity to adsorb surfactants (called Air Entraining Admixtures or AEAs) used to impart freeze-thaw resistance to concrete. In ash-containing concrete mixtures, AEAs are adsorbed from the polar concrete-water solution onto non-polar unburned carbon surfaces in the ash. The AEA uptake by fly ashes only crudely correlates with the amount of carbon in the fly ash, because carbon surface area, accessibility and polarity all play a role in determining adsorption capacities. Fly ash carbon particle size distribution is also a key factor. Fine carbon particles in fly ash fractions of <106mum are responsible for about 90% of surfactant adsorption capacity. Surfactant adsorption on fly ash carbon is, in the foam index test, a dynamic process. The time of the test (typically <10 minutes) is not long enough to permit penetration of small porosity by the relatively large AEA molecules, and only the most readily available adsorption surface near the geometrical surface of the carbon particles is utilized. The nature of the foam index test was also examined, and it is recommended that a more standardized test procedure based upon pure reagents be adopted for examining the nature of fly ashes. Several possible reagents were identified. Room temperature fly ash ozonation is a powerful technique that allows increasing fly ash surface polarity in a relatively short time and thus is very effective for decreasing the AEA uptake capacity. Depending on the ozone input concentration, sample amount and contact time, surfactant uptake capacity decreases by a factor of two or more following reaction of only 0--1g O3/kg-ash, bringing many ashes into compliance with AEA uptake requirements.

  1. Effect of Heat Treatment Temperature on Chemical Compositions of Extracted Hydroxyapatite from Bovine Bone Ash

    NASA Astrophysics Data System (ADS)

    Younesi, M.; Javadpour, S.; Bahrololoom, M. E.

    2011-11-01

    This article presents the effect of heat treating temperature on chemical composition of hydroxyapatite (HA) that was produced by burning bovine bone, and then heat treating the obtained bone ash at different temperatures in range of 600-1100 °C in air. Bone ash and the resulting white powder from heat treating were characterized by Fourier transformed infrared spectroscopy (FT-IR) and x-ray diffractometry (XRD). The FT-IR spectra confirmed that heat treating of bone ash at temperature of 800 °C removed the total of organic substances. x-ray diffraction analysis showed that the white powder was HA and HA was the only crystalline phase indicated in heat treating product. x-ray fluorescence analyses revealed that calcium and phosphorous were the main elements and magnesium and sodium were minor impurities of produced powder at 800 °C. The results of the energy dispersive x-ray analysis showed that Ca/P ratio in produced HA varies in range of 1.46-2.01. The resulting material was found to be thermally stable up to 1100 °C.

  2. Volcanic ash dosage calculator: A proof-of-concept tool to support aviation stakeholders during ash events

    NASA Astrophysics Data System (ADS)

    Dacre, H.; Prata, A.; Shine, K. P.; Irvine, E.

    2017-12-01

    The volcanic ash clouds produced by Icelandic volcano Eyjafjallajökull in April/May 2010 resulted in `no fly zones' which paralysed European aircraft activity and cost the airline industry an estimated £1.1 billion. In response to the crisis, the Civil Aviation Authority (CAA), in collaboration with Rolls Royce, produced the `safe-to-fly' chart. As ash concentrations are the primary output of dispersion model forecasts, the chart was designed to illustrate how engine damage progresses as a function of ash concentration. Concentration thresholds were subsequently derived based on previous ash encounters. Research scientists and aircraft manufactures have since recognised the importance of volcanic ash dosages; the accumulated concentration over time. Dosages are an improvement to concentrations as they can be used to identify pernicious situations where ash concentrations are acceptably low but the exposure time is long enough to cause damage to aircraft engines. Here we present a proof-of-concept volcanic ash dosage calculator; an innovative, web-based research tool, developed in close collaboration with operators and regulators, which utilises interactive data visualisation to communicate the uncertainty inherent in dispersion model simulations and subsequent dosage calculations. To calculate dosages, we use NAME (Numerical Atmospheric-dispersion Modelling Environment) to simulate several Icelandic eruption scenarios, which result in tephra dispersal across the North Atlantic, UK and Europe. Ash encounters are simulated based on flight-optimal routes derived from aircraft routing software. Key outputs of the calculator include: the along-flight dosage, exposure time and peak concentration. The design of the tool allows users to explore the key areas of uncertainty in the dosage calculation and to visualise how this changes as the planned flight path is varied. We expect that this research will result in better informed decisions from key stakeholders during volcanic ash events through a deeper understanding of the associated uncertainties in dosage calculations.

  3. Classification and categorization of treatment methods for ash generated by municipal solid waste incineration: a case for the 2 greater metropolitan regions of Greece.

    PubMed

    Karagiannidis, A; Kontogianni, St; Logothetis, D

    2013-02-01

    The primary goal of managing MSW incineration residues is to avoid any impact on human health or the environment. Incineration residues consist of bottom ash, which is generally considered as rather harmless and fly ash which usually contains compounds which are potentially harmful for public health. Small quantities of ash (both bottom and fly) are produced currently in Greece, mainly from the healthcare waste incineration facility in Attica region. Once incineration plants for MSW (currently under planning) are constructed in Greece, the produced ash quantities will increase highly. Thus, it is necessary to organize, already at this stage, a roadmap towards disposal/recovery methods of these ash quantities expected. Certain methods, related to the treatment of the future generated ash which are more appropriate to be implemented in Greece are highlighted in the present paper. The performed analysis offers a waste management approach, having 2016 as a reference year for two different incineration rates; 30% and 100% of the remaining MSW after recycling process. The results focus on the two greater regions of Greece: Attica and Central Macedonia. The quantity of potential future ash generation ranges from 137 to 459 kt for Attica region and from 62 to 207 kt for central Macedonia region depending on the incineration rate applied. Three alternative scenarios for the treatment of each kind of ash are compiled and analysed. Metal recovery and reuse as an aggregate in concrete construction proved to be the most advantageous -in terms of economy-bottom ash management scenario. Concerning management of the fly ash, chemical treatment with phosphoric solution addition results to be the lowest total treatment cost and is considered as the most profitable solution. The proposed methodology constitutes a safe calculation model for operators of MSW incineration plants regardless of the region or country they are located in. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  4. The relationship between mineral contents, particle matter and bottom ash distribution during pellet combustion: molar balance and chemometric analysis.

    PubMed

    Jeguirim, Mejdi; Kraiem, Nesrine; Lajili, Marzouk; Guizani, Chamseddine; Zorpas, Antonis; Leva, Yann; Michelin, Laure; Josien, Ludovic; Limousy, Lionel

    2017-04-01

    This paper aims to identify the correlation between the mineral contents in agropellets and particle matter and bottom ash characteristics during combustion in domestic boilers. Four agrifood residues with higher mineral contents, namely grape marc (GM), tomato waste (TW), exhausted olive mill solid waste (EOMSW) and olive mill wastewater (OMWW), were selected. Then, seven different pellets were produced from pure residues or their mixture and blending with sawdust. The physico-chemical properties of the produced pellets were analysed using different analytical techniques, and a particular attention was paid to their mineral contents. Combustion tests were performed in 12-kW domestic boiler. The particle matter (PM) emission was characterised through the particle number and mass quantification for different particle size. The bottom ash composition and size distribution were also characterised. Molar balance and chemometric analyses were performed to identify the correlation between the mineral contents and PM and bottom ash characteristics. The performed analyses indicate that K, Na, S and Cl are released partially or completely during combustion tests. In contrast, Ca, Mg, Si, P, Al, Fe and Mn are retained in the bottom ash. The chemometric analyses indicate that, in addition to the operating conditions and the pellet ash contents, K and Si concentrations have a significant effect on the PM emissions as well as on the agglomeration of bottom ash.

  5. Mercury in coals and fly ashes from Republika and Bobov dol thermoelectric power plants

    USGS Publications Warehouse

    Kostova, I.; Vassileva, C.; Hower, J.; Mastalerz, Maria; Vassilev, S.; Nikolova, N.

    2011-01-01

    Feed coal and y ash samples were collected at Republika and Bobov Dol thermoelectric power plants (TPPs). The y ashes (FAs) were collected fromthree rows of the hot-side electrostatic precipitators (ESPs) array. Each sam- ple was wet-screened at 100, 200, 325 and 500 mesh. The coals and y ashes were characterized with regard to their petrological and chemical composition (including mercury content) and to their surface area properties. The calculated enrichment factor (EF) shows that the Hg concentrations in the bulk coal samples from Republika and Bobov Dol TPPs are 2.19 and 1.41, respectively. In some coal size fractions the EF can be up to 4 times higher than the Clarke value. The calculated EF for fly ashes shows that the Hg concentrations in the bulk samples studied are lower (between 0.03 and 0.32) than the Clarke value. The most enriched in Hg are the fly ashes from the 3rd ESP row of Republika TPP. The Hg distribution in bulk FAs taken from dierent rows of the electrostatic precipitators of both TPPs studied shows well established tendency of gradual increase in the Hg content from the 1st to the 2nd and 3rd ESP rows. The correlation between Hg content and surface area, mesopore and micropore volume of y ashes was also done in the present investigation.

  6. The stability of clay using mount Sinabung ash with unconfined compression test (uct) value

    NASA Astrophysics Data System (ADS)

    Puji Hastuty, Ika; Roesyanto; Hutauruk, Ronny; Simanjuntak, Oberlyn

    2018-03-01

    The soil has a important role as a highway’s embankment material (sub grade). Soil conditions are very different in each location because the scientifically soil is a very complex and varied material and the located on the field is very loose or very soft, so it is not suitable for construction, then the soil should be stabilized. The additive material commonly used for soil stabilization includes cement, lime, fly ash, rice husk ash, and others. This experiment is using the addition of volcanic ash. The purpose of this study was to determine the Index Properties and Compressive Strength maximum value with Unconfined Compression Test due to the addition of volcanic ash as a stabilizing agent along with optimum levels of the addition. The result showed that the original soil sample has Water Content of 14.52%; the Specific Weight of 2.64%; Liquid limit of 48.64% and Plasticity Index of 29.82%. Then, the Compressive Strength value is 1.40 kg/cm2. According to USCS classification, the soil samples categorized as the (CL) type while based on AASHTO classification, the soil samples are including as the type of A-7-6. After the soil is stabilized with a variety of volcanic ash, can be concluded that the maximum value occurs at mixture variation of 11% Volcanic Ash with Unconfined Compressive Strength value of 2.32 kg/cm2.

  7. DNA damage induced by coal dust, fly and bottom ash from coal combustion evaluated using the micronucleus test and comet assay in vitro.

    PubMed

    Matzenbacher, Cristina Araujo; Garcia, Ana Letícia Hilario; Dos Santos, Marcela Silva; Nicolau, Caroline Cardoso; Premoli, Suziane; Corrêa, Dione Silva; de Souza, Claudia Telles; Niekraszewicz, Liana; Dias, Johnny Ferraz; Delgado, Tânia Valéria; Kalkreuth, Wolfgang; Grivicich, Ivana; da Silva, Juliana

    2017-02-15

    Coal mining and combustion generating huge amounts of bottom and fly ash are major causes of environmental pollution and health hazards due to the release of polycyclic aromatic hydrocarbons (PAH) and heavy metals. The Candiota coalfield in Rio Grande do Sul, is one of the largest open-cast coal mines in Brazil. The aim of this study was to evaluate genotoxic and mutagenic effects of coal, bottom ash and fly ash samples from Candiota with the comet assay (alkaline and modified version) and micronucleus test using the lung fibroblast cell line (V79). Qualitative and quantitative analysis of PAH and inorganic elements was carried out by High Performance Liquid Chromatography (HPLC) and by Particle-Induced X-ray Emission (PIXE) techniques respectively. The samples demonstrated genotoxic and mutagenic effects. The comet assay modified using DNA-glicosilase formamidopirimidina (FPG) endonuclease showed damage related to oxidative stress mechanisms. The amount of PAHs was higher in fly ash followed by pulverized coal. The amount of inorganic elements was highest in fly ash, followed by bottom ash. It is concluded that the samples induce DNA damage by mechanisms that include oxidative stress, due to their complex composition, and that protective measures have to be taken regarding occupational and environmental hazards. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Influence of heating on the weight loss and mineral phase in MSWI ash: LOI of incineration ash

    NASA Astrophysics Data System (ADS)

    Yang, Shuo

    2017-04-01

    Loss on ignition (LOI) is a very common method for estimating the volatile species in solid sample. Normally, the measurement of LOI can be convenient and accurate, but for municipal solid waste incineration (MSWI) ash, the process may become intricate due to the complexity of the sample. In the incineration ash, there exist various phases, such as mineral, metal, organic and glass. The reaction and transformation of some materials during heating will influence the measurement. 5 incineration ash samples were selected and tested in this study. LOI content was basically measured at high (850°C) and relatively low (440°C) temperatures. The comparison between these two measurements showed a large difference. X-ray diffraction (XRD) and thermal analysis (TG-DTA) were carried out to investigate the mineral changes and weight losses with different ignition temperatures. The mineralogical analysis suggests that the decomposition of hydrate and carbonate phases cannot be neglected for LOI measurement of incineration. A long-time heating under relatively lower temperature (400∼450°C) compared with soil sample measurement (≥500°C) was recommended by this study.

  9. Sample collection of ash and burned soils from the October 2007 southern California Wildfires

    USGS Publications Warehouse

    Hoefen, Todd M.; Kokaly, Raymond F.; Martin, Deborah A.; Rochester, Carlton J.; Plumlee, Geoffrey S.; Mendez, Greg; Reichard, Eric G.; Fisher, Robert N.

    2009-01-01

    Between November 2 through 9, 2007 scientists from the U.S. Geological Survey (USGS) collected samples of ash and burned soils from 28 sites in six areas burned as a result of the Southern California wildfires of October 2007, including the Harris, Witch, Santiago, Ammo, Canyon, and Grass Valley Fires. The primary goal of this sampling and analysis effort was to understand how differences in ash and burned soil composition relate to vegetation type, underlying bedrock geology, burn intensity, and residential versus wildland. Sampling sites were chosen with the input of local experts from the USGS Water Resources and Biological Resources Disciplines to help understand possible effects of the fires on water supplies, ecosystems, and endangered species. The sampling was also carried out in conjunction with detailed field analysis of the spectral reflectance characteristics of the ash, so that chemical and mineralogical characteristics of the field samples could be used to help interpret data collected as part of an airborne, hyperspectral remote-sensing survey of several of the burned areas in mid-late November, 2007.This report presents an overview of the field sampling methodologies used to collect the samples, includes representative photos of the sites sampled, and summarizes important characteristics of each of the collection sites. In this report we use the term “ash” to refer collectively to white mineral ash, which results from full combustion of vegetation and black charred organic matter from partial combustion of vegetation or other materials. These materials were found to be intermingled as a deposited residue on the soil surface following the Southern California fires of 2007.

  10. Treatment of fly ash from power plants using thermal plasma.

    PubMed

    Al-Mayman, Sulaiman; AlShunaifi, Ibrahim; Albeladi, Abdullah; Ghiloufi, Imed; Binjuwair, Saud

    2017-01-01

    Fly ash from power plants is very toxic because it contains heavy metals. In this study fly ash was treated with a thermal plasma. Before their treatment, the fly ash was analyzed by many technics such as X-ray fluorescence, CHN elemental analysis, inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy. With these technics, the composition, the chemical and physical proprieties of fly ash are determined. The results obtained by these analysis show that fly ash is mainly composed of carbon, and it contains also sulfur and metals such as V, Ca, Mg, Na, Fe, Ni, and Rh. The scanning electron microscopy analysis shows that fly ash particles are porous and have very irregular shapes with particle sizes of 20-50 μm. The treatment of fly ash was carried out in a plasma reactor and in two steps. In the first step, fly ash was treated in a pyrolysis/combustion plasma system to reduce the fraction of carbon. In the second step, the product obtained by the combustion of fly ash was vitrified in a plasma furnace. The leaching results show that the fly ash was detoxified by plasma vitrification and the produced slag is amorphous and glassy.

  11. Treatment of fly ash from power plants using thermal plasma

    PubMed Central

    Al-Mayman, Sulaiman; AlShunaifi, Ibrahim; Albeladi, Abdullah; Binjuwair, Saud

    2017-01-01

    Fly ash from power plants is very toxic because it contains heavy metals. In this study fly ash was treated with a thermal plasma. Before their treatment, the fly ash was analyzed by many technics such as X-ray fluorescence, CHN elemental analysis, inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy. With these technics, the composition, the chemical and physical proprieties of fly ash are determined. The results obtained by these analysis show that fly ash is mainly composed of carbon, and it contains also sulfur and metals such as V, Ca, Mg, Na, Fe, Ni, and Rh. The scanning electron microscopy analysis shows that fly ash particles are porous and have very irregular shapes with particle sizes of 20–50 μm. The treatment of fly ash was carried out in a plasma reactor and in two steps. In the first step, fly ash was treated in a pyrolysis/combustion plasma system to reduce the fraction of carbon. In the second step, the product obtained by the combustion of fly ash was vitrified in a plasma furnace. The leaching results show that the fly ash was detoxified by plasma vitrification and the produced slag is amorphous and glassy. PMID:28546898

  12. Physical and chemical characterization of fly ashes from Swiss waste incineration plants and determination of the ash fraction in the nanometer range.

    PubMed

    Buha, Jelena; Mueller, Nicole; Nowack, Bernd; Ulrich, Andrea; Losert, Sabrina; Wang, Jing

    2014-05-06

    Waste incineration had been identified as an important source of ultrafine air pollutants resulting in elaborated treatment systems for exhaust air. Nowadays, these systems are able to remove almost all ultrafine particles. However, the fate of ultrafine particles caught in the filters has received little attention so far. Based on the use of engineered nano-objects (ENO) and their transfer into the waste stream, it can be expected that not only combustion generated nanoparticles are found in fly ashes but that many ENO finally end up in this matrix. A more detailed characterization of the nanoparticulate fraction of fly ashes is therefore needed. Physical and chemical characterizations were performed for fly ashes from five selected waste incineration plants (WIPs) with different input materials such as municipal waste, wood and sewage sludge. The intrinsic densities of the fly ashes were in the range of 2.7-3.2 g/cm(3). When the fly ash particle became airborne, the effective density depended on the particle size, increasing from 0.7-0.8 g/cm(3) for 100-150 nm to 2 g/cm(3) for 350-500 nm. The fly ash samples were fractionated at 2 μm, yielding fine fractions (<2 μm) and coarse fractions (>2 μm). The size distributions of the fine fractions in the airborne form were further characterized, which allowed calculation of the percentage of the fly ash particles below 100 nm. We found the highest mass-based percentage was about 0.07%; the number percentage in the fine fraction was in the range of 4.8% to 22%. Comparison with modeling results showed that ENO may constitute a considerable part of the fly ash particles below 100 nm. Chemical analyses showed that for the municipal waste samples Ca and Al were present in higher concentrations in the coarse fraction; for the mixed wood and sludge sample the P concentration was higher in the coarse fraction; for most other samples and elements they were enriched in the fine fraction. Electron microscopic images of fly ashes showed a wide range of particle sizes, from nanometer range to micrometer range. Many aggregated particles were observed, demonstrating that ENO, bulk-derived nano-objects and combustion-generated nano-objects can form aggregates in the incineration process.

  13. Illinois basin coal fly ashes. 1. Chemical characterization and solubility

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.; Dickerson, D.R.; Schuller, R.M.; Martin, S.M.C.

    1984-01-01

    Twelve precipitator-collected fly ash samples (nine derived from high-sulfur Illinois Basin coals and three from Western U.S. coals) were found to contain a variety of paraffins, aryl esters, phenols, and polynuclear aromatic hydrocarbons including phenanthrene, pyrene, and chrysene but all at very low concentrations. Less than 1% of the organic carbon in the samples was extractable into benzene. Solubility studies with a short-term (24-h) extraction procedure and a long-term (20-week) procedure indicate that the inorganic chemical composition of some types of fly ash effluent is time dependent and may be most toxic to aquatic ecosystems when initially mixed with water and pumped to disposal ponds. Some acidic, high-Cd fly ashes would be classified as hazardous wastes if coal ash was included in this waste category by future RCRA revisions. ?? 1984 American Chemical Society.

  14. Ash leaf metabolomes reveal differences between trees tolerant and susceptible to ash dieback disease.

    PubMed

    Sambles, Christine M; Salmon, Deborah L; Florance, Hannah; Howard, Thomas P; Smirnoff, Nicholas; Nielsen, Lene R; McKinney, Lea V; Kjær, Erik D; Buggs, Richard J A; Studholme, David J; Grant, Murray

    2017-12-19

    European common ash, Fraxinus excelsior, is currently threatened by Ash dieback (ADB) caused by the fungus, Hymenoscyphus fraxineus. To detect and identify metabolites that may be products of pathways important in contributing to resistance against H. fraxineus, we performed untargeted metabolomic profiling on leaves from five high-susceptibility and five low-susceptibility F. excelsior individuals identified during Danish field trials. We describe in this study, two datasets. The first is untargeted LC-MS metabolomics raw data from ash leaves with high-susceptibility and low-susceptibility to ADB in positive and negative mode. These data allow the application of peak picking, alignment, gap-filling and retention-time correlation analyses to be performed in alternative ways. The second, a processed dataset containing abundances of aligned features across all samples enables further mining of the data. Here we illustrate the utility of this dataset which has previously been used to identify putative iridoid glycosides, well known anti-herbivory terpenoid derivatives, and show differential abundance in tolerant and susceptible ash samples.

  15. Ash leaf metabolomes reveal differences between trees tolerant and susceptible to ash dieback disease

    PubMed Central

    Sambles, Christine M.; Salmon, Deborah L.; Florance, Hannah; Howard, Thomas P.; Smirnoff, Nicholas; Nielsen, Lene R.; McKinney, Lea V.; Kjær, Erik D.; Buggs, Richard J. A.; Studholme, David J.; Grant, Murray

    2017-01-01

    European common ash, Fraxinus excelsior, is currently threatened by Ash dieback (ADB) caused by the fungus, Hymenoscyphus fraxineus. To detect and identify metabolites that may be products of pathways important in contributing to resistance against H. fraxineus, we performed untargeted metabolomic profiling on leaves from five high-susceptibility and five low-susceptibility F. excelsior individuals identified during Danish field trials. We describe in this study, two datasets. The first is untargeted LC-MS metabolomics raw data from ash leaves with high-susceptibility and low-susceptibility to ADB in positive and negative mode. These data allow the application of peak picking, alignment, gap-filling and retention-time correlation analyses to be performed in alternative ways. The second, a processed dataset containing abundances of aligned features across all samples enables further mining of the data. Here we illustrate the utility of this dataset which has previously been used to identify putative iridoid glycosides, well known anti-herbivory terpenoid derivatives, and show differential abundance in tolerant and susceptible ash samples. PMID:29257137

  16. 40 CFR 98.297 - Records that must be retained.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... production of soda ash (tons) (2) Monthly consumption of trona or liquid alkaline feedstock (tons) (3) Annual... technical basis for these estimates must be provided. (5) If you produce soda ash using the liquid alkaline...

  17. 40 CFR 98.297 - Records that must be retained.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... production of soda ash (tons) (2) Monthly consumption of trona or liquid alkaline feedstock (tons) (3) Annual... technical basis for these estimates must be provided. (5) If you produce soda ash using the liquid alkaline...

  18. 40 CFR 98.297 - Records that must be retained.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... production of soda ash (tons) (2) Monthly consumption of trona or liquid alkaline feedstock (tons) (3) Annual... technical basis for these estimates must be provided. (5) If you produce soda ash using the liquid alkaline...

  19. 40 CFR 98.297 - Records that must be retained.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... production of soda ash (tons) (2) Monthly consumption of trona or liquid alkaline feedstock (tons) (3) Annual... technical basis for these estimates must be provided. (5) If you produce soda ash using the liquid alkaline...

  20. 40 CFR 98.297 - Records that must be retained.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... production of soda ash (tons) (2) Monthly consumption of trona or liquid alkaline feedstock (tons) (3) Annual... technical basis for these estimates must be provided. (5) If you produce soda ash using the liquid alkaline...

  1. Production of a bioflocculant from Pseudomonas veronii L918 using the hydrolyzate of peanut hull and its application in the treatment of ash-flushing wastewater generated from coal fired power plant.

    PubMed

    Liu, Weijie; Hao, Yan; Jiang, Jihong; Zhu, Aihua; Zhu, Jingrong; Dong, Zhen

    2016-10-01

    In this study, bioflocculant produced by Pseudomonas veronii L918 was applied to treat ash-flushing wastewater. The strain L918 could convert the hydrolyzate of peanut hull into bioflocculant, which can effectively reduce the production cost of bioflocculant. The yield of 3.39g/L bioflocculant MBF-L918 was achieved when 300mL/L peanut hull hydrolyzate was used as carbon source. The bioflocculant MBF-L918 contains 77.14% polysaccharides and 4.84% proteins, and the molecular weight (MW) of MBF-L918 is 24.77kDa. Furthermore, MBF-L918 showed good flocculating efficiency of 92.51% to ash-flushing wastewater when 2.83mg/L MBF-L918 was added, and thus achieved the recycling of ash-flushing wastewater. This study reported for the first time that the bioflocculant was produced using peanut hull hydrolyzate and effectively applied in the treatment of coal ash-flushing wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Man-made vitreous fiber produced from incinerator ash using the thermal plasma technique and application as reinforcement in concrete.

    PubMed

    Yang, Sheng-Fu; Wang, To-Mai; Lee, Wen-Cheng; Sun, Kin-Seng; Tzeng, Chin-Ching

    2010-10-15

    This study proposes using thermal plasma technology to treat municipal solid waste incinerator ashes. A feasible fiberization method was developed and applied to produce man-made vitreous fiber (MMVF) from plasma vitrified slag. MMVF were obtained through directly blending the oxide melt stream with high velocity compressed air. The basic technological characteristics of MMVF, including morphology, diameter, shot content, length and chemical resistance, are described in this work. Laboratory experiments were conducted on the fiber-reinforced concrete. The effects of fibrous content on compressive strength and flexural strength are presented. The experimental results showed the proper additive of MMVF in concrete can enhance its mechanical properties. MMVF products produced from incinerator ashes treated with the thermal plasma technique have great potential for reinforcement in concrete. 2010 Elsevier B.V. All rights reserved.

  3. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China.

    PubMed

    Chen, Bingyu; Liu, Guijian; Sun, Ruoyu

    2016-05-01

    A better understanding on the partitioning behavior of mercury (Hg) during coal combustion in large-scale coal-fired power plants is fundamental for drafting Hg-emission control regulations. Two large coal-fired utility boilers, equipped with electrostatic precipitators (ESPs) and a wet flue gas desulfurization (WFGD) system, respectively, in coal energy-dominant Huainan City, China, were selected to investigate the distribution and fate of Hg during coal combustion. In three sampling campaigns, we found that Hg in bottom ash was severely depleted with a relative enrichment (RE) index <7 %, whereas the RE index for fly ash (9-54%) was comparatively higher and variable. Extremely high Hg was concentrated in gypsum (≤4500 ng/g), which is produced in the WFGD system. Mass balance calculation shows that the shares of Hg in bottom ash, fly ash, WFGD products (gypsum, effluents, sludge), and stack emissions were <2, 17-32, 7-22, and 54-82%, respectively. The Hg-removal efficiencies of ESPs, WFGD, and ESPs + WFGD were 17-32, 10-29, and 36-46%, respectively. The Hg-emission factor of studied boilers was in a high range of 0.24-0.29 g Hg/t coal. We estimated that Hg emissions in all Huainan coal-fired power plants varied from 1.8 Mg in 2003 to 7.3 Mg in 2010.

  4. Association of the sites of heavy metals with nanoscale carbon in a Kentucky electrostatic precipitator fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James C. Hower; Uschi M. Graham; Alan Dozier

    2008-11-15

    A combination of high-resolution transmission electron microscopy, scanning transmission electron microscopy, and electron energy-loss spectroscopy (HRTEM-STEM-EELS) was used to study fly ashes produced from the combustion of an eastern Kentucky coal at a southeastern-Kentucky wall-fired pulverized coal utility boiler retrofitted for low-NOx combustion. Fly ash was collected from individual hoppers in each row of the electrostatic precipitators (ESP) pollution-control system, with multiple hoppers sampled within each of the three rows. Temperatures within the ESP array range from about 200 {degree}C at the entry to the first row to <150{degree}C at the exit of the third row. HRTEM-STEM-EELS study demonstrated themore » presence of nanoscale (10 s nm) C agglomerates with typical soot-like appearance and others with graphitic fullerene-like nanocarbon structures. The minute carbon agglomerates are typically juxtaposed and intergrown with slightly larger aluminosilicate spheres and often form an ultrathin halo or deposit on the fly ash particles. The STEM-EELS analyses revealed that the nanocarbon agglomerates host even finer (<3 nm) metal and metal oxide particles. Elemental analysis indicated an association of Hg with the nanocarbon. Arsenic, Se, Pb, Co, and traces of Ti and Ba are often associated with Fe-rich particles within the nanocarbon deposits. 57 refs., 5 figs.« less

  5. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOEpatents

    Beaufrere, Albert H.

    1983-10-04

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  6. Ecological risk assessment for residual coal fly ash at Watts Bar Reservoir, Tennessee: Limited alteration of riverine-reservoir benthic invertebrate community following dredging of ash-contaminated sediment.

    PubMed

    Buys, David J; Stojak, Amber R; Stiteler, William; Baker, Tyler F

    2015-01-01

    Benthic invertebrate communities were assessed after the December 2008 release of approximately 4.1 million m(3) coal fly ash from a disposal dredge cell at the Tennessee Valley Authority (TVA) Kingston Fossil Plant on Watts Bar Reservoir in Roane County, Tennessee, USA. Released ash filled the adjacent embayments and the main channel of the Emory River, migrating into reaches of the Emory, Clinch, and Tennessee Rivers. Dredging was completed in summer 2010, and the benthic community sampling was conducted in December 2010. This study is part of a series that supported an Ecological Risk Assessment for the Kingston site. Benthic invertebrate communities were sampled at transects spread across approximately 20 miles of river that includes both riverine and reservoirlike conditions. Community composition was assessed on a grab sample and transect basis across multiple cross-channel transects to gain an understanding of the response of the benthic community to a fly ash release of this magnitude. This assessment used invertebrate community metrics, similarity analysis, geospatial statistics, and correlations with sediment chemistry and habitat. The community composition was reflective of a reservoir system, with dominant taxa being insect larva, bivalves, and aquatic worms. Most community metric results were similar for ash-impacted areas and upstream reference areas. Variation in the benthic community was correlated more with habitat than with sediment chemistry or residual ash. Other studies have reported that a benthic community can take several years to a decade to recover from ash or ash-related constituents. Although released ash undoubtedly had some initial impacts on the benthic community in this study, the severity of these effects appears to be limited to the initial smothering of the organisms followed by a rapid response and the initial start of recovery postdredging. © 2014 SETAC.

  7. Generation and distribution of PAHs in the process of medical waste incineration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying, E-mail: echochen327@163.com; National Center of Solid Waste Management, Ministry of Environmental Protection, Beijing 100029; Zhao, Rongzhi

    Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs)more » during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ.« less

  8. Cristobalite in volcanic ash of the soufriere hills volcano, montserrat, british west indies

    PubMed

    Baxter; Bonadonna; Dupree; Hards; Kohn; Murphy; Nichols; Nicholson; Norton; Searl; Sparks; Vickers

    1999-02-19

    Crystalline silica (mostly cristobalite) was produced by vapor-phase crystallization and devitrification in the andesite lava dome of the Soufriere Hills volcano, Montserrat. The sub-10-micrometer fraction of ash generated by pyroclastic flows formed by lava dome collapse contains 10 to 24 weight percent crystalline silica, an enrichment of 2 to 5 relative to the magma caused by selective crushing of the groundmass. The sub-10-micrometer fraction of ash generated by explosive eruptions has much lower contents (3 to 6 percent) of crystalline silica. High levels of cristobalite in respirable ash raise concerns about adverse health effects of long-term human exposure to ash from lava dome eruptions.

  9. Trends in domestic and international markets for ash logs and lumber

    Treesearch

    Dan Meyer

    2010-01-01

    While ash is a "minor" commercial hardwood species relative to oak, poplar, and maple, it still accounts for roughly 3 percent of all hardwood lumber produced, with an estimated kiln-dried value exceeding $150 million annually.

  10. Removal of chloride from fly ash produced in hazardous waste incineration by leaching and displacement washing in a vertical filter press.

    PubMed

    Kinnarinen, Teemu; Huhtanen, Mikko; Penttilä, Mika; Häkkinen, Antti

    2013-02-01

    Fly ash is generated in large quantities by waste incineration processes. Chloride is commonly present in the fly ash produced by the incineration of hazardous materials, such as polyvinylchloride plastic. Major difficulties related to the disposal and handling of fly ash include the high concentration of easily leachable chlorides, heavy metals and toxic compounds. In order to avoid adverse environmental effects from the disposal of fly ash, the content of soluble chlorides must be reduced. One of the most effective options for chloride removal is leaching and displacement washing in a filter press. The primary aim of this study was to obtain efficient removal of chloride from fly ash by utilizing a leaching and displacement washing process, carried out in a filter press. The secondary objective was to obtain high filtration capacities and low filter cake moisture contents. The slurry was prepared by mixing fly ash with water at an ash:water ratio of 1:2 and filtered to separate the solids from the liquid. After solid-liquid separation, most of the dissolved residual chloride was removed from the filter cake by washing the cake with fresh water in the second stage of separation. It was possible to remove up to 98% of the total chloride and to obtain sufficient filtration capacities. The residual moisture content of the filter cakes varied from 22 to 35 wt%, which meant that the cakes could be disposed of in landfill, or possibly utilized as a construction material.

  11. Effect of Trona on the leaching of trace elements from coal fly ash.

    DOT National Transportation Integrated Search

    2013-07-01

    Fly ashes were sampled from the ESPs by on-site contractors during air emission control tests. The injection tests were short-term, : lasting approximately three hours per test condition. EPRI received three batches of samples since November 2011, re...

  12. The use of Mössbauer spectroscopy in environmental research

    NASA Astrophysics Data System (ADS)

    Waanders, F. B.; Silva, Luis F. O.; Saikia, Binoy K.

    2017-11-01

    The impact that mining has on the environment is becoming an ever increasing problem all over the world. South Africa, Brazil and India are main producers of various valuable resources such as for example iron ore, platinum, gold and coal, of which coal and platinum mining will be discussed in this paper. Dumping of ash, waste and discards, result in the formation of acid mine drainage (AMD) due to the high sulphur content of the coal and the waste products. The main Fe-S-bearing minerals in the coals investigated were pyrite, jarosite and ferrous sulphate, a weathering product of pyrite. In the ash produced due to combustion or gasification of the coal, the main Fe-constituents are Fe2+,3+ glass (≈ 30%) and hematite (70%). The amorphous phase of the sample was composed mainly of SiO2 and Al2O3 with trace element inclusions of Hg, Ti, Cd and As. The soil, sediment and overburden in the coal mining areas contain pyrite as Fe-S-mineral and also ferrous sulphate as weathering product, with illite the main clay mineral. From laboratory leaching products of coal and ash, sulphur in the form of SO4^{2-}, was found to be one of the most leached ions with a concentration ranging between 100-1000 ppm. The amount of Fe leached out from the ash samples was between 2-5 ppm, but the Fe-leachability depends on the pH, with higher amounts leached out at pH ≤ 1.5. Magnetite losses, to the amount of about 1kg per tonne of magnetite used, occur during the dense medium separation process (DMS) used in cleaning the coal, which also reports in the waste product. South Africa is the largest producer of platinum and smelting of the ore can lead to various forms of pollution. Magnetite formation in the 2-stage furnace process is used as an indicator of the effectiveness of the reduction and the Fe2+ and Fe3+ ratio is used to monitor the process. In the flash furnace the ratio is 2-6, whilst in the electric furnace it is ≤0.02. If not monitored closely a large amount of nickel loss will occur if sent to the waste dump. Mössbauer spectroscopy was used to identify the Fe-species and the results were augmented by High Resolution-Transmission Electron microscopy (HR-TEM), Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS, X-Ray Diffraction (XRD) and ICP-EOS results.

  13. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk, E-mail: ubolluk@buu.ac.t

    2010-04-15

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electronmore » microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.« less

  14. Alkaline modified oil shale fly ash: optimal synthesis conditions and preliminary tests on CO2 adsorption.

    PubMed

    Reinik, Janek; Heinmaa, Ivo; Kirso, Uuve; Kallaste, Toivo; Ritamäki, Johannes; Boström, Dan; Pongrácz, Eva; Huuhtanen, Mika; Larsson, William; Keiski, Riitta; Kordás, Krisztián; Mikkola, Jyri-Pekka

    2011-11-30

    Environmentally friendly product, calcium-silica-aluminum hydrate, was synthesized from oil shale fly ash, which is rendered so far partly as an industrial waste. Reaction conditions were: temperature 130 and 160°C, NaOH concentrations 1, 3, 5 and 8M and synthesis time 24h. Optimal conditions were found to be 5M at 130°C at given parameter range. Original and activated ash samples were characterized by XRD, XRF, SEM, EFTEM, (29)Si MAS-NMR, BET and TGA. Semi-quantitative XRD and MAS-NMR showed that mainly tobermorites and katoite are formed during alkaline hydrothermal treatment. Physical adsorption of CO(2) on the surface of the original and activated ash samples was measured with thermo-gravimetric analysis. TGA showed that the physical adsorption of CO(2) on the oil shale fly ash sample increases from 0.06 to 3-4 mass% after alkaline hydrothermal activation with NaOH. The activated product has a potential to be used in industrial processes for physical adsorption of CO(2) emissions. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Catalog of Mount St. Helens 2004 - 2005 Tephra Samples with Major- and Trace-Element Geochemistry

    USGS Publications Warehouse

    Rowe, Michael C.; Thornber, Carl R.; Gooding, Daniel J.; Pallister, John S.

    2008-01-01

    This open-file report presents a catalog of information about 135 ash samples along with geochemical analyses of bulk ash, glass and individual mineral grains from tephra deposited as a result of volcanic activity at Mount St. Helens, Washington, from October 1, 2004 until August 15, 2005. This data, in conjunction with that in a companion report on 2004?2007 Mount St. Helens dome samples by Thornber and others (2008a) are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, ed., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data presented here. All ash samples reported herein are currently archived at the David A. Johnston Cascades Volcano Observatory in Vancouver, Washington. The Mount St. Helens 2004?2005 Tephra Sample Catalogue along with bulk, glass and mineral geochemistry are tabulated in 6 worksheets of the accompanying Microsoft Excel file, of2008-1131.xls. Samples in all tables are organized by collection date. Table 1 is a detailed catalog of sample information for tephra deposited downwind of Mount St. Helens between October 1, 2004 and August 18, 2005. Table 2 provides major- and trace-element analyses of 8 bulk tephra samples collected throughout that interval. Major-element compositions of 82 groundmass glass fragments, 420 feldspar grains, and 213 mafic (clinopyroxene, amphibole, hypersthene, and olivine) mineral grains from 12 ash samples collected between October 1, 2004 and March 8, 2005 are presented in tables 3 through 5. In addition, trace-element abundances of 198 feldspars from 11 ash samples (same samples as major-element analyses) are provided in table 6. Additional mineral and bulk ash analyses from 2004 and 2005 ash samples are published in chapters 30 (oxide thermometry; Pallister and others, 2008), 32 (amphibole major elements; Thornber and others, 2008b) and 37 (210Pb; 210Pb/226Pa; Reagan and others, 2008) of U.S. Geological Survey Professional Paper 1750 (Sherrod and others, 2008). A brief overview of sample collection methods is given below as an aid to deciphering the tephra sample catalog. This is followed by an explanation of the categories of sample information (column headers) in table 1. A summary of the analytical methods used to obtain the geochemical data in this report introduces the presentation of major- and trace-element geochemistry of Mount St. Helens 2004?2005 tephra samples in tables 2?6. Rhyolite glass standard analyses are reported (Appendix 1) to demonstrate the accuracy and precision of similar glass analyses presented herein.

  16. Sulfur-bearing coatings on fly ash from a coal-fired power plant: Composition, origin, and influence on ash alteration

    USGS Publications Warehouse

    Fishman, N.S.; Rice, C.A.; Breit, G.N.; Johnson, R.D.

    1999-01-01

    Fly ash samples collected from two locations in the exhaust stream of a coal-fired power plant differ markedly with respect to the abundance of thin (???0.1 ??m) sulfur-rich surface coatings that are observable by scanning electron microscopy. The coatings, tentatively identified as an aluminum-potassium-sulfate phase, probably form upon reaction between condensed sulfuric acid aerosols and glass surfaces, and are preferentially concentrated on ash exposed to exhaust stream gases for longer. The coatings are highly soluble and if sufficiently abundant, can impart an acidic pH to solutions initially in contact with ash. These observations suggest that proposals for ash use and predictions of ash behavior during disposal should consider the transient, acid-generating potential of some ash fractions and the possible effects on initial ash leachability and alteration. ?? 1998 Elsevier Science Ltd.

  17. Characterization and modes of occurrence of elements in feed coal and coal combustion products from a power plant utilizing low-sulfur coal from the Powder River Basin, Wyoming

    USGS Publications Warehouse

    Brownfield, Michael E.; Cathcart, James D.; Affolter, Ronald H.; Brownfield, Isabelle K.; Rice, Cynthia A.; O'Connor, Joseph T.; Zielinski, Robert A.; Bullock, John H.; Hower, James C.; Meeker, Gregory P.

    2005-01-01

    The U.S. Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana utility company to determine the physical and chemical properties of feed coal and coal combustion products from a coal-fired power plant. The Indiana power plant utilizes a low-sulfur (0.23 to 0.47 weight percent S) and lowash (4.9 to 6.3 weight percent ash) subbituminous coal from the Wyodak-Anderson coal zone in the Tongue River Member of the Paleocene Fort Union Formation, Powder River Basin, Wyoming. Based on scanning electron microscope and X-ray diffraction analyses of feed coal samples, two mineral suites were identified: (1) a primary or detrital suite consisting of quartz (including beta-form grains), biotite, feldspar, and minor zircon; and (2) a secondary authigenic mineral suite containing alumino-phosphates (crandallite and gorceixite), kaolinite, carbonates (calcite and dolomite), quartz, anatase, barite, and pyrite. The primary mineral suite is interpreted, in part, to be of volcanic origin, whereas the authigenic mineral suite is interpreted, in part, to be the result of the alteration of the volcanic minerals. The mineral suites have contributed to the higher amounts of barium, calcium, magnesium, phosphorus, sodium, strontium, and titanium in the Powder River Basin feed coals in comparison to eastern coals. X-ray diffraction analysis indicates that (1) fly ash is mostly aluminate glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals; and (2) bottom ash is predominantly quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite, and spinel group minerals. Microprobe and scanning electron microscope analyses of fly ash samples revealed quartz, zircon, and monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, wollastonite, and periclase. The abundant calcium and magnesium mineral phases in the fly ash are attributed to the presence of carbonate, clay, and phosphate minerals in the feed coal and their alteration to new phases during combustion. The amorphous diffraction-scattering maxima or glass 'hump' appears to reflect differences in chemical composition of fly ash and bottom ash glasses. In Wyodak-Anderson fly and bottom ashes, the center point of scattering maxima is due to calcium and magnesium content, whereas the glass 'hump' of eastern fly ash reflects variation in aluminum content. The calcium- and magnesium-rich and alumino-phosphate mineral phases in the coal combustion products can be attributed to volcanic minerals deposited in peat-forming mires. Dissolution and alteration of these detrital volcanic minerals occurred either in the peat-forming stage or during coalification and diagenesis, resulting in the authigenic mineral suite. The presence of free lime (CaO) in fly ash produced from Wyodak-Anderson coal acts as a self-contained 'scrubber' for SO3, where CaO + SO3 form anhydrite either during combustion or in the upper parts of the boiler. Considering the high lime content in the fly ash and the resulting hydration reactions after its contact with water, there is little evidence that major amounts of leachable metals are mobilized in the disposal or utilization of this fly ash.

  18. In vitro effects of coal fly ashes: hydroxyl radical generation, iron release, and DNA damage and toxicity in rat lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Maanen, J.M.; Borm, P.J.; Knaapen, A

    1999-12-15

    The authors measured iron release, acellular generation of hydroxyl radicals, and oxidative DNA damage and cytotoxicity in rat lung epithelial (RLE) cells by different coal fly ashes (CFA) that contain both quartz and iron. Seven samples of CFA with different particle size and quartz content (up to 14.1%) were tested along with silica (alpha-quartz), ground coal, and coal mine dust (respirable) as positive control particles, and fine TiO{sub 2} (anatase) as a negative control. Five test samples were pulverized fuel ashes (PFA), two samples were coal gasification (SCG) ashes (quartz content {lt} 0.1%), and one sample was a ground coal.more » No marked differences between SCG and PFA fly ashes were observed, and toxicity did not correlate with physicochemical characteristics or effect parameters. Stable surface radicals were only detected in the reference particles silica and coal mine dust, but not in CFA. On the other hand, hydroxyl radical generation by all fly ashes was observed in the presence of hydrogen peroxide. Also a relationship between acellular hydroxyl radical generation and oxidative DNA damage in RLE cells by CFA was observed. The respirable ashes (MAT023, 38, and 41) showed an extensive level of hydroxyl radical generation in comparison to nonrespirable fly ashes and respirable references. This was related to the iron mobilization from these particles. Themechanisms by which CFA and the positive references (silica, coal mine dust) affect rat lung epithelial cells seem to be different, and the data suggest that quartz in CFA does not act the same as quartz in silica or coal mine dust. However, the results indicate an important role for size and iron release in generation and subsequent effects of reactive oxygen species caused by CFA.« less

  19. Wear resistance of Polymethyl Methacrylate (PMMA) with the Addition of Bone Ash, Hydroxylapatite and Keratin

    NASA Astrophysics Data System (ADS)

    Emre, G.; Akkus, A.; Karamış, M. B.

    2018-01-01

    In this study mechanichal and tribological properties of keratin, bone ash and hydroxylapatite by adding to PMMA ( known as the main prosthesis material) were investigated. Hydroxylapatite, bone ash, and keratin materials were added as PMMA in to the content of PMMA, in the proportions of %1, %3 and %5, respectively. The resulting mixtures were put into the molds and solidified in order to obtain samples to be used in the wear experiments. Each experiment was conducted by preparing three experimental samples. The wear data were compared according to the average values of the experimental samples. In the wear test, the results were also evaluated according to the average values obtained from each group and the results of the control group. It was observed that, the wear resistance of the PMMA including 3%, 5% bone ash and PMMA including 5% keratin flour were higher than the values of the control group.

  20. Binary effect of fly ash and palm oil fuel ash on heat of hydration aerated concrete.

    PubMed

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa; Sajjadi, Seyed Mahdi

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern.

  1. Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete

    PubMed Central

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  2. Fly Ash Porous Material using Geopolymerization Process for High Temperature Exposure

    PubMed Central

    Abdullah, Mohd Mustafa Al Bakri; Jamaludin, Liyana; Hussin, Kamarudin; Bnhussain, Mohamed; Ghazali, Che Mohd Ruzaidi; Ahmad, Mohd Izzat

    2012-01-01

    This paper presents the results of a study on the effect of temperature on geopolymers manufactured using pozzolanic materials (fly ash). In this paper, we report on our investigation of the performance of porous geopolymers made with fly ash after exposure to temperatures from 600 °C up to 1000 °C. The research methodology consisted of pozzolanic materials (fly ash) synthesized with a mixture of sodium hydroxide and sodium silicate solution as an alkaline activator. Foaming agent solution was added to geopolymer paste. The geopolymer paste samples were cured at 60 °C for one day and the geopolymers samples were sintered from 600 °C to 1000 °C to evaluate strength loss due to thermal damage. We also studied their phase formation and microstructure. The heated geopolymers samples were tested by compressive strength after three days. The results showed that the porous geopolymers exhibited strength increases after temperature exposure. PMID:22605984

  3. Physical and Chemical Character of Fly Ash of Coal Fired Power Plant in Java

    NASA Astrophysics Data System (ADS)

    Triwulan; Priadana, K. A.; Ekaputri, J. J.; Bayuaji, R.

    2017-11-01

    Quality of fly ash is varying widely in the field, it depends on the combustion process and the quality of the basic ingredients, namely coal. It will affect the physical and mechanical properties of the concrete mixtures used. This study used 12 samples of fly ash. The physical and chemical properties and finesse modulus were analyzed. The fly ash was mixed with OPC (Ordinary Portland Cement) with the proportion of 20% fly ash and 80% OPC. The specimens were form with mortar dimension of 5cm x 5 cm. The test was affected by the correlation of fly ash fineness modulus to compressive strength, correlation density of fly ash to compressive strength, and correlation of carbon content to the compressive strength.

  4. An atlas of volcanic ash

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1974-01-01

    Volcanic ash samples collected from a variety of recent eruptions were studied, using petrography, chemical analyses, and scanning electron microscopy to characterize each ash type and to relate ash morphology to magma composition and eruption type. The ashes are best placed into two broad genetic categories: magnetic and hydrovolcanic (phreatomagmatic). Ashes from magmatic eruptions are formed when expanding gases in the magma form a froth that loses its coherence as it approaches the ground surface. During hydrovolcanic eruptions, the magma is chilled on contact with ground or surface waters, resulting in violent steam eruptions. Within these two genetic categories, ashes from different magma types can be characterized. The pigeon hole classification used here is for convenience; there are eruptions which are driven by both phreatic and magmatic gases.

  5. Clay Stabilization Using the Ash of Mount Sinabung in Terms of the Value of California Bearing Ratio (CBR)

    NASA Astrophysics Data System (ADS)

    Hastuty, I. P.; Roesyanto, R.; Napitupulu, S. M. A.

    2018-02-01

    Most areas in Indonesia consist of clay soils with high plasticity so that to meet technical requirements the soil needs improvement, which is known as soil stabilization.There are three ways of soil stabilization process, i.e. mechanical, physical and chemical. In this study, chemical stabilization was performed, that was by adding stabilizing agents to the soil. The stabilizing agent used was the ash of Mount Sinabung. Since 2010 until now, Sinabung Mountain is still experiencing eruption that produces a lot of volcanic ash and it inconveniences the environment. So, it is expected that this research will be able to optimize the utilization of Sinabung ash. The purpose of this study was to investigate the effect of the addition of Mount Sinabung ash to CBR (California Bearing Ratio) value, to determine the effect of the curing time of one day and fourteen days mixture on the CBR value, and to find the mixed content with effective curing time to produce the largest CBR value. Based on this study, the soil type CL (Clay - Low Plasticity) was obtained, based on the classification of USCS (Unified Soil Classification System) and categorized as A-6 (6) based on the classification of AASHTO (American Association of State Highway and Transportation officials) with the most effective mixed stabilizer material which was the variation of 10% Mount Sinabung ash with fourteen days of curing time. The CBR value resulted from the mixture of 10% Sinabung ash that was cured within fourteen days was 8.95%. By the increase of the content of the Sinabung ash, the CBR value always improved to the level of 10%, Sinabung ash then decreased and became constant at the mixture of higher volcanic ash mixture but remained above the CBR value of the original soil.

  6. Heavy metals and PCDD/Fs in solid waste incinerator fly ash in Zhejiang province, China: chemical and bio-analytical characterization.

    PubMed

    Yao, Jun; Li, Wenbing; Xia, Fangfang; Zheng, Yuange; Fang, Chengran; Shen, Dongsheng

    2012-06-01

    Fly ash samples were taken from solid waste incinerators with different feeding waste, furnace type, and air pollution control device in six cities of Zhejiang province. The solid waste incinerators there constitute one fifth of incinerators in China. Heavy metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analyzed in the fly ash. Moreover, the fly ash samples were extracted by toxicity characteristic leaching procedure (TCLP). The biotoxicity of the leachate was evaluated by Chlorella pyrenoidosa. High variation and contents were found for both the heavy metals and PCDD/Fs. The contents of Zn, Cu, As, Pb, Cd, Cr, Ni, and Hg in the fly ash samples varied from 300 to 32,100, 62.1-1175, 1.1-57, 61.6-620, 0.4-223, 16.6-4380, 1.2-94.7, and 0.03-1.4 μg g(-1) dw, respectively. The total contents of 17 PCDD/Fs varied from 0.1128 to 127.7939 μg g(-1) dw, and the 2,3,7,8-TeCDD toxic equivalents (TEQ) of PCDD/Fs ranged from 0.009 to 6.177 μg g(-1) dw. PCDF congeners were the main contributor to the TEQ. The leachate of the fly ash showed biotoxicity to C. pyrenoidosa. A significant correlation was found between the Cd and EC(50) values. Further research is required to investigate the environmental impact of the various pollutants in the fly ash.

  7. Construction procedures using self hardening fly ash

    NASA Astrophysics Data System (ADS)

    Thornton, S. I.; Parker, D. G.

    1980-07-01

    Fly ash produced in Arkansas from burning Wyoming low sulfur coal is self-hardening and can be effective as a soil stabilizing agent for clays and sands. The strength of soil-self hardening fly ash develops rapidly when compacted immediately after mixing. Seven day unconfined compressive strengths up to 1800 psi were obtained from 20% fly ash and 80% sand mixtures. A time delay between mixing the fly ash with the soil and compaction of the mixture reduced the strength. With two hours delay, over a third of the strength was lost and with four hours delay, the loss was over half. Gypsum and some commercial concrete retarders were effective in reducing the detrimental effect of delayed compaction. Adequate mixing of the soil and fly ash and rapid compaction of the mixtures were found to be important parameters in field construction of stabilized bases.

  8. Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinaharan, I., E-mail: dinaweld2009@gmail.com

    Fly ash (FA) is a waste product of coal combustion in thermal power plants which is available in massive quantities all over the world causing land pollution. This paper reports the characterization of AA6061 aluminum matrix composites (AMCs) reinforced with FA particles synthesized using friction stir processing (FSP). The volume fraction of FA particles was varied from 0 to 18 in steps of 6. The prepared AMCs were characterized using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscattered diagram (EBSD). The wear rate was estimated using a pin-on-disc wear apparatus. FA particles were observed to be distributed homogeneouslymore » in the AMC irrespective of the location within the stir zone. The EBSD micrographs revealed remarkable grain refinement in the AMC. The incorporation of FA particles enhanced the microhardness and wear resistance of the AMC. The strengthening mechanisms of the AMC were discussed and correlated to the observed microstructures. The wear mechanisms were identified by characterizing the wear debris and worn surfaces. - Highlights: •Industrial waste fly ash was used to produce aluminum matrix composites. •Friction stir processing was used to produce AA6061/Fly Ash composite. •Fly ash particles refined the grains of aluminum matrix. •Fly ash particles enhanced the hardness and wear resistance. •Successful utilization of fly ash to make aluminum composites reduces land pollution.« less

  9. "MERAPIDATA": New Petrologic and Geochemical Database of the Merapi Volcano, Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Borisova, A. Y.; Martel, C.; Pratomo, I.; Toutain, J.; Sumarti, S.; Surono, S.

    2011-12-01

    Petrologic and geochemical databases of erupted products are critical for monitoring and predicting the evolution of active volcanoes. To monitor the activity of one of the most dangerous volcanoes in the world, Merapi Volcano in Indonesia, in the framework of the new instrumental site VELI (Volcans Explosifs - Laboratoires Indonésiens labelled by INSU in 2009 in France), we generated "MERAPIDATA", a complete database of available petrologic and geochemical data published in the literature on pyroclastic flows, tephra, lavas and xenoliths coupled with the exact ages of historical flows [1] or estimated ages based on 14C geochronology [2]. "MERAPIDATA" permits to access complete petrologic, geochemical, and geochronological information (e.g., major, trace element and Sr-Nd-Pb-O isotopic composition of the bulk volcanic rocks, xenoliths, minerals and glasses; textural information; type of eruption; classification) of a given volcanic product or series. In addition to ~300 published volcanic products, new data on 2 pyroclastic flows, 1 tephra and 4 ash samples collected on northern and western slopes of the volcano in October and November 2010 during subplinian type eruption have been added to "MERAPIDATA". The 2010 ash sample chemistry allows classifying them as high-K basaltic andesite. The ash samples demonstrate major and trace element compositions typical for the high-K series. For the first time, we obtained complete data on the Merapi ash samples which characterized by low L.O.I. ≤ 0.58 wt%, CO2total ≤ 0.05 wt%, H2Ototal = 0.3 - 0.5 wt%, Stotal ≤ 0.13 wt% and moderate Cl (550 - 1120 ppm) contents. The ash-leachates produced by leaching experiments demonstrate constant F/Cl ratios (0.05 ± 0.01) and Ca-Na-K enrichment (Ca/Na= 3 - 7, Na/K = 1 - 5). Sr-Nd-Pb-O isotopic analyses on the 2010 Merapi products are in progress. New petrologic (e.g., melt and fluid inclusion data, T - P - fO2 - aH2O - aCO2) and geochemical (e.g., volatile, major, trace element and isotopic composition of the bulk volcanic rocks and glassy matrix) data will permit to explain unexpected subplinian type of the 2010 eruption. The complete "MERAPIDATA" programmed with MS Access 2007 will be available in English version for open access at the website of the Observatory of Midi-Pyrénées (Toulouse, France): "http://www.get.obs-mip.fr/index.php/Annuaire/Borisova-Anastassia/MERAPIDATA". [1] Camus et al., (2000). JVGR 100, 139-163. [2] Gertisser & Keller (2003). JVGR 123, 1-23.

  10. High-performance self-compacting concrete with the use of coal burning waste

    NASA Astrophysics Data System (ADS)

    Bakhrakh, Anton; Solodov, Artyom; Naruts, Vitaly; Larsen, Oksana; Alimov, Lev; Voronin, Victor

    2017-10-01

    Today, thermal power plants are the main producers of energy in Russia. Most of thermal power plants use coal as fuel. The remaining waste of coal burning is ash, In Russia ash is usually kept at dumps. The amount of utilized ash is quite small, less than 13%. Meanwhile, each ash dump is a local ecological disaster. Ash dumps take a lot of place and destroy natural landscape. The use of fly ash in building materials can solve the problem of fly ash dumps in Russia. A lot of papers of scientists are devoted to the use of fly ash as filler in concrete. The main advantage of admixing fly ash in concrete is decrease of amount of used cement. This investigation was held to find out if it is possible to utilize fly ash by its use in high amounts in self-compacting concrete. During experiments three mixtures of SCC with different properties were obtained. The first one is experimental and shows the possibility of obtaining SCC with high compressive strength with 60% of fly ash from the mass of cement. Two other mixtures were optimized with the help of the math planning method to obtain high 7-day and 28-day high compressive strength.

  11. Study on cement mortar and concrete made with sewage sludge ash.

    PubMed

    Chang, F C; Lin, J D; Tsai, C C; Wang, K S

    2010-01-01

    This study investigated the feasibility of reusing wastewater sludge ash in construction materials to replace partial materials. Wastewater sludge sampled from thermal power plant was burned into sludge ash at 800°C in the laboratory. The sludge incineration ash has low heavy metal including Pb, Cd, Cr and Cu, so it belongs to general enterprise waste. The chemical composition of sludge incineration ash was summed up in SiO₂, CaO, Fe₂O₃ and MgO. Then the wastewater sludge ash is also found to be a porous material with irregular surface. When the sludge ash was used to replace mortar or concrete cement, its water-adsorption capability will result in the reduction of mortar workability and compressive strength. Cement is being substituted for sludge ash, and 10 percent of sludge ash is more appropriate. Sludge ash is reused to take the place of construction materials and satisfies the requests of standard specification except for higher water absorption.

  12. The immersion freezing behavior of ash particles from wood and brown coal burning

    NASA Astrophysics Data System (ADS)

    Grawe, Sarah; Augustin-Bauditz, Stefanie; Hartmann, Susan; Hellner, Lisa; Pettersson, Jan B. C.; Prager, Andrea; Stratmann, Frank; Wex, Heike

    2016-11-01

    It is generally known that ash particles from coal combustion can trigger ice nucleation when they interact with water vapor and/or supercooled droplets. However, data on the ice nucleation of ash particles from different sources, including both anthropogenic and natural combustion processes, are still scarce. As fossil energy sources still fuel the largest proportion of electric power production worldwide, and biomass burning contributes significantly to the global aerosol loading, further data are needed to better assess the ice nucleating efficiency of ash particles. In the framework of this study, we found that ash particles from brown coal (i.e., lignite) burning are up to 2 orders of magnitude more ice active in the immersion mode below -32 °C than those from wood burning. Fly ash from a coal-fired power plant was shown to be the most efficient at nucleating ice. Furthermore, the influence of various particle generation methods on the freezing behavior was studied. For instance, particles were generated either by dispersion of dry sample material, or by atomization of ash-water suspensions, and then led into the Leipzig Aerosol Cloud Interaction Simulator (LACIS) where the immersion freezing behavior was examined. Whereas the immersion freezing behavior of ashes from wood burning was not affected by the particle generation method, it depended on the type of particle generation for ash from brown coal. It was also found that the common practice of treating prepared suspensions in an ultrasonic bath to avoid aggregation of particles led to an enhanced ice nucleation activity. The findings of this study suggest (a) that ash from brown coal burning may influence immersion freezing in clouds close to the source and (b) that the freezing behavior of ash particles may be altered by a change in sample preparation and/or particle generation.

  13. Metallic elements fractionation in municipal solid waste incineration residues

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr R.; Kasina, Monika; Michalik, Marek

    2016-04-01

    Municipal solid waste incineration (MSWI) residues are represented by three main materials: bottom ash, fly ash and air pollution control (APC) residues. Among them ˜80 wt% is bottom ash. All of that materials are products of high temperature (>1000° C) treatment of waste. Incineration process allows to obtain significant reduction of waste mass (up to 70%) and volume (up to 90%) what is commonly used in waste management to reduce the amount need to be landfilled or managed in other way. Incineration promote accumulation non-combustible fraction of waste, which part are metallic elements. That type of concentration is object of concerns about the incineration residues impact on the environment and also gives the possibility of attempts to recover them. Metallic elements are not equally distributed among the materials. Several factors influence the process: melting points, volatility and place and forms of metallic occurrence in the incinerated waste. To investigate metallic elements distribution in MSWI residues samples from one of the biggest MSW incineration plant in Poland were collected in 2015. Chemical analysis with emphasis on the metallic elements content were performed using inductively coupled plasma optical emission (ICP-OES) and mass spectrometry (ICP-MS). The bottom ash was a SiO2-CaO-Al2O3-Fe2O3-Na2O rich material, whereas fly ash and APC residues were mostly composed of CaO and SiO2. All of the materials were rich in amorphous phase occurring together with various, mostly silicate crystalline phases. In a mass of bottom ash 11 wt% were metallic elements but also in ashes 8.5 wt% (fly ash) and ˜4.5 wt% (APC residues) of them were present. Among the metallic elements equal distribution between bottom and fly ash was observed for Al (˜3.85 wt%), Mn (770 ppm) and Ni (˜65 ppm). In bottom ash Fe (5.5 wt%), Cr (590 ppm) and Cu (1250 ppm) were concentrated. These values in comparison to fly ash were 5-fold higher for Fe, 3-fold for Cu and 1.5-fold for Cr. In comparison to bottom ash, in fly ash 10-fold more Zn was present (8070 ppm), 4-fold more Sn (540 ppm) and also 2-fold more Ti (1.1 wt%), Pb (460 ppm) and Sn (540 ppm). Although APC residue is the material produced in the smallest quantities, in its composition some high concentrations of metallic elements were also present. Contents of Zn (>1 wt%), Pb (2560 ppm) and Sn (875 ppm) were much higher than in bottom and fly ash. Obtained results confirmed that fractionation of elements occurs during the municipal waste incineration and further detailed study of the residues may allow better understanding of the process. Acknowledgment: Research was funded by Polish National Science Centre (NCN). Scientific grant No. UMO-2014/15/B/ST10/04171.

  14. Magnetic susceptibility mapping of fly ash in soil samples near a coal-burning power plant in Pointe Coupee Parish, Louisiana.

    NASA Astrophysics Data System (ADS)

    Elhelou, O.; Richter, C.

    2015-12-01

    Atmospheric deposition of pollutants is a major health and environmental concern. In a 2010 study, the CATF attributed over 13,000 deaths each year to fly ash and other fine particles emitted by U.S. coal-burning power plants. The magnetic properties of fly ash allows for mapping an area suspect of PM pollution faster and more efficiently than by conducting chemical analysis as the former alternative. The objective of this study is to detect the presence of magnetic particles related to the migration of fly ash from a nearby coal power plant over parts of Pointe Coupee Parish, LA. This is based on the idea that the fly ash that is released into the atmosphere during the coal burning process contains heavy metals and magnetic particles in the form of ferrospheres, which can be used to trace back to the source. Maps of the top and sub soil were generated to differentiate the magnetic susceptibility values of the heavy metals potentially attributed to the migration and settling of fly ash onto the surface from any pre-existing or naturally occurring heavy metals in the sub soil. A 60 km2 area in Pointe Coupee Parish was investigated in approximately 0.5 km2 subsets. The area in Pointe Coupee Parish, LA was selected because land use is predominantly rural with the Big Cajun II power plant as the main contributor for air borne contaminants. Samples of fly ash obtained directly from the source below one of the power plant's precipitators were also analyzed to verify the field and laboratory analysis. Contour maps representing the spatial distribution of fly ash over Pointe Coupee, LA, along with histograms of magnetic susceptibility values, and chemical analysis all indicate a correlation between the proximity to the power plant and the predominant wind direction. Acquisition curves of the isothermal remnant magnetization demonstrate the presence of predominantly low coercivity minerals (magnetite) with a small amount of a high-coercivity phase. The microstructure of the magnetic fractions of the fly ash along with select top and sub soil samples were observed using a reflective light microscope for identifying and confirming the presence of ferrospheres associated with fly ash. Chemical analyses of select samples revealed their heavy metal composition and the correlation with their SIRM and low field mass susceptibility values.

  15. Ash content: its effect on combustion of corn plants

    Treesearch

    A. Broido; M. A. Nelson

    1964-01-01

    Two corn plant samples, one cut in the fall while green, the other after weathering over the winter, exhibited strikingly different combustion properties. The increased susceptibility to flaming combustion of the spring-harvested sample is attributable to its decreased ash content, and not directly to its moisture content.

  16. Detoxification and generation of useful products from coal combustion wastes: Quarterly technical report, (October--December 1988)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1988-01-01

    This quarter, samples of dry fly ash, wet bottom ash, and desulfurization gypsum slurry were provided from an Ohio Edison power plant. Chemical analysis mineralogical examination, and an anion analysis were performed on the samples. 2 figs., 1 tab. (CBS)

  17. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.

    PubMed

    Santos, Rafael M; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Van Gerven, Tom

    2013-10-15

    This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively household refuse (sample B), and another originating from a fluid-bed furnace incineration operation that treats a mixture of household and light industrial wastes (sample F). The most abundant elements in the ashes were Si (20-27 wt.%) and Ca (16-19 wt.%), followed by significant quantities of Fe, Al, Na, S, K, Mg, Ti, and Cl. The main crystalline substances present in the fresh ashes were Quartz, Calcite, Apatite, Anhydrite and Gehlenite, while the amorphous fraction ranged from 56 to 73 wt.%. The leaching values of all samples were compared to the Flemish (NEN 7343) and the Walloon (DIN 38414) regulations from Belgium. Batch leaching of the fresh ashes at natural pH showed that seven elements exceeded at least one regulatory limit (Ba, Cr, Cu, Mo, Pb, Se and Zn), and that both ashes had excess basicity (pH > 12). Accelerated carbonation achieved significant reduction in ash basicity (9.3-9.9); lower than ageing (10.5-12.2) and heat treatment (11.1-12.1). For sample B, there was little distinction between the leaching results of ageing and accelerated carbonation with respect to regulatory limits; however carbonation achieved comparatively lower leaching levels. Heat treatment was especially detrimental to the leaching of Cr. For sample F, ageing was ineffective and heat treatment had marginally better results, while accelerated carbonation delivered the most effective performance, with slurry carbonation meeting all DIN limits. Slurry carbonation was deemed the most effective treatment process, achieving consistently significant leaching stabilization, while also effectively washing out Cl ions, a requirement for the utilization of the ashes in construction applications. The benefits of carbonation were linked to the formation of significant quantities of Ca-carbonates, including appreciable quantities of the Aragonite polymorph formed in the slurry carbonated samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effect of a micro-copolymer addition on the thermal conductivity of fly ash mortars.

    PubMed

    Durán-Herrera, A; Campos-Dimas, J K; Valdez-Tamez, P L; Bentz, D P

    2016-07-01

    In this study, a copolymer composed of hollow spherical particles with an average particle size of 90 µm was evaluated as a lightweight aggregate in Portland cement-fly ash mortars to improve the thermal conductivity ( k ) of the composite. Mortars were produced for three different water/binder ratios by mass ( w/b ), 0.4, 0.5 and 0.6. Optimized proportions were obtained for a minimum target compressive strength of 35 kg f /cm 2 (3.4 MPa) according to the requirements of Mexican standards for non-structural masonry units. Thermal conductivity was determined for dry and saturated samples through the transient plane technique with average results of 0.16 W/(m·K) and 0.31 W/(m·K), respectively. These values represent an increment of 23 % and a reduction of 33 %, respectively, in comparison to an efficient Portland cement-based commercially available thermal insulator.

  19. Effect of a micro-copolymer addition on the thermal conductivity of fly ash mortars

    PubMed Central

    Durán-Herrera, A.; Campos-Dimas, J. K.; Valdez-Tamez, P.L.; Bentz, D. P.

    2015-01-01

    In this study, a copolymer composed of hollow spherical particles with an average particle size of 90 µm was evaluated as a lightweight aggregate in Portland cement-fly ash mortars to improve the thermal conductivity (k) of the composite. Mortars were produced for three different water/binder ratios by mass (w/b), 0.4, 0.5 and 0.6. Optimized proportions were obtained for a minimum target compressive strength of 35 kgf/cm2 (3.4 MPa) according to the requirements of Mexican standards for non-structural masonry units. Thermal conductivity was determined for dry and saturated samples through the transient plane technique with average results of 0.16 W/(m·K) and 0.31 W/(m·K), respectively. These values represent an increment of 23 % and a reduction of 33 %, respectively, in comparison to an efficient Portland cement-based commercially available thermal insulator. PMID:27453717

  20. Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA).

    PubMed

    Donatello, S; Tong, D; Cheeseman, C R

    2010-01-01

    The recovery of phosphorus from sewage sludge ash samples obtained from 7 operating sludge incinerators in the UK using a sulfuric acid washing procedure to produce a technical grade phosphoric acid product has been investigated. The influences of reaction time, sulfuric acid concentration, liquid to solid ratio and source of ISSA on P recovery have been examined. The optimised conditions were the minimum stoichiometric acid requirement, a reaction time of 120 min and a liquid to solid ratio of 20. Under these conditions, average recoveries of between 72% and 91% of total phosphorus were obtained. Product filtrate was purified by passing through a cation exchange column, concentrated to 80% H(3)PO(4) and compared with technical grade H(3)PO(4) specifications. The economics of phosphate recovery by this method are briefly discussed. 2010 Elsevier Ltd. All rights reserved.

  1. Effect of industrial and domestic ash from biomass combustion, and spent coffee grounds, on soil fertility and plant growth: experiments at field conditions.

    PubMed

    Ribeiro, João Peres; Vicente, Estela Domingos; Gomes, Ana Paula; Nunes, Maria Isabel; Alves, Célia; Tarelho, Luís A C

    2017-06-01

    An experimental study was conducted at field conditions in order to evaluate the effect of application of ash from biomass combustion on some soil fertility characteristics and plant growth. Application of 7.5 Mg ha -1 industrial fly ash (IA), domestic ash (DA), and a 50:50 mix of domestic ash (DA) and spent coffee grounds (SCG) was made in different soil parcels. Lolium perenne seeds were sown and the grown biomass was harvested and quantified after 60 days. Soil samples from each parcel were also collected after that period and characterized. Both soil and grown biomass samples were analyzed for Ca, Mg, Na, K, P, Fe, Mn, Zn, and Al contents. Soil pH was determined before and after amendment. All applications rose significantly soil pH. Domestic ash, whether combined with coffee grounds or not, proved to be efficient at supplying available macronutrients Ca, Mg, K, and P to the soil and also reducing availability of Al (more than industrial ash). However, it inhibited plant growth, even more when combined with spent coffee grounds. As regards to elemental abundance in plant tissue, both domestic ash treatments reduced Ca and enhanced Al contents, unlike industrial ash, which proved less harmful for the load applied in the soil. Hence, it was possible to conclude that application load should be a limiting factor for this management option for the studied materials.

  2. Leaching behavior of coal combustion products and the environmental implication in road construction.

    DOT National Transportation Integrated Search

    2011-10-01

    This project assessed the physical and chemical characteristics of fly ashes produced from trona injection plants (used for SO2 : emission control), and investigated the leaching of a group of concerned inorganic contaminants from these fly ashes. A ...

  3. Optimizing concrete mix designs to produce cost effective paving mixes.

    DOT National Transportation Integrated Search

    2009-09-01

    This research is designed to determine the effect of the mechanically activated fly ash on fresh : concrete properties and the ultimate strength of the hardened concrete. Six types of fly ash that are : locally available in the state of Oklahoma were...

  4. Honey collected from different floras of Chandigarh Tricity: a comparative study involving physicochemical parameters and biochemical activities.

    PubMed

    Kumar, Pradeep; Sindhu, Rakesh K; Narayan, Shridhar; Singh, Inderbir

    2010-12-01

    Different monofloral honeys have a distinctive flavor and color because of differences in physicochemical parameters because of their principal nectar sources or floral types. Honey samples were collected from Apis mellifera colonies forged on 10 floras to analyze the quality of honey in terms of standards laid by Honey Grading and Marking Rules (HGMR), India, 2008 and Codex Alimentarious Commission (CAC), 1969 . The honey samples were analyzed for various physicochemical parameters of honey quality control, i.e., pH, total acidity, moisture, reducing sugars, non-reducing sugars, total sugars, water insoluble solids (WIS), ash content, 5-hydroxymethylfurfural content, and diastase value. The antioxidant potential was estimated using Folin-Ciocalteu reagent. Further, honey samples were assayed for antibacterial activities against clinical isolates of Staphylococcus aureus and Escherichia coli using the hole-plate diffusion method. The physicochemical variation in the composition of honey because of floral source shows Ziziphus honey with high pH and diastase values along with low acidity, whereas Helianthus honey contained high reducing sugar and low moisture content. Amomum, Brassica, Acacia, and Citrus contained lowest amount of non-reducing sugars, ash, WIS, and moisture, respectively. Lowest 5-hydroxymethylfurfural (HMF) value was detected in Amomum honey, while highest HMF value was observed with Eucalyptus. The maximum antibacterial and antioxidant potential was observed in Azadirachta and Citrus, respectively. The quality of honey produced by local beekeepers met HGMR and CAC standards, and the chemical composition and biological properties of honey were dependent on the floral source from which it was produced.

  5. Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash

    PubMed Central

    Grau, Francisco; Choo, Hyunwook; Hu, Jong Wan; Jung, Jongwon

    2015-01-01

    Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing the natural materials as an economical and environmental alternative. This study is intended to provide an environmental solution for uncontrolled disposal of biomass ashes by way of recycling the biomass ash and replacing the soils in geotechnical engineering projects. Therefore, in this study, characteristic tests of wood and sugarcane bagasse ashes that are considered the most common biomass ashes are conducted. The test of chemical compositions of biomass ashes is conducted using energy dispersive X-ray spectroscopy (EDS), and Scanning Electron Microscope (SEM), and heavy metal analysis is also conducted. Engineering behaviors including hydraulic conductivity, constrained modulus and shear modulus are examined. Also, coal fly ash Class C is used in this study for comparison with biomass ashes, and Ottawa 20/30 sands containing biomass ashes are examined to identify the soil replacement effect of biomass ashes. The results show that the particle sizes of biomass ashes are halfway between coal fly ash Class C and Ottawa 20/30 sand, and biomass ashes consist of a heterogeneous mixture of different particle sizes and shapes. Also, all heavy metal concentrations were found to be below the US Environmental Protection Agency (EPA) maximum limit. Hydraulic conductivity values of Ottawa 20/30 sand decrease significantly when replacing them with only 1%–2% of biomass ashes. While both the constrained modulus and shear modulus of biomass ashes are lower than Ottawa 20/30 sand, those of mixtures containing up to 10% biomass ashes are little affected by replacing the soils with biomass ashes. PMID:28793611

  6. Development of an automatic volcanic ash sampling apparatus for active volcanoes

    NASA Astrophysics Data System (ADS)

    Shimano, Taketo; Nishimura, Takeshi; Chiga, Nobuyuki; Shibasaki, Yoshinobu; Iguchi, Masato; Miki, Daisuke; Yokoo, Akihiko

    2013-12-01

    We develop an automatic system for the sampling of ash fall particles, to be used for continuous monitoring of magma ascent and eruptive dynamics at active volcanoes. The system consists of a sampling apparatus and cameras to monitor surface phenomena during eruptions. The Sampling Apparatus for Time Series Unmanned Monitoring of Ash (SATSUMA-I and SATSUMA-II) is less than 10 kg in weight and works automatically for more than a month with a 10-kg lead battery to obtain a total of 30 to 36 samples in one cycle of operation. The time range covered in one cycle varies from less than an hour to several months, depending on the aims of observation, allowing researchers to target minute-scale fluctuations in a single eruptive event, as well as daily to weekly trends in persistent volcanic activity. The latest version, SATSUMA-II, also enables control of sampling parameters remotely by e-mail commands. Durability of the apparatus is high: our prototypes worked for several months, in rainy and typhoon seasons, at windy and humid locations, and under strong sunlight. We have been successful in collecting ash samples emitted from Showa crater almost everyday for more than 4 years (2008-2012) at Sakurajima volcano in southwest Japan.

  7. The Effect of Baggase Ash on Fly Ash-Based Geopolimer Binder

    NASA Astrophysics Data System (ADS)

    Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Banugraha, R.; Alfi, M.; Abdullah, M. M. A. B.

    2018-06-01

    Geopolymer concrete is an environmentally friendly concrete. However, the geopolymer binder has a problem with setting time; mainly the composition comprises high calcium fly ash. This study utilized bagasse ash to improve setting time on fly ash-based geopolymer binder. The characterization of bagasse ash was carried out by using chemical and phase analysis, while the morphology characterization was examined by scanning electron microscope (SEM). The setting time test and the compressive strength test used standard ASTM C 191-04 and ASTM C39 / C39M respectively. The compressive strength of the samples determined at 3, 28 and 56 days. The result compared the requirement of the standards.

  8. Effects Of Crystallographic Properties On The Ice Nucleation Properties Of Volcanic Ash Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Gourihar R.; Nandasiri, Manjula I.; Zelenyuk, Alla

    2015-04-28

    Specific chemical and physical properties of volcanic ash particles that could affect their ability to induce ice formation are poorly understood. In this study, the ice nucleating properties of size-selected volcanic ash and mineral dust particles in relation to their surface chemistry and crystalline structure at temperatures ranging from –30 to –38 °C were investigated in deposition mode. Ice nucleation efficiency of dust particles was higher compared to ash particles at all temperature and relative humidity conditions. Particle characterization analysis shows that surface elemental composition of ash and dust particles was similar; however, the structural properties of ash samples weremore » different.« less

  9. Rock magnetic finger-printing of soil from a coal-fired thermal power plant.

    PubMed

    Gune, Minal; Harshavardhana, B G; Balakrishna, K; Udayashankar, H N; Shankar, R; Manjunatha, B R

    2016-05-01

    We present seasonal rock magnetic data for 48 surficial soil samples collected seasonally around a coal-fired thermal power plant on the southwest coast of India to demonstrate how fly ash from the power plant is transported both spatially and seasonally. Sampling was carried out during pre-monsoon (March), early-monsoon (June), monsoon (September) and post-monsoon (December) seasons. Low- and high-frequency magnetic susceptibility (χlf and χhf), frequency-dependent magnetic susceptibility (χfd), χfd %, isothermal remanent magnetization (IRM), "hard" IRM (HIRM), saturation IRM (SIRM) and inter-parametric ratios were determined for the samples. Scanning electron microscopy (SEM) was used on limited number of samples. NOAA HYSPLIT MODEL backward trajectory analysis and principal component analysis were carried out on the data. Fly ash samples exhibit an average HIRM value (400.07 × 10(-5) Am(2) kg(-1)) that is comparable to that of soil samples. The pre- and post-monsoon samples show a consistent reduction in the concentration of magnetically "hard" minerals with increasing distance from the power plant. These data suggest that fly ash has indeed been transported from the power plant to the sampling locations. Hence, HIRM may perhaps be used as a proxy for tracking fly ash from coal-fired thermal power plants. Seasonal data show that the distribution of fly ash to the surrounding areas is minimum during monsoons. They also point to the dominance of SP magnetite in early-monsoon season, whereas magnetic depletion is documented in the monsoon season. This seasonal difference is attributable to both pedogenesis and anthropogenic activity i.e. operation of the thermal power plant.

  10. Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide.

    PubMed

    Madzivire, Godfrey; Maleka, Peane P; Vadapalli, Viswanath R K; Gitari, Wilson M; Lindsay, Robert; Petrik, Leslie F

    2014-01-15

    Mining of coal is very extensive and coal is mainly used to produce electricity. Coal power stations generate huge amounts of coal fly ash of which a small amount is used in the construction industry. Mining exposes pyrite containing rocks to H2O and O2. This results in the oxidation of FeS2 to form H2SO4. The acidic water, often termed acid mine drainage (AMD), causes dissolution of potentially toxic elements such as, Fe, Al, Mn and naturally occurring radioactive materials such as U and Th from the associated bedrock. This results in an outflow of AMD with high concentrations of sulphate ions, Fe, Al, Mn and naturally occurring radioactive materials. Treatment of AMD with coal fly ash has shown that good quality water can be produced which is suitable for irrigation purposes. Most of the potentially toxic elements (Fe, Al, Mn, etc) and substantial amounts of sulphate ions are removed during treatment with coal fly ash. This research endeavours to establish the fate of the radioactive materials in mine water with coal fly ash containing radioactive materials. It was established that coal fly ash treatment method was capable of removing radioactive materials from mine water to within the target water quality range for drinking water standards. The alpha and beta radioactivity of the mine water was reduced by 88% and 75% respectively. The reduced radioactivity in the mine water was due to greater than 90% removal of U and Th radioactive materials from the mine water after treatment with coal fly ash as ThO2 and UO2. No radioisotopes were found to leach from the coal fly ash into the mine water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A Modern Analog to the Depositional Age Problem: Zircon and Apatite Fission Track and U-Pb Age Distributions by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Donelick, H. M.; Donelick, M. B.; Donelick, R. A.

    2012-12-01

    Sand from three river systems in North Idaho (Snake River near Lewiston, Clearwater River near Lewiston and the Salmon River near White Bird) and two regional ash fall events (Mt. Mazama and Mt. St. Helens) were collected for zircon U-Pb detrital age analysis. Up to 120 grains of zircon per sample were ablated using a Resonetics M-50 193 nm ArF Excimer laser ablation (LA) system and the Pb, Th, and U isotopic signals were quantified using an Agilent 7700x quadrupole inductively coupled plasma-mass spectrometer (ICP-MS). Isotopic signals for major, minor, and trace elements, including all REEs, were also monitored. The youngest zircon U-Pb ages from the river samples were approximately 44 Ma; Cenozoic Idaho Batholith and Precambrian Belt Supergroup ages were well represented. Significant common Pb contamination of the Clearwater River sample (e.g., placer native Cu was observed in the sample) precluded detailed analysis of the zircon U-Pb ages but no interpretable ages <44 Ma were observed. Interestingly, not one of the river samples yielded zircon U-Pb ages near 0 Ma, despite all three catchment areas having received significant ash from Mt. St. Helens in 1980, and Mount Mazama 7,700 years ago, and no doubt other events during the Quaternary. Work currently in progress seeks to address bias against near 0 Ma ages in the catchment areas due to: a) small, local ash fall grain sizes and b) overwhelming number of older grains relative to the ash fall grains. Data from Mt. St. Helens ash from several localities near the mountain (Toutle River and Maple Flats, WA) and several far from the mountain (Spokane, WA; Princeton, ID; Kalispell, MT) and Mt. Mazama ash fall deposits near Lewiston, ID and Spokane, WA will be presented to address these possibilities. Additionally, fission track and U-Pb ages from apatites collected from these river and ash fall samples will also be shown to help constrain the problem.

  12. Aquatic ecotoxicity of ashes from Brazilian savanna wildfires.

    PubMed

    Brito, Darlan Q; Passos, Carlos José S; Muniz, Daphne H F; Oliveira-Filho, Eduardo C

    2017-08-01

    In a global scenario of climate change, several studies have predicted an increase in fires in different parts of the world. With the occurrence of rains following the fires in the Brazilian savanna (Cerrado biome), the compounds present in ashes may enter aquatic environments and cause adverse effects to these ecosystems. In this context, this study evaluated the potential toxicity of ashes from two areas of Cerrado and an area of pasture, through ecotoxicological bioassays and using three aquatic species from distinct trophic levels, which were exposed to different dilutions of ashes: the microcrustacean Ceriodaphnia dubia, the fish Danio rerio and the mollusc Biomphalaria glabrata. The ashes from the three sampled areas showed higher concentrations of some elements in relation to the soil samples (B, Ca, K, Mg, Mn, P, S, Si, Sr, Zn), but only a small quantity of these compounds was solubilised. Our data showed that all ash samples caused acute toxicity to C. dubia (48hs-LC 50  = 13.4 g L -1 ; 48hs-LC 50  = 6.33 g L -1 ; 48hs-LC 50  = 9.73 g L -1 respectively for transition area, pasture, typical cerrado areas), while in relation to D. rerio and B. glabrata, no acute toxicity was observed when they were exposed to ashes from native Cerrado vegetation and pasture areas. Ashes from a transition area showed toxicity for D. rerio (48hs-LC 50  = 25.0 g L -1 ); possibly, this was due to the combination of multiple preponderant inorganic elements of ashes with other organic compounds not analysed, such as polycyclic aromatic hydrocarbons (PAHs). In summary, these results suggest that wildfires may pose risks to zooplankton communities and emphasize the need for more studies to better understand the complexity of the ecological effects of fire on aquatic ecosystems.

  13. Long-range volcanic ash transport and fallout during the 2008 eruption of Chaiten volcano, Chile

    NASA Astrophysics Data System (ADS)

    Durant, A. J.; Prata, A. J.; Villarosa, G.; Rose, W. I.; Delmelle, P.; Viramonte, J.

    2012-04-01

    The May 2008 eruption of Chaitén volcano, Chile, provided a rare opportunity to measure the long-range transport of volcanic emissions and characteristics of a widely-dispersed terrestrial ash deposit. Airborne ash mass, quantified using thermal infrared satellite remote sensing, ranged between 0.2-0.4 Tg during the period 3-7 May 2008. A high level of spatiotemporal correspondence was observed between cloud trajectories and changes in surface reflectivity, which was inferred to indicate ash deposition. The evolution of the deposit was mapped for the first time using satellite-based observations of surface reflectivity. The distal (>80 km) ash deposit was poorly sorted and fine grained, and mean particle size varied very little beyond a distance >300 km. There were 3 consistent particle size subpopulations in fallout at distances >300 km which suggests that aggregation influenced particle settling. Discrete temporal sampling and characterisation of fallout demonstrated contributions from specific eruptive phases. Some evidence for winnowing was identified through comparison of samples collected at the time of deposition to bulk samples collected months after deposition. X-Ray Photoelectron Spectroscopy (XPS) analyses revealed surface enrichments in Ca, Na and Fe and the presence of coatings of mixed Ca-, Na- and Fe-rich salts on ash particles prior to deposition. XPS analyses revealed strong surface Fe enrichments (in contrast to the results from bulk leachate analyses), which indicates that surface analysis techniques should be applied to investigate potential influences on ocean productivity in response to volcanic ash fallout over oceans. Low S:Cl ratios in leachates indicate that the eruption had a low S content, and high Cl:F ratios imply gas-ash interaction within a Cl-rich environment. We estimate that ash fallout had potential to scavenge ~42 % of total S released into the atmosphere prior to deposition.

  14. Characterization of Rare Earth Element Minerals in Coal Utilization Byproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montross, Scott N.; Verba, Circe A.; Collins, Keith

    The United States currently produces over 100 million tons of coal utilization byproducts (CUB) per year in the form of fly ash, bottom ash, slag, and flue gas (American Coal Ash Association (ACCA), 2015). But this “waste material” also contains potentially useful levels of rare earth elements (REE). Rare earth elements are crucial for many existing and emerging technologies, but the U.S. lacks a domestic, sustainable REE source. Our project explored the possibility of developing a supply of REEs for U.S. technologies by extracting REEs from CUBs. This work offers the potential to reduce our dependence on other countries formore » supply of these critical elements (NETL, REE 2016 Project Portfolio). Geologic and diagenetic history, industrial preparation methods, and the specific combustion process all play major roles in the composition of CUB. During combustion, inorganic mineral phases of coal particles are fluidized at temperatures higher than 1400oC, so inorganic mineral materials are oxidized, fused, disintegrated, or agglomerated into larger spherical and amorphous (non-crystalline) particles. The original mineralogy of the coal-containing rock and heating/cooling of the material significantly affects the composition and morphology of the particles in the combustion byproduct (Kutchko and Kim, 2006). Thus, different types of coal/refuse/ash must be characterized to better understand mineral evolution during the combustion process. Our research focused on developing a working model to address how REE minerals behave during the combustion process: this research should help determine the most effective engineering methods for extracting REEs from CUBs. We used multimodal imaging and image processing techniques to characterize six rock and ash samples from different coal power plants with respect to morphology, grain size, presence of mineral phases, and elemental composition. The results of these characterization activities provided thresholds for realizing the occurrence of REE mineral phases in CUB and allowed us to calculate structural and volumetric estimates of REE. Collectively, the rock and coal ash samples contained minerals such as quartz, kaolinite, muscovite/illite, iron oxide (as hematite or magnetite), mullite, and clinochlore. Trace minerals included pyrite, zircon, siderite, rutile, diopside, foresterite, gypsum, and barite. We identified REE phosphate minerals monazite (Ce,La,Nd,Th)(PO 4,SiO 4), xenotime (YPO 4,SiO 4), and apatite (Ca 5(PO 4) 3(F,Cl,OH) via SEM and electron microprobe analysis: these materials generally occurred as 1-10 μm-long crystals in the rock and ash samples. As has been shown in other studies, amorphous material-aluminosilicate glass or iron oxyhydroxide-are the major components of coal fly and bottom ash. Trace amounts of amorphous calcium oxide and mixed element (e.g., Al-Si-Ca-Fe) slag are also present. Quartz, mullite, hematite, and magnetite are the crystalline phases present. We found that REEs are present as monomineralic grains dispersed within the ash, as well as fused to or encapsulated by amorphous aluminosilicate glass particles. Monazite and xenotime have relatively high melting points (>1800 °C) compared to typical combustion temperatures; our observations indicate that the REE-phosphates, which presumably contribute a large percentage of REE to the bulk ash REE pool, as measured by mass spectroscopy, are largely unaltered by the combustion. Our study shows that conventional coal combustion processes sequester REE minerals into aluminosilicate glass phases, which presents a new engineering challenge for extracting REE from coal ash. The characterization work summarized in this report provides a semi-quantitative assessments of REE in coal-containing rock and CUB. The data we obtained from 2- and 3-D imaging, elemental mapping, volumetric estimates, and advanced high-resolution pixel classification successfully identified the different mineral phases present in CUB. Further, our characterization results can guide techniques for extracting REEs from CUB, or other geologic and engineered materials. Whilst, interpretations will inform future REE separation and extraction techniques and technologies practical for commercial utilization of combustion byproducts generated by power plants.« less

  15. Assessment of compost application to coal ash disposal sites to promote the rapid vegetation establishment

    NASA Astrophysics Data System (ADS)

    Repmann, F.; Slazak, A.; Babic, M.; Schneider, B. U.; Schaaf, W.; Hüttl, R. F.

    2009-04-01

    In the city of Tuzla, located in Bosnia and Herzegovina, a coal fired thermo electric power plant is operated by the company JP ELEKTROPRIVERDA BIH TERMOELEKTRANA "TUZLA". High amounts of ash are produced by the power plant, which are currently disposed into settlement ponds bordered by dams in natural valleys. A total of four ash disposal sites covering an area of approx. 170 ha have been established during the last decades. Due to the fact that residual ash from coal combustion was found to contain a variety of trace elements (Ni, Cr, As, B), it must be assumed that ash disposal of that magnitude constitutes an environmental problem which is investigated within the EU-FP6 / STREP project "Reintegration of Coal Ash Disposal Sites and Mitigation of Pollution in the West Balkan Area" RECOAL. The main hazards relate to soil and groundwater contamination due to leaching toxins, dust dispersion, and toxins entering the food chain as these disposal sites are used for agricultural purposes. In order to rapidly establish a vegetation cover on barren ash dumps that particularly would prevent dust erosion we assessed the applicability of compost, produced from locally available municipal and industrial organic residues as an amendment to ash to improve substrate fertility. The envisaged remediation technology was considered to be a low cost, easy applicable and rapid method capable of substantially enhancing living conditions of residents in the vicinity of the abandoned disposal sites. Various compost application rates were evaluated in the field on experimental site Divkovici I in Tuzla and additionally in the greenhouse environment at Brandenburg Technical University Cottbus. Field and laboratory tests revealed that plant growth and cover rate can substantially be improved by mixing compost into the upper ash layer to a maximum depth of approx. 20 cm. Besides direct growth observations in the field analysis of soil parameters gave evidence that the fertility of ashy substrates amended with compost produced from locally available sewage sludge and saw dust can be improved. The metal content of grass grown in the various treatments was considered to be elevated compared to normal contents. However, metal uptake in compost treatments was lower than in untreated plots. A preliminary cost assessment, comparing the remediation technology tested on site Divkovici with a standard soil covering technique revealed financial benefits for the compost method due to significant lower application rates.

  16. Physical factors affecting the mutagenicity of fly ash from a coal-fired power plant.

    PubMed

    Fisher, G L; Chrisp, C E; Raabe, O G

    1979-05-25

    The two finest, most respirable coal fly ash fractions collected from the smokestack of a power plant were more mutagenic than two coarser fractions. Mutagenicity was evaluated in the histidine-requiring bacterial strains TA 1538, TA 98, and TA 100 of Salmonella typhimurium. Ash samples collected from the hoppers of an electrostatic precipitator in the plant were not mutagenic. The mutagens in coal fly ash were resistant to x-ray or ultraviolet irradiation, possibly as a result of stabilization by fly ash surfaces. All mutagenic activity is lost with heating to 350 degrees C.

  17. Volcanic and atmospheric controls on ash iron solubility: A review

    NASA Astrophysics Data System (ADS)

    Ayris, Paul; Delmelle, Pierre

    2012-01-01

    The ash material produced by volcanic eruptions carries important information about the underground magma eruptive conditions and subsequent modifications in the volcanic plume and during atmospheric transport. Volcanic ash is also studied because of its impacts on the environment and human health. In particular, there is a growing interest from a multidisciplinary scientific community to understand the role that ash deposition over open ocean regions may play as a source of bioavailable Fe for phytoplankton production. Similar to aeolian mineral dust, the processes that affect the mineralogy and speciation of Fe in ash may promote solubilisation of Fe in ash, and thus may increase the amount of volcanic Fe supplied to ocean surface waters. Our knowledge of these controls is still very limited, a situation which has hindered quantitative interpretation of experimental Fe release measurements. In this review, we identify the key volcanic and atmospheric controls that are likely to modulate ash Fe solubility. We also briefly discuss existing data on Fe release from ash and make some recommendations for future studies in this area.

  18. Studies on jicama juice processing.

    PubMed

    Juarez, M S; Paredes-Lopez, O

    1994-09-01

    Juice was extracted from jicama (Pachyrrizus erosus Urban) and clarified using a 10,000 daltons molecular weight cut-off membrane to improve its stability. Ultrafiltered juice was tested for general composition and Hunter color. Ultrafiltration (UF) retentate and UF permeate showed some changes, compared to fresh juice, in total and soluble solids, total sugars, and nitrogen, whereas ash and pH remained constant. Hunter color of juice samples exhibited some variation by UF. Results suggest that UF has potential to produce jicama juice with desirable and stable aroma and flavor.

  19. Removal of fly-ash and dust particulate matters from syngas produced by gasification of coal by using a multi-stage dual-flow sieve plate wet scrubber.

    PubMed

    Kurella, Swamy; Meikap, Bhim Charan

    2016-08-23

    In this work, fly-ash water scrubbing experiments were conducted in a three-stage lab-scale dual-flow sieve plate scrubber to observe the performance of scrubber in fly-ash removal at different operating conditions by varying the liquid rate, gas rate and inlet fly-ash loading. The percentage of fly-ash removal efficiency increases with increase in inlet fly-ash loading, gas flow rate and liquid flow rate, and height of the scrubber; 98.55% maximum percentage of fly-ash removal efficiency (ηFA) is achieved at 19.36 × 10(-4) Nm(3)/s gas flow rate (QG) and 48.183 × 10(-6) m(3)/s liquid flow rate (QL) at 25 × 10(-3) kg/Nm(3) inlet fly-ash loading (CFA,i). A model has also been developed for the prediction of fly-ash removal efficiency of the column using the experimental results. The predicted values calculated using the correlation matched well with the experimental results. Deviations observed between the experimental and the predicted values were less than 20%.

  20. Novel dry-desulfurization process using Ca(OH)2/fly ash sorbent in a circulating fluidized bed.

    PubMed

    Matsushima, Norihiko; Li, Yan; Nishioka, Masateru; Sadakata, Masayoshi; Qi, Haiying; Xu, Xuchang

    2004-12-15

    A dry-desulfurization process using Ca(OH)2/fly ash sorbent and a circulating fluidized bed (CFB) was developed. Its aim was to achieve high SO2 removal efficiency without humidification and production of CaSO4 as the main byproduct. The CaSO4 produced could be used to treat alkalized soil. An 83% SO2 removal rate was demonstrated, and a byproduct with a high CaSO4 content was produced through baghouse ash. These results indicated that this process could remove SO2 in flue gas with a high efficiency under dry conditions and simultaneously produce soil amendment. It was shown that NO and NO2 enhanced the SO2 removal rate markedly and that NO2 increased the amount of CaSO4 in the final product more than NO. These results confirmed that the significant effects of NO and NO2 on the SO2 removal rate were due to chain reactions that occurred under favorable conditions. The amount of baghouse ash produced increased as the reaction progressed, indicating that discharge of unreacted Ca(OH)2 from the reactor was suppressed. Hence, unreacted Ca(OH)2 had a long residence time in the CFB, resulting in a high SO2 removal rate. It was also found that 350 degrees C is the optimum reaction temperature for dry desulfurization in the range tested (320-380 degrees C).

  1. Composite Ni-Co-fly ash coatings on 5083 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Panagopoulos, C. N.; Georgiou, E. P.; Tsopani, A.; Piperi, L.

    2011-03-01

    Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.

  2. [Near-infrared reflectance spectroscopy predicts protein, moisture and ash in beans].

    PubMed

    Gao, Huiyu; Wang, Guodong; Men, Jianhua; Wang, Zhu

    2017-05-01

    To explore the potential of near-infrared reflectance( NIR)spectroscopy to determine macronutrient contents in beans. NIR spectra and analytical measurements of protein, moisture and ash were collected from 70 kinds of beans. Reference methods were used to analyze all the ground beans samples. NIR spectra on intact and ground beans samples were registered. Partial least-squares( PLS)regression models were developed with principal components analysis( PCA) to assign 49 bean accessions to a calibration data set and 21 accessions to an external validation set. For intact beans, the relative predictive determinant( RPD) values for protein and ash( 3. 67 and 3. 97, respectively) were good for screening. RPD value for moisture was only 1. 39, which was not recommended. For ground beans, the RPD values for protein, moisture and ash( 6. 63, 5. 25 and 3. 57, respectively) were good enough for screening. The protein, moisture and ash levels for intact and ground beans were all significantly correlated( P < 0. 001) between the NIR and reference method and there was no statistically significant difference in the mean with these three traits. This research demonstrates that NIR is a promising technique for simultaneous sorting ofmultiple traits in beans with no or easy sample preparation.

  3. Relationship between textural properties, fly ash carbons, and Hg capture in fly ashes derived from the combustion of anthracitic pulverized feed blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isabel Surez-Ruiz; Jose B. Parra

    2007-08-15

    In this work, the textural properties of a series of whole anthracitic-derived fly ashes sampled in eight hoppers from the electrostatic precipitators and their sized fractions (from {gt}150 to {lt}25 {mu}m) are investigated. Data from N{sub 2} adsorption isotherms at 77 K, helium density, and mercury porosimetry have contributed to establish a relationship between the Brunauer-Emmett-Teller (BET) surface areas, VTOT, porosity, carbon content (the type of fly ash carbons), and Hg retention in these fly ashes. The unburned carbons in these ashes are macroporous materials, and they are different from the carbons in fly ashes from classes C and Fmore » (the latter derived from the combustion of bituminous coals) and show different textural properties. These ashes represent the end member of the fly ash classes C and F with respect to certain textural properties. Although the BET surface area and VTOT values for the studied samples are the lowest reported, they increase with the increase in carbon content, anisotropic carbon content, and particle size of the ashes. Thus, a positive relationship between all these parameters and Hg capture by the coarser ash fractions was found. The finest fraction of carbons ({lt}25 {mu}m) represented an exception. Although it makes a significant contribution to the total carbon of the whole fly ashes and shows relatively higher surface areas and VTOT values, its Hg concentration was found to be the lowest. This suggests that the type of unburned carbons in the finest fraction and/or other adsorption mechanisms may play a role in Hg concentration. Because the textural properties of anisotropic carbons depend on their subtype and on their origin, the need for its differentiation has been evidenced. 54 refs., 8 figs., 3 tabs.« less

  4. Characterization and virulence of Beauveria spp. recovered from emerald ash borer in southwestern Ontario, Canada.

    PubMed

    Johny, Shajahan; Kyei-Poku, George; Gauthier, Debbie; Frankenhuyzen, Kees van; Krell, Peter J

    2012-09-15

    The emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae), is an invasive wood boring beetle that is decimating North America's ash trees (Fraxinus spp.). To find effective and safe indigenous biocontrol agents to manage EAB, we conducted a survey in 2008-2009 of entomopathogenic fungi (EPF) infecting EAB in five outbreak sites in southwestern Ontario, Canada. A total of 78 Beauveria spp. isolates were retrieved from dead and mycosed EAB cadavers residing in the phloem tissues of dead ash barks, larval frass extracted from feeding galleries under the bark of dead trees. Molecular characterization using sequences of the ITS, 5' end of EF1-α and intergenic Bloc region fragments revealed that Beauveria bassiana and Beauveria pseudobassiana were commonly associated with EAB in the sampled sites. Based on phylogenetic analysis inferred from ITS sequences, 17 of these isolates clustered with B. bassiana, which further grouped into three different sub-clades. However, the combined EF1-α and Bloc sequences detected five genotypes among the three sub-clades. The remaining 61 isolates clustered with B. pseudobassiana, which had identical ITS sequences but were further subdivided into two genotypes by variation in the EF1-α and Bloc regions. Initial virulence screening against EAB adults of 23 isolates representing the different clades yielded 8 that produced more than 90% mortality in a single concentration assay. These isolates differed in virulence based on LC(50) values estimated from multiple concentration bioassay and based on mean survival times at a conidia concentration of 2×10(6) conidia/ml. B. bassiana isolate L49-1AA was significantly more virulent and produced more conidia on EAB cadavers compared to the other indigenous isolates and the commercial strain B. bassiana GHA suggesting that L49-1AA may have potential as a microbiological control agent against EAB. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  5. Characterization of polymer decomposition products by laser desorption mass spectrometry

    NASA Technical Reports Server (NTRS)

    Pallix, Joan B.; Lincoln, Kenneth A.; Miglionico, Charles J.; Roybal, Robert E.; Stein, Charles; Shively, Jon H.

    1993-01-01

    Laser desorption mass spectrometry has been used to characterize the ash-like substances formed on the surfaces of polymer matrix composites (PMC's) during exposure on LDEF. In an effort to minimize fragmentation, material was removed from the sample surfaces by laser desorption and desorbed neutrals were ionized by electron impact. Ions were detected in a time-of-flight mass analyzer which allows the entire mass spectrum to be collected for each laser shot. The method is ideal for these studies because only a small amount of ash is available for analysis. Three sets of samples were studied including C/polysulfone, C/polyimide and C/phenolic. Each set contains leading and trailing edge LDEF samples and their respective controls. In each case, the mass spectrum of the ash shows a number of high mass peaks which can be assigned to fragments of the associated polymer. These high mass peaks are not observed in the spectra of the control samples. In general, the results indicate that the ash is formed from decomposition of the polymer matrix.

  6. Effect of hydrated lime on compressive strength mortar of fly ash laterite soil geopolymer mortar

    NASA Astrophysics Data System (ADS)

    Wangsa, F. A.; Tjaronge, M. W.; Djamaluddin, A. R.; Muhiddin, A. B.

    2017-11-01

    This paper explored the suitability of fly ash, hydrated lime, and laterite soil with several activator (sodium hydroxide and sodium tiosulfate) to produce geopolymer mortar. Furthermore, the heat that released by hydrated lime was used instead of oven curing. In order to produce geopolymer mortar without oven curing, three variations of curing condition has been applied. Based on the result, all the curing condition showed that the hardener mortar can be produced and exhibited the increasing of compressive strength of geopolymer mortar from 3 days to 7 days without oven curing.

  7. Physical and biological studies of coal and oil fly ash.

    PubMed Central

    Fisher, G L; McNeill, K L; Prentice, B A; McFarland, A R

    1983-01-01

    Studies were performed to compare the physical and chemical characteristics and the in vitro macrophage cytotoxicity of oil and coal fly ash. Sampling methodology was developed to collect size-fractionated particulate matter from the smokestack of either a coal-fired or an oil-fired power plant. Morphological studies demonstrated particle heterogeneity, although most coal fly ash particles appeared to be spherical. Oil fly ash contained two major morphologies; nonopaque amorphous particles and opaque amorphous particles. Elemental analysis indicates that the coal ash is predominantly composed of aluminosilicate particles, while the oil ash is predominantly inorganic sulfates and carbonaceous particles. In vitro macrophage assays demonstrate that the finest coal fly ash particles are the most cytotoxic; the cytotoxicity is significantly less than that of alpha-quartz, the positive control particle. In contrast, the oil fly ash particles are more cytotoxic than quartz. The cytotoxicity of oil fly ash is due to soluble components, possibly vanadium salts. Images FIGURE 2. A FIGURE 2. B FIGURE 2. C FIGURE 2. D PMID:6641653

  8. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    PubMed Central

    Adama, M.; Esena, R.; Fosu-Mensah, B.; Yirenya-Tawiah, D.

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites. PMID:27034685

  9. The chemical and oxidation characteristics of semi-dry flue gas desulfurization ash from a steel factory.

    PubMed

    Liu, Ren-ping; Guo, Bin; Ren, Ailing; Bian, Jing-feng

    2010-10-01

    Some samples of semi-dry flue gas desulfurization (FGD) ash were taken from sinter gas of a steel factory. Scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were employed to identify the samples in order to investigate their physical and chemical characteristics. The results show that semi-dry FGD ash from a steel factory is stable under atmospheric conditions. It has irregular shape, a smooth surface and loose construction. The size of FGD ash particles is around 0.5-25 µm, the average size is about 5 µm and the median diameter is 4.18 µm. Semi-dry FGD ash from a steel factory consists of CaSO₃, CaSO₄, CaCO₃, some amorphous vitreous material and unburned carbon. An experimental method was found to study the oxidation characteristics of ash. A prediction model of the oxidation efficiency was obtained based on response surface methodology. The results show that not only the temperature, but also gas:solid ratio, play an important role in influencing the oxidation efficiency. The interactions of the gas:solid ratio with temperature play an essential role. An improved response surface model was obtained which can be helpful to describe the degree of oxidation efficiency of semi-dry FGD ash.

  10. Effects of a layer of vegetative ash layer on wettable and water repellent soil hydrology

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.; Doerr, Stefan H.; Cerdà, Artemi; Mataix-Solera, Jorge

    2010-05-01

    Following a wildfire, a layer of vegetative ash often covers the ground until it is dissolved or redistributed by wind and water erosion. Much of the existing literature suggests that the ash layer temporally reduces infiltration by clogging soil pores or by forming a surface crust (Mallik et al., 1984; Onda et al., 2008). However, an increasing number of field-based studies have found that, at least in the short term, ash increases infiltration by storing rainfall and protecting the underlying soil from sealing (Cerdà and Doerr, 2008; Woods and Balfour, 2008). On the other hand, after a fire the soil may have produced, enhanced or reduced its water repellency (Doerr et al., 2000). Very few studies have been taken into account the interaction of the ash and the repellent soil. The layer of ash may have similar role as a litter layer in delaying runoff and reducing erosion by storing water. In order to examine this interaction, it was been made a series of experiments using a laboratory rainfall simulation. It has been assessed the effects of an ash layer i) on a wettable and water repellent soil (WDPT > 7200s), ii) with different ash thicknesses (bare soil and 5 mm, 15 mm and 30 mm of ash), iii) preceding and following the first rain after a fire when the ground is still wetted and after being partially dried. Three replicates were done, being a total of 40 simulations. The ash used was collected from a Wildfire in Teruel (Spain) during summer of 2009. The simulations were conducted in metal boxes of 30x30 cm and filled with 3 cm of soil. The slope of the box was set at 10° (17%) and the intensity applied was 78-84 mm h-1during 40 minutes. The splash detachment was determined also using four splash cups. Overland flow and subsurface drainage was collected at 1-minute intervals and the former stored every 5 min to allow determination of sediment concentrations, yield and erosion rates. Each sample was examined at the end in terms of water repellency, infiltration pattern and ash incorporation into the soil. The results show that when ash covers the wettable soil, runoff occur for a short period of time in the middle of the event. It occurred latter on time but larger in quantity as the ash thickness increases (from 0% to 2% of runoff coefficient) and at the same time drainage is reduced (from 57 to 24%). This suggests that the ash layer became saturated and produce runoff until the water is able to drain into the soil. Oppositely, in water repellent soil as ash thickness increases both runoff is reduced (from 78% to 26%) and drainage is increased (from 0 to 16%). That fact indicates a modification in the hydraulic conductivity of the repellent soil due to the pressure of the ash layer. Splash and erosion rates are bigger in water repellent soils yet erosion rates never exceed 2.5 g m-2 h-1. The fact of wetting increases the runoff and drainage rates in wettable but reduce them in the water repellent soil. An irregular infiltration pattern is observed afterwards. After drying the soil, the increase in runoff indicates a crust formation. Moreover, in water repellent soils part of the repellency is reestablished. These findings demonstrate that the interaction of the soil-ash layer should be considered and better studied in the immediate hydrological response after wildfire due to its particular behavior. References Cerdà, A. and Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74: 256-263. Doerr, S.H., Shakesby, R.A. and Walsh, R.P.D., 2000. Soil Water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth Science Reviews, 51: 33-65. Mallik, A.U., Gimingham, C.H. and Rahman, A.A., 1984. Ecological effects of heater burning. I. Water infiltration, moisture retention and porosity of surface soil. Journal of Ecology, 72: 767-776. Onda, Y., Dietrich, W.E. and Booker, F., 2008. Evolution of overland flow after a severe forest fire, Point Reyes, California. Catena, 72: 13-20. Woods, S.W. and Balfour, V., 2008. The effect of ash on runoff and erosion after a forest wildfire, Montana, U.S.A. International Journal of Wildland Fire, 17(5): 535-548.

  11. Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene.

    PubMed

    Yuan, Chungang; Lu, Xiufen; Qin, Jie; Rosen, Barry P; Le, X Chris

    2008-05-01

    Biological systems, ranging from bacteria and fungi to humans, can methylate arsenic. Recent studies have suggested that the AsIII S-adenosylmethionine methyltransferase (arsM) gene in bacteria was responsible for the removal of arsenic as the volatile arsines from the bacteria. However, there has been no direct measure of the arsines released from bacteria cultures. We describe here an integrated system incorporating the bacterial incubation and volatile arsenic species analysis, and we demonstrate its application to the identification of the volatile arsines produced in bacterial cultures. The headspace of the bacterial cultures was purged with helium, and the volatile arsenic species were trapped in a chromatographic column immersed in liquid nitrogen. The cryogenically trapped arsines [AsH3, (CH3)AsH2, (CH3)2AsH, and (CH3)3As] were separated by gas chromatography and were detected by inductively coupled plasma mass spectrometry. A hydride generation system was coupled to the bacterial culture system, allowing for spiking standards and for generating calibration arsines necessary for quantitative analysis. Both bacteria containing the arsM gene or its variant arsMC2 gene were able to produce 400-500 ng of trimethylarsine. No trimethylarsine was detectable in bacteria lacking the arsM gene (containing the vector plasmid as negative control). These results confirm that arsM is responsible for releasing arsenic as volatile species from the arsenic-resistant bacteria. Our results also show traces of AsH3, CH3AsH2, and (CH3)2AsH in cultures of bacteria expressing arsM. The method detection limits for AsH3, CH3AsH2, (CH3)2AsH, and (CH3)3As were 0.5, 0.5, 0.7, and 0.6 pg, respectively. The ability to quantify trace levels of these volatile arsenic species makes it possible to study the biotransformation and biochemical roles of the evolution of these volatile arsenic species by biological systems.

  12. [Determining acid phosphatase (AcP[E.C. 3.1.3.2.]) and adenosine triphosphatase (ATPase [E.C. 3.6.1.3.]) activity in the lungs of rats following a single administration of ashes from industrial high-heat facilities].

    PubMed

    Romanowska-Sarlej, J; Staszyc, J; Królikowska-Prasał, I; Jedrzejewska, E; Kifer, E; Matysiak, W

    1988-01-01

    There was examined pulmonary tissue of white rats, which had been administered intratrachealy a single dose of the respirable fraction of ashes sample from 6 different power stations elektrohasting plants and hasting plants in Poland (0.2 ml suspension; 50 mg of the examined sample in 0.6 cm3 of NaCl solution). 9 months after the application of the ashes, biopsies of the left lung were taken and there was determined the activity of acid phosphatase (AcP) and adenosinetriphosphatase (ATP-ase) histoenzymatically. There was found sensitivity of these hydrolases and changes of their activity connected with chemical composition of the examined ashes.

  13. A review on the effect of fly ash characteristics and their variations on the synthesis of fly ash based geopolymer

    NASA Astrophysics Data System (ADS)

    Wattimena, Oswyn K.; Antoni, Hardjito, Djwantoro

    2017-09-01

    There are more than four decades since the last 1970s where geopolymers concrete was first introduced and developed to use as a replacement to conventional concrete material which uses cement as a binder. And since the last two decades, geopolymers which utilized fly ash as aluminosilicate source material, i.e. fly ash based geopolymers, have been investigated. Many researchers present how to produce the best fly ash based geopolymer with a various source of constituent material as well as mixing formula to achieve exceptional concrete performance. Although there is a similar trend towards factors affecting the result of fly ash based geopolymer synthesis, there is still remain a wide range in mixture proportion. The considerable variation in fly ash characteristics as source material in the synthesis can very likely be one of the causes of this problem. This paper attempts to identify the effect of source material variation of geopolymer concrete, particularly which use fly ash as source material and focuses on the variation of its characteristics and the effects to properties of concrete. From the reviews it concluded that different sources (and even the same source, but different batch) of fly ash materials will give some different characteristics of the fly ash, where it would affect the synthesis process of the fly ash based geopolymer concretes.

  14. The effect of water binder ratio and fly ash on the properties of foamed concrete

    NASA Astrophysics Data System (ADS)

    Saloma, Hanafiah, Urmila, Dea

    2017-11-01

    Foamed concrete is a lightweight concrete composed by cement, water, fine aggregate and evenly distributed foam. Foamed concrete is produced by adding foam to the mixture. The function of foam is to create air voids in the mixture, so the weight of the concrete becomes lighter. The foaming agent is diluted in water then given air pressure by foam generator to produce foam. This research utilizes coal combustion, which is fly ash as cementitious material with a percentage of 0%, 10%, 15%, and 20%. The purpose of the research is to examine the effect of water binder ratio 0.425, 0.450, 0.475, and 0.500 using fly ash on the properties of foamed concrete. Fresh concrete tests include slump flow and setting time test while hardened concrete tests include density and compressive strength. The maximum value of slump flow test result is 59.50 cm on FC-20-0.500 mixture with w/b = 0.500 and 20% of fly ash percentage. The results of the setting time tests indicate the fastest initial and final time are 335 and 720 minutes, respectively on FC-0-0.425 mixture with w/b = 0.425 without fly ash. The lowest density is 978.344 kg/m3 on FC-20-0.500 mixture with w/b = 0.500 and 20% of fly ash percentage. The maximum compressive strength value is 4.510 MPa at 28 days on FC-10-0.450 mixture with w/b = 0.450 and 10% of fly ash percentage.

  15. Characterization of artisanal honey produced on the Northwest of Portugal by melissopalynological and physico-chemical data.

    PubMed

    Feás, Xesús; Pires, José; Iglesias, Antonio; Estevinho, María Letícia

    2010-12-01

    Honey has always been regarded as a food which is advantageous for one's health and as a product which has healing qualities. For this reason, is necessary to protect consumers from the fraudulent mislabeling of inferior honeys. The purpose of this study was to investigate some properties of artisanal honey samples (n=45) collected from the Northwest of Portugal by using different honey analysis tests such as moisture, ash, pH, free acidity, electrical conductivity, hydroxymethylfurfural (HMF), apparent sucrose, reducing sugars and diastase activity. 77.8% of the total exceeded the quality parameters and should be labeled as "virgin" (humidity ≤18% and HMF ≤25 mg/kg). The present study found a linear correlation (y=0.551x-0.089; R=0.995) between the electrical conductivity of honeys and their ash content. All of the samples showed an Erica sp. pollen percentage ≥15%, and 42% of the total were monofloral Erica sp. In respect to coliforms and Salmonella's presence, all the honey's samples shown to be negative. The existence of sulphite-reducing Clostridia was low, and well below the established limit by MERCOSUR. Yeasts, moulds and aerobic mesophiles were detected in low amounts. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Stability of volcanic ash aggregates and break-up processes.

    PubMed

    Mueller, Sebastian B; Kueppers, Ulrich; Ametsbichler, Jonathan; Cimarelli, Corrado; Merrison, Jonathan P; Poret, Matthieu; Wadsworth, Fabian B; Dingwell, Donald B

    2017-08-07

    Numerical modeling of ash plume dispersal is an important tool for forecasting and mitigating potential hazards from volcanic ash erupted during explosive volcanism. Recent tephra dispersal models have been expanded to account for dynamic ash aggregation processes. However, there are very few studies on rates of disaggregation during transport. It follows that current models regard ash aggregation as irrevocable and may therefore overestimate aggregation-enhanced sedimentation. In this experimental study, we use industrial granulation techniques to artificially produce aggregates. We subject these to impact tests and evaluate their resistance to break-up processes. We find a dependence of aggregate stability on primary particle size distribution and solid particle binder concentration. We posit that our findings could be combined with eruption source parameters and implemented in future tephra dispersal models.

  17. Chronology and pyroclastic stratigraphy of the May 18, 1980, eruption of Mount St. Helens, Washington

    NASA Technical Reports Server (NTRS)

    Criswell, C. William

    1987-01-01

    The eruption of Mount St. Helens on May 18, 1980 can be subdivided into six phases: the paroxysmal phase I, the early Plinian phase II, the early ash flow phase III, the climactic phase IV, the late ash flow phase V, and phase VI, the activity of which consisted of a low-energy ash plume. These phases are correlated with stratigraphic subunits of ash-fall tephra and pyroclastic flow deposits. Sustained vertical discharge of phase II produced evolved dacite with high S/Cl ratios. Ash flow activity of phase III is attributed to decreases in gas content, indicated by reduced S/Cl ratios and increased clast density of the less evolved gray pumice. Climactic events are attributed to vent clearing and exhaustion of the evolved dacite.

  18. Environmental hazard of oil shale combustion fly ash.

    PubMed

    Blinova, Irina; Bityukova, Liidia; Kasemets, Kaja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Bondarenko, Olesja; Kanarbik, Liina; Sihtmäe, Mariliis; Aruoja, Villem; Schvede, Hedi; Kahru, Anne

    2012-08-30

    The combined chemical and ecotoxicological characterization of oil shale combustion fly ash was performed. Ash was sampled from the most distant point of the ash-separation systems of the Balti and Eesti Thermal Power Plants in North-Eastern Estonia. The fly ash proved potentially hazardous for tested aquatic organisms and high alkalinity of the leachates (pH>10) is apparently the key factor determining its toxicity. The leachates were not genotoxic in the Ames assay. Also, the analysis showed that despite long-term intensive oil-shale combustion accompanied by considerable fly ash emissions has not led to significant soil contamination by hazardous trace elements in North-Eastern Estonia. Comparative study of the fly ash originating from the 'new' circulating fluidized bed (CFB) combustion technology and the 'old' pulverized-fired (PF) one showed that CFB fly ash was less toxic than PF fly ash. Thus, complete transfer to the 'new' technology will reduce (i) atmospheric emission of hazardous trace elements and (ii) fly ash toxicity to aquatic organisms as compared with the 'old' technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Improvement in the traditional processing method and nutritional quality of traditional extruded cassava-based snack (modified Ajogun).

    PubMed

    Obadina, Adewale O; Oyewole, Olusola B; Williams, Oluwasolabomi E

    2013-07-01

    This study was carried out to investigate and improve the traditional processing method and nutritional quality of the traditional cassava snack (Ajogun). Cassava root (Manihot esculenta Crantz L.) of TME 419 variety was processed into mash (40% moisture content). The cassava mash was mixed into different blends to produce fried traditional "Ajogun", fried and baked extrudates (modified Ajogun) as snacks. These products were analyzed to determine the proximate composition including carbohydrate, fat, protein, fiber, ash, and moisture contents and functional properties such as bulk density. The results obtained for the moisture, fat, protein, and ash contents showed significant difference (P < 0.05) between the control sample and the extrudates. However, there was no significant difference (P > 0.05) in the carbohydrate and fiber contents between the three samples. There was no significant difference (P > 0.05) in the bulk density of the snacks. Also, sensory evaluation was carried out on the cassava-based snacks using the 9-point hedonic scale to determine the degree of acceptability. Results obtained showed significant difference (P < 0.05) between the extrudates and control sample in terms of appearance, taste, flavor, color, aroma, texture, and overall acceptability. The highest acceptability level of the product was at 8.04 for the control sample (traditional Ajogun). This study has shown that "Ajogun", which is a lesser known cassava product, is rich in protein and fat.

  20. Distribution of polycyclic aromatic hydrocarbons in lime spray dryer ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping Sun; Panuwat Taerakul; Linda K. Weavers

    Four lime spray dryer (LSD) ash samples were collected from a spreader stoker boiler and measured for their concentrations of 16 U.S. EPA specified polycyclic aromatic hydrocarbons (PAHs). Results showed that the total measured PAH concentration correlated with the organic carbon content of the LSD ash. Each LSD ash sample was then separated using a 140 mesh sieve into two fractions: a carbon-enriched fraction ({gt}140 mesh) and a lime-enriched fraction ({lt}140 mesh). Unburned carbon was further separated from the carbon-enriched fraction with a lithiumheteropolytungstate (LST) solution. PAH measurements on these different fractions showed that unburned carbon had the highest PAHmore » concentrations followed by the carbon-enriched fraction, indicating that PAHs were primarily associated with the carbonaceous material in LSD ash. However, detectable levels of PAHs were also found in the lime-enriched fraction, suggesting that the fine spray of slaked lime may sorb PAH compounds from the flue gas in the LSD process. 37 refs., 5 figs., 4 tabs.« less

  1. Leaching for recovery of copper from municipal solid waste incineration fly ash: influence of ash properties and metal speciation.

    PubMed

    Lassesson, Henric; Fedje, Karin Karlfeldt; Steenari, Britt-Marie

    2014-08-01

    Recovery of metals occurring in significant amounts in municipal solid waste incineration fly ash, such as copper, could offer several advantages: a decreased amount of potentially mobile metal compounds going to landfill, saving of natural resources and a monetary value. A combination of leaching and solvent extraction may constitute a feasible recovery path for metals from municipal solid waste incineration fly ash. However, it has been shown that the initial dissolution and leaching is a limiting step in such a recovery process. The work described in this article was focused on elucidating physical and chemical differences between two ash samples with the aim of explaining the differences in copper release from these samples in two leaching methods. The results showed that the chemical speciation is an important factor affecting the release of copper. The occurrence of copper as phosphate or silicate will hinder leaching, while sulphate and chloride will facilitate leaching. © The Author(s) 2014.

  2. Ash effects on the thermal conductivity of a mediterranean loam soil

    NASA Astrophysics Data System (ADS)

    Rubio, Carles; Pereira, Paulo; Ubeda, Xavier

    2014-05-01

    The purpose of this work is to explore the variability on the soil thermal conductivity for a burnt soil and assessing the effects of the ashes on the heat transfer when they were incorporated into the soil matrix. A set of 42 soil samples from the Montgrí massif experimental plot between surface and 5 cm depth was collected before and after the soil was burnt. A thermal characterization of the soil was carried out. For that a dry out curve was constructed, which presented the relationship between water content and thermal conductivity for both types of soil samples, burnt and non-burnt soil. The results shown changes in the heat pulse transfer, being more conductive the soil before to be burnt (0.378 W•m-1•C-1) than the soil after to be exposed to the fire (0.337 W•m-1•C-1). Indeed, on the whole of moisture scenarios the values of thermal conductivity decreased after soil was burnt. Another experimental concern was based on to observe the soil thermal behaviour when ash collected after fire was incorporated into the burnt soil matrix. In this case, soil thermal and soil hydrodynamic behaviour presented differences according to the type of ash. Soil mixed with fly ash showed higher thermal conductivity than soil mixed with bottom ash. To sum up; the soil thermal conductivity decreased when soil was burnt. On the other hand, soil thermal conductivity shown differences depending on the type of ash incorporated into the matrix. Fly ash transferred the heat pulse better than bottom ash.

  3. Leaching behaviour of coal-ash: a case study.

    PubMed

    Hajarnavis, M R; Bhide, A D

    2003-10-01

    Leaching of trace elements from fly ash dumps to subsoil layer due to the rain water results in contamination of ground water. The ground water pollution due to fly ash deposition on land so occurring was assessed by simulating the disposal site conditions using two lysimeter with two different soils. Leachate was collected and analysed daily to help understand the phenomenon of leaching of fly-ash constituents in the environment. The trace metals and physico-chemical parameters of fly ash and soil used were measured before and after the experiment. Results of analysis of soil and fly ash samples were then compared with the results of lysimeter-I and lysimeter-II. The study reveals that metals respond differently at dumping site while reacting with soil and water.

  4. Effect of chitosan coatings enriched with cinnamon oil on proximate composition of rainbow trout fillets

    NASA Astrophysics Data System (ADS)

    Yıldız, Pınar Oǧuzhan

    2017-04-01

    The effects of chitosan coating enriched with cinnamon oil on proximate composition of rainbow trout (Oncorhynchus mykiss) during storage at 4°C was investigated. The treatments included the following: C1 (control samples), C2 (chitosan coating) and C3 (chitosan + 1 % [v/w] cinnamon EO added). The control and the coated fish samples were analysed for chemical (moisture, protein, lipid and ash) composition. The mean of moisture, protein, lipid and ash in the control samples (C1) were 70.3%, 20.1%, 2.6% and 1.2%, in coated samples (C2) 69.70%, 24.21%, 2.4% and 2.2% and coated+cinnamon oil samples (C3) 69.70%, 25.05%, 2.5% and 2.2%, respectively. Moisture and lipid contents in control groups were higher than other groups, but protein and ash contents were lower. Significant increases (p<0.05) in protein content were observed between samples, which subsequently decreased the moisture content of these samples.

  5. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?

    PubMed

    Sormunen, Laura Annika; Rantsi, Riina

    2015-11-01

    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland. © The Author(s) 2015.

  6. Synthesis of geopolymer from biomass-coal ash blends

    NASA Astrophysics Data System (ADS)

    Samadhi, Tjokorde Walmiki; Wulandari, Winny; Prasetyo, Muhammad Iqbal; Fernando, Muhammad Rizki; Purbasari, Aprilina

    2017-09-01

    Geopolymer is an environmentally attractive Portland cement substitute, owing to its lower carbon footprint and its ability to consume various aluminosilicate waste materials as its precursors. This work describes the development of geopolymer formulation based on biomass-coal ash blends, which is predicted to be the prevalent type of waste when biomass-based thermal energy production becomes mainstream in Indonesia. The ash blends contain an ASTM Class F coal fly ash (FA), rice husk ash (RHA), and coconut shell ash (CSA). A mixture of Na2SiO3 and concentrated KOH is used as the activator solution. A preliminary experiment identified the appropriate activator/ash mass ratio to be 2.0, while the activator Na2SiO3/KOH ratio varies from 0.8 to 2.0 with increasing ash blend Si/Al ratio. Both non-blended FA and CSA are able to produce geopolymer mortars with 7-day compressive strength exceeding the Indonesian national SNI 15-2049-2004 standard minimum value of 2.0 MPa stipulated for Portland cement mortars. Ash blends have to be formulated with a maximum RHA content of approximately 50 %-mass to yield satisfactory 7-day strength. No optimum ash blend composition is identified within the simplex ternary ash blend compositional region. The strength decreases with Si/Al ratio of the ash blends due to increasing amount of unreacted silicate raw materials at the end of the geopolymer hardening period. Overall, it is confirmed that CSA and blended RHA are feasible raw materials for geopolymer production..

  7. Unburnt carbon from coal fly ashes as a precursor of activated carbon for nitric oxide removal.

    PubMed

    Rubio, Begoña; Izquierdo, M Teresa; Mayoral, M Carmen; Bona, M Teresa; Andres, Jose M

    2007-05-08

    The aim of this work is to evaluate the characteristics of an activated carbon obtained from unburnt carbon in coal fly ashes to be used in the removal of NO. Carbon-rich fraction was obtained by mechanical sieving of fly ashes. The mineral matter was removed by conventional HCl and HF demineralization procedure. Activation was carried out with steam at 900 degrees C in order to develop porosity onto the sample. Characterization of samples was performed by several techniques with a main objective: to follow the mineral matter content, composition and distribution on the samples in order to better understand how to remove it from unburnt carbon in fly ashes. To study the use of this unburnt carbon as a precursor for the preparation of activated carbons for gas cleaning, the NO removal by ammonia using activated carbon as a catalyst at low temperature was performed. Results show a good performance of activated carbon in this reaction that is in relationship with BET surface area.

  8. Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments.

    PubMed

    Rasoulnia, P; Mousavi, S M

    2016-09-01

    Spent-medium bioleaching of V and Ni from a power plant residual ash (PPR ash) was conducted using organic acids produced by Aspergillus niger. The production of organic acids in a bubble column bioreactor was optimized through selecting three most influencing factors. Under optimum condition of aeration rate of 762.5(ml/min), sucrose concentration of 101.9(g/l) and inoculum size of 40(ml/l), respectively 17,185, 4539, 1042 and 502(ppm) of oxalic, gluconic, citric and malic acids were produced. Leaching experiments were carried out using biogenic produced organic acids under leaching environment temperature of 60°C and rotary shaking speed of 135rpm, with various pulp densities of 1, 2, 3, 5, 7 and 9(%w/v). The results showed that biogenic produced organic acids leached V much more efficiently than Ni so that even at high pulp density of 9(%w/v), 83% of V was recovered while Ni recovery yield was 30%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Biomass and Nutrient Distribution in 3-Year Old Green Ash and Swamp Chestnut Oak Grown in a Minor Stream Bottom

    Treesearch

    Harvey E. Kennedy; Bryce E. Schlaegel

    1985-01-01

    After three growing seasons, green ash had produced 7,342 pounds per acre of above-ground dry matter compared to 3,572 for oak. Of the total biomass, ash had 53% in the bole (wood plus bark), 22% in old branches, 21% in leaves and 4% in new growth; oak had 50%, 21%, 24%, and 5% in the same components. These proportions changed after leaf fall. Concentrations of N, P, K...

  10. Ash reduction strategies in corn stover facilitated by anatomical and size fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.

    There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less

  11. Ash reduction strategies in corn stover facilitated by anatomical and size fractionation

    DOE PAGES

    Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.; ...

    2016-04-22

    There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less

  12. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report C : shear behavior of HVFA reinforced concrete.

    DOT National Transportation Integrated Search

    2012-10-01

    Concrete is the most widely used man-made material on the planet. Unfortunately, producing Portland cement generates carbon dioxide (a greenhouse gas) at roughly a pound for pound ratio. High-volume fly ash (HVFA) concrete concrete with at least ...

  13. MEASUREMENT AND PREDICTION OF THE RESISTIVITY OF ASH/SORBENT MIXTURES PRODUCED BY SULFUR OXIDE CONTROL PROCESSES

    EPA Science Inventory

    The report describes the development of (1) a modified procedure for obtaining consistent and reproducible laboratory resistivity values for mixtures of coal fly ash and partially spent sorbent, and (2) an approach for predicting resistivity based on the chemical composition of t...

  14. Sugarcane boiler ash as an amendment for soilless growing media

    USDA-ARS?s Scientific Manuscript database

    In 2016, research was conducted to investigate the use of sugarcane bagasse ash (SBA) as an amendment to soilless planting media for the production of vegetable seedlings. Typically, the eleven Louisiana sugarcane mills use a portion of the sugarcane bagasse for fuel, producing over 60,000 tons of S...

  15. DESIGN AND CHARACTERIZATION OF AN ULTRAFINE COAL ASH AEROSOL GENERATOR FOR DIRECT ANIMAL EXPOSURE STUDIES

    EPA Science Inventory

    Primary ultrafine particulate matter (PM) is produced during pulverized coal combustion by the nucleation and heterogeneous condensation of vapor-phase species. This differs from the mechanisms that control the formation of the supermicron fly ash that is heavily influenced by t...

  16. Emerald Ash Borer

    Treesearch

    Deborah G. McCullough; Steven A. Katovich

    2004-01-01

    An exotic beetle from Asia was discovered in July 2002 feeding on ash (Fraxinus spp.) trees in southeastern Michigan. It was identified as Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Larvae feed in the cambium between the bark and wood, producing galleries that eventually girdle and kill branches and entire trees. Evidence suggests that A. planipennis has...

  17. Fire vegetative ash and erosion in the Mediterranean areas. State of the art and future perspectives

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerdà, Artemi

    2013-04-01

    Fire is a global phenomenon with important ecological impacts. Among all ecosystems, the Mediterranean is frequently visited by severe wildfires with serious impacts on soil properties and increase soil vulnerability to erosion due vegetation removal. After the fire the ash distributed in soil surface can mitigate soil exposition to erosion and rain splash (Cerda and Doerr, 2008), however, this depends on the fire severity that have implications on the type of ash produced (Pereira et al., 2010). High fire severities produced thinner ash that it is easily transported by wind, contrary to low severity wildfires where combustion is not so intense and the mass loss is less, providing a better soil protection in the immediate period after the fire. Soil protection after the fire highly depends on fire severity (Pereira et al. 2013a; Pereira et al. 2013b). Ash it is a highly mobile material, thus this protection can change in space and time, providing a better cover in some areas and worst in others. In the period immediate after the fire, ash can change soil hydrological properties, increasing water retention and reducing sediment transport in relation to bare soil areas (Cerda and Doerr, 2008), but also clog soil pores, seal the soil and increase erosion (Onda et al., 2008). In fact results are controversial and the impacts of vegetative ash in soil erosion may rely on the proprieties of ash produced, that can be extremely variable, even in small distances (Pereira and Úbeda, 2010), due the different conditions of combustions. Ash produced at low severity temperatures can be highly hydrophilic (Bodi et al., 2011) and induce soil hydrophobicity (Bodi et al., 2012). Other mechanisms as the direct impact of fire in soil, can induce soil water repellency, and do not have any interference of vegetative ash. This fire can induce direct (e.g temperature) and indirect (e.g. ash properties) on soil wettability, with obvious implications on spatio-temporal pattern of soil erosion. At this point we are dealing with a complex interaction since interactions, since low severity fires due ash, and high severity fires, due temperature induce soil hydrophobicity. After the fire, other ash properties may interact with soil erosion, as particulate size, and chemical composition, that can induce soil particulates flocculation or dispersion. Ash chemistry is strongly related with fire severity (Pereira et al., 2012). Further studies may be directed in the complex interaction between ash physico-chemical properties interaction with the degree of fire impacts on soil. These and other ideas will be discussed during the session. Acknowledgements, The authors appreciated the support of the project "Litfire", Fire effects in Lithuanian soils and ecosystems (MIP-048/2011) funded by the Lithuanian Research Council and FUEGORED (Spanish Network of Forest Fire Effects on Soils http://grupo.us.es/fuegored/). References Bodi, M., Doerr, S., Cerdà, A., Mataix-Solera, J. (2012) Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma 191: 14-13. Bodi, M., Mataix-Solera, J., Doerr, S., Cerdà, A. (2011) The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic matter content. Geoderma, 160, 599-607. Cerdà, A., Doerr, S.H. (2008). The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256-263. Onda Y, Dietrich WE, Booker F. 2008. Evolution of overland flow after a severe forest fire, Point Reyes, California. Catena. 72, 13-20. Pereira, P., Bodi. M., Úbeda, X., Cerdà, A., Mataix-Solera, J., Balfour, V, Woods, S. (2010) Las cenizas y el ecosistema suelo, In: Cerdà, A. Jordan, A. (eds) Actualización en métodos y técnicas para el estudio de los suelos afectados por incendios forestales, 345-398. Càtedra de Divulgació de la Ciència. Universitat de Valencia. ISBN: 978-84-370-7887-8. Deposito Legal: V-3541-2010. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2013a) Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, (In Press), DOI: 10.1002/ldr.2195 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Jordan, A. Burguet, M. (2013b) Effects of fire on ash thickness in a Lithuanian grassland and short-term spatio-temporal changes, Solid Earth Discussions,4, 1545-1584. Pereira, P., Úbeda, X. (2010) Spatial variation of heavy metals released from ashes after a wildfire, Journal of Environmental Engineering and Landscape Management 18(1), 13-22. Pereira, P., Úbeda, X., Martin, D. (2012) Fire severity effects on ash chemical composition and water-extractable elements, Geoderma, 191, 105-114.

  18. May 2011 eruption of Telica Volcano, Nicaragua: Multidisciplinary observations

    NASA Astrophysics Data System (ADS)

    Witter, M. R.; Geirsson, H.; La Femina, P. C.; Roman, D. C.; Rodgers, M.; Muñoz, A.; Morales, A.; Tenorio, V.; Chavarria, D.; Feineman, M. D.; Furman, T.; Longley, A.

    2011-12-01

    Telica volcano, an andesitic stratovolcano in north-western Nicaragua, erupted in May 2011. The eruption, produced ash but no lava and required the evacuation of over 500 people; no injuries were reported. We present the first detailed report of the eruption, using information from the TElica Seismic ANd Deformation (TESAND) network, that provides real-time data, along with visual observations, ash leachate analysis, and fumarole temperature measurements. Telica is located in the Maribios mountain range. It is one of the most active volcanoes in Nicaragua and has frequent small explosions and rare large (VEI 4) eruptions, with the most recent sizable eruptions (VEI 2) occurring in 1946 and 1999. The 2011 eruption is the most explosive since 1999. The eruption consisted of a series of ash explosions, with the first observations from May 8, 2011 when local residents reported ash fall NE of the active crater. Popping sounds could be heard coming from the crater on May 10. On May 13, the activity intensified and continued with some explosions every day for about 2 weeks. The well-defined plumes originated from the northern part of the crater. Ash fall was reported 4 km north of the active crater on May 14. The largest explosion at 2:54 pm (local time) on May 21 threw rocks from the crater and generated a column 2 km in height. Fresh ash samples were collected on May 16, 18, and 21 and preliminary inspection shows that the majority of the material is fragmented rock and crystalline material, i.e. not juvenile. Ash leachates (ash:water = 1:25) contain a few ppb As, Se, and Cd; tens of ppb Co and Ni; and up to a few hundred ppb Cu and Zn. Telica typically has hundreds of small seismic events every day, even when the volcano is not erupting. The TESAND network detected an increase in the rate and magnitude of seismic activity, with a maximum magnitude of 3.3. Elevated fumarole temperatures at locations near the active vent were also observed throughout the May 2011 eruption. Temperature measurements taken on May 26 recorded a maximum of 539°C. Ten continuous GPS stations running on and close to the volcano showed little deformation, suggesting that substantial quantities of new magma were not displaced beneath the volcanic edifice.

  19. Evaluation of techniques for sampling volatile arsenic on volcanoes

    NASA Astrophysics Data System (ADS)

    Arndt, Julia; Ilgen, Gunter; Planer-Friedrich, Britta

    2017-02-01

    Volatile arsenic (As) species, like arsine, mono-, di-, and trimethylarsine (AsH3, MeAsH2, Me2AsH, Me3As) are reported to be released from volcanoes but their determination is difficult because of low concentrations, low boiling points, and high reactivity, especially in the presence of volcanic gases like H2S and SO2. We tested needle trap devices (NTDs), cryotrapping, and Tedlar® bags for quantitative and species-preserving sampling. NTDs did not trap AsH3, MeAsH2, Me2AsH, did not release sorbed Me3As quantitatively, and lead to artifact formation of dimethylchloroarsine, which also questions the reliability of previous reports from solid phase micro extraction fibers using the same sorption materials. Cryotrapping in dry ice was insufficient to trap AsH3 and MeAsH2; Me2AsH and Me3As were only partially retained. Sampling in Tedlar® bags remained the best alternative. Stability of all four arsines was confirmed for dark storage at 5 °C for 19 days in a matrix of dry N2, 11 days in 20% O2, and 19 days in 3800 ppmv CO2 (> 80% recovery for all species), while in the presence of H2S, Me3As recovery was only 67% and in the presence of SO2, Me2AsH and Me3As recovery was 40 and 11%, respectively. Removing interfering reactive gases by a NaOH trap, we sampled natural volcanic emissions at fumaroles of Vulcano and Solfatara (Italy). Detected total arsine concentrations of 0.5-77 ng·m- 3 were 1-2 orders of magnitude higher than the calculated background. Inorganic arsine was the dominant species suggesting that secondary microbially catalyzed methylation is a process of minor importance in the fumarolic gases.

  20. Influence of carbonation under oxy-fuel combustion flue gas on the leachability of heavy metals in MSWI fly ash.

    PubMed

    Ni, Peng; Xiong, Zhuo; Tian, Chong; Li, Hailong; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2017-09-01

    Due to the high cost of pure CO 2 , carbonation of MSWI fly ash has not been fully developed. It is essential to select a kind of reaction gas with rich CO 2 instead of pure CO 2 . The CO 2 uptake and leaching toxicity of heavy metals in three typical types of municipal solid waste incinerator (MSWI) fly ash were investigated with simulated oxy-fuel combustion flue gas under different reaction temperatures, which was compared with both pure CO 2 and simulated air combustion flue gas. The CO 2 uptake under simulated oxy-fuel combustion flue gas were similar to that of pure CO 2 . The leaching concentration of heavy metals in all MSWI fly ash samples, especially in ash from Changzhou, China (CZ), decreased after carbonation. Specifically, the leached Pb concentration of the CZ MSWI fly ash decreased 92% under oxy-fuel combustion flue gas, 95% under pure CO 2 atmosphere and 84% under the air combustion flue gas. After carbonation, the leaching concentration of Pb was below the Chinese legal limit. The leaching concentration of Zn from CZ sample decreased 69% under oxy-fuel combustion flue gas, which of Cu, As, Cr and Hg decreased 25%, 33%, 11% and 21%, respectively. In the other two samples of Xuzhou, China (XZ) and Wuhan, China (WH), the leaching characteristics of heavy metals were similar to the CZ sample. The speciation of heavy metals was largely changed from the exchangeable to carbonated fraction because of the carbonation reaction under simulated oxy-fuel combustion flue gas. After carbonation reaction, most of heavy metals bound in carbonates became more stable and leached less. Therefore, oxy-fuel combustion flue gas could be a low-cost source for carbonation of MSWI fly ash. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Dispersal of emerald ash borer at outlier sites: three case studies

    Treesearch

    Deborah G. McCullough; Nathan W. Siegert; Therese M. Poland; David L. Cappaert; Ivich Fraser; David Williams

    2005-01-01

    We worked with cooperators from several state and federal agencies in 2003 and 2004 to assess dispersal of emerald ash borer (EAB), Agrilus planipennis Fairmaire, from known source points in three outlier sites. In February 2003, we felled and sampled more than 200 ash trees at an outlier site near Tipton, Michigan, where one generation of adult...

  2. Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Wychen, Stefanie; Laurens, Lieve M. L.

    2016-01-13

    This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575 deg. C is covered for ash content.

  3. Stand Parameters of 11- to 15-Year Old Green Ash Plantings

    Treesearch

    Roger M. Krinard

    1989-01-01

    Three green ash (Fraxinus pennsylvanica Marsh.) plantings, ages 11, 13, and 15, and a 13-year-old pumpkin ash (F. profunda (Bush) Bush) planting were sampled to determine d.b.h. and height development and survival of free-to-grow trees. On medium-textured (Commerce) and clay-capped (Bowdre and Tunica) soils, the average d.b.h...

  4. Immersion Freezing of Coal Combustion Ash Particles from the Texas Panhandle

    NASA Astrophysics Data System (ADS)

    Whiteside, C. L.; Tobo, Y.; Mulamba, O.; Brooks, S. D.; Mirrielees, J.; Hiranuma, N.

    2017-12-01

    Coal combustion aerosol particles contribute to the concentrations of ice-nucleating particles (INPs) in the atmosphere. Especially, immersion freezing can be considered as one of the most important mechanisms for INP formation in supercooled tropospheric clouds that exist at temperatures between 0°C and -38°C. The U.S. contains more than 550 operating coal-burning plants consuming 7.2 x 108 metric tons of coal (in 2016) to generate a total annual electricity of >2 billion MW-h, resulting in the emission of at least 4.9 x 105 metric tons of PM10 (particulate matter smaller than 10 µm in diameter). In Texas alone, 19 combustion plants generate 0.15 billion MW-h electricity and >2.4 x 104 metric tons of PM10. Here we present the immersion freezing behavior of combustion fly ash and bottom ash particles collected in the Texas Panhandle region. Two types of particulate samples, namely <45 µm sieved bottom ash (B_Ash_TX_PH) and <45 µm sieved fly ash (F_Ash_TX_PH), were prepared. Afterwards, their immersion freezing abilities were measured using the Cryogenic Refrigerator Applied to Freezing Test (CRAFT) system covering the heterogeneous freezing temperature down to -30 °C. The results were generated and are reported through two metrics, frozen fraction, ffrozen(T), and ice nucleation active site density per unit mass, nm(T) as a function of temperature. Our preliminary results show that an onset increase in ffrozen(T) for B_Ash_TX_PH (ffrozen) occurred as high as at -15°C, whereas the onset for F_Ash_TX_PH is at -18°C. Secondly, B_Ash_TX_PH exhibited a higher nm(-20 °C) of 105 g-1 than that of F_Ash_TX_PH ( 5 x 103 g-1). On the other hand, previous studies on different combustion ash samples have reported that the opposite trend (i.e., ice nucleation efficiency of fly ash is greater than that of bottom ash; Grawe et al., 2016, ACP; Umo et al., 2015, ACP). We will discuss possible reasons for the observed differences. In addition, the results of complementary physico-chemical analyses via X-ray diffraction technique, Raman microscopy and scanning electron microscopy on both ash types will also be presented to relate the crystallographic and chemical properties to their ice nucleation abilities.

  5. Evaluation of gas-particle partition of dioxins in flue gas I: evaluation of gasification behavior of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in fly ash by thermal treatment.

    PubMed

    Yokohama, Naoki; Otaka, Hiroaki; Minato, Ichiro; Nakata, Munetaka

    2008-05-01

    The gasification behavior of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in fly ash by thermal treatment has been investigated to estimate gas-particle partition in flue gas. The results obtained in thermal experiments under various conditions showed that gasification of PCDD/Fs depends on air flow rate and treatment weight of fly ash as well as treatment temperature. On the other hand, the results obtained in the thermal experiments using dioxin-free fly ash revealed that during thermal treatment, the de novo synthesis, gasification, and decomposition of PCDFs proceeded at different rates. This difference in the reaction rates indicates that thermal treatment time is also a factor in determining the gas-particle partition of PCDD/Fs in fly ash. Therefore, reasonable thermal treatment conditions were established and applied to three ash samples. For all samples, PCDD/Fs started to gasify at 350 degrees C treatment, whereas 53-98% of PCDD/F homologs gasified at 400 degrees C treatment, implying that gaseous PCDD/Fs are dominant in flue gas at temperatures in the range 350-400 degrees C regardless of particle concentration.

  6. High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes.

    PubMed

    Clark, Malcolm W; Despland, Laure M; Lake, Neal J; Yee, Lachlan H; Anstoetz, Manuela; Arif, Elisabeth; Parr, Jeffery F; Doumit, Philip

    2017-04-01

    Sugarcane bagasse ash re-utilisation has been advocated as a silica-rich feed for zeolites, pozzolans in cements and concretes, and geopolymers. However, many papers report variable success with the incorporation of such materials in these products as the ash can be inconsistent in nature. Therefore, understanding what variables affect the ash quality in real mills and understanding the processes to characterise ashes is critical in predicting successful ash waste utilisation. This paper investigated sugarcane bagasse ash from three sugar mills (Northern NSW, Australia) where two are used for the co-generation of electricity. Data shows that the burn temperatures of the bagasse in the high-efficiency co-generation boilers are much higher than those reported at the temperature measuring points. Silica polymorph transitions indicate the high burn temperatures of ≈1550 °C, produces ash dominated α -quartz rather than expected α-cristobilite and amorphous silica; although α-cristobilite, and amorphous silica are present. Furthermore, burn temperatures must be ≤1700 °C, because of the absence of lechatelierite where silica fusing and globulisation dominates. Consequently, silica-mineralogy changes deactivate the bagasse ash by reducing silica solubility, thus making bagasse ash utilisation in synthetic zeolites, geopolymers, or a pozzolanic material in mortars and concretes more difficult. For the ashes investigated, use as a filler material in cements and concrete has the greatest potential. Reported mill boiler temperatures discrepancies and the physical characteristics of the ash, highlight the importance of accurate temperature monitoring at the combustion seat if bagasse ash quality is to be prioritised to ensure a usable final ash product.

  7. Are there Tuffs from Toba Supereruptions in Singapore?

    NASA Astrophysics Data System (ADS)

    Bergal-Kuvikas, O.; Bouvet de Maisonneuve, C.; Vazquez, J. A.

    2016-12-01

    Singapore is a dense transportation hub and the most highly populated area of SE Asia. In order to assess volcanic hazards for Singapore, we compiled a database of Quaternary eruptions from neighboring volcanoes and we investigated samples from 20 boreholes collected across 11 reservoirs and several natural outcrops in the NW parts of the city. We identified a deposit of white to slightly yellow clay with a visible thickness of 6-8 meters in the western part of Singapore. This deposit of very fine ash is silicic (SiO2 72-75 wt.%) and calk-alkaline (K2O 3.7-4.5 wt.%). The ash layer is clearly weathered as the LOI is around 5 wt.% and SEM images show the presence of clay minerals almost exclusively. Geochemical mapping shows that quartz crystals are characterized by textures similar to volcanic deposits. N-MORB normalized spiderdiagrams of whole-rocks show minimums in Nb and Ti, enrichments in LREE, and depletions of HREE. This suggests a subduction origin. One possible source for this voluminous weathered ash layer is the Toba caldera, which produced several super eruptions in the Quaternary (the Young Toba Tuff at 0.074 Ma, Middle Toba Tuff at 0.5 Ma, Old Toba Tuff at 0.84 Ma, and Haranggoal Dacite Tuff at 1.2 Ma). Recognizing distal Toba tuffs is problematic because most deposits are underwater. Most of the analyzed samples have geochemical compositions that are statistically similar to the Toba tuffs and characterized by high contents of HREE elements (e.g. Y, Er, Yb) and some REE (e.g. Eu, Ba, La, Th). Preliminary dating shows the presence of Triassic zircons, possibly due to geologic contamination. Additional dating is needed to ascertain the source and age of this ash. Our new geochemical data of likely distal Toba deposits will be an important component for tephrochronological and paleoenvironmental studies in addition to being of importance for hazards assessments in Singapore.

  8. 3D Micro-tomography on Aggregates from the 2014- 2015 Eruption of Hunga Tonga-Hunga Ha'apai Volcano

    NASA Astrophysics Data System (ADS)

    Colombier, M.; Scheu, B.; Cronin, S. J.; Tost, M.; Dobson, K. J.; Dingwell, D. B.

    2016-12-01

    In December 2014- January 2015, a surtseyan eruption at Hunga Tonga-Hunga Ha'apai volcano (Tonga) formed a new island. Three main eruptive phases were distinguished by observation and deposits: (i) mound and cone construction, involving collapse of 300-600 m-high wet tephra jets, grain flows, slope-remobilisation and energetic surges, with little or no convective plume (ii) The upper cone-building phase with lower jets (mainly <300 m) but greater ash production (weak, steam-rich plumes to 6 km) and weak surges, and (iii) final phase with weak surge, fall and ballistic deposits with more vesicular pyroclasts producing proximal capping deposits. Most sampled deposits contain ash, lapilli and bombs, and lapilli-sized aggregates are ubiquitous. We used high-resolution 3D X-ray microcomputed tomography (XCT) to quantify the grain size distribution (GSD) and porosity by sampling multiple stratigraphic units within the main eruptive sequences. We visualized and quantified the internal structure of the aggregates to understand the evolution of this surtseyan eruption. We present here an overview of the textural information: porosity, vesicle size distribution and morphology as well as the variability of the aggregation features. Aggregates from the fall deposits of the early wet phase are mostly loosely packed, poorly-structured ash clusters. Aggregates from the early surge sequence and the main cone building phase dominantly exhibit a central particle coated by ash cluster material. Vesicles in the particles from the early fall deposits tend to be smaller and more isolated than in the particles from the surge sequence and the main cone building phase. The GSD of aggregates obtained by XCT is highly valuable to correct the total GSD of volcaniclastic deposits. The strong variations in the aggregation features across the eruption suggest a range of different formation and deposition mechanisms related to varying degrees of magma-water-interaction, which changed the morphology and textural properties of the individual particles.

  9. Influence of post-treatment strategies on the properties of activated chars from broiler manure.

    PubMed

    Lima, Isabel M; Boykin, Debbie L; Thomas Klasson, K; Uchimiya, Minori

    2014-01-01

    There are a myriad of carbonaceous precursors that can be used advantageously to produce activated carbons or chars, due to their low cost, availability and intrinsic properties. Because of the nature of the raw material, production of granular activated chars from broiler manure results in a significant ash fraction. This study was conducted to determine the influence of several pre- and post-treatment strategies in various physicochemical and adsorptive properties of the resulting activated chars. Pelletized samples of broiler litter and cake were pyrolyzed at 700 °C for 1h followed by a 45 min steam activation at 800 °C at different water flow rates from 1 to 5 mL min(-1). For each activation strategy, samples were either water-rinsed or acid-washed and rinsed or used as is (no acid wash/rinse). Activated char's physicochemical and adsorptive properties towards copper ions were selectively affected by both pre- and post-treatments. Percent ash reduction after either rinsing or acid washing ranged from 1.1 to 15.1% but washed activated chars were still alkaline with pH ranging from 8.4 to 9.1. Acid washing or water rinsing had no significant effect in the ability of the activated char to adsorb copper ions, however it significantly affected surface area, pH, ash content and carbon content. Instead, manure type (litter versus cake) and the activation water flow rate were determining factors in copper ion adsorption which ranged from 38 mg g(-1) to 104 mg g(-1) of activated char. Moreover, strong positive correlations were found between copper uptake and concentration of certain elements in the activated char such as phosphorous, sulfur, calcium and sodium. Rinsing could suffice as a post treatment strategy for ash reduction since no significant differences in the carbon properties were observed between rinsed and acid wash treatments. Published by Elsevier Ltd.

  10. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States

    USGS Publications Warehouse

    Swanson, Sharon M.; Engle, Mark A.; Ruppert, Leslie F.; Affolter, Ronald H.; Jones, Kevin B.

    2013-01-01

    Samples of feed coal (FC), bottom ash (BA), economizer fly ash (EFA), and fly ash (FA) were collected from power plants in the Central Appalachian basin and Colorado Plateau to determine the partitioning of As, Cr, Hg, Pb, and Se in coal combustion products (CCPs). The Appalachian plant burns a high-sulfur (about 3.9 wt.%) bituminous coal from the Upper Pennsylvanian Pittsburgh coal bed and operates with electrostatic precipitators (ESPs), with flue gas temperatures of about 163 °C in the ESPs. At this plant, As, Pb, Hg, and Se have the greatest median concentrations in FA samples, compared to BA and EFA. A mass balance (not including the FGD process) suggests that the following percentages of trace elements are captured in FA: As (48%), Cr (58%), Pb (54%), Se (20%), and Hg (2%). The relatively high temperatures of the flue gas in the ESPs and low amounts of unburned C in FA (0.5% loss-on-ignition for FA) may have led to the low amount of Hg captured in FA. The Colorado Plateau plant burns a blend of three low-S (about 0.74 wt.%) bituminous coals from the Upper Cretaceous Fruitland Formation and operates with fabric filters (FFs). Flue gas temperatures in the baghouses are about 104 °C. The elements As, Cr, Pb, Hg, and Se have the greatest median concentrations in the fine-grained fly ash product (FAP) produced by cyclone separators, compared to the other CCPs at this plant. The median concentration of Hg in FA (0.0983 ppm) at the Colorado Plateau plant is significantly higher than that for the Appalachian plant (0.0315 ppm); this higher concentration is related to the efficiency of FFs in Hg capture, the relatively low temperatures of flue gas in the baghouses (particularly in downstream compartments), and the amount of unburned C in FA (0.29% loss-on-ignition for FA).

  11. Chronic exposure to coal fly ash causes minimal changes in corticosterone and testosterone concentrations in male southern toads Bufo terrestris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.K.; Mendonca, M.T.

    More than 50% of the electricity in the United States is produced by coal-burning power plants. The byproduct of coal-burning plants is coal fly ash, which contains increased concentrations of trace metals and is disposed of in collection basins. Southern toads (Bufo terrestris) frequently use these basins for reproduction. Male toads were collected in spring 2001 and 2002 from an ash basin and a reference site and divided into four groups: toads collected at the control site and maintained on (1) control substrate and food or (2) ash and contaminated food and toads collected at the ash site and maintainedmore » in (3) control or (4) ash conditions. Blood was collected periodically during 5 months to determine testosterone and corticosterone concentrations. Reference to ash toads exhibited a significant, transient increase in corticosterone at 4 weeks, but neither corticosterone nor testosterone continued to increase beyond this time. In contrast, toads caught and maintained on ash did not exhibit increased corticosterone. Testosterone in these toads appeared to be unrelated to ash exposure. This unexpected lack of a corticosterone response and no effect on testosterone suggests that toads chronically exposed to trace metals can acclimate to a polluted environment, but they may still experience subtle long-term consequences.« less

  12. Development and freeze-thaw durability of high flyash-content concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajadi, J.

    1987-01-01

    Objectives were to investigate the effects on concrete strength, drying shrinkage, freeze-thaw durability, and air-void system parameters of replacing various amounts of portland cement with different types of fly ash and to compare selected characteristics of such fly-ash concretes and fly-ash concretes containing a high-range water-reducing admixture to those of a control mixture. It was concluded that concrete mixtures with 90-day compressive strengths equal to the control could be produced when large amounts of cement were replaced by fly ash. In addition, when the high-range water-reducing admixtures was employed, very large amounts of cement could be replaced by fly ashmore » to yield mixtures whose compressive strengths were equal to or greater than the strengths of the control mix at all ages. The maximum amount of cement that could be replaced for equal-strength mixtures depended upon the nature of the fly ash. Drying shrinkage of plain fly-ash concretes and fly-ash concretes containing the high-range water-reducing admixture were similar to those of the control mix. The optimum fly-ash content in a concrete is comparable in strength and durability to a conventional (control) concrete was influenced by the chemical and physical characteristics of the fly ash.« less

  13. Selenium in pollen gathered by bees foraging on fly ash-grown plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Jong, D.; Morse, R.A.; Gutenmann, W.H.

    1977-10-01

    Fly ash is the material collected in the stacks of coal burning electric power-generating plants by electrostatic precipitators. About 26 million metric tons of fly ash was estimated to have been produced in 1975 (BRACKETT, 1970). Aside from a small percentage of the material which is used as a base material for roads and in concrete, the bulk of it is deposited in landfills. It was first reported by Gutenmann et al. (1976) that sweet clover, found voluntarily growing on a fly ash landfill site, contained up to 200 ppM of selenium. Fly ashes from 21 states were found tomore » contain the element. Cabbage grown on each of these fly ashes added (7 percent w/w) to soil was shown to absorb selenium in proportion to its concentration in the particular ash (GUTENMANN et al., 1976). The percentage of fly ash in soil was also shown to dictate the extent of selenium absorption by a variety of plants (FURR et al., 1976). In the work reported, pollen collected by honey bees foraging on plants growing on a fly ash landfill was analyzed for selenium and compared with that collected by bees from the same plants growing on soil.« less

  14. Detectability of the emerald ash borer (Coleoptera: Buprestidae) in asymptomatic urban trees by using branch samples.

    PubMed

    Ryall, Krista L; Fidgen, Jeffrey G; Turgeon, Jean J

    2011-06-01

    The emerald ash borer, Agrilus planipennis Fairmaire, is an exotic invasive insect causing extensive mortality to ash trees, Fraxinus spp., in Canada and the United States. Detection of incipient populations of this pest is difficult because of its cryptic life stages and a multiyear time lag between initial attack and the appearance of signs or symptoms of infestation. We sampled branches from open-grown urban ash trees to develop a sample unit suitable for detecting low density A. planipennis infestation before any signs or symptoms are evident. The sample unit that maximized detection rates consisted of one 50-cm-long piece from the base of a branch ≥6 cm diameter in the midcrown. The optimal sample size was two such branches per tree. This sampling method detected ≈75% of asymptomatic trees known to be infested by using more intensive sampling and ≈3 times more trees than sampling one-fourth of the circumference of the trunk at breast height. The method is less conspicuous and esthetically damaging to a tree than the removal of bark from the main stem or the use of trap trees, and could be incorporated into routine sanitation or maintenance of city-owned trees to identify and delineate infested areas. This research indicates that branch sampling greatly reduces false negatives associated with visual surveys and window sampling at breast height. Detection of A. planipennis-infested asymptomatic trees through branch sampling in urban centers would provide landowners and urban foresters with more time to develop and implement management tactics.

  15. Modeling the formation of the quench product in municipal solid waste incineration (MSWI) bottom ash.

    PubMed

    Inkaew, Kanawut; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki

    2016-06-01

    This study investigated changes in bottom ash morphology and mineralogy under lab-scale quenching conditions. The main purpose was to clarify the mechanisms behind the formation of the quench product/layer around bottom ash particles. In the experiments, the unquenched bottom ashes were heated to 300°C for 1h, and were quenched by warm water (65°C) with different simulated conditions. After having filtered and dried, the ashes were analyzed by a combination of methodologies namely, particle size distribution analysis, intact particle and thin-section observation, X-ray diffractometry, and scanning electron microscope with energy dispersive X-ray spectroscopy. The results indicated that after quenching, the morphology and mineralogy of the bottom ash changed significantly. The freshly quenched bottom ash was dominated by a quench product that was characterized by amorphous and microcrystalline calcium-silicate-hydrate (CSH) phases. This product also enclosed tiny minerals, glasses, ceramics, metals, and organic materials. The dominant mineral phases produced by quenching process and detected by XRD were calcite, Friedel's salt, hydrocalumite and portlandite. The formation of quench product was controlled by the fine fraction of the bottom ash (particle size <0.425mm). From the observations, a conceptual model of the ash-water reactions and formation of the quench product in the bottom ash was proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Improvements of nano-SiO2 on sludge/fly ash mortar.

    PubMed

    Lin, D F; Lin, K L; Chang, W C; Luo, H L; Cai, M Q

    2008-01-01

    Sewage sludge ash has been widely applied to cementitious materials. In this study, in order to determine effects of nano-SiO(2) additives on properties of sludge/fly ash mortar, different amounts of nano-SiO(2) were added to sludge/fly ash mortar specimens to investigate their physical properties and micro-structures. A water-binding ratio of 0.7 was assigned to the mix. Substitution amounts of 0%, 10%, 20%, and 30% of sludge/fly ash (1:1 ratio) were proposed. Moreover, 0%, 1%, 2%, and 3% of nano-SiO(2) was added to the mix. Tests, including SEM and compressive strength, were carried out on mortar specimens cured at 3, 7, and 28 days. Results showed that sludge/fly ash can make the crystals of cement hydration product finer. Moreover, crystals increased after nano-SiO(2) was added. Hence, nano-SiO(2) can improve the effects of sludge/fly ash on the hydration of mortar. Further, due to the low pozzolanic reaction active index of sludge ash, early compressive strengths of sludge/fly ash mortar were decreased. Yet, nano-SiO(2) could help produce hydration crystals, which implies that the addition of nano-SiO(2) to mortar can improve the influence of sludge/fly ash on the development of the early strength of the mortar.

  17. Temperature effects on ash physical and chemical properties. A laboratory study.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Úbeda, Xavier; Martin, Deborah

    2010-05-01

    Fire temperatures have different impacts on ash physical and chemical properties that depend mainly of the specie affected and time of exposition. In a real prescribed or wildland fire, the temperatures produce ash with different characteristics. Know the impacts of a specific temperature or a gradient on a certain element and specie is very difficult in real fires, especially in wildland fires, where temperatures achieve higher values and the burning conditions are not controlled. Hence, laboratory studies revealed to be an excellent methodology to understand the effects of fire temperatures in ash physical and chemical. The aim of this study is study the effects of a temperature gradient (150, 200, 250, 300, 350, 400, 450, 500 and 550°C) on ash physical and chemical properties. For this study we collected litter of Quercus suber, Pinus pinea and Pinus pinaster in a plot located in Portugal. The selected species are the most common in the ecosystem. We submitted samples to the mentioned temperatures throughout a time of two hours and we analysed several parameters, namely, Loss on Ignition (LOI%), ash colour - through the Croma Value (CV) observed in Munsell color chart - CaCO3, Total Nitrogen (TN), Total Carbon (TC), C/N ratio, ash pH, Electrical Conductivity (EC), extractable Calcium (Ca2+), Magnesium (Mg2+), Sodium (Na+), Potassium (K+), Aluminium (Al3+), Manganese (Mn2+), Iron (Fe2+), Zinc (Zn2+), Total Phosphorous (TP), Sulphur (S) and Silica (SiO2). Since we considered many elements, in order to obtain a better explanation of all dataset, we applied a Factorial Analysis (FA), based on the correlation matrix and the Factors were extracted according to the Principle Components method. To obtain a better relation between the variables with a specific Factor we rotated the matrix according to the VARIMAX NORMALIZED method. FA identified 5 Factors that explained a total of 95% of the variance. We retained in each Factor the variables that presented an eigenvalue >0.7. Factor 1 explained the majority of the variance (60.05%). LOI(%), CV, CaCO3, pH, Na+, K+, S (these last tree elements only in both Pinus) and SiO2, showed positive loadings. Inversely, TC, C/N ratio, Al3+, Fe2+ (these last tree elements for Quercus suber and Pinus pinaster ash) and Mn2+ (In the case of Quercus suber) presented negative loadings. Factor 2 explained 19.89% of the variance and showed higher loadings in TN, Ca2+ and Mg2+ (in the case of the ions only in both Pinus). Factor 3 explains only 6.69% of the variance and we identified higher loadings in Mg2+, Na+ and K+ of Quercus suber. Factor 4 explains less then the last Factor, only 4.60% of the variance and presented negative loadings above -0.7 in TP of Quercus suber and Pinus pinea. Factor 5 explained 3.93% of the variance, less than all other Factors and showed in Al3+, Mn2+ and Zn2+ of Pinus pinea and in the case of the last element, also in Pinus pinaster. The observation of the scores matrix allowed us to understand the major concentration of these elements according the temperature of exposition. Hence, the elements that showed higher positive loadings in Factor 1, have a major concentration at 450, 500 and 550°C, and the ones with higher negative loadings presented higher concentration at 200 and 250°C. The nutrients that presented higher positive loadings in Factor 2 have higher concentrations at 400°C. The elements with higher positive loadings in Factor 3 have bigger amounts in the ash slurries produced at 350°C and the ones with higher negative loadings in the Factor 4 showed greater concentrations in the ash produced at 300°C. The elements with higher negative loadings in the Factor 5 showed higher amounts in the ash created at 150°C of exposition. The results obtained showed that nutrients concentration is a function of the burned specie and temperature reached in the considered exposure time. Micronutrients and TC and C/N showed higher values at lower temperatures, TN, Ca2+, Mg2+ and TP at temperatures between 300-400°C. The other variables in study have major concentrations at temperatures higher than 450°C. Some differences between species can be identified and this is a result of the different litter vulnerabilities to the same temperature, producing diverse fire severities. This and other reasons for this behaviour will be discussed in the communication.

  18. Evaluation of the mechanical properties of class-F fly ash.

    PubMed

    Kim, Bumjoo; Prezzi, Monica

    2008-01-01

    Coal-burning power plants in the United States (US) generate more than 70 million tons of fly ash as a by-product annually. Recycling large volumes of fly ash in geotechnical applications may offer an attractive alternative to the disposal problem as most of it is currently dumped in ponds or landfills. Class-F fly ash, resulting from burning of bituminous or anthracite coals, is the most common type of fly ash in the US. In the present study, the mechanical characteristics (compaction response, compressibility, and shear strength) of class-F fly ash were investigated by performing various laboratory tests (compaction test, one-dimensional compression test, direct shear test and consolidated-drained triaxial compression test) on fly ash samples collected from three power plants in the state of Indiana (US). Test results have shown that despite some morphological differences, class-F fly ash exhibits mechanical properties that are, in general, comparable to those observed in natural sandy soils.

  19. Potential for thermochemical conversion of biomass residues from the integrated sugar-ethanol process - Fate of ash and ash-forming elements.

    PubMed

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Zevenhoven, Maria; Hupa, Mikko

    2017-06-01

    In this work, potential for thermochemical conversion of biomass residues from an integrated sugar-ethanol process and the fate of ash and ash-forming elements in the process are presented. Ash, ash-forming elements, and energy flows in the process were determined using mass balances and analyses of eight different biomass samples for ash contents, elemental compositions, and heating values. The results show that the ash content increases from the sugarcane to the final residue, vinasse. The cane straw, which is left in the field, contains one-third of the energy and 25% of the K and Cl while the vinasse contains 2% of the energy and 40% of the K and Cl in the cane. K and Cl in biomass fuels cause corrosion and fouling problems in boilers and gasifiers. Over 85% of these elements in the straw are water soluble indicating that water leaching would improve it for utilization in thermochemical conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ash from a pulp mill boiler--characterisation and vitrification.

    PubMed

    Ribeiro, Ana S M; Monteiro, Regina C C; Davim, Erika J R; Fernandes, M Helena V

    2010-07-15

    The physical, chemical and mineralogical characterisation of the ash resulting from a pulp mill boiler was performed in order to investigate the valorisation of this waste material through the production of added-value glassy materials. The ash had a particle size distribution in the range 0.06-53 microm, and a high amount of SiO(2) (approximately 82 wt%), which was present as quartz. To favour the vitrification of the ash and to obtain a melt with an adequate viscosity to cast into a mould, different amounts of Na(2)O were added to act as fluxing agent. A batch with 80 wt% waste load melted at 1350 degrees C resulting in a homogeneous transparent green-coloured glass with good workability. The characterisation of the produced glass by differential thermal analysis and dilatometry showed that this glass presents a stable thermal behaviour. Standard leaching tests revealed that the concentration of heavy metals in the leaching solution was lower than those allowed by the Normative. As a conclusion, by vitrification of batch compositions with adequate waste load and additive content it is possible to produce an ash-based glass that may be used in similar applications as a conventional silicate glass inclusively as a building ecomaterial. 2010 Elsevier B.V. All rights reserved.

  1. Thermal Stability of Volcanic Ash versus Turbine Ingestion Test Sands: an Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Cimarelli, C.; Kueppers, U.; Hess, K.; Dingwell, D. B.; Rickerby, D. S.; Madden, P. C.

    2010-12-01

    Volcanic eruptions are an inevitable natural threat. The range of eruptive styles is large and short term fluctuations of explosivity or vent position pose a large risk not necessarily confined to the immediate vicinity of a volcano. Explosive eruptions rather may also affect aviation, infrastructure and climate, regionally as well as globally. The recent eruption of Eyjafjallajökull drastically brought into common awareness how volcanic activity can affect every day’s life and disrupt air traffic. The presence of solid particles in the air ingested in jet turbines may cause harm as it 1) may deposit on surfaces upon being heated up and 2) abrade upon impact. Particles suspended in the atmosphere may have different origins, including volcanic ash, aeolian sand, or incineration residues, each of them having different chemical and physical characteristics. To date, aircraft turbine operability has been investigated - amongst other tests - through the ingestion of sands whose grains have different mineralogical nature. Due to high cooling rates, volcanic ash is usually made up of glass, i.e. an amorphous phase lacking crystallographic order. Glass and crystal behave very differently to heating up. Glass will soften - and accordingly change shape or stick to surfaces - at temperatures as low as 700 °C, depending on the chemical composition. Crystals however need higher melting temperatures; quartz for example has a melting point at around 1700 °C. Accordingly, the effect of ash on the operational reliability of aircraft turbines may not be judged solely based on knowledge commonly derived from mineral sand ingestion testing. In order to investigate the behaviour upon heating, we performed a series of experiments at ten temperature steps between 700 and 1600 °C. We used three different samples: 1) Ash from the explosive phase of Eyjafjallajökull; 2) MIL E-5007C test sand (MTS), and 3) Arizona Test Dust (ATD). MTS and ATD are commonly used for aircraft turbine testing. Experiments have been performed on two different grain sizes, < 63 and 90

  2. Esterification free fatty acid in sludge palm oil using ZrO2/SO42- - rice husk ash catalyst

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-05-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as sludge palm oil (SPO) from palm oil industries. The use of SPO can lower the cost of biodiesel production significantly, which makes SPO a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid on sludge palm oil was studied using rice husk ash as heterogeneous solid catalysts. Heterogeneous solid catalysts offer significant advantages of eliminating separation, corrosion, toxicity and environmental problems. In this paper the esterification of SPO, a by-product from palm oil industry, in the presence of modified rice husk ash catalysts was studied. The rice husk ash catalysts were synthesized by impregnating of Zirconia (Zr) on rice husk ash followed by sulfonation. The rice husk ash catalysts were characterized by using different techniques, such as FT-IR, XRD, and porous analysis. The effects of the mass ratio of catalyst to oil (1 - 10%), the molar ratio of methanol to oil (4:1 - 10:1), and the reaction temperature (40 - 60°C) were studied for the conversion of free fatty acids (FFAs) to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to oil molar ratio of 10:1, the amount of catalyst of 10%w, and reaction temperature of 60°C.

  3. Extraction of trace metals from fly ash

    DOEpatents

    Blander, M.; Wai, C.M.; Nagy, Z.

    1983-08-15

    A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  4. Extraction of trace metals from fly ash

    DOEpatents

    Blander, Milton; Wai, Chien M.; Nagy, Zoltan

    1984-01-01

    A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  5. Toxicity screening of waste products using cell culture techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petitmermet, M.; Favre, A.; Shah, B.

    1995-12-31

    More than 600,000 tons of residue from waste incineration plants is produced in Switzerland each year. These residues are slag, fly ashes, and residues from extended flue gas cleaning. Because they are contaminated with heavy metals, they have to be deposited in appropriate landfills. Due to the increasing amount of municipal and industrial waste and the decreasing amount of disposal sites, additional treatment of waste and its by-products is becoming more and more important. To decrease the amount of residuals to be deposited, the heavy metal content of the residues has to be reduced by physical, chemical, or biological methodsmore » to acceptably low levels to obtain products suitable for reuse in the construction industry. The cell reactions due to the presence of residues and their extracts were studied using quantitative and qualitative methods. The results of the applied cell culture techniques showed that fly ash was much more cytotoxic than slag. This finding correlates with the chemical analysis. The washed samples were again less cytotoxic than their corresponding unwashed samples due to the lack of water-soluble compounds. The very sensitive response of the cell cultures to toxic substances was used to classify and validate the applied treatment methods.« less

  6. Fabrication method and microstructural characteristics of coal-tar-pitch-based 2D carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Esmaeeli, Mohammad; Khosravi, Hamed; Mirhabibi, Alireza

    2015-02-01

    The lignin-cellulosic texture of wood was used to produce two-dimensional (2D) carbon/carbon (C/C) composites using coal tar pitch. Ash content tests were conducted to select two samples among the different kinds of woods present in Iran, including walnut, white poplar, cherry, willow, buttonwood, apricots, berry, and blue wood. Walnut and white poplar with ash contents of 1.994wt% and 0.351wt%, respectively, were selected. The behavior of these woods during pyrolysis was investigated by differential thermal analysis (DTA) and thermo gravimetric (TG) analysis. The bulk density and open porosity were measured after carbonization and densification. The microstructural characteristics of samples were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy. The results indicate that the density of both the walnut and white poplar is increased, and the open porosity is decreased with the increasing number of carbonization cycles. The XRD patterns of the wood charcoal change gradually with increasing pyrolysis temperature, possibly as a result of the ultra-structural changes in the charcoal or the presence of carbonized coal tar pitch in the composite's body.

  7. A brief review on fly ash and its use in surface engineering

    NASA Astrophysics Data System (ADS)

    Bhajantri, Vishwanath; Krishna, Prasad; Jambagi, Sudhakar

    2018-04-01

    Fly ash is a by-product obtained from coal power plants. Over the past two decades, handling this industrial waste has been a great challenge for many developing countries. However, this menace can be used in many industrial applications viz., civil, automobile and aerospace applications. In civil industry, the fly ash has been used in concreate to enhance the porosity that increases the curing time of the concrete. The fly ash has been gaining importance these days as a feedstock material for many thermal spray processes. In automobile sector, the fly ash has been used as a thermal barrier coating in IC engines, whereas in aerospace industry, which demands lighter and stronger materials, the fly ash has been used as a reinforcement material. Hence, so far, fly ash has been used as an either single or a composite feed stock material in thermal spray processes. The fly ash with other materials like alumina, titania and red mud have been deposited using thermal spray processes. These coatings have exhibited higher wear, corrosion and erosion resistance as compared to the uncoated specimens. In this paper, a brief review on fly ash and its use, especially its use as a feed stock in thermal spray coating, is presented. Therefore, the use of fly ash has opened a new frontier of research in thermal spray coating area where economically viable coatings can be produced using industrial waste like fly ash.

  8. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo.

    PubMed

    Hasani, F; Shala, F; Xhixha, G; Xhixha, M K; Hodolli, G; Kadiri, S; Bylyku, E; Cfarku, F

    2014-12-01

    The energy production in Kosovo depends primarily on lignite-fired power plants. During coal combustion, huge amounts of fly ash and bottom ash are generated, which may result in enriched natural radionuclides; therefore, these radionuclides need to be investigated to identify the possible processes that may lead to the radiological exposure of workers and the local population. Lignite samples and NORMs of fly ash and bottom ash generated in lignite-fired power plants in Kosovo are analyzed using a gamma-ray spectrometry method for the activity concentration of natural radionuclides. The average activity concentrations of (40)K, (226)Ra and (232)Th in lignite are found to be 36 ± 8 Bq kg(-1), 9 ± 1 Bq kg(-1) and 9 ± 3 Bq kg(-1), respectively. Indications on the occurrence and geochemical behavior of uranium in the lignite matrix are suggested. The activity concentrations of natural radionuclides in fly ash and bottom ash samples are found to be concentrated from 3 to 5 times that of the feeding lignite. The external gamma-ray absorbed dose rate and the activity concentration index are calculated to assess the radiological hazard arising from ash disposal and recycling in the cement industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Assessment of soil contamination by (210)Po and (210)Pb around heavy oil and natural gas fired power plants.

    PubMed

    Al-Masri, M S; Haddad, Kh; Doubal, A W; Awad, I; Al-Khatib, Y

    2014-06-01

    Soil contamination by (210)Pb and (210)Po around heavy oil and natural gas power plants has been investigated; fly and bottom ash containing enhanced levels of (210)Pb and (210)Po were found to be the main source of surface soil contamination. The results showed that (210)Pb and (210)Po in fly-ash (economizer, superheater) is highly enriched with (210)Pb and (210)Po, while bottom-ash (boiler) is depleted. The highest (210)Pb and (210)Po activity concentrations were found to be in economizer ash, whereas the lowest activity concentration was in the recirculator ash. On the other hand, (210)Pb and (210)Po activity concentrations in soil samples were found to be higher inside the plant site area than those samples collected from surrounding areas. The highest levels were found in the vicinity of Mhardeh and Tishreen power plants; both plants are operated by heavy oil and natural fuels, while the lowest values were found to be in those samples collected from Nasrieh power plant, which is only operated by one type of fuel, viz. natural gas. In addition, the levels of surface soil contamination have decreased as the distance from the power plant site center increased. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Environmentally critical elements in channel and cleaned samples of Illinois coals

    USGS Publications Warehouse

    Demir, I.; Ruch, R.R.; Damberger, H.H.; Harvey, R.D.; Steele, J.D.; Ho, K.K.

    1998-01-01

    Sixteen trace and minor elements that occur in coal are listed among 189 substances identified as 'hazardous air pollutants' (HAPs) in the US Clean Air Act Amendments of 1990. We investigated the occurrence and cleanability of the 16 HAPs in Illinois coals, as a contribution to the discussion about the potential effect of pending environmental regulations on the future use of these coals in power generation. The average ash content of the samples of conventionally cleaned as-shipped coals is about 20% lower than that of standard channel samples. Conventional cleaning reduces the average concentrations of As, Cd, Co, Hg, Mn, Ni, Pb, Sb and Th in the as-shipped coals by more than 20% relative to channel samples. Thus, basing assessments of health risks from emissions of HAPs during coal combustion on channel samples without appropriate adjustment would overestimate the risk. Additional cleaning by froth-flotation reduces the ash content of finely-ground as-shipped coals by as much as 76% at an 80% combustibles recovery. Although the average froth-flotation cleanability for the majority of HAPs is less than that for ash, the cleanabilities in some individual cases approaches, or even exceeds, the cleanability for ash, depending on the modes of occurrences of the elements. ?? 1997 Elsevier Science Ltd.

  11. Size fractionation of waste-to-energy boiler ash enables separation of a coarse fraction with low dioxin concentrations.

    PubMed

    Weidemann, E; Allegrini, E; Fruergaard Astrup, T; Hulgaard, T; Riber, C; Jansson, S

    2016-03-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) formed in modern Waste-to-Energy plants are primarily found in the generated ashes and air pollution control residues, which are usually disposed of as hazardous waste. The objective of this study was to explore the occurrence of PCDD/F in different grain size fractions in the boiler ash, i.e. ash originating from the convection pass of the boiler. If a correlation between particle size and dioxin concentrations could be found, size fractionation of the ashes could reduce the total amount of hazardous waste. Boiler ash samples from ten sections of a boiler's convective part were collected over three sampling days, sieved into three different size fractions - <0.09 mm, 0.09-0.355 mm, and >0.355 mm - and analysed for PCDD/F. The coarse fraction (>0.355 mm) in the first sections of the horizontal convection pass appeared to be of low toxicity with respect to dioxin content. While the total mass of the coarse fraction in this boiler was relatively small, sieving could reduce the amount of ash containing toxic PCDD/F by around 0.5 kg per tonne input waste or around 15% of the collected boiler ash from the convection pass. The mid-size fraction in this study covered a wide size range (0.09-0.355 mm) and possibly a low toxicity fraction could be identified by splitting this fraction into more narrow size ranges. The ashes exhibited uniform PCDD/F homologue patterns which suggests a stable and continuous generation of PCDD/F. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effects of trap type, placement and ash distribution on emerald ash borer captures in a low density site.

    PubMed

    McCullough, Deborah G; Siegert, Nathan W; Poland, Therese M; Pierce, Steven J; Ahn, Su Zie

    2011-10-01

    Effective methods for early detection of newly established, low density emerald ash borer (Agrilus planipennis Fairmaire) infestations are critically needed in North America. We assessed adult A. planipennis captures on four types of traps in a 16-ha site in central Michigan. The site was divided into 16 blocks, each comprised of four 50- by 50-m cells. Green ash trees (Fraxinus pennsylvanica Marshall) were inventoried by diameter class and ash phloem area was estimated for each cell. One trap type was randomly assigned to each cell in each block. Because initial sampling showed that A. planipennis density was extremely low, infested ash logs were introduced into the center of the site. In total, 87 beetles were captured during the summer. Purple double-decker traps baited with a blend of ash leaf volatiles, Manuka oil, and ethanol captured 65% of all A. planipennis beetles. Similarly baited, green double-decker traps captured 18% of the beetles, whereas sticky bands on girdled trees captured 11% of the beetles. Purple traps baited with Manuka oil and suspended in the canopies of live ash trees captured only 5% of the beetles. At least one beetle was captured on 81% of the purple double-decker traps, 56% of the green double-decker traps, 42% of sticky bands, and 25% of the canopy traps. Abundance of ash phloem near traps had no effect on captures and trap location and sun exposure had only weak effects on captures. Twelve girdled and 29 nongirdled trees were felled and sampled in winter. Current-year larvae were present in 100% of the girdled trees and 72% of the nongirdled trees, but larval density was five times higher on girdled than nongirdled trees.

  13. Analyses of known and new types of polyhalogenated aromatic substances in oven ash from recycled aluminium production.

    PubMed

    Sinkkonen, Seija; Lahtiperä, Mirja; Vattulainen, Antero; Takhistov, Viatcheslav V; Viktorovskii, Igor V; Utsal, Viktor A; Paasivirta, Jaakko

    2003-07-01

    Persistent aromatic bromine, chlorine and mixed chlorine-bromine compounds were analysed from recycled aluminium smelter (ALS) ashes to explore the impact of brominated flame retardants (BFR) on their formation. Polybrominated diphenyl ethers (PBDE) were the most abundant original BFRs found. Induction furnace ash contained tetra- to octa-BDEs about 2000ng g(-1) in similar congener ratios as the original scrap, but contents of nona- and deca-BDEs were only 25 and 5ng g(-1) indicating their significant degradation in ALS process. In the most non-polar fraction, PCB levels and profiles were similar as earlier ALS ash samples in 1990s. The highest PCB level measured was that of deca-CB (450ng g(-1)) in the induction furnace ash. In this fraction, bromo compounds were non-detectable (<5ng g(-1)). Fraction of the most polar compounds (from reversed toluene elution of carbon column ("dioxin fraction") contained PCDDs, PCDFs and polychlorinated dibenzothiophenes (PCDTs) in similar amounts and congener profiles as earlier investigated ALS ash samples. Bromine-containing dioxin and furan congeners were not detected. From individual PCDDs and PCDFs, octaCDF was the most abundant (205ng g(-1)) in induction furnace ash. In this fraction, the original BFR, tetrabromo-bisphenol-A, was identified. Its level in the induction furnace ash was approximated to be 388ng g(-1). In addition, 12 novel brominated and chlorinated compounds were found as abundant (8-441ng g(-1) in the induction furnace ash) contaminants from the fraction. Four of them were bisphenol derivatives, five biphenylols, then octachlorofluorenone (OCFL) and octachlorobiphenylene (OCBP). Their structures or structure types were deduced from total low-resolution EI mass spectra by theoretical isotope cluster simulation (ICLU) and through known fragmentation rules.

  14. Application of air classification and formulation to manage feedstock cost, quality and availability for bioenergy

    DOE PAGES

    Thompson, Vicki S.; Lacey, Jeffrey A.; Hartley, Damon; ...

    2016-04-22

    Biomass such as agricultural residues, energy crops and yard waste has significant potential to be used as renewable feedstocks for production of fuels, chemicals and energy. However, in a given location, biomass availability, cost and quality can vary markedly. Strategies to manage these traits must be identified and implemented so that consistent low-cost and high-quality feedstocks can be delivered to biorefineries year round. In this study, we examine air classification as a method to mitigate high ash concentrations in corn stover, switchgrass, and grass clippings. Formulation techniques were then used to produce blends that met ash quality and biomass quantitymore » specifications at the lowest possible cost for biopower and biochemical conversion applications. It was found that air classification can separate the biomass into light fractions which contain concentrated amounts of elemental ash components introduced through soil contamination such as sodium, alumina, silica, iron and titania; and heavy fractions that are depleted in these components and have relatively lower total ash content. Light fractions of corn stover and grass clippings were found to be suitable for combustion applications since they had less propensity to slag than the whole biomass material. The remaining heavy fractions of corn stover or grass clippings could then be blended with switchgrass to produce blends that met the 5% total ash specifications suggested for biochemical conversions. However, ternary blends of the three feedstocks were not possible due to the high ash content of grass clippings. Lastly, it was determined that air classification by itself was not suitable to prepare these feedstocks for pyrolysis due to high ash content.« less

  15. APC fly ashes stabilized with Portland cement for further development of road sub-base aggregates

    NASA Astrophysics Data System (ADS)

    Formosa, J.; Giro-Paloma, J.; Maldonado-Alameda, A.; Huete-Hernández, S.; Chimenos, J. M.

    2017-10-01

    Although waste-to-energy plants allow reducing the mass and volume of municipal solid waste (MSW) incinerated, an average around 30 % of the total content remains as bottom ash (BA) and air pollution control (APC) ashes at the end of combustion process. While weathered bottom ash (WBA) is considered a non-hazardous residue that can be revalorized as a secondary aggregate, APC fly ashes generated during the flue gas treatment are classified as hazardous waste and are handled in landfill disposal after stabilization, usually with Portland cement (OPC). However, taking into account the amount of APC residues produced and the disposing cost in landfill, their revalorization is an important issue that could be effectively addressed. As MSW can be incinerated producing bottom ashes (BA) or air pollutant control (APC) residues, the development of a mortar formulated with APC fly ash as secondary building material is a significant risk to the environment for their content of heavy metals. In this way, Design of Experiment (DoE) was used for the improvement of granular material (GM) formulation composed by APC and OPC for further uses as road sub-base aggregate. DoE analysis was successful in the modelling and optimization the formulation as function of the mechanical properties and APC amount. Consequently, an optimal mortar formulation (OMF) of around 50 wt.% APC and 50 wt.% OPC was considered. The OMF leachates and abrasion resistance have been analyzed. These results have demonstrated the viability of OMF as non-hazardous material feasible to be used as secondary aggregate. Moreover, it would be possible to consider the environmental assessment of a GM composed by ≈20 wt.% of OMF and ≈80 wt.% of WBA in order to improve mechanical properties and heavy metals stabilization.

  16. Application of air classification and formulation to manage feedstock cost, quality and availability for bioenergy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Vicki S.; Lacey, Jeffrey A.; Hartley, Damon

    Biomass such as agricultural residues, energy crops and yard waste has significant potential to be used as renewable feedstocks for production of fuels, chemicals and energy. However, in a given location, biomass availability, cost and quality can vary markedly. Strategies to manage these traits must be identified and implemented so that consistent low-cost and high-quality feedstocks can be delivered to biorefineries year round. In this study, we examine air classification as a method to mitigate high ash concentrations in corn stover, switchgrass, and grass clippings. Formulation techniques were then used to produce blends that met ash quality and biomass quantitymore » specifications at the lowest possible cost for biopower and biochemical conversion applications. It was found that air classification can separate the biomass into light fractions which contain concentrated amounts of elemental ash components introduced through soil contamination such as sodium, alumina, silica, iron and titania; and heavy fractions that are depleted in these components and have relatively lower total ash content. Light fractions of corn stover and grass clippings were found to be suitable for combustion applications since they had less propensity to slag than the whole biomass material. The remaining heavy fractions of corn stover or grass clippings could then be blended with switchgrass to produce blends that met the 5% total ash specifications suggested for biochemical conversions. However, ternary blends of the three feedstocks were not possible due to the high ash content of grass clippings. Lastly, it was determined that air classification by itself was not suitable to prepare these feedstocks for pyrolysis due to high ash content.« less

  17. A Bayesian method to rank different model forecasts of the same volcanic ash cloud: Chapter 24

    USGS Publications Warehouse

    Denlinger, Roger P.; Webley, P.; Mastin, Larry G.; Schwaiger, Hans F.

    2012-01-01

    Volcanic eruptions often spew fine ash high into the atmosphere, where it is carried downwind, forming long ash clouds that disrupt air traffic and pose a hazard to air travel. To mitigate such hazards, the community studying ash hazards must assess risk of ash ingestion for any flight path and provide robust and accurate forecasts of volcanic ash dispersal. We provide a quantitative and objective method to evaluate the efficacy of ash dispersal estimates from different models, using Bayes theorem to assess the predictions that each model makes about ash dispersal. We incorporate model and measurement uncertainty and produce a posterior probability for model input parameters. The integral of the posterior over all possible combinations of model inputs determines the evidence for each model and is used to compare models. We compare two different types of transport models, an Eulerian model (Ash3d) and a Langrangian model (PUFF), as applied to the 2010 eruptions of Eyjafjallajökull volcano in Iceland. The evidence for each model benefits from common physical characteristics of ash dispersal from an eruption column and provides a measure of how well each model forecasts cloud transport. Given the complexity of the wind fields, we find that the differences between these models depend upon the differences in the way the models disperse ash into the wind from the source plume. With continued observation, the accuracy of the estimates made by each model increases, increasing the efficacy of each model’s ability to simulate ash dispersal.

  18. The Lower Silurian Osmundsberg K-bentonite. Part II: Mineralogy, geochemistry, chemostratigraphy and tectonomagmatic significance

    USGS Publications Warehouse

    Huff, W.D.; Bergstrom, Stig M.; Kolata, Dennis R.; Sun, H.

    1998-01-01

    The Lower Silurian Osmundsberg K-bentonite is a widespread ash bed that occurs throughout Baltoscandia and parts of northern Europe. This paper describes its characteristics at its type locality in the Province of Dalarna, Sweden. It contains mineralogical and chemical characteristics that permit its regional correlation in sections elsewhere in Sweden as well as Norway, Estonia, Denmark and Great Britain. The < 2 ??m clay fraction of the Osmundsberg bed contains abundant kaolinite in addition to randomly ordered (RO) illite/smectite (I/S). Modelling of the X-ray diffraction tracings showed the I/S consists of 18% illite and 82 % smectite. The high smectite and kaolinite content is indicative of a history with minimal burial temperatures. Analytical data from both pristine melt inclusions in primary quartz grains as well as whole rock samples can be used to constrain both the parental magma composition and the probable tectonic setting of the source volcanoes. The parental ash was dacitic to rhyolitic in composition and originated in a tectonically active collision margin setting. Whole rock chemical fingerprinting of coeval beds elsewhere in Baltoscandia produced a pronounced clustering of these samples in the Osmundsberg field of the discriminant analysis diagram. This, together with well-constrained biostratigraphic and lithostratigraphic data, provides the basis for regional correlation and supports the conclusion that the Osmundsberg K-bentonite is one of the most extensive fallout ash beds in the early Phanerozoic. The source volcano probably lay to the west of Baltica as part of the subduction complex associated with the closure of Iapetus.

  19. Interspecific comparison of constitutive ash phloem phenolic chemistry reveals compounds unique to manchurian ash, a species resistant to emerald ash borer.

    PubMed

    Whitehill, Justin G A; Opiyo, Stephen O; Koch, Jennifer L; Herms, Daniel A; Cipollini, Donald F; Bonello, Pierluigi

    2012-05-01

    The emerald ash borer (Agrilus planipennis, EAB) is an invasive wood-borer indigenous to Asia and is responsible for widespread ash (Fraxinus spp.) mortality in the U.S. and Canada. Resistance and susceptibility to EAB varies among Fraxinus spp., which is a result of their co-evolutionary history with the pest. We characterized constitutive phenolic profiles and lignin levels in the phloem of green, white, black, blue, European, and Manchurian ash. Phloem was sampled twice during the growing season, coinciding with phenology of early and late instar EAB. We identified 66 metabolites that displayed a pattern of variation, which corresponded strongly with phylogeny. Previously identified lignans and lignan derivatives were confirmed to be unique to Manchurian ash, and may contribute to its high level of resistance to EAB. Other compounds that had been considered unique to Manchurian ash, including hydroxycoumarins and the phenylethanoids calceolarioside A and B, were detected in closely related, but susceptible species, and thus are unlikely to contribute to EAB resistance of Manchurian ash. The distinct phenolic profile of blue ash may contribute to its relatively high resistance to EAB.

  20. Rare and Rare-Earth Metals in Coal Processing Waste

    NASA Astrophysics Data System (ADS)

    Cherkasova, Tatiana; Cherkasova, Elizaveta; Tikhomirova, Anastasia; Bobrovni-kova, Alyona; Goryunova, Irina

    2017-11-01

    An urgent issue for power plants operating on solid fuels (coal) is the issue of utilization or use of accumulated production waste - ash and slag materials - in the related production. Ash-slag materials are classified as "waste", usually grade 5; tens of millions of tons of them being pro-duced annually in the Kemerovo region, which threatens the ecology of the region. At the same time, ash and slag is a very promising raw material. The use of this material as a base for the final product allows us to signifi-cantly expand the possibilities of using coal. The most widespread is the system of ash and slag involving in construction or as a replacement for sand in road construction, or as an additive to building mixtures. However, there are both industrially valuable and environmentally dangerous ele-ments in ash-slag materials. Ash-slag materials can be considered as inde-pendent ore deposits located on the surface and requiring the costs of their extraction.

  1. Exploration of using stripped ammonia and ash from poultry litter for the cultivation of the cyanobacterium Arthrospira platensis and the green microalga Chlorella vulgaris.

    PubMed

    Markou, Giorgos; Iconomou, Dimitris; Sotiroudis, Theodore; Israilides, Cleanthes; Muylaert, Koenraad

    2015-11-01

    Herein a new approach of exploiting poultry litter (PL) is demonstrated. The suggested method includes drying of PL with simultaneously striping and recovery of ammonia, followed by the direct combustion of dried PL. The generated ash after the combustion, and the striped ammonia consequently, could be used as nutrient source for the cultivation of microalgae or cyanobacteria to produce feed additives. The present study explored the application of PL ash and recovered ammonia for the cultivation of Arthrospira platensis and Chlorella vulgaris. For a simultaneously 90% dissolution of ash potassium and phosphorus, a ratio of acid to ash of 0.02mol-H(+)/g was required. The optimum mass of ash required was 0.07-0.08g/g dry biomass, while the addition of ammoniac nitrogen of 8-9mgN per g of dry biomass per day was adequate for a satisfactory production of A. platensis and C. vulgaris. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Combustion of a Pb(II)-loaded olive tree pruning used as biosorbent.

    PubMed

    Ronda, A; Della Zassa, M; Martín-Lara, M A; Calero, M; Canu, P

    2016-05-05

    The olive tree pruning is a specific agroindustrial waste that can be successfully used as adsorbent, to remove Pb(II) from contaminated wastewater. Its final incineration has been studied in a thermobalance and in a laboratory flow reactor. The study aims at evaluating the fate of Pb during combustion, at two different scales of investigation. The flow reactor can treat samples approximately 10(2) larger than the conventional TGA. A detailed characterization of the raw and Pb(II)-loaded waste, before and after combustion is presented, including analysis of gas and solids products. The Pb(II)-loaded olive tree pruning has been prepared by a previous biosorption step in a lead solution, reaching a concentration of lead of 2.3 wt%. Several characterizations of the ashes and the mass balances proved that after the combustion, all the lead presents in the waste remained in ashes. Combustion in a flow reactor produced results consistent with those obtained in the thermobalance. It is thus confirmed that the combustion of Pb(II)-loaded olive tree pruning is a viable option to use it after the biosorption process. The Pb contained in the solid remained in the ashes, preventing possible environmental hazards. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of volcanic deposit disaggregation on exposed water composition

    NASA Astrophysics Data System (ADS)

    Back, W. E.; Genareau, K. D.

    2016-12-01

    Explosive volcanic eruptions produce a variety of hazards. Pyroclastic material can be introduced to water through ash fallout, pyroclastic flows entering water bodies, and/or lahars. Remobilization of tephras can occur soon after eruption or centuries later, introducing additional pyroclastic material into the environment. Introduction of pyroclastic material may alter the dissolved element concentration and pH of exposed waters, potentially impacting drinking water supplies, agriculture, and ecology. This study focuses on the long-term impacts of volcanic deposits on water composition due to the mechanical breakup of volcanic deposits over time. Preliminary work has shown that mechanical milling of volcanic deposits will cause significant increases in dissolved element concentrations, conductivity, and pH of aqueous solutions. Pyroclastic material from seven eruptions sites was collected, mechanically milled to produce grain sizes <32 microns, and a standard ash leachate protocol was performed. Milled tephras were analyzed using X-Ray Fluorescence (XRF) and water leachates were analyzed with Inductively Coupled Plasma Optical-Emission Spectroscopy (ICP-OES). Mechanical disaggregation increases the surface area of the material as well as the amount of active surface sites for leaching. The samples tested consist of felsic (Taupo and Valles Caldera), intermediate (Kelud, Soufriere Hills, Ruapehu), mafic (Lathrop Wells) and ultramafic (mantle xenoliths) volcanic deposits. Lathrop Wells has an average bulk concentration of 49.15 wt.% SiO2, 6.11 wt. % MgO, and 8.39 wt. % CaO and produces leachate concentrations of 85.69 mg/kg for Ca and 37.22 mg/kg for Mg. Taupo and Valles Caldera samples have a bulk concentration of 72.9 wt.% SiO2, 0.59 wt. % MgO, and 1.48 wt. % CaO, and produces leachate concentrations of 4.08 mg/kg for Ca and 1.56 mg/kg for Mg. Similar testing will be conducted on the intermediate and ultramafic samples to test the hypothesis that bulk magma composition and mineralogy will directly relate to the increased dissolved element concentration of exposed waters. The measured effects on aqueous solutions will aid in evaluation of impacts to marine and freshwater systems exposed to volcanic deposits.

  4. Compressive strength and interfacial transition zone of sugar cane bagasse ash concrete: A comparison to the established pozzolans

    NASA Astrophysics Data System (ADS)

    Hussein, Asma Abd Elhameed; Shafiq, Nasir; Nuruddin, Muhd Fadhil

    2015-05-01

    Agricultural and industrial by-products are commonly used in concrete production as cement replacement materials (CRMs) or as admixtures to enhance both fresh and hardened properties of concrete as well as to save the environment from the negative effects caused by their disposal. Sugar Cane Bagasse Ash (SCBA) is one of the promising CRMs, it is used as a partial replacement of cement for producing concrete; properties of such concrete depend on the chemical composition, fineness, and burning temperature of SCBA. Approximately 1500 Million tons of sugarcane are annually produced over all the world which leave about 40-45% bagasse after juice crushing for sugar industry giving an average annual production of about 600 Million tons of bagasse as a waste material. This paper presents some findings on the effect of SCBA on workability, compressive strength and microstructure of interfacial zone of concrete and its performance is compared to some of the established CRMs namely Densified Silica Fume, Fly Ash and Microwave Incinerated Rice Husk Ash.

  5. Direct synthesis of carbon nanofibers from South African coal fly ash

    NASA Astrophysics Data System (ADS)

    Hintsho, Nomso; Shaikjee, Ahmed; Masenda, Hilary; Naidoo, Deena; Billing, Dave; Franklyn, Paul; Durbach, Shane

    2014-08-01

    Carbon nanofibers (CNFs), cylindrical nanostructures containing graphene, were synthesized directly from South African fly ash (a waste product formed during the combustion of coal). The CNFs (as well as other carbonaceous materials like carbon nanotubes (CNTs)) were produced by the catalytic chemical vapour deposition method (CCVD) in the presence of acetylene gas at temperatures ranging from 400°C to 700°C. The fly ash and its carbonaceous products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), laser Raman spectroscopy and Brunauer-Emmett-Teller (BET) surface area measurements. It was observed that as-received fly ash was capable of producing CNFs in high yield by CCVD, starting at a relatively low temperature of 400°C. Laser Raman spectra and TGA thermograms showed that the carbonaceous products which formed were mostly disordered. Small bundles of CNTs and CNFs observed by TEM and energy-dispersive spectroscopy (EDS) showed that the catalyst most likely responsible for CNF formation was iron in the form of cementite; X-ray diffraction (XRD) and Mössbauer spectroscopy confirmed these findings.

  6. Failure to phytosanitize ash firewood infested with emerald ash borer in a small dry kiln using ISPM-15 standards.

    PubMed

    Goebel, P Charles; Bumgardner, Matthew S; Herms, Daniel A; Sabula, Andrew

    2010-06-01

    Although current USDA-APHIS standards suggest that a core temperature of 71.1 degrees C (160 degrees F) for 75 min is needed to adequately sanitize emerald ash borer, Agrilus planipennis Fairmaire-infested firewood, it is unclear whether more moderate (and economical) treatment regimes will adequately eradicate emerald ash borer larvae and prepupae from ash firewood. We constructed a small dry kiln in an effort to emulate the type of technology a small- to medium-sized firewood producer might use to examine whether treatments with lower temperature and time regimes successfully eliminate emerald ash borer from both spilt and roundwood firewood. Using white ash (Fraxinus americana L.) firewood collected from a stand with a heavy infestation of emerald ash borer in Delaware, OH, we treated the firewood using the following temperature and time regime: 46 degrees C (114.8 degrees F) for 30 min, 46 degrees C (114.8 degrees F) for 60 min, 56 degrees C (132.8 degrees F) for 30 min, and 56 degrees C (132.8 degrees F) for 60 min. Temperatures were recorded for the outer 2.54-cm (1-in.) of firewood. After treatment, all firewood was placed under mesh netting and emerald ash borer were allowed to develop and emerge under natural conditions. No treatments seemed to be successful at eliminating emerald ash borer larvae and perpupae as all treatments (including two nontreated controls) experienced some emerald ash borer emergence. However, the 56 degrees C (132.8 degrees F) treatments did result in considerably less emerald ash borer emergence than the 46 degrees C (114.8 degrees F) treatments. Further investigation is needed to determine whether longer exposure to the higher temperature (56 degrees C) will successfully sanitize emerald ash borer-infested firewood.

  7. Preliminary hydrogeologic assessment of boreholes UE-25c #1, UE-25c #2, and UE-25c #3, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Geldon, A.L.

    1993-01-01

    Boreholes UE-25c #1, UE-25c #2, and UE-25c #3 (collectively called the C-holes) each were drilled to a depth of 914.4 meters at Yucca Mountain, on the Nevada Test Site, in 1983 and 1984 for the purpose of conducting aquifer and tracer tests. Each of the boreholes penetrated the Paintbrush Tuff and the tuffs and lavas of Calico Hills and bottomed in the Crater Flat Tuff. The geologic units penetrated consist of devitrified to vitrophyric, nonwelded to densely welded, ash-flow tuff, tuff breccia, ash-fall tuff, and bedded tuff. Below the water table, which is at an average depth of 401.6 meters below land surface, the rocks are argillic and zeolitic. The geologic units at the C-hole complex strike N. 2p W. and dip 15p to 21p NE. They are cut by several faults, including the Paintbrush Canyon Fault, a prominent normal fault oriented S. 9p W., 52.2p NW. The rocks at the C-hole complex are fractured extensively, with most fractures oriented approximately perpendicular to the direction of regional least horizontal principal stress. In the Crater Flat Tuff and the tuffs and lavas of Calico Hills, fractures strike predominantly between S. 20p E. and S. 20p W. and secondarily between S. 20p E. and S. 60p E. In the Topopah Spring Member of the Paintbrush Tuff, however, southeasterly striking fractures predominate. Most fractures are steeply dipping, although shallowly dipping fractures occur in nonwelded and reworked tuff intervals of the Crater Flat Tuff. Mineral-filled fractures are common in the tuff breccia zone of the Tram Member of the Crater Flat Tuff, and, also, in the welded tuff zone of the Bullfrog Member of the Crater Flat Tuff. The fracture density of geologic units in the C-holes was estimated to range from 1.3 to 7.6 fractures per cubic meter. Most of these estimates appear to be the correct order of magnitude when compared to transect measurements and core data from other boreholes 1.3 orders of magnitude too low. Geophysical data and laboratory analyses were used to determine matrix hydrologic properties of the tuffs and lavas of Calico Hills and the Crater Flat Tuff in the C-holes. The porosity ranged from 12 to 43 percent and, on the average, was larger in nonwelded to partially welded, ash-flow tuff, ashfall tuff, and reworked tuff than in moderately to densely welded ash-flow tuff. The pore-scale horizontal permeability of nine samples ranged from 5.7x10'3 to 2.9 millidarcies, and the pore-scale vertical permeability of these samples ranged from 3.7x10'* to 1.5 millidarcies. Ratios of pore-scale horizontal to vertical permeability generally ranged from 0.7 to 2. Although the number of samples was small, values of pore-scale permeability determined were consistent with samples from other boreholes at Yucca Mountain. The specific storage of nonwelded to partially welded ash-flow tuff, ash-fall tuff, and reworked tuff was estimated from porosity and elasticity to' be 2xlO'6 per meter, twice the specific storage of moderately to densely welded ash-flow tuff and tuff breccia. The storativity of geologic units, based on their average thickness (corrected for bedding dip) and specific storage, was estimated to range from 1xlO's to 2xlO'4. Ground-water flow in the Tertiary rocks of the Yucca Mountain area is not confined by strata but appears to result from the random intersection of water-bearing fractures and faults. Even at the C-hole complex, an area of only 1,027 square meters, water-producing zones during pumping tests vary from borehole to borehole. In borehole UE-25c #1, water is produced mainly from the lower, nonwelded to welded zone of the Bullfrog Member of the Crater Flat Tuff and secondarily from the tuff-breccia zone of the Tram Member of the Crater Flat Tuff. In borehole UE-25c #3, water is produced in nearly equal proportions from these two intervals and the central, moderately to densely welded zone of the Bullfrog Member. In borehole UE-25c #2, almost all production comes from the moderately to dense

  8. Chemistry, toxicology, and persistence of particulates during and after the 2016 Fort McMurray Wildfires in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Kohl, L.; Chan, A. W. H.; Cooke, C. A.; Hustins, S.; Jackson, B.; Wang, S.; Jing, X.; Meng, M.

    2017-12-01

    The Horse River Fire in May 2016 forced the evacuation of 88,000 Fort McMurray residents, and led to the destruction of over 2000 houses. After re-entry to homes, there is significant concern about exposures to residual fire-derived contaminants in residential houses. Wildfire research, however, provides little guidance on how long ashes and pollutants persist in household dust after major fires. The FACET project studies the chemistry and toxicology of samples of urban and forest ashes and airborne particles collected during the fire, as well as over 500 house dust samples collected in July 2017 (14 months after the fire). Here we present results on the chemical composition of the urban and forest ash samples collected during the fire along with initial results from house dust samples. Wildfire ashes contained elevated concentrations of polycyclic aromatic hydrocarbons (PAH), heavy metals, and dioxin like compounds (DLC). Relative to EPA reference doses, As and Sb constitute the greatest non-carcinogenic health hazard, whereas PAHs Benzo(a)pyrene and Indeno(1,2,3-cd)pyrene are the most relevant carcinogens. Ashes from urban locations contained higher concentrations of heavy metals and DLC than samples collected from forested areas outside of the City of Fort McMurray. Urban samples furthermore had a greater potential for generating oxidative stress than rural samples, as determined by dithiothreitol (DTT) consumption assays. The oxidative potential was positively correlated to Al, Cu, As, and V concentrations. Airborne particulate matter samples from the smoke plume contained consistent concentrations of levoglucosan (99 ± 5 mg g-1), along with other tracers for biomass burning (free lignin monomers, retene). Together these results will serve as proxies for understanding the contribution and the persistence of fire-derived pollutants in house dust in Fort McMurray homes.

  9. Determination of ash in coals unusually high in calcite and pyrite

    USGS Publications Warehouse

    Rees, O.W.; Selvig, W.A.

    1942-01-01

    The preliminary hearth heating method (A and E) gave results within the A. S. T. M. tolerances for all duplicates obtained in the same laboratory. Checks between different laboratories within A. S. T. M. tolerances were obtained for coals containing up to about 3.6 per cent mineral carbon dioxide, but these ashes contained larger amounts of retained sulfur. The determination of ash by the cold furnace method (B and F) gave duplicate results within A. S. T. M. tolerances for all samples in the U. S. Bureau of Mines laboratory and for samples up to about 1.6 per cent mineral carbon dioxide content in the Illinois Geological Survey laboratory. Checks between average values from the two laboratories were within A. S. T. M. tolerances for all samples.

  10. Bench-scale performance testing and economic analyses of electrostatic dry coal cleaning. Final report, October 1980-July 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, S.R.

    1987-02-01

    The report gives results of preliminary performance evaluations and economic analyses of the Advanced Energy Dynamics (AED) electrostatic dry coal-cleaning process. Grab samples of coal-feed-product coals were obtained from 25 operating physical coal-cleaning (PCC) plants. These samples were analyzed for ash, sulfur, and energy content and splits of the original samples of feed run-of-mine coal were provided for bench-scale testing in an electrostatic separation apparatus. The process showed superior sulfur-removal performance at equivalent cost and energy-recovery levels. The ash-removal capability of the process was not evaluated completely: overall, ash-removal results indicated that the process did not perform as well asmore » the PCC plants.« less

  11. Reaction mechanisms in the organometallic vapor phase epitaxial growth of GaAs

    NASA Technical Reports Server (NTRS)

    Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B.

    1988-01-01

    The decomposition mechanisms of AsH3, trimethylgallium (TMGa), and mixtures of the two have been studied in an atmospheric-pressure flow system with the use of D2 to label the reaction products which are analyzed in a time-of-flight mass spectrometer. AsH3 decomposes entirely heterogeneously to give H2. TMGa decomposes by a series of gas-phase steps, involving methyl radicals and D atoms to produce CH3D, CH4, C2H6, and HD. TMGa decomposition is accelerated by the presence of AsH3. When the two are mixed, as in the organometallic vapor phase epitaxial growth of GaAs, both compounds decompose in concert to produce only CH4. A likely model is that of a Lewis acid-base adduct that forms and subsequently eliminates CH4.

  12. Reaction mechanisms in the organometallic vapor phase epitaxial growth of GaAs

    NASA Astrophysics Data System (ADS)

    Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B.

    1988-02-01

    The decomposition mechanisms of AsH3, trimethylgallium (TMGa), and mixtures of the two have been studied in an atmospheric-pressure flow system with the use of D2 to label the reaction products which are analyzed in a time-of-flight mass spectrometer. AsH3 decomposes entirely heterogeneously to give H2. TMGa decomposes by a series of gas-phase steps, involving methyl radicals and D atoms to produce CH3D, CH4, C2H6, and HD. TMGa decomposition is accelerated by the presence of AsH3. When the two are mixed, as in the organometallic vapor phase epitaxial growth of GaAs, both compounds decompose in concert to produce only CH4. A likely model is that of a Lewis acid-base adduct that forms and subsequently eliminates CH4.

  13. Measuring the impact of biotic factors on populations of immature emerald ash borers (Coleoptera: Buprestidae).

    PubMed

    Duan, Jian J; Ulyshen, Michael D; Bauer, Leah S; Gould, Juli; Van Driesche, Roy

    2010-10-01

    Cohorts of emerald ash borer larvae, Agrilus planipennis Fairmaire, were experimentally established in July of 2008 on healthy green ash (Fraxinus pennsylvanica) trees in two wooded plots at each of three sites near Lansing, MI, by caging gravid emerald ash borer females or placing laboratory-reared eggs on trunks (0.5-2 m above the ground) of selected trees. One plot at each site was randomly chosen for release of two introduced larval parasitoids, Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) and Spathius agrili Yang (Hymenoptera: Braconidae), whereas the other served as the control. Stage-specific mortality factors and rates were measured for all experimentally established cohorts and for associated wild (i.e., naturally occurring) emerald ash borer immature stages via destructive sampling of 2.5 m (above the ground) trunk sections of cohort-bearing trees in the spring and fall of 2009. Host tree defense was the most important mortality factor, causing 32.0 to 41.1% mortality in the experimental cohorts and 17.5 to 21.5% in wild emerald ash borer stages by spring 2009, and 16.1 to 29% for the remaining experimental cohorts, and 9.9 to 11.8% for wild immature emerald ash borer stages by fall 2009. Woodpecker predation was the second most important factor, inflicting no mortality in the experimental cohorts but causing 5.0 to 5.6% mortality to associated wild emerald ash borer stages by spring 2009 and 9.2 to 12.8% and 3.2 to 17.7%, respectively, for experimental cohorts and wild emerald ash borer stages by fall 2009. Mortality from disease in both the experimental and wild cohorts was low (<3%) in both the spring and fall sample periods. In the fall 2009 samples, ≈ 1.5% of experimental cohorts and 0.8% of the wild emerald ash borer stages were parasitized by T. planipennisi. While there were no significant differences in mortality rates because of parasitism between parasitoid-release and control plots, T. planipennisi was detected in each of the three release sites by the end of the study but was not detected in the experimental cohorts or associated wild larvae in any of the three control plots.

  14. Volcanic degassing and secondary hydration of volcanic ash and scoria: Implications for paleoaltimetry and paleoclimate studies

    NASA Astrophysics Data System (ADS)

    Seligman, A. N.; Bindeman, I. N.

    2013-12-01

    The use of δD of ash as a reliable recorder of δD (and δ18O) values of paleoprecipitation in paleoclimate and paleoaltimetry research still requires experimental verification and testing. It is currently assumed that ash is deposited with a water content of no significance, and that within a few thousand years it becomes sufficiently (up to 4 wt.% H2O) hydrated, although the rate of hydration and whether or not the initial isotopic signature is held, are not well understood. We report analyses of δD and H2O of distal ash from recent eruptions (1980 Mount St. Helens, 1992 Mt. Spurr, and 1974 Volcán de Fuego) that were collected syneruption, in addition to scoria ranging in age from ~50 to 7300 years old from Klyuchevskoy volcano (Kamchatka, Russia), using the TC/EA - MAT 253 continuous flow system. Natural variability of studied samples in wt.% H2O (δD in ‰), with errors represented as 1 s.d. for the average, for recent ash eruptions, range from 0.1 × 0.07 (-102 × 4.7) for Volcán de Fuego up to 0.7 × 0.10 (-104 × 3.5) for Mount St. Helens. Ash from the Mt. Spurr eruption averaged 0.4 × 0.04 (-109 × 4.0), and we plan to also analyze ash from Mt. Pinatubo. The δD values are consistent with a magmatic degassing trend, where the last remaining water is depleted in deuterium, suggesting ash may be deposited with up to 0.7 wt.% H2O as primary magmatic water. Klyuchevskoy scoria (basaltic andesite) shows a general trend of increasing wt.% H2O with increasing age: the youngest samples (<2.0 ka) have ~0.2 wt.% water (-99 to -109 ‰), which is likely primary magmatic, while the older samples (4.7-7.3 ka) generally have a higher water concentration (~0.3-0.5 wt.%); likely local meteoric water based on δD values that are lower than degassed magmatic δD values and higher water content. The samples between ~2.3 and 3.6 ka (0.1 to 0.4 wt.% water) have variable water concentrations due to variations in porosity and therefore surface area between the different scoria. We do not observe a trend between the SiO2 wt.% (51-56 wt.%) and the water content of the samples. The δD values (between -99 × 5.6 and -121 × 1.2 per mil are near equilibrium with local postglacial meteoric waters, when incorporating a -30‰ fractionation, and provide a trend between δD and wt.% H2O, where higher water concentrations are associated with lower δD values. We also report preliminary results of δ18O in extracted water, using experimentally hydrated dacite and rhyolite glass, and a large set of natural ash (ash described above and ash from the Lava Creek Tuff of Yellowstone). These results show water-glass fractionations between -11.5 and -12.7 for experimental glasses and -2.2 to -11.4 for natural ash. We are looking into using δ18Owater in glass as a more robust and retentive proxy of past environmental waters for paleoclimate and paleoaltimetry research.

  15. AL(0) in municipal waste incinerator ash

    NASA Astrophysics Data System (ADS)

    Stipp, S. L.; Ronsbo, J. G.; Zunic, T. B.; Christensen, T. H.

    2003-04-01

    Disposal of municipal waste is a challenge to society. Waste volume is substantially decreased by incineration but residual ash usually contains a number of toxic components which must be immobilised to insure environmental protection. One element, chromium, is mobile and toxic in its oxidised state as Cr(VI) but it can be reduced to Cr(III) and immobilised. Reduction can be promoted by ash treatment with Fe(0) or Fe(II), but recent evidence shows that at least some Cr(VI) is reduced spontaneously in the ash. Aspects of ash behaviour suggest metallic aluminium as the reducing agent, but no direct evidence of Al(0) has been found until now. We examined filter ash from an energy-producing, municipal-waste incinerator (Vest-forbrænding) near Copenhagen. X-ray diffraction (XRD) identified expected salts of Na, K and Ca such as halite, sylvite, calcite, anhydrite and gypsum as well as quartz, feldspar and some hematite. Wave-dispersive electron microprobe produced elemen-tal maps of the ash; Al-rich areas were analysed quantitatively by comparison with standards. We identified metallic Al particles, averaging 50 to 100 micrometers in di-ameter, often with a fractured, glassy border of aluminum oxide. The particles were porous, explaining fast Cr(VI) reduction and they contained thin exsolution lamellae of Al-alloys of Pb and Cu or Mn, Fe and Ag, which provide clues of the Al(0) origin in the waste. Sometimes Al(0) occurred inside glassy globes of Al2O3. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) proved that surface Al concentrations on ash particles were below detection, confirming reactivity of the Al(0) bulk. The persistence of reduced Al through the highly oxidising combustion procedure comes as a surprise and is a benefit in the immobilisation of Cr(VI) from municipal-waste incineration residues.

  16. Characterising boiler ash from a circulating fluidised bed municipal solid waste incinerator and distribution of PCDD/F and PCB.

    PubMed

    Zhang, Mengmei; Buekens, Alfons; Li, Xiaodong

    2018-05-31

    In this study, ash samples were collected from five locations situated in the boiler of a circulating fluidised bed municipal solid waste incinerator (high- and low-temperature superheater, evaporator tubes and upper and lower economiser). These samples represent a huge range of flue gas temperatures and were characterised for their particle size distribution, surface characteristics, elemental composition, chemical forms of carbon and chlorine and distribution of polychlorinated dibenzo-p-dioxins (PCDD), dibenzofurans (PCDF) and biphenyls (PCB). Enrichment of chlorine, one of the main elements of organochlorinated pollutants, and copper, zinc and lead, major catalytic metals for dioxin-like compounds, was observed in lower-temperature ash deposits. The speciation of carbon and chlorine on ash surfaces was established, showing a positive correlation between organic chlorine and oxygen-containing carbon functional groups. The load of PCDD/F and PCB (especially dioxin-like PCB) tends to rise rapidly with falling temperature of flue gas, reaching their highest value in economiser ashes. The formation of PCDD/F congeners through the chlorophenol precursor route apparently was enhanced downstream the boiler. Principal component analysis (PCA) was applied to study the links between the ash characteristics and distribution of chloro-aromatics. The primary purpose of this study is improving the understanding of any links between the characteristics of ash from waste heat systems and its potential to form PCDD/F and PCB. The question is raised whether further characterisation of fly ash may assist to establish a diagnosis of poor plant operation, inclusive the generation, destruction and eventual emission of persistent organic pollutants (POPs).

  17. Evaluation of genotoxicity of coal fly ash in Allium cepa root cells by combining comet assay with the Allium test.

    PubMed

    Chakraborty, Rajarshi; Mukherjee, Ashit Kumar; Mukherjee, Anita

    2009-06-01

    Fly ash is a by-product of coal-fired electricity generation plants. Its utilization and disposal is of utmost importance. Using onion (Allium cepa) root tip system, the present study was carried out to evaluate the potential toxic and genotoxic effects of fly ash, collected from a thermal power plant in West Bengal, India. Prior to testing, the collected fly ash sample was mixed with sand in different proportions. Allium bulbs were allowed to germinate directly in fly ash and after five days the germinating roots were processed for the Allium test. Additionally, the Allium test was adapted for detecting DNA damage through comet assay. The results from the Allium test indicate that fly ash at 100% concentration inhibits root growth and mitotic indices; induces binucleated cells as a function of the proportion, but is not toxic at very low concentration. In the comet assay, a statistical increase for DNA strand breaks was found only at higher concentrations. The sample was analyzed by flame atomic absorption spectrometer for Zn, Pb, Cu, Ni, Cd and As, whose presence could partly be responsible for the toxicity of fly ash. The study concludes that the classical Allium test can give a more comprehensive data when done in combination with the comet assay, which is faster, simpler and independent of mitosis. Also when fly ash is used for other purposes in combination with soils, it should be judiciously used at very low concentrations in order to protect the ecosystem health from any potential adverse effects.

  18. Water-quality data from storm runoff after the 2007 fires, San Diego County, California

    USGS Publications Warehouse

    Mendez, Gregory O.

    2010-01-01

    The U.S. Geological Survey collected water-quality samples during the first two storms after the Witch and Harris Fires (October 2007) in southern California. The sampling locations represent an urban area (two residential sites in Rancho Bernardo that were affected by the Witch Fire; a drainage ditch and a storm drain) and a rural area (Cotton-wood Creek, which was downstream of a mobile home park destroyed by the Harris Fire). Fires produce ash and solid residues that contain soluble chemicals that can contaminant runoff. The contaminants, whether sorbed to soil and ash or dissolved, can seriously affect the quality of water supplies and sensitive ecosystems. Stormflow water samples were analyzed for field parameters, optical properties, and for a variety of constituents, including nutrients, dissolved organic carbon (DOC), suspended sediment, and metals. pH values for storm runoff from the urban areas (7.6 to 8.5) were less than pH values for ash and burned soil from previous studies (12.5 to 13). pH values for storm runoff from the rural area (about 7.7) also were less than pH values for ash and burned soil collected from the rural area (8.6 to 11.8), but were similar to pH values for wildland burned soil from previous studies. Turbidity values were much lower for the urban area than for the rural area. Nitrate concentrations in stormflow samples from all sites were less than a quarter of the U.S. Environmental Protection Agency's (2006) maximum allowable contaminant level of 10 milligrams per liter (mg/L) (as nitrogen). Phosphorus concentrations were half as much in filtered samples and two orders of magnitude smaller in unfiltered samples at the urban sites than at the rural site. DOC concentrations in stormflow samples were one order of magnitude lower at the urban sites than at the rural site. Ultraviolet (UV) absorbance at 254 nanometers (UV254) in samples ranged from 0.145 to 0.782 per centimeter (cm-1). UV-absorbance data at the urban sites indicate that the composition of DOC remained similar during both storms even though the DOC concentration changed. Total suspended-sediment concentrations ranged from 0.01 to 0.24 mg/L at the urban area, and were 12 and 45 mg/L at the rural area. Trace metals analyzed in unfiltered water samples had lower concentrations in the urban area than in the rural area. No concentrations of arsenic or mercury measured in the samples were above aquatic-life criteria. In the urban area, most concentrations of aluminum, iron, and lead exceeded aquatic-life criteria. In the rural area, aluminum, cadmium, iron, lead, and zinc exceeded aquatic-life criteria. Concentrations of aluminum and iron were two orders of magnitude larger in the rural area than in the urban area.

  19. Risks of toxic ash from artisanal mining of discarded cellphones.

    PubMed

    Hibbert, Kathleen; Ogunseitan, Oladele A

    2014-08-15

    The potential environmental and human health impacts of artisanal mining of electronic waste through open incineration were investigated. A market-representative set of cellphones was dismantled into four component categories-batteries, circuit boards, plastics and screens. The components were shredded, sieved and incinerated at 743-818 °C. The concentrations of 17 metals were determined using U.S. EPA methods 6010C (inductively coupled plasma-atomic emission spectrometry; 6020A (inductively coupled plasma-mass spectrometry, or 7471B and 7470A (cold-vapor atomic absorption). EPA Method 8270 (gas chromatography/mass spectrometry) was used to identify polyaromatic hydrocarbon compounds and polybrominated diphenyl ethers. EPA Method 8082A was used to measure polychlorinated biphenyls and EPA Method 8290 was used for dioxin/furans in the residue ash. The life cycle assessment model USEtox(®) was used to estimate impacts of the ash residue chemicals on human health and the ecosystem. Among metals, copper in printed circuit boards had the highest ecotoxicity impact (1610-1930PAFm(3)/kg); Beryllium in plastics had the highest impact on producing non-cancer diseases (0.14-0.44 cases/kg of ash); and Nickel had the largest impact on producing cancers (0.093-0.35 cases/kg of ash). Among organic chemicals, dioxins from incinerated batteries produced the largest ecotoxicological impact (1.07E-04 to 3.64E-04PAFm(3)/kg). Furans in incinerated batteries can generate the largest number of cancers and non-cancer diseases, representing 8.12E-09 to 2.28E-08 and 8.96E-10 and 2.52E-09 cases/kg of ash, respectively. The results reveal hazards of burning discarded cellphones to recover precious metals, and pinpoints opportunities for manufacturers to reduce toxic materials used in specific electronic components marketed globally. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Recovery of Rare Earth Elements from Coal and Coal Byproducts via a Closed Loop Leaching Process: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Richard; Heinrichs, Michael; Argumedo, Darwin

    Objectives: Through this grant, Battelle proposes to address Area of Interest (AOI) 1 to develop a bench-scale technology to economically separate, extract, and concentrate mixed REEs from coal ash. U.S. coal and coal byproducts provide the opportunity for a domestic source of REEs. The DOE’s National Energy Technology Laboratory (NETL) has characterized various coal and coal byproducts samples and has found varying concentrations of REE ranging up to 1,000 parts per million by weight. The primary project objective is to validate the economic viability of recovering REEs from the coal byproduct coal ash using Battelle’s patented closed-loop Acid Digestion Processmore » (ADP). This will be accomplished by selecting coal sources with the potential to provide REE concentrations above 300 parts per million by weight, collecting characterization data for coal ash samples generated via three different methods, and performing a Techno-Economic Analysis (TEA) for the proposed process. The regional availability of REE-laden coal ash, the regional market for rare earth concentrates, and the system capital and operating costs for rare earth recovery using the ADP technology will be accounted for in the TEA. Limited laboratory testing will be conducted to generate the parameters needed for the design of a bench scale system for REE recovery. The ultimate project outcome will be the design for an optimized, closed loop process to economically recovery REEs such that the process may be demonstrated at the bench scale in a Phase 2 project. Project Description: The project will encompass evaluation of the ADP technology for the economic recovery of REEs from coal and coal ash. The ADP was originally designed and demonstrated for the U.S. Army to facilitate demilitarization of cast-cured munitions via acid digestion in a closed-loop process. Proof of concept testing has been conducted on a sample of Ohio-based Middle Kittanning coal and has demonstrated the feasibility of recovering REEs using the ADP technology. In AOI 1, Ohio coal sources with the potential to provide a consistent source of rare earth element concentrations above 300 parts per million will be identified. Coal sample inventories from West Virginia and Pennsylvania will also be assessed for purposes of comparison. Three methods of preparing the coal ash will be evaluated for their potential to enhance the technical feasibility and economics of REE recovery. Three sources of coal ash are targeted for evaluation of the economics of REE recovery in this project: (1) coal ash from power generation stations, to include fly ash and/or bottom ash, (2) ash generated in a lower temperature ashing process, and (3) ash residual from Battelle’s coal liquefaction process. Making use of residual ash from coal liquefaction processes directly leverages work currently being conducted by Battelle for DOE NETL in response to DE-FOA-0000981 entitled “Greenhouse Gas Emissions Reductions Research and Development Leading to Cost-Competitive Coal-to-Liquids Based Jet Fuel Production.” Using the sample characterization results and regional information regarding REE concentration, availability and cost, a TEA will be developed. The previously generated laboratory testing results for leaching and REE recovery via the ADP will be used to perform the TEA, along with common engineering assumptions for scale up of equipment and labor costs. Finally, upon validation of the economic feasibility of the process by the TEA, limited laboratory testing will be performed to support the design of a bench scale system. In a future project phase, it is envisioned that the bench scale system will be constructed and operated to prove the process on a continuous basis.« less

  1. Characterization of polycyclic aromatic hydrocarbons and metals in ashes released from a forest fire

    NASA Astrophysics Data System (ADS)

    Campos, I.; Abrantes, N.; Pereira, P.; Vale, C.; Ferreira, A.; Keizer, J. J.

    2012-04-01

    Wildfires have become a permanent source of environmental and societal concerns. Whilst the impacts of wildfire on hydrological and erosion processes are well documented, the stocks and export of polycyclic aromatic hydrocarbons (PAHs) and heavy metals have received considerably less research attention. The ashes produced by wildfires, which include polluting substances such as PAHs and metals, are subject to transport processes by wind and especially by overland flow and water infiltrating into the soil and possibly reaching ground water bodies. In the framework of the FIRECNUTS project, we are studying the stocks of PAHs and selected metals in recently burnt forest stands in north-central Portugal, and their subsequent export by overland flow. The present work, however, will focus on the stocks in the ashes, both immediately after wildfire and three months later. These ashes were collected at two burnt slopes with contrasting forest types, i.e. a eucalypt and a maritime pine stand, the two pre-dominant forest types in the study region. The sixteen PAHs identified by US EPA as priority contaminants were analysed by gas chromatograph, after extraction and column clean up. The contents of vanadium (V), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb) were analysed by inductively coupled plasma- mass spectrometry (ICP-MS), after an acid digestion, while mercury (Hg) was analysed by pyrolysis atomic absorption spectrometry with gold amalgamation. The total concentration of PAHs immediately after the wildfire ranged from 314 ng/g dry weight in the maritime pine stand to 597 ng/g dry weight in the eucalypt stand. Three months later, the total concentration has decreased with 33% in the pine stand but only half (16%) in the eucalypt stand. The composition the PAHs by ring size was dominated by three-rings PAHs. This was true for all samples. The concentrations of various metals differed for the two sampling occasions but not in straightforward manners. Some metals (Co, Ni, Cu, Zn, Cd, Pb and Hg) revealed higher contents immediately after the fire, whereas others (V, Cr and As) did three months later. The present results underline the importance of furthering the knowledge about contamination of soil and water by ashes from wildfires and the associated risks in terms of ecotoxicological effects, both in-situ and in downstream aquatic systems. Keywords: Polycyclic aromatic hydrocarbons (PAH); heavy metals; stocks; ash; wildfires

  2. Remobilisation of industrial lead depositions in ash during Australian wildfires.

    PubMed

    Wu, Liqin; Taylor, Mark Patrick; Handley, Heather K

    2017-12-01

    This study examined the recycling of lead (Pb) in ash from wildfires, its source and potential contribution to environmental contamination. Ash from wildfires was collected from four Australian sites following uncontrolled fires during 2012 to 2013 close to major urban populations in Sydney (New South Wales), Hobart (Tasmania) and Adelaide (South Australia). The samples were analysed for their total Pb concentration and Pb isotopic composition to determine the sources of Pb and the extent, if any, of industrial contamination and its recycling into the ecosystem. Median ash concentrations (23mg/kg) released from a wildfire close to Australia's largest city, Sydney, exceeded the median ash Pb concentrations from wildfires from the less populated locations of Hobart, Adelaide and NSW Central Coast. Lead isotopic compositions of Duffys Forest wildfire ash demonstrate that anthropogenic inputs from legacy leaded petrol depositions were the predominant source of contamination. Despite the cessation of leaded petrol use in Australia in 2002, historic petrol Pb deposits continue to be a substantial source of contamination in ash: petrol Pb contributed 35% of the Pb in the Woy Woy ash, 73% in Duffys Forest ash, 39% in Forcett ash and 5% in Cherryville ash. The remobilisation of legacy industrial Pb depositions by wildfires in ash results in it being a persistent and problematic contaminant in contemporary environmental systems because of its known toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Atomic emission spectrometer/spectrograph for the determination of barium in microamounts of diatom ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bankston, D.C.; Fisher, N.S.

    1977-06-01

    The development and routine application of a method for the determination of trace levels of barium in microsamples (5-10 mg) of diatom ash is described Acid-dissolved lithium metaborate fusion melts of ash samples are analyzed using a spectrometer/spectrograph equipped with a dc argon plasma jet excitation source and an echelle diffraction grating. Sample, standard, and blank solutions are buffered by lithium contributed by the flux, to a degree sufficient to reduce matrix effects to acceptable levels. Previous barium determinations by other analytical techniques, on seven interlaboratory reference materials, have been used to establish the accuracy of our results. The averagemore » relative standard deviation for the instrumental analyses was 0.07. Using recommended instrument settings, moreover, the lowest concentration of barium visible in synthetic standard solutions lies just below 2 ..mu..g/L, which is equivalent to 2 ..mu..g/g in the ash.« less

  4. Spatio-temporal effects of low severity grassland fire on soil colour

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerdà, Artemi; Bolutiene, Violeta; Pranskevicius, Mantas; Úbeda, Xavier; Jordán, Antonio; Zavala, Lorena; Mataix-Solera, Jorge

    2013-04-01

    Fire changes soil properties directly, through temperature, or indirectly with ash deposition and the temporal elimination of vegetal cover. Both influences change soil colour and soil properties. The degree of changes depends on fire severity that has important implications on soil organic matter, texture, mineralogy and hydrological properties and type of ash produced. The ash colour is different according to the temperature of combustion and burned specie and this property will have implications on soil colour. In addition, ash properties have a strong spatial variability. The aim of this work is to study the spatio-temporal effects of a low severity grassland fire on soil colour occurred in Lithuania, near Vilnius city (54° 42' N, 25° 08' E, 158 m.a.s.l.). After the fire it was designed a plot of 20x20m in a burned and unburned flat area. Soil colour was analysed immediately after the fire, and 2, 5, 7 and 9 months after the fire. In each sampling 25 soil samples were collected, carried out to the laboratory, dried at room temperature (20-24° C) and sieved with the <2mm mesh. Soil colour was observed with the Munsell colour chart and the soil chroma value (CV) was observed. Since data did not respected the Gaussian distribution a neperian logarithmic (ln) transformation was applied. Differences among time and between plots were observed with the repeated measures ANOVA test, followed by a Tukey HSD test. Differences were significant at a p<0.05. The spatial variability (SV) was assessed with the coefficient of variation using non transformed data. The results showed differences among time at a p<0.001, treatment at a p<0.01 and time x treatment at a p<0.01. This means that fire during the first 9 months changed significantly soil colour. The CV of the burned plot was lower than the control plot (darker colour), that is attributed to the deposition of charred material and charcoal. This ash produced in this fire was mainly black coloured. With the time the soil of the burned plot became lighter, due the movement of charred material and charcoal in depth through soil profile. After the fire SV was higher in the burned plot (13.27%) than in the unburned plot (7.95%). This major variability might be attributed to ash influence, since this fire did nit had direct effects on soil. Despite the reduced CV, some patches burned at higher severity, and ash was dark and light grey and this might had influences on soil colour SV. In the following measurements SV was very similar, but always slightly higher in the control plot than in the burned plot. Two months, unburned 15.52% and burned, 14.70%. Five months, unburned, 14.78% and burned 14.42%, Seven months, unburned, 15.15% and burned, 14.67%. Nine months, unburned, 18.96% and burned 17.84%. After the fire ash can be (re)distributed uncountable times. In the immediate period after the fire, finner ash produced at higher severities is easily transported by wind and can remix (Pereira et al., 2013a, Pereira et al., 2013b) and change soil colour. In this fire, vegetation recovered very fast, thus this process might occurred only in the first weeks after the fire (Pereira et al., 2013c). Since vegetation recovered fast, soil colour SV depended on carbon and charred material movement in depth soil profile. Further studies are needed on the soil colour evolution after the fire, since can be an indicator of soil properties such as temperature reached with implications in other soil properties. Acknowledgements The authors appreciated the support of the project "Litfire", Fire effects in Lithuanian soils and ecosystems (MIP-048/2011) funded by the Lithuanian Research Council, Spanish Ministry of Science and Innovation for funding through the HYDFIRE project CGL2010-21670-C02-01, FUEGORED (Spanish Network of Forest Fire Effects on Soils http://grupo.us.es/fuegored/) and to Comissionat per a Universitats i Recerca del DIUE de la Generalitat de Catalunya. References Pereira, P. Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2013a) Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development (In press) DOI: 10.1002/ldr.2195 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Martin, D.A., Jordan, A. Burguet, M. (2013b) Effects of fire on ash thickness in a Lithuanian grassland and short-term spatio-temporal changes. Solid Earth Discussions, 4 (1), 1545-1584. doi:10.5194/sed-4-1-2012 Pereira, P., Pranskevicius, M., Cepanko, V., Vaitkute, D., Pundyte, N., Ubeda, X., Mataix-Soler, J., Cerda, A., Martin, D.A. (2013c) Short time vegetation recovers after a spring grassland fire in Lithuania. Temporal and slope position effect, Flamma, 4(1), 13-17.

  5. Leachate Geochemical Results for Ash and Burned Soil Samples from the October 2007 Southern California Wildfires

    USGS Publications Warehouse

    Hageman, Philip L.; Plumlee, Geoffrey S.; Martin, Deborah A.; Hoefen, Todd M.; Meeker, Gregory P.; Adams, Monique; Lamothe, Paul J.; Anthony, Michael W.

    2008-01-01

    This report is the second release of leachate geochemical data included as part of a multidisciplinary study of ash and burned soil samples from the October 2007 wildfires in southern California. Geochemical data for the first set of samples were released in an Open-File Report (Plumlee and others, 2007). This study is a continuation of that work. The objectives of this leaching study are to aid in understanding the interactions of ash and burned soil with rainfall. For this study, 12 samples collected in early November 2007 were leached using the U.S. Geological Survey (USGS) Field Leach Test (FLT). Following leaching, sub-samples of the leachate were analyzed for pH and specific conductance. The leachate was then filtered, and aliquots were preserved for geochemical analysis. This report presents leachate geochemical data for pH, specific conductance, alkalinity, anions using ion chromatography (I.C.), cations using inductively coupled plasma?atomic mass spectrometry (ICP-MS), and mercury by continuous flow injection?cold vapor?atomic fluorescence (CVAFS).

  6. Temporal and spatial variations in fly ash quality

    USGS Publications Warehouse

    Hower, J.C.; Trimble, A.S.; Eble, C.F.

    2001-01-01

    Fly ash quality, both as the amount of petrographically distinguishable carbons and in chemistry, varies in both time and space. Temporal variations are a function of a number of variables. Variables can include variations in the coal blend organic petrography, mineralogy, and chemistry; variations in the pulverization of the coal, both as a function of the coal's Hardgrove grindability index and as a function of the maintenance and settings of the pulverizers; and variations in the operating conditions of the boiler, including changes in the pollution control system. Spatial variation, as an instantaneous measure of fly ash characteristics, should not involve changes in the first two sets of variables listed above. Spatial variations are a function of the gas flow within the boiler and ducts, certain flow conditions leading to a tendency for segregation of the less-dense carbons in one portion of the gas stream. Caution must be applied in sampling fly ash. Samples from a single bin, or series of bins, m ay not be representative of the whole fly ash, providing a biased view of the nature of the material. Further, it is generally not possible to be certain about variation until the analysis of the ash is complete. ?? 2001 Elsevier Science B.V. All rights reserved.

  7. Detection and Tracking of Volcanic Ash and SO2 and its Impact to Aviation

    NASA Astrophysics Data System (ADS)

    Osiensky, J.; Hall, T.

    2008-12-01

    The eruptions of Okmok and Kasatochi Volcanoes in August 2008 produced a combination of volcanic ash and SO2 (sulfur dioxide) that impacted aviation across Alaska and the North Pacific Region. The Anchorage Volcanic Ash Advisory Center (A-VAAC) worked closely with the Alaska Volcano Observatory (AVO) and Federal Aviation Administration (FAA) Air Route Traffic Control Center (ARTCC) to ensure that accurate and timely detection and forecast of the ash plume occurred. Volcanic ash poses a hazard to all forms of transportation, but has been shown to be especially dangerous to aviation. Even a small eruption with limited vertical extent to the ash cloud impacts aviation traffic. A significant eruption where the ash cloud penetrates the jet airways (greater than 20,000 feet) requires major re-routing of air traffic, or even the cancellation of flights to ensure the safety of the airways. The AAWU and the AVO have demonstrated substantial experience successfully tracking volcanic ash clouds during the past 15 years. The AAWU issues special aviation warnings for volcanic ash (Volcanic Ash SIGMETs (Significant Meteorological Information)) to warn aircraft of impending ash hazards. However, an additional potential hazard to aviation associated with volcanic eruptions is being examined. A Sulfur Dioxide (SO2) cloud was identified and tracked across the Aleutians, Gulf of Alaska, and eventually into the Lower 48 states. The size and coverage of the SO2 clouds from the Okmok and Kasatochi eruptions may be unprecedented. There are currently no requirements to advise, or warn for SO2 as a hazard to aviation. However, SO2 has been demonstrated as a marker for potential areas of lower concentration volcanic ash. Dispersion models, such as NOAAs HYSPLIT, that are used to track volcanic ash are currently not tuned to track gases such as SO2. SO2 may not be a direct hazard to aviation per se; However, SO2 mixed with water produces H2SO4 (sulfuric acid), and long term exposure to even low concentrations of sulfuric acid may lead to deterioration of airframe paint and acrylic aircraft windows as well as sulfate deposits in the engines. Airlines typically avoid SO2 clouds because these clouds often contain small amounts of ash as well. Relatively new OMI (Ozone Monitoring Instrument) data from the EOS-Aura satellite provides a much higher resolution depiction of the SO2 cloud; However, a major drawback to this capability is that the OMI sensor is located on a Polar Orbiter satellite (where the frequency of this data is sparse). Forecasters in Alaska typically receive only one pass per day from the OMI due to its orbital path. Additional research is needed to better define thresholds and impacts of volcanic ash and SO2 as it relates to aviation. More importantly this research must be transferred rapidly from the research community into forecast operations.

  8. Synergistic effect of fly ash in in-vessel composting of biomass and kitchen waste.

    PubMed

    Manyapu, Vivek; Mandpe, Ashootosh; Kumar, Sunil

    2018-03-01

    The present study aims to utilize coal fly ash for its property to adsorb heavy metals and thus reducing the bioavailability of the metals for plant uptake. Fly ash was incorporated into the in-vessel composting system along with organic waste. The in-vessel composting experiments were conducted in ten plastic vessels of 15 L capacity comprising varying proportions of biomass waste, kitchen waste and fly ash. In this study, maximum degradation of organic matter was observed in Vessel 3 having k value of 0.550 d -1 . In vessel 10, 20% fly ash with a combination of 50% biomass waste and 30% kitchen waste along with the addition of 5% jaggery as an additive produced the best outcome with least organic matter (%C) loss and lowest value of rate constant (k). Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace

    DOEpatents

    Mathur, Mahendra P.; Ekmann, James M.

    1989-01-01

    The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.

  10. Volatile Arsenic Species Released from Escherichia coli Expressing the AsIII S-adenosylmethionine Methyltransferase Gene

    PubMed Central

    YUAN, CHUNGANG; LU, XIUFEN; QIN, JIE; ROSEN, BARRY P.; LE, X. CHRIS

    2015-01-01

    Biological systems, ranging from bacteria and fungi to humans, can methylate arsenic. Recent studies have suggested that the AsIII S-adenosylmethionine methyltransferase (arsM) gene in bacteria was responsible for the removal of arsenic as the volatile arsines from the bacteria. However, there has been no direct measure of the arsines released from bacteria cultures. We describe here an integrated system incorporating the bacterial incubation and volatile arsenic species analysis, and we demonstrate its application to the identification of the volatile arsines produced in bacterial cultures. The headspace of the bacterial cultures was purged with helium, and the volatile arsenic species were trapped in a chromatographic column immersed in liquid nitrogen. The cryogenically trapped arsines [AsH3, (CH3)AsH2, (CH3)2AsH, and (CH3)3As] were separated by gas chromatography and were detected by inductively coupled plasma mass spectrometry. A hydride generation system was coupled to the bacterial culture system, allowing for spiking standards and for generating calibration arsines necessary for quantitative analysis. Both bacteria containing the arsM gene or its variant arsMC2 gene were able to produce 400–500 ng of trimethylarsine. No trimethylarsine was detectable in bacteria lacking the arsM gene (containing the vector plasmid as negative control). These results confirm that arsM is responsible for releasing arsenic as volatile species from the arsenic-resistant bacteria. Our results also show traces of AsH3, CH3AsH2, and (CH3)2AsH in cultures of bacteria expressing arsM. The method detection limits for AsH3, CH3AsH2, (CH3)2AsH, and (CH3)3As were 0.5, 0.5, 0.7, and 0.6 pg, respectively. The ability to quantify trace levels of these volatile arsenic species makes it possible to study the biotransformation and biochemical roles of the evolution of these volatile arsenic species by biological systems. PMID:18522094

  11. Foamed lightweight materials made from mixed scrap metal waste powder and sewage sludge ash.

    PubMed

    Wang, Kuen-Sheng; Chiou, Ing-Jia

    2004-10-01

    The porous properties and pozzolanic effects of sewage sludge ash (SSA) make it possible to produce lightweight materials. This study explored the effects of different metallic foaming agents, made from waste aluminium products, on the foaming behaviours and engineering characteristics, as well as the microstructure of sewage sludge ash foamed lightweight materials. The results indicated that aluminium powder and mixed scrap metal waste powder possessed similar chemical compositions. After proper pre-treatment, waste aluminium products proved to be ideal substitutes for metallic foaming agents. Increasing the amount of mixed scrap metal waste by 10-15% compared with aluminium powder would produce a similar foaming ratio and compressive strength. The reaction of the metallic foaming agents mainly produced pores larger than 10 microm, different from the hydration reaction of cement that produced pores smaller than 1 microm mostly. To meet the requirements of the lightweight materials characteristics and the compressive strength, the amount of SSA could be up to 60-80% of the total solids. An adequate amount of aluminium powder is 0.5-0.9% of the total solids. Increasing the fineness of the mixed scrap metal waste powder could effectively reduce the amount required and improve the foaming ratio.

  12. Physical characteristics, chemical composition and water contamination potential from Canadian wildfire ash

    NASA Astrophysics Data System (ADS)

    Santin, Cristina; Doerr, Stefan; Arcenegui, Vicky; Otero, Xose Luis

    2017-04-01

    Wildland fires leave a powdery residue on the ground: wildfire ash, which consists of mineral materials and charred organic components. Its quantities and characteristics depend mainly on the total amount and type of fuel burnt and the fire characteristics. Up to several tens of tons of ash per hectare have been quantified in different post-fire environments. As a new material present after a wildland fire, ash can have profound effects on ecosystems. It affects biogeochemical cycles, including the carbon cycle, stimulates microbial activity and helps the recovery of vegetation. Ash incorporated into the soil increases soil pH and nutrient pools temporarily and changes soil physical properties such as albedo, soil texture and hydraulic properties. Ash also modifies soil and landscape-scale hydrological behaviour. Its high porosity makes it very effective at absorbing rainfall, but it can also contribute to catastrophic debris flows when ash is mobilised by large storm events. Its 'fragile' nature makes ash very susceptible to wind and water erosion, facilitating its transfer to the hydrological system. Runoff containing ash from burnt areas carries soluble nutrients and pollutants, which can have detrimental impacts on aquatic ecosystems and the supply of potable water. In this presentation we will report for the first time on the physical characteristics, chemical composition and associated water pollution risk from ash produced in four typical Canadian boreal forest fires: two high-intensity fires in jack pine stands, and one high-intensity and one smouldering fire in black spruce stands.

  13. Properties of palm oil fuel ash cement sand brick containing pulverized cockle shell as partial sand replacement

    NASA Astrophysics Data System (ADS)

    Mat Aris, S.; Muthusamy, K.; Uzer, A.; Ahmad, S. Wan

    2018-04-01

    Environmental pollution caused by the disposal of solid wastes generated from both palm oil industry and cockle shell trade has motivated researches to explore the potential of these wastes. Integrating these wastes in production of construction material is one of the ways to reduce amount of waste thrown at dumping area. Thus, the present investigation investigates the performance of palm oil fuel ash (POFA) cement sand brick containing pulverized cockle shell as partial fine aggregate replacement. All mixes used contain 20% of POFA as partial cement replacement. Total of six mixes were prepared by adding a range of pulverized cockle shell that is 0%, 10%, 20%, 30%, 40% and 50% as partial sand replacement. The mixes were prepared in form of brick. All the water cured samples were tested for compressive strength and flexural strength until 28 days. Findings show that brick produced using 20% pulverized cockle shell exhibit the highest compressive strength and flexural strength also the lowest water absorption value.

  14. Parametric Analysis to Study the Influence of Aerogel-Based Renders' Components on Thermal and Mechanical Performance.

    PubMed

    Ximenes, Sofia; Silva, Ana; Soares, António; Flores-Colen, Inês; de Brito, Jorge

    2016-05-04

    Statistical models using multiple linear regression are some of the most widely used methods to study the influence of independent variables in a given phenomenon. This study's objective is to understand the influence of the various components of aerogel-based renders on their thermal and mechanical performance, namely cement (three types), fly ash, aerial lime, silica sand, expanded clay, type of aerogel, expanded cork granules, expanded perlite, air entrainers, resins (two types), and rheological agent. The statistical analysis was performed using SPSS (Statistical Package for Social Sciences), based on 85 mortar mixes produced in the laboratory and on their values of thermal conductivity and compressive strength obtained using tests in small-scale samples. The results showed that aerial lime assumes the main role in improving the thermal conductivity of the mortars. Aerogel type, fly ash, expanded perlite and air entrainers are also relevant components for a good thermal conductivity. Expanded clay can improve the mechanical behavior and aerogel has the opposite effect.

  15. Parametric Analysis to Study the Influence of Aerogel-Based Renders’ Components on Thermal and Mechanical Performance

    PubMed Central

    Ximenes, Sofia; Silva, Ana; Soares, António; Flores-Colen, Inês; de Brito, Jorge

    2016-01-01

    Statistical models using multiple linear regression are some of the most widely used methods to study the influence of independent variables in a given phenomenon. This study’s objective is to understand the influence of the various components of aerogel-based renders on their thermal and mechanical performance, namely cement (three types), fly ash, aerial lime, silica sand, expanded clay, type of aerogel, expanded cork granules, expanded perlite, air entrainers, resins (two types), and rheological agent. The statistical analysis was performed using SPSS (Statistical Package for Social Sciences), based on 85 mortar mixes produced in the laboratory and on their values of thermal conductivity and compressive strength obtained using tests in small-scale samples. The results showed that aerial lime assumes the main role in improving the thermal conductivity of the mortars. Aerogel type, fly ash, expanded perlite and air entrainers are also relevant components for a good thermal conductivity. Expanded clay can improve the mechanical behavior and aerogel has the opposite effect. PMID:28773460

  16. Pozzolanic Characterization Of Waste Rice Husk Ash (RHA) From Muar, Malaysia

    NASA Astrophysics Data System (ADS)

    Hadipramana, J.; Riza, F. V.; Rahman, I. A.; Loon, L. Y.; Adnan, S. H.; Zaidi, A. M. A.

    2016-11-01

    Investigation of Rice Husk Ash (RHA) thoroughly under controlled burning is regular issue to obtain result to produce the amorphous silica that has high pozzolanic reactivity characteristic. This paper offered an observation about characteristic of ground and un-ground of un-controlled burning temperature RHA that were taken from rice millings in Muar, Johor Malaysia. Such tests as X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Particle Size Analysis and Specific Area Surface, Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron microscope (SEM) were conducted in this investigation to carry out the characteristic of RHA samples. The results show that the RHA was consist approximately 89.90% of silica and the RHA possessed the amorphous particle were dominant than its crystalline part. This proves that the RHA has a big potential as a pozzolanic material considering the silica content and porous structure. In addition, particle size analysis decides whether the pozzolanic reactivity can be increased by grinding process.

  17. An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea.

    PubMed

    Park, Seung Bum; Jang, Young Il; Lee, Jun; Lee, Byung Jae

    2009-07-15

    This study evaluates quality properties and toxicity of coal bottom ash coarse aggregate and analyzes mechanical properties of porous concrete depending on mixing rates of coal bottom ash. As a result, soundness and resistance to abrasion of coal bottom ash coarse aggregate were satisfied according to the standard of coarse aggregate for concrete. To satisfy the standard pertaining to chloride content, the coarse aggregates have to be washed more than twice. In regards to the result of leaching test for coal bottom ash coarse aggregate and porous concrete produced with these coarse aggregates, it was satisfied with the environment criteria. As the mixing rate of coal bottom ash increased, influence of void ratio and permeability coefficient was very little, but compressive and flexural strength decreased. When coal bottom ash was mixed over 40%, strength decreased sharply (compressive strength: by 11.7-27.1%, flexural strength: by maximum 26.4%). Also, as the mixing rate of coal bottom ash increased, it was confirmed that test specimens were destroyed by aggregate fracture more than binder fracture and interface fracture. To utilize coal bottom ash in large quantities, it is thought that an improvement method in regards to strength has to be discussed such as incorporation of reinforcing materials and improvement of aggregate hardness.

  18. Ash Features from Present-day Activity at Stromboli

    NASA Astrophysics Data System (ADS)

    Cannata, Chiara; Taddeucci, Jacopo; Lautze, Nicole; de Rosa, Rosanna; Donato, Paola; Scarlato, Piergiorgio

    2010-05-01

    The present-day explosive activity at Stromboli volcano (Aeolian Islands, Italy) is characterized by a relatively large variability of eruptive styles on a relatively small temporal and spatial scale. Despite volcanic ash is a common product of this explosive activity, few studies have been conducted so far on ash of Stromboli and in particular on the products of individual explosions. Here we focus on micro-scale textural observations of ash particles erupted from a number of different vents during three sampling campaigns. Component analysis under the binocular microscope reveal that ash from present-day activity at Stromboli is dominated by two main end-members of fragments with a wide variability of color and degree of surface alteration: blocky and dark, fragments (i.e. tachylite) and glassy, highly vesiculated and fluidal fragments (i.e. sideromelane). In addition, individual phenocrysts or composite fragments (crystals plus tachylite or sideromelane) and rare, highly altered accessory lithic fragments are also present. Thin section investigation show that tachylite has micro- to crypto-crystalline groundmass, while sideromelane is partially or totally glassy. Component and modal analyses reveal that, in the sampling period, sideromelane is the most abundant component only in one vent while the other vents erupted mainly tachylite-rich ash. The morphology, micro-textures and chemical composition of particles surface were also analyzed using a Field Emission SEM equipped with EDS. In general, particle morphology and surface chemistry poorly discriminates between the different samples, while tachylite particles show a higher compactness, lower elongation, and more extensive overgrowth of secondary phases (mainly gypsum, sulphate and halide salts) in respect with sideromelane ones.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindberg, Daniel, E-mail: daniel.lindberg@abo.fi; Molin, Camilla, E-mail: camilla.molin@abo.fi; Hupa, Mikko, E-mail: mikko.hupa@abo.fi

    Highlights: • We review the thermal treatment methods for ashes and residues from WtE plants. • We review the results from extensive laboratory work on vitrification, melting and vaporization of ash. • We analyze the results from the extensive patent literature on thermal treatment. • We review industrial concepts for thermal treatment of ash. - Abstract: Thermal treatment methods of bottom ash, fly ash and various types of APC (air pollution control) residues from waste-to-energy plants can be used to obtain environmentally stable material. The thermal treatment processes are meant to reduce the leachability of harmful residue constituents, destroy toxicmore » organic compounds, reduce residue volume, and produce material suitable for utilization. Fly ash and APC residues often have high levels of soluble salts, particularly chlorides, metals such as cadmium, lead, copper and zinc, and trace levels of organic pollutants such as dioxins and furans. Different thermal treatment methods can be used to either decompose or stabilize harmful elements and compounds in the ash, or separate them from the ash to get a material that can be safely stored or used as products or raw materials. In the present paper, thermal treatment methods, such as sintering, vitrification, and melting have been reviewed. In addition to a review of the scientific literature, a survey has been made of the extensive patent literature in the field.« less

  20. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    NASA Astrophysics Data System (ADS)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  1. High influx of carbon in walls of agglutinated foraminifers during the Permian-Triassic transition in global oceans

    USGS Publications Warehouse

    Nestell, Galina P.; Nestell, Merlynd K.; Ellwood, Brooks B.; Wardlaw, Bruce R.; Basu, Asish R.; Ghosh, Nilotpal; Phuong Lan, Luu Thi; Rowe, Harry D.; Hunt, Andrew G.; Tomkin, Jonathan H.; Ratcliffe, Kenneth T.

    2015-01-01

    The Permian–Triassic mass extinction is postulated to be related to the rapid volcanism that produced the Siberian flood basalt (Traps). Unrelated volcanic eruptions producing several episodes of ash falls synchronous with the Siberian Traps are found in South China and Australia. Such regional eruptions could have caused wildfires, burning of coal deposits, and the dispersion of coal fly ash. These eruptions introduced a major influx of carbon into the atmosphere and oceans that can be recognized in the wallstructure of foraminiferal tests present in survival populations in the boundary interval strata. Analysis of free specimens of foraminifers recovered from residues of conodont samples taken at aPermian–Triassic boundary section at Lung Cam in northern Vietnam has revealed the presence of a significant amount of elemental carbon, along with oxygen and silica, in their test wall structure, but an absence of calcium carbonate. These foraminifers, identified as Rectocornuspira kalhori, Cornuspira mahajeri, and Earlandia spp. and whose tests previously were considered to be calcareous, are confirmed to be agglutinated, and are now referred to as Ammodiscus kalhori and Hyperammina deformis. Measurement of the 207Pb/204Pb ratios in pyrite clusters attached to the foraminiferal tests confirmed that these tests inherited the Pb in their outer layer from carbon-contaminated seawater. We conclude that the source of the carbon could have been either global coal fly ash or forest fire-dispersed carbon, or a combination of both, that was dispersed into the Palaeo-Tethys Ocean immediately after the end-Permian extinction event.

  2. Geopolymerisation of fly ashes with waste aluminium anodising etching solutions.

    PubMed

    Ogundiran, M B; Nugteren, H W; Witkamp, G J

    2016-10-01

    Combined management of coal combustion fly ash and waste aluminium anodising etching solutions using geopolymerisation presents economic and environmental benefits. The possibility of using waste aluminium anodising etching solution (AES) as activator to produce fly ash geopolymers in place of the commonly used silicate solutions was explored in this study. Geopolymerisation capacities of five European fly ashes with AES and the leaching of elements from their corresponding geopolymers were studied. Conventional commercial potassium silicate activator-based geopolymers were used as a reference. The geopolymers produced were subjected to physical, mechanical and leaching tests. The leaching of elements was tested on 28 days cured and crushed geopolymers using NEN 12457-4, NEN 7375, SPLP and TCLP leaching tests. After 28 days ambient curing, the geopolymers based on the etching solution activator showed compressive strength values between 51 and 84 MPa, whereas the commercial potassium silicate based geopolymers gave compressive strength values between 89 and 115 MPa. Based on the regulatory limits currently associated with the used leaching tests, all except one of the produced geopolymers (with above threshold leaching of As and Se) passed the recommended limits. The AES-geopolymer geopolymers demonstrated excellent compressive strength, although less than geopolymers made from commercial activator. Additionally, they demonstrated low element leaching potentials and therefore can be suitable for use in construction works. Copyright © 2016. Published by Elsevier Ltd.

  3. Agglomeration of SRC residues. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theodore, F.W.; Wasson, G.E.

    1982-01-01

    EPRI contracted with CCDC to agglomerate Kerr-McGee ash concentrate and determine whether the agglomerates could be used as a fixed-bed gasifier feed. Briquettes were produced from Kerr-McGee ash concentrate which met CCDC's strength criteria for handling as feed to a fixed-bed gasifier. In addition, when shock heated under conditions simulating gasifier conditions, strong coke was produced demonstrating that the briquettes will not disintegrate during the initial temperature shock when charged to the gasifier. The conclusion of this study is that briquettes produced from the Kerr-McGee ash concentrate studied could be considered as feed for a fixed-bed gasifier. The CO/sub 2/-carbonmore » reactivity of the briquettes had values between a typical eastern and western coal. In the case of a dry bottom gasifier where the reactivity is important, it is not clear-cut whether the ash concentrate briquettes would be an economical feed. A closer inspection by a gasifier manufacturer is needed to resolve this issue. Since higher gasification temperatures are used in a slagging gasifier, the reactivity question is eliminated and the briquettes should be considered as a feed. This study does not deal with the exact design of a gasifier since this is a function of the type used. The gasifier manufacturer should be considered in future work for their input on critical design considerations i.e. stirrer design, etc.« less

  4. Molecular recognition of emerald ash borer infestation using leaf spray mass spectrometry.

    PubMed

    Falcone, Caitlin E; Cooks, R Graham

    2016-06-15

    The introduction of the emerald ash borer (Agrilus planipennis) (EAB) from Asia to Michigan, USA, in the 1990s caused the widespread death of ash trees in two Canadian provinces and 24 US states. The three current methods for the detection of emerald ash borer infestation, visual surveys, tree girdling and artificial traps, can be unreliable, and there is clearly a need for a rapid, dependable technique for the detection of emerald ash borer infestation. Leaf spray, an ambient ionization method for mass spectrometry (MS), gives direct chemical information on a leaf sample by applying a high voltage to a naturally or artificially sharply pointed leaf piece causing ions to be generated directly from the leaf tip for MS analysis. Leaflets from 23 healthy and EAB-infested ash trees were analyzed by leaf spray mass spectrometry in an attempt to distinguish healthy and EAB-infested ash trees. In negative ion mode, healthy ash trees showed an increased abundance of ions m/z 455.5, 471.5 and 487.5, and ash trees infested with the EAB displayed an increased abundance of ions m/z 181 and 217. The identities of the chemical discriminators ursolic acid and oleanolic acid in healthy ash trees, and six-carbon sugar alcohols in infested ash trees, were determined by tandem mass spectrometry and confirmed with standards. This preliminary study suggests that leaf spray mass spectrometry of ash tree leaflets provides a potential tool for the early detection of ash tree infestation by the emerald ash borer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Comparative in vitro culture of white and green ash from seed to plantlet production

    Treesearch

    J. W. Van Sambeek; John E. Preece; Nadia E. Navarrete-Tindall

    2002-01-01

    In vitro procedures have already been reported for white ash (Fraxinus americana L.) to establish cut dormant seeds, force axillary shoot proliferation, and induce rapid rooting to produce clonal plantlets (Preece et al., 1987, Navarrete et al., 1989, Preece et al., 1989, Preece et al., 1995). Hypothetically, a production cycle from seed to...

  6. Estimating combustion of large downed woody debris from residual white ash

    Treesearch

    Alistair M. S. Smith; Andrew T. Hudak

    2005-01-01

    The production of residual white ash patches within wildfires represents near-complete combustion of the available fuel and releases a considerable quantity of gases to the atmosphere. These patches are generally produced from combustion of large downed woody debris (LDWD) such as fallen trees and snags. However, LDWD are generally ignored in calculations of fuel...

  7. Effects of rye bran addition on fatty acid composition and quality characteristics of low-fat meatballs.

    PubMed

    Yılmaz, Ismail

    2004-06-01

    Rye bran was used as a fat substitute in the production of meatballs. The effect of rye bran addition on the fatty acid composition, trans fatty acids, total fat, some physico-chemical and sensory properties of the samples was studied. Meatballs were produced with four different formulations including 5%, 10%, 15% and 20% rye bran addition. Control samples were formulated with 10% fat addition. Meatballs containing rye bran had lower concentrations of total fat and total trans fatty acids than the control samples. Meatballs made with addition of 20% rye bran had the highest protein, ash contents, L value (lightness), b value (yellowness), and the lowest moisture, salt content and weight losses and a value (redness). There was a significant difference among the meatball samples in respect to sensory properties and 5%, 10% rye bran added meatballs and control samples had high acceptability.

  8. Mass Spectrometric Determination of Uranium and Thorium in High Radiopurity Polymers Using Ultra Low Background Electroformed Copper Crucibles for Dry Ashing.

    PubMed

    Arnquist, Isaac J; Hoppe, Eric J; Bliss, Mary; Grate, Jay W

    2017-03-07

    A rapid new method for determining the U and Th mass concentrations in high radiopurity plastics is described, consisting of (1) dry ashing the plastic sample and tracers in low mass crucibles made of ultra low background electroformed copper (ULB EF-Cu) foil cut and folded into boats, (2) dissolving both the ash and the boat in acid, (3) performing a column separation to remove copper, and (4) determining the elements of interest by isotope dilution mass spectrometry. This method was demonstrated on both unfluorinated and fluorinated plastics, demonstrating high tracer recoveries and detection limits to pg/g (i.e., parts per trillion) levels or below, corresponding to μBq/kg of material. Samples of biomedical polyester (Max-Prene 955) and a fluoropolymer (polyvinylidene fluoride, PVDF) were analyzed in powder raw material forms as well as solids in the form of pellets or injection molded parts. The polyester powder contained 6 pg/g and 2 pg/g for 232 Th and 238 U, respectively. These levels correspond to 25 and 25 μBq/kg radioactivity, respectively. Determinations on samples of PVDF powder were typically below 1 pg/g for 232 Th and 2 pg/g for 238 U, corresponding to 4 and 25 μBq/kg radioactivity, respectively. The use of low mass ULB EF-Cu boats for dry ashing successfully overcame the problem of crucible-generated contaminants in the analysis; absolute detection limits, calculated as 3 × standard deviation of the process blanks, were typically 20-100 fg within a sample set. Complete dissolution of the ash and low mass boat provided high tracer recoveries and provides a convincing method to recover both the tracer and sample isotopes when full equilibration of tracer isotopes with sample isotopes is not possible prior to beginning chemical sample processing on solids.

  9. Mass Spectrometric Determination of Uranium and Thorium in High Radiopurity Polymers Using Ultra Low Background Electroformed Copper Crucibles for Dry Ashing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnquist, Isaac J.; Hoppe, Eric J.; Bliss, Mary

    A rapid new method for determining the U and Th mass concentrations in high radiopurity plastics is described, consisting of 1) dry ashing the plastic sample and tracers in low mass crucibles made of ultra low background electroformed copper (ULB EF-Cu) foil cut and folded into boats, 2) dissolving both the ash and the boat in acid, 3) performing a column separation to remove copper, and 4) determining the elements of interest by isotope dilution mass spectrometry. This method was demonstrated on both unfluorinated and fluorinated plastics, demonstrating high tracer recoveries and detection limits to pg/g (i.e., parts per trillion)more » levels or below, corresponding to μBq/kg of material. Samples of biomedical polyester (Max-Prene® 955) and a fluoropolymer (polyvinylidene fluoride, PVDF) were analyzed in powder raw material forms as well as solids in the form of pellets or injection molded parts. The polyester powder contained 6 pg/g and 2 pg/g for Th and U respectively. These levels correspond to 25 and 25 μBq/kg radioactivity, respectively. Determinations on samples of PVDF powder were typically below 1 pg/g for Th and 2 pg/g for U, corresponding to 4 and 25 μBq/kg radioactivity, respectively. The use of low mass ULB EF-Cu boats for dry ashing successfully overcame the problem of crucible-generated contaminants in the analysis; absolute detection limits, calculated as 3 × standard deviation of the process blanks, were typically 20-100 fg within a sample set. Complete dissolution of the ash and low mass boat provided high tracer recoveries, and provides a convincing method to recover both the tracer and sample isotopes when full equilibration of tracer isotopes with sample isotopes is not possible prior to beginning chemical sample processing on solids.« less

  10. The influence of sugarcane bagasse ash as fly ash on cement quality

    NASA Astrophysics Data System (ADS)

    Rauf, N.; Damayanti, M. C.; Pratama, S. W. I.

    2017-01-01

    Fly ash often is used as the third material for cement. The fly ash from sugarcane bagasse is usually considered as industrial waste material that can be added to the base material of cement (clinker, trash, gypsum and lime stone) for economic and environment reason. The amount of fly ash usually up to 30 % of cement material, but in this research the percentage of sugarcane bagasse ash (SBA) is added to cement material is up to 15% total weight. Then the x-rays fluorescence (XRF) was used to determine its chemical composition of raw material and cement samples. The physical properties of cement such as fineness, setting time, expansion, and compressive strength were measured using Automatic Blaine, Vicat, Autoclave, respectively. The result show that the percentage of sugarcane bagasse ash influences the quality of cement and concrete, and this is confirmed with Indonesia National Standard (SNI). It is showed that the sugarcane bagasse ash could be use as material to improve the quality of cement and will solve the environment waste material

  11. Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments

    NASA Astrophysics Data System (ADS)

    Jones, Morgan T.; Gislason, Sigurður R.

    2008-08-01

    Deposition of volcanic ash into aqueous environments leads to dissolution of adsorbed metal salts and aerosols, increasing the bioavailability of key nutrients. Volcanogenic fertilization events could increase marine primary productivity, leading to a drawdown of atmospheric CO 2. Here we conduct flow-through experiments on unhydrated volcanic ash samples from a variety of locations and sources, measuring the concentrations and fluxes of elements into de-ionized water and two contrasting ocean surface waters. Comparisons of element fluxes show that dissolution of adsorbed surface salts and aerosols dominates over glass dissolution, even in sustained low pH conditions. These surface ash-leachates appear unstable, decaying in situ even if kept unhydrated. Volcanic ash from recent eruptions is shown to have a large fertilization potential in both fresh and saline water. Fluorine concentrations are integral to bulk dissolution rates and samples with high F concentrations display elevated fluxes of some nutrients, particularly Fe, Si, and P. Bio-limiting micronutrients are released in large quantities, suggesting that subsequent biological growth will be limited by macronutrient availability. Importantly, acidification of surface waters and high fluxes of toxic elements highlights the potential of volcanic ash-leachates to poison aqueous environments. In particular, large pH changes can cause undersaturation of CaCO 3 polymorphs, damaging populations of calcifying organisms. Deposition of volcanic ash can both fertilize and/or poison aqueous environments, causing significant changes to surface water chemistry and biogeochemical cycles.

  12. Preliminary volcano-hazard assessment for Akutan Volcano east-central Aleutian Islands, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Power, John A.; Richter, Donlad H.; McGimsey, Robert G.

    1998-01-01

    Akutan Volcano is a 1100-meter-high stratovolcano on Akutan Island in the east-central Aleutian Islands of southwestern Alaska. The volcano is located about 1238 kilometers southwest of Anchorage and about 56 kilometers east of Dutch Harbor/Unalaska. Eruptive activity has occurred at least 27 times since historical observations were recorded beginning in the late 1700?s. Recent eruptions produced only small amounts of fine volcanic ash that fell primarily on the upper flanks of the volcano. Small amounts of ash fell on the Akutan Harbor area during eruptions in 1911, 1948, 1987, and 1989. Plumes of volcanic ash are the primary hazard associated with eruptions of Akutan Volcano and are a major hazard to all aircraft using the airfield at Dutch Harbor or approaching Akutan Island. Eruptions similar to historical Akutan eruptions should be anticipated in the future. Although unlikely, eruptions larger than those of historical time could generate significant amounts of volcanic ash, fallout, pyroclastic flows, and lahars that would be hazardous to life and property on all sectors of the volcano and other parts of the island, but especially in the major valleys that head on the volcano flanks. During a large eruption an ash cloud could be produced that may be hazardous to aircraft using the airfield at Cold Bay and the airspace downwind from the volcano. In the event of a large eruption, volcanic ash fallout could be relatively thick over parts of Akutan Island and volcanic bombs could strike areas more than 10 kilometers from the volcano.

  13. Improvement in the traditional processing method and nutritional quality of traditional extruded cassava-based snack (modified Ajogun)

    PubMed Central

    Obadina, Adewale O; Oyewole, Olusola B; Williams, Oluwasolabomi E

    2013-01-01

    This study was carried out to investigate and improve the traditional processing method and nutritional quality of the traditional cassava snack (Ajogun). Cassava root (Manihot esculenta Crantz L.) of TME 419 variety was processed into mash (40% moisture content). The cassava mash was mixed into different blends to produce fried traditional “Ajogun”, fried and baked extrudates (modified Ajogun) as snacks. These products were analyzed to determine the proximate composition including carbohydrate, fat, protein, fiber, ash, and moisture contents and functional properties such as bulk density. The results obtained for the moisture, fat, protein, and ash contents showed significant difference (P < 0.05) between the control sample and the extrudates. However, there was no significant difference (P > 0.05) in the carbohydrate and fiber contents between the three samples. There was no significant difference (P > 0.05) in the bulk density of the snacks. Also, sensory evaluation was carried out on the cassava-based snacks using the 9-point hedonic scale to determine the degree of acceptability. Results obtained showed significant difference (P < 0.05) between the extrudates and control sample in terms of appearance, taste, flavor, color, aroma, texture, and overall acceptability. The highest acceptability level of the product was at 8.04 for the control sample (traditional Ajogun). This study has shown that “Ajogun”, which is a lesser known cassava product, is rich in protein and fat. PMID:24804039

  14. Use of Incineration Solid Waste Bottom Ash as Cement Mixture in Cement Production

    NASA Astrophysics Data System (ADS)

    Jun, N. H.; Abdullah, M. M. A. B.; Jin, T. S.; Kadir, A. A.; Tugui, C. A.; Sandu, A. V.

    2017-06-01

    Incineration solid waste bottom ash was use to examine the suitability as a substitution in cement production. This study enveloped an innovative technology option for designing new equivalent cement that contains incineration solid waste bottom ash. The compressive strength of the samples was determined at 7, 14, 28 and 90 days. The result was compared to control cement with cement mixture containing incineration waste bottom ash where the result proved that bottom ash cement mixture able achieve its equivalent performance compared to control cement which meeting the requirement of the standards according to EN 196-1. The pozzolanic activity index of bottom ash cement mixture reached 0.92 at 28 days and 0.95 at 90 and this values can be concluded as a pozzolanic material with positive pozzolanic activity. Calcium hydroxide in Portland cement decreasing with the increasing replacement of bottom ash where the reaction occur between Ca(OH)2 and active SiO2.

  15. Geotechnical properties of ash deposits near Hilo, Hawaii

    USGS Publications Warehouse

    Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.

    1982-01-01

    Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.

  16. Cytotoxic effect of vanadium and oil-fired fly ash on hamster tracheal epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiff, L.J.; Graham, J.A.

    1984-08-01

    Hamster tracheal organ cultures were used to study the in vitro effects of vanadium and oil-fired fly ash on mucociliary respiratory epithelium. Two vanadium compounds, VOSO/sub 4/ and V/sub 2/O/sub 5/, and fly ash from an oil-fueled power plant were dissolved or suspended in culture medium over a range of concentrations and epithelia were exposed for 1 hr/day, for 9 consecutive days. At intervals during this period, alterations in cilia-beating frequency, cytology, and histology were documented by light microscopy. Explants treated with VOSO/sub 4/ either decreased ciliary activity or produced ciliostasis depending upon the concentration and length of exposure. Earlymore » morphological alterations consisted of vacuolization of both nuclei and cytoplasm. After multiple exposures, cytology of VOSO/sub 4/-treated respiratory mucosa was markedly affected. Similar changes were observed in cultures exposed to V/sub 2/O/sub 5/; however, the cytotoxicity appeared earlier and was more pronounced. Fly ash-treated explants produced similar biological effects when compared to both vanadium compounds. Thus, the data indicate that the extent of vanadium toxicity depends, at least in part, on the vanadium content of the compound tested, and that exposure to this metal and vanadium-rich fly ash can inhibit normal mucociliary function, a vital clearance mechanism in the respiratory tract.« less

  17. Volcanic Ash on Slopes of Karymsky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A volcanic eruption can produce gases, lava, bombs of rock, volcanic ash, or any combination of these elements. Of the volcanic products that linger on the land, most of us think of hardened lava flows, but volcanic ash can also persist on the landscape. One example of that persistence appeared on Siberia's Kamchatka Peninsula in spring 2007. On March 25, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the area around the Karymsky Volcano. In this image, volcanic ash from earlier eruptions has settled onto the snowy landscape, leaving dark gray swaths. The ash stains are confined to the south of the volcano's summit, one large stain fanning out toward the southwest, and another toward the east. At first glance, the ash stain toward the east appears to form a semicircle north of the volcano and sweep back east. Only part of this dark shape, however, is actually volcanic ash. Near the coast, the darker color may result from thicker vegetation. Similar darker coloring appears to the south. Volcanic ash is not really ash at all, but tiny, jagged bits of rock and glass. These jagged particles pose serious health risks to humans and animals who might inhale them. Likewise, the ash poses hazards to animals eating plants that have been coated with ash. Because wind can carry volcanic ash thousands of kilometers, it poses a more far-reaching hazard than other volcanic ejecta. Substantial amounts of ash can even affect climate by blocking sunlight. Karymsky is a stratovolcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. It is one of many active volcanoes on Russia's Kamchatka Peninsula, which is part of the 'Ring of Fire' around the Pacific Rim. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  18. Volatile properties of particles emitted by compressed natural gas and diesel buses during steady-state and transient driving modes.

    PubMed

    Jayaratne, E R; Meyer, N K; Ristovski, Z D; Morawska, L

    2012-01-03

    Volatile properties of particle emissions from four compressed natural gas (CNG) and four diesel buses were investigated under steady-state and transient driving modes on a chassis dynamometer. The exhaust was diluted utilizing a full-flow continuous volume sampling system and passed through a thermodenuder at controlled temperature. Particle number concentration and size distribution were measured with a condensation particle counter and a scanning mobility particle sizer, respectively. We show that while almost all the particles emitted by the CNG buses were in the nanoparticle size range, at least 85% and 98% were removed at 100 and 250 °C, respectively. Closer analysis of the volatility of particles emitted during transient cycles showed that volatilization began at around 40 °C, with the majority occurring by 80 °C. Particles produced during hard acceleration from rest exhibited lower volatility than those produced during other times of the cycle. On the basis of our results and the observation of ash deposits on the walls of the tailpipes, we suggest that these nonvolatile particles were composed mostly of ash from lubricating oil. Heating the diesel bus emissions to 100 °C removed ultrafine particle numbers by 69-82% when a nucleation mode was present and just 18% when it was not.

  19. Transpressional deformation style and AMS fabrics adjacent to the southernmost segment of the San Andreas fault, Durmid Hill, CA

    NASA Astrophysics Data System (ADS)

    French, M.; Wojtal, S. F.; Housen, B.

    2006-12-01

    In the Salton Trough, the trace of the San Andreas Fault (SAF) ends where it intersects the NNW-trending Brawley seismic zone at Durmid Hill (DH). The topographic relief of DH is a product of faulting and folding of Pleistocene Borrego Formation strata (Babcock, 1974). Burgmann's (1991) detailed mapping and analysis of the western part of DH showed that the folds and faults accommodate transpression. Key to Burgmann's work was the recognition that the ~2m thick Bishop Ash, a prominent marker horizon, has been elongated parallel to the hinges of folds and boudinaged. We are mapping in detail the eastern portion of DH, nearer to the trace of the SAF. Folds in the eastern part of DH are tighter and thrust faulting is more prominent, consistent with greater shortening magnitude oblique to the SAF. Boudinage of the ash layer again indicates elongation parallel to fold hinges and subparallel to the SAF. The Bishop Ash locally is <1m thick along fold limbs in eastern DH, suggesting that significant continuous deformation accompanied the development of map-scale features. We measured anisotropy of magnetic susceptibility (AMS) fabrics in the Bishop Ash in order to assess continuous deformation in the Ash at DH. Because the Bishop Ash at DH is altered, consisting mainly of silica glass and clay minerals, samples from DH have significantly lower magnetic susceptibilities than Bishop Ash samples from elsewhere in the Salton Trough. With such low susceptibilities, there is significant scatter in the orientation of magnetic foliation and lineation in our samples. Still, in some Bishop samples within 1 km of the SAF, magnetic foliation is consistent with fold-related flattening. Magnetic lineation in these samples is consistently sub-parallel to fold hinges, parallel to the elongation direction inferred from boudinage. Even close to the trace of the SAF, this correlation breaks down in map-scale zones where fold hinge lines change attitude, fold shapes change, and the distribution and orientations of fractures and veins changes. These zones of structural complication separate broader regions of more uniform deformation patterns. Together, the geometry of structures and AMS fabrics suggest that deformation in eastern DH occurs by the distortion and reorientation of more or less coherent blocks separated by narrow zones where structural elements change orientation.

  20. Experimental Study on Semi-Dry Flue Gas Desulfurization Ash Used in Steel Slag Composite Material

    NASA Astrophysics Data System (ADS)

    Lu, Lijun; Fang, Honghui

    This article carried out the experimental study on using desulfurization ash in steel slag composite material. This was done by investigating the desulfurization ash content in formula one and formula two samples on the influence of setting time and strength of mortar. Through this study the following conclusions were reached for formula one: (1) a setting time of more than 10 hours is required, (2) a dosage of desulfurization ash of 1 2% is optimal, where flexural strength is reduced by 10% 23% and compressive strength reduced by 5.7% 16.4%. The conclusions of formula two were: (1) when the dosage of desulfurization ash is within 5%, the setting time is within 10 hours; (2) when the dosage of desulfurization ash is 1 2%, the flexural strength is increased by 5 7% and the compressive strength is reduced by 1 2%. The results show that the formula two is better.

Top