Science.gov

Sample records for ash sekitanbai wo

  1. Effect of fly ash on catalytic removal of gaseous dioxins over V{sub 2}O{sub 5}-WO{sub 3} catalyst of a sinter plant

    SciTech Connect

    Shu Hao Chang; Kai Hsien Chi; Chi Wei Young; Bao Zhen Hong; Moo Been Chang

    2009-10-01

    A PCDD/F (polychlorinated dibenzo-p-dioxin and dibenzofuran)-containing gas stream generating system was developed to investigate the efficiency and effectiveness of V{sub 2}O{sub 5}-WO{sub 3} catalyst for PCDD/F destruction. Catalytic decomposition of PCDD/Fs (simulated gas streams) was evaluated with lab-scale pelletized and plate-type catalyst based on V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} at controlled temperature, space velocity, and inlet PCDD/F concentration. Due to the lower porosity of the pelletized catalyst, PCDD/F destruction efficiencies reach 72.9-83.2% for different levels of inlet PCDD/F concentrations (1.08-3.04 ng-TEQ/Nm{sup 3}) of the gas stream (space velocity: 5000 h-1). As the surface area is increased from 287 m{sup 2}/m{sup 3} (plate-type A) to 550 m{sup 2}/m{sup 3} (plate-type B), the PCDD/F destruction achieved with plate-type catalyst increases from 76.0% to 85.3% at 320{sup o}C (space velocity: 5000 h{sup -1}). In addition, the results of pilot-scale experiment (real flue gases of a sinter plant) indicate that relatively lower PCDD/F destruction efficiencies (62.1-65.7%) were achieved with the plate-type B catalyst as the solid-phase PCDD/F and fly ash passed through the reactor (space velocity: 5000 h{sup -1}). Overall, the lab-scale and pilot-scale experiments indicate that PCDD/F destructions achieved with pelletized and plate-type catalysts strongly depend on the operating temperature of the catalyst. The results also indicate that the presence of fly ash lowers PCDD/F destruction due to significant PCDD/F formation via de novo synthesis at 320{sup o}C. 20 refs., 5 figs., 3 tabs.

  2. Asymmetric Ashes

    NASA Astrophysics Data System (ADS)

    2006-11-01

    , it is. "This has some impact on the use of Type Ia supernovae as standard candles," says Ferdinando Patat. "This kind of supernovae is used to measure the rate of acceleration of the expansion of the Universe, assuming these objects behave in a uniform way. But asymmetries can introduce dispersions in the quantities observed." "Our discovery puts strong constraints on any successful models of thermonuclear supernova explosions," adds Wang. Models have suggested that the clumpiness is caused by a slow-burn process, called 'deflagration', and leaves an irregular trail of ashes. The smoothness of the inner regions of the exploding star implies that at a given stage, the deflagration gives way to a more violent process, a 'detonation', which travels at supersonic speeds - so fast that it erases all the asymmetries in the ashes left behind by the slower burning of the first stage, resulting in a smoother, more homogeneous residue.

  3. Activation of fly ash

    DOEpatents

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  4. Activation of fly ash

    DOEpatents

    Corbin, David R.; Velenyi, Louis J.; Pepera, Marc A.; Dolhyj, Serge R.

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  5. Advanced ash management technologies for CFBC ash.

    PubMed

    Anthony, E J; Berry, E E; Blondin, J; Bulewicz, E M; Burwell, S

    2003-01-01

    The combustion of high-sulphur coal demands the reduction of sulphur emissions. The sorbent most often used in sulphur capture technology is calcium-based. Ashes from technologies such as circulating fluidized bed combustion (CFBC), therefore, contain high calcium levels. The use and disposal of these ashes poses challenges, because of highly exothermic reactions with water, high-pH leachates, and excessive expansion of solidified materials. This paper looks at the potential of two post-combustion ash treatment processes, CERCHAR hydration and AWDS disposal, in solving these challenges. A high-sulphur coal-derived CFBC ash is examined, after CERCHAR hydration treatment, in conjunction with a conventionally hydrated ash, in a range of chemical, geotechnical and utilization scenarios. The ashes are used to make no-cement and roller-compacted concrete as well as Ash Water Dense Suspensions (AWDS). The solidified mortar paste from no-cement concrete is subjected to an extensive geochemical examination to determine how solidification progresses and strength develops, from a chemical point of view. PMID:12909091

  6. Advanced ash management technologies for CFBC ash.

    PubMed

    Anthony, E J; Berry, E E; Blondin, J; Bulewicz, E M; Burwell, S

    2003-01-01

    The combustion of high-sulphur coal demands the reduction of sulphur emissions. The sorbent most often used in sulphur capture technology is calcium-based. Ashes from technologies such as circulating fluidized bed combustion (CFBC), therefore, contain high calcium levels. The use and disposal of these ashes poses challenges, because of highly exothermic reactions with water, high-pH leachates, and excessive expansion of solidified materials. This paper looks at the potential of two post-combustion ash treatment processes, CERCHAR hydration and AWDS disposal, in solving these challenges. A high-sulphur coal-derived CFBC ash is examined, after CERCHAR hydration treatment, in conjunction with a conventionally hydrated ash, in a range of chemical, geotechnical and utilization scenarios. The ashes are used to make no-cement and roller-compacted concrete as well as Ash Water Dense Suspensions (AWDS). The solidified mortar paste from no-cement concrete is subjected to an extensive geochemical examination to determine how solidification progresses and strength develops, from a chemical point of view.

  7. Bacteriophage WO in Wolbachia infecting terrestrial isopods.

    PubMed

    Braquart-Varnier, Christine; Grève, Pierre; Félix, Christine; Martin, Gilbert

    2005-11-18

    Wolbachia are maternally inherited intracellular alpha-proteobacteria that infect a wide range of arthropods. They are associated with a number of different reproductive phenotypes in arthropods and nematodes. In isopod crustacean, Wolbachia are responsible for feminization of genetic males in many species, and for cytoplasmic incompatibility in two species. In this paper, we report the first detection of phage WO from Wolbachia infecting terrestrial isopods. All Wolbachia strains tested in this study were infected with phage WO. Based on the orf7 phage sequence, we identified three different phage sequences in four Wolbachia strains. The phage of Wolbachia infecting Armadillidium vulgare seems to be not active, unlike other phages WO previously described in arthropods. PMID:16198306

  8. Bacteriophage WO in Wolbachia infecting terrestrial isopods.

    PubMed

    Braquart-Varnier, Christine; Grève, Pierre; Félix, Christine; Martin, Gilbert

    2005-11-18

    Wolbachia are maternally inherited intracellular alpha-proteobacteria that infect a wide range of arthropods. They are associated with a number of different reproductive phenotypes in arthropods and nematodes. In isopod crustacean, Wolbachia are responsible for feminization of genetic males in many species, and for cytoplasmic incompatibility in two species. In this paper, we report the first detection of phage WO from Wolbachia infecting terrestrial isopods. All Wolbachia strains tested in this study were infected with phage WO. Based on the orf7 phage sequence, we identified three different phage sequences in four Wolbachia strains. The phage of Wolbachia infecting Armadillidium vulgare seems to be not active, unlike other phages WO previously described in arthropods.

  9. Fly ash carbon passivation

    DOEpatents

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  10. Time-resolved spectroscopy in ZnWO4 and ZnWO4 : Fe

    NASA Astrophysics Data System (ADS)

    Grigorjeva, L.; Pankratov, V.; Millers, D.; Chernov, S.; Nagirnyi, V.; Kotlov, A.; Watterich, A.

    2003-01-01

    Time-resolved luminescence and absorption of ZnWO4 and ZnWO4:Fe have been studied. The fast decaying luminescence at similar to 1.7 eV is attributed to either Fe2+ or a Fe3+ related center. The two observed stages in luminescence decay kinetics under ionising radiation are suggested to be due to two types of self-trapped excitons.

  11. Detection and phylogenetic analysis of bacteriophage WO in spiders (Araneae).

    PubMed

    Yan, Qian; Qiao, Huping; Gao, Jin; Yun, Yueli; Liu, Fengxiang; Peng, Yu

    2015-11-01

    Phage WO is a bacteriophage found in Wolbachia. Herein, we represent the first phylogenetic study of WOs that infect spiders (Araneae). Seven species of spiders (Araneus alternidens, Nephila clavata, Hylyphantes graminicola, Prosoponoides sinensis, Pholcus crypticolens, Coleosoma octomaculatum, and Nurscia albofasciata) from six families were infected by Wolbachia and WO, followed by comprehensive sequence analysis. Interestingly, WO could be only detected Wolbachia-infected spiders. The relative infection rates of those seven species of spiders were 75, 100, 88.9, 100, 62.5, 72.7, and 100 %, respectively. Our results indicated that both Wolbachia and WO were found in three different body parts of N. clavata, and WO could be passed to the next generation of H. graminicola by vertical transmission. There were three different sequences for WO infected in A. alternidens and two different WO sequences from C. octomaculatum. Only one sequence of WO was found for the other five species of spiders. The discovered sequence of WO ranged from 239 to 311 bp. Phylogenetic tree was generated using maximum likelihood (ML) based on the orf7 gene sequences. According to the phylogenetic tree, WOs in N. clavata and H. graminicola were clustered in the same group. WOs from A. alternidens (WAlt1) and C. octomaculatum (WOct2) were closely related to another clade, whereas WO in P. sinensis was classified as a sole cluster.

  12. Reactivity of Hydrogen and Methanol on (001) Surfaces of WO3, ReO3, WO3/ReO3 and ReO3/WO3

    SciTech Connect

    Ling, Sanliang; Mei, Donghai; Gutowski, Maciej S.

    2011-05-16

    Bulk tungsten trioxide (WO3) and rhenium trioxide (ReO3) share very similar structures but display different electronic properties. WO3 is a wide bandgap semiconductor while ReO3 is an electronic conductor. With the advanced molecular beam epitaxy techniques, it is possible to make heterostructures comprised of layers of WO3 and ReO3. These heterostructures might display reactivity different than pure WO3 and ReO3. The interactions of two probe molecules (hydrogen and methanol) with the (001) surfaces of WO3, ReO3, and two heterostructures ReO3/WO3 and WO3/ReO3 were investigated at the density functional theory level. Atomic hydrogen prefers to adsorb at the terminal O1C sites forming a surface hydroxyl on four surfaces. Dissociative adsorption of a hydrogen molecule at the O1C site leads to formation of a water molecule adsorbed at the surface M5C site. This is thermodynamically the most stable state. A thermodynamically less stable dissociative state involves two surface hydroxyl groups O1CH and O2CH. The interaction of molecular hydrogen and methanol with pure ReO3 is stronger than with pure WO3 and the strength of the interaction substantially changes on the WO3/ReO3 and ReO3/WO3 heterostructures. The reaction barriers for decomposition and recombination reactions are sensitive to the nature of heterostructure. The calculated adsorption energy of methanol on WO3(001) of -65.6 kJ/mol is consistent with the previous experimental estimation of -67 kJ/mol. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  13. Synthesis of dumbbell-like Bi2WO6@CaWO4 composite photocatalyst and application in water treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijie; Wang, Wenzhong; Jiang, Dong; Xu, Jiayue

    2014-02-01

    Dumbbell-like Bi2WO6@CaWO4 composite photocatalyst was successfully synthesized via hydrothermal method in one step, in which the Bi2WO6 nanoplates assembled on the surface of the CaWO4 microspheres. The growth mechanism of such a special micro-nano structure was investigated. This structure holds the advantages of both a microstructure and a nanostructure, which can not only ensure the sufficient contact between the Bi2WO6 photocatalyst and the organic molecules, but also favor the sediment of the catalyst particles. Photocatalytic degradation of rhodamine B (RhB), demonstrated that the Bi2WO6@CaWO4 composite reserved the high photo-activity of Bi2WO6. Besides RhB, the Bi2WO6@CaWO4 composite could also degrade other model pollutants such as methyl orange (MO) and phenol effectively. Moreover, the composite photocatalyst could settle naturally in 15 min, which is beneficial for its separation and recycling.

  14. Coal combustion ash haulback

    SciTech Connect

    Gray, R.E.; Gray, T.A.

    1998-12-31

    Coal mining disturbs large tracts of land which must be reclaimed. Unfortunately, iron sulfides which are common in most coals and the adjacent strata weather, forming acid mine drainage (AMD) which degrades surface and ground water. Burning of coal produces combustion by products, most of which are placed in ponds or landfills. Suitable disposal areas are difficult to find and permit, especially in urban areas. This has led to ash haulback--where the waste generated during coal burning is hauled back to a mine for disposal. The potential advantages of coal combustion ash haulback are: Disposal occurs in a disturbed area (mine) rather than disturb additional land near the power plant; The same vehicles used to haul coal from the mine can be used to return the ash to the mine; Ash, if alkaline, may provide neutralization of acidic water or mine overburden commonly found at coal mines; and Low permeability ash could reduce ground water flow through the mine backfill, thus reducing leaching of acid forming constituents or metals. Placement of ash in surface mines provides an efficient, cost-effective method of disposal while at the same time contributing to reclamation of the mine. Wise natural resource management suggests a reasonable approach to disposal of coal ash is to return it to its original location--the mine.

  15. In situ synthesis of CdS/CdWO4/WO3 heterojunction films with enhanced photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Zhan, Faqi; Li, Jie; Li, Wenzhang; Yang, Yahui; Liu, Wenhua; Li, Yaomin

    2016-09-01

    CdS/CdWO4/WO3 heterojunction films on fluorine-doped tin oxide (FTO) substrates are for the first time prepared as an efficient photoanode for photoelectrochemical (PEC) hydrogen generation by an in situ conversion process. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet visible spectrometry (UV-vis) and X-ray photoelectron spectroscopy (XPS). The CdS hollow spheres (∼80 nm) sensitized WO3 plate film with a CdWO4 buffer-layer exhibits increased visible light absorption and a significantly improved photoelectrochemical performance. The photocurrent density at 0 V (vs. Ag/AgCl) of the CdS/CdWO4/WO3 anode is ∼3 times higher than that of the CdWO4/WO3 anode, and ∼9 times higher than that of pure WO3 under illumination. The highest incident-photon-to-current-efficiency (IPCE) value increased from 16% to 63% when the ternary heterojunction was formed. This study demonstrates that the synthesis of ternary composite photocatalysts by the in situ conversion process may be a promising approach to achieve high photoelectric conversion efficiency.

  16. Ash cloud aviation advisories

    SciTech Connect

    Sullivan, T.J.; Ellis, J.S.; Schalk, W.W.; Nasstrom, J.S.

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  17. Nd:SrWO 4 and Nd:BaWO 4 Raman lasers

    NASA Astrophysics Data System (ADS)

    Šulc, J.; Jelínková, H.; Basiev, T. T.; Doroschenko, M. E.; Ivleva, L. I.; Osiko, V. V.; Zverev, P. G.

    2007-09-01

    Properties of the laser operation and simultaneously stimulated Raman scattering in the SRS-active neodymium doped SrWO4 and BaWO4 crystals coherently end-pumped at wavelength 752 nm by pulsed free-running alexandrite laser radiation were investigated. The Nd3+ ion emission at wavelength λNd ˜ 1.06 μm was corresponding to 4F3/2 → 4I11/2 transition. To reach the SRS-self-conversion threshold inside Raman crystal the Nd3+ lasers were operating in a Q-switching regime. For Q-switching LiF:F2- crystal as a saturable absorber was used. Raman self-conversion at wavelength ˜1.17 μm was successfully reached with both tungstate crystals. The shortest generated pulse (1.3 ns FWHM) and highest peak power (615 kW) was obtained with Nd:BaWO4 Raman laser Q-switched by LiF:F2- crystal with initial transmission T0 = 60%. Up to 0.8 mJ was registered at the first Stokes wavelength 1169 nm. Using Q-switched Nd:SrWO4 laser higher energy in Raman emission was obtained (1.23 mJ) but generated pulse was longer (2.9 ns FWHM) resulting in lower peak power (430 kW).

  18. Nd:SrWO4 Raman laser

    NASA Astrophysics Data System (ADS)

    Jelinkova, Helena; Sulc, Jan; Doroschenko, Maxim E.; Skornyakov, Vadim V.; Kravtsov, Sergey B.; Basiev, Tasoltan T.; Zverev, Peter G.

    2004-09-01

    Properties of the laser operation and simultaneously stimulated Raman scattering in the new SRS-active neodymium doped SrWO4 crystal coherently end-pumped by alexandrite 752 nm laser radiation were investigated. The maximum generated energy 90 mJ from the free-running Nd3+:SrWO4 laser at 1057 nm wavelength was obtained with the output coupler reflectivity 52%. The slope efficiency reached s = 0.52, the beam characteristic parameters M2 and divergence q were 2.5 +/- 0.1, and 1.5 +/- 0.1 mrad, respectively. Maximal output energy of 1.46 mJ for the fundamental wavelength was obtained for Q-switched Nd3+:SrWO4 oscillator with a double Fabry-Perrot as the output coupler (R = 48%), and with the 5% initial transmission of LiF:F2- saturable absorber. Up to 0.74 mJ energy was registered at the first Stokes frequency. The pulse duration was 5 ns and 2.4 ns for the fundamental and Stokes radiation, respectively. The energy of 1.25 mJ at 1170 nm was obtained for closed Raman resonator with special mirrors. For the case of mode-locking, two dye saturable absorbers (ML51 dye in dichlorethan and 3955 dye in ethanol) were used and SRS radiation in the form of pulse train was observed. The influence of the various Raman laser output couplers reflectivity as well as the initial transmissions of passive absorbers were investigated with the goal of the output energy maximization at the Stokes wavelength. In the output, the total measured energy was 1.8 mJ (for ML51 dye) and 2.4 mJ (for 3955 dye). The SRS output at 1170 nm was approximately 20% of total energy.

  19. Microwave-assisted synthesis of Zn-WO3 and ZnWO4 for pseudocapacitor applications

    NASA Astrophysics Data System (ADS)

    Kumar, R. Dhilip; Andou, Y.; Karuppuchamy, S.

    2016-05-01

    Nanosized Zn-WO3 and ZnWO4 materials have been prepared by microwave irradiation method. The physico-chemical characterization of the prepared nanomaterials was carried out by X-ray diffraction (XRD) and high resolution-scanning electron microscopy (HR-SEM) techniques. The size and shape of the ZnWO4 material can be controlled by changing the temperature. The XRD analysis revealed the formation of monoclinic phase of the calcined nanopowder. The HR-SEM images showed the sphere and plate shape particles. The electrochemical behavior of the ZnWO4 modified electrodes was investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) techniques. The synthesized material shows the pseudocapacitance. The specific capacitance of 35.70 F/g was achieved for the Zn-WO3 nanopowder.

  20. Synthesis of S-doped WO3 nanowires with enhanced photocatalytic performance towards dye degradation

    NASA Astrophysics Data System (ADS)

    Han, Fugui; Li, Heping; Fu, Li; Yang, Jun; Liu, Zhong

    2016-05-01

    In this letter, S-doped WO3 nanowires (S-WO3) were prepared using a hydrothermal method followed by a low-temperature solid-state annealing treatment. The synthesized S-WO3 was characterized by SEM, EDX, XRD, XPS, Raman spectroscopy, UV-vis DRS and photocurrent responses. The results indicated that S could enhance the light harvesting capacity of WO3 nanowires. The photocatalytic performance of the S-WO3 was investigated by photodegradation of methyl orange (MO) under visible light irradiation. Results demonstrated that the photocatalytic activity of the S-WO3 nanowires is much higher than that of pure WO3 nanowires.

  1. Engineering Model for Ash Formation

    1994-12-02

    Ash deposition is controlled by the impaction and sticking of individual ash particles to heat transfer surfaces. Prediction of deposition therefore requires that the important factors in this process be predictable from coal and operational parameters. Coal combustion, boiler heat transfer, ash formation, ash particle aerodynamic, and ash particle sticking models are all essential steps in this process. The model described herein addresses the prediction of ash particle size and composition distributions based upon combustionmore » conditions and coal parameters. Key features of the model include a mineral redistribution routine to invert CCSEM mineralogical data, and a mineral interaction routine that simulates the conversion of mineral matter into ash during coal burning and yields ash particle size and composition distributions.« less

  2. Synthesis, Characterization, and Gas Sensing Applications of WO3 Nanobricks

    NASA Astrophysics Data System (ADS)

    Xiao, Jingkun; Song, Chengwen; Dong, Wei; Li, Chen; Yin, Yanyan; Zhang, Xiaoni; Song, Mingyan

    2015-08-01

    WO3 nanobricks are fabricated by a simple hydrothermal method. Morphology and structure of the WO3 nanobricks are characterized by scanning electron microscopy and x-ray diffraction. Gas sensing properties of the as-prepared WO3 sensor are systematically investigated by a static gas sensing system. The results show that the WO3 nanobricks with defect corners demonstrate good crystallinity, and the mean edge length and wall thickness are 1-1.5 and 400 nm, respectively. The WO3 sensor achieves its maximum sensitivity to 100 ppm ethanol at the optimal operating temperature of 300 °C. Ultra-fast response time (2-3 s) and fast recovery time (4-11 s) of the WO3 sensor toward 100 ppm ethanol are also observed at this optimal operating temperature. Moreover, the WO3 sensor exhibits high selectivity to other gases such as methanol, benzene, hexane, and dichloromethane, indicating its excellent potential application as a gas sensor for ethanol detection.

  3. WO3 nanopaticles and PEDOT:PSS/WO3 composite thin films studied for photocatalytic and electrochromic applications

    NASA Astrophysics Data System (ADS)

    Ivanov Boyadjiev, Stefan; Manduca, Bruno; Szűcs, Júlia; Miklós Szilágyi, Imre

    2016-03-01

    WO3 is a widely studied material for electrochromic and photocatalytic applications. In the present study, WO3 nanoparticles with a controlled structure (monoclinic or hexagonal) were obtained by controlled thermal decomposition of hexagonal ammonium tungsten bronze in air at 500 °C and 600 °C, respectively. The formation, morphology, structure and composition of the as-prepared nanoparticles were studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX). The photocatalytic activity of the monoclinic and hexagonal WO3 nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. In order to study the electrochromic properties of the WO3 nanoparticles, as well to introduce them for self-cleaning photocatalytic surface applications, thin films were prepared from the WO3 particles together with a conductive polymer. For this, PEDOT:PSS was used, which gives excellent opportunities for obtaining transparent and conductive thin films, suitable for both electrochromic and photocatalytic applications. By spin-coating, transparent PEDOT:PSS/WO3 composite thin films were prepared, on which cyclic voltammetry measurements were performed, and the coloring and bleaching states were studied. Our initial results for the PEDOT:PSS/WO3 composite thin films are promising, suggesting that such composites, after further development, might be successfully used in electrochromic devices and photocatalysis.

  4. Athermal directions and their dispersion in KGd(WO4)2 and KLu(WO4)2 crystals

    NASA Astrophysics Data System (ADS)

    Filippov, V. V.

    2015-12-01

    An analysis of the existence of athermal properties for optically biaxial crystals KGd(WO4)2 and KLu(WO4)2 is performed and compared with that of KY(WO4)2 for monolithic and laser cavity configurations. Short-wavelength limits for athermal behavior in the principal planes of optical indicatrix are found. In KGd(WO4)2 they lie near or in the absorption band. In KLu(WO4)2, one of the two isonomal waves and both isonomal waves in the Np-Nm principal plane of KGd(WO4)2 for the laser cavity configuration have also long-wavelength limits. It is shown that for some wavelengths (one or two in the visible spectrum) and light wave polarization, the optical indicatrix axes can be athermal. In KLuW, for the monolithic configuration, the Np axis is athermal at three wavelengths, two of which lie in the IR region (0.843 and 1.975 μm). All-space athermal directions are determined for KLu(WO4)2 at 2 μm. For the monolithic configuration, they form a cone with its axis parallel to the Np axis and oval cross-section.

  5. ASH and NASH.

    PubMed

    Scaglioni, F; Ciccia, S; Marino, M; Bedogni, G; Bellentani, S

    2011-01-01

    Non-alcoholic steatohepatitis (NASH) and alcoholic steatohepatitis (ASH) have a similar pathogenesis and histopathology but a different etiology and epidemiology. NASH and ASH are advanced stages of non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD). NAFLD is characterized by excessive fat accumulation in the liver (steatosis), without any other evident causes of chronic liver diseases (viral, autoimmune, genetic, etc.), and with an alcohol consumption ≤20-30 g/day. On the contrary, AFLD is defined as the presence of steatosis and alcohol consumption >20-30 g/day. The most common phenotypic manifestations of primary NAFLD/NASH are overweight/obesity, visceral adiposity, type 2 diabetes, hypertriglyceridemia and hypertension. The prevalence of NAFLD in the general population in Western countries is estimated to be 25-30%. The prevalence and incidence of NASH and ASH are not known because of the impossibility of performing liver biopsy in the general population. Up to 90% of alcoholics have fatty liver, and 5-15% of these subjects will develop cirrhosis over 20 years. The risk of cirrhosis increases to 30-40% in those who continue to drink alcohol. About 10-35% of alcoholics exhibit changes on liver biopsy consistent with alcoholic hepatitis. Natural histories of NASH and ASH are not completely defined, even if patients with NASH have a reduced life expectancy due to liver-related death and cardiovascular diseases. The best treatment of AFLD/ASH is to stop drinking, and the most effective first-line therapeutic option for NAFLD/NASH is non-pharmacologic lifestyle interventions through a multidisciplinary approach including weight loss, dietary changes, physical exercise, and cognitive-behavior therapy. PMID:21734385

  6. Lunar ash flows - Isothermal approximation.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  7. NH3 sensing characteristics of nano-WO3 thin films deposited on porous silicon.

    PubMed

    Sun, Fengyun; Hu, Ming; Sun, Peng; Zhang, Jie; Liu, Bo

    2010-11-01

    The NH3 sensing characteristics of nano-tungsten trioxide (WO3) thin films deposited on porous silicon (PS) were investigated in the present study. Porous silicon layer was first prepared by electrochemical etching in an HF-based solution on a p(+)-type silicon substrate. Then, WO3 nano-films were deposited on the porous silicon layer by DC magnetron sputtering. Pt electrodes were deposited on the top surface of the WO3 films to obtain the WO3/PS gas sensor. The WO3 films deposited on PS were characterized by SEM, XRD and XPS. The NH3 sensing characteristics for WO3/PS gas sensor were tested at room temperature and 50 degrees C. The results showed that the NH3 sensing characteristics of WO3/PS were superior to WO3/Al2O3 at room temperature. The sensing mechanism of the nano-WO3 thin films based on PS was also discussed. PMID:21138022

  8. ASH EMISSIVITY CHARACTERIZATION AND PREDICTION

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor; Charlene R. Crocker

    1999-12-01

    The increased use of western subbituminous coals has generated concerns regarding highly reflective ash disrupting heat transfer in the radiant zone of pulverized-fuel boilers. Ash emissivity and reflectivity is primarily a function of ash particle size, with reflective deposits expected to consist of very small refractory ash materials such as CaO, MgO, or sulfate materials such as Na{sub 2}SO{sub 4}. For biomass fuels and biomass-coal blends, similar reflectivity issues may arise as a result of the presence of abundant organically associated calcium and potassium, which can transform during combustion to fine calcium, and potassium oxides and sulfates, which may act as reflective ash. The relationship of reflectivity to ash chemistry is a second-order effect, with the ash particle size distribution and melting point being determined by the size and chemistry of the minerals present in the starting fuel. Measurement of the emission properties of ash and deposits have been performed by several research groups (1-6) using both laboratory methods and measurements in pilot- and full-scale combustion systems. A review of the properties and thermal properties of ash stresses the important effect of ash deposits on heat transfer in the radiant boiler zone (1).

  9. Volcanic ash melting under conditions relevant to ash turbine interactions.

    PubMed

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B

    2016-03-02

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  10. Volcanic ash melting under conditions relevant to ash turbine interactions

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-03-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  11. Volcanic ash melting under conditions relevant to ash turbine interactions.

    PubMed

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B

    2016-01-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824

  12. Volcanic ash melting under conditions relevant to ash turbine interactions

    PubMed Central

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-01-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200–2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824

  13. Modeling volcanic ash dispersal

    ScienceCinema

    None

    2016-07-12

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  14. Circle of Ashes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Circle of Ashes

    This plot tells astronomers that a pulsar, the remnant of a stellar explosion, is surrounded by a disk of its own ashes. The disk, revealed by the two data points at the far right from NASA's Spitzer Space Telescope, is the first ever found around a pulsar. Astronomers believe planets might rise up out of these stellar ashes.

    The data in this plot, or spectrum, were taken by ground-based telescopes and Spitzer. They show that light from around the pulsar can be divided into two categories: direct light from the pulsar, and light from the dusty disk swirling around the pulsar. This excess light was detected by Spitzer's infrared array camera. Dust gives off more infrared light than the pulsar because it's cooler.

    The pulsar, called 4U 0142+61, was once a massive star, until about 100,000 years ago, when it blew up in a supernova explosion and scattered dusty debris into space. Some of that debris was captured into what astronomers refer to as a 'fallback disk,' now circling the leftover stellar core, or pulsar. The disk resembles protoplanetary disks around young stars, out of which planets are thought to be born.

    The data have been corrected to remove the effects of light scattering from dust that lies between Earth and the pulsar.

    The ground-based data is from the Keck I telescope atop Mauna Kea, Hawaii.

  15. Modeling volcanic ash dispersal

    SciTech Connect

    2010-10-22

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  16. Synthesis and photoelectrochemical properties of CdWO4 and CdS/CdWO4 nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Weina; Zheng, Chunhua; Hua, Hao; Yang, Qi; Chen, Lin; Xi, Yi; Hu, Chenguo

    2015-02-01

    A facile composite-salt-mediated strategy is employed for the first time to synthesize CdWO4 nanowire and nanoflower arrays on cadmium foil substrates. The photoelectrochemical (PEC) properties are measured on the electrodes made of the CdWO4 nanowire and nanoflower arrays under the simulated sunlight illumination. Both electrodes display high sensitive response and photocurrent stability. The photocurrent density of the nanowire arrays electrode reach 0.35 mA/cm2, which is about 3 times as much as that of the nanoflower array electrode. To improve the visible light photocurrent response, CdS nanoparticles are deposited on the CdWO4 nanowire arrays to form a CdS/CdWO4 heterojunction. Remarkably enhanced photoresponse is observed on the CdS/CdWO4 heterostructure and the photocurrent intensity is about twice as much as that of the electrode made of the pure CdWO4 nanowire arrays. The photoelectric mechanism is also discussed by the crystal structure and morphology characterization, optical band gap and carrier mobility analysis. This work presents a new design of a photoelectrochemical device for possible applications in photoelectrolysis of water and solar cells or highly sensitive light detection.

  17. MSW fly ash stabilized with coal ash for geotechnical application.

    PubMed

    Kamon, M; Katsumi, T; Sano, Y

    2000-09-15

    The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments. PMID:10936538

  18. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    NASA Astrophysics Data System (ADS)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  19. Photocatalytic properties of h-WO3 nanoparticles obtained by annealing and h-WO3 nanorods prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Nagy-Kovács, Teodóra; Lukács, István; Szilágyi, Imre M.

    2016-03-01

    In the present study, two different methods for preparing hexagonal WO3 (h-WO3) photocatalysts were used - controlled thermal decomposition and hydrothermal synthesis. WO3 nanoparticles with hexagonal structure were obtained by annealing (NH4)xWO3-y at 500 °C in air. WO3 nanorods were prepared by a hydrothermal method using sodium tungstate Na2WO4, HCl, (COOH)2 and NaSO4 precursors at 200 °C. The formation, morphology, structure and composition of the as-prepared nanoparticles and nanorods were studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX). The photocatalytic activity of the h-WO3 nanoparticles and nanorods was studied by decomposing methyl orange in aqueous solution under UV light irradiation.

  20. Ash in the Soil System

    NASA Astrophysics Data System (ADS)

    Pereira, P.

    2012-04-01

    Ash is the organic and inorganic residue produced by combustion, under laboratory and field conditions. This definition is far away to be accepted. Some researchers consider ash only as the inorganic part, others include also the material not completely combusted as charcoal or biochar. There is a need to have a convergence about this question and define clear "what means ash". After the fire and after spread ash onto soil surface, soil properties can be substantially changed depending on ash properties, that can be different according to the burned residue (e.g wood, coal, solid waste, peppermill, animal residues), material treatment before burning, time of exposition and storage conditions. Ash produced in boilers is different from the produced in fires because of the material diferent propertie and burning conditions. In addition, the ash produced in boilers is frequently treated (e.g pelletization, granulation, self curing) previously to application, to reduce the negative effects on soil (e.g rapid increase of pH, mycorrhiza, fine roots of trees and microfauna). These treatments normally reduce the rate of nutrients dissolution. In fires this does not happen. Thus the implications on soil properties are logically different. Depending on the combustion temperature and/or severity, ash could have different physical (e.g texture, wettability) and chemical properties (e.g amount and type of total and leached nutrients) and this will have implications on soil. Ash can increase and decrease soil aggregation, wettablity and water retention, bulk density, runoff and water infiltration. Normally, ash increases soil pH, Electrical Conductivity, and the amount of some basic nutrients as calcium, magnesium, sodium and potassium. However it is also a potential source of heavy metals, especially if ash pH is low. However the effect of ash on soil in space and time depends especially of the ash amount and characteristics, fire temperature, severity, topography, aspect

  1. An atlas of volcanic ash

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1974-01-01

    Volcanic ash samples collected from a variety of recent eruptions were studied, using petrography, chemical analyses, and scanning electron microscopy to characterize each ash type and to relate ash morphology to magma composition and eruption type. The ashes are best placed into two broad genetic categories: magnetic and hydrovolcanic (phreatomagmatic). Ashes from magmatic eruptions are formed when expanding gases in the magma form a froth that loses its coherence as it approaches the ground surface. During hydrovolcanic eruptions, the magma is chilled on contact with ground or surface waters, resulting in violent steam eruptions. Within these two genetic categories, ashes from different magma types can be characterized. The pigeon hole classification used here is for convenience; there are eruptions which are driven by both phreatic and magmatic gases.

  2. Ameliorative effect of fly ashes

    SciTech Connect

    Bhumbla, D.K.

    1991-01-01

    Agronomic effectiveness and environmental impact of fly ashes used to reclaim pyritic acid mine spoils were investigated in the laboratory and field. Mine spoils at two abandoned sites were amended with three rates of fly ash, three rates of rock phosphate, and seeded with alfalfa and wheat. Application of fly ash decreased bulk density and increased moisture retention capacity of spoils. Fly ash application reduced cation exchange capacity, acidity, toxic levels of Al, Fe, and Mn in soils by buffering soil pH at 6.5, and retarded pyrite oxidation. The reduction in cation exchange capacity was compensated by release of plant nutrients through diffusion and dissolution of plerospheres in fly ash. Improvement of spoil physical, chemical and microbial properties resulted in higher yield, more nitrogen fixation, and utilization of P from rock phosphate by alfalfa. Laboratory investigations demonstrated that neutralization potential and the amounts of amorphous oxides of iron were more important for classifying fly ashes than the total elemental analysis presently used in a taxonomic classification system. Contamination of the food chain through plant removal of Mo and As in fly ash treated mine spoils was observed only for Mo and only for the first year of cropping. Plant available As and Mo decreased with time. Laboratory leaching and adsorption studies and a field experiment showed that trace metals do not leach from fly ashes at near neutral pH and more oxyanions will leach from fly ashes with low neutralization potential and low amounts of amorphous oxides of iron.

  3. Large single crystal growth of MnWO4-type materials from high-temperature solutions

    NASA Astrophysics Data System (ADS)

    Gattermann, U.; Röska, B.; Paulmann, C.; Park, S.-H.

    2016-11-01

    A simple high-temperature growth apparatus was constructed to obtain large crystals of chemically gradient (In, Na)-doped MnWO4solid-solutions. This paper presents the crystal growth and characterisation of both MnWO4and epitaxially grown (In, Na): MnWO4crystals on MnWO4. These large monolithic crystals were made in two steps: A MnWO4 crystal was grown in the crystallographic main direction [001] applying the Czochralski method, followed by the top seeded growth of (In, Na): MnWO4 solid-solutions with an oriented seed crystal of MnWO4. Such a monolithic crystal will serve to fundamental investigation of coupling properties at boundaries between various multiferroic MnWO4-typesolid-solutions.

  4. Fly ash quality and utilization

    SciTech Connect

    Barta, L.E.; Lachner, L.; Wenzel, G.B.; Beer, M.J.

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  5. Volcanic ash - Terrestrial versus extraterrestrial

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.

    1976-01-01

    A principal difference between terrestrial and extraterrestrial lavas may consist in the greater ability of terrestrial lavas to form thin films (like those of soap bubbles) and hence foams. It would follow that, in place of the pumice and spiny shards found in terrestrial volcanic ash, an extraterrestrial ash should contain minute spherules. This hypothesis may help to explain lunar microspherules.

  6. Incineration and incinerator ash processing

    SciTech Connect

    Blum, T.W.

    1991-01-01

    Parallel small-scale studies on the dissolution and anion exchange recovery of plutonium from Rocky Flats Plant incinerator ash were conducted at the Los Alamos National Laboratory and at the Rocky Flats Plant. Results from these two studies are discussed in context with incinerator design considerations that might help to mitigate ash processing related problems. 11 refs., 1 fig., 1 tab.

  7. Trace elements in coal ash

    USGS Publications Warehouse

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    In this fact sheet, the form, distribution, and behavior of trace elements of environmental interest in samples of coal fly ash were investigated in response to concerns about element mobility in the event of an ash spill. The study includes laboratory-based leaching experiments to examine the behavior of trace elements, such as arsenic (As) and chromium (Cr), in response to key environmental factors including redox conditions (degree of oxygenation), which are known to vary with depth within coal ash impoundments and in natural ecosystems. The experiments show that As dissolves from samples of coal fly ash into simulated freshwater under both oxic (highly oxygenated) and anoxic (poorly oxygenated) conditions, whereas dissolved Cr concentrations are very redox dependent. This U.S. Geological Survey research helps define the distribution of elements such as As in coal ash and shows that element mobility can vary considerably under different conditions expected in the environment.

  8. Ash Aggregates in Proximal Settings

    NASA Astrophysics Data System (ADS)

    Porritt, L. A.; Russell, K.

    2012-12-01

    Ash aggregates are thought to have formed within and been deposited by the eruption column and plume and dilute density currents and their associated ash clouds. Moist, turbulent ash clouds are considered critical to ash aggregate formation by facilitating both collision and adhesion of particles. Consequently, they are most commonly found in distal deposits. Proximal deposits containing ash aggregates are less commonly observed but do occur. Here we describe two occurrences of vent proximal ash aggregate-rich deposits; the first within a kimberlite pipe where coated ash pellets and accretionary lapilli are found within the intra-vent sequence; and the second in a glaciovolcanic setting where cored pellets (armoured lapilli) occur within <1 km of the vent. The deposits within the A418 pipe, Diavik Diamond Mine, Canada, are the residual deposits within the conduit and vent of the volcano and are characterised by an abundance of ash aggregates. Coated ash pellets are dominant but are followed in abundance by ash pellets, accretionary lapilli and rare cored pellets. The coated ash pellets typically range from 1 - 5 mm in diameter and have core to rim ratios of approximately 10:1. The formation and preservation of these aggregates elucidates the style and nature of the explosive phase of kimberlite eruption at A418 (and other pipes?). First, these pyroclasts dictate the intensity of the kimberlite eruption; it must be energetic enough to cause intense fragmentation of the kimberlite to produce a substantial volume of very fine ash (<62 μm). Secondly, the ash aggregates indicate the involvement of moisture coupled with the presence of dilute expanded eruption clouds. The structure and distribution of these deposits throughout the kimberlite conduit demand that aggregation and deposition operate entirely within the confines of the vent; this indicates that aggregation is a rapid process. Ash aggregates within glaciovolcanic sequences are also rarely documented. The

  9. Pulsed laser deposition of CdWO4 thin films

    NASA Astrophysics Data System (ADS)

    Kodu, M.; Avarmaa, T.; Jaaniso, R.; Leemets, K.; Mändar, H.; Nagirnyi, V.

    2016-10-01

    Thin CdWO4 films were produced on various substrates by pulsed laser deposition. A method of producing transparent films of high structural and optical quality on MgO substrate was developed. It is based on deposition of an amorphous film from a non-stoichiometric CdWO4-CdO target and a consequent crystallization of the film in oxygen atmosphere at 750 °C. The quality of the films produced was verified by x-ray diffraction, electron probe microanalysis, scanning electron microscopy, Raman and optical spectroscopy.

  10. Photocatalytic water treatment over WO 3 under visible light irradiation combined with ozonation

    NASA Astrophysics Data System (ADS)

    Nishimoto, Shunsuke; Mano, Takayuki; Kameshima, Yoshikazu; Miyake, Michihiro

    2010-11-01

    Photocatalytic water treatment over bare WO 3 under visible light irradiation combined with ozonation (O 3/vis/WO 3) was investigated using an aqueous phenol solution as model wastewater. The O 3/vis/WO 3 treatment exhibited a much higher total organic carbon removal than ozonation alone. Bare WO 3 was found to function as an active visible-light-responsive photocatalyst for decomposition of organic compounds in the presence of ozone, which readily reacts with photoexcited electrons in the conduction band of WO 3.

  11. The WO3/WS2 nanostructures: Preparation, characterization and optical absorption properties

    NASA Astrophysics Data System (ADS)

    Cao, Shixiu; Zhao, Cong; Han, Tao; Peng, Lingling

    2016-07-01

    The WO3/WS2 nanostructures were successfully prepared using a two-step hydrothermal/gas phase method. The physical properties of the nanostructures were characterized using XRD, SEM, TEM, UV-visible spectroscopy. The WO3/WS2 nanostructures obtained were coexistence of WO3 and WS2 in the same particle. The WO3/WS2 nanostructures contained a wide and intensive absorption in the UV-visible light region of 245-750 nm, which showed that the WO3/WS2 nanostructures may have a potential application as an UV-visible photocatalyst.

  12. Reactive Sputter Deposition of WO3/Ag/WO3 Film for Indium Tin Oxide (ITO)-Free Electrochromic Devices.

    PubMed

    Yin, Yi; Lan, Changyong; Guo, Huayang; Li, Chun

    2016-02-17

    Functioning both as electrochromic (EC) and transparent-conductive (TC) coatings, WO3/Ag/WO3 (WAW) trilayer film shows promising potential application for ITO-free electrochromic devices. Reports on thermal-evaporated WAW films revealed that these bifunctional WAW films have distinct EC characteristics; however, their poor adhesive property leads to rapid degradation of coloring-bleaching cycling. Here, we show that WAW film with improved EC durability can be prepared by reactive sputtering using metal targets. We find that, by introducing an ultrathin tungsten (W) sacrificial layer before the deposition of external WO3, the oxidation of silver, which leads to film insulation and apparent optical haze, can be effectively avoided. We also find that the luminous transmittance and sheet resistance were sensitive to the thicknesses of tungsten and silver layers. The optimized structure for TC coating was obtained to be WO3 (45 nm)/Ag (10 nm)/W (2 nm)/WO3 (45 nm) with a sheet resistance of 16.3 Ω/□ and a luminous transmittance of 73.7%. Such film exhibits compelling EC performance with decent luminous transmittance modulation ΔTlum of 29.5%, fast switching time (6.6 s for coloring and 15.9 s for bleaching time), and long-term cycling stability (2000 cycles) with an applied potential of ±1.2 V. Thicker external WO3 layer (45/10/2/100 nm) leads to larger modulation with maximum ΔTlum of 46.4%, but at the cost of significantly increasing the sheet resistance. The strategy of introducing ultrathin metal sacrificial layer to avoid silver oxidation could be extended to fabricating other oxide-Ag-oxide transparent electrodes via low-cost reactive sputtering. PMID:26726834

  13. Sorptivity of fly ash concretes

    SciTech Connect

    Gopalan, M.K.

    1996-08-01

    A factorial experiment was designed to measure the sorptivity of cement and fly ash concretes in order to compare the durability of fly ash concrete against the cement concrete. Sorptivity measurements based on the capillary movement of water was made on three grades of cement concrete and six grades of fly ash mixes. The effect of curing was also studied by treating the samples in two curving conditions. A functional relationship of sorptivity against the strength, curing condition and fly ash content has been presented. The results were useful to analyze the factors influencing the durability of cement and fly ash concretes and to explain why some of the previously reported findings were contradictory. Curing conditions have been found to be the most important factor that affected the durability properties of fly ash concrete. When proper curing was provided, a mix with 40% fly ash was found to reduce the sorptivity by 37%. Under inadequate curing the sorptivity was found to increase by 60%. The influence of curing on cement concrete was found to be of much less importance.

  14. Multiple Horizontal Transfers of Bacteriophage WO and Host Wolbachia in Fig Wasps in a Closed Community.

    PubMed

    Wang, Ningxin; Jia, Sisi; Xu, Heng; Liu, Yong; Huang, Dawei

    2016-01-01

    Wolbachia-bacteriophage WO is a good model system for studying interactions between bacteria and viruses. Previous surveys of insect hosts have been conducted via sampling from open or semi-open communities; however, no studies have reported the infection patterns of phage WO of insects living in a closed community. Figs and fig wasps form a peculiar closed community in which the Ficus tree provides a compact syconium habitat for a variety of fig wasp. Therefore, in this study, we performed a thorough survey of Wolbachia and bacteriophage WO infection patterns in a total of 1406 individuals from 23 fig wasps species living on three different fig tree species. The infection rates of Wolbachia and phage WO were 82.6% (19/23) and 39.1% (9/23), respectively. Additionally, phage WO from fig wasps showed strong insect host specificity based on orf7 sequences from fig wasps and 21 other insect species. Probably due to the physical barrier of fig syconium, most phage WO from fig wasps form a specific clade. Phylogenetic analysis showed the absence of congruence between WO and host Wolbachia, WO and insect host, as well as Wolbachia and fig wasps, suggesting that both Wolbachia and phage WO exchanged frequently and independently within the closed syconium. Thus, the infection pattern of bacteriophage WO from fig wasps appeared quite different from that in other insects living outside, although the effect and the transfer routes of phage WO are unclear, which need to be investigated in the future.

  15. Multiple Horizontal Transfers of Bacteriophage WO and Host Wolbachia in Fig Wasps in a Closed Community

    PubMed Central

    Wang, Ningxin; Jia, Sisi; Xu, Heng; Liu, Yong; Huang, Dawei

    2016-01-01

    Wolbachia-bacteriophage WO is a good model system for studying interactions between bacteria and viruses. Previous surveys of insect hosts have been conducted via sampling from open or semi-open communities; however, no studies have reported the infection patterns of phage WO of insects living in a closed community. Figs and fig wasps form a peculiar closed community in which the Ficus tree provides a compact syconium habitat for a variety of fig wasp. Therefore, in this study, we performed a thorough survey of Wolbachia and bacteriophage WO infection patterns in a total of 1406 individuals from 23 fig wasps species living on three different fig tree species. The infection rates of Wolbachia and phage WO were 82.6% (19/23) and 39.1% (9/23), respectively. Additionally, phage WO from fig wasps showed strong insect host specificity based on orf7 sequences from fig wasps and 21 other insect species. Probably due to the physical barrier of fig syconium, most phage WO from fig wasps form a specific clade. Phylogenetic analysis showed the absence of congruence between WO and host Wolbachia, WO and insect host, as well as Wolbachia and fig wasps, suggesting that both Wolbachia and phage WO exchanged frequently and independently within the closed syconium. Thus, the infection pattern of bacteriophage WO from fig wasps appeared quite different from that in other insects living outside, although the effect and the transfer routes of phage WO are unclear, which need to be investigated in the future. PMID:26913026

  16. Tripartite associations among bacteriophage WO, Wolbachia, and host affected by temperature and age in Tetranychus urticae.

    PubMed

    Lu, Ming-Hong; Zhang, Kai-Jun; Hong, Xiao-Yue

    2012-11-01

    A phage density model of cytoplasmic incompatibility (CI), which means lytic phages reduce bacterial density associated with CI, significantly enhances our understanding of the tripartite associations among bacteriophage WO, Wolbachia and host. However, WO may alternate between lytic and lysogenic life cycles or change phage production under certain conditions including temperature, host age and host species background. Here, extreme temperatures can induce an alteration in the life cycle of WO and change the tripartite associations among WO, Wolbachia and CI. Based on the accumulation of the WO load, WO can transform into the lytic life cycle with increasing age. These findings confirmed that the environment plays an important role in the associations among WO, Wolbachia and host. PMID:22669278

  17. Tripartite associations among bacteriophage WO, Wolbachia, and host affected by temperature and age in Tetranychus urticae.

    PubMed

    Lu, Ming-Hong; Zhang, Kai-Jun; Hong, Xiao-Yue

    2012-11-01

    A phage density model of cytoplasmic incompatibility (CI), which means lytic phages reduce bacterial density associated with CI, significantly enhances our understanding of the tripartite associations among bacteriophage WO, Wolbachia and host. However, WO may alternate between lytic and lysogenic life cycles or change phage production under certain conditions including temperature, host age and host species background. Here, extreme temperatures can induce an alteration in the life cycle of WO and change the tripartite associations among WO, Wolbachia and CI. Based on the accumulation of the WO load, WO can transform into the lytic life cycle with increasing age. These findings confirmed that the environment plays an important role in the associations among WO, Wolbachia and host.

  18. Tungsten Trioxide (WO3) Nanoparticles as a New Anode Material for Sodium-Ion Batteries.

    PubMed

    Santhosha, A L; Das, Shyamal K; Bhattacharyya, Aninda J

    2016-04-01

    Tungsten trioxide (WO3) is investigated for the first time as an anode material for sodium-ion batteries. Pristine WO3 displays a discharge potential plateau at 1 V and exhibits a 1st discharge cycle sodium storage capacity of 640 mAh g-1. Electronic wiring of WO3 with graphene oxide (GO, 1% by weight) led to a significant increase in the storage capacity and cyclability of WO3. As a result, the discharge capacity of 1% GO-WO3 is enhanced to 927 mAh g-1 in the 1st discharge cycle. The electrochemical intercalation of Na in to WO3 and (1%) GO-WO3 as obtained from galvanostatic charge/discharge cycling is also supported by cyclic voltammetry. PMID:27451776

  19. Micro/nano-structured CaWO4/Bi2WO6 composite: synthesis, characterization and photocatalytic properties for degradation of organic contaminants.

    PubMed

    Guo, Yadan; Zhang, Gaoke; Gan, Huihui; Zhang, Yalei

    2012-11-01

    The micro/nano-structured CaWO(4)/Bi(2)WO(6) composite was successfully synthesized by a one-step hydrothermal route without using any templates or surfactants. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetry-differential scanning calorimetry (TG-DSC) and Brunauer-Emmet-Teller (BET) theory. The results indicated that the composite has a two-phase composition: CaWO(4) and Bi(2)WO(6). The photocatalytic activities of the CaWO(4)/Bi(2)WO(6) composite were evaluated for the degradation of Rhodamine B (RhB) dye and 4-nitrophenol (4-NP) in aqueous solution under visible-light irradiation (>420 nm), which were 4.5 times and 2.5 times higher than that of the pure Bi(2)WO(6), respectively. On the basis of the calculated energy band positions, the mechanism of enhanced photocatalytic activity for the micro/nano-structured CaWO(4)/Bi(2)WO(6) composite can be attributed to the effective separation of electron-hole pairs.

  20. Comparison between MSW ash and RDF ash from incineration process

    SciTech Connect

    Chang, Ni-Bin; Wang, H.P.; Lin, K.S.

    1997-12-01

    Resource recovery plants with waste sorting process prior to incineration have not been successfully developed in many developing countries. The reuse potential of incineration ash in light of toxicity and compressive strength remains unclear due to the inhomogeneous composition and higher moisture content of solid waste in Taiwan. A comparative evaluation of the ash generated from two types of incineration processes were performed in this paper. The results indicate that fly ash collected from both types of incineration processes are classified as hazardous materials because of higher metal contents. The reuse of bottom ash collected from refuse-derived fuel incineration process as fine aggregate in concrete mixing would present 23% lower compressive strength as compared with the normal condition.

  1. Landfilling ash/sludge mixtures

    SciTech Connect

    Benoit, J.; Eighmy, T.T.; Crannell, B.S.

    1999-10-01

    The geotechnical properties of a mixture of municipal solid waste incinerator bottom ash and municipal wastewater treatment plant sludge was investigated for a proposed ash/sludge secure landfill. The components as well as mixtures ranging from 10:1 to 5:1 (ash:sludge, by volume) were evaluated, where appropriate, for a number of geotechnical index and mechanical properties including particle size, water content, specific gravity, density-moisture relationships, shear strength, and compressibility. The results from a compactibility study and stability analysis of the proposed landfill were used to help approve a landfill codisposal concept; a full-scale facility was constructed and is currently operating successfully.

  2. Modifiers of the ash properties

    NASA Astrophysics Data System (ADS)

    Peer, Vaclav; Najser, Jan; Pilat, Peter

    2014-08-01

    The aim of this article is to perform an experimental verification of the impact of added substances to limit or prevent sintering of solid fuel ash, which is formed during the thermochemical conversion of fuels. As a modifiers of ash sintering and melting temperature were used halloysite (aluminosilicate) and limestone, which has similar mechanism of action. Both of them act on the principle of a strong chemical adsorption of potassium ions, which largely cause a reduction of ash fusibility. Influence of the modifiers was observed after tests provided at 900, 1000, 1100 and 1200°C. Modifiers were dosed in amounts of 2, 5 and 10 wt.%.

  3. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  4. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  5. The Te-ni-wo-ha: An Etymological Study.

    ERIC Educational Resources Information Center

    Jolly, Yukiko S.

    1972-01-01

    The designation of the Japanese word class "joshi" (in English known as particles, post-positional case markers, or relationals) by the term te-ni-wo-ha can be traced to the early superimposition of the Chinese writing system on Japanese speech. Because of the structural differences between the two languages and the existence of elements in…

  6. Ash Stabilization Campaign Blend Plan

    SciTech Connect

    Winstead, M.L.

    1995-06-21

    This Stabilization Blend Plan documents the material to be processed and the processing order for the FY95 Ash Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing ash. The source of the ash is from Rocky Flats and the 232-Z incinerator at the Plutonium Finishing Plant (PFP). The ash is currently being stored in Room 235B and Vault 174 in building 234-5Z. The sludge is to be thermally stabilized in a glovebox in room 230A of the 234-5Z building and material handling for the process will be done in room 230B of the same building. The campaign is scheduled for approximately 12--16 weeks. A total of roughly 4 kg of Pu will be processed.

  7. Tungsten-based nanomaterials (WO3 & Bi2WO6): Modifications related to charge carrier transfer mechanisms and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Girish Kumar, S.; Koteswara Rao, K. S. R.

    2015-11-01

    Heterogeneous photocatalysis is an ideal green energy technology for the purification of wastewater. Although titania dominates as the reference photocatalyst, its wide band gap is a bottleneck for extended utility. Thus, search for non-TiO2 based nanomaterials has become an active area of research in recent years. In this regard, visible light absorbing polycrystalline WO3 (2.4-2.8 eV) and Bi2WO6 (2.8 eV) with versatile structure-electronic properties has gained considerable interest to promote the photocatalytic reactions. These materials are also explored in selective functional group transformation in organic reactions, because of low reduction and oxidation potential of WO3 CB and Bi2WO6 VB, respectively. In this focused review, various strategies such as foreign ion doping, noble metal deposition and heterostructuring with other semiconductors designed for efficient photocatalysis is discussed. These modifications not only extend the optical response to longer wavelengths, but also prolong the life-time of the charge carriers and strengthen the photocatalyst stability. The changes in the surface-bulk properties and the charge carrier transfer dynamics associated with each modification correlating to the high activity are emphasized. The presence of oxidizing agents, surface modification with Cu2+ ions and synthesis of exposed facets to promote the degradation rate is highlighted. In depth study on these nanomaterials is likely to sustain interest in wastewater remediation and envisaged to signify in various green energy applications.

  8. Long duration ash probe

    DOEpatents

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  9. Long duration ash probe

    DOEpatents

    Hurley, John P.; McCollor, Don P.; Selle, Stanley J.

    1994-01-01

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

  10. WO{sub 3} nanoplates, hierarchical flower-like assemblies and their photocatalytic properties

    SciTech Connect

    Huang, Jianhua Xiao, Liang; Yang, Xiaolong

    2013-08-01

    Graphical abstract: WO{sub 3} nanoplates, hierarchical flower-like assemblies and their visible light-driven photocatalytic properties for degradation of rhodamine B. - Highlights: • Preparation of monoclinic WO{sub 3} by a hydrothermal reaction of PbWO{sub 4} in the presence of HNO{sub 3}. • Single-crystalline WO{sub 3} nanoplates were formed when 4 M HNO{sub 3} solution was used. • WO{sub 3} flowers were assembled by nanoplates when 15 M HNO{sub 3} solution was used. • The products showed excellent visible light-driven photodegradation of rhodamine B. - Abstract: Monoclinic WO{sub 3} was prepared by a hydrothermal reaction of PbWO{sub 4} in the presence of HNO{sub 3}. WO{sub 3} rectangular nanoplates with a side length of 50–150 nm and a thickness of about 25 nm were obtained at 4 M HNO{sub 3} solution. And the single crystal nature was confirmed by the selected area electron diffraction. Whereas WO{sub 3} hierarchical flower-like assemblies with 3–5 μm in diameter were self-organized by nanoplates in the presence of 15 M HNO{sub 3} solution. Compared with commercial WO{sub 3} particles, our products showed an enhancement of photocatalytic properties for the degradation of rhodamine B under visible light irradiation.

  11. Synthesis of surface sulfated BiWO with enhanced photocatalytic performance.

    PubMed

    Ju, Yongming; Hong, Jianming; Zhang, Xiuyu; Xu, Zhencheng; Wei, Dongyang; Sang, Yanhong; Fang, Xiaohang; Fang, Jiande; Wang, Zhenxing

    2012-01-01

    Sulfated BiWO (SBiWO) was synthesized by an impregnation method to enhance the visible-light-driven photoactivities of BiWO (BiWO). The characterization results verified that sulfate anion mainly anchored on the catalyst surface greatly extended the visible-light-responsive range without destroying the crystal lattice. Moreover, the SBiWO-based photoactivities were evaluated with the removal of Malachite Green (MG) under UV-Vis irradiation emitted from two microwave-powered electrodeless discharge lamps (MPEDL2) and under visible light (lamda > 420 nm). The results demonstrated that the kinetic constant was increased 2.25 times, varying from 0.1478 (BiWO) to 0.3328 min(-1) (SBiWO-1). Similar results were also obtained for the visible light-driven reaction. Furthermore, radical scavengers such as t-butanol restricted the visible-light induced degradation of MG over BiWO and SBiWO-1. This indicated that the sulfating process increased the generation of reactive oxygen species, which was further verified by molecular probe with salicylic acid. Thus, more blue-shifting at lam = 618 nm was observed over SBiWO. On the basis of the above results, the photocatalytic mechanism over the sulfated catalyst was also discussed. PMID:23534216

  12. Preparation of Pt supported on WO 3-C with enhanced catalytic activity by microwave-pyrolysis method

    NASA Astrophysics Data System (ADS)

    Ye, Jilei; Liu, Jianguo; Zou, Zhigang; Gu, Jun; Yu, Tao

    The WO 3-C hybrid materials are prepared by intermittently microwave-pyrolysis using ammonium tungstate as the precursor, and then Pt nano-particles are deposited by microwave-assited polyol process on WO 3-C. The TEM images show the dispersion of ∼10 nm WO 3 particles size supported on carbon and ∼3 nm Pt metal crystallites supported on WO 3-C. XRD results illustrate that WO 3 presented as monoclinic phase and the content of WO 3 in WO 3/C and Pt/WO 3-C catalysts is further characterized by EDAX. Furthermore, XPS characterizations indicate that the interaction between Pt and WO 3 is dramatically enhanced after heat treatment at 200 °C. The activities of Pt/WO 3-C for the electrochemical oxidation of methanol are compared with Pt/C in acid solution by cyclic voltammetry, CO-stripping and chronoaperometry. Pt/WO 3-C catalyst calcined at 200 °C exhibits the highest activity per electrochemical active surface area for methanol oxidation and is 60 mV more negative for CO electro-oxidation than that of Pt/C and Pt/WO 3-C without heat treatment. The great enhancement of electrochemical performance may be due to the improvement of the synergistic effect between Pt and WO 3 in Pt/WO 3-C catalyst after heat treatment.

  13. Spectroscopic properties of KGd(WO 4) 2 and KGd(WO 4) 2:Ho 3+ single crystals studied by Brillouin and Raman scattering methods

    NASA Astrophysics Data System (ADS)

    Kasprowicz, D.; Runka, T.; Szybowicz, M.; Drozdowski, M.; Majchrowski, A.; Michalski, E.; Żmija, J.

    2006-07-01

    KGd(WO 4) 2 single crystals, pure and doped with holmium ions Ho 3+ at 0.5 and 1% concentrations were investigated by Brillouin and Raman scattering methods. Polarized Raman spectra of KGd(WO 4) 2 and KGd(WO 4) 2:Ho 3+ single crystals have been measured at room temperature. The assignment of the Raman-active A g and B g modes have been performed. Brillouin spectra were collected for the acoustic phonons propagating in [100], [001], [101], [-101], [110], [-110], [011] and [0-11] directions in KGd(WO 4) 2 and KGd(WO 4) 2:Ho 3+ single crystals at room temperature. Obtained results have been discussed in terms of the influence of the doping concentration on the lattice dynamics and crystal structure.

  14. Controlling formaldehyde emissions with boiler ash.

    PubMed

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to <1 ppmv. Methanol is removed to a much lower extent. The efficiency of formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  15. Tailoring surface states in WO3 photoanodes for efficient photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Singh, Trilok; Müller, Ralf; Singh, Jai; Mathur, Sanjay

    2015-08-01

    The dynamics of photo-induced charge carriers are significantly influenced by the surface states of WO3 thin films, which were synthesized by reactive sputtering of tungsten substrates in oxygen plasma. Tailoring the surface properties by (i) hydrogen plasma treatment and (ii) anchoring plasmonic nanoparticles (Au and Ag) altered the light harvesting and charge separation/transport processes of WO3 photoanodes. Upon hydrogen plasma-treatment and coating of noble metal clusters, WO3 films showed enhanced visible light absorption and consequently higher photocurrent density (1.4 mA cm-2) compared to pristine WO3 (0.2 mA cm-2). Enhancement in hydrogen treated WO3 sample was found to be due to the reduction of W(VI) into W(V) centers, which produced substoichiometric WO3-x phases, whereas noble metal particles contributed towards both resonant and non-resonant scattering of incident light thereby increasing photon-to-current conversion efficiency.

  16. In situ etching WO{sub 3} nanoplates: Hydrothermal synthesis, photoluminescence and gas sensor properties

    SciTech Connect

    Su, Xintai; Li, Yani; Jian, Jikang; Wang, Jide

    2010-12-15

    A novel hydrothermal process using p-nitrobenzoic acid as structure-directing agent has been employed to synthesize plate-shaped WO{sub 3} nanostructures containing holes. The p-nitrobenzoic acid plays a critical role in the synthesis of such novel WO{sub 3} nanoplates. The morphology, structure and optical property of the WO{sub 3} nanoplates have been characterized by transmission electron microcopy (TEM), scanning electron microcopy (SEM), X-ray diffraction (XRD) and photoluminescence (PL). The lateral size of the nanoplates is 500-1000 nm, and the thickness is about 80 nm. The formation mechanism of WO{sub 3} nanoplates is discussed briefly. The gas sensitivity of WO{sub 3} nanoplates was studied to ethanol and acetone at different operation temperatures and concentrations. Furthermore, the WO{sub 3} nanoplate-based gas sensor exhibits high sensitivity for ethanol and acetone as well as quick response and recovery time at low temperature.

  17. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film.

    PubMed

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I; Qamaruddin, Muhammad; Yamani, Zain H

    2015-01-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested. Graphical abstractWO3-surface modified TiO2 film showing better photocatalytic and photoelectrocatalytic activity. PMID:25852351

  18. Room temperature NO2-sensing properties of WO3 nanoparticles/porous silicon

    NASA Astrophysics Data System (ADS)

    Yan, Wenjun; Hu, Ming; Zeng, Peng; Ma, Shuangyun; Li, Mingda

    2014-02-01

    WO3 nanoparticles were synthesized by sol-gel method with tungsten hexachloride (WCl6) as precursor and deposited onto porous silicon and alumina substrates by dip-coating. The morphology and crystal structure of samples were investigated by means of field emission scanning electron microscope and X-ray diffractometer. It is the experimental results demonstrated by gas sensing tests that WO3 nanoparticles combining with the substrate of porous silicon presented an improved NO2-sensing property at room temperature. Compared to WO3 deposited on alumina working above 100 °C, the WO3 nanoparticles/porous silicon exhibited higher properties upon exposure to sub-ppm concentrations of NO2 gas at room temperature. Additionally, the NO2-sensing performance of WO3 nanoparticles/porous silicon was enhanced markedly, in comparison to pure porous silicon. The mechanism of WO3/porous silicon composite structure on the NO2 sensing was explained in detail.

  19. Enhancement of the photocatalytic activity and electrochemical property of graphene-SrWO4 nanocomposite

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyan; Nie, Yu; Yang, Hongxun; Sun, Shengnan; Chen, Yingying; Yang, Tongyi; Lin, Shengling

    2016-05-01

    SrWO4 is a promising candidate as not only photocatalyst for the removal of organic pollutants from water, but also electrode material for energy storage devices. However, the drawbacks of its poor adsorptive performance, low electrical conductivity, and high recombination rate of photogenerated electron-hole pair impede its practical applications. In this work, we have developed a new graphene/SrWO4 nanocomposite synthesized via a facile chemical precipitation method. Characterizations show that SrWO4 nanoparticles with 80 nm or so deposited on the surface of graphene nanosheets. Graphene nanosheets in the graphene-SrWO4 hybrid could increase adsorptive property, improve the electrical conductivity of hybrid, and reduce the recombination of electron-hole pairs. As a kind of photocatalyst or electrode material for supercapacitor, the binary graphene-SrWO4 hybrid presents enhanced photocatalytic activity and electrochemical property compared to pure SrWO4.

  20. Poly(methacrylic acid)-mediated morphosynthesis of PbWO4 micro-crystals

    NASA Astrophysics Data System (ADS)

    Yu, J. G.; Zhao, X. F.; Liu, S. W.; Li, M.; Mann, S.; Ng, D. H. L.

    2007-04-01

    PbWO4 crystals with various morphologies were fabricated via a facile poly(methacrylic acid)-mediated hydrothermal route. Novel microsized PbWO4 single crystals with a needle-like shape as well as other morphologies, such as a fishbone, dendrite, sphere, spindle, ellipsoid, rod, and dumbbell with two dandelion-like heads, could be produced. The presence of PMAA, [Pb2+]/[WO4 2-] molar ratio (R), and aging temperature played key roles in the formation of the PbWO4 needle-like structures. Between temperatures of 60 to 150 °C, the length and photoluminescence intensities of the PbWO4 micro needles significantly increased with aging temperature, while the diameter did not change remarkably. Time-dependent experiments revealed that the formation of PbWO4 microneedles involved an unusual growth process, involving nucleation, oriented assembly and controlled mesoscale restructuring of nanoparticle building blocks.

  1. Photocatalytic Removal of Microcystin-LR by Advanced WO3-Based Nanoparticles under Simulated Solar Light

    PubMed Central

    Zhao, Chao; Li, Dawei; Feng, Chuanping; Zhang, Zhenya; Sugiura, Norio; Yang, Yingnan

    2015-01-01

    A series of advanced WO3-based photocatalysts including CuO/WO3, Pd/WO3, and Pt/WO3 were synthesized for the photocatalytic removal of microcystin-LR (MC-LR) under simulated solar light. In the present study, Pt/WO3 exhibited the best performance for the photocatalytic degradation of MC-LR. The MC-LR degradation can be described by pseudo-first-order kinetic model. Chloride ion (Cl−) with proper concentration could enhance the MC-LR degradation. The presence of metal cations (Cu2+ and Fe3+) improved the photocatalytic degradation of MC-LR. This study suggests that Pt/WO3 photocatalytic oxidation under solar light is a promising option for the purification of water containing MC-LR. PMID:25884038

  2. Preparation and characterization of WO3 nanoparticles, WO3/TiO2 core/shell nanocomposites and PEDOT:PSS/WO3 composite thin films for photocatalytic and electrochromic applications

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Santos, Gustavo dos Lopes; Szżcs, Júlia; Szilágyi, Imre M.

    2016-03-01

    In this study, monoclinic WO3 nanoparticles were obtained by thermal decomposition of (NH4)xWO3 in air at 600 °C. On them by atomic layer deposition (ALD) TiO2 films were deposited, and thus core/shell WO3/TiO2 nanocomposites were prepared. We prepared composites of WO3 nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO3 and core/shell WO3/TiO2 nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO3 thin films, and the coloring and bleaching states were studied.

  3. Mercury oxidation over the V{sub 2}O{sub 5}(WO{sub 3})/TiO{sub 2} commercial SCR catalyst

    SciTech Connect

    Kamata, H.; Ueno, S.; Naito, T.; Yukimura, A

    2008-11-15

    Mercury oxidation by hydrochloric acid over the V{sub 2}O{sub 5}(WO{sub 3})/TiO{sub 2} commercial SCR catalyst was investigated. Both fresh and aged catalysts with honeycomb structure, which were exposed to a coal combustion flue gas in a coal-fired boiler for over 71 000 h. were examined. The aged catalysts were characterized by X-ray and SEM-EDX analysis to examine the presence of ash deposition on the surface. The mercury oxidation rate was enhanced by increasing HCl concentrations and inhibited strongly by the presence of NH{sub 3}. This behavior could be explained by a kinetic model assuming that HCl competes for the catalyst active sites against NH{sub 3}. As the catalyst operation time increased, the mercury oxidation rate was observed to decrease considerably in the presence of NH{sub 3} while NO reduction rate was apparently nearly unchanged. By examining aged catalysts, deposits stemming from fly ash and SO{sub 2}/SO{sub 3} were observed to accumulate continuously on the catalyst surface. The ash deposited on the surface may partially block the active catalyst sites and decrease their number. The decrease of the number of active sites on the catalyst surface caused NH{sub 3} to remain unreacted in the honeycomb catalyst. The decrease of the Hg{sup 0} oxidation rate was caused by the inhibition effect of NH{sub 3} remaining in the catalyst.

  4. Ash in fire affected ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  5. Ash in fire affected ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  6. Snake River Plain FORGE Well Data for WO-2

    DOE Data Explorer

    Robert Podgorney

    1991-07-29

    Well data for the WO-2 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, and rock strength parameters for the WO-2 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  7. Synthesis and ionic liquid gating of hexagonal WO{sub 3} thin films

    SciTech Connect

    Wu, Phillip M. E-mail: beasley@stanford.edu; Munakata, Ko; Hammond, R. H.; Geballe, T. H.; Beasley, M. R. E-mail: beasley@stanford.edu; Ishii, Satoshi; Tanabe, Kenji; Tokiwa, Kazuyasu

    2015-01-26

    Via thin film deposition techniques, the meta-stable in bulk crystal hexagonal phase of tungsten oxide (hex-WO{sub 3}) is stabilized as a thin film. The hex-WO{sub 3} structure is potentially promising for numerous applications and is related to the structure for superconducting compounds found in WO{sub 3}. Utilizing ionic liquid gating, carriers were electrostatically induced in the films and an insulator-to-metal transition is observed. These results show that ionic liquid gating is a viable technique to alter the electrical transport properties of WO{sub 3}.

  8. Spontaneous and stimulated Raman scattering in ZnWO{sub 4} crystals

    SciTech Connect

    Basiev, Tasoltan T; Karasik, Aleksandr Ya; Sobol, A A; Chunaev, D S; Shukshin, V E

    2011-04-30

    Spontaneous and stimulated Raman scattering (SRS) are studied in ZnWO{sub 4} crystals with a wolframite structure. The polarised Raman scattering spectra corresponding to all the six independent Raman tensor components are measured. The frequencies of the complete set of vibrational modes are identified. The threshold pump energies for SRS in ZnWO{sub 4} and KGd(WO{sub 4}){sub 2} crystals are measured upon excitation by picosecond 1047-nm pulses of a Nd:YLF laser. The SRS gains for ZnWO{sub 4} crystals are determined based on the measured thresholds and spectroscopic parameters of the crystals. (nonlinear optics phenomena)

  9. WO3 nanotubes prepared by a coaxial electrospinning method.

    PubMed

    Cao, Xingxing; Zhang, Xuebin; Hu, Jixiang; Wang, Yang; Liu, Jia; Wu, Haijun; Feng, Yi

    2014-08-01

    In this paper, WO3 nanotubes were prepared by a coaxial electrospinning method. Firstly, core-shell structured composite fibers were fabricated via coaxial electrospinning under the optimal electro-spinning parameters to get the best composite fibers with uniform diameters and smooth surface, which pure PVA being the core solution and PVA/AMT/alcohol being the shell one, respectively. Secondly, the composite fibers were calcined in air at 600 °C for 4 h to wipe out the pure PVA, leading to the formation of nanotubes. After sintering, the obtained WO3 nanotubes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). The XRD show that the resultant materials consist of pure tungsten trioxide (WO3) with good crystallinity, while FESEM and HRTEM images indicate that the materials are nanotubes with rough surface and consist of nanoparticles. The inner diameter and the wall thickness of nanotubes were calculated to be around 100 and 50 nm, respectively. PMID:25936119

  10. Eukaryotic association module in phage WO genomes from Wolbachia

    PubMed Central

    Bordenstein, Sarah R.; Bordenstein, Seth R.

    2016-01-01

    Viruses are trifurcated into eukaryotic, archaeal and bacterial categories. This domain-specific ecology underscores why eukaryotic viruses typically co-opt eukaryotic genes and bacteriophages commonly harbour bacterial genes. However, the presence of bacteriophages in obligate intracellular bacteria of eukaryotes may promote DNA transfers between eukaryotes and bacteriophages. Here we report a metagenomic analysis of purified bacteriophage WO particles of Wolbachia and uncover a eukaryotic association module in the complete WO genome. It harbours predicted domains, such as the black widow latrotoxin C-terminal domain, that are uninterrupted in bacteriophage genomes, enriched with eukaryotic protease cleavage sites and combined with additional domains to forge one of the largest bacteriophage genes to date (14,256 bp). To the best of our knowledge, these eukaryotic-like domains have never before been reported in packaged bacteriophages and their phylogeny, distribution and sequence diversity imply lateral transfers between bacteriophage/prophage and animal genomes. Finally, the WO genome sequences and identification of attachment sites will potentially advance genetic manipulation of Wolbachia. PMID:27727237

  11. Size analysis of nanoparticles extracted from W/O emulsions.

    PubMed

    Nagelreiter, C; Kotisch, H; Heuser, T; Valenta, C

    2015-07-01

    Nanosized particles are frequently used in many different applications, especially TiO2 nanoparticles as physical filters in sunscreens to protect the skin from UV radiation. However, concerns have arisen about possible health issues caused by nanoparticles and therefore, the assessment of the occurrence of nanoparticles is important in pharmaceutical and cosmetic formulations. In a previous work of our group, a method was presented to extract nanoparticles from O/W emulsions. But to respond to the needs of dry and sensitive skin, sunscreens of the water-in-oil emulsion type are available. In these, assessment of present nanoparticles is also an important issue, so the present study offers a method for extracting nanoparticles from W/O emulsions. Both methods emanate from the same starting point, which minimizes both effort and cost before the beginning of the assessment. By addition of NaOH pellets and centrifugation, particles were extracted from W/O emulsions and measured for their size and surface area by laser diffraction. With the simple equation Q=A/S a distinction between nanoparticles and microparticles was achieved in W/O emulsions, even in commercially available samples. The present method is quick and easy to implement, which makes it cost-effective. PMID:25907509

  12. WO3 nanotubes prepared by a coaxial electrospinning method.

    PubMed

    Cao, Xingxing; Zhang, Xuebin; Hu, Jixiang; Wang, Yang; Liu, Jia; Wu, Haijun; Feng, Yi

    2014-08-01

    In this paper, WO3 nanotubes were prepared by a coaxial electrospinning method. Firstly, core-shell structured composite fibers were fabricated via coaxial electrospinning under the optimal electro-spinning parameters to get the best composite fibers with uniform diameters and smooth surface, which pure PVA being the core solution and PVA/AMT/alcohol being the shell one, respectively. Secondly, the composite fibers were calcined in air at 600 °C for 4 h to wipe out the pure PVA, leading to the formation of nanotubes. After sintering, the obtained WO3 nanotubes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). The XRD show that the resultant materials consist of pure tungsten trioxide (WO3) with good crystallinity, while FESEM and HRTEM images indicate that the materials are nanotubes with rough surface and consist of nanoparticles. The inner diameter and the wall thickness of nanotubes were calculated to be around 100 and 50 nm, respectively.

  13. Size analysis of nanoparticles extracted from W/O emulsions.

    PubMed

    Nagelreiter, C; Kotisch, H; Heuser, T; Valenta, C

    2015-07-01

    Nanosized particles are frequently used in many different applications, especially TiO2 nanoparticles as physical filters in sunscreens to protect the skin from UV radiation. However, concerns have arisen about possible health issues caused by nanoparticles and therefore, the assessment of the occurrence of nanoparticles is important in pharmaceutical and cosmetic formulations. In a previous work of our group, a method was presented to extract nanoparticles from O/W emulsions. But to respond to the needs of dry and sensitive skin, sunscreens of the water-in-oil emulsion type are available. In these, assessment of present nanoparticles is also an important issue, so the present study offers a method for extracting nanoparticles from W/O emulsions. Both methods emanate from the same starting point, which minimizes both effort and cost before the beginning of the assessment. By addition of NaOH pellets and centrifugation, particles were extracted from W/O emulsions and measured for their size and surface area by laser diffraction. With the simple equation Q=A/S a distinction between nanoparticles and microparticles was achieved in W/O emulsions, even in commercially available samples. The present method is quick and easy to implement, which makes it cost-effective.

  14. Mineral resource of the month: soda ash

    USGS Publications Warehouse

    Kostic, Dennis S.

    2006-01-01

    Soda ash, also known as sodium carbonate, is an alkali chemical that can be refined from the mineral trona and from sodium carbonate-bearing brines. Several chemical processes exist for manufacturing synthetic soda ash.

  15. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... be disposed of as prescribed in 33 CFR parts 151.55 through 151.77. ... 46 Shipping 5 2011-10-01 2011-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment...

  16. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... be disposed of as prescribed in 33 CFR parts 151.55 through 151.77. ... 46 Shipping 5 2012-10-01 2012-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment...

  17. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... be disposed of as prescribed in 33 CFR parts 151.55 through 151.77. ... 46 Shipping 5 2014-10-01 2014-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment...

  18. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... be disposed of as prescribed in 33 CFR parts 151.55 through 151.77. ... 46 Shipping 5 2013-10-01 2013-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment...

  19. Improvement of radiopurity level of enriched 116CdWO4 and ZnWO4 crystal scintillators by recrystallization

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.; Belli, P.; Bernabei, R.; Borovlev, Yu. A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Kobychev, V. V.; Konovalov, S. I.; Laubenstein, M.; Mokina, V. M.; Polischuk, O. G.; Safonova, O. E.; Shlegel, V. N.; Tretyak, V. I.; Tupitsyna, I. A.; Umatov, V. I.; Zhdankov, V. N.

    2016-10-01

    As low as possible radioactive contamination of a detector plays a crucial role to improve sensitivity of a double beta decay experiment. The radioactive contamination of a sample of 116CdWO4 crystal scintillator by thorium was reduced by a factor ≈10, down to the level 0.01 mBq/kg (228Th), by exploiting the recrystallization procedure. The total alpha activity of uranium and thorium daughters was reduced by a factor ≈3, down to 1.6 mBq/kg. No change in the specific activity (the total α activity and 228Th) was observed in a sample of ZnWO4 crystal produced by recrystallization after removing ≈0.4 mm surface layer of the crystal.

  20. Evaluation of WO2013125543, WO2013146963 and EP2634185: the first Tyk2 inhibitors from Takeda and Sareum.

    PubMed

    Norman, Peter

    2014-03-01

    Three patent applications, from two different companies, claim structurally novel Tyk2 inhibitors and their uses for the treatment of autoimmune diseases. In EP-2634185 Sareum claims 5-anilino-2-(2-halophenyl)-oxazole-4-carboxamide derivatives which are shown to be nanomolar potency Tyk2 inhibitors with 10 - 100-fold selectivity over JAK1, JAK2 and JAK3. Takeda's WO-2013125543 and WO-2013146963 claim two distinct structural classes of Tyk2 inhibitors. The first application claims inhibitors based on an unusual 1,5-dihydro-4H-pyrazolo[4,3-c]pyridine-4-one scaffold and the second claims 1-(2-arylaminopyrimidin-4-yl)-pyrrolidin-2-one derivatives. One example of the latter was shown to be orally active in an IL-23-induced inflammation model. PMID:24386992

  1. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  2. Rising from the ashes: Coal ash in recycling and construction

    SciTech Connect

    Naquin, D.

    1998-02-01

    Beneficial Ash Management (BAM, Clearfield, Pa.) has won an environmental award for its use of ash and other waste to fight acid mine drainage. The company`s workers take various waste materials, mainly fly ash from coal-burning plants, to make a cement-like material or grouting, says Ernest Roselli, BAM president. The grouting covers the soil, which helps prevent water from contacting materials. This, in turn, helps control chemical reactions, reducing or eliminating formation of acid mine drainage. The company is restoring the 1,400-acre Bark Camp coal mine site near Penfield in Clearfield County, Pa. Under a no-cost contract with the state of Pennsylvania, BAM is using boiler slag, causticizing byproducts (lime) and nonreclaimable clarifier sludge from International Paper Co. (Erie, Pa.). The mine reclamation techniques developed and monitored at the site include using man-made wetlands to treat acid mine drainage and testing anhydrous ammonia as a similar treatment agent. BAM researches and tests fly ash mixed with lime-based activators as fill material for land reclamation, and develops and uses artificial soil material from paper mill and tannery biosolids.

  3. Transcriptomic Signatures of Ash (Fraxinus spp.) Phloem

    PubMed Central

    Mamidala, Praveen; Bonello, Pierluigi; Herms, Daniel A.; Mittapalli, Omprakash

    2011-01-01

    Background Ash (Fraxinus spp.) is a dominant tree species throughout urban and forested landscapes of North America (NA). The rapid invasion of NA by emerald ash borer (Agrilus planipennis), a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra), green (F. pennsylvannica) and white (F. americana) are highly susceptible, the Asian species Manchurian ash (F. mandshurica) is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem. Methodology and Principal Findings Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3) revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species. Conclusions and Significance The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future

  4. Temperature and acidity effects on WO{sub 3} nanostructures and gas-sensing properties of WO{sub 3} nanoplates

    SciTech Connect

    Zhang, Huili; Liu, Zhifang; Yang, Jiaqin; Guo, Wei; Zhu, Lianjie; Zheng, Wenjun

    2014-09-15

    Graphical abstract: Generally, large acid quantity and high temperature are beneficial to the formation of anhydrous WO3, but the acidity effect on the crystal phase is weaker than that of temperature. Large acid quantity is found helpful to the oriented growth of tungsten oxides, forming a nanoplate-like product. - Highlights: • Large acid quantity is propitious to the oriented growth of a WO{sub 3} nanoplate. • Effect of acid quantity on crystal phases of products is weaker than that of temperature. • One step hydrothermal synthesis of WO{sub 3} is facile and can be easily scaled up. • A WO{sub 3} nanoplate shows a fast response and distinct sensing selectivity to acetone gas. - Abstract: WO{sub 3} nanostructures were successfully synthesized by a facile hydrothermal method using Na{sub 2}WO{sub 4}·2H{sub 2}O and HNO{sub 3} as raw materials. They are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The specific surface area was obtained from N{sub 2} adsorption–desorption isotherm. The effects of the amount of HNO{sub 3}, hydrothermal temperature and reaction time on the crystal phases and morphologies of the WO{sub 3} nanostructures were investigated in detail, and the reaction mechanism was discussed. Large amount of acid is found for the first time to be helpful to the oriented growth of tungsten oxides, forming nanoplate-like products, while hydrothermal temperature has more influence on the crystal phase of the product. Gas-sensing properties of the series of as-prepared WO{sub 3} nanoplates were tested by means of acetone, ethanol, formaldehyde and ammonia. One of the WO{sub 3} nanoplates with high specific surface area and high crystallinity displays high sensitivity, fast response and distinct sensing selectivity to acetone gas.

  5. Utilization of fly ash in metallic composites

    SciTech Connect

    Rohatgi, P.K.; Guo, R.Q.; Golden, D.M.

    1996-10-01

    Fly ash particles have been successfully dispersed into aluminum alloy to make aluminum alloy-fly ash composites (Ashalloy) at University of Wisconsin-Milwaukee. Additions of solid and hollow particles of fly ash reduce the cost and density of aluminum castings while increasing their performance. Ashalloy represents a candidate material for high value added use of fly ash, while reducing the disposal volumes of fly ash for the electric utility industry and making the US foundries more competitive. The fly ash particle distribution in the matrix aluminum alloy and the microstructure of aluminum-fly ash composite was determined. Selected properties of cast aluminum-fly ash composites are also presented in this paper. Mechanical properties of aluminum-fly ash composites show that the composite possesses higher hardness and higher elastic modulus compared to the matrix alloy. The flow behavior of molten aluminum-fly ash slurries along with the components cast in aluminum-fly ash composites will be presented. Fly ash containing metal components have potential applications in covers, shrouds, casings, manifolds, valve covers, garden furniture, engine blocks in automotive, small engine and electromechanical industry sector.

  6. Annealing dynamics of WO{sub 3} by in situ XRD

    SciTech Connect

    Righettoni, Marco; Pratsinis, Sotiris E.

    2014-11-15

    Highlights: • Flame-made WO{sub 3} nanoparticles with closely controlled crystal and grain size. • Dynamic phase transition of annealing of pure and Si-doped WO{sub 3} by in situ XRD. • Irreversible evolution of WO{sub 3} crystallinity by heating/cooling during its annealing. • Si-doping alters the WO{sub 3} crystallinity dynamics and stabilizes nanosized WO{sub 3}. • Flame-made nano-WO{sub 3} can sense NO at the ppb level. - Abstract: Tungsten trioxide is a semiconductor with distinct applications in gas sensors, catalysis, batteries and pigments. As such the transition between its different crystal structures during its annealing are of interest, especially for sensor applications. Here, WO{sub 3} nanoparticles with closely controlled crystal and grain size (9–15 nm) and phase composition are made by flame spray pyrolysis and the formation of different WO{sub 3} phases during annealing is investigated. Most notably, the dynamic phase transition and crystal size evolution of WO{sub 3} during heating and cooling is monitored by in situ X-ray diffraction revealing how metastable WO{sub 3} phases can be captured stably. The effect of Si-doping is studied since it is used in practise to control crystal growth and phase transition during metal oxide synthesis and processing. Finally the influence of annealing on the WO{sub 3} sensing performance of NO, a lung inflammation tracer in the human breath, is explored at the ppb-level.

  7. Viscous sintering of volcanic ash

    NASA Astrophysics Data System (ADS)

    Wadsworth, F. B.; Scheu, B.; Vasseur, J.; Tuffen, H.; von Aulock, F. W.; Lavallée, Y.; Hess, K. U.; Dingwell, D. B.

    2014-12-01

    Volcanic ash is often deposited in a hot state. Volcanic ash containing glass, deposited above the glass transition interval, has the potential to sinter viscously both to itself (particle-particle) and to exposed surfaces. Here, we constrain the kinetics of this process experimentally under isothermal and non-isothermal conditions using standard glasses and volcanic ash. In the absence of external load, this process is dominantly driven by surface relaxation. In such cases the sintering process is rate-limited by the melt viscosity, the size of the particles and the melt-vapour interfacial tension. We propose a polydisperse continuum model that describes the transition from a packing of particles to a dense pore-free melt and evaluate its efficacy in describing the kinetics of volcanic viscous sintering. We apply our model to viscous sintering scenarios for cooling crystal-poor rhyolitic ash using the 2008 eruption of Chaitén volcano as a case example. We predict that moderate cooling rates result in the common observation of incomplete sintering and the preservation of pore networks. Finally we discuss the effect of crystallisation, external loading and volatile degassing or regassing during viscous sintering and assert that such complexities must be considered in the volcanic scenario.

  8. A comparison between sludge ash and fly ash on the improvement in soft soil.

    PubMed

    Lin, Deng-Fong; Lin, Kae-Long; Luo, Huan-Lin

    2007-01-01

    In this study, the strength of soft cohesive subgrade soil was improved by applying sewage sludge ash as a soil stabilizer. Test results obtained were compared with earlier tests conducted on soil samples treated with fly ash. Five different proportions of sludge ash and fly ash were mixed with soft cohesive soil, and tests such as pH value, compaction, California bearing ratio, unconfined compressive strength (UCS), and triaxial compression were performed to understand soil strength improvement because of the addition of both ashes. Results indicate that pH values increase with extending curing age for soil with sludge ash added. The UCS of sludge ash/soil were 1.4-2 times better than untreated soil. However, compressive strength of sludge ash/soil was 20-30 kPa less than fly ash/soil. The bearing capacities for both fly ash/soil and sludge ash/soil were five to six times and four times, respectively, higher than the original capacity. Moreover, the cohesive parameter of shear strength rose with increased amounts of either ash added. Friction angle, however, decreased with increased amounts of either ash. Consequently, results show that sewage sludge ash can potentially replace fly ash in the improvement of the soft cohesive soil. PMID:17269231

  9. A comparison between sludge ash and fly ash on the improvement in soft soil.

    PubMed

    Lin, Deng-Fong; Lin, Kae-Long; Luo, Huan-Lin

    2007-01-01

    In this study, the strength of soft cohesive subgrade soil was improved by applying sewage sludge ash as a soil stabilizer. Test results obtained were compared with earlier tests conducted on soil samples treated with fly ash. Five different proportions of sludge ash and fly ash were mixed with soft cohesive soil, and tests such as pH value, compaction, California bearing ratio, unconfined compressive strength (UCS), and triaxial compression were performed to understand soil strength improvement because of the addition of both ashes. Results indicate that pH values increase with extending curing age for soil with sludge ash added. The UCS of sludge ash/soil were 1.4-2 times better than untreated soil. However, compressive strength of sludge ash/soil was 20-30 kPa less than fly ash/soil. The bearing capacities for both fly ash/soil and sludge ash/soil were five to six times and four times, respectively, higher than the original capacity. Moreover, the cohesive parameter of shear strength rose with increased amounts of either ash added. Friction angle, however, decreased with increased amounts of either ash. Consequently, results show that sewage sludge ash can potentially replace fly ash in the improvement of the soft cohesive soil.

  10. A comparison between sludge ash and fly ash on the improvement in soft soil

    SciTech Connect

    Deng-Fong Lin; Kae-Long Lin; Huan-Lin Luo

    2007-01-15

    In this study, the strength of soft cohesive subgrade soil was improved by applying sewage sludge ash as a soil stabilizer. Test results obtained were compared with earlier tests conducted on soil samples treated with fly ash. Five different proportions of sludge ash and fly ash were mixed with soft cohesive soil, and tests such as pH value, compaction, California bearing ratio, unconfined compressive strength (UCS), and triaxial compression were performed to understand soil strength improvement because of the addition of both ashes. Results indicate that pH values increase with extending curing age for soil with sludge ash added. The UCS of sludge ash/soil were 1.4 2 times better than untreated soil. However, compressive strength of sludge ash/soil was 20 30 kPa less than fly ash/soil. The bearing capacities for both fly ash/soil and sludge ash/soil were five to six times and four times, respectively, higher than the original capacity. Moreover, the cohesive parameter of shear strength rose with increased amounts of either ash added. Friction angle, however, decreased with increased amounts of either ash. Consequently, results show that sewage sludge ash can potentially replace fly ash in the improvement of the soft cohesive soil. 9 refs., 5 figs., 2 tabs.

  11. Effect of crystallization water on the structural and electrical properties of CuWO{sub 4} under high pressure

    SciTech Connect

    Wang, Li; Yan, Jiejuan; Liu, Cailong; Liu, Xizhe; Han, Yonghao E-mail: cc060109@qq.com; Gao, Chunxiao E-mail: cc060109@qq.com; Ke, Feng; Wang, Qinglin; Li, Yanchun; Ma, Yanzhang

    2015-11-16

    The effect of crystallization water on the structural and electrical properties of CuWO{sub 4} under high pressure has been investigated by in situ X-ray diffraction and alternating current impedance spectra measurements. The crystallization water was found to be a key role in modulating the structural stability of CuWO{sub 4} at high pressures. The anhydrous CuWO{sub 4} undergoes two pressure-induced structural transitions at 8.8 and 18.5 GPa, respectively, while CuWO{sub 4}·2H{sub 2}O keeps its original structure up to 40.5 GPa. Besides, the crystallization water makes the electrical transport behavior of anhydrous CuWO{sub 4} and CuWO{sub 4}·2H{sub 2}O quite different. The charge carrier transportation is always isotropic in CuWO{sub 4}·2H{sub 2}O, but anisotropic in the triclinic and the third phase of anhydrous CuWO{sub 4}. The grain resistance of CuWO{sub 4}·2H{sub 2}O is always larger than that of anhydrous CuWO{sub 4} in the entire pressure range. By analyzing the relaxation response, we found that the large number of hydrogen bonds can soften the grain characteristic frequency of CuWO{sub 4}·2H{sub 2}O over CuWO{sub 4} by one order of magnitude.

  12. Identifying glass compositions in fly ash

    NASA Astrophysics Data System (ADS)

    Aughenbaugh, Katherine; Stutzman, Paul; Juenger, Maria

    2016-01-01

    In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS), calcium aluminosilicate glasses (CAS), a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  13. Correlation between surface chemistry, density, and band gap in nanocrystalline WO3 thin films.

    PubMed

    Vemuri, R S; Engelhard, M H; Ramana, C V

    2012-03-01

    Nanocrystalline WO(3) thin films were produced by sputter-deposition by varying the ratio of argon to oxygen in the reactive gas mixture during deposition. The surface chemistry, physical characteristics, and optical properties of nanocrystalline WO(3) films were evaluated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray reflectivity (XRR), and spectrophotometric measurements. The effect of ultramicrostructure was significant on the optical properties of WO(3) films. The XPS analyses indicate the formation of stoichiometric WO(3) with tungsten existing in fully oxidized valence state (W(6+)). However, WO(3) films grown at high oxygen concentration (>60%) in the sputtering gas mixture were over stoichiometric with excess oxygen. XRR simulations based on isotropic WO(3) film-SiO(2) interface-Si substrate modeling indicate that the density of WO(3) films is sensitive to the oxygen content in the sputtering gas. The spectral transmission of the films increased with increasing oxygen. The band gap of these films increases from 2.78 to 3.25 eV with increasing oxygen. A direct correlation between the film density and band gap in nanocrystalline WO(3) films is established on the basis of the observed results. PMID:22332637

  14. Lithium-titanate-nanotube-supported WO3 for enhancing transmittance contrast in electrochromics.

    PubMed

    Dong, Yunbing; Xiong, Chunrong; Zhang, Yilu; Xing, Shuai; Jiang, Hong

    2016-03-11

    Lithium titanate nanotubes (Li-TNTs) have been successfully synthesized. The inner and outer diameters of the nanotubes are 5 nm and 8 nm with an interlayer spacing of 0.83 nm. The nanotubes were in accordance with the Li1.81H0.19Ti2O5 · xH2O phase. The chemical component was Li0.9H1.1Ti2O5 · H2O as determined by ICP-AES. The Li-TNT-supported WO3 nanoparticle (WO3/Li-TNTs) thin film was prepared onto ITO glass via spin-coating and then fabricated with an electrochromic device. The Li ion diffusion coefficient in the WO3/Li-TNT film was 6.1 × 10(-10) cm(2) s(-1), which is eight times higher than that for the pure WO3 film. The transmittance contrast of the pure WO3-based ECD was 53.3% at 600 nm. However, this increased to 74.1% for the WO3/Li-TNT-based ECD. Meanwhile, the color-switching times of the WO3/Li-TNT-based ECD were apparently shorter than the ones for the WO3-based ECD. PMID:26866352

  15. Influence of peculiarities of electronic excitation relaxation on luminescent properties of MgWO4

    NASA Astrophysics Data System (ADS)

    Krutyak, N. R.; Spassky, D. A.; Tupitsyna, I. A.; Dubovik, A. M.

    2016-07-01

    Luminescent properties of magnesium tungstate monocrystals grown by two different methods are studied. Only the exciton luminescence of these crystals themselves is observed. Temperature dependence of the low-energy range in the luminescence excitation spectra is described by the Urbach rule. Slope coefficient σ0 = 0.74 obtained from this dependence implies autolocalization of the excitons in MgWO4. The processes of electronic excitations relaxation are considered depending on the structure of valence band in MgWO4 and in other wolframites, ZnWO4 and CdWO4. In contrast to ZnWO4 and CdWO4, the d-states of the cation do not participate in formation of the MgWO4 valence band. Using the excitation spectra measured in the range of the fundamental absorption (4-20 eV), it is shown that this difference manifests itself in relaxation of electronic excitations and may be the cause of the relatively low light yield of MgWO4.

  16. The morphology-dependent photocatalysis for rhodamine B degradation over Bi2WO6 hierarchical nanostructure.

    PubMed

    Tian, Yue; Fang, Ming; Xu, Wei; Li, Nian; Chen, Yongzhou; Zhang, Lide

    2011-09-01

    In this paper, the nanostructured Bi2WO6 with different hierarchical morphologies was synthesized via a warmly hydrothermal route. The structure and morphology of the as-prepared Bi2WO6 products were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), UV-vis absorption spectroscopy (UV-Vis) and N2-sorption analysis. The photocatalytic efficiency of Bi2WO6 was investigated by photodegradation of rhodamine B (RhB) under visible-light irradiation. The present work demonstrated that Bi2WO6 with four different hierarchical structures was effective visible-light-driven photocatalytic functional material for environmental purification. Moreover, the nest-like Bi2WO6 exhibited superior photocatalytic effects on rhodamine B degradation compared with other three Bi2WO6 morphologies. The excellent catalytic effect of the nest-like Bi2WO6 was attributed to its unique structural property and large surface area. The relationship between morphology and photocatalytic performance was discussed in detail. The photocatalytic mechanism for the degradation of RhB was also investigated, which revealed the important role of morphology in improving the photocatalyitc activities of Bi2WO6.

  17. Sunlight highly photoactive Bi2WO6-TiO2 heterostructures for rhodamine B degradation.

    PubMed

    Colón, G; Murcia López, S; Hidalgo, M C; Navío, J A

    2010-07-14

    Highly efficient Bi(2)WO(6)-TiO(2) heterostructures are synthesized by means of a hydrothermal method; they have high photoactivity for the degradation of rhodamine B under sunlike irradiation. An interesting synergetic effect between TiO(2) and Bi(2)WO(6) leads to an improved charge carrier separation mechanism, causing the excellent photocatalytic performance.

  18. Enhanced visible light photocatalytic activity of Bi2WO6 via modification with polypyrrole

    NASA Astrophysics Data System (ADS)

    Duan, Fang; Zhang, Qianhong; Shi, Dongjian; Chen, Mingqing

    2013-03-01

    Enhanced visible light photocatalytic activity of Bi2WO6 photocatalyst modified with different amounts of polypyrrole (PPy) was synthesized by 'in situ' deposition oxidative polymerization of pyrrole. The as-prepared PPy/Bi2WO6 composites were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse absorption spectra. The photocatalytic activities of the PPy/Bi2WO6 samples were determined by photocatalytic degradation of rhodamine-B (RhB) and methylene blue (MB) in aqueous solution under visible light irradiation. The results indicated that the existence of PPy did not affect the crystal structure and the morphology of Bi2WO6 photocatalyst, but showed great influences on the photocatalytic activity of Bi2WO6. Besides, an optimal content of PPy on the surface of Bi2WO6 photocatalyst with the highest photocatalytic ability was discovered, and the obtained PPy/Bi2WO6 photocatalysts showed high stability and did not photocorrode during the photocatalytic process. The possible mechanism of enhanced photocatalytic activities of PPy/Bi2WO6 samples was also discussed in this work.

  19. 3D graphene network@WO3 nanowire composites: a multifunctional colorimetric and electrochemical biosensing platform.

    PubMed

    Ma, Ye; Zhao, Minggang; Cai, Bin; Wang, Wei; Ye, Zhizhen; Huang, Jingyun

    2014-10-01

    A three dimensional graphene network (3DGN)@WO3 nanowire (NW) sensor is proposed which can perform colorimetric and electrochemical sensing techniques to detect H2O2, ascorbic acid and dopamine. The 3DGN provides three functions: anchoring, separating, conducting, while the WO3 NWs maximize surface area and catalyse reactions.

  20. Correlation between surface chemistry, density and band gap in nanocrystalline WO3 thin films

    SciTech Connect

    Vemuri, Venkata Rama Ses; Engelhard, Mark H.; Ramana, C.V.

    2012-03-01

    Nanocrystalline WO3 thin films were produced by sputter-deposition by varying the ratio of argon to oxygen in the reactive gas mixture during deposition. The surface chemistry, physical characteristics, and optical properties of nanocrystalline WO3 films were evaluated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray reflectivity (XRR), and spectrophotometric measurements. The effect of ultra-microstructure was significant on the optical properties of WO3 films. The XPS analyses indicate the formation of stoichiometric WO3 with tungsten existing in fully oxidized valence state (W6+). However, WO3 films grown at high oxygen concentration (>60%) in the sputtering gas mixture were over stoichiometric with excess oxygen. XRR simulations, which are based on isotropic WO3 film - SiO2 interface - Si substrate model, indicate that the density of WO3 films is sensitive to the oxygen content in the sputtering gas. The spectral transmission of the films increased with the increasing oxygen. The band gap of these films increases from 2.78 eV to 3.25 eV with increasing oxygen. A direct correlation between the film-density and band gap in nanocrystalline WO3 films is established based on the observed results.

  1. Optical properties of WO{sub 3} thin films using surface plasmon resonance technique

    SciTech Connect

    Paliwal, Ayushi; Sharma, Anjali; Gupta, Vinay E-mail: vgupta@physics.du.ac.in; Tomar, Monika

    2014-01-28

    Indigenously assembled surface plasmon resonance (SPR) technique has been exploited to study the thickness dependent dielectric properties of WO{sub 3} thin films. WO{sub 3} thin films (80 nm to 200 nm) have been deposited onto gold (Au) coated glass prism by sputtering technique. The structural, optical properties and surface morphology of the deposited WO{sub 3} thin films were studied using X-ray diffraction, UV-visible spectrophotometer, Raman spectroscopy, and Scanning electron microscopy (SEM). XRD analysis shows that all the deposited WO{sub 3} thin films are exhibiting preferred (020) orientation and Raman data indicates that the films possess single phase monoclinic structure. SEM images reveal the variation in grain size with increase in thickness. The SPR reflectance curves of the WO{sub 3}/Au/prism structure were utilized to estimate the dielectric properties of WO{sub 3} thin films at optical frequency (λ = 633 nm). As the thickness of WO{sub 3} thin film increases from 80 nm to 200 nm, the dielectric constant is seen to be decreasing from 5.76 to 3.42, while the dielectric loss reduces from 0.098 to 0.01. The estimated value of refractive index of WO{sub 3} film is in agreement to that obtained from UV-visible spectroscopy studies. The strong dispersion in refractive index is observed with wavelength of incident laser light.

  2. Effect of Bisphenol A on invasion ability of human trophoblastic cell line BeWo

    PubMed Central

    Wang, Zi-Yi; Lu, Jing; Zhang, Yuan-Zhen; Zhang, Ming; Liu, Teng; Qu, Xin-Lan

    2015-01-01

    Bisphenol A (BPA) is a kind of environmental endocrine disruptors (EEDs) that interfere embryo implantation. Trophoblast invasion plays a crucial role during embryo implantation. In this study, the effects of BPA on invasion ability of human trophoblastic cell line BeWo and its possible mechanism were investigated. BeWo cells were exposed to BPA and co-cultured with human endometrial cells to mimic embryo implantation in transwell model. The proliferation and invasion capability of BeWo cells were detected. The expression of E-cadherin, DNMT1, MMP-2, MMP-9, TIMP-1 and TIMP-2 were also analyzed. The results showed that the invasion capability of BeWo was reduced after daily exposure to BPA. BPA had biphasic effect on E-cadherin expression level in BeWo cells and expression level of DNMT1 was decreased when treated with BPA. Moreover, BPA treatment also changed the balance of MMPs/TIMPs in BeWo cells by down-regulating MMP-2, MMP-9 and up-regulating TIMP-1, TIMP-2 with increasing BPA concentration. Taken together, these results showed that BPA treatment could reduce the invasion ability of BeWo cells and alter the expression level of E-cadherin, DNMT1, TIMP-1, TIMP-2, MMP-2, and MMP-9. Our study would help us to understand the possible mechanism of BPA effect on invasion ability of human trophoblastic cell line BeWo. PMID:26823751

  3. Lithium-titanate-nanotube-supported WO3 for enhancing transmittance contrast in electrochromics

    NASA Astrophysics Data System (ADS)

    Dong, Yunbing; Xiong, Chunrong; Zhang, Yilu; Xing, Shuai; Jiang, Hong

    2016-03-01

    Lithium titanate nanotubes (Li-TNTs) have been successfully synthesized. The inner and outer diameters of the nanotubes are 5 nm and 8 nm with an interlayer spacing of 0.83 nm. The nanotubes were in accordance with the Li1.81H0.19Ti2O5 · xH2O phase. The chemical component was Li0.9H1.1Ti2O5 · H2O as determined by ICP-AES. The Li-TNT-supported WO3 nanoparticle (WO3/Li-TNTs) thin film was prepared onto ITO glass via spin-coating and then fabricated with an electrochromic device. The Li ion diffusion coefficient in the WO3/Li-TNT film was 6.1 × 10-10 cm2 s-1, which is eight times higher than that for the pure WO3 film. The transmittance contrast of the pure WO3-based ECD was 53.3% at 600 nm. However, this increased to 74.1% for the WO3/Li-TNT-based ECD. Meanwhile, the color-switching times of the WO3/Li-TNT-based ECD were apparently shorter than the ones for the WO3-based ECD.

  4. Gasification of ash-containing solid fuels

    SciTech Connect

    Moss, G.

    1983-03-01

    Ash-contaminated solid or semi-solid fuel is passed into the bottom zone of a fluidized bed gasifier, preferably containing cao to fix labile sulfur moieties, and gasified at a temperature below the ash-softening point. The resulting char and ash of relatively low size and/or weight pass to a top zone of the bed wherein the char is gasified at a temperature above the ash-softening point whereby a substantial proportion of the ash sticks to and agglomerates with solids in the top zone until the particle size and/or weight of the resulting agglomerates causes them to sink to the bottom of the gasifier from where they can be recovered. The hot gases leaving the top of the gasifying bed have a reduced burden of entrained ash, and may be cooled to prevent any entrained ash adhering to downstream equipment through which the gases pass.

  5. ACAA fly ash basics: quick reference card

    SciTech Connect

    2006-07-01

    Fly ash is a fine powdery material created when coal is burned to generate electricity. Before escaping into the environment via the utility stacks, the ash is collected and may be stored for beneficial uses or disposed of, if necessary. The use of fly ash provides environmental benefits, such as the conservation of natural resources, the reduction of greenhouse gas emissions and eliminating the needed for ash disposal in landfills. It is also a valuable mineral resource that is used in construction and manufacturing. Fly ash is used in the production of Portland cement, concrete, mortars and stuccos, manufactured aggregates along with various agricultural applications. As mineral filler, fly ash can be used for paints, shingles, carpet backing, plastics, metal castings and other purposes. This quick reference card is intended to provide the reader basic source, identification and composition, information specifically related to fly ash.

  6. Strain Accommodation By Facile WO6 Octahedral Distortion and Tilting During WO3 Heteroepitaxy on SrTiO3(001)

    SciTech Connect

    Du, Yingge; Gu, Meng; Varga, Tamas; Wang, Chong M.; Bowden, Mark E.; Chambers, Scott A.

    2014-08-27

    In this paper, we show that compared to other BO6 octahedra in ABO3 structured perovskite oxides, the WO6 octahedra in tungsten trioxide (WO3) can withstand a much larger degree of distortion and tilting to accommodate interfacial strain, which in turn strongly impact the nucleation, structure, and defect formation during the epitaxial growth of WO3 on SrTiO3(001). A meta-stable tetragonal phase can be stabilized by epitaxy and a thickness dependent phase transition (tetragonal to monoclinic) is observed. In contrast to misfit dislocations to accommodate the interfacial stain, the facial WO6 octahedral distortion and tilting give rise to three types of planar defects that affect more than 15 monolayers from the interface. These atomically resolved, unusual interfacial defects may significantly alter the electronic, electrochromic, and mechanical properties of the epitaxial films.

  7. Photoelectrochemical behavior of hierarchically structured Si/WO3 core-shell tandem photoanodes.

    PubMed

    Coridan, Robert H; Arpin, Kevin A; Brunschwig, Bruce S; Braun, Paul V; Lewis, Nathan S

    2014-05-14

    WO3 thin films have been deposited in a hierarchically structured core-shell morphology, with the cores consisting of an array of Si microwires and the shells consisting of a controlled morphology WO3 layer. Porosity was introduced into the WO3 outer shell by using a self-assembled microsphere colloidal crystal as a mask during the deposition of the WO3 shell. Compared to conformal, unstructured WO3 shells on Si microwires, the hierarchically structured core-shell photoanodes exhibited enhanced near-visible spectral response behavior, due to increased light absorption and reduced distances over which photogenerated carriers were collected. The use of structured substrates also improved the growth rate of microsphere-based colloidal crystals and suggests strategies for the use of colloidal materials in large-scale applications.

  8. Ethanol sensing of SnO2-WO3 core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Park, Sunghoon; Kim, Soohyun; Sun, Gun-Joo; Choi, Seung-Bok; Lee, Sangmin; Lee, Chongmu

    2015-09-01

    SnO2-WO3 core/shell nanowires were synthesized by the thermal evaporation of Sn powders in an oxidizing ambient followed by the thermal evaporation of WO3 powders. Their C2H5OH gas sensing properties were then examined. The C2H5OH gas sensing properties were improved remarkably by formation of the SnO2-WO3 heterostructures. The SnO2-WO3 core/shell nanowire sensors showed a much stronger and faster response to C2H5OH gas than the pristine SnO2-nanowire sensors. The enhanced sensing performance of the SnO2-WO3 core/shell nanowires towards C2H5OH gas can be accounted for by the potential barrier-controlled carrier-transport mechanism combined with the surface-depletion mechanism. [Figure not available: see fulltext.

  9. MWCNT/WO{sub 3} nanocomposite photoanode for visible light induced water splitting

    SciTech Connect

    Yousefzadeh, Samira; Reyhani, Ali; Naseri, Naimeh; Moshfegh, Alireza Z.

    2013-08-15

    The Multi-walled carbon nanotube (MWCNT)/WO{sub 3} nanocomposite thin films with different MWCNT’s weight percentages were prepared by sol–gel method as visible light induced photoanode in water splitting reaction. Weight percentage of MWCNT in the all nanocomposite thin films was confirmed by TGA/DSC analysis. According to XPS analysis, oxygenated groups at the surface of the MWCNT and stoichiometric formation of WO{sub 3} thin films were determined, while the crystalline structure of the nanocomposite samples was studied by XRD indicating (0 0 2) peak of MWCNT in the monoclinic phase of WO{sub 3}. The influence of different weight percentage (wt%) of MWCNT on WO{sub 3} photoactivity showed that the electron conductivity, charge transfer and electron life time had improved as compared with the pure WO{sub 3}. Based on linear sweep voltammetry and chronoamperometry measurements, the (1 wt%) MWCNT/WO{sub 3} nanocomposite thin films photoanode has a maximum photocurrent density of ∼4.5 A/m{sup 2} and electron life time of about 57 s. - Graphical abstract: Photocurrent density versus time at constant potential (0.7 V) for the WO{sub 3} films containing different MWCNT weight percentages annealed at 400 °C under 1000 Wm{sup −2} visible photo-illumination. Display Omitted - Highlights: • MWCNT/ WO{sub 3} nanocomposite thin films were synthesized using sol–gel derived method. • TGA/DSC confirmed the weight percentage of MWCNT in the all nanocomposite thin films. • XPS analysis revealed that WO{sub 3} was attached on the oxygenated group of MWCNT surface. • The Highest Photoelectrochemical activity is achieved for (1 wt%)MWCNT/WO{sub 3} thin film.

  10. Interspecific variation in resistance to emerald ash borer (Coleoptera: Buprestidae) among North American and Asian ash (Fraxinus spp.).

    PubMed

    Rebek, Eric J; Herms, Daniel A; Smitley, David R

    2008-02-01

    We conducted a 3-yr study to compare the susceptibility of selected North American ash and an Asian ash species to emerald ash borer, Agrilus planipennis Fairmaire, an invasive wood-boring beetle introduced to North America from Asia. Because of a coevolutionary relationship between Asian ashes and emerald ash borer, we hypothesized an Asian ash species, Manchurian ash, is more resistant to the beetle than its North American congeners. Consistent with our hypothesis, Manchurian ash experienced far less mortality and yielded far fewer adult beetles than several cultivars of North American green and white ash. Surprisingly, a black ash (North American) x Manchurian ash hybrid was highly susceptible to emerald ash borer, indicating this cultivar did not inherit emerald ash borer resistance from its Asian parent. A corollary study investigated the efficacy of soil-applied imidacloprid, a systemic, neonicotinoid insecticide, for controlling emerald ash borer in each of the five cultivars. Imidacloprid had no effect on emerald ash borer colonization of Manchurian ash, which was low in untreated and treated trees. In contrast, imidacloprid did enhance survival of the North American and hybrid cultivars and significantly reduced the number of emerald ash borer adults emerging from green and white ash cultivars. We identify a possible mechanism of resistance of Manchurian ash to emerald ash borer, which may prove useful for screening, selecting, and breeding emerald ash borer-resistant ash trees.

  11. Epitaxial growth of high quality WO3 thin films

    DOE PAGESBeta

    Leng, X.; Pereiro, J.; Strle, J.; Bollinger, A. T.; Bozovic, I.

    2015-09-09

    We have grown epitaxial WO3 films on various single-crystal substrates using radio-frequency (RF) magnetron sputtering. While pronounced surface roughness is observed in films grown on LaSrAlO4 substrates, films grown on YAlO3 substrates show atomically flat surfaces, as demonstrated by atomic force microscopy (AFM) and X-ray diffraction (XRD) measurements. The crystalline structure has been confirmed to be monoclinic by symmetric and skew-symmetric XRD. Furthermore, the dependence of the growth modes and the surface morphology on the lattice mismatch is discussed.

  12. Epitaxial growth of high quality WO3 thin films

    NASA Astrophysics Data System (ADS)

    Leng, X.; Pereiro, J.; Strle, J.; Bollinger, A. T.; Božović, I.

    2015-09-01

    We have grown epitaxial WO3 films on various single-crystal substrates using radio frequency magnetron sputtering. While pronounced surface roughness is observed in films grown on LaSrAlO4 substrates, films grown on Y AlO3 substrates show atomically flat surfaces, as demonstrated by atomic force microscopy and X-ray diffraction (XRD) measurements. The crystalline structure has been confirmed to be monoclinic by symmetric and skew-symmetric XRD. The dependence of the growth modes and the surface morphology on the lattice mismatch are discussed.

  13. Ultrasonic ash/pyrite liberation

    SciTech Connect

    Yungman, B.A.; Buban, K.S.; Stotts, W.F.

    1990-06-01

    The objective of this project was to develop a coal preparation concept which employed ultrasonics to precondition coal prior to conventional or advanced physical beneficiation processes such that ash and pyrite separation were enhanced with improved combustible recovery. Research activities involved a series of experiments that subjected three different test coals, Illinois No. 6, Pittsburgh No. 8, and Upper Freeport, ground to three different size fractions (28 mesh [times] 0, 200 mesh [times] 0, and 325 mesh [times] 0), to a fixed (20 kHz) frequency ultrasonic signal prior to processing by conventional and microbubble flotation. The samples were also processed by conventional and microbubble flotation without ultrasonic pretreatment to establish baseline conditions. Product ash, sulfur and combustible recovery data were determined for both beneficiation processes.

  14. Active mineral additives of sapropel ashes

    NASA Astrophysics Data System (ADS)

    Khomich, V. A.; Danilina, E. V.; Krivonos, O. I.; Plaksin, G. V.

    2015-01-01

    The goal of the presented research is to establish a scientific rational for the possibility of sapropel ashes usage as an active mineral additive. The research included the study of producing active mineral additives from sapropels by their thermal treatment at 850900 °C and afterpowdering, the investigation of the properties of paste matrix with an ash additive, and the study of the ash influence on the cement bonding agent. Thermogravimetric analysis and X-ray investigations allowed us to establish that while burning, organic substances are removed, clay minerals are dehydrated and their structure is broken. Sapropel ashes chemical composition was determined. An amorphous ash constituent is mainly formed from silica of the mineral sapropel part and alumosilicagels resulted from clay minerals decomposition. Properties of PC 400 and PC 500A0 sparopel ash additives were studied. Adding ashes containing Glenium plasticizer to the cement increases paste matrix strength and considerably reduces its water absorption. X-ray phase analysis data shows changes in the phase composition of the paste matrix with an ash additive. Ash additives produce a pozzolanic effect on the cement bonding agent. Besides, an ash additive due to the alumosilicagels content causes transformation from unstable calcium aluminate forms to the stable ones.

  15. Rapid toxicity screening of gasification ashes.

    PubMed

    Zhen, Xu; Rong, Le; Ng, Wei Cheng; Ong, Cynthia; Baeg, Gyeong Hun; Zhang, Wenlin; Lee, Si Ni; Li, Sam Fong Yau; Dai, Yanjun; Tong, Yen Wah; Neoh, Koon Gee; Wang, Chi-Hwa

    2016-04-01

    The solid residues including bottom ashes and fly ashes produced by waste gasification technology could be reused as secondary raw materials. However, the applications and utilizations of these ashes are very often restricted by their toxicity. Therefore, toxicity screening of ash is the primary condition for reusing the ash. In this manuscript, we establish a standard for rapid screening of gasification ashes on the basis of in vitro and in vivo testing, and henceforth guide the proper disposal of the ashes. We used three different test models comprising human cell lines (liver and lung cells), Drosophila melanogaster and Daphnia magna to examine the toxicity of six different types of ashes. For each ash, different leachate concentrations were used to examine the toxicity, with C0 being the original extracted leachate concentration, while C/C0 being subsequent diluted concentrations. The IC50 for each leachate was also quantified for use as an index to classify toxicity levels. The results demonstrated that the toxicity evaluation of different types of ashes using different models is consistent with each other. As the different models show consistent qualitative results, we chose one or two of the models (liver cells or lung cells models) as the standard for rapid toxicity screening of gasification ashes. We may classify the gasification ashes into three categories according to the IC50, 24h value on liver cells or lung cells models, namely "toxic level I" (IC50, 24h>C/C0=0.5), "toxic level II" (C/C0=0.05ashes generated in gasification plants every day. Subsequently, appropriate disposal methods can be recommended for each toxicity category.

  16. Volcanic Ash on Slopes of Karymsky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A volcanic eruption can produce gases, lava, bombs of rock, volcanic ash, or any combination of these elements. Of the volcanic products that linger on the land, most of us think of hardened lava flows, but volcanic ash can also persist on the landscape. One example of that persistence appeared on Siberia's Kamchatka Peninsula in spring 2007. On March 25, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the area around the Karymsky Volcano. In this image, volcanic ash from earlier eruptions has settled onto the snowy landscape, leaving dark gray swaths. The ash stains are confined to the south of the volcano's summit, one large stain fanning out toward the southwest, and another toward the east. At first glance, the ash stain toward the east appears to form a semicircle north of the volcano and sweep back east. Only part of this dark shape, however, is actually volcanic ash. Near the coast, the darker color may result from thicker vegetation. Similar darker coloring appears to the south. Volcanic ash is not really ash at all, but tiny, jagged bits of rock and glass. These jagged particles pose serious health risks to humans and animals who might inhale them. Likewise, the ash poses hazards to animals eating plants that have been coated with ash. Because wind can carry volcanic ash thousands of kilometers, it poses a more far-reaching hazard than other volcanic ejecta. Substantial amounts of ash can even affect climate by blocking sunlight. Karymsky is a stratovolcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. It is one of many active volcanoes on Russia's Kamchatka Peninsula, which is part of the 'Ring of Fire' around the Pacific Rim. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  17. Vitrification of municipal solid waste incineration fly ash using biomass ash as additives.

    PubMed

    Alhadj-Mallah, Moussa-Mallaye; Huang, Qunxing; Cai, Xu; Chi, Yong; Yan, JianHua

    2015-01-01

    Thermal melting is an energy-costing solution for stabilizing toxic fly ash discharged from the air pollution control system in the municipal solid waste incineration (MSWI) plant. In this paper, two different types of biomass ashes are used as additives to co-melt with the MSWI fly ash for reducing the melting temperature and energy cost. The effects of biomass ashes on the MSWI fly ash melting characteristics are investigated. A new mathematical model has been proposed to estimate the melting heat reduction based on the mass ratios of major ash components and measured melting temperature. Experimental and calculation results show that the melting temperatures for samples mixed with biomass ash are lower than those of the original MSWI fly ash and when the mass ratio of wood ash reaches 50%, the deformation temperature (DT), the softening, hemisphere temperature (HT) and fluid temperature (FT) are, respectively, reduced by 189°C, 207°C, 229°C, and 247°C. The melting heat of mixed ash samples ranges between 1650 and 2650 kJ/kg. When 50% wood ash is mixed, the melting heat is reduced by more than 700 kJ/kg for the samples studied in this paper. Therefore, for the vitrification treatment of the fly ash from MSW or other waste incineration plants, wood ash is a potential fluxing assistant. PMID:25220259

  18. Vitrification of municipal solid waste incineration fly ash using biomass ash as additives.

    PubMed

    Alhadj-Mallah, Moussa-Mallaye; Huang, Qunxing; Cai, Xu; Chi, Yong; Yan, JianHua

    2015-01-01

    Thermal melting is an energy-costing solution for stabilizing toxic fly ash discharged from the air pollution control system in the municipal solid waste incineration (MSWI) plant. In this paper, two different types of biomass ashes are used as additives to co-melt with the MSWI fly ash for reducing the melting temperature and energy cost. The effects of biomass ashes on the MSWI fly ash melting characteristics are investigated. A new mathematical model has been proposed to estimate the melting heat reduction based on the mass ratios of major ash components and measured melting temperature. Experimental and calculation results show that the melting temperatures for samples mixed with biomass ash are lower than those of the original MSWI fly ash and when the mass ratio of wood ash reaches 50%, the deformation temperature (DT), the softening, hemisphere temperature (HT) and fluid temperature (FT) are, respectively, reduced by 189°C, 207°C, 229°C, and 247°C. The melting heat of mixed ash samples ranges between 1650 and 2650 kJ/kg. When 50% wood ash is mixed, the melting heat is reduced by more than 700 kJ/kg for the samples studied in this paper. Therefore, for the vitrification treatment of the fly ash from MSW or other waste incineration plants, wood ash is a potential fluxing assistant.

  19. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation.

    PubMed

    Zhu, Wenyu; Liu, Jincheng; Yu, Shuyan; Zhou, Yan; Yan, Xiaoli

    2016-11-15

    Sulfonamides (SAs) are extensively used antibiotics and their residues in the water bodies propose potential threat to the public. In this study, degradation efficiency of sulfanilamide (SAM), which is the precursor of SAs, using WO3 nanoplates and their Ag heterogeneous as photocatalysts was investigated. WO3 nanoplates with uniform size were synthesized by a facile one step hydrothermal method. Different amount of Ag nanoparticles (Ag NPs) were loaded onto WO3 nanoplates using a photo-reduction method to generate WO3/Ag composites. The physio-chemical properties of synthesized nanomaterials were systematically characterized. Photodegradation of SAM by WO3 and WO3/Ag composites was conducted under visible light irradiation. The results show that WO3/Ag composites performed much better than pure WO3 where the highest removal rate was 96.2% in 5h. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO3, and 100% removal efficiency against Escherichia Coli and Bacillus subtilis could be achieved in 2h under visible light irradiation for all three WO3/Ag composites synthesized. The improved performance in terms of SAM degradation and antibacterial activity of WO3/Ag can be attributed to the improved electron-hole pair separation rate where Ag NPs act as effective electron trapper during the photocatalytic process. PMID:27450332

  20. Enhancement of visible-light photocatalytic activity of silver and mesoporous carbon co-modified Bi2WO6

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Gong, Ming; Liu, Wangping; Mao, Yulin; Le, Shukun; Ju, Shang; Long, Fei; Liu, Xiufang; Liu, Kai; Jiang, Tingshun

    2015-03-01

    Ordered mesoporous carbon CMK-3 was prepared by hard template method using SBA-15 as template, sucrose as carbon source. Flower/sphere-like Bi2WO6 and CMK-3/Bi2WO6 photocatalysts were synthesized by hydrothermal method, and then Ag/Bi2WO6 and Ag/Bi2WO6/CMK-3 composite photocatalysts were prepared via a photoreduction process. The samples were characterized by XRD, UV-vis, TEM (HR-TEM), SEM, N2 physical adsorption and PL and their photocatalytic activities were evaluated by the photocatalytic degradation of methylene blue (MB) under visible light irradiation. The results show that both incorporating of CMK-3 and Ag loading greatly improved the photocatalytic activity of Bi2WO6, and the content of CMK-3 and silver have an impact on the photocatalytic activity of Bi2WO6. The photocatalytic activity of Ag/Bi2WO6/CMK-3 photocatalyst is superior to the activities of CMK-3/Bi2WO6 and Ag/Bi2WO6 under comparable conditions, and Ag/Bi2WO6/CMK-3 photocatalyst has high stability and is easy to be recycled. Also, the mechanism for the enhancement of the photocatalytic activity of CMK-3 and Ag co-modified Bi2WO6 was also investigated.

  1. Can vegetative ash be water repellent?

    NASA Astrophysics Data System (ADS)

    Bodí, M. B.; Cerdà, A.; Mataix-Solera, J.; Doerr, S. H.

    2012-04-01

    In most of the literature, ash is referred to as a highly wettable material (e.g. Cerdà and Doerr, 2008; Etiegni and Campbell, 1991; Woods and Balfour 2010). However, the contrary was suggested in few articles, albeit with no further quantification (Gabet and Sternberg, 2008; Khanna et al., 1996; Stark, 1977). To clarify this question, water repellency measurements on ash using the Water Drop Penetration Times (WDPT) method were performed on ash from Mediterranean ecosystems and it was found to be water repellent (Bodí et al. 2011). Water repellency on ash from different wildfires ranged from 40 to 10 % occurrence with samples being extreme repellent (lasting more than 3600 s to penetrate). Part of the ash produced in the laboratory was also water repellent. After that, other ash samples had been found water repellent in wildfires in Colorado (unpublished results), Portugal (Gonzalez-Pelayo, 2009), or in prescribed fires in Australia (Bodí et al. 2011b; Petter Nyman, personnal communication). All the samples exhibiting water repellent properties had in common that were combusted at low temperatures, yielding in general ash with dark colour and contents of organic carbon of more than 18 % (Bodí et al. 2011a), although these properties were not exactly proportional to its water repellency occurrence or persistence. In addition, the species studied in Bodí et al. (2011) had been found to produce different levels of WR repellency, being ash from Pinus halepensis more repellent than that from Quercus coccifera and Rosmarins officinalis. Ash from Eucaliptus radiata had been found also very water repellent, as Pinus halepensis (unpublished data). The reasons of the existance of water repellent ash are that the charred residue produced by fire (an also contained in the ash) can contain aromatic compounds that have a lower free energy than water and therefore behave as hydrophobic materials with reduced solubility (Almendros et al., 1992 and Knicker, 2007

  2. Effect of addition of pond ash and fly ash on properties of ash-clay burnt bricks.

    PubMed

    Sarkar, Ritwik; Singh, Nar; Das, Swapan Kumar

    2007-12-01

    Two industrial solid waste products generated by Indian coal-fired power plants, namely pond ash and fly ash, were used in combination with local clay to develop building bricks. The clay were mixed with the two different ashes in the range 10 to 90 wt.%, hydraulically pressed and fired at 1000 degrees C. The fired products were characterized for various quality properties required for building bricks. The properties of the optimal compositions were compared with conventional red clay bricks including the developed microstructures and the comparative study generally showed that te ash-clay bricks were of superior quality to the conventional products.

  3. Electrochromic Characterization of Electrodeposited WO3 Thin Films

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, R.; Jayachandran, M.; Sanjeeviraja, C.

    2002-12-01

    The electrochromic properties of certain transition metal oxides have been studied for several years resulting in commercial films are deposited as thin layers (0.1 to 0.4 microns) onto a transparent conductive automotive mirror and sun-glass products. The largest potential application of electrochromics is in window to regulate heat and light flow. Fabrication cost is one of the greatest barriers for large area development of the smart windows. Tungsten trioxide (WO3) can be colored deeply in with an optical irradiation of appropriate energy (photochromism) or with an applied electric field (electrochromism). These processes have received considerable attention because of their potential application in electrochromic windows, display devices, sensors, and so on. For these purposes, tungsten trioxide films prepared by various physical methods such as molecular beam epitaxy, CVD, etc have been reported. These methods are generally expensive and it is difficult to form large area films. However electrodeposition method is probably most economical method for making the films in addition to its relative ease in forming in large area films. In this paper, tungsten trioxide (WO3) films are prepared through the electrodeposition route and these films are used to study the electrochromic behavior in the various electrolytes by changing the concentrations. When coloration, the film attains deep blue color and in reduced state it becomes colorless. After the ion intercalation, the optical properties are also studied in the UV-Vis-NIR region.

  4. Pickering w/o emulsions: drug release and topical delivery.

    PubMed

    Frelichowska, Justyna; Bolzinger, Marie-Alexandrine; Valour, Jean-Pierre; Mouaziz, Hanna; Pelletier, Jocelyne; Chevalier, Yves

    2009-02-23

    The skin absorption from Pickering emulsions as a new dosage form was investigated for the first time. Pickering emulsions are stabilized by adsorbed solid particles instead of emulsifier molecules. They are promising dosage forms that significantly differ from classical emulsions within several features. The skin permeation of a hydrophilic model penetrant (caffeine) was investigated from a w/o Pickering emulsion and compared to a w/o classical emulsion stabilized with an emulsifier. Both emulsions had the same composition and physicochemical properties in order to focus on the effect of the interfacial layer on the drug release and skin absorption processes. The highest permeation rates were obtained from the Pickering emulsion with a pseudo-steady state flux of 25 microg cm(-2)h(-1), threefold higher than from a classical emulsion (9.7 microg cm(-2)h(-1)). After 24h exposure, caffeine was mostly in the receptor fluid and in the dermis; cumulated amounts of caffeine were higher for the Pickering emulsion. Several physicochemical phenomena were investigated for clearing up the mechanisms of enhanced permeation from the Pickering emulsion. Among them, higher adhesion of Pickering emulsion droplets to skin surface was disclosed. The transport of caffeine adsorbed on silica particles was also considered relevant since skin stripping showed that aggregates of silica particles entered deeply the stratum corneum.

  5. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  6. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  7. Effects of fly ash particle size on strength of Portland cement fly ash mortars

    SciTech Connect

    Erdogdu, K.; Tuerker, P.

    1998-09-01

    Fly ashes do not have the same properties for different size fractions. It can be accepted that the effect of a fly ash on mortar strength is a combined effect of its size fractions. Therefore, it was concluded that by separating the size fractions and replacing cement with them, the combined bulk effect of a fly ash on strength can be better analyzed. In this study, different size fractions of fly ash were used to replace cement partially in standard compressive strength mortars. The authors attempted to interpret the strength of Portland cement-fly ash mortars in terms of the chemical, mineralogical, morphological, and physical properties of different fly ash size fractions used. Strengths of the mortars were compared at 2, 7, 28, and 90 days. Also strength of mortars with all-in ash (original ash containing all the fractions) were estimated by using strength of mortars with size fractions and the suitability of this estimation was discussed.

  8. Tungsten oxide (WO{sub 3}) thin films for application in advanced energy systems

    SciTech Connect

    Gullapalli, S. K.; Vemuri, R. S.; Manciu, F. S.; Enriquez, J. L.; Ramana, C. V.

    2010-07-15

    Inherent processes in coal gasification plants produce hazardous hydrogen sulfide (H{sub 2}S), which must be continuously and efficiently detected and removed before the fuel is used for power generation. An attempt has been made in this work to fabricate tungsten oxide (WO{sub 3}) thin films by radio-frequency reactive magnetron-sputter deposition. The impetus being the use of WO{sub 3} films for H{sub 2}S sensors in coal gasification plants. The effect of growth temperature, which is varied in the range of 30-500 deg. C, on the growth and microstructure of WO{sub 3} thin films is investigated. Characterizations made using scanning electron microscopy (SEM) and x-ray diffraction (XRD) indicate that the effect of temperature is significant on the microstructure of WO{sub 3} films. XRD and SEM results indicate that the WO{sub 3} films grown at room temperature are amorphous, whereas films grown at higher temperatures are nanocrystalline. The average grain-size increases with increasing temperature. WO{sub 3} films exhibit smooth morphology at growth temperatures {<=}300 deg. C while relatively rough at >300 deg. C. The analyses indicate that the nanocrystalline WO{sub 3} films grown at 100-300 deg. C could be the potential candidates for H{sub 2}S sensor development for application in coal gasification systems.

  9. Structural and gasochromic properties of WO3 films prepared by reactive sputtering deposition

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Hakoda, T.; Miyashita, A.; Yoshikawa, M.

    2015-02-01

    The effects of deposition temperature and film thickness on the structural and gasochromic properties of tungsten trioxide (WO3) films used for the optical detection of diluted cyclohexane gas have been investigated. The WO3 films were prepared on SiO2 substrates by magnetron sputtering, with the deposition temperature ranging from 300 to 550 °C in an Ar and O2 gas mixture. The films were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), and Rutherford backscattering spectroscopy (RBS). The gasochromic properties of the WO3 films, coated with a catalytic Pt layer, were examined by exposing them to up to 5% cyclohexane in N2 gas. It was found that (001)-oriented monoclinic WO3 films, with a columnar structure, grew at deposition temperatures between 400 and 450 °C. Furthermore, (010)-oriented WO3 films were preferably formed at deposition temperatures higher than 500 °C. The gasochromic characterization of the Pt/WO3 films revealed that (001)-oriented WO3 films, with cauliflower-like surface morphology, were appropriate for the optical detection of cyclohexane gas.

  10. LIFAC ash--strategies for management.

    PubMed

    Anthony, E J; Berry, E E; Blondin, J; Bulewicz, E M; Burwell, S

    2005-01-01

    LIFAC is a more recent addition to flue gas desulphurization methods for reducing sulphur emissions during coal combustion for the production of electricity. Ashes from the combustion of a low-sulphur lignite coal using LIFAC technology were used to evaluate different ash management strategies. The ashes, as produced and after treatment by the CERCHAR hydration process, were examined for their disposal characteristics and their utilization potential in concrete. They were also evaluated as underground disposal material using the AWDS process. PMID:15823742

  11. LIFAC ash--strategies for management.

    PubMed

    Anthony, E J; Berry, E E; Blondin, J; Bulewicz, E M; Burwell, S

    2005-01-01

    LIFAC is a more recent addition to flue gas desulphurization methods for reducing sulphur emissions during coal combustion for the production of electricity. Ashes from the combustion of a low-sulphur lignite coal using LIFAC technology were used to evaluate different ash management strategies. The ashes, as produced and after treatment by the CERCHAR hydration process, were examined for their disposal characteristics and their utilization potential in concrete. They were also evaluated as underground disposal material using the AWDS process.

  12. Toxicity of waste gasification bottom ash leachate.

    PubMed

    Sivula, Leena; Oikari, Aimo; Rintala, Jukka

    2012-06-01

    Toxicity of waste gasification bottom ash leachate from landfill lysimeters (112 m(3)) was studied over three years. The leachate of grate incineration bottom ash from a parallel setup was used as reference material. Three aquatic organisms (bioluminescent bacteria, green algae and water flea) were used to study acute toxicity. In addition, an ethoxyresorufin-O-deethylase (EROD) assay was performed with mouse hepatoma cells to indicate the presence of organic contaminants. Concentrations of 14 elements and 15 PAH compounds were determined to characterise leachate. Gasification ash leachate had a high pH (9.2-12.4) and assays with and without pH adjustment to neutral were used. Gasification ash leachate was acutely toxic (EC(50) 0.09-62 vol-%) in all assays except in the algae assay with pH adjustment. The gasification ash toxicity lasted the entire study period and was at maximum after two years of disposal both in water flea (EC(50) 0.09 vol-%) and in algae assays (EC(50) 7.5 vol-%). The grate ash leachate showed decreasing toxicity during the first two years of disposal in water flea and algae assays, which then tapered off. Both in the grate ash and in the gasification ash leachates EROD-activity increased during the first two years of disposal and then tapered off, the highest inductions were observed with the gasification ash leachate. The higher toxicity of the gasification ash leachate was probably related to direct and indirect effects of high pH and to lower levels of TOC and DOC compared to the grate ash leachate. The grate ash leachate toxicity was similar to that previously reported in literature, therefore, confirming that used setup was both comparable and reliable.

  13. WO3 nanorolls self-assembled as thin films by hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Vankova, S.; Zanarini, S.; Amici, J.; Cámara, F.; Arletti, R.; Bodoardo, S.; Penazzi, N.

    2015-04-01

    We report a novel type of WO3 nanostructure, i.e. nanorolls obtained as a self-assembled thin film on a transparent conductive substrate. The mild conditions of preparation, avoiding the use of HCl, result in an eco-friendly hydrothermal method with reduced crystallization time. FESEM and HR-TEM show that WO3 nanocrystals are made of rolled nanoflakes with a telescope-like appearance at their tip. For their nano-porosity, electrochemical accessibility, good adhesion to substrates and the envisaged presence of nanocavities between the WO3 layers, these materials hold tremendous promise in nano-electronics, electrochromic devices, water photo-splitting cells, Li-ion batteries and nano-templated filters for UV radiation.We report a novel type of WO3 nanostructure, i.e. nanorolls obtained as a self-assembled thin film on a transparent conductive substrate. The mild conditions of preparation, avoiding the use of HCl, result in an eco-friendly hydrothermal method with reduced crystallization time. FESEM and HR-TEM show that WO3 nanocrystals are made of rolled nanoflakes with a telescope-like appearance at their tip. For their nano-porosity, electrochemical accessibility, good adhesion to substrates and the envisaged presence of nanocavities between the WO3 layers, these materials hold tremendous promise in nano-electronics, electrochromic devices, water photo-splitting cells, Li-ion batteries and nano-templated filters for UV radiation. Electronic supplementary information (ESI) available: Characterization techniques; additional FESEM micrographs; typical XRD pattern of WO3 nanoroll thin film; typical Nyquist plots at ambient temperature; indicative diameter and length of WO3 NR by varying the PVA chain length; effect of 2000 cycles of electrochemical switching on the STB, STC and ΔT% coloration efficiency of the WO3 NR. See DOI: 10.1039/c4nr07290a

  14. Hazards Associated With Recent Popocatepetl Ash Emissions

    NASA Astrophysics Data System (ADS)

    Nieto, A.; Martin, A.; Espinasa-Pereña, R.; Ferres, D.

    2013-05-01

    Popocatepetl has been producing ash from small eruptions since 1994. Until 2012 about 650 small ash emissions have been recorded at the monitoring system of Popocatépetl Volcano. Ash consists mainly of glassy lithic clasts from the recent crater domes, plagioclase and pyroxene crystals, and in major eruptions, olivine and/or hornblende. Dome forming eruptions produced a fine white ash which covers the coarser ash. This fine ash consists of plagioclase, glass and cristobalite particles mostly under15 microns. During the recent crisis at Popocatépetl, April and May2012 ash fell on villages to the east and west of the volcano, reaching Mexico City (more than 20 million people) and Puebla (2 million people). In 14 cases the plumes had heights over 2 km, the largest on May 2 and 11 (3 and 4 km in height, respectively). Heavier ash fall occurred on April 13, 14, 20, and 23 and May 2, 3, 5, 11, 14, 23, 24 and 25. A database for ash fall was constructed from April 13 with field observations, reports emitted by the Centro Nacional de Comunicaciones (CENACOM), ash fall advisories received at CENAPRED and alerts from the Servicios a la Navegación en el Espacio Aéreo Mexicano (SENEAM). This aim of this database is to calculate areas affected by the ash and estimate the ash fall volume emitted by Popocatépetl in each of these events. Heavy ash fall from the May 8 to May 11 combined with reduced visibility due to fog forced to closure of the Puebla airport during various periods of time, for up to 13 hours. Domestic and international flights were cancelled. Ash eruptions have caused respiratory conditions in the state of Puebla, to the east of the volcano, since 1994 (Rojas et al, 2001), but because of the changing wind conditions in the summer mainly, some of these ash plumes go westward to towns in the State of Mexico and even Mexico City. Preliminary analyses of these eruptions indicate that some ash emissions produced increased respiratory noninfectious problems

  15. Spectrographic analysis of coal and coal ash

    USGS Publications Warehouse

    Hunter, R.G.; Headlee, A.J.W.

    1950-01-01

    Coal can be analyzed on the spectrograph for per cent ash and composition of ash in a matter of a few minutes, using the total energy method. The composition of the ash so determined can be used to calculate ash softening temperatures. This analysis can be made in sufficiently short a time to control tipple and washing operations for preparation of coal to meet specifications. This spectrographic method can be readily adapted to the analysis of rocks, minerals, and inorganic chemicals of all kinds.

  16. Fabrication and photocatalysis of mesoporous ZnWO{sub 4} with PAMAM as a template

    SciTech Connect

    Lin Shen Chen Jiebo; Weng Xiulan; Yang Liuyi; Chen Xinqin

    2009-05-06

    Mesoporous ZnWO{sub 4} was prepared with the template of PAMAM. The as-formed samples were characterized by X-ray diffraction (XRD), nitrogen absorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (DRS). It is found that the size of pore is in the range of 5-22 nm and that the porosity of ZnWO{sub 4} is composed of aggregated ZnWO{sub 4} nanoparticles. The photocatalytic activities towards degradation of rhodamine B (RhB) and malachite green (MG) under UV light has been investigated. The formation mechanism of mesoporous structures is proposed.

  17. CTAB-assisted ultrasonic synthesis, characterization and photocatalytic properties of WO{sub 3}

    SciTech Connect

    Sánchez-Martínez, D. Gomez-Solis, C.; Torres-Martinez, Leticia M.

    2015-01-15

    Highlights: • WO{sub 3} 2D nanostructures were synthesized by ultrasound method assisted with CTAB. • WO{sub 3} morphology was mainly of rectangular nanoplates with a thickness of ∼50 nm. • The highest surface area value of WO{sub 3} was obtained to lowest concentration of CTAB. • WO{sub 3} activity was attributed to morphology, surface area and the addition of CTAB. • WO{sub 3} nanoplates were able to causing almost complete mineralization of rhB and IC. - Abstract: WO{sub 3} 2D nanostructures have been prepared by ultrasound synthesis method assisted with CTAB using different molar ratios. The formation of monoclinic crystal structure of WO{sub 3} was confirmed by X-ray powder diffraction (XRD). The characterization of the WO{sub 3} samples was complemented by analysis of scanning electron microscopy (SEM), which revealed morphology mainly of rectangular nanoplates with a thickness of around 50 nm and length of 100–500 nm. Infrared spectroscopy (FT-IR) was used to confirm the elimination of the CTAB in the synthesized samples. The specific surface area was determinate by the BET method and by means of diffuse reflectance spectroscopy (DRS) it was determinate the band-gap energy (E{sub g}) of the WO{sub 3} samples. The photocatalytic activity of the WO{sub 3} oxide was evaluated in the degradation reactions of rhodamine B (rhB) and indigo carmine (IC) under Xenon lamp irradiation. The highest photocatalytic activity was observed in the samples containing low concentration of CTAB with morphology of rectangular nanoplates and with higher surface area value than commercial WO{sub 3}. Photodegradation of rhB and IC were followed by means of UV–vis absorption spectra. The mineralization degree of organic dyes by WO{sub 3} photocatalyst was determined by total organic carbon analysis (TOC) reaching percentages of mineralization of 92% for rhB and 50% for IC after 96 h of lamp irradiation.

  18. Ionic liquid- and surfactant-controlled crystallization of WO3 films.

    PubMed

    Kaper, Helena; Djerdj, Igor; Gross, Silvia; Amenitsch, Heinz; Antonietti, Markus; Smarsly, Bernd M

    2015-07-21

    WO3 films were obtained via evaporation-induced self-assembly (EISA) using ionic surfactants such as long-chain ionic liquids 1-hexadecyl-3-methyl imidazolium chloride and bromide (C16mimCl and C16mimBr, respectively) and cetyltrimethylammonium chloride and bromide (CTAC and CTAB, respectively) as additives. Owing to the presence of the ionic surfactants, WO3 films crystallize in a preferred orientation along the a-axis on different substrates, as evidenced by X-ray diffraction. WO3 films with this orientation show improved electrochromic properties when compared to films with a lower degree of crystallographic orientation, prepared in an analogue fashion. PMID:26102203

  19. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  20. 10 Risk to Ash from Emerald Ash Borer: Can Biological Control Prevent the Loss of Ash Stands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ash trees were once relatively free of serious, major diseases and insect pests in North America until the arrival of EAB, which was first detected in North America in Michigan in 2002. As of February 2014, EAB had been detected in 22 U.S. states and two Canadian provinces, killing millions of ash ...

  1. Changes of the ash structure

    NASA Astrophysics Data System (ADS)

    Peer, Václav; Friedel, Pavel; Janša, Jan

    2016-06-01

    The aim of the article is to appraisal of the changes in the structure of the ash due to the addition of compounds capable of the eutectics composition change. For the transformation were used limestone and dolomite dosed in amounts of 2, 5 and 10 wt.% with pellets of spruce wood, willow wood and refused derived fuel. Combustion temperatures of the mixtures were adjusted according to the temperatures reached during the using of fuels in power plants, i.e. 900, 1000, 1100 and 1200 °C.

  2. Growth and crystallographic characterization of molecular beam epitaxial WO3 and MoO3/WO3 thin films on sapphire substrates

    NASA Astrophysics Data System (ADS)

    Yano, Mitsuaki; Koike, Kazuto; Matsuo, Masayuki; Murayama, Takayuki; Harada, Yoshiyuki; Inaba, Katsuhiko

    2016-09-01

    Molecular beam epitaxy of tungsten trioxide (WO3) on (01 1 bar 2)-oriented (r-plane) sapphire substrates and molybdenum trioxide (MoO3) on the WO3 was studied by focusing on their crystallogrhaphic properties. Although polycrystalline monoclinic (γ-phase) WO3 films were grown at 500 °C and they became single-crystalline (0 0 1)-oriented γ-phase at 700 °C, the latter films were oxygen-deficient from stoichiometry and contained dense and deep thermal etchpits. By using a two-step growth method where only the initial 15 nm was grown at 700 °C and the rest part was grown at 500 °C, (0 0 1)-oriented γ-phase single-crystalline WO3 films with stoichiometric composition and smooth surface were obtained. On top of the 15-nm-thick WO3 initiation layer, (1 1 0)-oriented orthorhombic (α-phase) MoO3 films with smooth surface were obtained.

  3. Electrochemical lithium insertion in the solid solution Bi{sub 2}WO{sub 6}-Sb{sub 2}WO{sub 6} with Aurivillius framework

    SciTech Connect

    Martinez-de la Cruz, A. Longoria Rodriguez, F.E.

    2007-10-02

    Following the structural evolution of the Aurivillius crystalline framework in the solid solution Bi{sub 2}WO{sub 6}-Sb{sub 2}WO{sub 6} we have carried out an electrochemical lithium insertion study in this system. A slight loss of the specific capacity of the electrochemical cell was observed as amount of Sb was increased. In general, the different compositions within solid solution Bi{sub 2-x}Sb{sub x}WO{sub 6} (0.25 {<=} x {<=} 0.75) exhibited a similar behaviour featured mainly by two semiconstant potential regions located at 1.7 and 0.8 V versus Li{sup +}/Li{sup o}. The oxide Sb{sub 2}WO{sub 6} with Autivillius structure but without Bi was tested as cathode too. The maximum amount of lithium inserted, 13.5 lithium atoms per formula, is the same amount inserted in its homologous bismuth oxide Bi{sub 2}WO{sub 6}.

  4. Mazama ash in the northeastern pacific.

    PubMed

    Nelson, C H; Kulm, L D; Carlson, P R; Duncan, J R

    1968-07-01

    Volcanic glass in marine sediments off Oregon and Washington correlates with continental deposits of Mount Mazama ash by stratigraphic position, refractive index, and radiocarbon dating. Ash deposited in the abyssal regions by turbidity currents is used for tracing of the dispersal routes of postglacial sediments and for evaluation of marine sedimentary processes.

  5. Energy efficient continuous flow ash lockhopper

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor); Suitor, Jerry W. (Inventor); Dubis, David (Inventor)

    1989-01-01

    The invention relates to an energy efficient continuous flow ash lockhopper, or other lockhopper for reactor product or byproduct. The invention includes an ash hopper at the outlet of a high temperature, high pressure reactor vessel containing heated high pressure gas, a fluidics control chamber having an input port connected to the ash hopper's output port and an output port connected to the input port of a pressure letdown means, and a control fluid supply for regulating the pressure in the control chamber to be equal to or greater than the internal gas pressure of the reactor vessel, whereby the reactor gas is contained while ash is permitted to continuously flow from the ash hopper's output port, impelled by gravity. The main novelty resides in the use of a control chamber to so control pressure under the lockhopper that gases will not exit from the reactor vessel, and to also regulate the ash flow rate. There is also novelty in the design of the ash lockhopper shown in two figures. The novelty there is the use of annular passages of progressively greater diameter, and rotating the center parts on a shaft, with the center part of each slightly offset from adjacent ones to better assure ash flow through the opening.

  6. Mazama ash in the Northeastern Pacific

    USGS Publications Warehouse

    Nelson, C.H.; Kulm, L.D.; Carlson, P.R.; Duncan, J.R.

    1968-01-01

    Volcanic glass in marine sediments off Oregon and Washington correlates with continental deposits of Mount Mazama ash by stratigraphic position, refractive index, and radiocarbon dating. Ash deposited in the abyssal regions by turbidity currents is used for tracing of the dispersal routes of postglacial sediments and for evaluation of marine sedimentary processes.

  7. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Ash pans. 230.69 Section 230.69 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans §...

  8. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Ash pans. 230.69 Section 230.69 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans §...

  9. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Ash pans. 230.69 Section 230.69 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans §...

  10. Mixing frequency induces [WO4]2- generating blue luminescence

    NASA Astrophysics Data System (ADS)

    Xia, Zhongchao; Yang, Fugui

    2014-02-01

    In the process of investigating end-pumped continuous intra-cavity Raman laser, a strong blue luminescence at wavelength 473 nm (nanometer) in pure [XO4]2- (X = W, Y, …) has been observed. This luminescence is strange and inconsistent with the traditional single up-conversion luminescence theory, scintillation theory. Basing on the optics theory and scintillation crystal theory, we suggest a "mixing frequency inducing blue emission" mechanism to explain the phenomenon. The mixing wavelength 473.4 nm with the four wavelengths of 808, 890, 912, and 1.064 nm stimulates and induces the blue emission of the [WO4]2-. The mechanism is in good harmony with the experiment.

  11. Characterization of Nanoporous WO3 Films Grown via Ballistic Deposition

    SciTech Connect

    Smid, Bretislav; Li, Zhenjun; Dohnalkova, Alice; Arey, Bruce W.; Smith, R. Scott; Matolin, Vladimir; Kay, Bruce D.; Dohnalek, Zdenek

    2012-05-17

    We report on the preparation and characterization of high surface area, supported nanoporous tungsten oxide films prepared under different conditions on polished polycrystalline Ta and Pt(111) substrates via direct sublimation of monodispersed gas phase of cyclic (WO3)3 clusters. Scanning Electron Microscopy and Transmission Electron Microscopy were used to investigate the film morphology on a nanometer scale. The films consist of arrays of separated filaments that are amorphous. The chemical composition and the thermal stability of the films were investigated by means of X-ray Photoelectron Spectroscopy. The surface area and the distribution of binding sites on the films are measured as functions of growth temperature, deposition angle, and annealing conditions using temperature programmed desorption of Kr. Films deposited at 20 K and at an incident angle of 65{sup o} from substrate normal display the greatest specific surface area of {approx}560 m2/g.

  12. Electrochemical properties of magnetron sputtered WO{sub 3} thin films

    SciTech Connect

    Madhavi, V.; Kondaiah, P.; Hussain, O. M.; Uthanna, S.

    2013-02-05

    Thin films of tungsten oxide (WO{sub 3}) were deposited on ITO substrates by using RF magnetron sputtering at oxygen and argon atmospheres of 6 Multiplication-Sign 10{sup -2}Pa and 4 Pa respectively. The chemical composition and surface morphology of the WO{sub 3} thin films have been studied by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) respectively. The results indicate that the deposited WO{sub 3} thin films are nearly stoichiometric. The electrochemical performances of the WO{sub 3} thin films have been evaluated by galvonostatic charging/discharging method. The discharge capacity was 15{mu}Ah/cm{sup 2}{mu}m at the initial cycle and faded rapidly in the first few cycles and stabilized at a lesser stage.

  13. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films

    NASA Astrophysics Data System (ADS)

    Wen, Rui-Tao; Granqvist, Claes G.; Niklasson, Gunnar A.

    2015-10-01

    There is keen interest in the use of amorphous WO3 thin films as cathodic electrodes in transmittance-modulating electrochromic devices. However, these films suffer from ion-trapping-induced degradation of optical modulation and reversibility on extended Li+-ion exchange. Here, we demonstrate that ion-trapping-induced degradation, which is commonly believed to be irreversible, can be successfully eliminated by constant-current-driven de-trapping; that is, WO3 films can be rejuvenated and regain their initial highly reversible electrochromic performance. Pronounced ion trapping occurs when x exceeds ~0.65 in LixWO3 during ion insertion. We find two main kinds of Li+-ion-trapping site (intermediate and deep) in WO3, where the intermediate ones are most prevalent. Li+ ions can be completely removed from intermediate traps but are irreversibly bound in deep traps. Our results provide a general framework for developing and designing superior electrochromic materials and devices.

  14. Enhanced electrochemical performance of monoclinic WO3 thin film with redox additive aqueous electrolyte.

    PubMed

    Shinde, Pragati A; Lokhande, Vaibhav C; Chodankar, Nilesh R; Ji, Taeksoo; Kim, Jin Hyeok; Lokhande, Chandrakant D

    2016-12-01

    To achieve the highest electrochemical performance for supercapacitor, it is very essential to find out a suitable pair of an active electrode material and an electrolyte. In the present work, a simple approach is employed to enhance the supercapacitor performance of WO3 thin film. The WO3 thin film is prepared by a simple and cost effective chemical bath deposition method and its electrochemical performance is tested in conventional (H2SO4) and redox additive [H2SO4+hydroquinone (HQ)] electrolytes. Two-fold increment in electrochemical performance for WO3 thin film is observed in redox additive aqueous electrolyte compared to conventional electrolyte. WO3 thin film showed maximum specific capacitance of 725Fg(-1), energy density of 25.18Whkg(-1) at current density of 7mAcm(-2) with better cycling stability in redox electrolyte. This strategy provides the versatile way for designing the high performance energy storage devices.

  15. Investigations On Stoichiometry And Melting Behavior Of NaY(WO{sub 4}){sub 2}

    SciTech Connect

    Salunke, R. G.; Gosavi, S. W.; Singh, S. G.; Singh, A. K.; Desai, D. G.; Chauhan, A. K.; Gadkari, S. C.

    2010-12-01

    Differential thermal analysis (DTA) and X-ray diffraction (XRD) studies were carried out to understand the melting behavior of the NaY(WO{sub 4}){sub 2}, an important functional material used for the laser production. It has been observed that the stoichiometric NaY(WO{sub 4}){sub 2} composition forms a solution with another phase of the Na{sub 2}WO{sub 4}-Y{sub 2}(WO{sub 4}){sub 3} pseudo-binary system. This is found to be detrimental for the growth of single crystals of the material. Therefore, molar fraction in the starting charge was suitably altered to successfully restrict the formation of the undesired phase in the melt. A composition is suggested for the favorable crystal growth of this material.

  16. Fabrication of luminescent SrWO{sub 4} thin films by a novel electrochemical method

    SciTech Connect

    Chen Lianping Gao Yuanhong

    2007-10-02

    Highly crystallized SrWO{sub 4} thin films with single scheelite structure were prepared within 60 min by a cell electrochemical method. X-ray diffraction analysis shows that SrWO{sub 4} thin films have a tetragonal structure. Scanning electron microscopy examinations reveal that SrWO{sub 4} grains grow well in tetragonal tapers and grains like flowers or bunches, which can usually form by using the electrolysis electrochemical method, have disappeared under cell electrochemical conditions. X-ray photoelectron spectra and energy dispersive X-ray microanalysis examinations demonstrate that the composition of the film is consistent with its stoichiometry. These SrWO{sub 4} films show a single blue emission peak (located at 460 nm) using an excitation wave of 230 nm. The speed of cell electrochemical method can be controlled by changing temperature. The optimum treatment temperature is about 50-60 deg. C.

  17. Structure and photocatalytic performance of layered HNbWO6 nanosheet aggregation

    NASA Astrophysics Data System (ADS)

    Hu, Li-Fang; Li, Rui; He, Jie; Da, Liang-guo; Lv, Wei; Hu, Jin-song

    2015-01-01

    Layered HNbWO6 nanosheet aggregation (e-HNbWO6) has been assembled by HNbWO6 nanosheet via an exfoliation-restaking route. The as-prepared samples are characterized by means of powder x-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, laser Raman spectroscopy, ultraviolet-vis diffuse reflectance spectroscopy, and N2 adsorption-desorption isotherms. The photocatalytic performances of the as-prepared samples are evaluated by degradation of methylene blue (MB). The results revealed that e-HNbWO6 has a specific surface area of about 156.5 m2 g-1, and exhibits a relatively excellent photocatalytic performance for degradation of MB under UV light.

  18. Enhanced electrochemical performance of monoclinic WO3 thin film with redox additive aqueous electrolyte.

    PubMed

    Shinde, Pragati A; Lokhande, Vaibhav C; Chodankar, Nilesh R; Ji, Taeksoo; Kim, Jin Hyeok; Lokhande, Chandrakant D

    2016-12-01

    To achieve the highest electrochemical performance for supercapacitor, it is very essential to find out a suitable pair of an active electrode material and an electrolyte. In the present work, a simple approach is employed to enhance the supercapacitor performance of WO3 thin film. The WO3 thin film is prepared by a simple and cost effective chemical bath deposition method and its electrochemical performance is tested in conventional (H2SO4) and redox additive [H2SO4+hydroquinone (HQ)] electrolytes. Two-fold increment in electrochemical performance for WO3 thin film is observed in redox additive aqueous electrolyte compared to conventional electrolyte. WO3 thin film showed maximum specific capacitance of 725Fg(-1), energy density of 25.18Whkg(-1) at current density of 7mAcm(-2) with better cycling stability in redox electrolyte. This strategy provides the versatile way for designing the high performance energy storage devices. PMID:27565957

  19. Synthesis of Bi2WO6 Microspheres with Visible-Light Photocatalytic Properties

    NASA Astrophysics Data System (ADS)

    Wan, Gengping; Wang, Guizhen

    2013-12-01

    Bi2WO6 microspheres constructed from nanosheets have been synthesized by a controllable solvothermal route in a large scale. The structure characterizations of the microspheres were investigated in detail by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). On the basis of XRD analysis and SEM observation of the products at different reaction time periods, a growth mechanism of Bi2WO6 microspheres was proposed. UV-Visible diffuse reflectance (DR) spectrum of the prepared Bi2WO6 microspheres demonstrates that they have absorption in the visible light region. The photocatalytic activity of Bi2WO6 microspheres toward Rhodamine-B (RhB) degradation was investigated and the as-prepared products exhibited good photocatalytic activity in degradation of RhB under 300 W Xe lamp light irradiation.

  20. Hydrothermal synthesis of Bi2WO6 hierarchical flowers with their photonic and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Dumrongrojthanath, Phattharanit; Thongtem, Titipun; Phuruangrat, Anukorn; Thongtem, Somchai

    2013-02-01

    Bi2WO6 hierarchical multi-layered flower-like assemblies were synthesized by a hydrothermal method at 180 °C for 24 h. XRD patterns were specified as pure orthorhombic well-crystallized Bi2WO6 phase. Their FTIR spectra show main absorption bands at 400-1000 cm-1, assigned as the stretching modes of the Bi-O and W-O, and W-O-W bridging stretching modes. SEM analysis shows that the product was 3D hierarchical flower-like assemblies, constructed by orderly arranged 2D layers of nanoplates. The UV-visible absorption shows an absorbance in the ultraviolet region with 3.4 eV band gap. Photocatalytic activity of Bi2WO6 hierarchical flowers was determined from the degradation of rhodamine-B by Xe light at 88% for 360 min irradiation.

  1. Strong aggregation adsorption of methylene blue from water using amorphous WO3 nanosheets

    NASA Astrophysics Data System (ADS)

    Luo, Jian Yi; Cao, Zhi; Chen, Feng; Li, Li; Lin, Yu Rong; Liang, Bao Wen; Zeng, Qing Guang; Zhang, Mei; He, Xin; Li, Chen

    2013-12-01

    In this paper, authors demonstrate the high performance of the amorphous WO3 nanosheets in the removal of methylene blue (MB) from water. The saturated MB adsorbed amount by using WO3 nanosheets as an adsorbent can reach to 600 mg/g, exceeding the ones of the normal activated carbon powders. Results indicate that the aggregation of adsorbed MB molecules occurs in the porous micro-structures of the amorphous WO3 nanosheets, and a precipitation phenomenon begins to happen when the initial MB concentration reach to 20 mg/L or greater, attributed to the density increase of WO3 nanosheets after their porous micro-structures are adsorbed with enough MB molecules.

  2. SUPERCRITICAL SOLVOTHERMAL SYNTHESIS AND NEAR-INFRARED ABSORBING PROPERTIES OF CsxWO3

    NASA Astrophysics Data System (ADS)

    Guo, Chongshen; Yin, Shu; Huang, Yunfang; Dong, Qiang; Li, Huihui; Sato, Tsugio

    2012-06-01

    CsxWO3 nanoparticles in the range of 20-50 nm have been successfully synthesized by the supercritical solvothermal approach, where after dissolving WCl6 and CsOH in a mixed solution of water, ethanol and oleic acid, the solution was heated at 300°C. The products were characterized by X-ray diffraction, TEM, HR-TEM, EDS, laser particle size analysis and thermographic measurements. CsxWO3 nanoparticles showed the high transparency in the visible region, excellent shielding performance of the near-infrared light and limited reflectance of light in the range of 200-2700 nm, indicating the strong absorption of NIR light on the nanosized CsxWO3. CsxWO3 nanoparticles also exhibited quick conversion of photo-energy to local heat.

  3. Construction procedures using self hardening fly ash

    NASA Astrophysics Data System (ADS)

    Thornton, S. I.; Parker, D. G.

    1980-07-01

    Fly ash produced in Arkansas from burning Wyoming low sulfur coal is self-hardening and can be effective as a soil stabilizing agent for clays and sands. The strength of soil-self hardening fly ash develops rapidly when compacted immediately after mixing. Seven day unconfined compressive strengths up to 1800 psi were obtained from 20% fly ash and 80% sand mixtures. A time delay between mixing the fly ash with the soil and compaction of the mixture reduced the strength. With two hours delay, over a third of the strength was lost and with four hours delay, the loss was over half. Gypsum and some commercial concrete retarders were effective in reducing the detrimental effect of delayed compaction. Adequate mixing of the soil and fly ash and rapid compaction of the mixtures were found to be important parameters in field construction of stabilized bases.

  4. Geotechnical characterization of some Indian fly ashes

    SciTech Connect

    Das, S.K.; Yudhbir

    2005-10-01

    This paper reports the findings of experimental studies with regard to some common engineering properties (e.g., grain size, specific gravity, compaction characteristics, and unconfined compression strength) of both low and high calcium fly ashes, to evaluate their suitability as embankment materials and reclamation fills. In addition, morphology, chemistry, and mineralogy of fly ashes are studied using scanning electron microscope, electron dispersive x-ray analyzer, x-ray diffractometer, and infrared absorption spectroscopy. In high calcium fly ash, mineralogical and chemical differences are observed for particles, {gt}75 {mu} m and the particles of {lt} 45 {mu} m size. The mode and duration of curing significantly affect the strength and stress-strain behavior of fly ashes. The geotechnical properties of fly ash are governed by factors like lime content (CaO), iron content (Fe{sub 2}O{sub 3}) and loss on ignition. The distinct difference between self-hardening and pozzolanic reactivity has been emphasized.

  5. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  6. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  7. Differential response in foliar chemistry of three ash species to emerald ash borer adult feeding.

    PubMed

    Chen, Yigen; Whitehill, Justin G A; Bonello, Pierluigi; Poland, Therese M

    2011-01-01

    The emerald ash borer (EAB; Agrilus planipennis Fairmaire; Coleoptera: Buprestidae), is an exotic wood-boring beetle that has been threatening North American ash (Fraxinus spp.) resources since its discovery in Michigan and Ontario in 2002. In this study, we investigated the phytochemical responses of the three most common North American ash species (black, green, and white ash) in northeastern USA to EAB adult feeding. Black ash was the least responsive to EAB adult feeding in terms of the induction of volatile compounds, and levels of only two (indole and benzyl cyanide) of the 11 compounds studied increased. In green ash, levels of two [(E)-β-ocimene and indole] of the 11 volatile compounds studied were elevated, while the levels of two green leaf volatiles [hexanal and (E)-2-hexenal] decreased. White ash showed the greatest response with an increase in levels of seven of the 11 compounds studied. Qualitative differences among ash species were detected. Among the phenolic compounds detected, ligustroside was the only one detected in all three species. Oleuropein aglycone and 2 unidentified compounds were found only in black ash; coumaroylquinic acid and feruloylquinic acid were detected only in green ash; and verbascoside hexoside was detected only in white ash. EAB adult feeding did not elicit or decrease concentrations of any selected individual phenolic compounds. However, although levels of total phenolics from black and green ash foliage were not affected by EAB adult feeding, they decreased significantly in white ash. EAB adult feeding elevated chymotrypsin inhibitors in black ash. The possible ecological implications of these findings are discussed.

  8. [Doctor's degree thesis of Tomasz Adolf Wołkowiński "Carditidis rheumaticae historia"].

    PubMed

    Stembrowicz, W

    2001-01-01

    In 1817 on the University of Vilnius Faculty of Medicine, T. A. Wołkowiński, a student of the eminent clinician Józef Frank, defended his doctor's degree thesis about a direct relation between rheumatic disease and cardiomegaly. It was probably the first paper in Poland describing with details the rheumatic heart disease. Unfortunately we don't know much about T. A. Wołkowiński's life.

  9. Temperature Dependence of the Luminescence Decay Time of a PbWO4 Scintillator

    NASA Astrophysics Data System (ADS)

    Shi, Chao-shu; Deng, Jie; Han, Zheng-fu; Xie, Zhi-jian; Liao, Jing-ying; G, Zimmerer; J, Beker; M, Kamada; M, Runne; A, Schröder

    1998-06-01

    Experimental results are given for the temperature dependence of the decay time of the emission at 430 nm from PbWO4 crystal under vacuum-ultraviolet (82 nm) photon excitation in the temperature range of 80-300 K. The structures in the curve are interpreted for the first time by studying the thermoluminescence of PbWO4, which originates from the traps in the crystal.

  10. UV-VUV synchrotron radiation spectroscopy of NiWO4

    NASA Astrophysics Data System (ADS)

    Kuzmin, A.; Pankratov, V.; Kalinko, A.; Kotlov, A.; Shirmane, L.; Popov, A. I.

    2016-07-01

    Photoluminescence and excitation spectra of microcrystalline and nanocrystalline nickel tungstate (NiWO4) were measured using UV-VUV synchrotron radiation source. The origin of the bands is interpreted using comparative analysis with isostructural ZnWO4 tungstate and based on the results of recent first-principles band structure calculations. The influence of the local atomic structure relaxation and of Ni2+ intra-ion d-d transitions on the photoluminescence band intensity are discussed.

  11. Four-wave-mixing generation of SRS components in BaWO{sub 4} and SrWO{sub 4} crystals under picosecond excitation

    SciTech Connect

    Basiev, Tasoltan T; Doroshenko, Maxim E; Ivleva, Lyudmila I; Smetanin, Sergei N; Jelinek, M; Kubecek, V; Jelinkova, H

    2013-07-31

    Four-wave-mixing stimulated Raman scattering (SRS) generation of Stokes and anti-Stokes components in BaWO{sub 4} and SrWO{sub 4} crystals excited by a 1064-nm pulsed laser with a pulse duration of 18 ps has been investigated. It is shown that, due to the four-wave mixings of SRS components in short ({approx}1 cm) crystals, the generation thresholds of the second and third Stokes components are much lower than the values determined by the cascade SRS mechanism. If the crystal length is increased by a factor of more than four, the mechanism of multiwave SRS becomes similar to the cascade mechanism (without four-wave mixings). Rotation of BaWO{sub 4} crystal makes it possible to control the competition of the processes of four-wave-mixing SRS generation of anti-Stokes and second Stokes components. (nonlinear optical phenomena)

  12. Controllable synthesis of hierarchical nanostructures of CaWO{sub 4} and SrWO{sub 4} via a facile low-temperature route

    SciTech Connect

    Chen, Z.; Gong, Q.; Zhu, J.; Yuan, Y.P.; Qian, L.W.; Qian, X.F.

    2009-01-08

    CaWO{sub 4} and SrWO{sub 4} nanostructures have been synthesized via a simple microemulsion-mediated route. With careful control of the fundamental experimental parameters including the concentration of reactants, the reaction time and the temperature, the products with different morphologies of dumbbell, coral, rod and dendrite have been obtained, respectively. The possible formation mechanism of these unique morphologies has been proposed based on surfactant self-assembly under different experimental conditions. The as-synthesized CaWO{sub 4} samples with various morphologies exhibit different photoluminescence properties. X-ray powder diffraction, transmission electron microscopy, field-emission scanning electron microscopy, and luminescence spectroscopy were used to characterize these products.

  13. Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation.

    PubMed

    Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Fang; Liu, Chang; Ling, Jing; Lei, Le; Zhou, Weichang; Tang, Dongsheng

    2016-01-01

    In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching. PMID:27600368

  14. Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation

    PubMed Central

    Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Fang; Liu, Chang; Ling, Jing; Lei, Le; Zhou, Weichang; Tang, Dongsheng

    2016-01-01

    In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching. PMID:27600368

  15. Synthesis of bismuth tungstate (Bi2WO6) nanoflakes and their field emission investigation

    NASA Astrophysics Data System (ADS)

    Kolhe, P. S.; Bankar, P. K.; Gavhane, D. S.; Sonawane, K. M.; Maiti, N.; More, M. A.

    2016-05-01

    The nanoflakes of Bismuth Tungstate (Bi2WO6) were successfully synthesized by a one-step facile hydrothermal route without using any templates or surfactants and field emission investigations of the Bi2WO6 nanoflakes emitter are reported. Structural and morphological analysis of as-synthesized Bi2WO6 nanoflakes has been carried out using X-ray diffraction (XRD) and scanning electron microscope (SEM). Moreover, the field emission characteristics of the Bi2WO6 nanoflakes are found to be superior to the other semiconductor emitters. The synthesized Bi2WO6 nanoflakes emitter delivers current density of ~222.35 μA/cm2 at an applied electric field of ~7.2 V/μm. The emission current stability investigated at pre-set value of ~2 μA is observed to be fairly good. These observed results demonstrate potential candidate of the Bi2WO6 cathode as an electron source for practical applications in vacuum microelectronic device.

  16. Memristive properties of hexagonal WO3 nanowires induced by oxygen vacancy migration.

    PubMed

    He, Xiongwu; Yin, Yanling; Guo, Jie; Yuan, Huajun; Peng, Yuehua; Zhou, Yong; Zhao, Ding; Hai, Kuo; Zhou, Weichang; Tang, Dongsheng

    2013-01-01

    Tungsten trioxide (WO3) is always oxygen-deficient or non-stoichiometric under atmospheric conditions. Positively charged oxygen vacancies prefer to drift as well as electrons when the electric field is strong enough, which will alter the distribution of oxygen vacancies and then endow WO3 with memristive properties. In Au/WO3 nanowire/Au sandwich structures with two ohmic contacts, the axial distribution of oxygen vacancies and then the electrical transport properties can be more easily modulated by bias voltage. The threshold electric field for oxygen vacancy drifting in single-crystal hexagonal WO3 nanowire is about 106 V/m, one order of magnitude less than that in its granular film. At elevated temperatures, the oxygen vacancy drifts and then the memristive effect can be enhanced remarkably. When the two metallic contacts are asymmetric, the WO3 nanowire devices even demonstrate good rectifying characteristic at elevated temperatures. Based on the drift of oxygen vacancies, nanoelectronic devices such as memristor, rectifier, and two-terminal resistive random access memory can be fabricated on individual WO3 nanowires. PMID:23347429

  17. Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation.

    PubMed

    Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Fang; Liu, Chang; Ling, Jing; Lei, Le; Zhou, Weichang; Tang, Dongsheng

    2016-01-01

    In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching.

  18. WO3/TiO2 nanotube photoanodes for solar water splitting with simultaneous wastewater treatment.

    SciTech Connect

    Reyes, Karla Rosa; Robinson, David B.

    2013-05-01

    Nanostructured WO3/TiO2 nanotubes with properties that enhance solar photoconversion reactions were developed, characterized and tested. The TiO2 nanotubes were prepared by anodization of Ti foil, and WO3 was electrodeposited on top of the nanotubes. SEM images show that these materials have the same ordered structure as TiO2 nanotubes, with an external nanostructured WO3 layer. Diffuse reflectance spectra showed an increase in the visible absorption relative to bare TiO2 nanotubes, and in the UV absorption relative to bare WO3 films. Incident simulated solar photon-to-current efficiency increased from 30% (for bare WO3) to 50% (for WO3/TiO2 composites). With the addition of diverse organic pollutants, the photocurrent densities exhibited more than a 5-fold increase. Chemical oxygen demand measurements showed the simultaneous photodegradation of organic pollutants. The results of this work indicate that the unique structure and composition of these composite materials enhance the charge carrier transport and optical properties compared with the parent materials.

  19. Phonon properties of nanosized MnWO{sub 4} with different size and morphology

    SciTech Connect

    Maczka, MirosLaw; Ptak, Maciej; Kurnatowska, Michalina; Kepinski, Leszek; Tomaszewski, PaweL; Hanuza, Jerzy

    2011-09-15

    Highly hierarchical barlike and flowerlike MnWO{sub 4} microcrystals have been synthesized for the first time by a hydrothermal method, where ethanolamine (EA) and cetyltrimethylamonnium bromide (CTAB) play important roles in directing growth and self-assembly of these structures. The possible formation process has been proposed. In addition, platelike nanosized MnWO{sub 4} was also synthesized by annealing of a precursor obtained by coprecipitation method. The obtained samples were characterized by XRD, SEM, TEM, Raman and IR methods. Raman spectra showed relatively weak dependence on particle size and morphology of the particles. In contrast to this behavior, IR-active bands showed pronounced shifts and changes in relative intensities on particle size and the morphology. Origin of this behavior is discussed. - Graphical Abstract: SEM images of MnWO{sub 4} particles prepared by hydrothermal process at 150 deg. C (left panel) and 200 deg. C (right panel). Highlights: > Hydrothermal synthesis with ethanolamine enables growth of hierarchical nanosized MnWO{sub 4} particles. > Annealing of a precursor obtained by coprecipitation method enables growth of platelike MnWO{sub 4} nanoparticles. > Raman and IR spectra of MnWO{sub 4} nanoparticles depend on both size and morphology of the nanoparticles. > We discuss origin of this behavior.

  20. Investigation of x-ray photoelectron spectroscopic (XPS), cyclic voltammetric analyses of WO3 films and their electrochromic response in FTO/WO3/electrolyte/FTO cells

    NASA Astrophysics Data System (ADS)

    Sivakumar, R.; Gopalakrishnan, R.; Jayachandran, M.; Sanjeeviraja, C.

    2006-06-01

    Electrochromic thin films of tungsten oxide (WO3) were prepared on transparent conducting oxide substrates, i.e., fluorine doped tin oxide coated (FTO or SnO2:F) glass and microscopic glass substrates by the electron beam evaporation technique using pure WO3 (99.99%) pellets at various substrate temperatures (i.e., Tsub = room temperature (RT, 30 °C), 100 °C and 200 °C). The films were prepared under vacuum of the order of 1 × 10-5 mbar. The room temperature prepared films were further post-heat-treated (Tanne) at 200 and 300 °C for about 1 h in the vacuum environment. The prepared films are in monoclinic phase. The chemical composition has been characterized by using the XPS technique. The W 4f and O 1s core levels of WO3 films have been studied on the samples. The obtained core level binding energies revealed the WO3 films contained six-valent tungsten (W6+). The electrochemical nature of the films was studied by a three-electrode electrochemical cell in the configuration of FTO/WO3/H2SO4/Pt, SCE, using the cyclic voltammetry (CV) technique. Electrochromic devices (ECDs) of the general type FTO/WO3/electrolyte/FTO were studied. The films produced at higher substrate temperature show smaller modulation of the visible spectrum, compared with the films produced at lower temperatures. The significant chemical bonding nature associated with the coloring/bleaching process which follows the H+ ion incorporation in the film is studied by FTIR analysis. The W-O-W framework peak was observed at 563 cm-1 and confirms the stability of the films in the electrochemical analysis. The results obtained from cyclic voltammetry technique and ECD cell characterization are used to emphasize the suitability for some applications of the solar control systems.

  1. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  2. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2012-05-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  3. Laboratory Studies of Ice Nucleation on Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Tolbert, M. A.; Schill, G. P.; Genareau, K. D.

    2014-12-01

    Ice nucleation on volcanic ash controls both ash aggregation and cloud glaciation, which affect human respiratory health, atmospheric transport, and global climate. We have performed laboratory studies of the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman Microscopy coupled to an environmental cell. Ash from the Fuego (Basaltic Ash, Guatemala), Soufriere Hills (Andesetic Ash, Montserrat), and Taupo (Rhyolitic Ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. We find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice at ice saturation ratios of 1.05 ± 0.1. For immersion freezing, however, only the Taupo ash exhibited efficient heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  4. Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light

    PubMed Central

    2011-01-01

    WO3-treated fullerene/TiO2 composites (WO3-fullerene/TiO2) were prepared using a sol-gel method. The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis. A methyl orange (MO) solution under visible light irradiation was used to determine the photocatalytic activity. Excellent photocatalytic degradation of a MO solution was observed using the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2 composites under visible light. An increase in photocatalytic activity was observed, and WO3-fullerene/TiO2 has the best photocatalytic activity; it may attribute to the increase of the photo-absorption effect by the fullerene and the cooperative effect of the WO3. PMID:21774800

  5. Comparative studies of monoclinic and orthorhombic WO3 films used for hydrogen sensor fabrication on SiC crystal

    NASA Astrophysics Data System (ADS)

    Zuev, V. V.; Grigoriev, S. N.; Romanov, R. I.; Fominski, V. Y.; Volosova, M. A.; Demin, M. V.

    2016-09-01

    Amorphous WOx films were prepared on the SiC crystal by using two different methods, namely, reactive pulsed laser deposition (RPLD) and reactive deposition by ion sputtering (RDIS). After deposition, the WOx films were annealed in an air. The RISD film possessed a m-WO3 structure and consisted of closely packed microcrystals. Localized swelling of the films and micro-hills growth did not destroy dense crystal packing. RPLD film had layered β-WO3 structure with relatively smooth surface. Smoothness of the films were destroyed by localized swelling and the micro-openings formation was observed. Comparative study of m-WO3/SiC, Pt/m-WO3/SiC, and P-WO3/SiC samples shows that structural characteristics of the WO3 films strongly influence on the voltage/current response as well as on the rate of current growth during H2 detection at elevated temperatures.

  6. A review of volcanic ash aggregation

    NASA Astrophysics Data System (ADS)

    Brown, R. J.; Bonadonna, C.; Durant, A. J.

    2012-01-01

    Most volcanic ash particles with diameters <63 μm settle from eruption clouds as particle aggregates that cumulatively have larger sizes, lower densities, and higher terminal fall velocities than individual constituent particles. Particle aggregation reduces the atmospheric residence time of fine ash, which results in a proportional increase in fine ash fallout within 10-100 s km from the volcano and a reduction in airborne fine ash mass concentrations 1000 s km from the volcano. Aggregate characteristics vary with distance from the volcano: proximal aggregates are typically larger (up to cm size) with concentric structures, while distal aggregates are typically smaller (sub-millimetre size). Particles comprising ash aggregates are bound through hydro-bonds (liquid and ice water) and electrostatic forces, and the rate of particle aggregation correlates with cloud liquid water availability. Eruption source parameters (including initial particle size distribution, erupted mass, eruption column height, cloud water content and temperature) and the eruption plume temperature lapse rate, coupled with the environmental parameters, determines the type and spatiotemporal distribution of aggregates. Field studies, lab experiments and modelling investigations have already provided important insights on the process of particle aggregation. However, new integrated observations that combine remote sensing studies of ash clouds with field measurement and sampling, and lab experiments are required to fill current gaps in knowledge surrounding the theory of ash aggregate formation.

  7. Erodibility of fly ash-treated minesoils

    SciTech Connect

    Gorman, J.M.; Sencindiver, J.C.; Singh, R.N.

    1997-12-31

    Fly ash, a by-product of coal-fired power plants, has been used successfully in reclaiming adverse mine sites such as abandoned mine lands by improving minesoil chemical and physical properties. But, the fine sand-silt particle size of fly ash may make it more susceptible to detachment and transport by erosive processes. Furthermore, the high content of silt-size particles in fly ash may make it more susceptable to surface crust formation resulting in reduced infiltration and increased surface runoff and erosion. In the summer of 1989, fly ash/wood waste mixtures were surface applied on two separate mine sites, one with 10% slope and the other 20% slope, in central Preston County, West Virginia. Erosion rates were measured directly using the Linear Erosion/Elevation Measuring Instrument (LEMI). Erosion measurements were taken during the first two growing seasons on both sites. Erosion values were up to five times greater on the fly ash-treated minesoil than on the minesoil without fly ash cover. Mulching with wood chips reduced fly ash erosion to about one-half the loss of the unmulched plots. Erosion was related to both the amount and type of ground cover. Increased vegetative ground cover resulted in reduced erosion. Mosses and fungi appeared to provide better erosion protection than grass-legume cover.

  8. Municipal solid-waste incinerator fly ash

    SciTech Connect

    Goh, A.T.C. ); Joohwa Tay )

    1993-05-01

    Many highly urbanized cities are faced with the problem of disposal of municipal solid waste because of the scarcity of land available for landfilling. One possible solution is the incineration of the municipal solid waste. After incineration, about 20% by weight of fly ash and other residues are produced. Investigations into the physical and engineering properties of the fly ash derived from municipal solid-waste incineration indicate that the material is a potential source of fill material, with low compacted density and high strength. The fly ash was relatively free draining, with permeability of the same order of magnitude as coarse grained materials. The use of the fly ash as an admixture in the stabilization of a soft marine clay showed improved undrained shear strengths and lower compressive properties. Leachate tests on the samples of fly ash initially indicated trace quantities of cadmium and chromium in excess of the acceptable drinking-water limits. After leaching for 28 days, the concentrations fell below the drinking-water limits. Lime and cement can be used to stabilize the fly ash. The concentrations of heavy metals in the leachates of lime and cement treated fly ash were nondetectable.

  9. Effect of fluorine, nitrogen, and carbon impurities on the electronic and magnetic properties of WO{sub 3}

    SciTech Connect

    Shein, I. R.; Ivanovskii, A. L.

    2013-06-15

    Within electron density functional theory with the use of the Vienna ab-initio simulation package (VASP), the effect of the sp substitutional impurities of fluorine (n-type dopant), nitrogen, and carbon (p-type dopants) on the electronic and magnetic properties of tungsten trioxide WO{sub 3} is studied. It is established that these impurities induce the transformation of tungsten trioxide (nonmagnetic semiconductor) into nonmagnetic metal (WO{sub 3}:F), magnetic semimetal (WO{sub 3}:N), or magnetic metal (WO{sub 3}:C) states.

  10. Inductive effect of poly(vinyl pyrrolidone) on morphology and photocatalytic performance of Bi2WO6

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Chen, Jinxing; Xie, Yunyun; Wang, Mozhen; Ge, Xuewu

    2016-04-01

    Bi2WO6 has great potential applications in the field of photocatalyst due to its excellent visible-light photocatalytic performance. This work studied the detailed morphological evolution of Bi2WO6 particles synthesized in a simple hydrothermal system induced by the stabilizer poly(vinyl pyrrolidone) (PVP). The XRD and HRTEM results show PVP would not change the crystal structure of Bi2WO6, but the distribution of PVP on the initially formed Bi2WO6 nanosheets will induce the crystal growth, resulting in a distinct morphology evolution of Bi2WO6 with the increase of the concentration of PVP. At the same time, with the increase of the molecular weight of PVP, the morphology of Bi2WO6 varied from simple sheet-like (S-BWO) to some complicated morphology, such as flower-like (F-BWO), red blood cell-like (B-BWO), and square-pillar-like (SP-BWO). The photocatalytic performances of Bi2WO6 with various morphologies on the decomposition of RhB under visible light irradiation reveal that S-BWO has the best photocatalytic performance, while SP-BWO has the worst. This work not only gives the explanation of the inductive effect of PVP molecular chains on the morphological formation of Bi2WO6 particles, but also provides the controllable way to the preparation of Bi2WO6 with various morphologies taking advantage of the stabilizer PVP.

  11. Ash iron mobilization in volcanic eruption plumes

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, G.; Hort, M.; Langmann, B.

    2014-12-01

    It has been shown that volcanic ash fertilizes the Fe-limited areas of the surface ocean through releasing soluble iron. As ash iron is mostly insoluble upon the eruption, it is hypothesized that heterogeneous in-plume and in-cloud processing of the ash promote the iron solubilization. Direct evidences concerning such processes are, however, lacking. In this study, a 1-D numerical model is developed to simulate the physicochemical interactions of gas-ash-aerosol in volcanic eruption plumes focusing on the iron mobilization processes at temperatures between 600 and 0 °C. Results show that sulfuric acid and water vapor condense at ~150 and ~50 °C on the ash surface, respectively. This liquid phase then efficiently scavenges the surrounding gases (>95% of HCl, 3-20% of SO2 and 12-62% of HF) forming an extremely acidic coating at the ash surface. The low pH conditions of the aqueous film promote acid-mediated dissolution of the Fe-bearing phases present in the ash material. We estimate that 0.1 to 33% of the total iron available at the ash surface is dissolved in the aqueous phase before the freezing point is reached. The efficiency of dissolution is controlled by the halogen content of the erupted gas as well as the mineralogy of the iron at ash surface: elevated halogen concentrations and presence of Fe2+-carrying phases lead to the highest dissolution efficiency. Findings of this study are in agreement with the data obtained through leaching experiments.

  12. Marine mesocosm bacterial colonisation of volcanic ash

    NASA Astrophysics Data System (ADS)

    Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert

    2015-04-01

    Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the

  13. Characterizing the Hydrological Properties of Wildfire Ash

    NASA Astrophysics Data System (ADS)

    Woods, S.; Balfour, V.

    2010-12-01

    Wildfires are extreme disturbance events that can increase runoff and erosion rates by 2-3 orders of magnitude. Fire related sediment presents a significant geomorphic hazard in terms of debris flows and other catastrophic erosion events, but ultimately plays a key role in landscape evolution in fire prone regions. The hyper-dessicated ash and soil layers making up the near surface profile in recently burned areas respond very differently to rainfall than the litter and unburned soil that existed prior to the fire. Limited knowledge regarding the hydrological properties of the ash-soil profile, and the ash layer in particular, currently limits efforts to model the infiltration process in burned areas and hence predict the location and magnitude of post fire runoff and erosion events. In our ongoing research we are investigating and quantifying the hydrologic properties of wildfire ash. Wherever possible we use conventional laboratory techniques from soil hydrology but in some cases we have had to adapt these techniques to account for the distinct physical and chemical properties of ash, such as the variability in particle density and the partial solubility of many of the mineral components. Some of the hydrologic properties of ash, such as the hydraulic conductivity, are similar to those of a mineral soil with a comparable particle size distribution. For example, ash from Spain with a silty loam texture had a hydraulic conductivity of 7 x 10-4 cm s-1, which is within the range reported for mineral soils with the same texture. However, other properties such as the porosity are considerably different; an undisturbed ash sample with a sandy loam texture had a porosity of 93 percent compared to the typical range of 30 to 50 percent for mineral soils with this texture. Scanning electron microscopy analysis indicates that the contrasting hydrologic properties of ash and soil are due to differences in the particle shape, particle packing and pore structure. Using examples

  14. Rocky Flats ash test procedure (sludge stabilization)

    SciTech Connect

    Winstead, M.L.

    1995-09-14

    Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. This test will also gain information on the effects of the glovebox atmosphere (moisture) on the stabilized material. This document provides instructions for testing Rocky Flats Ash in the HC-21C muffle furnace process.

  15. Volcanic Ash Transport and Dispersion Forecasting

    NASA Astrophysics Data System (ADS)

    Servranckx, R.; Stunder, B.

    2006-12-01

    Volcanic ash transport and dispersion models (VATDM) have been used operationally since the mid 1990's by the International Civil Aviation Organization (ICAO) designated Volcanic Ash Advisory Centers (VAAC) to provide ash forecast guidance. Over the years, significant improvements in the detection and prediction of airborne volcanic ash have been realized thanks to improved models, increases in computing power, 24-hr real time monitoring by VAACs / Meteorological Watch Offices and close coordination with Volcano Observatories around the world. Yet, predicting accurately the spatial and temporal structures of airborne volcanic ash and the deposition at the earth's surface remains a difficult and challenging problem. The forecasting problem is influenced by 3 main components. The first one (ERUPTION SOURCE PARAMETERS) comprises all non-meteorological parameters that characterize a specific eruption or volcanic ash cloud. For example, the volume / mass of ash released in the atmosphere, the duration of the eruption, the altitude and distribution of the ash cloud, the particle size distribution, etc. The second component (METEOROLOGY) includes all meteorological parameters (wind, moisture, stability, etc.) that are calculated by Numerical Weather Prediction models and that serve as input to the VATDM. The third component (TRANSPORT AND DISPERSION) combines input from the other 2 components through the use of VATDM to transport and disperse airborne volcanic ash in the atmosphere as well as depositing it at the surface though various removal mechanisms. Any weakness in one of the components may adversely affect the accuracy of the forecast. In a real-time, operational response context such as exists at the VAACs, the rapid delivery of the modeling results puts some constraints on model resolution and computing time. Efforts are ongoing to evaluate the reliability of VATDM forecasts though the use of various methods, including ensemble techniques. Remote sensing data

  16. A process for resolving ash issues

    SciTech Connect

    Barnes, J.M.

    1995-09-01

    Waste-to-energy (WTE) plants leave about 10 percent of the combusted trash volume as ash. The residue has been a problem for may WTE plant operators and the communities they serve. Recent changes in regulations governing ash handling have lead to new sampling procedures, more frequent testing, and more costly handling and treatment processes. The Nashville Thermal Transfer Corporation`s WTE plant is involved in an project developed by the American Ash Recycling Corp, which addresses environmental concerns, recycling, and cost concerns. This article describes the project and how it tackles these three issues. 4 refs., 1 fig.

  17. Electrodialytic removal of Cd from biomass combustion fly ash suspensions.

    PubMed

    Kirkelund, Gunvor M; Damoe, Anne J; Ottosen, Lisbeth M

    2013-04-15

    Due to relatively high concentrations of Cd, biomass combustion fly ashes often fail to meet Danish legislative requirements for recycling as fertilizer. In this study, the potential of using electrodialytic remediation for removal of Cd from four different biomass combustion fly ashes was investigated with the aim of enabling reuse of the ashes. The ashes originated from combustion of straw (two ashes), wood chips, and co-firing of wood pellets and fuel oil, respectively. A series of laboratory scale electrodialytic remediation experiments were conducted with each ash. The initial Cd concentration in the ashes varied between 8.8 mg Cd/kg (co-firing ash) and 64 mg Cd/kg (pre-washed straw ash), and pH varied from 3.7 (co-firing ash) to 13.3 (wood ash). In spite of such large variations between the ashes, the electrodialytic method showed to be sufficiently robust to treat the ashes so the final Cd concentration was below 2.0mg Cd/kg DM in at least one experiment done with each ash. This was obtained within 2 weeks of remediation and at liquid to solid (L/S) ratios of L/S 16 for the pre-washed straw ash and L/S 8 for the straw, co-firing and wood ash. PMID:23454460

  18. Fly Ash Disposal in Ash Ponds: A Threat to Ground Water Contamination

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Gupta, N. C.; Guha, B. K.

    2016-09-01

    Ground water contamination due to deposition of fly ash in ash ponds was assessed by simulating the disposal site conditions using batch leaching test with fly ash samples from three thermal power plants. The periodic analysis of leachates was performed for selected elements, Fe, Cu, Ni, Cr, Pb and Cd in three different extraction solutions to determine the maximum amount that can be leached from fly ash. It was observed that at low pH value, maximum metals are released from the surface of the ash into leachate. The average concentration of these elements found in ground water samples from the nearby area of ash ponds shows that almost all the metals except `Cr' are crossing the prescribed limits of drinking water. The concentration of these elements at this level can endanger public health and environment.

  19. Fly Ash Disposal in Ash Ponds: A Threat to Ground Water Contamination

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Gupta, N. C.; Guha, B. K.

    2016-07-01

    Ground water contamination due to deposition of fly ash in ash ponds was assessed by simulating the disposal site conditions using batch leaching test with fly ash samples from three thermal power plants. The periodic analysis of leachates was performed for selected elements, Fe, Cu, Ni, Cr, Pb and Cd in three different extraction solutions to determine the maximum amount that can be leached from fly ash. It was observed that at low pH value, maximum metals are released from the surface of the ash into leachate. The average concentration of these elements found in ground water samples from the nearby area of ash ponds shows that almost all the metals except `Cr' are crossing the prescribed limits of drinking water. The concentration of these elements at this level can endanger public health and environment.

  20. Enhancement in mechanical properties of concrete due to blended ash

    SciTech Connect

    Naik, T.R.; Singh, S.S.; Hossain, M.M.

    1996-01-01

    This study was carried out to evaluate the effects of blended ash mixture on mechanical properties of concrete. In this study two reference mixtures were used. One of the mixtures was a no-fly ash mixture, and the other mixture contained 35% unblended Class C fly ash. Additional mixtures were composed of three blends of Class C and Class F fly ash while maintaining a total fly ash content of 40% of the total cementitious materials. Mechanical properties such as compressive strength, tensile strength, flexural strength, and modulus of elasticity were determined as a function of age ranging from 1 to 91 days. The results showed that blending of Class F fly ash with Class C fly ash showed either comparable or better results compared to either the reference mixture without fly ash or the unblended Class C fly ash concrete mixture at a fly ash concentration of 40% of total cementitious materials.

  1. Synthesis and photoactivity enhancement of Ba doped Bi{sub 2}WO{sub 6} photocatalyst

    SciTech Connect

    Li, Wen Ting; Huang, Wan Zhen; Zhou, Huan; Yin, Hao Yong; Zheng, Yi Fan; Song, Xu Chun

    2015-04-15

    Highlights: • The Ba-doped Bi{sub 2}WO{sub 6} photocatalyst have been synthesized by a hydrothermal route. • The photocatalytic activity of Bi{sub 2}WO{sub 6} was greatly enhanced by Ba-doping. • The effect of Ba on the catalytic activity of Bi{sub 2}WO{sub 6} was studied and discussed. - Abstract: In this study, Bi{sub 2}WO{sub 6} doped with different barium contents were successfully prepared by a simple hydrothermal route at 180 °C for 12 h. The as-synthesized samples were characterized in detailed by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffusere flectance spectroscopy (UV–vis DRS) and Brunauer–Emmet–Teller (BET) theory. Their photocatalytic activities were evaluated by photodegradation of Rhodamine B (RhB) under simulated solar light. As a result, the photocatalytic properties were enhanced after Ba doping and the Ba-doped Bi{sub 2}WO{sub 6} with R{sub Ba} = 0.15 showed the highest photocatalytic activities of 96.3% RhB was decomposed in 50 min. Close investigation revealed that the proper Ba doped into Bi{sub 2}WO{sub 6} could not only increases its BET surface area, decrease its crystalline size, but also act as electron traps and facilitate the separation of photogenerated electron–hole pairs. The mechanism of enhanced photocatalytic activities of Ba-doped Bi{sub 2}WO{sub 6} were further investigated.

  2. WO-Type Wolf-Rayet Stars: the Last Hurrah of the Most Massive Stars?

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    2014-10-01

    WO-type Wolf-Rayet (WR) stars are considered the final evolutionary stage of the highest mass stars, immediate precursors to Type Ic (He-poor) core-collapse supernovae. These WO stars are rare, and until recently only 6 were known. Our knowledge about their physical properties is mostly based on a single object, Sand 2 in the LMC. It was the only non-binary WO star both bright and unreddened enough that its FUV and NUV spectra could be obtained by FUSE and HST/FOS. A non-LTE analysis showed that Sand 2 is very hot and its (C+O)/He abundance ratio is higher than that found in WC-type WRs, suggesting it is indeed highly evolved. However, the O VI resonance doublet in the FUV required a considerably cooler temperature (120,000 K) model than did the optical O VI lines (170,000 K). Further, the enhanced chemical abundances did not match the predictions of stellar evolutionary models. Another non-LTE study found a 3x higher (C+O)/He abundance ratio and a cooler temperature. We have recently discovered two other bright, single, and lightly reddened WOs in the LMC, allowing us to take a fresh look at these important objects. Our newly found WOs span a range in excitation type, from WO1 (the highest) to WO4 (the lowest). Sand 2 is intermediate (WO3). We propose to use COS to obtain FUV and NUV data of all three stars for as comprehensive a study as is currently possible. These UV data will be combined with our optical Magellan spectra for a detailed analysis with CMFGEN with the latest atomic data. Knowing the degree of chemical evolution of these WO stars is crucial to determining their evolutionary status, and thus in understanding the final stages of the most massive stars.

  3. Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash.

    PubMed

    Okada, Takashi; Suzuki, Masaru

    2013-11-30

    In some gasification-melting plants, generated melting furnace fly ash is returned back to the melting furnace for converting the ash to slag. This study investigated the effect of such ash circulation in the gasification-melting system on the concentration and leachability of lead in the melting furnace fly ash. The ash circulation in the melting process was simulated by a thermodynamic calculation, and an elemental analysis and leaching tests were performed on a melting furnace fly ash sample collected from the gasification-melting plant with the ash circulation. It was found that by the ash circulation in the gasification-melting, lead was highly concentrated in the melting furnace fly ash to the level equal to the fly ash from the ash-melting process. The thermodynamic calculation predicted that the lead volatilization by the chlorination is promoted by the ash circulation resulting in the high lead concentration. In addition, the lead extraction from the melting furnace fly ash into a NaOH solution was also enhanced by the ash circulation, and over 90% of lead in the fly ash was extracted in 5 min when using 0.5 mol l(-1) NaOH solution with L/S ratio of 10 at 100 °C. Based on the results, a combination of the gasification-melting with the ash circulation and the NaOH leaching method is proposed for the high efficient lead recovery.

  4. Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators.

    PubMed

    Chou, Jing-Dong; Wey, Ming-Yen; Liang, Hsiu-Hao; Chang, Shih-Hsien

    2009-08-30

    Different types of municipal solid waste incinerator (MSWI) fly and bottom ash were extracted by TCLP and PBET procedures. The biotoxicity of the leachate of fly ash and bottom ash was evaluated by Vibrio fischeri light inhibition test. The results indicate the following: (1) The optimal solid/liquid ratio was 1:100 for PBET extraction because it had the highest Pb and Cu extractable mass from MSWI fly ash. (2) The extractable metal mass from both fly ash and bottom ash by PBET procedure was significantly higher than that by TCLP procedure. (3) The metal concentrations of fly ash leachate from a fluidized bed incinerator was lower than that from mass-burning and mass-burning combined with rotary kiln incinerator. (4) The TCLP and PBET leachate from all MSWI fly ash samples showed biotoxicity. Even though bottom ash is regarded as a non-hazardous material, its TCLP and PBET leachate also showed biotoxicity. The pH significantly influenced the biotoxicity of leachate. PMID:19264394

  5. Biotic and abiotic factors affect green ash volatile production and emerald ash borer adult feeding preference.

    PubMed

    Chen, Yigen; Poland, Therese M

    2009-12-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an exotic woodborer first detected in 2002 in Michigan and Ontario and is threatening the ash resource in North America. We examined the effects of light exposure and girdling on green ash (Fraxinus pennsylvanica Marsh) volatile production, and effects of light exposure, girdling, and leaf age on emerald ash borer adult feeding preferences and phototaxis. Green ash seedlings grown under higher light exposure had lower amounts of three individual volatile compounds, (Z)-3-hexenol, (E)-beta-ocimene, and (Z,E)-alpha-farnesene, as well as the total amount of six detected volatile compounds. Girdling did not affect the levels of these volatiles. Emerald ash borer females preferred mature leaves, leaves from girdled trees, and leaves grown in the sun over young leaves, leaves from nongirdled trees, and leaves grown in the shade, respectively. These emerald ash borer preferences were most likely because of physical, nutritional, or biochemical changes in leaves in response to the different treatments. Emerald ash borer females and males showed positive phototaxis in laboratory arenas, a response consistent with emerald ash borer preference for host trees growing in sunlight.

  6. Potential products from North Dakota lignite fly ash. Final report

    SciTech Connect

    Anderson, G R

    1980-06-01

    Four major areas where fly ash can be used are explored. Concrete building blocks with fly ash replacing 50% of the portland cement have proven to be successful using current ASTM standards. Results in the ceramics area show that a ceramic-like product using fly ash and crushed glass with a small amount of clay as a green binder. Some preliminary results using sulfur ash in building materials are reported and with results of making wallboard from ash. (MHR)

  7. Fluidized bed gasification ash reduction and removal system

    DOEpatents

    Schenone, Carl E.; Rosinski, Joseph

    1984-02-28

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  8. Fluidized bed gasification ash reduction and removal process

    DOEpatents

    Schenone, Carl E.; Rosinski, Joseph

    1984-12-04

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  9. Structural, vibrational and luminescence properties of the (1−x)CaWO{sub 4}−xCdWO{sub 4} system

    SciTech Connect

    Taoufyq, A.; Guinneton, F.; Valmalette, J-C.; Arab, M.; Benlhachemi, A.; Bakiz, B.; Villain, S.; and others

    2014-11-15

    In the present work, we investigate the structural, microstructural, vibrational and luminescence properties of the system (1−x)CaWO{sub 4}−xCdWO{sub 4} with x ranging between 0 and 1. Polycrystalline samples were elaborated using a coprecipitation technique followed by thermal treatment at 1000 °C. The samples were then characterized using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and luminescence analyses. X-ray diffraction profile analyses using Rietveld method showed that two kinds of solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4} having scheelite and wolframite structures, with respectively tetragonal and monoclinic crystal cells, were observed, with a biphasic system for compositions x=0.6 and 0.7. The scanning electron microscopy experiments showed a complex evolution of morphologies and crystallite sizes as x increased. The vibration modes of Raman spectra were characteristic of composition-dependent disordered solid solutions with decreasing wavenumbers as x increased. Luminescence experiments were performed under UV-laser light irradiation. The energies of emission bands increased linearly with cadmium composition x. The integrated intensity of luminescence reached a maximum value for the substituted wolframite phase with composition x=0.8. - Graphical abstract: Luminescence on UV excitation (364.5 nm) of (1−x)CaWO{sub 4−x}CdWO{sub 4} system, elaborated from coprecipitation technique at 1000 °C, with 0WO{sub 4} polycrystalline phases with 0≤x≤0.5. (b) Maximum of luminescence intensity for the composition x=0.8. - Highlights: • Solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4} are elaborated from coprecipitation technique. • The structures of two types of solid solutions are refined using Rietveld method. • A maximum of luminescence is obtained for an intermediate composition x=0.8.

  10. Clay Improvement with Burned Olive Waste Ash

    PubMed Central

    Mutman, Utkan

    2013-01-01

    Olive oil is concentrated in the Mediterranean basin countries. Since the olive oil industries are incriminated for a high quantity of pollution, it has become imperative to solve this problem by developing optimized systems for the treatment of olive oil wastes. This study proposes a solution to the problem. Burned olive waste ash is evaluated for using it as clay stabilizer. In a laboratory, bentonite clay is used to improve olive waste ash. Before the laboratory, the olive waste is burned at 550°C in the high temperature oven. The burned olive waste ash was added to bentonite clay with increasing 1% by weight from 1% to 10%. The study consisted of the following tests on samples treated with burned olive waste ash: Atterberg Limits, Standard Proctor Density, and Unconfined Compressive Strength Tests. The test results show promise for this material to be used as stabilizer and to solve many of the problems associated with its accumulation. PMID:23766671

  11. Rocky Flats Ash test procedure (sludge stabilization)

    SciTech Connect

    Funston, G.A.

    1995-06-14

    Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. The test will provide information to determine charge sizes, soak times and mesh screen sizes (if available at time of test) for stabilization of Rocky Flats Ash items to be processed in the HC-21C Muffle Furnace Process. Once the charge size and soak times have been established, a program for the temperature controller of the HC-21C Muffle Furnace process will be generated for processing Rocky Flats Ash.

  12. Fly ash system technology improves opacity

    SciTech Connect

    2007-06-15

    Unit 3 of the Dave Johnston Power Plant east of Glenrock, WY, USA had problems staying at or below the opacity limits set by the state. The unit makes use of a Lodge Cottrell precipitator. When the plant changed to burning Power River Basin coal, ash buildup became a significant issue as the fly ash control system was unable to properly evacuate hoppers on the unit. To overcome the problem, the PLC on the unit was replaced with a software optimization package called SmartAsh for the precipitator fly ash control system, at a cost of $500,000. After the upgrade, there have been no plugged hoppers and the opacity has been reduced from around 20% to 3-5%. 2 figs.

  13. Valuable products from utility fly ash

    SciTech Connect

    DeBarr, J.A.; Rapp, D.M.

    1996-10-01

    Utilization of wastes from coal combustion is becoming an issue of increasing concern to coal companies and to the utilities that burn coal. The willingness of a coal company to dispose of the waste generated when its coal is burned is an advantage in a very competitive marketplace. Recovery of relatively valuable products from utility fly ash would help offset disposal costs, and may represent a component of an overall scheme of fly ash processing where fly ash is regarded as a potential resource rather than a waste. In this study, the quantity and quality of recoverable adsorbent carbon, magnetite and cenospheres is being evaluated. Preliminary results have demonstrated that quality adsorbent carbon and magnetite products can be prepared from fly ash derived from combustion of Illinois coals.

  14. Wildland fire ash: future research directions

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.; Martins, Deborah A.; Cerdà, Artemi; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Mataix-Solera, Jorge

    2014-05-01

    Ash is a key component of the forest fires affected land (Cerdà, 1998; Bodí et al., 2011; Pereira et al., 2013a). Ash controls the hydrological processes and determines the water repellency (Dlapa et al., 2012) and the infiltration rates (Cerdà and Doerr, 2008;). Moreover, ash is the key factor on runoff initiation and then on the soil erosion. Little is known about the impact of ash in different ecosystems, but during the last decade a substantial increase in the papers that show the role of ash in the Earth and Soil System were published (Bodí et al., 2012; Pereira et al., 2013b).. Ash is being found as the key component of the post-fire pedological, geomorphological and hydrological response after forest fires (Fernández et al., 2012; Martín et al., 2012; Bodí et al., 2013; Guénon et al., 2013; Pereira et al., 2013c). A recent State-of-the-Art review about wildland fire ash (Bodí et al., 2014) compiles the knowledge regarding the production, composition and eco-hydro-geomorphic effects of wildland fire ash. In the present paper we indicate the knowledge gaps detected and suggest topics that need more research effort concerning: i) data collection and analysis techniques: a) To develop standardized sampling techniques that allow cross comparison among sites and avoid inclusion of the underlying soil unless the burned surface soil forms part of the ash layer, b) To develop standardized methods to define and characterize ash, including its color, physical properties such as particle size distribution or density, proportion of pyrogenic C, chemical and biological reactivity and persistence in the environment, c) To validate, calibrate and test measurements collected through remote sensing with on-the-ground measurements. ii) ash production, deposition redistribution and fate: d) To untangle the significance of the effects of maximum temperature reached during combustion versus the duration of heating, e) To understand the production of ash by measuring its

  15. Harnessing and storing visible light using a heterojunction of WO3 and CdS for sunlight-free catalysis.

    PubMed

    Kim, Seonghun; Park, Yiseul; Kim, Wooyul; Park, Hyunwoong

    2016-08-01

    CdS and WO3 (CdS/WO3) bilayer film electrodes are fabricated to harness solar visible light (λ > 420 nm) and store photogenerated electrons for possible use during periods of unavailable sunlight. The overall film thickness is approximately 50-60 μm, while the CdS underlayer is slightly thinner than WO3 owing to a packing effect. The energetics of CdS and WO3 determined by optical and electrochemical analyses enables cascaded electron transfer from CdS to WO3. The open circuit potential (EOCP) of CdS/WO3 under visible light (approximately -0.35 V vs. SCE) is nearly maintained even in the absence of light, with a marginal decrease (∼0.15 V) in ∼20 h of darkness. Neither CdS nor WO3 alone exhibits such behavior. The electron lifetimes (τ) of CdS and WO3 are each less than 100 s, whereas coupling of the two increases τ to ∼2500 s at the EOCP. In the absence of dissolved O2, τ further increases, suggesting that O2 is the primary electron acceptor. In spite of oxic conditions, CdS/WO3 is capable of continuously reducing Cr(6+) to Cr(3+) and Ag(+) to Ag(0) after removal of visible light. The number of utilized (i.e., stored) electrons in the reductions of Cr(6+) and Ag(+) are estimated to be ∼1.08 × 10(17) and ∼0.87 × 10(17), respectively. The primary role of CdS is to be a visible-light absorber in the 420-565 nm wavelength range, transferring the photogenerated electrons to WO3. The electrons stored in WO3 are gradually released to electron acceptors with suitable redox potentials. PMID:27411566

  16. Electrification of Ash in Icelandic Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    Nicoll, K.; Aplin, K. L.; Houghton, I.

    2014-12-01

    Volcanic ash is known to charge electrically, producing some of the most spectacular displays of lightning on the planet. Lightning activity within volcanic plumes can be sensed remotely using systems such as the United Kingdom Met Office long-range lightning detection network, ATDnet, which recorded over 16 000 lightning strokes during the 2011 Grimsvötn eruption in Iceland. These remote sensing techniques can only be fully exploited if the charging mechanisms in volcanic plumes are well understood. Although the exact details of ash charging processes will vary from one eruption to another, triboelectrification, fractoemission, and the ''dirty thunderstorm'' mechanism are all thought to play a role in the electrification of ash near the vent. In addition to near-vent charging, observations show that charging can also occur in volcanic plumes up to hundreds of kilometres from the source region. The sustained nature of this charge in the presence of electrically conducting air suggests that a self-charging mechanism through the action of ash-to-ash contact charging (triboelectrification), may also play a role in the electrification of volcanic ash. This work describes a laboratory investigation into triboelectric charging of ash from the 2010 and 2011 volcanic eruptions of Eyjafjallajökull and Grímsvötn in Iceland respectively. Consistently with previous work, we find that the particle size distribution plays an important role in the magnitude of charging generated, specifically in terms of the normalized span of the particle size distribution. As well as triboelectrificiation, natural radioactivity in some volcanic ash could also contribute to self-charging of volcanic plumes, which is also examined here.

  17. Flue gas desulfurization gypsum and fly ash

    SciTech Connect

    Not Available

    1992-05-01

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority`s newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective.

  18. Stabilization/solidification of TSCA incinerator ash

    SciTech Connect

    Spence, R.D.; Trotter, D.R.; Francis, C.L.; Morgan, I.L.

    1994-06-01

    Stabilization/solidification is a well-known waste treatment technique that utilizes different additives and processes. The Phoenix Ash Technology of the Technical Innovation Development Engineering Company is such a technique that uses Cass C fly ash and mechanical pressure to make brick waste forms out of solid wastes, such as the bottom ash from the Toxic Substances Control Act incinerator at the Oak Ridge K-25 Site. One advantage of this technique is that no volume increase over the bulk volume of the bottom ash occurs. This technique should have the same high pH stabilization for Resource Conservation and Recovery Act metals as similar techniques. Also, consolidation of the bottom ash minimizes the potential problems of material dispersion and container corrosion. The bottom ash was spiked with {sup 99}{Tc} to test the effectiveness of the bricks as a physical barrier. The {sup 99}{Tc} leachability index measured for these bricks was 6.8, typical for the pertechnetate anion in cementitious waste forms, indicating that these bricks have accessible porosity as high as that of other cementitious waste forms, despite the mechanical compression, higher waste form density, and water resistant polymer coating.

  19. Top seeded solution growth of KHo(WO 4) 2 single crystals

    NASA Astrophysics Data System (ADS)

    Majchrowski, A.; Borowiec, M. T.; Michalski, E.

    2004-03-01

    Monoclinic KHo(WO 4) 2 single crystals have been grown by means of the Top Seeded Solution Growth method from K 2W 2O 7 self-flux containing up to 30 mol% of the crystallized compound. KHo(WO 4) 2 seed was selected from small crystals obtained by spontaneous crystallization and used to grow the first bulky KHo(WO 4) 2 crystal, from which seeds perpendicular to { 1¯ 1 1} and {1 1 0} planes, used in subsequent experiments, were cut out. Crystals grown on these seeds are designated in this paper as 1 1 1 and 1 1 0 crystals, respectively. Properly chosen thermal conditions allowed growth of crystals with one dominating crystallographic plane forming the bottom of the 1 1 1 crystals. Under conditions of very low temperature gradients, growing crystals developed bottoms consisting of several crystallographic planes, while a slightly steeper temperature gradient led to cracking of the growing crystals due to high anisotropy of thermal expansion coefficients, which is characteristic of all double tungstates. It was found that 1 1 1 KHo(WO 4) 2 single crystals were much bulkier than 1 1 0 ones, which had a rectangular cross-section elongated in the c direction. The bottom of 1 1 1 KHo(WO 4) 2 crystals was built of one ( 1¯ 1 1) plane, while in 1 1 0 crystals additional planes appeared that could not be eliminated by increasing the temperature gradient because such an increase led to cracking of crystals. As-grown 1 1 1 and 1 1 0 KHo(WO 4) 2 single crystals were of good quality, free from such defects as bubbles, cracks, and inclusions. The morphology of KHo(WO 4) 2 single crystals was investigated. Miller's indices of crystallographic faces ( h k l ) and edge indices [ u v w ] were found. Positions of the crystallographic axes a, b, and c in relation to growth faces and edges were found as well. The refractive indices and optical axes have been determined. The investigations of absorption spectra of KHo(WO 4) 2 single crystals were performed in a wide spectral range (4000

  20. A Bi2 WO6 -based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation.

    PubMed

    Tian, Jian; Sang, Yuanhua; Yu, Guangwei; Jiang, Huaidong; Mu, Xiaoning; Liu, Hong

    2013-09-25

    Near-infrared active photocatalytic properties of Bi2 WO6 nanosheets owing to the oxygen vacancies of the Bi2 WO6 nanosheets are reported. The broad spectrum photocatalyst, Bi2 WO6 -TiO2 nanobelt heterostructures, are obtained by assembling Bi2 WO6 nanocrystals on TiO2 nanobelts. The active light band of the novel hybrid photocatalyst with high photocatalytic activity covers full-spectrum solar light including the UV, visible, and near-infrared ranges.

  1. Wildland fire ash: future research directions

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.; Martins, Deborah A.; Cerdà, Artemi; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Mataix-Solera, Jorge

    2014-05-01

    Ash is a key component of the forest fires affected land (Cerdà, 1998; Bodí et al., 2011; Pereira et al., 2013a). Ash controls the hydrological processes and determines the water repellency (Dlapa et al., 2012) and the infiltration rates (Cerdà and Doerr, 2008;). Moreover, ash is the key factor on runoff initiation and then on the soil erosion. Little is known about the impact of ash in different ecosystems, but during the last decade a substantial increase in the papers that show the role of ash in the Earth and Soil System were published (Bodí et al., 2012; Pereira et al., 2013b).. Ash is being found as the key component of the post-fire pedological, geomorphological and hydrological response after forest fires (Fernández et al., 2012; Martín et al., 2012; Bodí et al., 2013; Guénon et al., 2013; Pereira et al., 2013c). A recent State-of-the-Art review about wildland fire ash (Bodí et al., 2014) compiles the knowledge regarding the production, composition and eco-hydro-geomorphic effects of wildland fire ash. In the present paper we indicate the knowledge gaps detected and suggest topics that need more research effort concerning: i) data collection and analysis techniques: a) To develop standardized sampling techniques that allow cross comparison among sites and avoid inclusion of the underlying soil unless the burned surface soil forms part of the ash layer, b) To develop standardized methods to define and characterize ash, including its color, physical properties such as particle size distribution or density, proportion of pyrogenic C, chemical and biological reactivity and persistence in the environment, c) To validate, calibrate and test measurements collected through remote sensing with on-the-ground measurements. ii) ash production, deposition redistribution and fate: d) To untangle the significance of the effects of maximum temperature reached during combustion versus the duration of heating, e) To understand the production of ash by measuring its

  2. A study of Ti-doped WO3 thin films using comparative theoretical and experimental approach

    NASA Astrophysics Data System (ADS)

    Paez, Aurelio

    Metal oxides like Tungsten Oxide (WO3) are well documented and characterized in the literature, with uses in darkening windows and mirrors, flat computer displays, solar panel cooling, and sensors (of interest in this study). Ti doping of WO3 is less documented and the focus of this study. Sample thin films of pure WO3 and varyingly Ti doped WO3 were prepared using Radio Frequency magnetron sputtering (RF) (13.56 MHz) to grow thin films on a silicon substrate. This study aims to compare multiple Ti doping percentages in WO3 theoretically and then compare with experimental data taken from thin films of various Ti doping levels grown at temperatures ranging from room temperature to 400 0°C. Characterization of the materials was to be conducted using Fourier Transform Infrared Spectroscopy, Raman Spectroscopy, X-ray diffraction, and other theoretical and simulated approaches. Theoretical calculations optimized Ti doping at somewhere between 6.25% and 12%. Experimental data indicates that under the given growing conditions optimal Ti doping is 5%. The percentage of Ti may be able to be increased and the material retain desired characteristics with an increased growth temperature above 400 0°C as annealing samples post-growth has no positive impact on the thin film structure.

  3. Oxygen partial pressure effects on the magnetron sputtered WO3 films

    NASA Astrophysics Data System (ADS)

    Merhan Muğlu, G.; Gür, E.

    2016-04-01

    Electrochromism is changing color of a substance in response to the applied an external electric field and the phenomenon is reversible. WO3 is very attractive material due to its electrochromic properties as well as it is also attractive for many different applications such as gas sensors, phosphorous screen, textile, glass industry. In this study, it is aimed to provide optimization of the optical and structural characteristics of WO3 by changing the growth parameters mainly the oxygen partial pressure. The partial pressure of oxygen was changed with increments of 0.7 mTorr. For the analysis, X-ray Diffraction (XRD), absorption, Raman spectroscopy measurements were used. When O2 gas increased, peaks belong to the WO3 was observed in XRD patterns at the 2 theta angles of 23.0, 11.0, 23.5 and 28.5 angles corresponding to the (002), (020) and (220) planes, respectively. This shows that there is a significant effect of increasing O2 partial pressure in the formation of WO3 films. The bandgap energy of the WO3 thin films are found to be around 3.0 eV. Raman measurements showed vibrational modes of W-O-W stretching and bending modes which shows small shifts depending on the partial pressures of the O2. Obtained results indicated that better crystal structure is obtained with higher O2 gas partial pressure.

  4. Synthesis and characterization of WO{sub 3} spherical nanoparticles and nanorods

    SciTech Connect

    Adhikari, Sangeeta; Sarkar, Debasish Maiti, Himadri Sekhar

    2014-01-01

    Graphical abstract: Two different morphology WO{sub 3} nanoparticles are synthesized by a simple and new wet chemical route through control over pH, temperature and structure directing agents. Reaction mechanism has been proposed for the formation of different morphologies. Nanorod WO{sub 3} has better crystallinity with less specific surface area compared to the spherical nanoparticles. Comparable band gaps are obtained for both the nanoparticles. - Highlights: • Spherical WO{sub 3} nanoparticle and nanorod synthesis mechanisms proposed. • Thermal analysis and spectroscopy confirms the intermediate reactions. • Both of the morphology has pure and monoclinic phase with identical band gap energy. - Abstract: Simple and new wet chemical routes are adopted for the synthesis of tungsten trioxide (WO{sub 3}) nanopowders having two different morphologies such as spherical and rod-like. Acid catalyzed exothermic reaction and a structure directing reagent have been used to control the formation of spherical and rod shaped nanoparticles, respectively. Thermal analysis and FTIR spectral data have been used to confirm the formation of the intermediate and the ultimate reaction products. X-ray and Raman spectroscopic data indicate the monoclinic structure of both forms of the particles. Rod shaped WO{sub 3} particles exhibit better crystallinity and low specific surface area compared to those exhibited by spherical particles. Band gaps are found to be nearly identical irrespective of the morphology.

  5. Structural, electrical and optical properties of TiO 2 doped WO 3 thin films

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Mujawar, S. H.; Inamdar, A. I.; Shinde, P. S.; Deshmukh, H. P.; Sadale, S. B.

    2005-12-01

    TiO 2 doped WO 3 thin films were deposited onto glass substrates and fluorine doped tin oxide (FTO) coated conducting glass substrates, maintained at 500 °C by pyrolytic decomposition of adequate precursor solution. Equimolar ammonium tungstate ((NH 4) 2WO 4) and titanyl acetyl acetonate (TiAcAc) solutions were mixed together at pH 9 in volume proportions and used as a precursor solution for the deposition of TiO 2 doped WO 3 thin films. Doping concentrations were varied between 4 and 38%. The effect of TiO 2 doping concentration on structural, electrical and optical properties of TiO 2 doped WO 3 thin films were studied. Values of room temperature electrical resistivity, thermoelectric power and band gap energy ( Eg) were estimated. The films with 38% TiO 2 doping in WO 3 exhibited lowest resistivity, n-type electrical conductivity and improved electrochromic performance among all the samples. The values of thermoelectric power (TEP) were in the range of 23-56 μV/K and the direct band gap energy varied between 2.72 and 2.86 eV.

  6. Wolbachia and bacteriophage WO-B density of Wolbachia A-infected Aedes albopictus mosquito.

    PubMed

    Ahantarig, A; Trinachartvanit, W; Chauvatcharin, N; Kittayapong, P; Baimai, V

    2008-01-01

    Wolbachia are maternally inherited symbiotic bacteria capable of inducing an extensive range of reproductive abnormalities in their hosts, including cytoplasmic incompatibility (CI). Its density (concentration) is likely to influence the penetrance of CI in incompatible crosses. The variations of Wolbachia density could also be linked with phage WO density. We determined the relative density (relative concentration) of prophage WO orf7 and Wolbachia (phage-to-bacteria ratio) during early developmental and adult stages of singly infected Aedes albopictus mosquito (Wolbachia A-infected) by using real-time quantitative PCR. Phage WO and Wolbachia did not develop at the same rate. Relative Wolbachia density (bacteria-to-host ratio) was high later in development (adult stages) whilst relative prophage WO density (phage-to-bacteria ratio) was low in the adult stages. Furthermore, 12-d-old adults of singly infected female mosquito had the highest Wolbachia density. In contrast, the larval stage 4 (L4) contained the highest prophage WO-B orf7 density. The association of hosts-Wolbachia-phage among diverse species is different. Thus, if phage and Wolbachia are involved in CI mechanism, the information of this association should be acquired for each specific type of organism for future use of population replacement or gene drive system.

  7. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6.

    PubMed

    Fu, Hongbo; Pan, Chengshi; Yao, Wenqing; Zhu, Yongfa

    2005-12-01

    Visible-light-induced photodegradation of rhodamine B over nanosized Bi2WO6 has been observed. Bi2WO6 exhibited a high photoactivity to photodegrade rhodamine B in the central pH solution under visible irradiation (lambda > 420 nm). After five recycles for the photodegradation of rhodamine B, the catalyst did not exhibit any significant loss of activity, confirming the photocatalyst is essentially stable. The total organic carbon measurement displayed that a high degree of mineralization was achieved in the present photochemical system. The results of density functional theory calculation illuminated that the visible-light absorption band in the Bi2WO6 catalyst is attributed to the band transition from the hybrid orbitals of Bi6s and O2p to the W5d orbitals. The Bi2WO6-assisted photocatalytic degradation of rhodamine occurs via two competitive processes: a photocatalytic process and a photosensitized process. The transformation of rhodamine is mainly via the photocatalytic process. Kinetic studies by using electron spin resonance and the radical scavenger technologies suggest that *OH is not the dominant photooxidant. Direct hole transfers and O2*- could take part in Bi2WO6 photocatalysis. This study provided a possible treatment approach for organic pollutants by using visible light in aqueous ecosystems.

  8. Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting.

    PubMed

    Feng, Xiaoyang; Chen, Yubin; Qin, Zhixiao; Wang, Menglong; Guo, Liejin

    2016-07-20

    Herein, sandwich structured tungsten trioxide (WO3) nanoplate arrays were first synthesized for photoelectrochemical (PEC) water splitting via a facile hydrothermal method followed by an annealing treatment. It was demonstrated that the annealing temperature played an important role in determining the morphology and crystal phase of the WO3 film. Only when the hydrothermally prepared precursor was annealed at 500 °C could the sandwich structured WO3 nanoplates be achieved, probably due to the crystalline phase transition and increased thermal stress during the annealing process. The sandwich structured WO3 photoanode exhibited a photocurrent density of 1.88 mA cm(-2) and an incident photon-to-current conversion efficiency (IPCE) as high as 65% at 400 nm in neutral Na2SO4 solution under AM 1.5G illumination. To our knowledge, this value is one of the best PEC performances for WO3 photoanodes. Meanwhile, simultaneous hydrogen and oxygen evolution was demonstrated for the PEC water splitting. It was concluded that the high PEC performance should be attributed to the large electrochemically active surface area and active monoclinic phase. The present study can provide guidance to develop highly efficient nanostructured photoelectrodes with the favorable morphology.

  9. Nanobrick-like WO3 thin films: Hydrothermal synthesis and electrochromic application

    NASA Astrophysics Data System (ADS)

    Kondalkar, V. V.; Kharade, R. R.; Mali, S. S.; Mane, R. M.; Patil, P. B.; Patil, P. S.; Choudhury, S.; Bhosale, P. N.

    2014-09-01

    Nanobrick-like WO3 thin films have been synthesized via facile hydrothermal route. Nanostructured WO3 thin films were characterized using X-ray diffraction (XRD), UV-Vis-NIR spectrophotometer, scanning electron microscopy (SEM), atomic force microscopy (AFM) to investigate the intentional properties such as phase structure, optical properties and surface morphology. Moreover electrochromic (EC) performance of WO3 thin film was investigated in 0.5 M LiClO4/PC by means of cyclic voltammetry (CV), chronocoulometry (CC) and chronoamperometry (CA). The value of diffusion coefficient (D) was determined from anodic peak current and was found to be 1.51 × 10-9 cm2/s. The response time of 6.9 s for bleaching (tb) and 9.7 s for coloration (tc) was observed with excellent reversibility 76%. The coloration efficiency for nanobricks WO3 is 39.24 cm2/C. CIE 1931 L∗ab values for colored and bleached films were estimated at 2° observer using D-65 illumination. The electrochromic studies show highly reversible and the stable nature of WO3 thin film which provides a versatile and promising application towards the fabrication of smart windows.

  10. Design of a highly photocatalytically active ZnO/CuWO4 nanocomposite.

    PubMed

    Mavrič, T; Valant, M; Forster, M; Cowan, A J; Lavrenčič, U; Emin, S

    2016-12-01

    Here we report the synthesis, photocatalytic activity and mechanistic study of a novel charge separation heterostructure (HTS). A ZnO/CuWO4 HTS material is reported for the first time. The nanocomposite (NC) consist of CuWO4 nanoparticles (ca. 200-400nm) decorated with ZnO nanorods (ca. 30nm, 100nm length) and is shown to be a highly active photocatalyst for the decomposition of model contaminants including methyl orange (MO) and terephthalic acid (TPA). The ZnO/CuWO4 interface is shown to be key in controlling the enhanced activity of the composite material. Transient absorption (TA) spectroscopy studies demonstrate that photoinduced charge transfer across the ZnO/CuWO4 interface increases electron-hole lifetimes by 3 orders of magnitude, from <20μs in ZnO to 30ms in the ZnO/CuWO4 NC sample. Our findings show that through interface design efficient HTS materials can be prepared for a wide range of photocatalytic applications. PMID:27552417

  11. Facile hydrothermal synthesis of TiO2-Bi2WO6 hollow superstructures with excellent photocatalysis and recycle properties.

    PubMed

    Hou, Ya-Fei; Liu, Shu-Juan; Zhang, Jing-huai; Cheng, Xiao; Wang, You

    2014-01-21

    One-dimensional mesoporous TiO2-Bi2WO6 hollow superstructures are prepared using a hydrothermal method and their photocatalysis and recycle properties are investigated. Experimental results indicate that anatase TiO2 nanoparticles are coupled with hierarchical Bi2WO6 hollow tubes on their surfaces. The TiO2-Bi2WO6 structure has a mesoporous wall and the pores in the wall are on average 21 nm. The hierarchical TiO2-Bi2WO6 heterostructures exhibit the highest photocatalytic activity in comparison with P25, pure Bi2WO6 hollow tube and mechanical mixture of Bi2WO6 tube and TiO2 nanoparticle in the degradation of rhodamine B (RhB) under simulated sunlight irradiation. The as-prepared TiO2-Bi2WO6 heterostructures can be easily recycled through sedimentation and they retains their high photocatalytic activity during the cycling use in the simulated sunlight-driving photodegradation process of RhB. The prepared mesoporous TiO2-Bi2WO6 with hollow superstructure is therefore a promising candidate material for water decontamination use.

  12. Enhancement of photoelectric response of bacteriorhodopsin by multilayered WO3 x H2O nanocrystals/PVA membrane.

    PubMed

    Li, Rui; Hu, Fengping; Bao, Qiaoliang; Bao, Shujuan; Qiao, Yan; Yu, Shucong; Guo, Jun; Li, Chang Ming

    2010-02-01

    For the first time, a multilayered WO(3) x H(2)O/PVA membrane on bacteriorhodopsin (bR) is constructed to significantly enhance the photoelectric response of bR by the spillover effect of WO(3) x H(2)O nanocrystals, providing great potential in its important applications in bioelectronics and proton exchange membrane fuel cells.

  13. Flexible electrochromics: magnetron sputtered tungsten oxide (WO3-x) thin films on Lexan (optically transparent polycarbonate) substrates

    NASA Astrophysics Data System (ADS)

    Uday Kumar, K.; Murali, Dhanya S.; Subrahmanyam, A.

    2015-06-01

    Tungsten oxide (WO3-x) based electrochromics on flexible substrates is a topic of recent interest. The present communication reports the electrochromic properties of WO3-x thin films grown on lexan, an optically transparent polycarbonate thermoplastic substrate. The WO3-x films are prepared at room temperature (300 K) by the reactive DC magnetron sputtering technique. The physical properties of metal oxide thin films are known to be controlled by the oxygen stoichiometry of the film. In the present work, the WO3-x thin films are prepared by varying the oxygen flow rates. All the WO3-x thin films are amorphous in nature. The electrochromic performance of the WO3-x thin films is evaluated by cyclic voltammetry measurements on tin doped indium oxide (ITO) coated lexan and glass substrates. The optical band gap of WO3-x thin films grown on lexan substrates (at any given oxygen flow rate) is significantly higher than those grown on glass substrates. The coloration efficiency of WO3-x thin films (at an oxygen flow rate of 10 sccm) on lexan substrates is: 143.9 cm2 C-1 which is higher compared to that grown on glass: 90.4 cm2 C-1.

  14. ZnO nanoplates surfaced-decorated by WO3 nanorods for NH3 gas sensing application

    NASA Astrophysics Data System (ADS)

    Dien Nguyen, Dac; Do, Duc Tho; Hien Vu, Xuan; Vuong Dang, Duc; Chien Nguyen, Duc

    2016-03-01

    Zinc oxide (ZnO) nanoplates and tungsten trioxide (WO3) nanorods were synthesized by hydrothermal treatment from zinc nitrate/potassium hydroxide and sodium tungstate/hydrochloric acid, respectively. The structure, morphology and compositions of the as-prepared WO3/ZnO nano-composites were characterized by x-ray diffraction, field emission scanning electron microscopy and energy dispersive spectroscopy. The obtained ZnO nanoplates have regular shape, single-crystal wurtzite structure with the thickness of 40 nm and 200 versus 400 nm in lateral dimensions. The WO3 nanorods possess the average diameter of 20 nm and the length of approximately 120 nm which were distributed on the surfaces of ZnO nanoplates. The WO3/ZnO nano-composites were prepared by grinding WO3 nanorods powder with ZnO nanoplates powder in various weight ratios (1:2, 1:1 and 2:1). The NH3 gas sensing properties of WO3/ZnO nano-composites were examined through the electrical resistance measurement. The gas sensing performance of the WO3/ZnO composite with weight ratio of 1:1 was better compared with that of other samples. For this sample, the maximum response to 300 ppm NH3 was 24 at the operating temperature of 250 °C. In addition, the gas sensing mechanism of the WO3/ZnO composites was discussed.

  15. Synthesis, characterization and electrochemical studies of nanostructured CaWO{sub 4} as platinum support for oxygen reduction reaction

    SciTech Connect

    Farsi, Hossein; Barzgari, Zahra

    2014-11-15

    Highlights: • Nanostructured CaWO{sub 4} was fabricated by co-precipitation method. • Platinum was electrodeposited onto the surface prepared nanostructured CaWO{sub 4}. • Pt/CaWO{sub 4}-graphite demonstrate good oxygen reduction reaction activity. - Abstract: In the present work, we employed nanostructured calcium tungstate as a supporting material for platinum, a well-known electrocatalyst for oxygen reduction. The co-precipitation method has been utilized to synthesize nanostructured calcium tungstate from aqueous solution. The structure and morphology of the obtained CaWO{sub 4} were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Preparation of the Pt/CaWO{sub 4}-graphite catalyst was carried out by electrodeposition of Pt onto the surface of CaWO{sub 4}/graphite electrode. The physical properties of the catalyst were determined by scanning electron microscopy analysis and energy dispersive X-ray (SEM/EDX). The electrochemical activity of the Pt/CaWO{sub 4}-graphite for the oxygen reduction reaction (ORR) was investigated in acid solution by cyclic voltammetry measurements, linear sweep voltammetry, and electrochemical impedance spectroscopy. The results revealed that the Pt/CaWO{sub 4}-graphite has higher electrocatalytic activity for oxygen reduction in comparison with Pt/graphite catalyst.

  16. ZnWO{sub 4}–Cu system with enhanced photocatalytic activity by photo-Fenton-like synergistic reaction

    SciTech Connect

    Song, Jimei; Wang, Hong; Hu, Gang; Zhao, Shaojuan; Hu, Haiqin; Jin, Baokang

    2012-11-15

    Highlights: ► A novel coupled system of ZnWO{sub 4}–Cu exhibited much higher catalytic activity than pure ZnWO{sub 4} with H{sub 2}O{sub 2} under UV-light irradiation. ► The enhanced catalytic activity of ZnWO{sub 4}–Cu system was due to the synergistic effect of photocatalysis and Fenton-like process. ► The possible mechanism of the synergistic effect was proposed. -- Abstract: A novel coupled system of ZnWO{sub 4}–Cu, combining two different advanced oxidation processes of photocatalysis and Fenton-like for the degradation of organic dyes, was successfully synthesized. The as-synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS). The nanosized ZnWO{sub 4}–Cu samples exhibited much higher catalytic activity than pure ZnWO{sub 4}. In the presence of the ZC-0.2, the MB solution was completely degraded (the degradation ratio reached 97.79%); while for the ZC-0, the degradation ratio was only 72.29%. The effects of the amount of Cu on the photocatalytic performance of ZnWO{sub 4}–Cu were investigated in detail. The result showed that the synergistic effect between Cu and ZnWO{sub 4} played a key role. The possible mechanism of the synergistic system was proposed.

  17. H.sub.2O doped WO.sub.3, ultra-fast, high-sensitivity hydrogen sensors

    SciTech Connect

    Liu, Ping; Tracy, C. Edwin; Pitts, J. Roland; Lee, Se-Hee

    2011-03-22

    An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO.sub.3 layer coated on the substrate; and a palladium layer coated on the water-doped WO.sub.3 layer.

  18. The band structure of WO3 and non-rigid-band behaviour in Na0.67WO3 derived from soft x-ray spectroscopy and density functional theory.

    PubMed

    Chen, B; Laverock, J; Piper, L F J; Preston, A R H; Cho, S W; DeMasi, A; Smith, K E; Scanlon, D O; Watson, G W; Egdell, R G; Glans, P-A; Guo, J-H

    2013-04-24

    The electronic structure of single-crystal WO3 and Na0.67WO3 (a sodium-tungsten bronze) has been measured using soft x-ray absorption and resonant soft x-ray emission oxygen K-edge spectroscopies. The spectral features show clear differences in energy and intensity between WO3 and Na0.67WO3. The x-ray emission spectrum of metallic Na0.67WO3 terminates in a distinct Fermi edge. The rigid-band model fails to explain the electronic structure of Na0.67WO3 in terms of a simple addition of electrons to the conduction band of WO3. Instead, Na bonding and Na 3s-O 2p hybridization need to be considered for the sodium-tungsten bronze, along with occupation of the bottom of the conduction band. Furthermore, the anisotropy in the band structure of monoclinic γ-WO3 revealed by the experimental spectra with orbital-resolved geometry is explained via density functional theory calculations. For γ-WO3 itself, good agreement is found between the experimental O K-edge spectra and the theoretical partial density of states of O 2p orbitals. Indirect and direct bandgaps of insulating WO3 are determined from extrapolating separations between spectral leading edges and accounting for the core-hole energy shift in the absorption process. The O 2p non-bonding states show upward band dispersion as a function of incident photon energy for both compounds, which is explained using the calculated band structure and experimental geometry.

  19. Enhancing performance and durability of slag made from incinerator bottom ash and fly ash.

    PubMed

    Chiou, Ing-Jia; Wang, Kuen-Sheng; Tsai, Chen-Chiu

    2009-02-01

    This work presents a method capable of melting the incinerator bottom ash and fly ash in a plasma furnace. The performance of slag and the strategies for recycling of bottom ash and fly ash are improved by adjusting chemical components of bottom ash and fly ash. Ashes are separated by a magnetic process to improve the performance of slag. Analytical results indicate that the air-cooled slag (ACS) and magnetic-separated slag (MSS) have hardness levels below 590 MPa, indicating fragility. Additionally, the hardness of crystallized slag (RTS) is between 655 and 686 MPa, indicating toughness. The leached concentrations of heavy metals for these three slags are all below the regulatory limits. ACS appears to have better chemical stability than MSS, and is not significantly different from RTS. In the potential alkali-silica reactivity of slag, MSS falls on the border between the harmless zone and the potentially harmful zone. ACS and RTS fall in the harmless zone. Hence, the magnetic separation procedure of ashes does not significantly improve the quality of slag. However, RTS appears to improve its quality. PMID:18544471

  20. Comparative study on the characteristics of fly ash and bottom ash geopolymers.

    PubMed

    Chindaprasirt, Prinya; Jaturapitakkul, Chai; Chalee, Wichian; Rattanasak, Ubolluk

    2009-02-01

    This research was conducted to compare geopolymers made from fly ash and ground bottom ash. Sodium hydroxide (NaOH) and sodium silicate (Na(2)SiO(3)) solutions were used as activators. A mass ratio of 1.5 Na(2)SiO(3)/NaOH and three concentrations of NaOH (5, 10, and 15M) were used; the geopolymers were cured at 65 degrees C for 48 h. A Fourier transform infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM) were used on the geopolymer pastes. Geopolymer mortars were also prepared in order to investigate compressive strength. The results show that both fly ash and bottom ash can be utilized as source materials for the production of geopolymers. The properties of the geopolymers are dependent on source materials and the NaOH concentration. Fly ash is more reactive and produces a higher degree of geopolymerization in comparison with bottom ash. The moderate NaOH concentration of 10 M is found to be suitable and gives fly ash and bottom ash geopolymer mortars with compressive strengths of 35 and 18 MPa.

  1. Comparative study on the characteristics of fly ash and bottom ash geopolymers

    SciTech Connect

    Chindaprasirt, Prinya; Jaturapitakkul, Chai; Chalee, Wichian; Rattanasak, Ubolluk

    2009-02-15

    This research was conducted to compare geopolymers made from fly ash and ground bottom ash. Sodium hydroxide (NaOH) and sodium silicate (Na{sub 2}SiO{sub 3}) solutions were used as activators. A mass ratio of 1.5 Na{sub 2}SiO{sub 3}/NaOH and three concentrations of NaOH (5, 10, and 15 M) were used; the geopolymers were cured at 65 deg. C for 48 h. A Fourier transform infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM) were used on the geopolymer pastes. Geopolymer mortars were also prepared in order to investigate compressive strength. The results show that both fly ash and bottom ash can be utilized as source materials for the production of geopolymers. The properties of the geopolymers are dependent on source materials and the NaOH concentration. Fly ash is more reactive and produces a higher degree of geopolymerization in comparison with bottom ash. The moderate NaOH concentration of 10 M is found to be suitable and gives fly ash and bottom ash geopolymer mortars with compressive strengths of 35 and 18 MPa.

  2. Scale-Up and Demonstration of Fly Ash Ozonation Technology

    SciTech Connect

    Rui Afonso; R. Hurt; I. Kulaots

    2006-03-01

    The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

  3. Power plant ashes and their utilization. Part 10. Summary

    SciTech Connect

    Eerola, M.; Keppo, M.; Korkman, J.; Kukko, H.; Vanhanen, A.

    1980-01-01

    For fine-grained fly ash and coarser-grained bottom ash originating from power plants as combustion residue a profitable use for many purposes has already been found. Many European countries utilize great amounts of ashes they produce. The quality of ash is dependent on the fuel used and the equipment of the power plant in question. The building industry utilizes plenty of fine-grained materials with many features closely resembling fly ash. In lightweight aggregate production it is possible to use fly ash for improving the strength level of a product or lightweight aggregate particles can be sintered from fly ash and water without using clay. For the manufacture of bricks fly and bottom ashes have been used abroad as a material replacing sand and silt or as such mixed together. In road construction, fly ash is suitable for use as an embankment fill and a stabilized structure for subbases and base courses or as a filler for asphalt pavements. For the purposes of fertilization and soil improvement highly nutrient ashes (sulphite liquor, wood, peat) can be utilized. The use of ashes as a raw material e.g. in metal industry has started to attract attention abroad. Practical problems pertaining to the utilization of ashes are: the varying production rate due to the succession of the seasons, transportation and transfer of dry ashes, and arrangement of the quality control. The above mentioned factors result in expenses but also saving is brought about by using ashes.

  4. Novel Bi(2)WO(6)-TiO(2) heterostructures for Rhodamine B degradation under sunlike irradiation.

    PubMed

    Murcia López, S; Hidalgo, M C; Navío, J A; Colón, G

    2011-01-30

    Highly efficient Bi(2)WO(6)-TiO(2) heterostructure is synthesized by means of a hydrothermal method having highly photoactivity for the degradation of Rhodamine B under sunlike irradiation. From the structural characterization it has been demonstrated that TiO(2) is incorporated on the Aurivillius structure. Interesting synergetic effect between TiO(2) and Bi(2)WO(6) leads to an improved charge carrier separation mechanism, causing the excellent photocatalytic performance under sunlike irradiation. The photocatalytic performance of Bi(2)WO(6) and Bi(2)WO(6)-TiO(2) was compared under different irradiation conditions and using increasing Rhodamine B concentration up to 25 ppm. After the photocatalytic analysis of both systems, the mineralization efficiency of the heterostructure appears significantly higher with respect to Bi(2)WO(6).

  5. Insight of the fusion behavior of volcanic ash: Implications for Volcanic ash Hazards to Aircraft Safety

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Hess, Kai-Uwe; Küppers, Ulrich; Scheu, Bettina; Cimarelli, Corrado; Lavallée, Yan; Sohyun, Park; Gattermann, Ulf; Müller, Dirk; Dingwell, Donald Bruce

    2014-05-01

    The interaction of volcanic ash with jet turbines during via ingestion of ash into engines operating at supra-volcanic temperatures is widely recognized as a potentially fatal hazard for jet aircraft. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The fusibility of volcanic ash is believed to impact strongly its deposition in the hotter parts of jet engines. Despite this, explicit investigation of ash sintering using standardized techniques is in its infancy. Volcanic ash may vary widely in its physical state and chemical composition between and even within explosive volcanic eruptions. Thus a comparative study of the fusibility of ash which involves a standard recognized techniques would be highly desirable. In this work, nine samples of fine ash, deposited from co-pyroclastic offrom nine different volcanoes which cover a broad range of chemical composition, were investigated. Eight of them were collected from 2001-2009 eruptions. Because of the currently elevated level of eruptive activity and its potential hazards to aircraft safety and the remaining one sample was collected from a 12,121 ± 114 yr B.P. eruption. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the fusion phenomena as well as determine the volcanic ash melting behavior by defining four characteristic temperatures (shrinkage temperature, deformation temperature, hemispherical temperature, and flow temperature) by means of heating microscope instrument and different thermal analysis methods. Here, we find that there are similar sticking ability and flow behavior of

  6. Degradation of dimethylformamide on the surface of the nanosized WO3 films studied by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, A. I.

    2016-07-01

    Here I report on the degradation of dimethylformamide on the surface of the nanosized WO3 films under the action of light. Dimethylformamide, a substance that has a series of interesting properties, was adsorbed on the surface of the WO3 films and its adsorption mechanism and transformations under the action of light have been investigated with the help of the IR spectroscopy. The spirit of the research is that both DMF modifications have been used i.e., conventional and that with the substitution of hydrogen atoms by deuterium. Formation of two weak bonds (donor-acceptor bond and hydrogen bond) provides a great catalytic effect for photo-initiated proton-coupled electron transfer from the adsorbed molecules to the WO3 film surface. The mechanism of the detachment of hydrogen atoms and subsequent transformation of the adsorbed molecules has been investigated and discussed.

  7. Effect of Pt nanoparticles on the optical gas sensing properties of WO3 thin films.

    PubMed

    Qadri, Muhammad U; Diaz, Alex Fabian Diaz; Cittadini, Michaela; Martucci, Alessandro; Pujol, Maria Cinta; Ferré-Borrull, Josep; Llobet, Eduard; Aguiló, Magdalena; Díaz, Francesc

    2014-01-01

    Thin films of tungsten trioxide were deposited on quartz substrates by RF magnetron sputtering. Different annealing temperatures in the range from 423 to 973 K were used under ambient atmosphere. The influence of the annealing temperature on the structure and optical properties of the resulting WO3 thin films were studied. The surface morphology of the films is composed of grains with an average size near 70 nm for the films annealed between 773 and 973 K. Some of the WO3 thin films were also coated with Pt nanoparticles of about 45 nm in size. Spectrometric measurements of transmittance were carried out for both types of WO3 samples in the wavelength range from 200-900 nm, to determine the effect of the exposure to two different gases namely H2 and CO. Films showed fast response and recovery times, in the range of few seconds. The addition of Pt nanoparticles enables reducing the operation temperature to room temperature.

  8. Low-Temperature H2S Detection with Hierarchical Cr-Doped WO3 Microspheres.

    PubMed

    Wang, Yanrong; Liu, Bin; Xiao, Songhua; Wang, Xinghui; Sun, Leimeng; Li, Han; Xie, Wuyuan; Li, Qiuhong; Zhang, Qing; Wang, Taihong

    2016-04-20

    Hierarchical Cr-doped WO3 microspheres have been successfully synthesized for efficient sensing of H2S gas at low temperatures. The hierarchical structures provide an effective gas diffusion path via well-aligned micro-, meso-, and macroporous architectures, resulting in significant enhancement in sensing response to H2S. The temperature and gas concentration dependence on the sensing properties elucidate that Cr dopants remarkably improve the response and lower the sensor' operating temperature down to 80 °C. Under 0.1 vol % H2S, the response of Cr-doped WO3 sensor is 6 times larger than pristine WO3 sensor at 80 °C. We suggest the increasing number of oxygen vacancies created by Cr dopants to be the underlying reason for enhancement of charge carrier density and accelerated reactions with H2S.

  9. Effect of Pt nanoparticles on the optical gas sensing properties of WO3 thin films.

    PubMed

    Qadri, Muhammad U; Diaz, Alex Fabian Diaz; Cittadini, Michaela; Martucci, Alessandro; Pujol, Maria Cinta; Ferré-Borrull, Josep; Llobet, Eduard; Aguiló, Magdalena; Díaz, Francesc

    2014-01-01

    Thin films of tungsten trioxide were deposited on quartz substrates by RF magnetron sputtering. Different annealing temperatures in the range from 423 to 973 K were used under ambient atmosphere. The influence of the annealing temperature on the structure and optical properties of the resulting WO3 thin films were studied. The surface morphology of the films is composed of grains with an average size near 70 nm for the films annealed between 773 and 973 K. Some of the WO3 thin films were also coated with Pt nanoparticles of about 45 nm in size. Spectrometric measurements of transmittance were carried out for both types of WO3 samples in the wavelength range from 200-900 nm, to determine the effect of the exposure to two different gases namely H2 and CO. Films showed fast response and recovery times, in the range of few seconds. The addition of Pt nanoparticles enables reducing the operation temperature to room temperature. PMID:24977386

  10. Effect of Pt Nanoparticles on the Optical Gas Sensing Properties of WO3 Thin Films

    PubMed Central

    Qadri, Muhammad U.; Diaz Diaz, Alex Fabian; Cittadini, Michaela; Martucci, Alessandro; Pujol, Maria Cinta; Ferré-Borrull, Josep; Llobet, Eduard; Aguiló, Magdalena; Díaz, Francesc

    2014-01-01

    Thin films of tungsten trioxide were deposited on quartz substrates by RF magnetron sputtering. Different annealing temperatures in the range from 423 to 973 K were used under ambient atmosphere. The influence of the annealing temperature on the structure and optical properties of the resulting WO3 thin films were studied. The surface morphology of the films is composed of grains with an average size near 70 nm for the films annealed between 773 and 973 K. Some of the WO3 thin films were also coated with Pt nanoparticles of about 45 nm in size. Spectrometric measurements of transmittance were carried out for both types of WO3 samples in the wavelength range from 200–900 nm, to determine the effect of the exposure to two different gases namely H2 and CO. Films showed fast response and recovery times, in the range of few seconds. The addition of Pt nanoparticles enables reducing the operation temperature to room temperature. PMID:24977386

  11. Dual Oxygen and Tungsten Vacancies on a WO3 Photoanode for Enhanced Water Oxidation.

    PubMed

    Ma, Ming; Zhang, Kan; Li, Ping; Jung, Myung Sun; Jeong, Myung Jin; Park, Jong Hyeok

    2016-09-19

    Alleviating charge recombination at the electrode/electrolyte interface by introducing an overlayer is considered an efficient approach to improve photoelectrochemical (PEC) water oxidation. A WO3 overlayer with dual oxygen and tungsten vacancies was prepared by using a solution-based reducing agent, LEDA (lithium dissolved in ethylenediamine), which improved the PEC performance of the mesoporous WO3 photoanode dramatically. In comparison to the pristine samples, the interconnected WO3 nanoparticles surrounded by a 2-2.5 nm thick overlayer exhibited a photocurrent density approximately 2.4 times higher and a marked cathodic shift of the onset potential, which is mainly attributed to the facilitative effect on interface charge transfer and the improved conductivity by enhanced charge carrier density. This simple and effective strategy may provide a new path to improve the PEC performance of other photoanodes. PMID:27533279

  12. Electrochromic properties of spray deposited TiO 2-doped WO 3 thin films

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Mujawar, S. H.; Inamdar, A. I.; Sadale, S. B.

    2005-08-01

    TiO 2-doped WO 3 thin films were deposited onto fluorine-doped tin oxide coated conducting glass substrates using spray pyrolysis technique at 525 °C. The volume percentage of TiO 2 dopant was varied from 13% to 38%. The thin film samples were transparent, uniform and strongly adherent to the substrates. Electrochromical properties of TiO 2-doped WO 3 thin films were studied with the help of cyclic voltammetry (CV), chronoamperometry (CA) and chronocoulometry (CC) techniques. It has been found that TiO 2 doping in WO 3 enhances its electrochromic performance. Colouration efficiency becomes almost double and samples exhibit increasingly high reversibility with TiO 2 doping concentrations, in the studied range.

  13. Understanding the synergistic effect of WO3-BiVO4 heterostructures by impedance spectroscopy.

    PubMed

    Shi, Xinjian; Herraiz-Cardona, Isaac; Bertoluzzi, Luca; Lopez-Varo, Pilar; Bisquert, Juan; Park, Jong Hyeok; Gimenez, Sixto

    2016-04-01

    WO3-BiVO4 n-n heterostructures have demonstrated remarkable performance in photoelectrochemical water splitting due to the synergistic effect between the individual components. Although the enhanced functional capabilities of this system have been widely reported, in-depth mechanistic studies explaining the carrier dynamics of this heterostructure are limited. The main goal is to provide rational design strategies for further optimization as well as to extend these strategies to different candidate systems for solar fuel production. In the present study, we perform systematic optoelectronic and photoelectrochemical characterization to understand the carrier dynamics of the system and develop a simple physical model to highlight the importance of the selective contacts to minimize bulk recombination in this heterostructure. Our results collectively indicate that while BiVO4 is responsible for the enhanced optical properties, WO3 controls the transport properties of the heterostructured WO3-BiVO4 system, leading to reduced bulk recombination. PMID:26975634

  14. Reduction of WO 3 to nano-WC by thermo-chemical reaction route

    NASA Astrophysics Data System (ADS)

    Kumar, Akshay; Singh, K.; Pandey, O. P.

    2009-02-01

    Thermo-chemical reaction route has been used to synthesize WC-nanoparticles from WO 3. Two different carbon sources are used to study the effect of these sources on synthesis. The as-prepared samples are characterized by using X-ray diffraction (XRD), differential thermal analyzer (DTA), thermo-gravimetric analysis (TGA) and transmission electron microscope (TEM). The results indicate that reduction of WO 3 to WC takes place by the adsorption of carbon at the surface of WO 3 forming porous structure at the defect sites through which carbon diffuses. As the concentration of adsorbed carbon increases the growth of carbon nanotube starts from this site which ultimately gets converted to carbon nano-fibers of higher chemical activity.

  15. Time-resolved luminescence spectroscopy of structurally disordered K3WO3F3 crystals

    NASA Astrophysics Data System (ADS)

    Omelkov, S. I.; Spassky, D. A.; Pustovarov, V. A.; Kozlov, A. V.; Isaenko, L. I.

    2016-08-01

    Three emission centers of exciton-like origin, with distinct relaxation time, emission and excitation spectra were revealed in K3WO3F3 and described taking into account its structural disordering. Low-temperature monoclinic phase of K3WO3F3 features few anion sites with mixed oxygen/fluorine occupancy per [WO3F3] octahedron. Therefore, different kinds of distorted octahedra form, providing different luminescence centers. The time-resolved luminescence spectroscopy technique was applied to distinguish these centers. The simultaneous thermal quenching of them above ∼200 K was qualitatively explained involving dynamic structural disorder of the compound. The energy transfer mechanism between centers was found and tentatively described by the diffusion of excitons. Apart from intrinsic luminescence, the PL of defect-related centers was discovered and the role of shallow charge carrier traps in the low-temperature persistent luminescence was revealed.

  16. Understanding the synergistic effect of WO3-BiVO4 heterostructures by impedance spectroscopy.

    PubMed

    Shi, Xinjian; Herraiz-Cardona, Isaac; Bertoluzzi, Luca; Lopez-Varo, Pilar; Bisquert, Juan; Park, Jong Hyeok; Gimenez, Sixto

    2016-04-01

    WO3-BiVO4 n-n heterostructures have demonstrated remarkable performance in photoelectrochemical water splitting due to the synergistic effect between the individual components. Although the enhanced functional capabilities of this system have been widely reported, in-depth mechanistic studies explaining the carrier dynamics of this heterostructure are limited. The main goal is to provide rational design strategies for further optimization as well as to extend these strategies to different candidate systems for solar fuel production. In the present study, we perform systematic optoelectronic and photoelectrochemical characterization to understand the carrier dynamics of the system and develop a simple physical model to highlight the importance of the selective contacts to minimize bulk recombination in this heterostructure. Our results collectively indicate that while BiVO4 is responsible for the enhanced optical properties, WO3 controls the transport properties of the heterostructured WO3-BiVO4 system, leading to reduced bulk recombination.

  17. The Effect of WO 3 on the Photocatalytic Activity of TiO 2

    NASA Astrophysics Data System (ADS)

    Do, Y. R.; Lee, W.; Dwight, K.; Wold, A.

    1994-01-01

    Samples of WO 3/TiO 2 mixed oxide powders were prepared by two methods: (1) the incipient wetness impregnation of an aqueous ammonia solution of H 2WO 4 onto TiO 2 (P25), followed by heat treatment and (2) the ultrasonic nebulization and flame hydrolysis of a mixed isopropanol solution of tungsten(V) pentaethoxide and titanium(IV) tetraisopropoxide. The photocatalytic activities of TiO 2-based catalysts were evaluated by the degradation of 1,4-dichlorobenzene (DCB). The addition of WO 3 to TiO 2 greatly increased its photocatalytic behavior. This may be related to an increase in the transfer of electrons from the TiO 2 to the outer system, via the formation of an intermediate W(V) species.

  18. Metal-insulator transition in Na{sub x}WO{sub 3}: Photoemission spectromicroscopy study

    SciTech Connect

    Paul, Sanhita Ghosh, Anirudha Raj, Satyabrata

    2014-04-24

    We have investigated the validity of percolation model, which is quite often invoked to explain the metal-insulator transition in sodium tungsten bronzes, Na{sub x}WO{sub 3} by photoelectron spectromicroscopy. The spatially resolved direct spectromicroscopic probing on both the insulating and metallic phases of high quality single crystals of Na{sub x}WO{sub 3} reveals the absence of any microscopic inhomogeneities embedded in the system within the experimental limit. Neither any metallic domains in the insulating host nor any insulating domains in the metallic host have been found to support the validity of percolation model to explain the metal-insulator transition in Na{sub x}WO{sub 3}.

  19. Nitrogen-incorporation induced changes in the microstructure of nanocrystalline WO3 thin films

    SciTech Connect

    Vemuri, Venkata Rama Sesha R.; Noor-A-Alam, M.; Gullapalli, Satya K.; Engelhard, Mark H.; Ramana, C.V.

    2011-12-30

    Nitrogen doped tungsten oxide (WO3) films were grown by reactive magnetron sputter-deposition by varying the nitrogen content in the reactive gas mixture keeping the deposition temperature fixed at 400 C. The crystal structure, surface morphology, chemical composition, and electrical resistivity of nitrogen doped WO3 films were evaluated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and electrical conductivity measurements. The results indicate that the nitrogen-doping induced changes in the microstructure and electrical properties of WO3 films are significant. XRD measurements coupled with SEM analysis indicates that the increasing nitrogen content decreases the grain size and crystal quality. The nitrogen concentration increases from 0 at.% to 1.35 at.% with increasing nitrogen flow rate from 0 to 20 sccm. The corresponding dc electrical conductivity of the films had shown a decreasing trend with increasing nitrogen content.

  20. International Database of Volcanic Ash Impacts

    NASA Astrophysics Data System (ADS)

    Wallace, K.; Cameron, C.; Wilson, T. M.; Jenkins, S.; Brown, S.; Leonard, G.; Deligne, N.; Stewart, C.

    2015-12-01

    Volcanic ash creates extensive impacts to people and property, yet we lack a global ash impacts catalog to organize, distribute, and archive this important information. Critical impact information is often stored in ephemeral news articles or other isolated resources, which cannot be queried or located easily. A global ash impacts database would improve 1) warning messages, 2) public and lifeline emergency preparation, and 3) eruption response and recovery. Ashfall can have varying consequences, such as disabling critical lifeline infrastructure (e.g. electrical generation and transmission, water supplies, telecommunications, aircraft and airports) or merely creating limited and expensive inconvenience to local communities. Impacts to the aviation sector can be a far-reaching global issue. The international volcanic ash impacts community formed a committee to develop a database to catalog the impacts of volcanic ash. We identify three user populations for this database: 1) research teams, who would use the database to assist in systematic collection, recording, and storage of ash impact data, and to prioritize impact assessment trips and lab experiments 2) volcanic risk assessment scientists who rely on impact data for assessments (especially vulnerability/fragility assessments); a complete dataset would have utility for global, regional, national and local scale risk assessments, and 3) citizen science volcanic hazard reporting. Publication of an international ash impacts database will encourage standardization and development of best practices for collecting and reporting impact information. Data entered will be highly categorized, searchable, and open source. Systematic cataloging of impact data will allow users to query the data and extract valuable information to aid in the development of improved emergency preparedness, response and recovery measures.

  1. Isotopic paleoclimate from hydrated volcanic ash

    SciTech Connect

    Friedman, I.; Izett, G.A.; Gleason, J.D.

    1985-01-01

    The deuterium composition (deltaD) of secondary water in glass shards of volcanic ash can be used to calculate the deltaD--and hence the climatic association--of water that was in contact with the ash during the first 10,000 years after eruption of the ash; this being the approximate (+/-5000 years) time necessary for water to diffuse completely through the thin walls of the pumice and glass shards. The fractionation between environmental water and water diffusing into the glassy ash must be known in order to calculate the deltaD of the ancient ground water. With help from A.J. Gude and R.A. Sheppard, the authors have recently determined this fractionation, and have used it to derive a value for deltaD of water from 25 samples of glass from the Huckleberry Ridge (2.1 m.y.), Bishop Tuff (0.74 m.y.), and Lava Creek B (0.61 m.y.) ashes collected from sites throughout the Western US. All of these deltaD values correlate very well with latitude and with the present distribution of deltaD in surface water. For example, the deltaD of water in Huckleberry Ridge ash varies from -85 per thousand SMOW for samples collected in Texas, to -148 per thousand for samples from south-central Montana. Thus, water of hydration in rhyolitic ash represents samples of ancient environmental water and can be used to study changes in the deltaD of the precipitation through time.

  2. Luminescence spectroscopy of K3WO3F3 oxyfluoride crystals

    NASA Astrophysics Data System (ADS)

    Kozlov, A. V.; Pustovarov, V. A.

    2016-09-01

    Spectra of photoluminescence (PL) in region of 1.5-5.5 eV, PL excitation spectra (3-22 eV), PL decay kinetics, the temperature dependence of the PL were measured for single crystals and ceramics K3WO3F3 as well as irradiate ceramics K3WO3F3. Synchrotron radiation was used for low temperature PL experiments with time resolution. Single crystals are transparent in microwave, visible and near UV range, inter-band transition energy is Eg = 4.3 eV. The intrinsic luminescence of tungstates is usually ascribed to the radiative relaxation of exciton-like excitations localized on WO6 octahedra or WO4 tetrahedra. In K3WO3F3 the wide band luminescence in the region of 2.5 eV with the Stokes shift of 1.5 eV with the microsecond decay kinetics is connected with luminescence of triplet self-trapped excitons (STE). This luminescence is formed by electronic transitions in [WO3F3] octahedron. Different distortion of KWOF crystal lattice is manifested in the change of the Stokes shift of STE luminescence band. The 3.2 eV emission band in low-temperature PL spectrum with decay times of 1.8 ns and 11 ns corresponds to singlet STE luminescence. A new 2.9 eV emission band is discovered in low-temperature PL spectrum in the samples irradiated by fast electrons (E = 10 MeV, D = 160 kGy). This emission band is excited not intracenter mechanism, and through the creation of excitons bound on the defects. It is suggested that it is F-like centers of anionic sublattice induced by the mechanism of elastic collision.

  3. Fabrication and photoelectrochemical properties of porous ZnWO{sub 4} film

    SciTech Connect

    Zhao Xu; Yao Wenqing; Wu Yan; Zhang Shicheng; Yang Haipeng; Zhu Yongfa . E-mail: zhuyf@mail.tsinghua.edu.cn

    2006-08-15

    Porous ZnWO{sub 4} films have been fabricated on Indium-tin oxide (ITO) glass and its photoelectrochemical properties and high photocatalytic activities towards degradation of rhodamine B (RhB) has been investigated. Using amorphous heteronuclear complex as precursor and with the addition of polyethylene glycol (PEG, molecular weight=400), the porous ZnWO{sub 4} films have been achieved at the temperature of 500 deg. C via dip-coating method. It is composed of approximately 70 nm-sized particles and exhibits substantial porosity. The textures and porosity of ZnWO{sub 4} films are dependent on preparation factors, such as the ratio of precursor/PEG and the annealing conditions. The formation mechanism of porous ZnWO{sub 4} films was proposed. The porous ZnWO{sub 4} films exhibited high photocatalytic activities towards degrading RhB. The top of valence band and the bottom of the conduction band was estimated to be -0.56 and 3.45 eV (vs. saturated calomel electrode (SCE)), respectively. -- Graphical abstract: Current vs. potential curves for ZnWO{sub 4} film treated at various temperatures: ((a) photo 500 deg. C; (b) photo 550 deg. C; (c) photo TiO{sub 2}; (d) dark 500 deg. C; (e) dark 550 deg. C; (f) dark TiO{sub 2}) in (B) in 0.5 M Na{sub 2}SO{sub 4} solution pH 6.0, scan rate=10 mV s{sup -1}.

  4. Photoluminescence in the Ca{sub x}Sr{sub 1-x}WO{sub 4} system at room temperature

    SciTech Connect

    Porto, S.L.; Longo, E.; Simoes, L.G.P.; Lima, S.J.G.; Ferreira, J.M.; Soledade, L.E.B.; Espinoza, J.W.M.; Cassia-Santos, M.R.; Maurera, M.A.M.A.; Paskocimas, C.A.; Santos, I.M.G. Souza, A.G.

    2008-08-15

    In this work, a study was undertaken about the structural and photoluminescent properties, at room temperature, of powder samples from the Ca{sub x}Sr{sub 1-x}WO{sub 4} (x=0-1.0) system, synthesized by a soft chemical method and heat treated between 400 and 700 deg. C. The material was characterized using Infrared, UV-vis and Raman spectroscopy and XRD. The most intense PL emission was obtained for the sample calcined at 600 deg. C, which is neither highly disordered (400-500 deg. C), nor completely ordered (700 deg. C). Corroborating the role of disorder in the PL phenomenon, the most intense PL response was not observed for pure CaWO{sub 4} or SrWO{sub 4}, but for Ca{sub 0.6}Sr{sub 0.4}WO{sub 4}. The PL emission spectra could be separated into two Gaussian curves. The lower wavelength peak is placed around 530 nm, and the higher wavelength peak at about 690 nm. Similar results were reported in the literature for both CaWO{sub 4} and SrWO{sub 4}. - Graphical abstract: The structural and room temperature photoluminescence of Ca{sub x}Sr{sub 1-x}WO4 synthesized by a soft chemical method was studied. The most intense PL emission was obtained for the sample calcined at 600 deg. C, that is neither highly disordered (400-500 deg. C), nor completely ordered (700 deg. C). Corroborating the role of disorder in the PL phenomenon, the most intense PL response was not observed for pure CaWO{sub 4} or SrWO{sub 4}, but for Ca{sub 0.6}Sr{sub 0.4}WO{sub 4}.

  5. One-dimensional WO{sub 3} and its hydrate: One-step synthesis, structural and spectroscopic characterization

    SciTech Connect

    Iwu, Kingsley O.; Galeckas, Augustinas; Rauwel, Protima; Kuznetsov, Andrej Y.; Norby, Truls

    2012-01-15

    We report on a one-step hydrothermal growth of one-dimensional (1D) WO{sub 3} nanostructures, using urea as 1D growth-directing agent and a precursor free of metals other than tungsten. By decreasing the pH of the starting solution, the size of the nanostructures was reduced significantly, this development being accompanied by the realization of phase pure hexagonal WO{sub 3} nanorods (elimination of monoclinic impurity phase) and a red shift in optical absorption edge. Surface analyses indicated the presence of reduced tungsten species in the WO{sub 3} nanostructures, which increased two-fold in a hydrated WO{sub 3} phase obtained with further decrease in pH. We suggest that oxygen vacancies are responsible for this defect state in WO{sub 3}, while protons are responsible or contribute significantly to the same in the hydrated phase. - Graphical abstract: The figure illustrates the role of pH in morphological and absorption edge evolution of WO{sub 3} (hydrate) as well as the variation in the concentration of defect electrons between anhydrous and hydrated WO{sub 3}. Highlights: Black-Right-Pointing-Pointer WO{sub 3} nanorods prepared in a one step procedure. Black-Right-Pointing-Pointer HCl (aq) enables phase pure WO{sub 3} nanorods. Black-Right-Pointing-Pointer HCl (aq) induces significant reduction in dimension of and red shift in absorption edge of nanorods. Black-Right-Pointing-Pointer W{sup 5+} detected in hydrothermal WO{sub 3} phase, the concentration of which increases in the hydrated phase. Black-Right-Pointing-Pointer W{sup 5+} from the two phases due to different positive defects.

  6. Analysis of municipal refuse incinerator ashes for asbestos

    SciTech Connect

    Patel-Mandlik, K.J.; Manos, C.G.; Lisk, D.J.

    1988-12-01

    The ash which results from incineration includes bottom ash (slag) and fly ash, the latter being trapped in electrostatic precipitators or fabric filtration systems (baghouses, etc.). These ashes are collected separately or mixed and usually disposed in secure landfills with or without prior recovery of reusable metals. Whereas many published surveys have dealt with the concentrations of heavy metals and toxic organics in such ashes, very little has been reported on the possible presence of asbestos in them. In the work reported here, an analytical survey was conducted of the possible presence of asbestos in 20 such ashes from 18 incinerators in the United States.

  7. Ab-initio structure determination of β-La 2WO 6

    NASA Astrophysics Data System (ADS)

    Chambrier, M.-H.; Kodjikian, S.; Ibberson, R. M.; Goutenoire, F.

    2009-02-01

    The structure of the low-temperature form of β-La 2WO 6 has been determined from laboratory X-ray, neutron time-of-flight and electron diffraction data. This tungstate crystallizes in the non-centrosymmetric orthorhombic space group (no. 19) P2 12 12 1, with Z=8, a=7.5196(1) Å, b=10.3476(1) Å, c=12.7944(2) Å, and a measured density 7.37(1) g cm -3. The structure consists of tungsten [WO 6] octahedra and tetrahedral [OLa 4]. Tungsten polyhedra are connected such that [W 2O 11] 10- units are formed.

  8. Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors

    PubMed Central

    Mani, Sivakumar; Vediyappan, Veeramani; Chen, Shen-Ming; Madhu, Rajesh; Pitchaimani, Veerakumar; Chang, Jia-Yaw; Liu, Shang-Bin

    2016-01-01

    A facile hydrothermal route for the synthesis of ordered NiWO4 nanocrystals, which show promising applications as high performance non-enzymatic glucose sensor is reported. The NiWO4-modified electrodes showed excellent sensitivity (269.6 μA mM−1 cm−2) and low detection limit (0.18 μM) for detection of glucose with desirable selectivity, stability, and tolerance to interference, rendering their prospective applications as cost-effective, enzyme-free glucose sensors. PMID:27087561

  9. Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors

    NASA Astrophysics Data System (ADS)

    Mani, Sivakumar; Vediyappan, Veeramani; Chen, Shen-Ming; Madhu, Rajesh; Pitchaimani, Veerakumar; Chang, Jia-Yaw; Liu, Shang-Bin

    2016-04-01

    A facile hydrothermal route for the synthesis of ordered NiWO4 nanocrystals, which show promising applications as high performance non-enzymatic glucose sensor is reported. The NiWO4-modified electrodes showed excellent sensitivity (269.6 μA mM‑1 cm‑2) and low detection limit (0.18 μM) for detection of glucose with desirable selectivity, stability, and tolerance to interference, rendering their prospective applications as cost-effective, enzyme-free glucose sensors.

  10. Phase transitions in coprecipitated NiO-WO/sub 3/ system in calcination, reduction, and sulfiding

    SciTech Connect

    Agievskii, D.A.; Pavlova, L.I.; Landau, M.V.; Kvashonkin, V.I.; Chukin, G.D.

    1986-04-01

    X-ray diffraction and electron microscopy have been used in an investigation of the shaping of phase composition and structure of a coprecipitated NiO-WO/sub 3/ system in calcination, reduction, and sulfiding. It has been shown that calcination, when it leads to the formation of crystalline NiWO/sub 4/, lowers the efficiency of reduction and sulfiding to a considerable degree. A step-temperature sulfiding operation, in comparison with isothermal sulfiding, gives a less ordered structure of the WS/sub 2/, with loose packing of the particles into agglomerates.

  11. Iron-related luminescence centers in ZnWO4 : Fe

    NASA Astrophysics Data System (ADS)

    Nagirnyi, V.; Chernov, S.; Grigorjeva, L.; Jonsson, L.; Kirm, M.; Kotlov, A.; Lushchik, A.; Millers, D.; Nefedov, V. A.; Pankratov, V.; Zadneprovski, B. I.

    A systematic spectroscopic study of single ZnWO4 :Fe crystals with different iron concentrations has been performed under excitation by ultraviolet light, by synchrotron radiation or under photostimulation by near-infrared light. The luminescence of Fe3+-related centres has been studied. It is shown that iron centres of different types efficiently promote the formation of crystal defects at low temperatures. Electrons and holes can be trapped near Fe2+ or Fe3+ ions, which is further revealed in phosphorescence, thermostimulated or photostimulated luminescence. At room temperature the main effect of iron impurity is to reduce the light yield of a ZnWO4 scintillator.

  12. Preparation and photoelectrocatalytic activity of a nano-structured WO{sub 3} platelet film

    SciTech Connect

    Yagi, Masayuki Maruyama, Syou; Sone, Koji; Nagai, Keiji; Norimatsu, Takayoshi

    2008-01-15

    A tungsten trioxide (WO{sub 3}) film was prepared by calcination from a precursor paste including suspended ammonium tungstate and polyethylene glycol (PEG). The ammonium tungstate suspension was yielded by an acid-base reaction of tungstic acid and an ammonium solution followed by deposition with ethanol addition. Thermogravimetric (TG) analysis showed that the TG profile of PEG is significantly influenced by deposited ammonium tungstate, suggesting that PEG is interacting strongly with deposited ammonium tungstate in the suspension paste. X-ray diffraction (XRD) data indicated that the WO{sub 3} film is crystallized by sintering over 400 deg. C. The scanning electron microscopic (SEM) measurement showed that the film is composed of the nano-structured WO{sub 3} platelets. The semiconductor properties of the film were examined by Mott-Schottky analysis to give flat band potential E{sub FB}=0.30 V vs. saturated calomel reference electrode (SCE) and donor carrier density N{sub D}=2.5x10{sup 22} cm{sup -3}, latter of which is higher than previous WO{sub 3} films by two orders of magnitude. The higher N{sub D} was explained by the large interfacial heterojunction area caused by the nano-platelet structure, which apparently increases capacitance per a unit electrode area. The WO{sub 3} film sintered at 550 deg. C produced 3.7 mA cm{sup -2} of a photoanodic current at 1.2 V vs. SCE under illumination with a 500 W xenon lamp due to catalytic water oxidation. This photocurrent was 4.5-12.8 times higher than those for the other control WO{sub 3} films prepared by similar but different procedures. The high catalytic activity could be explained by the nano-platelet structure. The photocurrent was generated on illumination of UV and visible light below 470 nm, and the maximum incident photon-to-current conversion efficiency (IPCE) was 47% at 320 nm at 1.2 V. Technically important procedures for preparation of nano-structured platelets were discussed. - Graphical abstract: A

  13. Distinctions in the Raman Spectroscopy Features of WO3 Materials with Increasing Temperature

    NASA Astrophysics Data System (ADS)

    Garcia-Sanchez, Raul F.; Misra, Prabhakar

    2014-06-01

    Metal oxides are widely used in gas sensor applications due to their low cost, easy production and selectivity. Tungsten Oxide (WO3) is one of the most used metal oxides in the detection of Nitrogen gases (NOx). The purpose of this research is to determine if the Raman features of a metal oxide gas sensor can serve as tools to make estimates regarding the sensor capabilities related to the target gases. This research will be used for gas sensing of oxidizing/reducing toxic gases (i.e. H2S, NOx, SO2, etc.) and finding the effect that temperature, gas concentration, type of gas, exposure time and other variables have on the Raman spectra of metal oxides. In this experiment, the temperature was increased from 30-160 °C and the Raman data was taken using a 780 nm infrared laser. In two of the samples, WO3 on Silicon substrate and WO3 nanopowder, we found vibrational modes at 807, 716 and 271 cm-1, which are indicators of a monoclinic WO3 structure. The WO3 nanowires samples exhibit the O-W-O bond stretching feature is present and asymmetric stretching of the W-O bonds occurs, resulting in a 750 cm-1 band. The intensity of Raman features such as 750 cm-1 for nanowires and 492 and 670 cm-1 for WO3 on Silicon substrate begins to decay as temperature increases. Additionally, the vibrational modes related to O-H and W-OH become more pronounced as temperature increases due to those bonds reacting more strongly to the temperature change than the normal W-O bonds related to the original lattice structure. Finally, all samples have low-frequency phonon mode markers associated with temperature change, and in most cases these change as temperature increases. The understanding of the thermal effects will help develop theoretical models for the identification of specific metal oxide-gas relationships and provide a supplemental way of observing gas adsorption in addition to current conductivity measurements.

  14. Preparation and Characterization of Monodispersed WO3 Nanoclusters on TiO2(110)

    SciTech Connect

    Kim, Jooho; Bondarchuk, Olexsandr; Kay, Bruce D.; White, J. M.; Dohnalek, Zdenek

    2007-02-15

    A procedure is described for preparing a novel model early transition metal oxide system for catalysis studies?direct sublimation of tungsten trioxide on TiO2(110). Isolated monodispersed cyclic trimers, i.e., (WO3)3, can be formed on TiO2(110) that are thermally stable up to at least 750 K. Although not readily generalizable to monodispersed (WO3)x clusters other than cyclic trimers, this protocol provides an ideal nanocluster platform for carrying out model system catalysis studies over a wide temperature range.

  15. Surface morphology-controlled fabrication of Na2WO4 films with high structural stability

    NASA Astrophysics Data System (ADS)

    Yang, Dachi; Hernandez, Jose A.; Katiyar, Ram S.; Fonseca, Luis F.

    2016-06-01

    Films with designed surface morphologies are of great importance for high-performance devices and other applications such as gas sensors and catalysts. Na2WO4 films with various surface morphologies have been fabricated via physical evaporation inside the chamber created by approaching mouth to mouth two alumina boats containing precursors and by covering alumina boat with aluminum foil, respectively. The temperature-dependence Raman investigation reveals red shifting of the Raman peaks with increasing temperature in all cases. The observed Raman shifts are relatively small confirming high stability of the Na2WO4 films within the investigated temperature range.

  16. Hydrothermal synthesis of uniform WO{sub 3} submicrospheres using thiourea as an assistant agent

    SciTech Connect

    Su, X.T.; Xiao, F.; Lin, J.L.; Jian, J.K.; Li, Y.N.; Sun, Q.J.; Wang, J.D.

    2010-08-15

    Nearly monodisperse tungsten trioxide submicrospheres have been synthesized with tungsten acid and HCl as the starting materials and thiourea as a structure-directing agent through a facile hydrothermal method. The obtained products were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and energy dispersive X-ray, respectively. The results show that the WO{sub 3} submicrospheres are monodisperse with a diameter of about 800-1000 nm. The morphology of the products gradually evolutes from rods to spheres with increase of the reaction time. The formation mechanism of the WO{sub 3} submicrospheres is primarily discussed.

  17. Alcohol Dehydration on Monooxo W=O and Dioxo O=W=O Species

    SciTech Connect

    Li, Zhenjun; Smid, Bretislav; Kim, Yu Kwon; Matolin, Vladimir; Kay, Bruce D.; Rousseau, Roger J.; Dohnalek, Zdenek

    2012-08-16

    The dehydration of 1-propanol on nanoporous WO3 films prepared via ballistic deposition at ~20 K has been investigated using temperature programmed desorption, infrared reflection absorption spectroscopy and density functional theory. The as deposited films are extremely efficient in 1-propanol dehydration to propene. This activity is correlated with the presence of dioxo O=W=O groups while monooxo W=O species are shown to be inactive. Annealing of the film induces densification that results in the loss of catalytic activity due to annihilation O=W=O species.

  18. Exposure of WO3 Photoanodes to Ultraviolet Light Enhances Photoelectrochemical Water Oxidation.

    PubMed

    Li, Tengfei; He, Jingfu; Peña, Bruno; Berlinguette, Curtis P

    2016-09-28

    Exposure of WO3 photoanodes to sustained irradiation by ultraviolet (UV) light induces a morphology change that enhances the photoelectrochemical (PEC) activity towards the oxygen evolution reaction (OER). A 30% enhancement in photocurrent density at 1.23 V vs RHE was measured despite a nominal change in onset potential. A structural and electrochemical analysis of the films before and after exposure to UV irradiation indicates that a higher film porosity and correspondingly higher specific surface area is responsible for the enhancement in PEC activity. The effect of prolonged UV irradiation on the WO3 films is fundamentally different to that which was previously observed for BiVO4 films.

  19. Exposure of WO3 Photoanodes to Ultraviolet Light Enhances Photoelectrochemical Water Oxidation.

    PubMed

    Li, Tengfei; He, Jingfu; Peña, Bruno; Berlinguette, Curtis P

    2016-09-28

    Exposure of WO3 photoanodes to sustained irradiation by ultraviolet (UV) light induces a morphology change that enhances the photoelectrochemical (PEC) activity towards the oxygen evolution reaction (OER). A 30% enhancement in photocurrent density at 1.23 V vs RHE was measured despite a nominal change in onset potential. A structural and electrochemical analysis of the films before and after exposure to UV irradiation indicates that a higher film porosity and correspondingly higher specific surface area is responsible for the enhancement in PEC activity. The effect of prolonged UV irradiation on the WO3 films is fundamentally different to that which was previously observed for BiVO4 films. PMID:27644107

  20. Marine Mesocosm Bacterial Colonisation of Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Witt, V.; Cimarelli, C.; Ayris, P. M.; Kueppers, U.; Erpenbeck, D.; Dingwell, D. B.; Woerheide, G.

    2014-12-01

    Explosive volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local or regional scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, ash deposition may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, it is currently unknown which bacteria are involved in pioneer colonisation. We hypothesize that physico-chemical properties (i.e., morphology, chemistry, mineralogy) of the ash may dictate bacterial colonisation. We have tested the effect of substrate properties on bacterial diversity and abundance colonising five substrates: i) quartz sand ii) crystalline ash from the Sakurajima volcano (Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size - by incubation in a controlled marine mesocosm (coral reef aquarium) under low light conditions for three months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis Of Similarity supports significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community and carried the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community

  1. Hydrothermal reaction of fly ash. Final report

    SciTech Connect

    Brown, P.W.

    1994-12-31

    The reactions which occur when fly ash is treated under hydrothermal conditions were investigated. This was done for the following primary reasons. The first of these is to determine the nature of the phases that form to assess the stabilities of these phases in the ambient environment and, finally, to assess whether these phases are capable of sequestering hazardous species. The second reason for undertaking this study was whether, depending on the composition of the ash and the presence of selected additives, it would be possible under hydrothermal conditions to form compounds which have cementitious properties. Formation of four classes of compounds, which bracket likely fly ash compositional ranges, were selected for study. The classes are calcium silicate hydrates, calcium selenates, and calcium aluminosulfates, and silicate-based glasses. Specific compounds synthesized were determined and their stability regions assessed. As part of stability assessment, the extent to which selected hazardous species are sequestered was determined. Finally, the cementing properties of these compounds were established. The results obtained in this program have demonstrated that mild hydrothermal conditions can be employed to improve the reactivity of fly ash. Such improvements in reactivity can result in the formation of monolithic forms which may exhibit suitable mechanical properties for selected applications as building materials. If the ashes involved are considered hazardous, the mechanical properties exhibited indicated the forms could be handled in a manner which facilitates their disposal.

  2. National volcanic ash operations plan for aviation

    USGS Publications Warehouse

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  3. Interspecific Proteomic Comparisons Reveal Ash Phloem Genes Potentially Involved in Constitutive Resistance to the Emerald Ash Borer

    PubMed Central

    Whitehill, Justin G. A.; Popova-Butler, Alexandra; Green-Church, Kari B.; Koch, Jennifer L.; Herms, Daniel A.; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion. PMID:21949771

  4. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer.

    PubMed

    Whitehill, Justin G A; Popova-Butler, Alexandra; Green-Church, Kari B; Koch, Jennifer L; Herms, Daniel A; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion.

  5. Synthesis and characterization of novel WO{sub 3} loaded Ag–ZnO and its photocatalytic activity

    SciTech Connect

    Subash, B.; Krishnakumar, B.; Pandiyan, V.; Swaminathan, M.; Shanthi, M.

    2013-01-15

    Graphical abstract: Display Omitted Highlights: ► A novel WO{sub 3} loaded Ag–ZnO was prepared by a simple solvothermal method. ► ‘Ag’ traps the electron from both ZnO and WO{sub 3} reducing electro–hole recombination. ► WO{sub 3}–Ag–ZnO is more efficient than Ag–ZnO, WO{sub 3}–ZnO, Ag–WO{sub 3} and undoped catalysts. ► WO{sub 3}–Ag–ZnO material will be much useful for the treatment of dye effluents. -- Abstract: A novel WO{sub 3} loaded Ag–ZnO photocatalyst was successfully synthesized by a simple solvothermal method and characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) images, energy dispersive spectrum (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL), cyclic voltammetry (CV) and Brunauer–Emmett–Teller (BET) surface area measurements. The photocatalytic activity of WO{sub 3}–Ag–ZnO was investigated for the degradation of RR 120 and RO 4 dyes in aqueous solution using UV-A light. WO{sub 3}–Ag–ZnO is found to be more efficient than Ag–ZnO, WO{sub 3}–ZnO, Ag–WO{sub 3}, commercial ZnO, prepared ZnO, TiO{sub 2}-P25 and TiO{sub 2} (Merck) at neutral pH for the mineralization of dyes. First time we have reported that novel WO{sub 3} loaded Ag–ZnO has been found to be very efficient for two azo dyes removal when compared to commercially available catalyst (Degussa P25, ZnO (Merck) and TiO{sub 2} (Merck)). The mineralization of dyes has been confirmed by chemical oxygen demand (COD) measurements. A mechanism of degradation has been proposed for the higher efficiency of WO{sub 3}–Ag–ZnO.

  6. Electronic polarizability and interaction parameter of gadolinium tungsten borate glasses with high WO{sub 3} content

    SciTech Connect

    Taki, Yukina; Shinozaki, Kenji; Honma, Tsuyoshi; Dimitrov, Vesselin; Komatsu, Takayuki

    2014-12-15

    Glasses with the compositions of 25Gd{sub 2}O{sub 3}–xWO{sub 3}–(75−x)B{sub 2}O{sub 3} with x=25–65 were prepared by using a conventional melt quenching method, and their electronic polarizabilities, optical basicities Λ(n{sub o}), and interaction parameters A(n{sub o}) were estimated from density and refractive index measurements in order to clarify the feature of electronic polarizability and bonding states in the glasses with high WO{sub 3} contents. The optical basicity of the glasses increases monotonously with the substitution of WO{sub 3} for B{sub 2}O{sub 3}, and contrary the interaction parameter decreases monotonously with increasing WO{sub 3} content. A good linear correlation was observed between Λ(n{sub o}) and A(n{sub o}) and between the glass transition temperature and A(n{sub o}). It was proposed that Gd{sub 2}O{sub 3} oxide belongs to the category of basic oxide with a value of A(n{sub o})=0.044 Å{sup −3} as similar to WO{sub 3}. The relationship between the glass formation and electronic polarizability in the glasses was discussed, and it was proposed that the glasses with high WO{sub 3} and Gd{sub 2}O{sub 3} contents would be a floppy network system consisting of mainly basic oxides. - Graphical abstract: This figure shows the correlation between the optical basicity and interaction parameter in borate-based glasses. The data obtained in the present study for Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses are locating in the correlation line for other borate glasses. These results shown in Fig. 8 clearly demonstrate that Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses having a wide range of optical basicity and interaction parameter are regarded as glasses consisting of acidic and basic oxides. - Highlights: • Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses with high WO{sub 3} contents were prepared. • Electronic polarizability and interaction parameter were estimated. • Optical basicity increases

  7. Fly ash lung: a new pneumoconiosis

    SciTech Connect

    Golden, E.B.; Warnock, M.L.; Hulett, L.D. Jr.

    1982-01-01

    A laborer who worked in a steel mill and in a shipyard developed non-specific pulmonary interstitial fibrosis. Postmortem samples of his lung were digested, and the inorganic material present was extracted and examined using transmission electron microscopy, electron diffraction, and electron microprobe analysis. Uncoated asbestos fibers were present (1.4 x 10/sup 5//g wet lung), as well as the presence of a large number of fly ash particles (6 x 10/sup 6//g wet lung). Fly ash is the particulate material produced during coal combustion. The contribution of the asbestos to this man's lung disease is uncertain. The authors believe, based on previous studies implicating aluminium silicates in pneumoconiosis, that the fly ash, an aluminium silicate, may be a contributing factor.

  8. Fly ash lung: a new pneumoconiosis

    SciTech Connect

    Golden, E.B.; Warnock, M.L.; Hulett, L.D. Jr.; Churg, A.M.

    1982-01-01

    A laborer who worked in a steel mill and in a shipyard developed a nonspecific pulmonary interstitial fibrosis. Postmortem samples of his lung were digested, and the inorganic material present was extracted and examined using transmission electron microscopy, electron diffraction, and electron microprobe analysis. Uncoated asbestos fibers were present (1.4 X 10(5)/g wet lung), but the surprising finding was the presence of a large number of fly ash particles (6 X 10(6)/g wet lung). Fly ash, the particulate material produced during coal combustion, has not previously been reported to be present in human lung tissue. Although the contribution of the asbestos to this man's lung disease is uncertain, we believe, based on previous studies implicating aluminum silicates in pneumoconiosis, that the fly ash, an aluminum silicate, may be a contributing factor.

  9. Extraction of trace metals from fly ash

    DOEpatents

    Blander, Milton; Wai, Chien M.; Nagy, Zoltan

    1984-01-01

    A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  10. Extraction of trace metals from fly ash

    DOEpatents

    Blander, M.; Wai, C.M.; Nagy, Z.

    1983-08-15

    A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  11. Laboratory study of volcanic ash electrification

    NASA Astrophysics Data System (ADS)

    Alois, Stefano; Merrison, Jonathan

    2016-04-01

    Electrostatic forces play an important role in the dynamics of volcanic plumes, for example in ash dispersion and aggregation phenomena. Field measurements of ash electrification are often technically challenging due to poor access and there lacks an accepted physical theory to describe the electrical charge exchange which occurs during particle contact. The goal of the study is to investigate single particle electrification under controlled conditions using advanced laboratory facilities. A novel technique is presented, based on the use of a laser based velocimeter. Here an electric field is applied and the field-induced drift velocity of (micron-sized) ash grains is measured as well as the particles fall velocity. This allows the simultaneous determination of a suspended grains size and electrical charge. The experiments are performed in a unique environmental wind tunnel facility under controlled low-pressure conditions. Preliminary results of particle electrification will be presented.

  12. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes

    SciTech Connect

    Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James

    2015-09-27

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. Here, we measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometer and their ash fusion temperatures through optical image analysis. We made all measurements in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. Finally, an understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.

  13. Quantitative shape measurements of distal volcanic ash

    NASA Astrophysics Data System (ADS)

    Riley, Colleen M.; Rose, William I.; Bluth, Gregg J. S.

    2003-10-01

    Large-scale volcanic eruptions produce fine ash (<200 μm) which has a long atmospheric residence time (1 hour or more) and can be transported great distances from the volcanic source, thus, becoming a hazard to aircraft and public health. Ash particles have irregular shapes, so data on particle shape, size, and terminal velocities are needed to understand how the irregular-shaped particles affect transport processes and radiative transfer measurements. In this study, a methodology was developed to characterize particle shapes, sizes, and terminal velocities for three ash samples of different compositions. The shape and size of 2500 particles from (1) distal fallout (˜100 km) of the 14 October 1974 Fuego eruption (basaltic), (2) the secondary maxima (˜250 km) of the 18 August 1992 Spurr eruption (andesitic), and (3) the Miocene Ash Hollow member, Nebraska (rhyolitic) were measured using image analysis techniques. Samples were sorted into 10 to 19 terminal velocity groups (0.6-59.0 cm/s) using an air elutriation device. Grain-size distributions for the samples were measured using laser diffraction. Aspect ratio, feret diameter, and perimeter measurements were found to be the most useful descriptors of how particle shape affects terminal velocity. These measurement values show particle shape differs greatly from a sphere (commonly used in models and algorithms). The diameters of ash particles were 10-120% larger than ideal spheres at the same terminal velocity, indicating that irregular particle shape greatly increases drag. Gas-adsorption derived surface areas are 1 to 2 orders of magnitude higher than calculated surface areas based on measured dimensions and simple geometry, indicating that particle shapes are highly irregular. Correction factors for surface area were derived from the ash sample measurements so that surface areas calculated by assuming spherical particle shapes can be corrected to reflect more realistic values.

  14. Market assessment and technical feasibility study of PFBC ash use

    SciTech Connect

    Smith, V.E.; Bland, A.E.; Brown, T.H.; Georgiou, D.N.; Wheeldon, J.

    1994-10-01

    The overall objectives of this study are to determine the market potential and the technical feasibility of using PFBC ash in high volume ash use applications. The information will be of direct use to the utility industry in assessing the economics of PFBC power generation in light of ash disposal avoidance through ash marketing. In addition, the research is expected to result in the generation of generic data on the use of PFBC ash that could lead to novel processing options and procedures. The specific objectives of the proposed research and demonstration effort are: Define resent and future market potential of PFBC ash for a range of applications (Phase I); assess the technical feasibility of PFBC ash use in construction, civil engineering and agricultural applications (Phase II); and demonstrate the most promising of the market and ash use options in full-scale field demonstrations (Phase III).

  15. Ammonia absorption on coal and oil fly ashes

    SciTech Connect

    Muzio, L.J.; Kim, E.N.; McVickar, M.A.

    1996-01-01

    Ammonia and urea based post-combustion NO{sub x} control technologies (e.g., SNCR, SCR) are becoming more common as utilities strive to meet more stringent NO{sub x} emission regulations. One issue associated with these technologies is the fate of ammonia slip. A portion of the NH{sub 3} slip will be absorbed by the fly ash. Depending on the concentrations of ammonia in the ash, this may pose odor problems while handling the ash, and impact the disposal and marketability of the ash. This paper presents the results of a bench-scale study conducted to characterize NH{sub 3} absorption by fly ash. The experiment investigated NH{sub 3} absorption as a function of ash type (four coal ashes, two oil ashes), exposure time, temperature, and NH{sub 3} concentration.

  16. Microscopic study of alkali-activated fly ash

    SciTech Connect

    Katz, A.

    1998-02-01

    The activation mechanism of fly ash in a basic environment was studied as a means to improve the reactivity of fly ash in blended cements. The experimental program included activation of fly ash by a strong base (NaOH) at different concentrations, temperatures, and water-to-fly ash ratios. It was found that the degree of reactivity, as shown by the compressive strength, increases with increasing concentration of the base (up to 4 mol of NaOH) and curing temperature (up to 90 C). Lowering the sodium hydroxide to fly ash ratio by lowering the water/fly ash ratio, while maintaining the solution concentration constant yielded a lower compressive strength in spite of the lower porosity, and the high concentration of the solution. These results indicate that activation of fly ash in blended cements depends not only on the pH of the activating ambiance but also on the ratio between the latter and the fly ash.

  17. Eco-friendly fly ash utilization: potential for land application

    SciTech Connect

    Malik, A.; Thapliyal, A.

    2009-07-01

    The increase in demand for power in domestic, agricultural, and industrial sectors has increased the pressure on coal combustion and aggravated the problem of fly ash generation/disposal. Consequently the research targeting effective utilization of fly ash has also gained momentum. Fly ash has proved to be an economical substitute for expensive adsorbents as well as a suitable raw material for brick manufacturing, zeolite synthesis, etc. Fly ash is a reservoir of essential minerals but is deficient in nitrogen and phosphorus. By amending fly ash with soil and/or various organic materials (sewage sludge, bioprocess materials) as well as microbial inoculants like mycorrhizae, enhanced plant growth can be realized. Based on the sound results of large scale studies, fly ash utilization has grown into prominent discipline supported by various internationally renowned organizations. This paper reviews attempts directed toward various utilization of fly ash, with an emphasis on land application of organic/microbial inoculants amended fly ash.

  18. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    PubMed

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  19. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    SciTech Connect

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-15

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  20. Fly Ash Characteristics and Carbon Sequestration Potential

    SciTech Connect

    Palumbo, Anthony V.; Amonette, James E.; Tarver, Jana R.; Fagan, Lisa A.; McNeilly, Meghan S.; Daniels, William L.

    2007-07-20

    Concerns for the effects of global warming have lead to an interest in the potential for inexpensive methods to sequester carbon dioxide (CO2). One of the proposed methods is the sequestration of carbon in soil though the growth of crops or forests.4,6 If there is an economic value placed on sequestration of carbon dioxide in soil there may be an an opportunity and funding to utilize fly ash in the reclamation of mine soils and other degraded lands. However, concerns associated with the use of fly ash must be addressed before this practice can be widely adopted. There is a vast extent of degraded lands across the world that has some degree of potential for use in carbon sequestration. Degraded lands comprise nearly 2 X 109 ha of land throughout the world.7 Although the potential is obviously smaller in the United States, there are still approximately 4 X 106 ha of degraded lands that previously resulted from mining operations14 and an additional 1.4 X 108 ha of poorly managed lands. Thus, according to Lal and others the potential is to sequester approximately 11 Pg of carbon over the next 50 years.1,10 The realization of this potential will likely be dependent on economic incentives and the use of soil amendments such as fly ash. There are many potential benefits documented for the use of fly ash as a soil amendment. For example, fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, HCO3-, Cl- and basic cations, although some effects are notably decreased in high-clay soils.8,13,9 The potential is that these effects will promote increased growth of plants (either trees or grasses) and result in greater carbon accumulation in the soil than in untreated degraded soils. This paper addresses the potential for carbon sequestration in soils amended with fly ash and examines some of the issues that should be considered in planning this option. We describe retrospective studies of soil carbon accumulation on

  1. NRL Satellite Volcanic Ash Plume Monitoring

    NASA Astrophysics Data System (ADS)

    Hawkins, J.; Kuciauskas, A. P.; Richardson, K.; Solbrig, J.; Miller, S. D.; Pavolonis, M. J.; Bankert, R.; Lee, T.; Kent, J.; Tsui, T.

    2009-12-01

    The Naval Research Laboratory’s (NRL) Marine Meteorology Division (NRL-MRY) is assembling a unique suite of near real-time digital satellite products geared towards monitoring volcanic ash plumes which can create hazardous aviation conditions. Ash plume detection, areal extent, plume top height and mass loading will be extracted via automated algorithms from a combination of geostationary (GEO) and low earth orbiting (LEO) data sets that take advantage of their complimentary strengths since no one sensor has the required spectral, spatial and temporal attributes needed. This product suite would then be available to the Volcanic Ash Advisory Centers (VAAC) and other interested users via web distribution. Initially, GOES-West and the Japanese MTSAT data will be incorporated to view volcanic plumes within the north Pacific region. Although GEO sensor spectral channels are not optimized for ash detection, temporal changes over limited timeframes can assist in plume extraction, but not for those at the highest latitudes. Examples with multi-channel techniques will be highlighted via animations. LEO sensors provide a suite of spectral channels unmatched on GEO platforms and permit enhanced ash plume monitoring. NRL has exploited the Moderate Resolution Imaging Spectroradiometer (MODIS) and SeaWiFS via a “dust enhancement technique” that has demonstrated positive plume monitoring results. Multi-channel methods using the Advanced Very High Resolution Radiometer (AVHRR) will be highlighted to take advantage of the numerous NOAA LEO satellites carrying this wide swath sensor with frequent volcano overpasses at the higher latitudes. The DMSP Operational Linescan System (OLS) provides daytime visible/infrared, as well as night time visible data which has shown value in spotting ash plumes when sufficient lunar illumination is present. The following suite of products is potentially available for over twenty (20) volcano sites world-wide via our NexSat web site: http

  2. Changeing of fly ash leachability after grinding

    NASA Astrophysics Data System (ADS)

    Lakatos, J.; Szabo, R.; Racz, A.; Banhidi, O.; Mucsi, G.

    2016-04-01

    Effect of grinding on the reactivity of fly ash used for geopolymer production was tested. Extraction technique using different alkaline and acidic solutions were used for detect the change of the solubility of elements due to the physical and mechano-chemical transformation of minerals in function of grinding time. Both the extraction with alkaline and acidic solution have detected improvement in solubility in function of grinding time. The enhancement in alkaline solution was approx. 100% in case of Si and Al. The acidic medium able to dissolve the fly ash higher manner than the alkaline, therefore the effect of grinding was found less pronounced.

  3. Utilization options for fly ash, bottom ash, and slag in Eastern Europe

    SciTech Connect

    Manz, O.E.

    1995-12-01

    Since 1967, at least six ash utilization symposiums have been held in the United States, with papers presented by several European authors on the utilization of coal by-products in Eastern Europe. There is currently over 80,000 megawatts of installed coal-fired capacity available in that region. Unfortunately, of the 117,778,000 tonnes of fly ash, bottom ash, and slag produced in Eastern Europe in 1989, only 13% was utilized. This paper outlines the research and levels and kinds of coal by-product utilization taking place in Eastern Europe since the late 1960s.

  4. Growth of Larval Agrilus planipennis (Coleoptera: Buprestidae) and Fitness of Tetrastichus planipennisi (Hymenoptera: Eulophidae) in Blue Ash (Fraxinus quadrangulata) and Green Ash (F. pennsylvanica).

    PubMed

    Peterson, Donnie L; Duan, Jian J; Yaninek, J S; Ginzel, Matthew D; Sadof, Clifford S

    2015-12-01

    Emerald ash borer (Agrilus planipennis Fairmaire) is an invasive primary pest of North American ash (Fraxinus spp.) trees. Blue ash (F. quadrangulata) is less susceptible to emerald ash borer infestations in the forest than other species of North American ash. Whereas other studies have examined adult host preferences, we compared the capacity of emerald ash borer larvae reared from emerald ash borer eggs in the field and in the laboratory to survive and grow in blue ash and the more susceptible green ash (F. pennsylvanica). Emerald ash borer larval survivorship was the same on both ash species. Mortality due to wound periderm formation was only observed in living field grown trees, but was low (<4%) in both green and blue ash. No difference in larval mortality in the absence of natural enemies suggests that both green and blue ash can support the development of emerald ash borer. Larvae reared from eggs on blue ash were smaller than on green ash growing in the field and also in bolts that were infested under laboratory conditions. In a laboratory study, parasitism rates of confined Tetrastichus planipennisi were similar on emerald ash borer larvae reared in blue and green ash bolts, as were fitness measures of the parasitoid including brood size, sex ratio, and adult female size. Thus, we postulate that emerald ash borer larvae infesting blue ash could support populations of T. planipennisi and serve as a potential reservoir for this introduced natural enemy after most of the other native ash trees have been killed. PMID:26314024

  5. Growth of Larval Agrilus planipennis (Coleoptera: Buprestidae) and Fitness of Tetrastichus planipennisi (Hymenoptera: Eulophidae) in Blue Ash (Fraxinus quadrangulata) and Green Ash (F. pennsylvanica).

    PubMed

    Peterson, Donnie L; Duan, Jian J; Yaninek, J S; Ginzel, Matthew D; Sadof, Clifford S

    2015-12-01

    Emerald ash borer (Agrilus planipennis Fairmaire) is an invasive primary pest of North American ash (Fraxinus spp.) trees. Blue ash (F. quadrangulata) is less susceptible to emerald ash borer infestations in the forest than other species of North American ash. Whereas other studies have examined adult host preferences, we compared the capacity of emerald ash borer larvae reared from emerald ash borer eggs in the field and in the laboratory to survive and grow in blue ash and the more susceptible green ash (F. pennsylvanica). Emerald ash borer larval survivorship was the same on both ash species. Mortality due to wound periderm formation was only observed in living field grown trees, but was low (<4%) in both green and blue ash. No difference in larval mortality in the absence of natural enemies suggests that both green and blue ash can support the development of emerald ash borer. Larvae reared from eggs on blue ash were smaller than on green ash growing in the field and also in bolts that were infested under laboratory conditions. In a laboratory study, parasitism rates of confined Tetrastichus planipennisi were similar on emerald ash borer larvae reared in blue and green ash bolts, as were fitness measures of the parasitoid including brood size, sex ratio, and adult female size. Thus, we postulate that emerald ash borer larvae infesting blue ash could support populations of T. planipennisi and serve as a potential reservoir for this introduced natural enemy after most of the other native ash trees have been killed.

  6. Extremely sensitive and selective NO probe based on villi-like WO3 nanostructures for application to exhaled breath analyzers.

    PubMed

    Moon, Hi Gyu; Choi, You Rim; Shim, Young-Seok; Choi, Kwon-Il; Lee, Jong-Heun; Kim, Jin-Sang; Yoon, Seok-Jin; Park, Hyung-Ho; Kang, Chong-Yun; Jang, Ho Won

    2013-11-13

    Self-assembled WO3 thin film nanostructures with 1-dimensional villi-like nanofingers (VLNF) have been synthesized on the SiO2/Si substrate with Pt interdigitated electrodes using glancing angle deposition (GAD). Room-temperature deposition of WO3 by GAD resulted in anisotropic nanostructures with large aspect ratio and porosity having a relative surface area, which is about 32 times larger than that of a plain WO3 film. A WO3 VLNF sensor shows extremely high response to nitric oxide (NO) at 200 °C in 80% of relative humidity atmosphere, while responses of the sensor to ethanol, acetone, ammonia, and carbon monoxide are negligible. Such high sensitivity and selectivity to NO are attributed to the highly efficient modualtion of potential barriers at narrow necks between individual WO3 VLNF and the intrinsically high sensitivity of WO3 to NO. The theoretical detection limit of the sensor for NO is expected to be as low as 88 parts per trillion (ppt). Since NO is an approved biomarker of chronic airway inflammation in asthma, unprecedentedly high response and selectivity, and ppt-level detection limit to NO under highly humid environment demonstrate the great potential of the WO3 VLNF for use in high performance breath analyzers.

  7. Monodisperse spindle-like FeWO{sub 4} nanoparticles: Controlled hydrothermal synthesis and enhanced optical properties

    SciTech Connect

    Guo, Jinxue; Zhou, Xiaoyu; Lu, Yibin; Zhang, Xiao; Kuang, Shaoping; Hou, Wanguo

    2012-12-15

    Monodisperse FeWO{sub 4} nanoparticles with specific spindle-like morphology have been synthesized in the presence of citric acid through hydrothermal process. In the synthesis route, citric acid played four roles such as the reducing agent, chelating regents, structure-directing agent and stabilizing agents. In addition, the morphology of FeWO{sub 4} was dramatically tuned by the pH value of the precursor medium. The optical properties of FeWO{sub 4} were investigated with UV-Vis spectra and photoluminescence spectroscopy. The photocatalytic experiments demonstrated that the decomposition efficiency of the monodisperse spindle-like FeWO{sub 4} nanoparticles is 74% after 30 min of UV irradiation, which displayed remarkable enhanced photodegradation activity compared with ordinary FeWO{sub 4} sample (57%) and normal TiO{sub 2} photocatalysts P-25 (56%). - Monodisperse spindle-like FeWO{sub 4} nanoparticles with enhanced photocatalytic activities. Highlights: Black-Right-Pointing-Pointer Monodisperse spindle-like FeWO{sub 4} were synthesized with hydrothermal method. Black-Right-Pointing-Pointer Citric acid plays key roles in the hydrothermal synthesis. Black-Right-Pointing-Pointer Their morphology can be tuned with pH value of the precursor medium. Black-Right-Pointing-Pointer They show enhanced photocatalytic activities with irradiation of UV light.

  8. Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin.

    PubMed

    Gar Alalm, Mohamed; Ookawara, Shinichi; Fukushi, Daisuke; Sato, Akira; Tawfik, Ahmed

    2016-01-25

    The photocatalytic degradation of carbofuran (pesticide) and ampicillin (pharmaceutical) using synthesized WO3/ZrO2 nanoparticles under simulated solar light was investigated. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectra analyses were used to characterize the prepared catalysts. The optimum ratio of WO3 to ZrO2 was determined to be 1:1 for the degradation of both contaminants. The degradation of carbofuran and ampicillin by WO3/ZrO2 after 240 min of irradiation was 100% and 96%, respectively. Ruthenium (Ru) was employed as an additive to WO3/ZrO2 to enhance the photocatalytic degradation rate. Ru/WO3/ZrO2 exhibited faster degradation rates than WO3/ZrO2. Furthermore, 100% and 97% degradation of carbofuran and ampicillin, respectively, was achieved using Ru/WO3/ZrO2 after 180 min of irradiation. The durability of the catalyst was investigated by reusing the same suspended catalyst, which achieved 92% of its initial efficiency. The photocatalytic degradation of ampicillin and carbofuran followed pseudo-first order kinetics according to the Langmuir-Hinshelwood model.

  9. Experimental and theoretical investigation of a mesoporous K(x)WO3 material having superior mechanical strength.

    PubMed

    Dey, Sonal; Anderson, Sean T; Mayanovic, Robert A; Sakidja, Ridwan; Landskron, Kai; Kokoszka, Berenika; Mandal, Manik; Wang, Zhongwu

    2016-02-01

    Mesoporous materials with tailored properties hold great promise for energy harvesting and industrial applications. We have synthesized a novel tungsten bronze mesoporous material (K(x)WO3; x ∼ 0.07) having inverse FDU-12 type pore symmetry and a crystalline framework. In situ small angle X-ray scattering (SAXS) measurements of the mesoporous K(0.07)WO3 show persistence of a highly ordered meso-scale pore structure to high pressure conditions (∼18.5 GPa) and a material with remarkable mechanical strength despite having ∼35% porosity. Pressure dependent in situ SAXS measurements reveal a bulk modulus κ = 44 ± 4 GPa for the mesoporous K(x)WO3 which is comparable to the corresponding value for the bulk monoclinic WO3 (γ-WO3). Evidence from middle angle (MAXS) and wide angle X-ray scattering (WAXS), high-resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy shows that the presence of potassium leads to the formation of a K-bearing orthorhombic tungsten bronze (OTB) phase within a monoclinic WO3 host structure. Our ab initio molecular dynamics calculations show that the formation of the OTB phase provides superior strength to the mesoporous K(0.07)WO3. PMID:26781181

  10. The adsorption of HCl on volcanic ash

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Xochilt; Schiavi, Federica; Keppler, Hans

    2016-03-01

    Understanding the interaction between volcanic gases and ash is important to derive gas compositions from ash leachates and to constrain the environmental impact of eruptions. Volcanic HCl could potentially damage the ozone layer, but it is unclear what fraction of HCl actually reaches the stratosphere. The adsorption of HCl on volcanic ash was therefore studied from -76 to +150 °C to simulate the behavior of HCl in the dilute parts of a volcanic plume. Finely ground synthetic glasses of andesitic, dacitic, and rhyolitic composition as well as a natural obsidian from Vulcano (Italy) served as proxies for fresh natural ash. HCl adsorption is an irreversible process and appears to increase with the total alkali content of the glass. Adsorption kinetics follow a first order law with rate constants of 2.13 ṡ10-6 s-1 to 1.80 ṡ10-4 s-1 in the temperature range investigated. For dacitic composition, the temperature and pressure dependence of adsorption can be described by the equation ln ⁡ c = 1.26 + 0.27 ln ⁡ p - 715.3 / T, where c is the surface concentration of adsorbed HCl in mg/m2, T is temperature in Kelvin, and p is the partial pressure of HCl in mbar. A comparison of this model with a large data set for the composition of volcanic ash suggests that adsorption of HCl from the gas phase at relatively low temperatures can quantitatively account for the majority of the observed Cl concentrations. The model implies that adsorption of HCl on ash increases with temperature, probably because of the increasing number of accessible adsorption sites. This temperature dependence is opposite to that observed for SO2, so that HCl and SO2 are fractionated by the adsorption process and the fractionation factor changes by four orders of magnitude over a temperature range of 250 K. The assumption of equal adsorption of different species is therefore not appropriate for deriving volcanic gas compositions from analyses of adsorbates on ash. However, with the experimental

  11. Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering

    NASA Astrophysics Data System (ADS)

    Karuppasamy, A.

    2015-12-01

    Titanium doped tungsten oxide (Ti:WO3) thin films with dendrite surface structures were grown by co-sputtering titanium and tungsten in Ar + O2 atmosphere. Ti:WO3 thin films were deposited at oxygen flow rates corresponding to pressures in the range 1.0 × 10-3-5.0 × 10-3 mbar. Argon flow rate and sputtering power densities for titanium (2 W/cm2) and tungsten (3 W/cm2) were kept constant. Ti:WO3 films deposited at an oxygen pressure of 5 × 10-3 mbar are found to be better electrochromic and photocatalytic. They have high optical modulation (80% at λ = 550 nm), coloration efficiency (60 cm2/C at λ = 550 nm), electron/ion storage and removal capacity (Qc: -22.01 mC/cm2, Qa: 17.72 mC/cm2), reversibility (80%) and methylene blue decomposition rate (-1.38 μmol/l d). The combined effects of titanium doping, dendrite surface structures and porosity leads to significant enhancement in the electrochromic and photocatalytic properties of Ti:WO3 films.

  12. Ultrasmall Biocompatible WO3- x Nanodots for Multi-Modality Imaging and Combined Therapy of Cancers.

    PubMed

    Wen, Ling; Chen, Ling; Zheng, Shimin; Zeng, Jianfeng; Duan, Guangxin; Wang, Yong; Wang, Guanglin; Chai, Zhifang; Li, Zhen; Gao, Mingyuan

    2016-07-01

    Ultrasmall biocompatible WO3 - x nanodots with an outstanding X-ray radiation sensitization effect are prepared, and demonstrated to be applicable for multi-modality tumor imaging through computed tomography and photoacoustic imaging (PAI), and effective cancer treatment combining both photothermal therapy and radiation therapy.

  13. Effects of Nickel Doping on the Multiferroic and Magnetic Phases of MnWO 4

    DOE PAGESBeta

    Poudel, N.; Lorenz, B.; Lv, B.; Wang, Y. Q.; Ye, F.; Wang, Jinchen; Fernandez-baca, J. A.; Chu, C. W.

    2015-12-15

    There are various orders in multiferroic materials with a frustrated spiral spin modulation inducing a ferroelectric state are extremely sensitive to small perturbations such as magnetic and electric fields, external pressure, or chemical substitutions. A classical multiferroic, the mineral Hubnerite with chemical formula MnWO4, shows three different magnetic phases at low temperature. The intermediate phase between 7.5K < T < 12.7K is multiferroic and ferroelectricity is induced by an inversion symmetry breaking spiral Mn-spin order and strong spin-lattice interactions. Furthermore, the substitution of Ni2+ (spin 1) for Mn2+ (spin 5/2) in MnWO4 and its effects on the magnetic and multiferroicmore » phases are studied. The ferroelectric phase is stabilized for low Ni content (up to 10%). Upon further Ni doping, the polarization in the ferroelectric phase is quickly suppressed while a collinear and commensurate magnetic phase, characteristic of the magnetic structure in NiWO4, appears first at higher temperature, gradually extends to lower temperature, and becomes the ground state above 30% doping. Between 10% and 30%, the multiferroic phase coexists with the collinear commensurate phase. In this concentration region, the spin spiral plane is close to the a-b plane which explains the drop of the ferroelectric polarization. Finally, the phase diagram of Mn1-xNixWO4 is derived by a combination of magnetic susceptibility, specific heat, electric polarization, and neutron scattering measurements.« less

  14. Electrochemical Performance of Morphologically Different Bi2WO6 Nanostructures Synthesized via a Hydrothermal Route

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Yang, Hua; Zhang, Haimin; Su, Junyan; Wang, Xiangxian

    2016-08-01

    Morphologically different Bi2WO6 nanostructures have been synthesized via a hydrothermal route, where the morphology was tailored by varying the pH value of the precursor solution. The samples prepared at pH 1, 7, and 11 consisted of flower-like hierarchical structures with average diameter of 7 μm, irregular flake-like structures with average thickness of 90 nm, and uniform spherical structures with average size of 85 nm, respectively. The electrochemical performance of the as-prepared Bi2WO6 samples was investigated by cyclic voltammetry, galvanostatic charge-discharge measurements, and electrochemical impedance spectroscopy. In 1 M KOH electrolyte at current density of 0.5 mA cm-2, the specific capacitance of the Bi2WO6 with flower-like hierarchical, flake-like, and spherical structure was measured to be 255 F g-1, 214 F g-1, and 412 F g-1, respectively. After 850 charge-discharge cycles at current density of 3 mA cm-2, the capacitance of the three samples remained at 87%, 78%, and 95% of the initial value, respectively. Among the three types of Bi2WO6 morphology, the spherical structure delivered the best electrochemical performance.

  15. Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds.

    PubMed

    Nayak, Arpan Kumar; Ghosh, Ruma; Santra, Sumita; Guha, Prasanta Kumar; Pradhan, Debabrata

    2015-08-01

    It remains a challenge to find a suitable gas sensing material that shows a high response and shows selectivity towards various gases simultaneously. Here, we report a mixed metal oxide WO3-SnO2 nanostructured material synthesized in situ by a simple, single-step, one-pot hydrothermal method at 200 °C in 12 h, and demonstrate its superior sensing behavior towards volatile organic compounds (VOCs) such as ammonia, ethanol and acetone. SnO2 nanoparticles with controlled size and density were uniformly grown on WO3 nanoplates by varying the tin precursor. The density of the SnO2 nanoparticles on the WO3 nanoplates plays a crucial role in the VOC selectivity. The responses of the present mixed metal oxides are found to be much higher than the previously reported results based on single/mixed oxides and noble metal-doped oxides. In addition, the VOC selectivity is found to be highly temperature-dependent, with optimum performance obtained at 200 °C, 300 °C and 350 °C for ammonia, ethanol and acetone, respectively. The present results on the cost-effective noble metal-free WO3-SnO2 sensor could find potential application in human breath analysis by non-invasive detection. PMID:26134476

  16. Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices.

    PubMed

    Vallejos, Stella; Stoycheva, Toni; Umek, Polona; Navio, Cristina; Snyders, Rony; Bittencourt, Carla; Llobet, Eduard; Blackman, Christopher; Moniz, Savio; Correig, Xavier

    2011-01-01

    A new method of synthesising nanoparticle-functionalised nanostructured materials via Aerosol Assisted Chemical Vapour Deposition (AACVD) has been developed. Co-deposition of Au nanoparticles with WO(3) nanoneedles has been used to deposit a sensing layer directly onto gas sensor substrates providing devices with a six-fold increase in response to low concentrations of a test analyte (ethanol). PMID:21103469

  17. Enhanced photocatalytic activity in anodized WO3-loaded TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Nazari, M.; Golestani-Fard, F.; Bayati, R.; Eftekhari-Yekta, B.

    2015-04-01

    In this work, TiO2 and WO3-grafted TiO2 nanotubes were grown via anodizing of titanium substrates in tungstate containing electrolytes. The samples were characterized in detail by XRD, XPS, SEM, EDX, and UV-Vis spectrophotometry techniques. Besides, photocatalytic characteristics were evaluated through measuring the degradation rate of 4-chlorophenol to establish a correlation between structure and photochemical properties. We were able to control morphology and growth mode of nanotubes from a tubular to a worm-like structure by changing the electrolyte composition. The samples possessed an anatase-rutile matrix where the anatase/rutile ratio was found to increase with the concentration of tungstate in the electrolyte. We attributed this observation to change in electrical conductivity of the electrolyte and the heat generated on the substrates. It was unambiguously revealed that a composite of WO3 and TiO2 forms and, in parallel, tungsten is doped into the crystalline lattice of TiO2. The maximum photocatalytic reaction rate constant for TiO2 and WO3-TiO2 samples was determined to be 0.0131 and 0.0174 min-1 respectively. The grafting TiO2 nanotubes with WO3 enhances the photocatalytic activity mainly due to the hindrance of charge carrier recombination and the formation of a more acidic surface. We established a correlation between structure, stoichiometry, and photocatalytic characteristics of nanotubes.

  18. Flame Synthesized Single Crystal Nanocolumn-Structured WO3 Thin Films for Photoelectrochemical Water Splitting.

    PubMed

    Ding, Jin-Rui; Kim, Kyo-Seon

    2016-02-01

    Tungsten oxide thin films have been found as an active visible light driven photoanode material for photoelectrochemical water splitting due to its good stability in aqueous solution and energetically favorable valence band position for water oxidation. Morphology control, which determines the performance of WO3 photoanode, is one of most focuses of recent research interests. In this work, we successfully prepared monoclinic WO3 thin films on ITO glass at low range of substrate temperature with a fabrication rate around 100 nm per minute by using aerosol flame deposition process. Single crystal nanocolumns with both triangular pyramid-like and triangular prism-like structure were obtained at certain process conditions. Photoelectrochemical properties of photoelectrodes assembled with both structured WO3 thin films were investigated. The prism-like nanocolumn-structured thin film generated the current density of 1.58 mAcm(-2) at potential of 1.0 V versus Ag/AgCl in 0.5 M H2SO4 solution under illumination of AM 1.5 simulated solar light (100 mVcm(-2)). It presented superior photoelectrochemical performance to pyramid-like nanocolumn-structured WO3 thin film. PMID:27433624

  19. Composite WO3/TiO2 nanostructures for high electrochromic activity

    DOE PAGESBeta

    Reyes-Gil, Karla R.; Stephens, Zachary D.; Stavila, Vitalie; Robinson, David B.

    2015-01-06

    A composite material consisting of TiO2 nanotubes (NT) with WO3 electrodeposited on its surface has been fabricated, detached from its Ti substrate, and attached to a fluorine-doped tin oxide (FTO) film on glass for application to electrochromic (EC) reactions. Several adhesion layers were tested, finding that a paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length and WO3 concentration on the EC performancemore » were studied. As a result, the composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast, and longer memory time compared with the pure WO3 and TiO2 materials« less

  20. Crystal structure and magnetic properties of potassium erbium double tungstate KEr(WO4)2

    NASA Astrophysics Data System (ADS)

    Borowiec, M. T.; Dyakonov, V. P.; Wozniak, K.; Dobrzycki, L.; Berkowski, M.; Zubov, E. E.; Michalski, E.; Szewczyk, A.; Gutowska, M. U.; Zayarnyuk, T.; Szymczak, H.

    2007-02-01

    Results of structural, magnetic and specific heat investigations of the potassium erbium double tungstate, KEr(WO4)2, are presented. Potassium erbium double-tungstate KEr(WO4)2 single crystals have been grown by the top-seeded solution growth method (TSSG) and modified Czochralski techniques. It crystallizes in the monoclinic crystal structure (C 2/c space group). The unit cell contains four formula units and is described by parameters a = 10.615(2) Å, b = 10.316(2) Å, c = 7.534(2) Å, β = 130.73(3)°. From the x-ray diffraction measurements the fractional atomic coordinates, displacement parameters and interatomic distances have been determined. The specific heat C(T) of the KEr(WO4)2 crystal has been measured over a temperature range of 0.6-300 K. The susceptibility has been studied at T = 0.25-4.0 K. The magnetic phase transition was observed at a temperature of 0.48 K. The magnetization has been measured in the temperature region from 4.2 to 60 K and in magnetic field up to 1.6 T. A strong anisotropy of magnetic properties was found. The temperature and field dependences of susceptibility and magnetization data were used for both elucidation of character of the magnetic ordering and calculation of the exchange and dipole-dipole interaction energies as well as for determination of the possible magnetic structure of KEr(WO4)2.

  1. Bi 2O 3-WO 3 compounds for photocatalytic applications by solid state and viscous processing

    NASA Astrophysics Data System (ADS)

    Finlayson, A. P.; Ward, E.; Tsaneva, V. N.; Glowacki, B. A.

    Water-splitting photoelectrochemical cells utilising photocatalysts have the potential to become a significant hydrogen source for fuel cells. Historically, the photocatalytic properties of TiO 2 and other compounds have been carefully investigated, but they suffer from poor energy conversion efficiencies for solar radiation. Inspired by the low bandgaps and high electrical conductivities of WO 3 and Bi 2O 3, this study investigates the suitability of compounds within this binary system as efficient photocatalysts. The structure and optical absorption spectra of these compounds have been determined via X-ray diffraction and UV-vis spectroscopy over the range of 300-900 nm. The semiconductor bandgaps of Bi 2O 3, WO 3 and Bi 2WO 6 were found to be 0.2 eV, in agreement with previously reported results. Two sample preparation techniques have been considered—solid-state processing and viscous processing techniques. A custom-built, computerised micro-coextrusion system has been used to prepare intermediate compounds from the WO 3-Bi 2O 3 binary oxide system and the design and optimisation of this technique are discussed.

  2. NO{sub 2} gas sensing of flame-made Pt-loaded WO{sub 3} thick films

    SciTech Connect

    Samerjai, Thanittha; Tamaekong, Nittaya; Liewhiran, Chaikarn; Wisitsoraat, Anurat; Phanichphant, Sukon

    2014-06-01

    Unloaded WO{sub 3} and 0.25–1.0 wt% Pt-loaded WO{sub 3} nanoparticles for NO{sub 2} gas detection were synthesized by flame spray pyrolysis (FSP) and characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The BET surface area (SSA{sub BET}) of the nanoparticles was measured by nitrogen adsorption. The NO{sub 2} sensing properties of the sensors based on unloaded and Pt-loaded WO{sub 3} nanoparticles were investigated. The results showed that the gas sensing properties of the Pt-loaded WO{sub 3} sensors were excellent to those of the unloaded one. Especially, 0.25 wt% Pt-loaded WO{sub 3} sensor showed highest response to NO{sub 2} than the others at low operating temperature of 150 °C. - Graphical abstract: The response of 0.25 wt% Pt-loaded WO3 sensor was 637 towards NO{sub 2} concentration of 10 ppm at 150 °C. - Highlights: • Unloaded and Pt-loaded WO{sub 3} nanoparticles for NO{sub 2} gas detection were synthesized by flame spray pyrolysis (FSP). • Gas sensing properties of the Pt-loaded WO{sub 3} sensors were excellent to those of the unloaded one. • 0.25 wt% Pt-loaded WO{sub 3} sensor showed highest response to NO{sub 2} at low operating temperature of 150 °C.

  3. A graphene-coupled Bi2WO6 nanocomposite with enhanced photocatalytic performance: a first-principles study.

    PubMed

    Ren, Fengzhu; Zhang, Jihua; Wang, Yuanxu; Yao, Wenzhi

    2016-05-18

    An experimentally synthesized graphene/Bi2WO6 composite showed an enhancement of the visible-light photocatalytic activity, while the underlying mechanism is not known. Here, first-principles calculations based on density functional theory were performed to explore the various properties of the graphene/Bi2WO6(010) composite aiming at gaining insights into the mechanism of its photocatalytic activity. The stability, electronic properties, charge transfer, and visible-light response were investigated in detail on the Bi2WO6(010) surface coupled with graphene. An analysis of charge distribution and Bader charge shows that there is a strong covalent bonding between graphene and the Bi2WO6(010) surface. The covalent interaction induces a small bandgap in graphene. The interband transition of graphene and the surface states of the Bi2WO6(010) surface would cause the absorption spectrum of graphene/Bi2WO6(010) to cover the entire visible-light region and even the infrared-light region. The photogenerated electrons flow to graphene from the conduction band of Bi2WO6 under the built-in electric field and band edge potential well. Thus, graphene serves as a photogenerated electron collector and transporter which significantly reduces the probability of electron-hole recombination and increases catalytic reaction sites not only on the surface of graphene but on also the surface of Bi2WO6. The decrease of charge recombination is possibly responsible for the enhancement of the visible-light photocatalytic activity of the graphene/Bi2WO6(010) nanocomposite. PMID:27156737

  4. Recent genome reduction of Wolbachia in Drosophila recens targets phage WO and narrows candidates for reproductive parasitism

    PubMed Central

    Metcalf, Jason A.; Jo, Minhee; Bordenstein, Sarah R.; Jaenike, John

    2014-01-01

    Wolbachia are maternally transmitted endosymbionts that often alter their arthropod hosts’ biology to favor the success of infected females, and they may also serve as a speciation microbe driving reproductive isolation. Two of these host manipulations include killing males outright and reducing offspring survival when infected males mate with uninfected females, a phenomenon known as cytoplasmic incompatibility. Little is known about the mechanisms behind these phenotypes, but interestingly either effect can be caused by the same Wolbachia strain when infecting different hosts. For instance, wRec causes cytoplasmic incompatibility in its native host Drosophila recens and male killing in D. subquinaria. The discovery of prophage WO elements in most arthropod Wolbachia has generated the hypothesis that WO may encode genes involved in these reproductive manipulations. However, PCR screens for the WO minor capsid gene indicated that wRec lacks phage WO. Thus, wRec seemed to provide an example where phage WO is not needed for Wolbachia-induced reproductive manipulation. To enable investigation of the mechanism of phenotype switching in different host backgrounds, and to examine the unexpected absence of phage WO, we sequenced the genome of wRec. Analyses reveal that wRec diverged from wMel approximately 350,000 years ago, mainly by genome reduction in the phage regions. While it lost the minor capsid gene used in standard PCR screens for phage WO, it retained two regions encompassing 33 genes, several of which have previously been associated with reproductive parasitism. Thus, WO gene involvement in reproductive manipulation cannot be excluded and reliance on single gene PCR should not be used to rule out the presence of phage WO in Wolbachia. Additionally, the genome sequence for wRec will enable transcriptomic and proteomic studies that may help elucidate the Wolbachia mechanisms of altered reproductive manipulations associated with host switching, perhaps among

  5. Need of advanced technologies for coal ash utilization programs

    SciTech Connect

    Dube, S.K.

    1997-09-01

    National Thermal Power Corporation Ltd. (NTPC) alone produces year about 17 million tonnes of coal ash every year, out of 13 coal based stations having about 12,000 MW coal based installed capacity. The coal ash utilization program in NTPC has explored the uses of ash in the areas of raising of ash dykes, structural fills, development of low lying lands, construction of road, building materials, small brick plants, PPC, etc. In taking the studies further the Center for Power Efficiency and Environmental Protection (Cenpeep) of NTPC is evaluating the scope of employing the advanced technologies in coal ash utilization to maximize its consumption and with improved productivity. To start with it is being suggested to develop the ash ponds using more economical compacting techniques to increase the life of current ash pond. The other areas include the development of suitable grout for back filling of mine without sacrificing the productivity of mine, use of fly ash and bottom ash in the road base construction work, manufacture of clay-ash and lime ash bricks using high speed brick plants and manufacture of light weight aggregates near the consumption center. There are many other areas also where ash can find its application in large volumes.

  6. ULTRAFINE ASH AEROSOLS FROM COAL COMBUSTION: CHARACTERIZATION AND HEALTH EFFECTS

    EPA Science Inventory

    Ultrafine coal fly ash particles, defined here as those with diameters less than 0.5 micrometer, typically comprise less than 1% of the total fly ash mass. These particles are formed almost exclusively through ash vaporization, nucleation, and coagulation/condensation mechanisms,...

  7. 77 FR 55895 - Permanent Closure of Cincinnati Blue Ash Airport

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... Federal Aviation Administration Permanent Closure of Cincinnati Blue Ash Airport AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of permanent closure of Cincinnati Blue Ash Airport (ISZ). SUMMARY: The... Cincinnati advising that on August 29, 2012, it was permanently closing Cincinnati Blue Ash Airport...

  8. Evaluation of Pollutant Leaching Potential of Coal Ashes for Recycling

    NASA Astrophysics Data System (ADS)

    Park, D.; Woo, N. C.; Kim, H.; Yoon, H.; Chung, D.

    2011-12-01

    By 2009, coal ashes produced from coal-based power plants in Korea have been reused as cement supplement materials; however, the rest is mostly disposed in landfills inside the plant properties. Continuous production of coal ashes and limited landfill sites require more recycles of coal ashes as base materials, specifically in constructions of roads and of huge industrial complex. Previous researches showed that coal ashes could contain various metals such as arsenic(As), chromium(Cr), lead(Pb), nickel(Ni), selenium(Se), etc. In this study, we collected four types of bottom ashes and two of fly ashes from four coal-based power plants. These ash samples were tested with distilled water through the column leaching process in oxidized conditions. The column test results were compared with those of total digestion, sequential extraction processes and TCLP. Concentrations of metals in outflows from columns are generally greater in fly ashes than in bottom ashes, specifically for As, Se, B, Sr and SO4. Only one fly ash (J2-F) shows high concentrations of arsenic and selenium in leachate. Sequential extraction results indicate that these metals are in readily soluble forms, such as adsorbed, carbonated, and reducible forms. Results of TCLP analysis indicate no potential contaminants leached from the ashes. In conclusion, recycling of coal combustion ashes could be encouraged with proper tests such as sequential and leaching experiments.

  9. Utilization of CFB fly ash for construction applications

    SciTech Connect

    Conn, R.E.; Sellakumar, K.; Bland, A.E.

    1999-07-01

    Disposal in landfills has been the most common means of handling ash in circulating fluidized bed (CFB) boiler power plants. Recently, larger CFB boilers with generating capacities up to 300 MWe are currently being planned, resulting in increased volumes and disposal cost of ash by-product. Studies have shown that CFB ashes do not pose environmental concerns that should significantly limit their potential utilization. Many uses of CFB ash are being investigated by Foster Wheeler, which can provide more cost-effective ash management. Construction applications have been identified as one of the major uses for CFB ashes. Typically, CFB ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. However, CFB ashes can be used for other construction applications that require less stringent specifications including soil stabilization, road base, structural fill, and synthetic aggregate. In this study, potential construction applications were identified for fly ashes from several CFB boilers firing diverse fuels such as petroleum coke, refuse derived fuel (RDF) and coal. The compressive strength of hydrated fly ashes was measured in order to screen their potential for use in various construction applications. Based on the results of this work, the effects of both ash chemistry and carbon content on utilization potential were ascertained. Actual beneficial uses of ashes evaluated in this study are also discussed.

  10. Economic analysis of emerald ash borer (Coleoptera: Buprestidae) management options.

    PubMed

    Vannatta, A R; Hauer, R H; Schuettpelz, N M

    2012-02-01

    Emerald ash borer, Agrilus planipennis (Fairmaire) (Coleoptera: Buprestidae), plays a significant role in the health and extent of management of native North American ash species in urban forests. An economic analysis of management options was performed to aid decision makers in preparing for likely future infestations. Separate ash tree population valuations were derived from the i-Tree Streets program and the Council of Tree and Landscape Appraisers (CTLA) methodology. A relative economic analysis was used to compare a control option (do-nothing approach, only removing ash trees as they die) to three distinct management options: 1) preemptive removal of all ash trees over a 5 yr period, 2) preemptive removal of all ash trees and replacement with comparable nonash trees, or 3) treating the entire population of ash trees with insecticides to minimize mortality. For each valuation and management option, an annual analysis was performed for both the remaining ash tree population and those lost to emerald ash borer. Retention of ash trees using insecticide treatments typically retained greater urban forest value, followed by doing nothing (control), which was better than preemptive removal and replacement. Preemptive removal without tree replacement, which was the least expensive management option, also provided the lowest net urban forest value over the 20-yr simulation. A "no emerald ash borer" scenario was modeled to further serve as a benchmark for each management option and provide a level of economic justification for regulatory programs aimed at slowing the movement of emerald ash borer.

  11. Observation on long afterglow of Tb{sup 3+} in CaWO{sub 4}

    SciTech Connect

    Wu, Haoyi; Hu, Yihua; Kang, Fengwen; Chen, Li; Wang, Xiaojuan; Ju, Guifang; Mu, Zhongfei

    2011-12-15

    Graphical abstract: The afterglow of Tb{sup 3+} is observed in CaWO{sub 4} matrix. The main emission of the afterglow is ascribed to the {sup 5}D{sub 4} {yields} {sup 7}F{sub 5} and {sup 5}D{sub 4} {yields} {sup 7}F{sub 6}. Emission due to {sup 5}D{sub 3} {yields} {sup 7}F{sub 4} and {sup 5}D{sub 3} {yields} {sup 7}F{sub 5} is weak. The cross-relaxation dominate the afterglow emission and it enhances the transition from {sup 5}D{sub 4} whereas from {sup 5}D{sub 3}. Highlights: Black-Right-Pointing-Pointer A green long afterglow is observed from Tb{sup 3+} in CaWO{sub 4} matrix. Black-Right-Pointing-Pointer Two traps which may have a strong influence on the afterglow properties are revealed by TL. Black-Right-Pointing-Pointer A mechanism model based on energy transfer from WO{sub 4}{sup 2-} group to Tb{sup 3+} followed by cross-relaxation is proposed. -- Abstract: The Tb{sup 3+} doped CaWO{sub 4} phosphors are synthesized via high temperature solid state reaction. The X-ray diffraction shows that small amount of Tb{sup 3+} does not have a significant influence on the structure of CaWO{sub 4}. A broad absorption band of the WO{sub 4}{sup 2-} group is observed from photoluminescence and the energy transfer from WO{sub 4}{sup 2-} group to Tb{sup 3+} ions induces the f-f transition. The cross-relaxation between two adjacent Tb{sup 3+} ions weakens {sup 5}D{sub 3}-{sup 7}F{sub j} transitions and enhances the {sup 5}D{sub 4}-{sup 7}F{sub j} transitions, leading to a green long afterglow of the phosphors. The thermoluminescence curves centered around 75 Degree-Sign C reveal the trap depth for afterglow generation is about 0.74-0.77 eV. The optimum Tb{sup 3+} concentration for afterglow properties is about 1%. A deep hole trap is induced when Tb{sup 3+} concentration exceeds 1% and it suppresses the thermoluminescence and the decay properties.

  12. The assemblage WO2 + H2O as a steady-state hydrogen source in moderately reduced hydrothermal experiments

    USGS Publications Warehouse

    Cygan, G.L.; I-Ming, Chou

    1990-01-01

    The values of fH2 for the assemblage WO2 + WO2.72 + H2O (designated as WO) have been measured in sealed Au capsules under an external pressure of 2 kbar CH4 and between 650 and 800??C using Ag-AgBr-HBr sensors of fH2. The fH2 values obtained can be represented by the equation log(fWOH2)2kbar,T(??0.06) = (-1924.9 ??(T,K) + 4.06 and are found to be slightly greater than those associated with the previously calibrated C-CH4 buffer. -from Authors

  13. Effect of fly ash on Portland cement systems. Part 1: Low-calcium fly ash

    SciTech Connect

    Papadakis, V.G.

    1999-11-01

    A typical low-calcium fly ash was used as additive in mortar, replacing part of the volume either of Portland cement or aggregate. The development of the strength, heat, porosity, boundwater, and calcium hydroxide content was measured. In aggregate replacement higher strengths were observed after 14 days, whereas in cement replacement higher strengths were observed after 91 days. The final strength gain was found to be roughly proportional to the content of active silica in the concrete volume. Bound water content and porosity results showed that fly ash reacts with calcium hydroxide, binding small amounts of water. On the basis of the experimental results, a simplified scheme describing the chemical reactions of the low-calcium fly ash in hydrating cement in proposed. Using the reaction stoichiometry, quantitative expressions for the estimation of the chemical and volumetric composition of a fly ash concrete are proposed. The model expressions can be applied in mix design and concrete performance prediction.

  14. Processing of Sugarcane Bagasse ash and Reactivity of Ash-blended Cement Mortar

    NASA Astrophysics Data System (ADS)

    Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad

    Sugarcane bagasse ash (SCBA), a sugar-mill waste, has the potential of a partial cement replacement material if processed and obtained under controlled conditions. This paper discusses the reactivity of SCBA obtained by control burning of sugarcane bagasse procured from Punjab province of India. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were employed to ascertain the amorphousness and morphology of the minerals ash particles. Destructive and non-destructive tests were conducted on SCBA-blended mortar specimens. Ash-blended cement paste specimens were analyzed by XRD, thermal analysis, and SEM methods to evaluate the hydration reaction of SCBA with cement. Results showed that the SCBA processed at 600°C for 5 hours was reactive as ash-blended mortar specimens with up to 15% substitution of cement gave better strength than control specimens.

  15. Fly ash utilization in flue gas desulfurization

    SciTech Connect

    Mouche, R.J.; Lin, M.J.L.

    1989-09-26

    This patent describes a method of enhancing the release of alkalinity from an aqueous suspension of finely divided fly ash. It comprises contacting the suspension for a period of time sufficient to increase the alkalinity of the aqueous suspension with a mixture comprising stearic acid and a member selected from the group consisting of hydrocarbon mineral oil, polalkylene glycol, alkylarlpolyether alcohol, and kerosene.

  16. 1997 Arthur Ashe Jr. Sport Scholars Awards.

    ERIC Educational Resources Information Center

    Roach, Ronald

    1997-01-01

    Winners of the "Black Issues in Higher Education" Arthur Ashe Jr. 1997 athletes of the year, one male and one female, are profiled and Sport Scholars are listed for baseball, softball, basketball, fencing, archery, football, handball, soccer, field hockey, crew, swimming, gymnastics, tennis, squash, golf, volleyball, lacrosse, wrestling, water…

  17. FLY ASH RECYCLE IN DRY SCRUBBING

    EPA Science Inventory

    The paper describes the effects of fly ash recycle in dry scrubbing. (Previous workers have shown that the recycle of product solids improves the utilization of slaked lime--Ca(OH)2--for sulfur dioxide (SO2) removal by spray dryers with bag filters.) In laboratory-scale experimen...

  18. Screening technology reduces ash in spiral circuits

    SciTech Connect

    Brodzik, P.

    2007-05-15

    In 2006, the James River Coal Co. selected the Stack Sizer to remove the minus 100 mesh high ash clay fraction from the clean coal spiral product circuits at the McCoy-Elkhorn Bevins Branch prep plant and at the Blue Diamond Leatherwood prep plant in Kentucky. The Stack Sizer is a multi-deck, high-frequency vibrating screen capable of separations as fine as 75 microns when fitted with Derrick Corp.'s patented high open area urethane screen panels. Full-scale lab tests and more than 10 months of continuous production have confirmed that the Stack Sizer fitted with Derrick 100 micron urethane screen panels consistently produces a clean coal fraction that ranges from 8 to 10% ash. Currently, each five-deck Stack Sizer operating at the Bevins Branch and Leatherwood prep plants is producing approximately 33 tons per hour of clean coal containing about 9% ash. This represents a clean coal yield of about 75% and an ash reduction of about 11% from the feed slurry. 3 figs. 2 tabs.

  19. Climate change and the ash dieback crisis

    PubMed Central

    Goberville, Eric; Hautekèete, Nina-Coralie; Kirby, Richard R.; Piquot, Yves; Luczak, Christophe; Beaugrand, Grégory

    2016-01-01

    Beyond the direct influence of climate change on species distribution and phenology, indirect effects may also arise from perturbations in species interactions. Infectious diseases are strong biotic forces that can precipitate population declines and lead to biodiversity loss. It has been shown in forest ecosystems worldwide that at least 10% of trees are vulnerable to extinction and pathogens are increasingly implicated. In Europe, the emerging ash dieback disease caused by the fungus Hymenoscyphus fraxineus, commonly called Chalara fraxinea, is causing a severe mortality of common ash trees (Fraxinus excelsior); this is raising concerns for the persistence of this widespread tree, which is both a key component of forest ecosystems and economically important for timber production. Here, we show how the pathogen and climate change may interact to affect the future spatial distribution of the common ash. Using two presence-only models, seven General Circulation Models and four emission scenarios, we show that climate change, by affecting the host and the pathogen separately, may uncouple their spatial distribution to create a mismatch in species interaction and so a lowering of disease transmission. Consequently, as climate change expands the ranges of both species polewards it may alleviate the ash dieback crisis in southern and occidental regions at the same time. PMID:27739483

  20. Mutagenicity of fly ash particles in Paramecium

    SciTech Connect

    Smith-Sonneborn, J.; Palizzi, R.A.; Herr, C.; Fisher, G.L.

    1981-01-09

    Paramecium, a protozoan that ingests nonnutritive particulate matter, was used to determine the mutagenicity of fly ash. Heat treatment inactivated mutagens that require metabolic conversion to their active form but did not destroy all mutagenicity. Extraction of particles with hydrochloric acid, but not dimethyl sulfoxide, removed detectable mutagenic activity.

  1. Hydrothermal processing of new fly ash cement

    SciTech Connect

    Jiang, W.; Roy, D.M. )

    1992-04-01

    The recent Mount Pinatubo volcanic eruption in the Philippines, in which at least 268 people died, shows that volcanic eruptions can be highly destructive. The eruption shot ash and debris over the countryside; six towns near the volcano faced a high risk of devastating mudslides, and nearly 2000 U.S. service members and their families were evacuated from two nearby military bases. However, this paper reports that not all the consequences of volcanic eruptions are bad. Under hydrothermal conditions, volcanic ash can be transformed into zeolitic tuff and, eventually, into clay minerals that constitute agricultural soils. The Materials Research Laboratory (MRL) has recently used some artificial pozzolanas (fly ash) that when mixed with lime, under hydrothermal conditions, also produced a new type of cementitious material. This was categorized as a new fly ash cement. The formation of a new hydrothermally treated wood-fiber-reinforced composite has also been demonstrated. It is apparent, however, that with respect to concerns about detailed knowledge of the reactivity of calcium silicate-based materials under hydrothermal conditions, the application of the technology far outweighs the understanding of the underlying principles of reactivity. It would seem that an understanding of reactions on the molecular level is just beginning, and that work on hydrothermal reactions is still a potentially lucrative area of research.

  2. A Profile of Ashe County, North Carolina.

    ERIC Educational Resources Information Center

    Rash, James O., Jr.; And Others

    From 1950 to 1970, the shift from agriculture to industry dominated Ashe County, North Carolina, isolated on the Blue Ridge by rugged terrain and severe weather. Rural farm population declined by 2/3 but rural non-farm population tripled. Many new industries helped shift the bulk of the work force to industry. In 1950, 45% of the work force farmed…

  3. Arthur Ashe Jr. Sports Scholars Awards 2010

    ERIC Educational Resources Information Center

    Elfman, Lois; Ford, William J.

    2010-01-01

    "Diverse: Issues In Higher Education" established the Sports Scholars Awards to honor undergraduate students of color who have made achieving both academically and athletically a winning combination. Inspired by tennis legend Arthur Ashe Jr.'s commitment to education as well as his love for the game of tennis, they invite every college and…

  4. Arthur Ashe Jr. Sports Scholars Awards 2011

    ERIC Educational Resources Information Center

    Elfman, Lois; Walker, Marlon A.

    2011-01-01

    "Diverse: Issues In Higher Education" established the Sports Scholars Awards to honor undergraduate students of color who have made achieving both academically and athletically a winning combination. Inspired by tennis legend Arthur Ashe Jr.'s commitment to education as well as his love for the game of tennis, "Diverse" invites every college and…

  5. Characterizing uncertainty in the motion, future location and ash concentrations of volcanic plumes and ash clouds

    NASA Astrophysics Data System (ADS)

    Webley, P.; Patra, A. K.; Bursik, M. I.; Pitman, E. B.; Dehn, J.; Singh, T.; Singla, P.; Stefanescu, E. R.; Madankan, R.; Pouget, S.; Jones, M.; Morton, D.; Pavolonis, M. J.

    2013-12-01

    Forecasting the location and airborne concentrations of volcanic ash plumes and their dispersing clouds is complex and knowledge of the uncertainty in these forecasts is critical to assess and mitigate the hazards that could exist. We show the results from an interdisciplinary project that brings together scientists drawn from the atmospheric sciences, computer science, engineering, mathematics, and geology. The project provides a novel integration of computational and statistical modeling with a widely-used volcanic particle dispersion code, to provide quantitative measures of confidence in predictions of the motion of ash clouds caused by volcanic eruptions. We combine high performance computing and stochastic analysis, resulting in real time predictions of ash cloud motion that account for varying wind conditions and a range of model variables. We show how coupling a real-time model for ash dispersal, PUFF, with a volcanic eruption model, BENT, allows for the definition of the variability in the dispersal model inputs and hence classify the uncertainty that can then propagate for the ash cloud location and downwind concentrations. We additionally analyze the uncertainty in the numerical weather prediction forecast data used by the dispersal model by using ensemble forecasts and assess how this affects the downwind concentrations. These are all coupled together and by combining polynomical chaos quadrature with stochastic integration techniques, we provide a quantitative measure of the reliability (i.e. error) of those predictions. We show comparisons of the downwind height calculations and mass loadings with observations of ash clouds available from satellite remote sensing data. The aim is to provide a probabilistic forecast of location and ash concentration that can be generated in real-time and used by those end users in the operational ash cloud hazard assessment environment.

  6. Ash mists and brown snow: Remobilization of volcanic ash from recent Icelandic eruptions

    NASA Astrophysics Data System (ADS)

    Liu, E. J.; Cashman, K. V.; Beckett, F. M.; Witham, C. S.; Leadbetter, S. J.; Hort, M. C.; Gudmundsson, S.

    2014-08-01

    Recent eruptions in Iceland and Chile have demonstrated that volcanic ash problems persist long after an eruption. For this reason, ash dispersion models are being extended to include ash remobilization. Critical to these models is knowledge of the ash source and the particle sizes that can be mobilized under different wind and moisture conditions. Here we characterize the physical and chemical characteristics of ash deposited on new snow in Reykjavík, Iceland, following a blizzard on 6 March 2013. Morphological, textural, and compositional analyses indicate resuspension from multiple eruptive deposits, including both Grímsvötn (2011) and Eyjafjallajökull (2010) eruptions. Grain size measurements show a mode of 32-63 µm, with particles as large as 177 µm; there is little mass in the very fine fraction, ≤10 µm (PM10). We compare our observations to predictions using the Lagrangian particle dispersion model, NAME (UK Met Office). The model output is consistent with observations in that it forecasts resuspension from both Eyjafjallajökull and Grímsvötn source regions, and shows ash deposition coincident with the timing of observed deposition in Reykjavík. The modeled deposit in Reykjavík predicts, however, a substantially lower proportion of Grímsvötn ash than observed. This discrepancy has highlighted the need to reassess the assumptions used in the simulations, particularly regarding the source area and precipitation thresholds. Furthermore, we suggest that modification of ash deposits in the form of erosion, redeposition, compaction, or cementation may influence the dynamics of resuspension over time, thus influencing the ability of model simulations to accurately forecast remobilization events.

  7. Distinguishing defensive characteristics in the phloem of ash species resistant and susceptible to emerald ash borer.

    PubMed

    Cipollini, Don; Wang, Qin; Whitehill, Justin G A; Powell, Jeff R; Bonello, Pierluigi; Herms, Daniel A

    2011-05-01

    We examined the extent to which three Fraxinus cultivars and a wild population that vary in their resistance to Emerald Ash Borer (EAB) could be differentiated on the basis of a suite of constitutive chemical defense traits in phloem extracts. The EAB-resistant Manchurian ash (F. mandshurica, cv. Mancana) was characterized by having a rapid rate of wound browning, a high soluble protein concentration, low trypsin inhibitor activities, and intermediate levels of peroxidase activity and total soluble phenolic concentration. The EAB-susceptible white ash (F. americana, cv. Autumn Purple) was characterized by a slow wound browning rate and low levels of peroxidase activity and total soluble phenolic concentrations. An EAB-susceptible green ash cultivar (F. pennsylvanica, cv. Patmore) and a wild accession were similar to each other on the basis of several chemical defense traits, and were characterized by high activities of peroxidase and trypsin inhibitor, a high total soluble phenolic concentration, and an intermediate rate of wound browning. Lignin concentration and polyphenol oxidase activities did not differentiate resistant and susceptible species. Of 33 phenolic compounds separated by HPLC and meeting a minimum criterion for analysis, nine were unique to Manchurian ash, five were shared among all species, and four were found in North American ashes and not in the Manchurian ash. Principal components analysis revealed clear separations between Manchurian, white, and green ashes on the basis of all phenolics, as well as clear separations on the basis of quantities of phenolics that all species shared. Variation in some of these constitutive chemical defense traits may contribute to variation in resistance to EAB in these species.

  8. Availability of residual phosphorus from broiler litter ash and layer manure ash amended soil for Paspalum vaginatum uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been hypothesized by several scientists that poultry litter ash could be used as a slow releasing phosphorus fertilizer that will become available over time. To test this hypothesis, a greenhouse study was conducted using a broiler litter ash, layer manure ash and calcium phosphate to determ...

  9. Sorbate characteristics of fly ash. Volume I. Final report

    SciTech Connect

    Liskowitz, J.W.; Grow, J.; Sheih, M.; Trattner, R.; Kohut, J.; Zwillenberg, M.

    1983-08-01

    The objective of this investigation is to correlate the sorbate and leaching characteristics of fly ash with coal properties and monitored combustion conditions in order to design a system for the inexpensive treatment of industrial wastes and leachate from industrial landfills using mixtures of fly ash as inexpensive sorbents. Such a low-cost treatment system could also treat ash pond effluent for water reuse by powerplants as cooling tower makeup. Twelve unblended coals from 10 different mines were burned under monitored conditions in three different types of coal fired boilers in order to determine the influence of coal composition, ash fusion temperatures, boiler additives, combustion conditions and co-firing of natural gas or oil with the coal, on the leaching and sorbate characteristics of the fly ash produced. This included the determination of: (1) SiO/sub 2/, Al/sup 2/O/sub 3/, Fe/sub 2/O/sub 3/, CaO, K/sub 2/O, Na/sub 2/O, MgO, sulfur, ash fusion temperatures Ti, Cd, Sn, Ni, Pb, Mo, Cu, Cr, n, Mn, Ba and V in the coals and their respective fly ashes and bottom ashes; (2) Moessbauer spectra of a number of coals and their fly ashes; and (3) surface analysis of the fly ashes using ESCA. The leaching exhibited by the fly ashes with regard to pH, Cd, B, Sn, Ni, Pb, Mo, Cu, Cr, Mn and Fe was examined. In addition, the removal of Cd, B, Sn, Ni, Pb, Mo, Cu, Cr, Fe, As and organics by fly ash was evaluated, using from actual ash pond samples to model realistic inlet concentrations. The results show that fly ash can be used for the treatment of Cadmium, Boron, Tin, Molybdenum, Nickel, Lead, Copper, Chromium, Zinc, Manganese, Iron, Arsenic and organics in actual ash pond effluents. 18 references, 64 figures, 60 tables.

  10. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition

    USGS Publications Warehouse

    Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.

    2012-01-01

    We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.

  11. Glass-ceramic from mixtures of bottom ash and fly ash.

    PubMed

    Vu, Dinh Hieu; Wang, Kuen-Sheng; Chen, Jung-Hsing; Nam, Bui Xuan; Bac, Bui Hoang

    2012-12-01

    Along with the gradually increasing yield of the residues, appropriate management and treatment of the residues have become an urgent environmental protection problem. This work investigated the preparation of a glass-ceramic from a mixture of bottom ash and fly ash by petrurgic method. The nucleation and crystallization kinetics of the new glass-ceramic can be obtained by melting the mixture of 80% bottom ash and 20% fly ash at 950 °C, which was then cooled in the furnace for 1h. Major minerals forming in the glass-ceramics mainly are gehlenite (Ca(2)Al(2)SiO(7)) & akermanite (Ca(2)MgSiO(7)) and wollastonite (CaSiO(3)). In addition, regarding chemical/mechanical properties, the chemical resistance showing durability, and the leaching concentration of heavy metals confirmed the possibility of engineering and construction applications of the most superior glass-ceramic product. Finally, petrurgic method of a mixture of bottom ash and fly ash at 950 °C represents a simple, inexpensive, and energy saving method compared with the conventional heat treatment.

  12. Preparation of ultra-thin and high-quality WO3 compact layers and comparision of WO3 and TiO2 compact layer thickness in planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Jincheng; Shi, Chengwu; Chen, Junjun; Wang, Yanqing; Li, Mingqian

    2016-06-01

    In this paper, the ultra-thin and high-quality WO3 compact layers were successfully prepared by spin-coating-pyrolysis method using the tungsten isopropoxide solution in isopropanol. The influence of WO3 and TiO2 compact layer thickness on the photovoltaic performance of planar perovskite solar cells was systematically compared, and the interface charge transfer and recombination in planar perovskite solar cells with TiO2 compact layer was analyzed by electrochemical impedance spectroscopy. The results revealed that the optimum thickness of WO3 and TiO2 compact layer was 15 nm and 60 nm. The planar perovskite solar cell with 15 nm WO3 compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO2 compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency.

  13. Synthesis and characterization of F-doped Cs0.33WO3-xFx particles with improved near infrared shielding ability

    NASA Astrophysics Data System (ADS)

    Liu, Jingxiao; Luo, Jiayu; Shi, Fei; Liu, Suhua; Fan, Chuanyan; Xu, Qiang; Shao, Guolin

    2015-01-01

    F-doped Cs0.33WO3-xFx particles were successfully synthesized by the hydrothermal method with hydrofluoric acid as fluorine source, and a new kind of heat insulating films were prepared from dispersion of Cs0.33WO3-xFx nanoparticles in polyvinyl alcohol (PVA) aqueous solution. The effects of F doping on the crystal structure and morphology of Cs0.33WO3-xFx particles as well as the near-infrared (NIR) shielding ability and heat insulation properties of Cs0.33WO3-xFx films were investigated. The results indicated that HF acid addition could promote the formation of rod-like Cs0.33WO3-xFx particles during hydrothermal synthesis and increase the yield of Cs0.33WO3-xFx powders. Moreover, the as-prepared films from dispersion solution of Cs0.33WO3-xFx particles exhibited higher near-infrared (NIR) shielding ability and heat insulating properties than that of the undoped Cs0.33WO3 film. Particularly, the as-prepared Cs0.33WO3-xFx sample with F/W (molar ratio)=0.45 showed best NIR shielding ability and transparent heat insulating performance. The formation mechanism of nanorod-like particles and the effects of F doping on the properties of Cs0.33WO3-xFx products were discussed.

  14. Dehydration, Dehydrogenation, and Condensation of Alcohols on Supported Oxide Catalysts Based on Cyclic (WO3)3 and (MoO3)3 Clusters

    SciTech Connect

    Rousseau, Roger J.; Dixon, David A.; Kay, Bruce D.; Dohnalek, Zdenek

    2014-01-01

    Supported early transition metal oxides have important applications in numerous catalytic reactions. In this article we review preparation and activity of well-defined model WO3 and MoO3 catalysts prepared via deposition of cyclic gas-phase (WO3)3 and (MoO3)3 clusters generated by sublimation of WO3 and MoO3 powders. Conversion of small aliphatic alcohols to alkenes, aldehydes/ketons, and ethers is employed to probe the structure-activity relationships on model WO3 and MoO3 catalysts ranging from unsupported (WO3)3 and (MoO3)3 clusters embedded in alcohol matrices, to (WO3)3 clusters supported on surfaces of other oxides, and epitaxial and nanoporous WO3 films. Detailed theoretical calculations reveal the underlying reaction mechanisms and provide insight into the origin of the differences in the WO3 and MoO3 reactivity. For the range of interrogated (WO3)3 they further shed light into the role structure and binding of (WO3)3 clusters with the support play in determining their catalytic activity.

  15. Forskolin-induced differentiation of BeWo cells stimulates increased tumor growth in the chorioallantoic membrane (CAM) of the turkey (Meleagris gallopavo) egg.

    PubMed

    Schneider, Ralf; Borges, Marcus; Kadyrov, Mamed

    2011-05-01

    Invasiveness of BeWo cells has been assessed in a variety of assay systems including matrigel and mouse. At the same time BeWo cells are mostly used as model system for trophoblast fusion. Here we aimed to test the properties of BeWo cells in a combined approach. We forced BeWo cells to differentiate by culturing the cells in the presence of forskolin and then used these cells for invasion assays on the chorioallantoic membrane (CAM) of the turkey. The chorioallantoic membranes of turkey eggs were incubated with medium containing forskolin, BeWo cells cultured in medium alone, BeWo cells cultured in forskolin and washed, and BeWo cells cultured in forskolin and used directly for application. Suspensions were applied onto ten CAM per condition. For local tumor formation eggs were checked for tumor development every 24h macroscopically for up to 12 days and immunohistochemistry for cytokeratin 18 and Ki-67 were used for further analysis. Forskolin alone did not have any deleterious effect on the CAM. When the CAM was incubated with BeWo cells cultured in medium 40% of the eggs developed a macroscopically visible tumor. BeWo cells stimulated with forskolin and washed induced tumor growth in 50% of the eggs, while forskolin stimulated BeWo cells applied directly onto the CAM induced tumor growth in 70% of the eggs. Forced differentiation of BeWo cells by forskolin may lead to syncytial fusion in a plastic culture dish. Under the conditions used here, i.e. in direct contact to a living tissue, forskolin-induced differentiation of BeWo cells leads to an increase in tumor formation in the CAM. Thus BeWo cells may use signaling pathways to decide for both differentiation pathways similar to primary trophoblast depending on the environment.

  16. Immobilization of incinerator ash in a concrete matrix

    SciTech Connect

    Simpson, R S; Charlesworth, D L

    1988-01-01

    The ashcrete process will solidfy ash generated by the consolidated Incinerator Facility (CIF) at the Savannah River Plant (SRP). The ashcrete unit produces ashcrete, a stable cement-based wasteform, by remotely adding cement and water and tumbling drums of ash. Ashcrete product homogeneity, temperature rise during setting, and compressive strength were measured and product formulations were developed for several nonradioactive dry ash types. Saturation level and wet and dry ash densities for several ash types have been measured. Preliminary mixture formulations for the anticipated ash were tested. A proof-of-principle test was performed using a mockup of the CIF ash system. Finally, mechanical modifications to prepare the unit for use with the CIF and to ensure reliable operation are being implemented. 4 refs., 5 figs., 5 tabs.

  17. Utilization of fly ash in structural and decorative ceramic products

    SciTech Connect

    Hughes, R.E.; Dreher, G.B.; Rostam-Abadi, M.; Moore, D.M.; DeMaris, P.J.

    1996-10-01

    In this research, fly ash from coal combustion is used in fired-clay products such as bricks and related fired-clay products. Our research includes: (1) plant-scale tests of firing fly ash-brick clay mixtures; (2) laboratory-scale {open_quotes}optimization{close_quotes} of firing these mixtures; and (3) preliminary evaluations of the environmental and economic costs/benefits of ceramics made with fly ash, Bricks and feed materials were tested for compliance with market specifications and for leachability of pollutants. X-ray diffraction and chemical step-dissolution were used to determine the mineralogical composition of feed materials and products. By using mineral content, improved predictions of the firing of fly ash-clay mixtures will result. Also, estimates of coal ash fusion will improve, because testing methods and melting mechanisms for ceramics and coal ash are identical. This project could convert waste fly ash into a valuable resource.

  18. Sulfur dioxide content of Mount St. Helens' ash

    NASA Astrophysics Data System (ADS)

    Weschler, C. J.

    1984-06-01

    A rapid heating (980 C)-gas chromatographic-mass spectrometric technique was developed to measure the SO2 produced from Mount St. Helens' ash collected after the May 18, 1980, eruption. The average values of evolved SO2 for ash samples from Moses Lake, Missoula, and Helena are 215, 800, and 1250 ppm, respectively. The results suggest that the SO2 is associated primarily with new magmatic material. Experiments indicate that the SO2 is not due to sulfate species scavenged from the eruption plume or to sulfur gases adsorbed on the ash. Other possible sources include reduction of sulfate salts within the ash, bubbles of SO2 trapped within the ash, or sulfur blebs contained in the ash. Approximately as much SO2 or SO2 precursors are associated with the ash as Mount St. Helens' injected into the stratosphere.

  19. Possibilities of municipal solid waste incinerator fly ash utilisation.

    PubMed

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents.

  20. Synthetic aggregates from combustion ashes using an innovative rotary kiln.

    PubMed

    Wainwright, P J; Cresswell, D J

    2001-01-01

    This paper describes the use of a number of different combustion ashes to manufacture synthetic aggregates using an innovative rotary 'Trefoil' kiln. Three types of combustion ash were used, namely: incinerated sewage sludge ash (ISSA); municipal solid waste incinerator bottom ash (MSWIBA-- referred to here as BA); and pulverised fuel ash (Pfa). The fine waste ash fractions listed above were combined with a binder to create a plastic mix that was capable of being formed into 'green pellets'. These pellets were then fired in a Trefoil kiln to sinter the ashes into hard fused aggregates that were then tested for use as a replacement for the natural coarse aggregate in concrete. Results up to 28 days showed that these synthetic aggregates were capable of producing concretes with compressive strengths ranging from 33 to 51 MPa, equivalent to between 73 and 112% of that of the control concrete made with natural aggregates.

  1. Volcanic Ash fall Impact on Vegetation, Colima 2005

    NASA Astrophysics Data System (ADS)

    Garcia, M. G.; Martin, A.; Fonseca, R.; Nieto, A.; Radillo, R.; Armienta, M.

    2007-05-01

    An ash sampling network was established arround Colima Volcano in 2005. Ash fall was sampled on the North, Northeast, East, Southeast, South, Southwest and West of the volcano. Samples were analyzed for ash components, geochemistry and leachates. Ash fall ocurred on April (12), May (10, 23), June (2, 6, 9, 10, 12, 14), July (27), September (27), October (23) and November (24). Most of the ash is made of andesitic dome-lithics but shows diferences in crystal, juvenile material and lithic content. In May, some samples contained grey and dark pumice (scoria). Texture varies from phi >4 to phi 0. Leachate concentration were low: SO4 (7.33-54.19) Cl- (2.29-4.97) and F- (0.16-0.37). During 2005, Colima Volcano's ash fall rotted some of the guava and peach fruits and had a drying effect on spearment and epazote plants. Even these small ash amounts could have hindered sugar cane and agave growth.

  2. Chemical composition in relation with biomass ash structure

    NASA Astrophysics Data System (ADS)

    Holubcik, Michal; Jandacka, Jozef

    2014-08-01

    Biomass combustion can be more complicated like combustion of fossil fuels because it is necessary to solve problems with lower ash melting temperature. It can cause a lot of problems during combustion process. Chemical composition of biomass ash has great impact on sinters and slags creation in ash because it affects structure of heated ash. In this paper was solved relation between chemical composition and structure of heated ash from three types of biomass (spruce wood, miscanthus giganteus and wheat straw). Amount of SiO2, CaO, MgO, Al2O3 and K2O was determined. Structure of heated ash was optically determined after heating to 1000 °C or 1200 °C. Results demonstrated that chemical composition has strong effect on structure and color of heated ash.

  3. Fly ash of mineral coal as ceramic tiles raw material.

    PubMed

    Zimmer, A; Bergmann, C P

    2007-01-01

    The aim of this work was to evaluate the use of mineral coal fly ash as a raw material in the production of ceramic tiles. The samples of fly ash came from Capivari de Baixo, a city situated in the Brazilian Federal State of Santa Catarina. The fly ash and the raw materials were characterized regarding their physical chemical properties, and, based on these results; batches containing fly ash and typical raw materials for ceramic tiles were prepared. The fly ash content in the batches varied between 20 and 80 wt%. Specimens were molded using a uniaxial hydraulic press and were fired. All batches containing ash up to 60 wt% present adequate properties to be classified as several kinds of products in the ISO 13006 standard () regarding its different absorption groups (pressed). The results obtained indicate that fly ash, when mixed with traditional raw materials, has the necessary requirements to be used as a raw material for production of ceramic tiles.

  4. Possibilities of municipal solid waste incinerator fly ash utilisation.

    PubMed

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. PMID:26060198

  5. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.

    PubMed

    Lhermitte, Charles R; Bartlett, Bart M

    2016-06-21

    Photoelectrochemical (PEC) cells are an ongoing area of exploration that provide a means of converting solar energy into a storable chemical form (molecular bonds). In particular, using PEC cells to drive the water splitting reaction to obtain H2 could provide a clean and sustainable route to convert solar energy into chemical fuels. Since the discovery of catalytic water splitting on TiO2 photoelectrodes by Fujishima and Honda, significant efforts have been directed toward developing high efficiency metal oxides to use as photocatalysts for this reaction. Improving the efficiency of PEC cells requires developing chemically stable, and highly catalytic anodes for the oxygen-evolution reaction (OER). This water oxidation half reaction requires four protons and four electrons coupling in two bond making steps to form O2, which limits the rate. Our group has accelerated efforts in CuWO4 as a candidate for PEC OER chemistry. Its small band gap of 2.3 eV allows for using visible light to drive OER, and the reaction proceeds with a high degree of chemoselectivity, even in the presence of more kinetically accessible anions such as chloride, which is common to seawater. Furthermore, CuWO4 is a chemically robust material when subjected to the highly oxidizing conditions of PEC OER. The next steps for accelerating research using this (and other), ternary phase oxides, is to move beyond reporting the basic PEC measurements to understanding fundamental chemical reaction mechanisms operative during OER on semiconductor surfaces. In this Account, we outline the process for PEC OER on CuWO4 thin films with emphasis on the chemistry of this reaction, the reaction rate and selectivity (determined by controlled-potential coulometry and oxygen-detection experiments). We discuss key challenges with CuWO4 such as slow kinetics and the presence of an OER-mediating mid-gap state, probed by electrochemical impedance spectroscopy. We propose that this mid-gap state imparts the observed

  6. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.

    PubMed

    Lhermitte, Charles R; Bartlett, Bart M

    2016-06-21

    Photoelectrochemical (PEC) cells are an ongoing area of exploration that provide a means of converting solar energy into a storable chemical form (molecular bonds). In particular, using PEC cells to drive the water splitting reaction to obtain H2 could provide a clean and sustainable route to convert solar energy into chemical fuels. Since the discovery of catalytic water splitting on TiO2 photoelectrodes by Fujishima and Honda, significant efforts have been directed toward developing high efficiency metal oxides to use as photocatalysts for this reaction. Improving the efficiency of PEC cells requires developing chemically stable, and highly catalytic anodes for the oxygen-evolution reaction (OER). This water oxidation half reaction requires four protons and four electrons coupling in two bond making steps to form O2, which limits the rate. Our group has accelerated efforts in CuWO4 as a candidate for PEC OER chemistry. Its small band gap of 2.3 eV allows for using visible light to drive OER, and the reaction proceeds with a high degree of chemoselectivity, even in the presence of more kinetically accessible anions such as chloride, which is common to seawater. Furthermore, CuWO4 is a chemically robust material when subjected to the highly oxidizing conditions of PEC OER. The next steps for accelerating research using this (and other), ternary phase oxides, is to move beyond reporting the basic PEC measurements to understanding fundamental chemical reaction mechanisms operative during OER on semiconductor surfaces. In this Account, we outline the process for PEC OER on CuWO4 thin films with emphasis on the chemistry of this reaction, the reaction rate and selectivity (determined by controlled-potential coulometry and oxygen-detection experiments). We discuss key challenges with CuWO4 such as slow kinetics and the presence of an OER-mediating mid-gap state, probed by electrochemical impedance spectroscopy. We propose that this mid-gap state imparts the observed

  7. Microwave selective heating for size effect of water droplet in W/O emulsion with sorbitan fatty acid monostearate surfactant

    NASA Astrophysics Data System (ADS)

    Sumi, Takuya; Horikoshi, Satoshi

    2015-09-01

    A stable water/oil (W/O) emulsion was prepared by adjustment with sorbitan fatty acid monoester surfactants. The prepared W/O emulsion was stable for 60 min in the atmosphere; however, the formation of non-uniform water droplets in the height of the emulsion in the quartz tube reactor were observed by the backscattering measurements with an infrared laser at 850 nm. The increase of temperature under microwave irradiation was influenced sensitively by the position of those water droplets. Those results were caused from the size and concentration of water droplets in the W/O emulsion. On the other hand, selective heating of the water droplets caused heating of the entire W/O emulsion, although the temperature difference between the water droplets and the oil phase was 20 °C.

  8. Facile fabrication of corrosion-resistant superhydrophobic and superoleophilic surfaces with MnWO(4):Dy(3+) microbouquets.

    PubMed

    Li, Taohai; Li, Quanguo; Yan, Jing; Li, Feng

    2014-04-21

    Superhydrophobic and superoleophilic MnWO4:Dy(3+) microbouquets were successfully fabricated via a facile hydrothermal process. The surface morphologies and chemical composition were investigated by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The wettability of the as-synthesized MnWO4:Dy(3+) microbouquet film was studied by measuring the water contact angle (CA). A static CA for water of 165° and a very low sliding angle (SA) were observed, which were closely related to both the MnWO4:Dy(3+) microbouquet structure and chemical modification. Furthermore, the as-prepared MnWO4:Dy(3+) surface showed superhydrophobicity for some corrosive liquids such as aqueous basic and salt solutions.

  9. THE DISCOVERY OF A RARE WO-TYPE WOLF-RAYET STAR IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Neugent, Kathryn F.; Massey, Philip; Morrell, Nidia E-mail: phil.massey@lowell.edu

    2012-12-01

    While observing OB stars within the most crowded regions of the Large Magellanic Cloud, we happened upon a new Wolf-Rayet (WR) star in Lucke-Hodge 41, the rich OB association that contains S Doradus and numerous other massive stars. At first glance the spectrum resembled that of a WC4 star, but closer examination showed strong O VI {lambda}{lambda}3811, 34 lines, leading us to classify it as a WO4. This is only the second known WO in the LMC, and the first known WO4 (the other being a WO3). This rarity is to be expected due to these stars' short lifespans as they represent the most advanced evolutionary stage in a massive star's lifetime before exploding as supernovae. This discovery shows that while the majority of WRs within the LMC have been discovered, there may be a few WRs left to be found.

  10. Density-Functional Theory Study of the Effects of Atomic Impurity on the Band Edges of Monoclinic WO3

    SciTech Connect

    Huda, M. N.; Yan, Y.; Moon, C. Y.; Wei, S. H.; Al-Jassim, M. M.

    2008-01-01

    The effects of impurities in room-temperature monoclinic WO3 were studied by using the local density approximation to density-functional theory. Our main focus is on nitrogen impurity in WO{sub 3}, where both substitutional and interstitial cases were considered. We have also considered transition-metal atom impurities and some codoping approaches in WO{sub 3}. We find that, in general, band gap reduction was a common result due to the formation of impurity bands in the band gap. Also, the changes of band-edge positions, valence-band maxima and conduction-band minima, were found to depend on the electronic properties of the foreign atom and their concentration. Our results therefore provide guidance for making WO3 a suitable candidate for photoelectrodes for hydrogen generation by water splitting.

  11. Structure of Zr 2(WO 4)(PO 4) 2 from Powder X-Ray Data: Cation Ordering with No Superstructure

    NASA Astrophysics Data System (ADS)

    Evans, J. S. O.; Mary, T. A.; Sleight, A. W.

    1995-11-01

    Department of Chemistry and Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon The ab initio structure determination of Zr2(WO4)(PO4)2 from room temperature powder X-ray diffraction data is reported. This compound crystallizes in the orthorhombic space group Pnca with a = 9.35451(9), b = 12.31831(9), and c = 9.16711(8) Å. The structure is based on ZrO6 octahedra sharing corners with WO4 and PO4 tetrahedra. Although Zr2(WO4)(PO4)2 is isostructural with Fe2(MoO4)3 and its WO4 and PO4 tetrahedra are well ordered, no superstructure or change in space group is required to account for this ordering.

  12. Bi{sub 2}WO{sub 6} photocatalytic films fabricated by layer-by-layer technique from Bi{sub 2}WO{sub 6} nanoplates and its spectral selectivity

    SciTech Connect

    Zhang Shicheng Shen Jiandong; Fu Hongbo; Dong Weiyang; Zheng Zhijian; Shi Liyi

    2007-04-15

    Bi{sub 2}WO{sub 6} multilayer films have been fabricated successfully by a layer-by-layer (LbL) technique from Bi{sub 2}WO{sub 6} nanoplates, which show higher visible-light photoactivity ({lambda}>420 nm) than that of Bi{sub 2}WO{sub 6} nanoplate powders and P25 TiO{sub 2} films. The films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and UV-visible absorption spectroscopy. Photocatalytic activities of the films were evaluated by the rhodamine B (RhB) decomposition under UV and visible-light irradiation. Thickness and photoactivity of the film can be modified easily by changing the deposition cycles. Bi{sub 2}WO{sub 6} films have the spectral selectivity of the photocatalytic degradation of RhB. Under the wavelength greater than 300 nm, the RhB molecules tend to be transformed to rhodamine over Bi{sub 2}WO{sub 6} films selectively. However, in the case of shorter wavelength ({lambda}=254 nm) light irradiation, the RhB molecules can be photodegraded completely. - Graphical abstract: Bi{sub 2}WO{sub 6} multilayer film fabricated by layer-by-layer technique.

  13. Study on luminescent properties of Eu3+ doped Gd2WO6, Gd2W2O9 and Gd2(WO4)3 nanophosphors prepared by co-precipitation.

    PubMed

    Meng, Qingyu; Hua, Ruinian; Chen, Baojiu; Tian, Yue; Lu, Shuchen; Sun, Linan

    2011-01-01

    Eu3+ doped Gd2WO6, Gd2W2O9 and Gd2(WO4)3 nanophosphors with different concentrations have been prepared by co-precipitation. XRD (X-ray diffraction) and SEM (scanning electron microscopy) were used to investigate the structure and morphology. The emission spectra, excitation spectra and fluorescence decay curves were measured, and partial J-O parameters and quantum efficiencies of Eu3+ 5D0 energy level were calculated. Furthermore, concentration quenching curves of Eu3+ in different hosts were drawn. The photoluminescent properties of Eu3+ doped Gd2WO6, Gd2W2O9 and Gd2(WO4)3 nanophosphors have been studied. The results indicate that Eu3+ 5D0-7F2 red luminescence can be effectively excited by 395 nm and 465 nm in Gd2WO6 and Gd2W2O9 hosts, similar to the familiar Gd2(WO4)3:Eu. Especially Gd2W2O9:Eu has strong red emission and high quenching concentration, so it has potential applications for trichromatic white LED as red fluorescent materials. PMID:21446424

  14. Stabilizing soft fine-grained soils with fly ash

    SciTech Connect

    Edil, T.B.; Acosta, H.A.; Benson, C.H.

    2006-03-15

    The objective of this study was to evaluate the effectiveness of self-cementing fly ashes derived from combustion of subbituminous coal at electric power plants for stabilization of soft fine-grained soils. California bearing ratio (CBR) and resilient modulus (M{sub r}) tests were conducted on mixtures prepared with seven soft fine-grained soils (six inorganic soils and one organic soil) and four fly ashes. The soils were selected to represent a relatively broad range of plasticity, with plasticity indices ranging between 15 and 38. Two of the fly ashes are high quality Class C ashes (per ASTM C 618) that are normally used in Portland cement concrete. The other ashes are off-specification ashes, meaning they do not meet the Class C or Class F criteria in ASTM C 618. Tests were conducted on soils and soil-fly ash mixtures prepared at optimum water content (a standardized condition), 7% wet of optimum water content (representative of the typical in situ condition in Wisconsin), and 9-18% wet of optimum water content (representative of a very wet in situ condition). Addition of fly ash resulted in appreciable increases in the CBR and M{sub r} of the inorganic soils. For water contents 7% wet of optimum, CBRs of the soils alone ranged between 1 and 5. Addition of 10% fly ash resulted in CBRs ranging between 8 and 17, and 18% fly ash resulted in CBRs between 15 and 31. Similarly, M{sub r} of the soil alone ranged between 3 and 15 MPa at 7% wet of optimum, whereas addition of 10% fly ash resulted in M{sub r} between 12 and 60 MPa and 18% fly ash resulted in M{sub r} between 51 and 106 MPa. In contrast, except for one fly ash, addition of fly ash generally had little effect on CBR or M{sub r} of the organic soil.

  15. Synthesis of WO{sub 3} nanoparticles by citric acid-assisted precipitation and evaluation of their photocatalytic properties

    SciTech Connect

    Sánchez-Martínez, D.; Martínez-de la Cruz, A.; López-Cuéllar, E.

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► WO{sub 3} nanoparticles were synthesized by a simple citric acid-assisted precipitation. ► WO{sub 3} photocatalyst was able to the partial mineralization of rhB, IC and MO. ► WO{sub 3} can be considered as a photocatalyst active under visible light irradiation. -- Abstract: WO{sub 3} nanoparticles were synthesized by citric acid-assisted precipitation method using a 1:1.5 molar ratio of ammonium paratungstate hydrate (H{sub 42}N{sub 10}O{sub 42}W{sub 12}·xH{sub 2}O):citric acid (C{sub 6}H{sub 8}O{sub 7}). The formation of monoclinic crystal structure of WO{sub 3} at different temperatures was confirmed by X-ray powder diffraction (XRD). The characterization of the samples synthesized was complemented by transmission electron microscopy (TEM), Brunauer–Emmitt–Teller surface area (BET) and diffuse reflectance spectroscopy (DRS). According to the thermal treatment followed during the synthesis of WO{sub 3}, the morphology of the nanoparticles formed was characterized by rectangular and ovoid shapes. The photocatalytic activity of WO{sub 3} obtained under different experimental conditions was evaluated in the degradation of rhodamine B (rhB), indigo carmine (IC), methyl orange (MO), and Congo red (CR) in aqueous solution under UV and UV–vis radiation. The highest photocatalytic activity was observed in the sample obtained by thermal treatment at 700 °C. In general, the sequence of degradation of the organic dyes was: indigo carmine (IC) > rhodamine B (rhB) > methyl orange (MO) > Congo red (CR). The mineralization degree of organic dyes by WO{sub 3} photocatalysts was determined by total organic carbon analysis (TOC) reaching percentages of mineralization of 82% (rhB), 85% (IC), 28% (MO), and 7% (CR) for 96 h of lamp irradiation.

  16. Studies on RF sputtered (WO3)1-x (V2O5)x thin films for smart window applications

    NASA Astrophysics Data System (ADS)

    Meenakshi, M.; Sivakumar, R.; Perumal, P.; Sanjeeviraja, C.

    2016-05-01

    V2O5 doped WO3 targets for RF sputtering thin film deposition were prepared for various compositions. Thin films of (WO3)1-x (V2O5)x were deposited on to glass substrates using these targets. Structural characteristics of the prepared targets and thin films were studied using X-ray diffraction. Laser Raman studies were carried out on the thin films to confirm the compound formation.

  17. Effects of nano-SiO(2) and different ash particle sizes on sludge ash-cement mortar.

    PubMed

    Lin, K L; Chang, W C; Lin, D F; Luo, H L; Tsai, M C

    2008-09-01

    The effects of nano-SiO(2) on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO(2) was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash-cement mortar increased as more nano-SiO(2) was added. Additionally, with 2% nano-SiO(2) added and a cure length of 7 days, the compressive strength of the ash-cement mortar with 1 microm ash particle size was about 1.5 times better that of 75microm particle size. Further, nano-SiO(2) functioned to fill pores for ash-cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO(2) better influenced the ash-cement mortar with larger ash particle sizes.

  18. On the impact of additional spectral bands usage on RST-ASH performance in volcanic ash plume detected from space

    NASA Astrophysics Data System (ADS)

    Falconieri, Alfredo; Filizzola, Carolina; Marchese, Francesco; Pergola, Nicola; Tramutoli, Valerio

    2016-04-01

    RST-ASH is an algorithm developed for detecting and tracking volcanic ash clouds from space based on the Robust Satellite Technique (RST) multi-temporal approach. For the identification of ash affected areas RST-ASH uses two local variation indexes in combination. They analyse the Brightness Temperature Differences (BTD) of the signal measured at 11 μm and 12 μm and at around 3.5 and 11 μm wavelengths to detect ash in both nighttime and daytime conditions. RST-ASH was tested on Advanced Very High Resolution Radiometer (AVHRR) and on Moderate Resolution Imaging Spectroradiometer (MODIS) records and was then implemented on Spinning Enhanced Visible and Infrared Imager (SEVIRI) for studying and monitoring eruptions of different volcanoes. In this study, some experimental configurations of RST-ASH, analyzing signal also in other spectral bands (e.g. VIS, SO2) will be tested and assessed, studying recent ash plumes (e.g. Etna, Eyjafjallajökull, Grímsvötn) affecting different geographic areas. Results achieved using both polar and geostationary satellite data will be evaluated even for comparison with other state of the art methods. The work shows that when the extended spectral capabilities offered by high temporal resolution satellites are exploited an improvement of RST-ASH performance in some observational and plume conditions is achievable, making RST-ASH still more suited for identifying and monitoring ash clouds in the framework of possible operational scenarios.

  19. Estimating potential emerald ash borer (Coleoptera: Buprestidae) populations using ash inventory data.

    PubMed

    McCullough, Deborah G; Siegert, Nathan W

    2007-10-01

    Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), a phloem-feeding pest native to Asia, was identified in June 2002 as the cause of widespread ash (Fraxinus spp.), mortality in southeastern Michigan and Windsor, Ontario, Canada. Localized populations of A. planipennis have since been found across lower Michigan and in areas of Ohio, Indiana, Illinois, Maryland, and Ontario. Officials working to contain A. planipennis and managers of forestlands near A. planipennis infestations must be able to compare alternative strategies to allocate limited funds efficiently and effectively. Empirical data from a total of 148 green ash, Fraxinus pennsylvanica Marsh., and white ash, Fraxinus americana L., trees were used to develop models to estimate surface area of the trunk and branches by using tree diameter at breast height (dbh). Data collected from 71 additional F. pennsylvanica and F. americana trees killed by A. planipennis showed that on average, 88.9 +/- 4.6 beetles developed and emerged per m2 of surface area. Models were applied to ash inventory data collected at two outlier sites to estimate potential production of A. planipennis beetles at each site. Large trees of merchantable size (dbh > or = 26 cm) accounted for roughly 6% of all ash trees at the two sites, but they could have contributed 55-65% of the total A. planipennis production at both sites. In contrast, 75- 80% of the ash trees at the outlier sites were < or =13 cm dbh, but these small trees could have contributed only < or =12% of the potential A. planipennis production at both sites. Our results, in combination with inventory data, can be used by regulatory officials and resource managers to estimate potential A. planipennis production and to compare options for reducing A. planipennis density and slowing the rate of spread for any area of interest.

  20. Preparation of hexagonal WO{sub 3} from hexagonal ammonium tungsten bronze for sensing NH{sub 3}

    SciTech Connect

    Szilagyi, Imre Miklos Wang Lisheng; Gouma, Pelagia-Irene; Balazsi, Csaba; Madarasz, Janos; Pokol, Gyoergy

    2009-03-05

    Hexagonal tungsten oxide (h-WO{sub 3}) was prepared by annealing hexagonal ammonium tungsten bronze, (NH{sub 4}){sub 0.07}(NH{sub 3}){sub 0.04}(H{sub 2}O){sub 0.09}WO{sub 2.95}. The structure, composition and morphology of h-WO{sub 3} were studied by XRD, XPS, Raman, {sup 1}H MAS (magic angle spinning) NMR, scanning electron microscopy (SEM), and BET-N{sub 2} specific surface area measurement, while its thermal stability was investigated by in situ XRD. The h-WO{sub 3} sample was built up by 50-100 nm particles, had an average specific surface area of 8.3 m{sup 2}/g and was thermally stable up to 450 deg. C. Gas sensing tests showed that h-WO{sub 3} was sensitive to various levels (10-50 ppm) of NH{sub 3}, with the shortest response and recovery times (1.3 and 3.8 min, respectively) to 50 ppm NH{sub 3}. To this NH{sub 3} concentration, the sensor had significantly higher sensitivity than h-WO{sub 3} samples prepared by wet chemical methods.

  1. A facile synthesis of ZnWO{sub 4} nanoparticles by microwave assisted technique and its application in photocatalysis

    SciTech Connect

    Garadkar, K.M.; Ghule, L.A.; Sapnar, K.B.; Dhole, S.D.

    2013-03-15

    Highlights: ► Nanocrystalline ZnWO{sub 4} particles were successfully prepared by a microwave method. ► Spherical morphology with a 10 nm size. ► The band is 3.4 eV. ► The photodegradation of RhB was 95% within 25 min. - Abstract: A simple microwave assisted technique has been successfully developed to synthesize ZnWO{sub 4} nanoparticles. The X-ray diffraction results indicated that the synthesized nanoparticles exhibited only wolframite structure. Structural, morphological and optical properties of ZnWO{sub 4} nanoparticles have been analyzed by XRD, SEM, TEM EDAX, UV–vis and FT-IR spectral measurements. The transmission electron microscopy (TEM) image revealed that particle size of ZnWO{sub 4} nanoparticles was found to be 10 nm, the band-gap of ZnWO{sub 4} nanoparticles was found to be 3.4 eV. The photocatalytic activities for aqueous Rhodamine B and Methylene Blue samples were investigated and observed that ZnWO{sub 4} nanoparticles exhibited highly enhanced photocatalytic activity towards RhB than MB.

  2. Immobilization of WO{sub 3} or MoO{sub 3} on macroscopic silica fiber via CNFs template

    SciTech Connect

    Wu, Qiang Zhao, Li; Han, Ruobing

    2013-08-01

    Graphical abstract: Uniform immobilization of tungsten trioxide (WO{sub 3}) or molybdenum trioxide (MoO{sub 3}) on silica fiber was successfully achieved by using carbon nanofibers (CNFs) as template. FE-SEM coupled with XRD analysis confirmed the template effect and the existence of WO{sub 3} or MoO{sub 3} immobilized on silica fiber. It is expected that such materials with direct macroscopic shapes would hold promise as highly functionalized materials for potential practical applications, especially in photocatalysis. - Highlights: • WO{sub 3} or MoO{sub 3} with macroscopic shapes were successfully obtained. • WO{sub 3} and MoO{sub 3} immobilization depended on CNFs templates. • FE-SEM and XRD confirmed the structure and phase composition. - Abstract: Uniform immobilization of tungsten trioxide (WO{sub 3}) or molybdenum trioxide (MoO{sub 3}) on silica fiber was successfully achieved by using carbon nanofibers (CNFs) as template. Field emission scanning electron microscopy (FE-SEM), coupled with X-ray diffraction (XRD) analysis confirmed the template effect and the existence of WO{sub 3} or MoO{sub 3} immobilized on silica fiber. It is expected that such materials with direct macroscopic shapes would hold promise as highly functionalized materials for potential practical applications, especially in photocatalysis.

  3. Experimental study on ash fusion characteristics of biomass.

    PubMed

    Fang, Xiang; Jia, Li

    2012-01-01

    In this study, ash fusion characteristics (AFC) of biomass red pine, corn straw, Bermuda grass and bamboo are investigated. Results of this study show that ash melting temperatures are higher when samples are ashed at 815 °C than at 600 °C, but the differences are small. The ash deformation temperatures of pine and straw are over 1100 °C, but the ash deformation temperatures of Bermuda grass and bamboo are lower than the former biomass. Also, Bermuda grass and bamboo are prone to sintering phenomenon when burning. In the thermogravimetric experiment on ash, the heating process can be divided into three stages, namely water evaporation, oxidation of organic compounds and evaporation, and reaction of inorganic components. The ash of Bermuda grass and bamboo contains more unburned organic matters because of sintering, and higher calcium content in pine ash results in a more mass loss in the third stage. The ash fusion characteristics for co-combustion of biomass with coal are investigated. It is found that the ash melting temperature firstly decreases and then increases with the content of the corn straw increase, changing as "V" shape. PMID:22154746

  4. A Quaternary volcanic ash deposit in western Missouri

    SciTech Connect

    Emerson, J.W. )

    1993-03-01

    Quaternary volcanic ash has been found in more than fifty localities in the midwest. The most widespread deposits originated from the Long Valley caldera, California; the Jemez calderas, New Mexico; or the Yellowstone caldera, Wyoming. Fission track dating has grouped the deposits into six separate ash falls ranging from 700,000--2,000,000 years old. A small volcanic ash deposit in western Missouri may be correlative with those found along the Kansas and Marais de Cygnes rivers in eastern Kansas. The ash deposit is in Northwest Bates County Missouri, exposed along a tributary to Miami Creek, four miles east of the Kansas state line. The ash layer is interbedded with alluvial terrace deposits and ranges from fifteen to thirty inches in thickness. It is inferred to have been deposited in a pond or oxbow lake. The color is white with a pale yellow tinge (Munsell 10YR 8/2). Shard examination shows that about 70% are flat bubble-wall types, about 20% have straight ridges, less than 10% are bubble-junction, and only a trace are vesicular. The closest known volcanic ash occurrence is an ash outcropping in a Kansas river terrace near DeSoto, KS, forty-five miles to the northwest. The DeSoto deposit has been identified as the .62 m.y. Lava Creek B ash from the Yellowstone caldera. A preliminary correlation of the Missouri ash with the DeSoto ash is based on similar shard morphology and color.

  5. Water quality investigation of Kingston Fossil Plant dry ash stacking

    SciTech Connect

    Bohac, C.E.

    1990-04-01

    Changing to a dry ash disposal systems at Kingston Fossil Plant (KFP) raises several water quality issues. The first is that removing the fly ash from the ash pond could alter the characteristics of the ash pond discharge to the river. The second concerns proper disposal of the runoff and possibly leachate from the dry ash stack. The third is that dry ash stacking might change the potential for groundwater contamination at the KFP. This report addresses each of these issues. The effects on the ash pond and its discharge are described first. The report is intended to provide reference material to TVA staff in preparation of environmental review documents for new ash disposal areas at Kingston. Although the investigation was directed toward analysis of dry stacking, considerations for other disposal options are also discussed. This report was reviewed in draft form under the title Assessment of Kingston Fossil Plant Dry Ash Stacking on the Ash Pond and Groundwater Quality.'' 11 refs., 3 figs., 18 tabs.

  6. Optical properties of volcanic ash: improving remote sensing observations.

    NASA Astrophysics Data System (ADS)

    Whelley, Patrick; Colarco, Peter; Aquila, Valentina; Krotkov, Nickolay; Bleacher, Jake; Garry, Brent; Young, Kelsey; Rocha Lima, Adriana; Martins, Vanderlei; Carn, Simon

    2016-04-01

    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation.

  7. The leaching characteristics of selenium from coal fly ashes

    SciTech Connect

    Wang, T.; Wang, J.; Burken, J.G.; Ban, H.; Ladwig, K.

    2007-11-15

    The leaching characteristics of selenium from several bituminous and subbituminous coal fly ashes under different pH conditions were investigated using batch methods. Results indicated that pH had a significant effect on selenium leaching from bituminous coal ash. The minimum selenium leaching occurred in the pH range between 3 and 4, while the maximum selenium leaching occurred at pH 12. The release of selenium from subbituminous coal ashes was very low for the entire experimental pH range, possibly due to the high content of calcium which can form hydration or precipitation products as a sink for selenium. The adsorption results for different selenium species indicated that Se(VI) was hardly adsorbable on either bituminous coal ashes or subbitumminous coal ashes at any pH. However, Se(I) was highly adsorbed by bituminous coal ashes under acidic pH conditions and was mostly removed by subbitumminous coal ashes across the entire pH range. This result suggests that the majority of selenium released from the tested fly ashes was Se(IV). A speciation-based model was developed to simulate the adsorption of Se(IV) on bituminous coal fly ash, and the pH-independent adsorption constants of HSeO{sup 3-} and SeO{sub 3}{sup 2-} were determined. The modeling approach is useful for understanding and predicting the release process of selenium from fly ash.

  8. Application of solid ash based catalysts in heterogeneous catalysis

    SciTech Connect

    Shaobin Wang

    2008-10-01

    Solid wastes, fly ash, and bottom ash are generated from coal and biomass combustion. Fly ash is mainly composed of various metal oxides and possesses higher thermal stability. Utilization of fly ash for other industrial applications provides a cost-effective and environmentally friendly way of recycling this solid waste, significantly reducing its environmental effects. On the one hand, due to the higher stability of its major component, aluminosilicates, fly ash could be employed as catalyst support by impregnation of other active components for various reactions. On the other hand, other chemical compounds in fly ash such as Fe{sub 2}O{sub 3} could also provide an active component making fly ash a catalyst for some reactions. In this paper, physicochemical properties of fly ash and its applications for heterogeneous catalysis as a catalyst support or catalyst in a variety of catalytic reactions were reviewed. Fly-ash-supported catalysts have shown good catalytic activities for H{sub 2} production, deSOx, deNOx, hydrocarbon oxidation, and hydrocracking, which are comparable to commercially used catalysts. As a catalyst itself, fly ash can also be effective for gas-phase oxidation of volatile organic compounds, aqueous-phase oxidation of organics, solid plastic pyrolysis, and solvent-free organic synthesis. 107 refs., 4 figs., 2 tabs.

  9. Environmentally friendly use of non-coal ashes in Sweden.

    PubMed

    Ribbing, C

    2007-01-01

    The Swedish Thermal Engineering Research Institute (Värmeforsk) initiated an applied research program "Environmentally friendly use of non-coal ashes", in 2002. The program aims at increasing knowledge on the by-products of energy production and their application. The goal of formulating technical and environmental guidelines and assessments is a major point of the program, which is supported by about forty authorities and private organisations. The programme has been divided into four areas: recycling of ashes to forests, geotechnical applications, use in landfilling, and environmental aspects and chemistry. Among all results obtained, the following progress is shown: *Evidence for the positive effects of spreading ashes on forest growth. *A proposal for environmental guidelines on the utilisation of ashes in construction. *A handbook for using non-coal fly ashes in unpaved roads. *Technical and environmental assessments of MSWI bottom ashes in road construction. *Development of the use of ashes with municipal wastewater sludge as a cover for landfills and mine tailings. *Use of ashes from bio-fuels in concrete and replacement of cement in stoop mining. *A method to classify those by-products from combustion that have mirror entries in the EWC as a hazardous or non-hazardous compound. The Ash Programme has also made it possible to increase knowledge on ashes as valuable materials, on quality assurance and on markets for recovered materials.

  10. Application of solid ash based catalysts in heterogeneous catalysis.

    PubMed

    Wang, Shaobin

    2008-10-01

    Solid wastes, fly ash, and bottom ash are generated from coal and biomass combustion. Fly ash is mainly composed of various metal oxides and possesses higher thermal stability. Utilization of fly ash for other industrial applications provides a cost-effective and environmentally friendly way of recycling this solid waste, significantly reducing its environmental effects. On the one hand, due to the higher stability of its major component, aluminosilicates, fly ash could be employed as catalyst support by impregnation of other active components for various reactions. On the other hand, other chemical compounds in fly ash such as Fe2O3 could also provide an active component making fly ash a catalyst for some reactions. In this paper, physicochemical properties of fly ash and its applications for heterogeneous catalysis as a catalyst support or catalyst in a variety of catalytic reactions were reviewed. Fly-ash-supported catalysts have shown good catalytic activities for H2 production, deSO(x), deNO(x), hydrocarbon oxidation,and hydrocracking, which are comparable to commercially used catalysts. As a catalyst itself, fly ash can also be effective for gas-phase oxidation of volatile organic compounds, aqueous-phase oxidation of organics, solid plastic pyrolysis, and solvent-free organic synthesis. PMID:18939526

  11. Laboratory compaction of fly ash and fly ash with cement additions.

    PubMed

    Zabielska-Adamska, Katarzyna

    2008-03-01

    The use of power-industry wastes as a material for earthen structures depends on its compactibility. It has been confirmed that a fly ash/bottom ash mix compacted several times in Proctor's moulds are not representative. The relationship between dry density of solid particles and water content for re-used waste samples was determined. The re-compaction effect on grain-size distribution, density of solid particles, specific surface and sand equivalent of wastes was investigated. Tests were conducted on fly ash samples compacted by the Standard and Modified Proctor methods. Another aim of the paper was to investigate the influence of cement additions on the compactibility of a fly ash/bottom ash mix. Waste samples in the natural state and with different percentages of cement additions (2, 5 and 10%) were compacted by both impact compaction methods to obtain compactibility curves rhod(w). It was found that cement addition resulted in an increased rhod max value, while wopt decreased. Linear regression relationships for changes in compaction parameters after cement stabilisation are also given. PMID:17619083

  12. Sustainable use of biofuel by recycling ash to forests: treatment of biofuel ash.

    PubMed

    Mahmoudkhani, Maryam; Richards, Tobias; Theliander, Hans

    2007-06-01

    The influence of treatment techniques on leaching properties of alkaline species from biofuel ash is investigated in this paper. Ash samples from combustion of biofuels in a circulating fluidized bed and grate-firing combustion plants are studied. The samples are treated using three different treatment techniques; self-hardening, thermal treatment, and hardening bythe addition of binding materials. Nontreated and treated samples are evaluated for the leaching properties of the alkaline compounds and, furthermore, are characterized with respect to both physical and chemical characteristics. The results show the influence of treatment techniques on the physical structure and leaching characteristics of alkaline species. Results also indicate that ash samples show different behavior when treated with different methods, i.e., the influence of treatment technique on controlling the leaching properties is highly dependent on the initial chemical composition of ash. It was also found that there is an interaction between leaching of limited and easily soluble species, e.g., calcium and potassium leaching. Therefore, to control the leaching rate of alkaline species from ash, the characteristics that correlate the leaching properties of both easily and limited soluble species need to be adjusted.

  13. 2005 world of coal ash conference proceedings

    SciTech Connect

    2005-07-01

    The theme of the conference was science, applications and sustainability. Papers are presented under the following topics: aggregates; FGD; policy; SCR; chemistry; cement and concrete (including alkali and silica reaction); agriculture; chemistry - mercury; mine reclamation; new products; and environmental management. The papers from the regulation, risk and reclamation with coal combustion byproducts at mines - OSM interactive forum and the 2005 conference on unburned carbon on utility fly ash are also included. The poster papers are included as well.

  14. Eirich technology for the preparation of ashes

    SciTech Connect

    Eirich, G.

    1994-12-31

    The paper describes a mixer manufactured by Maschinenfabrik Gustav Eirich that can be used in the agglomeration of power plant ashes and residues. No matter whether the power plant burns coal, fuel oil, wood, peat, or garbage or whether the power plant plans to dispose or utilize the residue, most flowsheets will contain an agglomeration step. The paper describes some of the uses to which this mixer can be put.

  15. Manufacture of ceramic tiles from fly ash

    SciTech Connect

    Hnat, J.G.; Mathur, A.; Simpson, J.C.

    1999-08-10

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants. 6 figs.

  16. Manufacture of ceramic tiles from fly ash

    SciTech Connect

    Hnat, James G.; Mathur, Akshay; Simpson, James C.

    1999-01-01

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants.

  17. Fly ash as a liming material for cotton.

    PubMed

    Stevens, Gene; Dunn, David

    2004-01-01

    A field experiment was conducted to determine the effect of fly ash from a coal combustion electric power facility on soil acidity in a cotton (Gossypium hirsutum L.) field. Fresh fly ash was applied to a Bosket fine sandy loam (fine-loamy, mixed, thermic Mollic Hapludalf) soil with an initial soil pH(salt) of 4.8. The fly ash was equivalent to 42 g kg(-1) calcium carbonate with 97% passing through a 60 mesh (U.S. standard) sieve. Fly ash was applied one day before cotton planting in 1999 at 0, 3.4, 6.7, and 10.1 Mg ha(-1). No fly ash was applied in 2000. Within 60 d of fly ash application in 1999, all rates of fly ash significantly increased soil pH above 6.0. Manganese levels in cotton petioles were reduced significantly by 6.7 and 10.1 Mg ha(-1) of fly ash. Soil boron (B) and sodium (Na) concentrations were significantly increased with fly ash. In 1999, B in cotton leaves ranged from 72 to 84 mg kg(-1) in plots with fly ash applications. However, no visual symptoms of B toxicity in plants were observed. In 1999, cotton lint yield decreased on average 12 kg ha(-1) for each Mg of fly ash applied. In 2000, cotton yields were significantly greater for the residual 3.4 and 6.7 Mg fly ash ha(-1) plots than the untreated check. Due to the adverse yield effects measured in the first year following application, fly ash would not be a suitable soil amendment for cotton on this soil at this time. PMID:14964389

  18. A hierarchically porous anatase TiO2 coated-WO3 2D IO bilayer film and its photochromic properties.

    PubMed

    Li, Hua; Wu, Huazhong; Xiao, Jiajia; Su, Yanli; Robichaud, Jacques; Brüning, Ralf; Djaoued, Yahia

    2016-01-18

    A hierarchically porous anatase TiO2 coated-WO3 2D inverse opal (IO) bilayer film was fabricated on ITO glass using a layer by layer route with a hierarchically porous TiO2 top layer and an ordered super-macroporous WO3 2D IO bottom layer. This novel TiO2 coated-WO3 2D IO bilayer film was evaluated for photochromic applications. PMID:26576930

  19. A hierarchically porous anatase TiO2 coated-WO3 2D IO bilayer film and its photochromic properties.

    PubMed

    Li, Hua; Wu, Huazhong; Xiao, Jiajia; Su, Yanli; Robichaud, Jacques; Brüning, Ralf; Djaoued, Yahia

    2016-01-18

    A hierarchically porous anatase TiO2 coated-WO3 2D inverse opal (IO) bilayer film was fabricated on ITO glass using a layer by layer route with a hierarchically porous TiO2 top layer and an ordered super-macroporous WO3 2D IO bottom layer. This novel TiO2 coated-WO3 2D IO bilayer film was evaluated for photochromic applications.

  20. Market assessment of PFBC ash use

    SciTech Connect

    Bland, A. E.; Brown, T. H., Western Research Institute

    1998-01-01

    Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration in the United States, as well as throughout the world. American Electric Power`s (AEP`s) bubbling PFBC 70 MWe Tidd demonstration program in Ohio and pilot-scale development at Foster Wheeler Energia Oy 10 MWth circulating PFBC at Karhula, Finland, have demonstrated the advantages of PFBC technology. Further technology development in the US is planned with the deployment of the technology at the MacIntosh Clean Coal project in Lakeland, Florida. Development of uses for solid wastes from PFBC coal-fired power systems is being actively pursued as part of the demonstration of PFBC technologies. Ashes collected from Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low sulfur subbituminous and (2) high sulfur bituminous coal; and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI).

  1. Aerodynamic characteristics of popcorn ash particles

    SciTech Connect

    Cherkaduvasala, V.; Murphy, D.W.; Ban, H.; Harrison, K.E.; Monroe, L.S.

    2007-07-01

    Popcorn ash particles are fragments of sintered coal fly ash masses that resemble popcorn in low apparent density. They can travel with the flow in the furnace and settle on key places such as catalyst surfaces. Computational fluid dynamics (CFD) models are often used in the design process to prevent the carryover and settling of these particles on catalysts. Particle size, density, and drag coefficient are the most important aerodynamic parameters needed in CFD modeling of particle flow. The objective of this study was to experimentally determine particle size, shape, apparent density, and drag characteristics for popcorn ash particles from a coal-fired power plant. Particle size and shape were characterized by digital photography in three orthogonal directions and by computer image analysis. Particle apparent density was determined by volume and mass measurements. Particle terminal velocities in three directions were measured in water and each particle was also weighed in air and in water. The experimental data were analyzed and models were developed for equivalent sphere and equivalent ellipsoid with apparent density and drag coefficient distributions. The method developed in this study can be used to characterize the aerodynamic properties of popcorn-like particles.

  2. Arsenic release from pyrite ashes: kinetic studies.

    PubMed

    Lodolo, Andrea; Antonini, Paolo; Bukovec, Peter

    2013-01-01

    Arsenic mobility in pyrite ashes was studied because of the possible effects on water systems. The batch extraction method was used to assess kinetics and extent of As release induced by contact of the material either with rainwater or groundwater. Self-established pH-Eh range of pyrite ashes/water mixtures brought both As(III) and As(V) to be present in the water phase, as neutral arsenite H3AsO3 and anionic arsenate HAsO42-, respectively. Tests in reagent water showed both rate and extent of arsenite release higher than arsenate; total As concentration ([As] = 12 µg/L) at equilibrium little exceeded its EU Maximum Concentration Level (MCL) for surface and groundwater ([As] = 10 µg/L). Tests in groundwater, instead, showed a much higher release rate and extent for arsenate than for arsenite and the chemistry of groundwater mainly influenced arsenate mobility; total As almost instantly exceeded its MCL and it was markedly higher ([As] = 31 µg/L) at equilibrium. Overall, the study has shown the environmental implications of As mobility in the pyrite ashes, also casting light on some limits of the environmental representativeness of leaching tests in reagent water.

  3. Sub-nanosecond Yb:KLu(WO4)2 microchip laser.

    PubMed

    Loiko, P; Serres, J M; Mateos, X; Yumashev, K; Yasukevich, A; Petrov, V; Griebner, U; Aguiló, M; Díaz, F

    2016-06-01

    A diode-pumped Yb:KLu(WO4)2 microchip laser passively Q-switched by a Cr4+:YAG saturable absorber generated a maximum average output power of 590 mW at 1031 nm with a slope efficiency of 55%. The pulse characteristics were 690 ps/47.6 μJ at a pulse repetition frequency of 12.4 kHz. The output beam had an excellent circular profile with M2<1.05. Yb:KLu(WO4)2 is very promising for ultrathin sub-ns microchip lasers. PMID:27244429

  4. Phase modification and surface plasmon resonance of Au/WO3 system

    NASA Astrophysics Data System (ADS)

    Bose, R. Jolly; Kavitha, V. S.; Sudarsanakumar, C.; Pillai, V. P. Mahadevan

    2016-08-01

    We report the action of gold as catalyst for the modification of phase from triclinic WO3 to monoclinic W18O49 and nucleation centre for the formation of W18O49 phase, in gold incorporated tungsten oxide films prepared by RF magnetron sputtering technique. A new band is observed near 925 cm-1 in the Raman spectra of gold incorporated tungsten oxide films which is not observed in the pure tungsten oxide film. The intensity of this band enhances with gold content. A localized surface plasmon resonance (LSPR) band is observed near the wavelength 604 nm in gold incorporated tungsten oxide films. The integrated intensities of LSPR band and Raman band (∼925 cm-1) can be used for sensing the quantity of gold in the Au/WO3 matrix.

  5. Electric field control of ferroelectric domain structures in MnWO4.

    PubMed

    Yu, H W; Li, X; Liu, M F; Lin, L; Yan, Z B; Zhou, X H; Liu, J M

    2014-07-30

    Competing interactions make the magnetic structure of MnWO4 highly frustrated, and only the AF2 phase of the three magnetically ordered phases (AF1, AF2, AF3) is ferroelectric. The high frustration may thus allow a possibility to tune the magnetic structure by means of an electric field via magnetoelectric coupling. By using the pyroelectric current method, we measure the remnant ferroelectric polarization in MnWO4 upon application of a poling electric field via two different roadmaps. It is demonstrated that an electric field as low as 10 kV cm(-1) is sufficient to enhance the stability of a ferroelectric AF2 phase at the expense of a non-ferroelectric AF1 phase. This work suggests that electric field induced electrostatic energy, although small due to weak magnetically induced electric polarization, may effectively tune ferroelectric domain structures, and thus the magnetic structure of highly frustrated multiferroic materials.

  6. G0W0 band structure of CdWO4.

    PubMed

    Laasner, Raul

    2014-03-26

    The full quasiparticle band structure of CdWO4 is calculated within the single-shot GW (G0W0) approximation using maximally localized Wannier functions, which allows one to assess the validity of the commonly used scissor operator. Calculations are performed using the Godby-Needs plasmon pole model and the accurate contour deformation technique. It is shown that while the two methods yield identical band gap energies, the low-lying states are given inaccurately by the plasmon pole model. We report a band gap energy of 4.94 eV, including spin-orbit interaction at the DFT-LDA (density functional theory-local density approximation) level. Quasiparticle renormalization in CdWO4 is shown to be correlated with localization distance. Electron and hole effective masses are calculated at the DFT and G0W0 levels. PMID:24599225

  7. Influence of MoO3 addition on the gasochromism of WO3 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Zenghai; Wu, Guangming; Gao, Guohua; Wu, Jiandong; Feng, Wei

    2011-02-01

    Pure tungsten oxide thin films apparently show gasochromic performance, based on PdCl2 catalyst. In this paper, adulteration of MoO3 into WO3 sol has been achieved via sol-gel method. FT-IR, Differential Scanning Calorimeter (DSC-TG) and Uv-visible Spectroscopy have been used to analysis the compound sols, films and optical properties for the use of this material as smart windows. FT-IR shows that for the compound, new characteristic absorption bands arise, which is different from pure WO3 or MoO3. DSC-TG shows the phase change during the temperature ascending from 50 to 800°C. The compound thin films performs relatively well in coloring response time, colored extent, coloring-bleaching recycling and gasochromic effect with non-unicity color.

  8. Influence of MoO3 addition on the gasochromism of WO3 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Zenghai; Wu, Guangming; Gao, Guohua; Wu, Jiandong; Feng, Wei

    2010-10-01

    Pure tungsten oxide thin films apparently show gasochromic performance, based on PdCl2 catalyst. In this paper, adulteration of MoO3 into WO3 sol has been achieved via sol-gel method. FT-IR, Differential Scanning Calorimeter (DSC-TG) and Uv-visible Spectroscopy have been used to analysis the compound sols, films and optical properties for the use of this material as smart windows. FT-IR shows that for the compound, new characteristic absorption bands arise, which is different from pure WO3 or MoO3. DSC-TG shows the phase change during the temperature ascending from 50 to 800°C. The compound thin films performs relatively well in coloring response time, colored extent, coloring-bleaching recycling and gasochromic effect with non-unicity color.

  9. Synthesis and characterization of WO{sub 3} nanostructures prepared by an aged-hydrothermal method

    SciTech Connect

    Huirache-Acuna, R.; Paraguay-Delgado, F.; Albiter, M.A.; Lara-Romero, J.; Martinez-Sanchez, R.

    2009-09-15

    Nanostructures of tungsten trioxide (WO{sub 3}) have been successfully synthesized by using an aged route at low temperature (60 deg. C) followed by a hydrothermal method at 200 deg. C for 48 h under well controlled conditions. The material was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Specific Surface Area (S{sub BET}) were measured by using the BET method. The lengths of the WO{sub 3} nanostructures obtained are between 30 and 200 nm and their diameters are from 20 to 70 nm. The growth direction of the tungsten oxide nanostructures was determined along [010] axis with an inter-planar distance of 0.38 nm.

  10. Passively mode-locked Yb:KLu(WO4)2 oscillators.

    PubMed

    Griebner, U; Rivier, S; Petrov, V; Zorn, M; Erbert, G; Weyers, M; Mateos, X; Aguiló, M; Massons, J; Díaz, F

    2005-05-01

    We demonstrate passive mode locking based on the novel monoclinic double tungstate crystal Yb:KLu(WO4)2. We report the shortest pulses ever produced with an Yb-doped tungstate laser using a semiconductor saturable absorber. A pulse duration of 81 fs has been achieved for an average power of 70 mW at 1046 nm. We compare the performance of the polarization oriented parallel to the Nm- and Np-crystallo-optic axes. Results in the femtosecond and picosecond regime are presented applying either Ti:sapphire or diode laser pumping. The great potential of Yb:KLu(WO4)2 as an active medium for ultrashort pulses is demonstrated for the first time, to our knowledge.

  11. Precipitation Synthesis, Characterization, Morphological Control, and Photocatalyst Application of ZnWO4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hosseinpour-Mashkani, S. Mostafa; Maddahfar, Mahnaz; Sobhani-Nasab, Ali

    2016-07-01

    Zinc tungstate nanoparticles have been successfully synthesized by a precipitation method in the presence of different polymeric surfactants. This study aimed to investigate the effect of different solvents and polymeric surfactants such as carboxymethyl cellulose, polyethylene glycol, and polyvinyl alcohol on the morphology, particle size, and crystal structure of the final product. The as-synthesized products were characterized by powder x-ray diffraction analysis, scanning electron microscopy, ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscopy, and energy-dispersive x-ray spectroscopy techniques. Furthermore, the hysteresis loop of the zinc tungstate nanoparticles at room temperature revealed paramagnetic behavior. Photocatalysis results revealed that maximum methyl orange decolorization of 85% was achieved with ZnWO4 nanoparticles in 240 min under visible-light irradiation. The saturation magnetization, remanent magnetization, and coercivity of the ZnWO4 nanoparticles were 0.003 emu/g, 0.0005 emu/g, and 110 Oe, respectively.

  12. Electrical Characteristics of WO3-Based CO2-Sensitive Solid-State Microsensor

    NASA Astrophysics Data System (ADS)

    Chao, Shuchi

    1993-09-01

    A WO3-impregnated thin polymer across two closely spaced microelectrodes is employed as a solid-state CO2 microsensor at 1 atm and room temperature. Its function is based on the WO3 transformation to the conducting HXWO3 by intercalation of released protons from CO2 equilibration in the polymer. The response to CO2 concentrations is reversible and linear between ˜0--16% at ˜840 kΩ per 1% change over prolonged operations of ˜80-second switching time. A dependence on residual water in the polymer is detected but exerts no influence on the CO2 response as long as the polymer is not entirely dried out by H2O-free gas.

  13. Formation of W/O microemulsion based on natural glycolipid biosurfactant, mannosylerythritol lipid-a.

    PubMed

    Worakitkanchanakul, Wannasiri; Imura, Tomohiro; Morita, Tomotake; Fukuoka, Tokuma; Sakai, Hideki; Abe, Masahiko; Rujiravanit, Ratana; Chavadej, Sumaeth; Kitamoto, Dai

    2008-01-01

    Mannosylerythritol lipid-A (MEL-A) is a glycolipid biosurfactant abundantly produced from soybean oil by microorganisms at a yield of up to 100 g/L. In this study, the formation of water-in-oil (W/O) microemulsion based on the single component of MEL-A was confirmed using dynamic light scattering (DLS) and freeze fracture electron microscopy (FF-EM). DLS and FF-EM measurements revealed that the diameter of the microemulsion increases with an increase in water-to-surfactant mole ratio (W(0)) ranging from 20 to 60 nm, and the maximum W(0) value was found to be 20, which is as high as that of soybean lecithin. Glycolipid biosurfactant has a great potential for the formation of W/O microemulsion without using any cosurfactants. PMID:18075224

  14. Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Nayak, Arpan Kumar; Ghosh, Ruma; Santra, Sumita; Guha, Prasanta Kumar; Pradhan, Debabrata

    2015-07-01

    It remains a challenge to find a suitable gas sensing material that shows a high response and shows selectivity towards various gases simultaneously. Here, we report a mixed metal oxide WO3-SnO2 nanostructured material synthesized in situ by a simple, single-step, one-pot hydrothermal method at 200 °C in 12 h, and demonstrate its superior sensing behavior towards volatile organic compounds (VOCs) such as ammonia, ethanol and acetone. SnO2 nanoparticles with controlled size and density were uniformly grown on WO3 nanoplates by varying the tin precursor. The density of the SnO2 nanoparticles on the WO3 nanoplates plays a crucial role in the VOC selectivity. The responses of the present mixed metal oxides are found to be much higher than the previously reported results based on single/mixed oxides and noble metal-doped oxides. In addition, the VOC selectivity is found to be highly temperature-dependent, with optimum performance obtained at 200 °C, 300 °C and 350 °C for ammonia, ethanol and acetone, respectively. The present results on the cost-effective noble metal-free WO3-SnO2 sensor could find potential application in human breath analysis by non-invasive detection.It remains a challenge to find a suitable gas sensing material that shows a high response and shows selectivity towards various gases simultaneously. Here, we report a mixed metal oxide WO3-SnO2 nanostructured material synthesized in situ by a simple, single-step, one-pot hydrothermal method at 200 °C in 12 h, and demonstrate its superior sensing behavior towards volatile organic compounds (VOCs) such as ammonia, ethanol and acetone. SnO2 nanoparticles with controlled size and density were uniformly grown on WO3 nanoplates by varying the tin precursor. The density of the SnO2 nanoparticles on the WO3 nanoplates plays a crucial role in the VOC selectivity. The responses of the present mixed metal oxides are found to be much higher than the previously reported results based on single/mixed oxides and

  15. First principles study of the photo-oxidation of water on tungsten trioxide (WO3).

    PubMed

    Valdés, A; Kroes, G-J

    2009-03-21

    The photo-oxidation of water on the monoclinic P2(1)/nWO(3) (200, 020, and 002) surfaces is investigated using density functional theory calculations, employing the PW91-generalized gradient approximation, and the method developed by Norskov et al. [J. Phys. Chem. B 108, 17886 (2004)] based on the free energy differences between the reaction intermediates. We first relax the bulk material unit cell and then investigate the relative stability of different surface terminations of WO(3) and analyze the overpotential needed for the photoelectrolysis of water. We found that the rate limiting step is the transfer of a proton from the surface adsorbed OH to the electrolyte, and that the computed overpotential for O(2) evolution (1.04 V) is available upon illumination of the surface with visible light.

  16. Synthesis, formation mechanism and sensing properties of WO{sub 3} hydrate nanowire netted-spheres

    SciTech Connect

    Yan, Aihua; Xie, Changsheng; Zeng, Dawen; Cai, Shuizhou; Hu, Mulin

    2010-10-15

    Tungsten oxide hydrate nanowire netted-spheres were successfully synthesized in the glycol solution using a facile solvothermal approach. The nanowires with uniform diameter of 4-6 nm are actually a kind of tungsten oxide hydrate/surfactant hybrid materials. The influence of surfactant, solvent, time and temperature on tailoring morphology was investigated in detail. The possible formation process of WO{sub 3} hydrate nanowire netted-sphere was proposed. Sensing properties of such WO{sub 3} hydrate sensor show that the desirable sensing characteristics towards 100 ppm ammonia gas at 320 {sup o}C were obtained, such as rapid response (18.3 s), high sensitivity, good reproducibility and stability.

  17. Surfactant-assistant solvothermal synthesis of CaWO4:Eu3+ phosphors and luminescence

    NASA Astrophysics Data System (ADS)

    Xu, Huanzhi; Ying, Dongming; Lu, Ading; Wang, Xiaoyan; Hu, Jiankun

    2015-07-01

    CaWO4:Eu3+ phosphors with different morphologies were synthesized by the surfactant-assistant solvothermal process. The structure and luminescent properties were characterized by XRD, SEM, TEM, IR, XPS, and spectrophotometer. The XRD and IR results show that the samples have the scheelite phase. The XPS result shows that Eu3+ ions have doped into CaWO4 hosts successfully. PEG-400, En, and EDTA play the key roles in the formation of microspheres with smooth surface, microspheres with rough surface, and microoctahedrons, respectively. All samples show emission bands originating from the 5D0 → 7Fj (j = 1, 2, 3, 4) transitions of Eu3+ ions. The morphology has obvious influence on the emission intensity. The microspheres with smooth surface have the highest emission intensity, and the microoctahedrons have the lowest emission intensity.

  18. Intense ultraviolet emission from needle-like WO3 nanostructures synthesized by noncatalytic thermal evaporation

    PubMed Central

    2011-01-01

    Photoluminescence measurements showed that needle-like tungsten oxide nanostructures synthesized at 590°C to 750°C by the thermal evaporation of WO3 nanopowders without the use of a catalyst had an intense near-ultraviolet (NUV) emission band that was different from that of the tungsten oxide nanostructures obtained in other temperature ranges. The intense NUV emission might be due to the localized states associated with oxygen vacancies and surface states. PMID:21752275

  19. Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    CMS Electromagnetic Calorimeter Group; Adzic, P.; Almeida, N.; Andelin, D.; Anicin, I.; Antunovic, Z.; Arcidiacono, R.; Arenton, M. W.; Auffray, E.; Argiro, S.; Askew, A.; Baccaro, S.; Baffioni, S.; Balazs, M.; Bandurin, D.; Barney, D.; Barone, L. M.; Bartoloni, A.; Baty, C.; Beauceron, S.; Bell, K. W.; Bernet, C.; Besancon, M.; Betev, B.; Beuselinck, R.; Biino, C.; Blaha, J.; Bloch, P.; Borisevitch, A.; Bornheim, A.; Bourotte, J.; Brown, R. M.; Buehler, M.; Busson, P.; Camanzi, B.; Camporesi, T.; Cartiglia, N.; Cavallari, F.; Cecilia, A.; Chang, P.; Chang, Y. H.; Charlot, C.; Chen, E. A.; Chen, W. T.; Chen, Z.; Chipaux, R.; Choudhary, B. C.; Choudhury, R. K.; Cockerill, D. J. A.; Conetti, S.; Cooper, S.; Cossutti, F.; Cox, B.; Cussans, D. G.; Dafinei, I.; Da Silva Di Calafiori, D. R.; Daskalakis, G.; David, A.; Deiters, K.; Dejardin, M.; De Benedetti, A.; Della Ricca, G.; Del Re, D.; Denegri, D.; Depasse, P.; Descamps, J.; Diemoz, M.; Di Marco, E.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Djordjevic, M.; Dobrzynski, L.; Dolgopolov, A.; Drndarevic, S.; Drobychev, G.; Dutta, D.; Dzelalija, M.; Elliott-Peisert, A.; El Mamouni, H.; Evangelou, I.; Fabbro, B.; Faure, J. L.; Fay, J.; Fedorov, A.; Ferri, F.; Franci, D.; Franzoni, G.; Freudenreich, K.; Funk, W.; Ganjour, S.; Gascon, S.; Gataullin, M.; Gentit, F. X.; Ghezzi, A.; Givernaud, A.; Gninenko, S.; Go, A.; Gobbo, B.; Godinovic, N.; Golubev, N.; Govoni, P.; Grant, N.; Gras, P.; Haguenauer, M.; Hamel de Monchenault, G.; Hansen, M.; Haupt, J.; Heath, H. F.; Heltsley, B.; Hintz, W.; Hirosky, R.; Hobson, P. R.; Honma, A.; Hou, G. W. S.; Hsiung, Y.; Huhtinen, M.; Ille, B.; Ingram, Q.; Inyakin, A.; Jarry, P.; Jessop, C.; Jovanovic, D.; Kaadze, K.; Kachanov, V.; Kailas, S.; Kataria, S. K.; Kennedy, B. W.; Kokkas, P.; Kolberg, T.; Korjik, M.; Krasnikov, N.; Krpic, D.; Kubota, Y.; Kuo, C. M.; Kyberd, P.; Kyriakis, A.; Lebeau, M.; Lecomte, P.; Lecoq, P.; Ledovskoy, A.; Lethuillier, M.; Lin, S. W.; Lin, W.; Litvine, V.; Locci, E.; Longo, E.; Loukas, D.; Luckey, P. D.; Lustermann, W.; Ma, Y.; Malberti, M.; Malclès, J.; Maletic, D.; Manthos, N.; Maravin, Y.; Marchica, C.; Marinelli, N.; Markou, A.; Markou, C.; Marone, M.; Matveev, V.; Mavrommatis, C.; Meridiani, P.; Milenovic, P.; Miné, P.; Missevitch, O.; Mohanty, A. K.; Moortgat, F.; Musella, P.; Musienko, Y.; Nardulli, A.; Nash, J.; Nedelec, P.; Negri, P.; Newman, H. B.; Nikitenko, A.; Nessi-Tedaldi, F.; Obertino, M. M.; Organtini, G.; Orimoto, T.; Paganoni, M.; Paganini, P.; Palma, A.; Pant, L.; Papadakis, A.; Papadakis, I.; Papadopoulos, I.; Paramatti, R.; Parracho, P.; Pastrone, N.; Patterson, J. R.; Pauss, F.; Peigneux, J.-P.; Petrakou, E.; Phillips, D. G., II; Piroué, P.; Ptochos, F.; Puljak, I.; Pullia, A.; Punz, T.; Puzovic, J.; Ragazzi, S.; Rahatlou, S.; Rander, J.; Razis, P. A.; Redaelli, N.; Renker, D.; Reucroft, S.; Ribeiro, P.; Rogan, C.; Ronquest, M.; Rosowsky, A.; Rovelli, C.; Rumerio, P.; Rusack, R.; Rusakov, S. V.; Ryan, M. J.; Sala, L.; Salerno, R.; Schneegans, M.; Seez, C.; Sharp, P.; Shepherd-Themistocleous, C. H.; Shiu, J. G.; Shivpuri, R. K.; Shukla, P.; Siamitros, C.; Sillou, D.; Silva, J.; Silva, P.; Singovsky, A.; Sirois, Y.; Sirunyan, A.; Smith, V. J.; Stöckli, F.; Swain, J.; Tabarelli de Fatis, T.; Takahashi, M.; Tancini, V.; Teller, O.; Theofilatos, K.; Thiebaux, C.; Timciuc, V.; Timlin, C.; Titov, M.; Topkar, A.; Triantis, F. A.; Troshin, S.; Tyurin, N.; Ueno, K.; Uzunian, A.; Varela, J.; Verrecchia, P.; Veverka, J.; Virdee, T.; Wang, M.; Wardrope, D.; Weber, M.; Weng, J.; Williams, J. H.; Yang, Y.; Yaselli, I.; Yohay, R.; Zabi, A.; Zelepoukine, S.; Zhang, J.; Y Zhang, L.; Zhu, K.; Y Zhu, R.

    2010-03-01

    Ensuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered.

  20. Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO{sub 6}

    SciTech Connect

    Ait Ahsaine, H.; Taoufyq, A.; Patout, L.; Ezahri, M.; Benlhachemi, A.; Bakiz, B.; Villain, S.; Guinneton, F.; Gavarri, J.-R.

    2014-10-15

    The bismuth lutetium tungstate phase BiLuWO{sub 6} has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better represented by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO{sub 6} with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO{sub 6} octahedron distortions in the structure. - Graphical abstract: The average structure of BiLuWO{sub 6} determined from X-ray diffraction data can be represented by A2/m space group. Experimental Electron Diffraction patterns along the [0vw] zone axes of the monoclinic structure and associated simulated patterns show the existence of a monoclinic superstructure with space group P2 or P2/m. - Highlights: • A new monoclinic BiLuWO{sub 6} phase has been elaborated from solid-state reaction. • The space group of the monoclinic disordered average structure should be A2/m. • Transmission electron microscopy leads to a superlattice with P2/m space group. • Raman spectroscopy suggests existence of local disorder.

  1. Dehydration, dehydrogenation, and condensation of alcohols on supported oxide catalysts based on cyclic (WO3)3 and (MoO3)3 clusters.

    PubMed

    Rousseau, Roger; Dixon, David A; Kay, Bruce D; Dohnálek, Zdenek

    2014-11-21

    Supported early transition metal oxides have important applications in numerous catalytic reactions. In this article, we review the synthesis and activity of well-defined model WO3 and MoO3 catalysts that are prepared via deposition of cyclic gas-phase (WO3)3 and (MoO3)3 clusters generated by sublimation of WO3 and MoO3 powders. Conversion of small aliphatic alcohols to alkenes, aldehydes/ketones, and ethers is employed to probe the structure-activity relationships on model catalysts ranging from unsupported (WO3)3 and (MoO3)3 clusters embedded in alcohol matrices, to (WO3)3 clusters supported on surfaces of other oxides, and epitaxial and nanoporous WO3 films. Detailed theoretical calculations reveal the underlying reaction mechanisms and provide insight into the origin of the differences in the WO3 and MoO3 reactivity. The catalytic activity for a range of interrogated (WO3)3 motifs (from unsupported clusters to nanoporous films) further sheds light onto the role structure and binding of (WO3)3 clusters with the support play in determining their catalytic activity. PMID:24553750

  2. The in-situ production of ash in pyroclastic flows

    NASA Astrophysics Data System (ADS)

    Manga, M.; Dufek, J.; Standish, D.

    2007-12-01

    Abrasion and fragmentation of pumice clasts during the propagation of pyroclastic flows has long been recognized as a potential source for the enhanced production of volcanic ash, however its relative importance has eluded quantification (Walker, 1981). The amount of ash produced in-situ can potentially affect runout distance, deposit sorting, the volume of ash introduced in the upper atmosphere, and internal pore pressure. We conduct a series of laboratory experiments on the collisional production of ash that may occur during different regimes of pyroclastic flow transport. We further parameterize the experiments of Cagnoli and Manga (2004) to determine the rate of production of frictional ash. We find that the energy of these interactions is insufficient to create a fractal particle size distribution; rather a bimodal suite of large particles and 10-100 micron ash particles are typically produced Using these laboratory experiments we can develop a subgrid model for ash production that can be included in analytical and multiphase numerical procedures to estimate the total volume of ash produced during transport. We examine numerically a range of initial flow energies and bed slopes over which the flows propagate. To simplify the problem we consider flows starting with 1 cm pumice clasts that can be broken up into 100 micron ash. We find that for most flow conditions10-20% of the initial 1 cm clasts comminutes into ash with the percentage increasing as a function of initial flow energy. Most of the ash is produced in the high-energy regions near the flow inlet, although flow acceleration on steep slopes can produce ash far from the vent. Ash produced at the frictional base of the flow and in the collisional upper regions of the flow can be redistributed through the entirety of the flow, although frictionally produced ash accumulates preferentially near its source in the bed-load. As slope increases, the relative proportion of ash generated by friction increases

  3. Ab-initio structure determination of {beta}-La{sub 2}WO{sub 6}

    SciTech Connect

    Chambrier, M-H.; Kodjikian, S.; Ibberson, R.M.; Goutenoire, F.

    2009-02-15

    The structure of the low-temperature form of {beta}-La{sub 2}WO{sub 6} has been determined from laboratory X-ray, neutron time-of-flight and electron diffraction data. This tungstate crystallizes in the non-centrosymmetric orthorhombic space group (no. 19) P2{sub 1}2{sub 1}2{sub 1}, with Z=8, a=7.5196(1) A, b=10.3476(1) A, c=12.7944(2) A, and a measured density 7.37(1) g cm{sup -3}. The structure consists of tungsten [WO{sub 6}] octahedra and tetrahedral [OLa{sub 4}]. Tungsten polyhedra are connected such that [W{sub 2}O{sub 11}]{sup 10-} units are formed. - Graphical abstract: Projection of La{sub 2}WO{sub 6} structure along [100]. The structure could be described by [W{sub 2}O{sub 11}]{sup -10} structural unit formed by two corner-sharing octahedra.

  4. Effects of Antiviral Drugs on Organic Anion Transport in Human Placental BeWo Cells

    PubMed Central

    Kawasaki, Tatsuya; Kamiya, Yuki; Uwai, Yuichi

    2015-01-01

    Placental drug transfer is important for achieving better pharmacotherapy in pregnant women and in fetuses. In the present study, we examined the effects of anti-hepatitis C virus (HCV) and anti-HIV drugs on organic anion transport in human placental BeWo cells. The cellular uptake of two fluorescence organic anions, 8-(2-[fluoresceinyl]aminoethylthio)adenosine-3′,5′-cyclic monophosphate (8-FcAMP) and fluorescein, was temperature and concentration dependent. The Michaelis constant (Km) and the maximum uptake rate (Vmax) for 8-FcAMP transport in BeWo cells were estimated to be 6.45 ± 0.75 μM and 25.55 ± 5.93 pmol/mg protein/10 min, respectively. The Km and Vmax values for fluorescein uptake were estimated to be 31.2 ± 11.8 μM and 510.9 ± 90.6 pmol/mg protein/10 min, respectively. Several known substrates of organic anion transporters in human placenta, including atorvastatin, glibenclamide, estrone-3-sulfate, and rifampin, inhibited cellular uptake of 8-FcAMP and fluorescein in BeWo cells. Transport of 8-FcAMP and fluorescein was inhibited by the antiviral drugs boceprevir, telaprevir, elvitegravir, and maraviroc. These findings suggest that some antiviral drugs are sufficiently potent to influence placental drug transfer and cause drug-drug interactions. PMID:26416870

  5. Heme-mediated apoptosis and fusion damage in BeWo trophoblast cells

    PubMed Central

    Liu, Mingli; Hassana, Salifu; Stiles, Jonathan K.

    2016-01-01

    Placental malaria (PM) is a complication associated with malaria infection during pregnancy that often leads to abortion, premature delivery, intrauterine growth restriction and low birth weight. Increased levels of circulating free heme, a by-product of Plasmodium-damaged erythrocytes, is a major contributor to inflammation, tissue damage and loss of blood brain barrier integrity associated with fatal experimental cerebral malaria. However, the role of heme in PM remains unknown. Proliferation and apoptosis of trophoblasts and fusion of the mononucleated state to the syncytial state are of major importance to a successful pregnancy. In the present study, we examined the effects of heme on the viability and fusion of a trophoblast-derived cell line (BeWo). Results indicate that heme induces apoptosis in BeWo cells by activation of the STAT3/caspase-3/PARP signaling pathway. In the presence of forskolin, which triggers trophoblast fusion, heme inhibits BeWo cell fusion through activation of STAT3. Understanding the effects of free plasma heme in pregnant women either due to malaria, sickle cell disease or other hemolytic diseases, will enable identification of high-risk women and may lead to discovery of new drug targets against associated adverse pregnancy outcome. PMID:27796349

  6. Surface plasmon resonance response of Au-WO3- x composite films

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Yang, Dongfang; Lin, Chii-Wann

    2009-11-01

    Surface plasmon resonance of metal-dielectric composite thin films formed by noble metal nanoparticles embedded in a dielectric matrix offers a high degree of flexibility and enables many applications such as surface enhanced spectroscopes, and biological and chemical sensing. In this article, Au-WO3- x composite films of various Au contents and thicknesses were prepared by the pulsed laser deposition technique, and their SPR responses were measured in the Kreschmann geometry, using a polarized light beam at 640 nm wavelength. Theoretical calculation of SPR responses based on the Bruggeman or Maxwell-Garnett model with the MacLeod general characteristic matrix method is in obvious discrepancy with experimental measurements but it is able to predict the trend in term of the dependence of SPR responses on Au content and thickness of the Au-WO3- x films. The SPR responses of the Au-WO3- x films when exposed to NO gas molecules were measured and the preliminary results indicated that gas sensing using the SPR responses of metal-dielectric composite films is feasible.

  7. Pressure-induced phase transitions of β-type pyrochlore CsTaWO6

    DOE PAGESBeta

    Zhang, F. X.; Tracy, C. L.; Shamblin, J.; Palomares, R. I.; Lang, M.; Park, S.; Park, C.; Tkachev, S.; Ewing, R. C.

    2016-09-30

    The β-type pyrochlore CsTaWO6 was studied by synchrotron X-ray diffraction (XRD) and Raman scattering methods up to pressures of 43 GPa using a diamond anvil cell (DAC). With increasing pressure, the cubic pyrochlore in space group of Fd-3¯m with combining macron]m transforms to an orthorhombic structure (space group: Pnma) at 5.9 GPa and then to a monoclinic structure (space group: P21/c) at ~18 GPa. The structural evolution in CsTaWO6 is a continuous process and experimental results suggest that the initial cubic phase has a tetragonal distortion at ambient conditions. Both XRD and Raman measurements indicate that the pressure-induced phase transitionsmore » in CsTaWO6 are reversible. Lastly, these results may provide a structural explanation of previous experimental resistivity measurement results for the isostructural superconductor K(Cs)Os2O6 at high pressure conditions.« less

  8. Carbon materials as additives to WO3 for an enhanced conversion of simulated solar light

    NASA Astrophysics Data System (ADS)

    Carmona, Rocío; Velasco, Leticia; Laurenti, Enzo; Maurino, Valter; Ania, Conchi

    2016-02-01

    We have explored the impact of the incorporation of nanoporous carbons as additives to tungsten oxide on the photocatalytic degradation of two recalcitrant pollutants: rhodamine B and phenol, under simulated solar light. For this purpose, WO3/carbon mixtures were prepared using three carbon materials with different properties (in terms of porosity, structural order and surface chemistry). Despite the low carbon content used (2 wt. %), a significant increase in the photocatalytic performance of the semiconductor was observed for all the catalysts. Moreover, the influence of the carbon additive on the performance of the photocatalysts was found to be very different for the two pollutants. Carbon additives of hydrophobic nature increased the photodegradation yield of phenol compared to bare WO3, likely due to the higher affinity and stronger interactions of phenol molecules towards basic nanoporous carbons. Oppositely, the use of acidic carbon additives led to higher rhodamine B conversions due to increased acidity of the WO3/carbon mixtures and the stronger affinity of the pollutant for acidic catalyst’s surfaces. As a result, the photooxidation of rhodamine B is favored by means of a coupled (photosensitized and photocatalytic) degradation mechanism. All these results highlight the importance of favoring the interactions of the pollutant with the catalyst’s surface through a detailed design of the features of the photocatalyst.

  9. A preliminary survey for Wolbachia and bacteriophage WO infections in Indian mosquitoes (Diptera: Culicidae).

    PubMed

    Ravikumar, H; Ramachandraswamy, N; Sampathkumar, S; Prakash, B M; Huchesh, H C; Uday, J; Puttaraju, H P

    2010-12-01

    Maternally inherited Wolbachia endosymbiotic bacteria are known to induce various kinds of reproductive alterations in their arthropod hosts. It has been proposed that this bacterium can be used as a tool for gene drive system in mosquitoes and also for the reduction of population size and modulating population age structure in order to reduce disease transmission. In the present study, we carried out a survey to determine the prevalence of Wolbachia and its phage WO infection in Indian mosquitoes and classified Wolbachia infection into groups A and B based on extensive polymerase chain reaction assay using Wolbachia specific wsp and orf7 gene primers. Out of 20 fieldcaught mosquito species, eight species have shown to be infected. Singly infected with Wolbachia A was found in two species and B group found in four species, while double infection with AB group were found in two species. All the screened mosquito species with positive Wolbachia infection were also infected with phage WO. The knowledge of variation in Wolbachia and phage WO infection rates and inferred susceptibility to infection among different mosquito genera has fundamental implications for designing and successful application of Wolbachia based vector-borne disease control strategies. PMID:21399578

  10. WO3-x Nanoplates Grown on Carbon Nanofibers for an Efficient Electrocatalytic Hydrogen Evolution Reaction.

    PubMed

    Chen, JiaDong; Yu, DanNi; Liao, WeiSha; Zheng, MengDan; Xiao, LongFei; Zhu, Han; Zhang, Ming; Du, MingLiang; Yao, JuMing

    2016-07-20

    The search for non-noble metal catalysts with high activity for the hydrogen evolution reaction (HER) is crucial for efficient hydrogen production at low cost and on a large scale. Herein, we report a novel WO3-x catalyst synthesized on carbon nanofiber mats (CFMs) by electrospinning and followed by a carbonization process in a tubal furnace. The morphology and composition of the catalysts were tailored via a simple method, and the hybrid catalyst mats were used directly as cathodes to investigate their HER performance. Notably, the as-prepared catalysts exhibit substantially enhanced activity for the HER, demonstrating a small overpotential, a high exchange current density, and a large cathodic current density. The remarkable electrocatalytic performances result from the poor crystallinity of WO3-x, the high electrical conductivity of WO3-x, and the use of electrospun CNFs. The present work outlines a straightforward approach for the synthesis of transition metal oxide (TMO)-based carbon nanofiber mats with promising applications for the HER. PMID:27356101

  11. BiVO(4)/CuWO(4) heterojunction photoanodes for efficient solar driven water oxidation.

    PubMed

    Pilli, Satyananda Kishore; Deutsch, Todd G; Furtak, Thomas E; Brown, Logan D; Turner, John A; Herring, Andrew M

    2013-03-01

    BiVO(4)/CuWO(4) heterojunction electrodes were prepared using spray deposition of a highly porous bismuth vanadate film onto the surface of an electrodeposited three dimensional network connected copper tungstate. Bilayer BiVO(4)/CuWO(4)/fluorine doped tin oxide glass (FTO) electrodes demonstrated higher photocurrent magnitudes than either with BiVO(4)/FTO or CuWO(4)/FTO electrodes in 1.0 M Na(2)SO(4) electrolyte buffered at pH 7. The photocurrent is enhanced by the formation of the heterojunction that aids charge carrier collection brought about by the band edge offsets. When the pH 7 buffered electrolytes contained 1.0 M bicarbonate is employed instead of 1.0 M sulfate, the charge transfer resistance was decreased. This led to nearly 1.8 times the photocurrent density at 1.0 V vs. Ag/AgCl. The photocurrent was stable over 24 hours in bicarbonate electrolyte. PMID:23348367

  12. A preliminary survey for Wolbachia and bacteriophage WO infections in Indian mosquitoes (Diptera: Culicidae).

    PubMed

    Ravikumar, H; Ramachandraswamy, N; Sampathkumar, S; Prakash, B M; Huchesh, H C; Uday, J; Puttaraju, H P

    2010-12-01

    Maternally inherited Wolbachia endosymbiotic bacteria are known to induce various kinds of reproductive alterations in their arthropod hosts. It has been proposed that this bacterium can be used as a tool for gene drive system in mosquitoes and also for the reduction of population size and modulating population age structure in order to reduce disease transmission. In the present study, we carried out a survey to determine the prevalence of Wolbachia and its phage WO infection in Indian mosquitoes and classified Wolbachia infection into groups A and B based on extensive polymerase chain reaction assay using Wolbachia specific wsp and orf7 gene primers. Out of 20 fieldcaught mosquito species, eight species have shown to be infected. Singly infected with Wolbachia A was found in two species and B group found in four species, while double infection with AB group were found in two species. All the screened mosquito species with positive Wolbachia infection were also infected with phage WO. The knowledge of variation in Wolbachia and phage WO infection rates and inferred susceptibility to infection among different mosquito genera has fundamental implications for designing and successful application of Wolbachia based vector-borne disease control strategies.

  13. Radiopurity of CaWO4 crystals for direct dark matter search with CRESST and EURECA

    NASA Astrophysics Data System (ADS)

    Münster, A.; Sivers, M. v.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; Feilitzsch, F. v.; Gorla, P.; Gütlein, A.; Hauff, D.; Jochum, J.; Kraus, H.; Lanfranchi, J.-C.; Laubenstein, M.; Loebell, J.; Ortigoza, Y.; Petricca, F.; Potzel, W.; Pröbst, F.; Puimedon, J.; Reindl, F.; Roth, S.; Rottler, K.; Sailer, C.; Schäffner, K.; Schieck, J.; Scholl, S.; Schönert, S.; Seidel, W.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.; Zöller, A.

    2014-05-01

    The direct dark matter search experiment CRESST uses scintillating CaWO4 single crystals as targets for possible WIMP scatterings. An intrinsic radioactive contamination of the crystals as low as possible is crucial for the sensitivity of the detectors. In the past CaWO4 crystals operated in CRESST were produced by institutes in Russia and the Ukraine. Since 2011 CaWO4 crystals have also been grown at the crystal laboratory of the Technische Universität München (TUM) to better meet the requirements of CRESST and of the future tonne-scale multi-material experiment EURECA. The radiopurity of the raw materials and of first TUM-grown crystals was measured by ultra-low background γ-spectrometry. Two TUM-grown crystals were also operated as low-temperature detectors at a test setup in the Gran Sasso underground laboratory. These measurements were used to determine the crystals' intrinsic α-activities which were compared to those of crystals produced at other institutes. The total α-activities of TUM-grown crystals as low as 1.23±0.06 mBq/kg were found to be significantly smaller than the activities of crystals grown at other institutes typically ranging between ~ 15 mBq/kg and ~ 35 mBq/kg.

  14. WO3/Pt nanoparticles promote light-induced lipid peroxidation and lysosomal instability within tumor cells

    NASA Astrophysics Data System (ADS)

    Clark, Andrea J.; Petty, Howard R.

    2016-02-01

    Although metal-metal oxide nanoparticles have attracted considerable interest as catalysts, they have attracted little interest in nanomedicine. This is likely due to the fact that metal oxide semiconductors generally require biologically harmful ultraviolet excitation. In contrast, this study focuses upon WO3/Pt nanoparticles, which can be excited by visible light. To optimize the nanoparticles’ catalytic performance, platinization was performed at alkaline pH. These nanoparticles destroyed organic dyes, consumed dissolved oxygen and produced hydroxyl radicals. 4T1 breast cancer cells internalized WO3/Pt nanoparticles within the membrane-bound endo-lysosomal compartment as shown by electron and fluorescence microscopy. During visible light exposure, but not in darkness, WO3/Pt nanoparticles manufacture reactive oxygen species, promote lipid peroxidation, and trigger lysosomal membrane disruption. As cells of the immune system degrade organic molecules, produce reactive oxygen species, and activate the lipid peroxidation pathway within target cells, these nanoparticles mimic the chemical attributes of immune effector cells. These biomimetic nanoparticles should become useful in managing certain cancers, especially ocular cancer.

  15. Spectroscopy of tetragonal Eu:NaGd(WO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Loiko, P. A.; Vilejshikova, E. V.; Mateos, X.; Serres, J. M.; Dashkevich, V. I.; Orlovich, V. A.; Yasukevich, A. S.; Kuleshov, N. V.; Yumashev, K. V.; Grigoriev, S. V.; Vatnik, S. M.; Bagaev, S. N.; Pavlyuk, A. A.

    2016-07-01

    We report on growth and detailed spectroscopic study of Eu3+-doped tetragonal sodium gadolinium double tungstate, Eu:NaGd(WO4)2, a new promising crystal for deep-red lasers. Large-volume crystal doped with 4.9 at.% Eu is grown by Czochralski method along the [001] crystallographic direction. Absorption of Eu3+ ions is studied at room temperature (RT) and at 6 K. For the absorption band related to the 7F1 → 5D1 transition suitable for pumping of Eu:NaGd(WO4)2, the maximum cross-section is σabs = 1.2 × 10-21 cm2 at 535.5 nm with the full width at half maximum (FWHM) of 3.1 nm (at RT, for E || a polarization). For the 5D0 → 7F4 transition, the maximum stimulated-emission cross-section is σSE = 1.6 × 10-21 cm2 at 698.3 nm (RT, E || c polarization). Lifetime of the 5D0 state is 490 ± 10 μs (at RT). Under UV excitation, Eu:NaGd(WO4)2 provides intense red emission with CIE coordinates (x = 0.671, y = 0.329).

  16. Effect of recrystallisation on the radioactive contamination of CaWO 4 crystal scintillators

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Bailiff, I. K.; Kobychev, V. V.; Kraus, H.; Laubenstein, M.; Loaiza, P.; Mikhailik, V. B.; Nagorny, S. S.; Nikolaiko, A. S.; Nisi, S.; Solsky, I. M.; Warot, G.

    2011-03-01

    Minimising intrinsic radioactivity of crystal scintillators is of particular importance for experiments searching for rare events. We studied the impact of the crystal production process (recrystallisation) on the level of radioactive contamination of CaWO 4 crystal scintillators. Several samples of single crystal scintillators were produced using the recrystallisation procedure. It is shown that this has a significant effect on the radioactive contamination of the crystals. Depending on the stage of recrystallisation the activity due to 210Po (product of 210Pb decay) varies in the range 0.03-1.32 Bq kg -1 while the activity of 238U varies from 0.04 to 0.33 Bq kg -1. We found that uranium is rejected by the crystal with a segregation coefficient ≈0.3. The improvement in radiopurity of CaWO 4 by one order of magnitude due to recrystallisation has been demonstrated. The additional benefit of this process is the improvement in the energy resolution. A programme to develop radiopure CaWO 4 crystal scintillators is discussed briefly.

  17. Spectroscopic and laser characterization of Yb,Tm:KLu(WO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Loiko, P. A.; Serres, J. M.; Mateos, X.; Demesh, M. P.; Yasukevich, A. S.; Yumashev, K. V.; Petrov, V.; Griebner, U.; Aguiló, M.; Díaz, F.

    2016-01-01

    We report on a comprehensive spectroscopic and laser characterization of monoclinic Yb,Tm:KLu(WO4)2 crystals. Stimulated-emission cross-section spectra corresponding to the 3F4 → 3H6 transition of Tm3+ ions are determined. The radiative lifetime of the 3F4 state of Tm3+ ions is 0.82 ms. The maximum Yb3+ → Tm3+ energy transfer efficiency is 83.9% for 5 at.% Yb - 8 at.% Tm doping. The fractional heat loading for Yb,Tm:KLu(WO4)2 is 0.45 ± 0.05. Using a hemispherical cavity and 5 at.% Yb - 6 at.% Tm doped crystal, a maximum CW power of 227 mW is achieved at 1.983-2.011 μm with a maximum slope efficiency η = 14%. In the microchip laser set-up, the highest slope efficiency is 20% for a 5 at.% Yb- 8 at.% Tm doped crystal with a maximum output power of 201 mW at 1.99-2.007 μm. Operation of Yb,Tm:KLu(WO4)2 as a vibronic laser emitting at 2.081-2.093 μm is also demonstrated.

  18. Doping PbWO 4 with different ions to increase the light yield

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Usuki, Y.; Ishii, M.; Nikl, M.

    2002-06-01

    To search for a possibility to utilize PbWO 4-based scintillators in inexpensive positron emission computed tomography, we have studied the effects of doping PbWO 4 with different ions on the light yield (LY). The LY in PbWO 4, which is undoped except a small concentration of rare-earth 3+ ions to improve the radiation hardness, decay time, mechanical quality, etc., is 25-35 photoelectrons/MeV (pe/MeV) (about 3-4% of LY in BGO) with bialkali photomultiplier for a fixed condition of the crsytal size of 10×10×(20-30) mm 3 and the gate width of 1 μs. For doping with single dopant, the maximum LY obtained was about 49 pe/MeV for Mo 6+. For co-doping with two dopants, the maximum LY of 58 pe/MeV was obtained for Mo 6++Nb 5+. For co-doping with three dopants, we have recently obtained 77 pe/MeV for Mo 6++Cd 2++Sb 5+,3+. The dependence of LY on the gate width indicates creation of medium-speed component in μs range in the samples doped with Mo 6++Cd 2++Sb 5+,3+ or Mo 6++Nb 5+. Their radioluminescence spectra are similar in shape to PWO:Mo 6+.

  19. WO3/Pt nanoparticles promote light-induced lipid peroxidation and lysosomal instability within tumor cells.

    PubMed

    Clark, Andrea J; Petty, Howard R

    2016-02-19

    Although metal-metal oxide nanoparticles have attracted considerable interest as catalysts, they have attracted little interest in nanomedicine. This is likely due to the fact that metal oxide semiconductors generally require biologically harmful ultraviolet excitation. In contrast, this study focuses upon WO3/Pt nanoparticles, which can be excited by visible light. To optimize the nanoparticles' catalytic performance, platinization was performed at alkaline pH. These nanoparticles destroyed organic dyes, consumed dissolved oxygen and produced hydroxyl radicals. 4T1 breast cancer cells internalized WO3/Pt nanoparticles within the membrane-bound endo-lysosomal compartment as shown by electron and fluorescence microscopy. During visible light exposure, but not in darkness, WO3/Pt nanoparticles manufacture reactive oxygen species, promote lipid peroxidation, and trigger lysosomal membrane disruption. As cells of the immune system degrade organic molecules, produce reactive oxygen species, and activate the lipid peroxidation pathway within target cells, these nanoparticles mimic the chemical attributes of immune effector cells. These biomimetic nanoparticles should become useful in managing certain cancers, especially ocular cancer.

  20. Composite WO3/TiO2 nanostructures for high electrochromic activity.

    SciTech Connect

    Reyes, Karla Rosa; Stephens, Zachary Dan.; Robinson, David B.

    2013-05-01

    A composite material consisting of TiO2 nanotubes (NTs) with WO3 electrodeposited homogeneously on its surface has been fabricated, detached from its substrate, and attached to a fluorine-doped tin oxide film on glass for application to electrochromic (EC) reactions. A paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length on the current density and the EC contrast of the material were studied. The EC redox reaction seen in this material is diffusion- limited, having relatively fast reaction rates at the electrode surface. The composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast and longer memory time compared with the pure WO3 and TiO2.

  1. Competitive Oxidation and Reduction of Aliphatic Alcohols over (WO3)3 Clusters

    SciTech Connect

    Kim, Yu K.; Dohnalek, Zdenek; Kay, Bruce D.; Rousseau, Roger J.

    2009-06-04

    The reactions of C1 to C4 aliphatic alcohols over (WO3)3 clusters were studied experimentally and theoretically using temperature-programmed desorption, infrared reflection-absorption spectroscopy and density functional theory. The results reveal that all C1 to C4 aliphatic alcohols readily react with (WO3)3 clusters by heterolytic cleavage of the RO-H bond to give alkoxy (RO ) bound to W(VI) centers and a proton (H+) attached to the terminal oxygen atom of a tungstyl group (W=O). Two protons adsorbed onto the cluster readily react with the doubly-bonded oxygen to from a water molecule that desorbs at 200-300 K and the alkoxy that undergoes decomposition at higher temperatures into the corresponding alkene, aldehyde, and/or ether. Our theory predicts that all three channels proceed over the W(VI) Lewis acid site with energy barriers of 30-40 kcal/mol, where dehydration is favored over the others. We also present further analysis of the yield and reaction temperature as a function of the alkyl substituents and discuss the origin of the reaction selectivity among the three reaction channels.

  2. WO3/Pt nanoparticles promote light-induced lipid peroxidation and lysosomal instability within tumor cells.

    PubMed

    Clark, Andrea J; Petty, Howard R

    2016-02-19

    Although metal-metal oxide nanoparticles have attracted considerable interest as catalysts, they have attracted little interest in nanomedicine. This is likely due to the fact that metal oxide semiconductors generally require biologically harmful ultraviolet excitation. In contrast, this study focuses upon WO3/Pt nanoparticles, which can be excited by visible light. To optimize the nanoparticles' catalytic performance, platinization was performed at alkaline pH. These nanoparticles destroyed organic dyes, consumed dissolved oxygen and produced hydroxyl radicals. 4T1 breast cancer cells internalized WO3/Pt nanoparticles within the membrane-bound endo-lysosomal compartment as shown by electron and fluorescence microscopy. During visible light exposure, but not in darkness, WO3/Pt nanoparticles manufacture reactive oxygen species, promote lipid peroxidation, and trigger lysosomal membrane disruption. As cells of the immune system degrade organic molecules, produce reactive oxygen species, and activate the lipid peroxidation pathway within target cells, these nanoparticles mimic the chemical attributes of immune effector cells. These biomimetic nanoparticles should become useful in managing certain cancers, especially ocular cancer. PMID:26788907

  3. Feeding by emerald ash borer larvae induces systemic changes in black ash foliar chemistry.

    PubMed

    Chen, Yigen; Whitehill, Justin G A; Bonello, Pierluigi; Poland, Therese M

    2011-11-01

    The exotic wood-boring pest, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has been threatening North American ash (Fraxinus spp.) resources, this being recognized since its first detection in Michigan, USA and Ontario, Canada in 2002. Ash trees are killed by larval feeding in the cambial region, which results in disruption of photosynthate and nutrient translocation. In this study, changes in volatile and non-volatile foliar phytochemicals of potted 2-yr-old black ash, Fraxinus nigra Marshall, seedlings were observed in response to EAB larval feeding in the main stem. EAB larval feeding affected levels of six compounds [hexanal, (E)-2-hexenal, (Z)-3-hexenyl acetate, (E)-β-ocimene, methyl salicylate, and (Z,E)-α-farnesene] with patterns of interaction depending upon compounds of interest and time of observation. Increased methyl salicylate emission suggests similarity in responses induced by EAB larval feeding and other phloem-feeding herbivores. Overall, EAB larval feeding suppressed (Z)-3-hexenyl acetate emission, elevated (E)-β-ocimene emission in the first 30days, but emissions leveled off thereafter, and generally increased the emission of (Z,E)-α-farnesene. Levels of carbohydrates and phenolics increased overall, while levels of proteins and most amino acids decreased in response to larval feeding. Twenty-three amino acids were consistently detected in the foliage of black ash. The three most abundant amino acids were aspartic acid, glutamic acid, glutamine, while the four least abundant were α-aminobutyric acid, β-aminoisobutyric acid, methionine, and sarcosine. Most (16) foliar free amino acids and 6 of the 9 detected essential amino acids decreased with EAB larval feeding. The ecological consequences of these dynamic phytochemical changes on herbivores harbored by ash trees and potential natural enemies of these herbivores are discussed.

  4. Compressive strength of cement stabilized fly ash-soil mixtures

    SciTech Connect

    Kaniraj, S.R.; Havanagi, V.G.

    1999-05-01

    Rajghat fly ash from Delhi, India, and Baumineral fly ash near Bochum, Germany, were mixed with the locally available soils -- silt and Yamuna sand with Rajghat fly ash and Rhine sand with Baumineral fly ash -- in different proportions. Cement, varying from 3--9%, was added to stabilize the fly ash-soil mixtures. Cylindrical samples were prepared at optimum moisture content and maximum dry density and were cured for different duration. Unconfined compression tests were conducted on these samples. Correlations for unconfined compressive strength and secant modulus as functions of curing time, fly ash content, and cement content have been established. The data were analyzed with other correlations recommended in literature and comparisons between the correlations have been made. Correlations for water content as functions of curing time and cement content have also been established.

  5. Effect of direct current density on microstructure of tungsten coating electroplated from Na2WO4-WO3-NaPO3 system

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Zhang, Yingchun; Sun, Ningbo; Liu, Zhi'ang

    2014-10-01

    Pure tungsten coating with body-centered cubic (bbc) structure was successfully electrodeposited from Na2WO4-WO3-NaPO3 molten salt at 1153 K in atmosphere. The coatings comprised an inner layer of tooth-like grains and an outer layer of columnar grains with a thin diffusion layer of tungsten in the Cu substrate. The effects of current density and electrodeposition duration on the morphology and microstructure of the coatings were investigated in this paper. With increasing of current density from 50 to 80 mA cm-2, the grain size of the tungsten coating increased from 7.01 μm to 12.44 μm. With the increase of the current density, the thickness of the coating changed from 25.92 μm to 34.40 μm, and then dropped to 29.72 μm. The preferred orientation of the coatings changed from (2 2 0) to (2 1 1). With the increasing of duration, the grain size and thickness of tungsten coatings increased while the (2 1 1) favored orientation dot not changed. Because of the low current efficiency at long duration of direct current electrodeposition, it should not be suitable for the electroplating of thick tungsten coating.

  6. Numerical simulation and experimental study of PbWO4/EPDM and Bi2WO6/EPDM for the shielding of γ-rays

    NASA Astrophysics Data System (ADS)

    Song, Chi; Zheng, Jian; Zhang, Quan-Ping; Li, Yin-Tao; Li, Ying-Jun; Zhou, Yuan-Lin

    2016-08-01

    The MCNP5 code was employed to simulate the γ-ray shielding capacity of tungstate composites. The experimental results were applied to verify the applicability of the Monte Carlo program. PbWO4 and Bi2WO6 were prepared and added into ethylene propylene diene monomer (EPDM) to obtain the composites, which were tested in the γ-ray shielding. Both the theoretical simulation and experiments were carefully chosen and well designed. The results of the two methods were found to be highly consistent. In addition, the conditions during the numerical simulation were optimized and double-layer γ-ray shielding systems were studied. It was found that the γ-ray shielding performance can be influenced not only by the material thickness ratio but also by the arrangement of the composites. Supported by Research Funds of Southwest University of Science and Technology (15zx7159) and Open Fund of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Sichuan Province (13zxfk07)

  7. Analyses of ashes from the Tidd PFBC advanced particulate filter

    SciTech Connect

    Snyder, T.R.; Pontius, D.H.

    1995-08-01

    Early observations of the Advanced Particulate Filter (APF) at the Tidd PFBC Demonstration Plant led to the conclusion that tenacious ash deposits formed in the filter vessel and induced stresses that resulted in bent or broken ceramic candle filter elements. The proximity of these bent and broken candle filter elements to large, strong ash deposits emphasized the need to prevent or control the growth of these deposits, facilitate their on-line removal, and/or to develop filter design criteria to minimize their effects on individual filter elements. The chemical characteristics of the ashes collected in the Tidd APF combined with the environment within the filter vessel tend to cause ash deposits formed in the filter vessel to consolidate and strengthen. One theory that may explain the growth and strengthening of these deposits is based on the formation of eutectics such as various calcium aluminosilicate compounds. These eutectics form when primary coal ash particles come into physical contact with sorbent-derived ash particles which contain relatively large amounts of magnesium and/or calcium. Aluminosilicate compounds in the coal ash particles react with alkali metals in the sorbent ash particles to form eutectics that melt at relatively low temperatures. The surface tension of the near-liquid layer on the particles pulls adjacent ash particles closer together, thereby eventually consolidating the structure of the entire ash agglomerate. The optimum solution to the problems caused by the ash aggregates that have been consolidated and strengthened by pervasive eutectic formation is the removal of these aggregates from the APF before the eutectics have had enough time to develop. The approach that proved most successful in eliminating the deposits was the total bypassing of the cyclone upstream of the APF. This increased the size distribution of the particles forming the various ash deposits, thereby decreasing their inherent cohesivity.

  8. Recovery of aluminum and other metal values from fly ash

    DOEpatents

    McDowell, William J.; Seeley, Forest G.

    1981-01-01

    The invention described herein relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

  9. Recovery of aluminum and other metal values from fly ash

    DOEpatents

    McDowell, W.J.; Seeley, F.G.

    1979-11-01

    The invention relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

  10. Slagging and fluidity behavior of coal ash under gasifier environment

    SciTech Connect

    Kim, H.T.; Bae, H.J.; Lee, S.H.; Park, J.S.; Yun, Y.S.; Chung, S.W.

    1997-12-31

    The objective of this study is to predict the slagging and fluidity behavior of coal ashes from the physical/chemical properties of parent coals to determine the optimum operating parameter of a slagging-type coal gasifier. Three types of coal samples, such as Alaska Usibelli, China Datong and Posco (blended coal), are analyzed for their ash composition and ash fusion temperature. To investigate the effect of flux addition on ash slagging behavior, optimum quantity of CaO addition is evaluated with considering negative effect of CaO addition on gasification reaction. The effect of blending of Posco coal with Alaska and Datong coal on ash slagging is also investigated to expand the variety and performance of coal types in slagging-type entrained-bed gasifier. The results of the experiment shows that the optimum CaO fluxing quantity is 10%, 20% on Alaska and Dating coal, respectively. However, optimum blending ratio for ash slagging is not found when mixing Posco coal with Alaska or Datong coals. Melting and slagging characteristics of coal ash samples with changing temperature are examined in detail by DTA. ASTM ash melting temperatures as well as critical viscosity temperature are compared with TGA and DTA profiles. DTA experiments illustrate that coal ash starts to melt before the IDT (initial deformation temperature) and that theoretical T{sub CV} is well correlated with DTA profile. Experiment of ash fluidity are also carried on with the Alaska and Datong coal ashes using a high temperature viscometer. The experimental viscosity data is compared with the calculated viscosity and results show good correlation. As a result, viscosity of coal ash could be calculated with the Watt and Fereday equation in the high temperature range. The experimental results from this investigation will be used as reference data for determining optimum operating condition of 3t/d bench scale unit gasifier which is located in Ajou University, Suwon, Korea.

  11. Improved prediction and tracking of volcanic ash clouds

    USGS Publications Warehouse

    Webley, P.; Mastin, L.

    2009-01-01

    During the past 30??years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality. ?? 2008 Elsevier B.V.

  12. Market opportunities for fly ash fillers in North America

    SciTech Connect

    Eckert, C.; Harris, T.; Gledhill, J. )

    1990-11-01

    Direct Acid Leaching (DAL) processed fly ash is derived from treating raw and beneficiated coal fly ash with hydrochloric acid. The DAL process allows for the production of fly ash with greater chemical purity and consistency than raw fly ash alone. In addition, DAL fly ash is similar to various minerals used in a wide range of applications that require filler minerals. This project investigates the feasibility of using three grades of DAL fly ash ranging from 10 microns to 30 microns in diameter as an alternative filler material to mineral fillers. Six major applications in North America, requiring large volumes of filler minerals were investigated by region including: (1) asphalt roofing shingles (2) carpet backing (3) joint compound and wallboard (4) industrial coatings (5) plastics (6) vinyl flooring. It is determined that calcium carbonate was the primary mineral filler DAL fly ash would be competing with in the applications investigated. Calcium carbonate is used in all applications investigated. The application which demonstrated the greatest potential for using DAL fly ash is asphalt shingles. Asphalt shingles were the largest calcium carbonate consuming application identified, consuming 4.8 million tons in 1988, and is the least sensitive to the dark color of the DAL fly ash. Although the DAL fly ash typically has a smaller particle size, in comparison to calcium carbonate, the asphalt shingle manufacturers felt it would be a good substitute. Other promising applications for DAL fly ash were industrial coatings and plastics where the calcium carbonate particle size requirements of 3 to 6 microns very closely matches the particle size of the DAL fly ash considered in this project. 17 figs., 36 tabs.

  13. Strength enhancement of concrete containing MSW incinerator ash

    SciTech Connect

    Cobb, J.T. Jr.; Lewis, J.T. II

    1995-12-31

    In previous work pretreatment of fresh municipal solid waste incinerator ash with an alkalinity reduction agent was shown to markedly increase the compressive strength of portland cement concrete using the ash as fine aggregate. Recent studies have shown that aged ash does not demonstrate the same enhancement. This presentation will review the previous study, give the results of the current one and discuss the implications.

  14. Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: Application in photocatalysis and photobiology.

    PubMed

    Mohammadi, Sanaz; Sohrabi, Maryam; Golikand, Ahmad Nozad; Fakhri, Ali

    2016-08-01

    In this study, pure, Zn, Cu, Zn,Cu co-doped WO3 nanoparticles samples were prepared by precipitation and co-precipitation methods. These nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDX), Dynamic light scattering (DLS), UV-visible and photoluminescence (PL) spectroscopy. The synthesized pure, Zn, Cu, Zn,Cu co-doped WO3 nanoparticles have smart optical properties and average sizes with 3.2, 3.12, 3.08 and 2.97eV of band-gap, 18.1, 23.2, 25.7 and 30.2nm, respectively. Photocatalytic activity of four nanoparticles was studying towards degradation of gentamicin antibiotic under ultraviolet and visible light irradiation. The result showed that Zn,Cu co-doped WO3 possessed high photocatalytic activity. The photocatalytic activity of WO3 nanoparticles could be remarkably increased by doping the Zn and Cu impurity. This can be attributed to the fact that the red shift of absorption edge and the trapping effect of the mono and co-doped WO3 nanoparticles. The research result presents a general and effective way to prepare different photocatalysts with enhanced visible and UV light-driven photocatalytic performance. Antibacterial activity of four different WO3 nanoparticles against Escherichia coli bacterium has been assessed by the agar disc method under light irradiation and dark medium. It is concluded from the present findings that WO3 nanoparticles can be used as an efficient antibacterial agent. PMID:27262854

  15. Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: Application in photocatalysis and photobiology.

    PubMed

    Mohammadi, Sanaz; Sohrabi, Maryam; Golikand, Ahmad Nozad; Fakhri, Ali

    2016-08-01

    In this study, pure, Zn, Cu, Zn,Cu co-doped WO3 nanoparticles samples were prepared by precipitation and co-precipitation methods. These nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDX), Dynamic light scattering (DLS), UV-visible and photoluminescence (PL) spectroscopy. The synthesized pure, Zn, Cu, Zn,Cu co-doped WO3 nanoparticles have smart optical properties and average sizes with 3.2, 3.12, 3.08 and 2.97eV of band-gap, 18.1, 23.2, 25.7 and 30.2nm, respectively. Photocatalytic activity of four nanoparticles was studying towards degradation of gentamicin antibiotic under ultraviolet and visible light irradiation. The result showed that Zn,Cu co-doped WO3 possessed high photocatalytic activity. The photocatalytic activity of WO3 nanoparticles could be remarkably increased by doping the Zn and Cu impurity. This can be attributed to the fact that the red shift of absorption edge and the trapping effect of the mono and co-doped WO3 nanoparticles. The research result presents a general and effective way to prepare different photocatalysts with enhanced visible and UV light-driven photocatalytic performance. Antibacterial activity of four different WO3 nanoparticles against Escherichia coli bacterium has been assessed by the agar disc method under light irradiation and dark medium. It is concluded from the present findings that WO3 nanoparticles can be used as an efficient antibacterial agent.

  16. Evaluate humidity sensing properties of novel TiO{sub 2}–WO{sub 3} composite material

    SciTech Connect

    Lin, Wang-De; Lai, De-Sheng; Chen, Min-Hung; Wu, Ren-Jang; Chen, Fu-Chou

    2013-10-15

    Graphical abstract: TiO{sub 2}–WO{sub 3} (1:1) showed better humidity sensing properties than others within the range of 12–90% relative humidity (RH), the response and recovery time were about 20 s and 160 s, respectively. Compared to the previous studies, the prepared sensor exhibits higher sensitivity (S = 451) and the low hysteresis value was around 0.13% at 32% RH. - Highlights: • Novel TiO{sub 2}–WO{sub 3} composite material was prepared for humidity sensor. • The sensor exhibits higher sensitivity (S = 451). • Low hysteresis value was around 0.13% at 32% RH. - Abstract: A novel TiO{sub 2}–WO{sub 3} composite material was prepared using a different proportion of TiO{sub 2} and WO{sub 3} to that investigated in previous studies. The obtained mesoporous material was characterized using X-ray diffraction, Fourier transform infrared spectrometry, transmission electron microscopy, energy dispersive X-ray spectroscopy, and N{sub 2} adsorption-desorption techniques. The humidity-sensing properties were measured using an inductance, capacitance and resistance analyzer. The results demonstrated that the TiO{sub 2}–WO{sub 3} sample with a ratio of 1:1 showed better humidity sensing properties. Compared to previous studies, the prepared sensor exhibited higher sensitivity (S = 451) and the lower hysteresis value was around 0.13% at 32% RH. Complex impedance analysis indicated that the enhanced humidity sensitivity was probably due to spherical Brunauer–Emmett–Teller surface area and the hetero-junction between TiO{sub 2}–WO{sub 3} thin films, while the impedance varied about three orders of magnitude. Our results demonstrated the potential application of TiO{sub 2}–WO{sub 3} composite for fabricating high performance humidity sensors.

  17. Enhancement of photocatalytic properties of Bi{sub 2}WO{sub 6} nanoparticles by Pt deposition

    SciTech Connect

    Mohamed, R.M.; Aazam, E.S.

    2013-09-01

    Graphical abstract: - Highlights: • Pt/Bi{sub 2}WO{sub 6} was used for photocatalytic degradation of methyl orange dye. • Photocatalytic degradation was dependent on wt% of Pt reaction time, and weight of catalyst. • Kinetic study revealed that the photocatalytic degradation of methyl orange dye followed the first order. • Catalyst re-use revealed the present photocatalyst remain effective and active after five cycles. - Abstract: Bi{sub 2}WO{sub 6} nanoparticles were prepared using a hydrothermal method, and Pt was immobilized on the surface of Bi{sub 2}WO{sub 6} via a photo-assisted deposition (PAD) method. The samples produced were characterized using X-ray diffraction, ultraviolet and visible spectroscopy, photoluminescence emission spectra, transmission electron microscopy, extended X-ray absorption fine structure, and surface area measurements. Furthermore, the catalytic performance of the Bi{sub 2}WO{sub 6} and Pt/Bi{sub 2}WO{sub 6} samples was examined in the degradation of methyl orange dye (MO) under visible light. The extended X-ray absorption fine structure (EXAFS) results, which showed the presence of peaks assigned to the Pt–Pt at approximately 2.50 Å, indicate the formation of nanoscale Pt features. The UV–vis spectral analysis detected a red shift after loading the Pt into the Bi{sub 2}WO{sub 6}. The maximum degradation efficiency achieved was 100% with 0.3 Pt/Bi{sub 2}WO{sub 6} as the photocatalyst after a 30-min reaction time. The catalyst could be reused without any loss in activity for the first five cycles.

  18. Ash content of bones in the pigtail monkey, Macaca nemestrina.

    NASA Technical Reports Server (NTRS)

    Vose, G. P.; Roach, T. L.

    1972-01-01

    Ash analyses of skeletons of four adult primates, Macaca nemestrina, revealed some similarities and some marked contrasts when compared with published data on human skeletal ash. The skull in both Macaca nemestrina and man has the highest ash content of all bones in the skeleton. While the bones of the arms of humans have an ash content nearly identical to that of the legs (0.3% difference), in Macaca nemestrina the humeri and radii contain 5.4% more ash than the femora and tibiae. Similarly in Macaca nemestrina the bones of the hands contain 3.5% more ash than the bones of the feet, while in humans the same bones agree within 0.3% implying that adaptive use function is a factor in bone ash concentration. The ribs of Macaca nemestrina showed an unexpectedly high ash content in comparison with those of humans. In contrast with the relatively constant ash content throughout the vertebrae in humans, a conspicuous decrease axially was noted in Macaca nemestrina.

  19. Geotechnical properties of ash deposits near Hilo, Hawaii

    USGS Publications Warehouse

    Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.

    1982-01-01

    Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.

  20. Vegetation establishment on soil-amended weathered fly ash

    SciTech Connect

    Semalulu, O.; Barnhisel, R.I.; Witt, S.

    1998-12-31

    A field study was conducted with the following objectives in mind: (1) to study the effect of soil addition to weathered fly ash on the establishment and survival of different grasses and legumes, (2) to identify suitable grasses and/or legume species for vegetation of fly ash, (3) to study the fertilizer N and P requirements for successful vegetation establishment on fly ash and ash-soil mixtures, (4) to examine the nutrient composition of the plant species tested, and (5) to study the plant availability of P from fly ash and ash-soil mixtures. Three rooting media were used: weathered fly ash, and 33% or 50% soil blended with the ash. Four experiments were established on each of these media to evaluate warm season grasses in pure stands, warm season grasses inter-seeded with legumes, cool season grasses, and cool season grasses inter-seeded with legumes. Soil used in this study was more acidic than the fly ash. Only the results from characterization of the rooting media, ground cover, and yield will be presented here.

  1. Retention of elemental mercury in fly ashes in different atmospheres

    SciTech Connect

    M.A. Lopez-Anton; M. Diaz-Somoano; M.R. Martinez-Tarazona

    2007-01-15

    Mercury is an extremely volatile element, which is emitted from coal combustion to the environment mostly in the vapor phase. To avoid the environmental problems that the toxic species of this element may cause, control technologies for the removal of mercury are necessary. Recent research has shown that certain fly ash materials have an affinity for mercury. Moreover, it has been observed that fly ashes may catalyze the oxidation of elemental mercury and facilitate its capture. However, the exact nature of Hg-fly ash interactions is still unknown, and mercury oxidation through fly ash needs to be investigated more thoroughly. In this work, the influence of a gas atmosphere on the retention of elemental mercury on fly ashes of different characteristics was evaluated. The retention capacity was estimated comparatively in inert and two gas atmospheres containing species present in coal gasification and coal combustion. Fly ashes produced in two pulverized coal combustion (PCC) plants, produced from coals of different rank (CTA and CTSR), and a fly ash (CTP) produced in a fluidized bed combustion (FBC) plant were used as raw materials. The mercury retention capacity of these fly ashes was compared to the retention obtained in different activated carbons. Although the capture of mercury is very similar in the gasification atmosphere and N{sub 2}, it is much more efficient in a coal combustion retention, being greater in fly ashes from PCC than those from FBC plants. 22 refs., 6 figs., 3 tabs.

  2. Use of MWC combined ash for highway embankment application

    SciTech Connect

    Shieh, C.S.; Kalajian, E.H.; Cosentino, P.; Egan, J.

    1998-07-01

    A field study was conducted to demonstrate the suitability of using municipal waste combustor (MWC) combined ash in high way embankment applications. The ash embankment was constructed using conventional techniques and was evaluated for the geotechnical properties and environmental acceptability. Field evaluation of the geotechnical performance of the embankment included specifically California Bearing Ratios (CBR), infiltration, pressuremeter, and cone penetrometer. Environmental analysis determined the ash embankment's leachate and runoff concentrations of As, Ba, Cd, Cr, Pb, Hg, Ag, and Se over time for comparison with drinking water and toxicity standards. Findings of the study indicated that combined ash could be sued as highway fill using conventional construction equipment and methods. The percent of the eight elemental metals in the ash lost to leachate or runoff after one year of exposure to natural rainfall was determined to be less than 0.01% and 0.005%, respectively, of their original weight in the ash. This indicates that greater then 99.99% of each of the eight elemental metals were retained in the ash. Concentrations of the eight EPA listed elemental metals in runoff and leachate from the ash embankment were below the EPA TCLP criteria and drinking water criteria. Results of the one-year monitoring study indicated that, based on the elemental metals examined, WMC combined ash is considered to be environmentally acceptable for highway fill materials applications.

  3. Iron-induced hydroxyl radical generation from basaltic volcanic ash

    NASA Astrophysics Data System (ADS)

    Horwell, C. J.; Fenoglio, I.; Fubini, B.

    2007-09-01

    Iron-induced hydroxyl radical generation from the surface of volcanic ash particles is a possible mechanism of respiratory toxicity in addition to crystalline silica induced pathogenicity. Here we show that volcanic ash generates hydroxyl radicals, with greater reactivity in iron-rich, silica-poor samples, such as basaltic ash. Basaltic particles expose at the surface high levels of poorly-coordinated iron ions in both Fe(II) and Fe(III) oxidation states which are likely to be the cause of such reactivity. Hitherto, basaltic ash has been disregarded as a hazard due to the lack of crystalline silica particulate but future hazard assessment should consider its toxic potential.

  4. Sulfate resistance of high calcium fly ash concrete

    NASA Astrophysics Data System (ADS)

    Dhole, Rajaram

    Sulfate attack is one of the mechanisms which can cause deterioration of concrete. In general, Class C fly ash mixtures are reported to provide poor sulfate resistance. Fly ashes, mainly those belonging to the Class C, were tested as per the ASTM C 1012 procedure to evaluate chemical sulfate resistance. Overall the Class C fly ashes showed poor resistance in the sulfate environment. Different strategies were used in this research work to improve the sulfate resistance of Class C fly ash mixes. The study revealed that some of the strategies such as use of low W/CM (water to cementing materials by mass ratio), silica fume or ultra fine fly ash, high volumes of fly ash and, ternary or quaternary mixes with suitable supplementary cementing materials, can successfully improve the sulfate resistance of the Class C fly ash mixes. Combined sulfate attack, involving physical and chemical action, was studied using sodium sulfate and calcium sulfate solutions. The specimens were subjected to wetting-drying cycles and temperature changes. These conditions were found to accelerate the rate of degradation of concrete placed in a sodium sulfate environment. W/CM was found to be the main governing factor in providing sulfate resistance to mixes. Calcium sulfate did not reveal damage as a result of mainly physical action. Characterization of the selected fly ashes was undertaken by using SEM, XRD and the Rietveld analysis techniques, to determine the relation between the composition of fly ashes and resistance to sulfate attack. The chemical composition of glass represented on the ternary diagram was the main factor which had a significant influence on the sulfate resistance of fly ash mixtures. Mixes prepared with fly ashes containing significant amounts of vulnerable crystalline phases offered poor sulfate resistance. Comparatively, fly ash mixes containing inert crystalline phases such as quartz, mullite and hematite offered good sulfate resistance. The analysis of hydrated lime

  5. Environmental hazard of oil shale combustion fly ash.

    PubMed

    Blinova, Irina; Bityukova, Liidia; Kasemets, Kaja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Bondarenko, Olesja; Kanarbik, Liina; Sihtmäe, Mariliis; Aruoja, Villem; Schvede, Hedi; Kahru, Anne

    2012-08-30

    The combined chemical and ecotoxicological characterization of oil shale combustion fly ash was performed. Ash was sampled from the most distant point of the ash-separation systems of the Balti and Eesti Thermal Power Plants in North-Eastern Estonia. The fly ash proved potentially hazardous for tested aquatic organisms and high alkalinity of the leachates (pH>10) is apparently the key factor determining its toxicity. The leachates were not genotoxic in the Ames assay. Also, the analysis showed that despite long-term intensive oil-shale combustion accompanied by considerable fly ash emissions has not led to significant soil contamination by hazardous trace elements in North-Eastern Estonia. Comparative study of the fly ash originating from the 'new' circulating fluidized bed (CFB) combustion technology and the 'old' pulverized-fired (PF) one showed that CFB fly ash was less toxic than PF fly ash. Thus, complete transfer to the 'new' technology will reduce (i) atmospheric emission of hazardous trace elements and (ii) fly ash toxicity to aquatic organisms as compared with the 'old' technology. PMID:22717068

  6. Environmental hazard of oil shale combustion fly ash.

    PubMed

    Blinova, Irina; Bityukova, Liidia; Kasemets, Kaja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Bondarenko, Olesja; Kanarbik, Liina; Sihtmäe, Mariliis; Aruoja, Villem; Schvede, Hedi; Kahru, Anne

    2012-08-30

    The combined chemical and ecotoxicological characterization of oil shale combustion fly ash was performed. Ash was sampled from the most distant point of the ash-separation systems of the Balti and Eesti Thermal Power Plants in North-Eastern Estonia. The fly ash proved potentially hazardous for tested aquatic organisms and high alkalinity of the leachates (pH>10) is apparently the key factor determining its toxicity. The leachates were not genotoxic in the Ames assay. Also, the analysis showed that despite long-term intensive oil-shale combustion accompanied by considerable fly ash emissions has not led to significant soil contamination by hazardous trace elements in North-Eastern Estonia. Comparative study of the fly ash originating from the 'new' circulating fluidized bed (CFB) combustion technology and the 'old' pulverized-fired (PF) one showed that CFB fly ash was less toxic than PF fly ash. Thus, complete transfer to the 'new' technology will reduce (i) atmospheric emission of hazardous trace elements and (ii) fly ash toxicity to aquatic organisms as compared with the 'old' technology.

  7. Incinerator Ash Management: Knowledge and information gaps to 1987

    SciTech Connect

    Goldin, A.; Bigelow, C.; Veneman, P.L.M.

    1992-06-01

    The Incinerator Ash Management Project at the University of Massachusetts was established in 1986 to gather written and numerical test data from existing literature and from persons knowledgeable about incinerator ash management. Information was solicited on sampling and testing methods; incinerator ash properties, and incinerator and fuel characteristics that may affect ash properties; the different components of ash management systems; and regulatory concerns. The principal data were collected on total metals, EP toxicity test results, dioxins and furans, and the composition of refuse. Cadmium and lead are apparently the most important elements affecting the ash toxicity. The values for total metals and values from the EP toxicity test are both extremely variable. Unfortunately, information about incinerator conditions at the time of sampling is often missing, which severely limits statistical interpretation of the data. The selection of an appropriate ash-management option depends on factors such as ash composition; availability, location, and nature of landfills; and the availability of alternative use or disposal techniques. Many states and the federal government are currently considering how to regulate incinerator ash management and are at various stages in this process.

  8. Probabilistic detection of volcanic ash using a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Mackie, Shona; Watson, Matthew

    2014-03-01

    Airborne volcanic ash can pose a hazard to aviation, agriculture, and both human and animal health. It is therefore important that ash clouds are monitored both day and night, even when they travel far from their source. Infrared satellite data provide perhaps the only means of doing this, and since the hugely expensive ash crisis that followed the 2010 Eyjafjalljökull eruption, much research has been carried out into techniques for discriminating ash in such data and for deriving key properties. Such techniques are generally specific to data from particular sensors, and most approaches result in a binary classification of pixels into "ash" and "ash free" classes with no indication of the classification certainty for individual pixels. Furthermore, almost all operational methods rely on expert-set thresholds to determine what constitutes "ash" and can therefore be criticized for being subjective and dependent on expertise that may not remain with an institution. Very few existing methods exploit available contemporaneous atmospheric data to inform the detection, despite the sensitivity of most techniques to atmospheric parameters. The Bayesian method proposed here does exploit such data and gives a probabilistic, physically based classification. We provide an example of the method's implementation for a scene containing both land and sea observations, and a large area of desert dust (often misidentified as ash by other methods). The technique has already been successfully applied to other detection problems in remote sensing, and this work shows that it will be a useful and effective tool for ash detection.

  9. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts

    NASA Astrophysics Data System (ADS)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea

    2015-04-01

    Of the five classical factors of soil formation, climate, parent material, topography, time, organisms, and recently recognized human activity, it is the latter factor which discretely includes fire and post-burn impact. However, it is considered that soil undergoing fire just experience a temporary removal of the top organic horizon, thus slightly modified and often labeled as 'temporarily disturbed' soil or soil 'under restoration/rehabilitation'. In fact the suggested seventh factor, post-burned produced ash, can act both dependently and independently of the other soil forming factors (Levin et al., 2013; Certini 2013). They are interdependent in cases where ash influences occur on time scales similar to 'natural' soil formation (Keesstra et ai., 2014) such as changes in vegetation. On the other hand, in post-fire areas a strong dependency is expected between soil-water retention mechanism, climate and topography. Wild-land fires exert many changes on the physical, chemical, mineralogical, biological, and morphological properties of soil that, in turn, affect the soil's hydrology and nutrient flux, modifying its ability to support vegetation and resist erosion. The ash produced by forest fires is a complex mixture composed of organic and inorganic particles characterized by vary physical-chemical and morphological properties. The importance of this study is straightforwardly related to the frequency and large-scales wildfires in Mediterranean region. In fact, wildfires are major environmental and land management concern in the world, where the number and severity of wildfires has increased during the past decades (Bodi, 2013). Certini (2013) assumed that cumulatively all of the vegetated land is burned in about 31 years annually affecting 330-430 Mha (over 3% of the Earth's surface) and wide range of land cover types worldwide including forests, peatlands, shrublands and grasslands. Whereas, the fire is identified as an important factor in soil formation, the

  10. Nutritional attributes of ash (Fraxinus spp.) outer bark and phloem and their relationships to resistance against the emerald ash borer.

    PubMed

    Hill, Amy L; Whitehill, Justin G A; Opiyo, Stephen O; Phelan, P Larry; Bonello, Pierluigi

    2012-12-01

    The emerald ash borer (Agrilus planipennis Fairmaire, EAB) is an alien, invasive wood-boring insect that is responsible for killing millions of ash trees since its discovery in North America in 2002. All North American ash species (Fraxinus spp.) that EAB has encountered have shown various degrees of susceptibility, while Manchurian ash (Fraxinus mandshurica Ruprecht), which shares a co-evolutionary history with this insect, is resistant. Recent studies have looked into constitutive resistance mechanisms in Manchurian ash, concentrating on the secondary phloem, which is the feeding substrate for the insect. In addition to specialized metabolism and defense-related components, primary metabolites and nutritional summaries can also be important to understand the feeding behavior of insect herbivores. Here, we have compared the nutritional characteristics (water content, total protein, free amino acids, total soluble sugars and starch, percent carbon and nitrogen, and macro- and micronutrients) of outer bark and phloem from black, green, white and Manchurian ash to determine their relevance to resistance or susceptibility to EAB. Water content and concentrations of Al, Ba, Cu, Fe, K, Li, tryptophan and an unknown compound were found to separate black and Manchurian ash from green and white ash in a principal component analysis (PCA), confirming their phylogenetic placements into two distinct clades. The traits that distinguished Manchurian ash from black ash in the PCA were water content and concentrations of total soluble sugars, histidine, lysine, methionine, ornithine, proline, sarcosine, tyramine, tyrosol, Al, Fe, K, Na, V and an unknown compound. However, only proline, tyramine and tyrosol were significantly different, and higher, in Manchurian ash than in black ash.

  11. Manifestation of different types of tungsten coordination polyhedra in vibrational spectra of europium-doped LnWO{sub 4}Cl and La{sub 3}WO{sub 6}Cl{sub 3}

    SciTech Connect

    Tsaryuk, V.I.; Venskovskii, N.U.; Zolin, V.F.; Markushev, V.M.; Ngassapa, F.N.B.; Tararov, A.V.; Tupoleva, A.L. |

    1993-11-01

    A correlation between the peculiarities of the vibrational spectra of Eu{sup 3+}-doped central symmetric chlorotungstates GdWO{sub 4}Cl, LaWO{sub 4}Cl, La{sub 3}W{sub 6}Cl{sub 3} and tungsten coordination characteristics is investigated for the cases when the coordination number successively increases from four to six. The high-frequency stretching vibration of the tungstate anion is shown to change its frequency from 994 cm{sup {minus}1} for tetrahedral coordination to 77 cm{sup {minus}1} for a trigonal prism-shaped coordination polyhedron. The effect of the fifth oxygen atom on the vibrations of the tetrahedral anion depends on the strength of its bonding with tungsten; it can manifest itself in lowering the stretching vibration frequencies. Band broadening in the Eu{sup 3+} vibronic spectra and loss in correspondence between the vibronic and Raman spectra in the GdWo{sub 4}Cl, LaWO{sub 4}Cl, La{sub 3}WO{sub 6}Cl{sub 3} sequence indicate a loss in individuality of the molecular anions.

  12. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2003-08-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C

  13. Growth of larval agrilus planipennis (Coleoptera: Buprestidae) and fitness of tetrastichus planipennisi (Hymenoptera: Eulophidae) in blue ash (Fraxinus quadrangulata) and green ash (F. pennsylvanica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerald ash borer (EAB) (Agrilus planipennis) is a primary pest of North American ash (Fraxinus spp.) trees. Blue ash (F. quadrangulata) is more resistant than other North American ash and able to survive EAB infestation. This tree may affect EAB larvae and T. planipennisi. We compared the capacity ...

  14. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste.

    PubMed

    Okada, Takashi; Tomikawa, Hiroki

    2013-03-01

    In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of the ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu. PMID:22981781

  15. Effects of water availability on emerald ash borer larval performance and phloem phenolics of Manchurian and black ash.

    PubMed

    Chakraborty, Sourav; Whitehill, Justin G A; Hill, Amy L; Opiyo, Stephen O; Cipollini, Don; Herms, Daniel A; Bonello, Pierluigi

    2014-04-01

    The invasive emerald ash borer (EAB) beetle is a significant threat to the survival of North American ash. In previous work, we identified putative biochemical and molecular markers of constitutive EAB resistance in Manchurian ash, an Asian species co-evolved with EAB. Here, we employed high-throughput high-performance liquid chromatography with photodiode array detection and mass spectrometry (HPLC-PDA-MS) to characterize the induced response of soluble phloem phenolics to EAB attack in resistant Manchurian and susceptible black ash under conditions of either normal or low water availability, and the effects of water availability on larval performance. Total larval mass per tree was lower in Manchurian than in black ash. Low water increased larval numbers and mean larval mass overall, but more so in Manchurian ash. Low water did not affect levels of phenolics in either host species, but six phenolics decreased in response to EAB. In both ashes, pinoresinol A was induced by EAB, especially in Manchurian ash. Pinoresinol A and pinoresinol B were negatively correlated with each other in both species. The higher accumulation of pinoresinol A in Manchurian ash after attack may help explain the resistance of this species to EAB, but none of the responses measured here could explain increased larval performance in trees subjected to low water availability. PMID:24125060

  16. Effects of water availability on emerald ash borer larval performance and phloem phenolics of Manchurian and black ash.

    PubMed

    Chakraborty, Sourav; Whitehill, Justin G A; Hill, Amy L; Opiyo, Stephen O; Cipollini, Don; Herms, Daniel A; Bonello, Pierluigi

    2014-04-01

    The invasive emerald ash borer (EAB) beetle is a significant threat to the survival of North American ash. In previous work, we identified putative biochemical and molecular markers of constitutive EAB resistance in Manchurian ash, an Asian species co-evolved with EAB. Here, we employed high-throughput high-performance liquid chromatography with photodiode array detection and mass spectrometry (HPLC-PDA-MS) to characterize the induced response of soluble phloem phenolics to EAB attack in resistant Manchurian and susceptible black ash under conditions of either normal or low water availability, and the effects of water availability on larval performance. Total larval mass per tree was lower in Manchurian than in black ash. Low water increased larval numbers and mean larval mass overall, but more so in Manchurian ash. Low water did not affect levels of phenolics in either host species, but six phenolics decreased in response to EAB. In both ashes, pinoresinol A was induced by EAB, especially in Manchurian ash. Pinoresinol A and pinoresinol B were negatively correlated with each other in both species. The higher accumulation of pinoresinol A in Manchurian ash after attack may help explain the resistance of this species to EAB, but none of the responses measured here could explain increased larval performance in trees subjected to low water availability.

  17. Mechanical treatments of fly ashes. Part 3: Studies on strength development of ground fly ashes (GFA)-cement mortars

    SciTech Connect

    Paya, J.; Monzo, J.; Borrachero, M.V.; Peris, E.; Gonzalez-Lopez, E.

    1997-09-01

    Early and medium-term strength developments for mortars containing ground fly ashes (GFA) were studied and compared with the behavior of mortars containing non-mechanically treated fly ash. Linear correlations between mechanical properties and the logarithm of curing time for mortars containing 15--60% fly ash replacing percentages were established. Compressive Strength Gain (SGi) and Pozzolanic Effectiveness Ratio (PER) were calculated, suggesting the increasing of pozzolanic activity with grinding of fly ash. A new mathematical model has been proposed for mechanical properties of mortars containing high replacing percentages and for a wide curing time range. Optimums for mechanical properties were calculated for mortars containing.

  18. Illinois basin coal fly ashes. 2. Equilibria relationships and qualitative modeling of ash-water reactions

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1984-01-01

    Alkaline and acidic Illinois Basin coal fly ash samples were each mixed with deionized water and equilibrated for about 140 days to simulate ash ponding environments. Common to both equilibrated solutions, anhydrite solubility dominated Ca2+ activities, and Al3+ activities were in equilibrium with both matrix mullite and insoluble aluminum hydroxide phases. Aqueous silica activities were controlled by both mullite and matrix silicates. The pH of the extract of the acidic fly ash was 4.1 after 24 h but increased to a pH value of 6.4 as the H2SO4, assumed to be adsorbed to the particle surfaces, was exhausted by the dissolution of matrix iron oxides and aluminosilicates. The activities of aqueous Al3+ and iron, initially at high levels during the early stages of equilibration, decreased to below analytical detection limits as the result of the formation of insoluble Fe and Al hydroxide phases. The pH of the extract of the alkaline fly ash remained above a pH value of 10 during the entire equilibration interval as a result of the hydrolysis of matrix oxides. As with the acidic system, Al3+ activities were controlled by amorphous aluminum hydroxide phases that began to form after about 7 days of equilibration. The proposed mechanisms and their interrelations are discussed in addition to the solubility diagrams used to deduce these relationships. ?? 1984 American Chemical Society.

  19. Synergic Effect of Wheat Straw Ash and Rice-Husk Ash on Strength Properties of Mortar

    NASA Astrophysics Data System (ADS)

    Goyal, Ajay; Kunio, Hattori; Ogata, Hidehiko; Garg, Monika; Anwar, A. M.; Ashraf, M.; Mandula

    Pozzolan materials obtained from various sources; when used as partial replacement for Portland cement in cement based applications play an important role not only towards sustainable development but in reducing the construction costs as well. Present study was conducted to investigate the synergic effect of Rice-Husk Ash (RHA) and Wheat Straw Ash (WSA) on the strength properties of ash substituted mortar. Ash materials were obtained after burning the wastes at 600°C for 5 h at a control rate of 2°C min. Two binary blends of mortar substituting 15% cement with WSA and RHA and three combinations of ternary blend with (10+5)%, (5+10)% and (7.5+7.5)% mix ratios of WSA and RHA, together with a control specimen were subjected to destructive (compressive and flexural strength) as well as non-destructive (ultrasonic pulse velocity) tests till 180 days of curing. Ternary blend with (7.5 + 7.5)% combination of WSA and RHA showed better strength results than control and other blends and proved to be the optimum combination for achieving maximum synergic effect.

  20. Spectral analysis of white ash response to emerald ash borer infestations

    NASA Astrophysics Data System (ADS)

    Calandra, Laura

    The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) is an invasive insect that has killed over 50 million ash trees in the US. The goal of this research was to establish a method to identify ash trees infested with EAB using remote sensing techniques at the leaf-level and tree crown level. First, a field-based study at the leaf-level used the range of spectral bands from the WorldView-2 sensor to determine if there was a significant difference between EAB-infested white ash (Fraxinus americana) and healthy leaves. Binary logistic regression models were developed using individual and combinations of wavelengths; the most successful model included 545 and 950 nm bands. The second half of this research employed imagery to identify healthy and EAB-infested trees, comparing pixel- and object-based methods by applying an unsupervised classification approach and a tree crown delineation algorithm, respectively. The pixel-based models attained the highest overall accuracies.