Science.gov

Sample records for ash sekitanbai wo

  1. Saving green ash

    Treesearch

    J. Romero-Severson; Jennifer L. Koch

    2017-01-01

    The emerald ash borer (EAB, Agrilus planipennis) continues to kill ash trees in North America at an alarmingly fast pace. Although EAB is a threat to all species of ash (Fraxinus) in the United States, green ash (F. pennsylvanica) is among the most susceptible. Among the most commonly planted landscape trees in the United States, green ash is also an important species...

  2. Improved visible light photocatalytic activity of WO3 through CuWO4 for phenol degradation

    NASA Astrophysics Data System (ADS)

    Chen, Haihang; Xiong, Xianqiang; Hao, Linlin; Zhang, Xiao; Xu, Yiming

    2016-12-01

    Development of a visible light photocatalyst is challenging. Herein, we report a significant activity enhancement of WO3 upon addition of CuWO4. Reaction was carried out under visible light for phenol degradation in aqueous suspension in the presence of H2O2. A maximum reaction rate was observed at 1.0 wt% CuWO4, which was 2.1 and 4.3 times those measured with WO3 and CuWO4, respectively. Similar results were also obtained from the photocatalytic formation of OH radicals, and from the electrochemical reduction of O2. A possible mechanism responsible for the improved activity of WO3 is proposed, involving the electron transfer from CuWO4 to WO3, followed by the reduction of H2O2 over WO3.

  3. Improved Charge Separation in WO3/CuWO4 Composite Photoanodes for Photoelectrochemical Water Oxidation

    PubMed Central

    Wang, Danping; Bassi, Prince Saurabh; Qi, Huan; Zhao, Xin; Gurudayal; Wong, Lydia Helena; Xu, Rong; Sritharan, Thirumany; Chen, Zhong

    2016-01-01

    Porous tungsten oxide/copper tungstate (WO3/CuWO4) composite thin films were fabricated via a facile in situ conversion method, with a polymer templating strategy. Copper nitrate (Cu(NO3)2) solution with the copolymer surfactant Pluronic®F-127 (Sigma-Aldrich, St. Louis, MO, USA, generic name, poloxamer 407) was loaded onto WO3 substrates by programmed dip coating, followed by heat treatment in air at 550 °C. The Cu2+ reacted with the WO3 substrate to form the CuWO4 compound. The composite WO3/CuWO4 thin films demonstrated improved photoelectrochemical (PEC) performance over WO3 and CuWO4 single phase photoanodes. The factors of light absorption and charge separation efficiency of the composite and two single phase films were investigated to understand the reasons for the PEC enhancement of WO3/CuWO4 composite thin films. The photocurrent was generated from water splitting as confirmed by hydrogen and oxygen gas evolution, and Faradic efficiency was calculated based on the amount of H2 produced. This work provides a low-cost and controllable method to prepare WO3-metal tungstate composite thin films, and also helps to deepen the understanding of charge transfer in WO3/CuWO4 heterojunction. PMID:28773473

  4. Emerald ash borer infestation of ash stumps

    Treesearch

    Robert A. Haack; Toby R. Petrice

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Buprestidae), was first found in North America in 2002. Eradication efforts are currently underway for this insect in both Canada and the United States. As part of the eradication program, thousands of ash trees are cut and chipped. Ash trees are known to produce stump sprouts, and therefore...

  5. California Dust and Ash

    Atmospheric Science Data Center

    2014-05-15

    article title:  Airborne Dust and Ash over Southern California     ... during late fall and winter swept large amounts of dust and ash across the skies of San Diego and over the Pacific Ocean on November 27, ...

  6. Biomass ash utilization

    SciTech Connect

    Bristol, D.R.; Noel, D.J.; O`Brien, B.; Parker, B.

    1993-12-31

    This paper demonstrates that with careful analysis of ash from multiple biomass and waste wood fired power plants that most of the ash can serve a useful purpose. Some applications require higher levels of consistency than others. Examples of ash spreading for agricultural purposes as a lime supplement for soil enhancement in Maine and North Carolina, as well as a roadbase material in Maine are discussed. Use of ash as a horticultural additive is explored, as well as in composting as a filtering media and as cover material for landfills. The ash utilization is evaluated in a framework of environmental responsibility, regulations, handling and cost. Depending on the chemical and physical properties of the biomass derived fly ash and bottom ash, it can be used in one or more applications. Developing a program that utilizes ash produced in biomass facilities is environmentally and socially sound and can be financially attractive.

  7. Asymmetric Ashes

    NASA Astrophysics Data System (ADS)

    2006-11-01

    , it is. "This has some impact on the use of Type Ia supernovae as standard candles," says Ferdinando Patat. "This kind of supernovae is used to measure the rate of acceleration of the expansion of the Universe, assuming these objects behave in a uniform way. But asymmetries can introduce dispersions in the quantities observed." "Our discovery puts strong constraints on any successful models of thermonuclear supernova explosions," adds Wang. Models have suggested that the clumpiness is caused by a slow-burn process, called 'deflagration', and leaves an irregular trail of ashes. The smoothness of the inner regions of the exploding star implies that at a given stage, the deflagration gives way to a more violent process, a 'detonation', which travels at supersonic speeds - so fast that it erases all the asymmetries in the ashes left behind by the slower burning of the first stage, resulting in a smoother, more homogeneous residue.

  8. Alpha ash transport and ash control

    SciTech Connect

    Miley, G.H.; Hu, S.C.; Varadarajan, V.

    1990-01-01

    This paper discusses: thermal {alpha}-particle transport is a crucial issue in ash buildup. The transport will determine if buildup prevents ignition and if external control is necessary. Due to uncertainties in the transport coefficients, 1-1/2-D sensitivity study of the influence on the fusion power density is done using the BALDUR code. The Baldur simulations with varying diffusion coefficients for ash plasma are performed. The results of ash transport in the presence of sawteeth and varying edge conditions are discussed. Also, the nature of the fishbone oscillation in the presence of two hot species consisting of hot alphas and beam injected ions is discussed. The sawteeth and fishbones can be potential mechanisms for enhanced ash transport; the latter will indirectly influence the ash transport.

  9. Activation of fly ash

    DOEpatents

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  10. Activation of fly ash

    DOEpatents

    Corbin, David R.; Velenyi, Louis J.; Pepera, Marc A.; Dolhyj, Serge R.

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  11. Magnetism of cigarette ashes

    NASA Astrophysics Data System (ADS)

    Jordanova, Neli; Jordanova, Diana; Henry, Bernard; Le Goff, Maxime; Dimov, Dimo; Tsacheva, Tsenka

    2006-06-01

    Mineral composition of cigarette ashes is well studied in the literature, but no reports are available about the magnetic fraction. Our study presents an investigation of the basic magnetic characteristics of ashes from several commercially available cigarette brands and a wood ash. Magnetic susceptibility, which is a concentration-dependent parameter in case of uniform mineralogy, shows that cigarette ashes contain relatively high amount of magnetic iron minerals, similar to that in wood ash from our study and other literature data. Magnetization data suggest that cigarette ashes contain some 0.1 wt% or lower quantity of magnetite, depending on the brand. Analyses of magnetic mineralogy imply that the main magnetic minerals in ashes from higher quality cigarette brands are magnetite and iron carbide cementite, while in ashes from lower quality brands without additives magnetic minerals are pure and substituted with foreign ions magnetite. Magnetic grain-size analysis shows that cigarette ashes contain significant amount of very fine, nano-meter sized magnetic particles, as well as coarser (up to several microns), magnetically stable grains. Thus, the magnetic study of cigarette ashes proved that these plant ashes possess non-negligible magnetic properties. The results could serve for better elucidation of mineralogy of cigarette ashes as a whole, as well as for future investigation on the presence of magnetic ultra fine particles in cigarette smoke, which may be inhaled in lungs during smoking.

  12. Fly ash carbon passivation

    DOEpatents

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  13. Metastable superconductivity of W/WO3 interface

    NASA Astrophysics Data System (ADS)

    Palnichenko, A. V.; Vyaselev, O. M.; Mazilkin, A. A.; Zver`kova, I. I.; Khasanov, S. S.

    2017-03-01

    Metastable W/WO3 interface has been formed at the surface of a tungsten metal bar using a solid state redox reaction of W with powdered WO3. Superconductivity at 35 ≤ T ≤ 75 K in the W/WO3 interfacial layer has been observed by means of the ac magnetic susceptibility and electrical resistance measurements. Comparative analysis of the experimental results infers that the W/WO3 interfacial layer consists of weakly linked superconducting regions.

  14. Protecting black ash from the emerald ash borer

    Treesearch

    Les Benedict

    2010-01-01

    Black ash (Fraxinus nigra) is an important resource for Tribes in the Northeast and Great Lakes regions of the North American continent. Ash in North America is being threatened with widespread destruction as a result of the introduction of emerald ash borer beetle (Agrilus planipennis) in 2002. Measures are being taken to slow the spread of emerald ash borer beetle....

  15. Growth of BaWO4 fishbone-like nanostructures in w/o microemulsion.

    PubMed

    Zhang, Xu; Xie, Yi; Xu, Fen; Tian, Xiaobo

    2004-06-01

    BaWO(4) fishbone-like nanostructures with fourfold structural symmetry have been successfully grown in w/o microemulsion. The BaWO(4) fishbone-like nanostructures have four rows of nanorods, epitaxially grown on the stem and perpendicular to the stem. The obtained samples are characterized by means of XRD, TEM, HRTEM, and SEM. It is found that the water content has a large influence on the size of the product and the molar ratio between cations and anions plays an important role in the morphology of the product. It is assumed that site-selective surfactant adsorption may be responsible for the formation of the BaWO(4) fishbone-like nanostructures.

  16. Structural stability and phase transitions in WO3 thin films.

    PubMed

    Ramana, C V; Utsunomiya, S; Ewing, R C; Julien, C M; Becker, U

    2006-06-01

    Tungsten oxide (WO3) thin films have been produced by KrF excimer laser (lambda = 248 nm) ablation of bulk ceramic WO3 targets. The crystal structure, surface morphology, chemical composition, and structural stability of the WO3 thin films have been studied in detail. Characterization of freshly grown WO3 thin films has been performed using X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy (RS), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) measurements. The results indicate that the freshly grown WO3 thin films are nearly stoichiometric and well crystallized as monoclinic WO3. The surface morphology of the resulting WO3 thin film has grains of approximately 60 nm in size with a root-mean-square (rms) surface roughness of 10 nm. The phase transformations in the WO3 thin films were investigated by annealing in the TEM column at 30-500 degrees C. The phase transitions in the WO3 thin films occur in sequence as the temperature is increased: monoclinic --> orthorhombic --> hexagonal. Distortion and tilting of the WO6 octahedra occurs with the phase transitions and significantly affects the electronic properties and, hence, the electrochemical device applications of WO3.

  17. Ash cloud aviation advisories

    SciTech Connect

    Sullivan, T.J.; Ellis, J.S.; Schalk, W.W.; Nasstrom, J.S.

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  18. Comparison of Ash from PF and CFB Boilers and Behaviour of Ash in Ash Fields

    NASA Astrophysics Data System (ADS)

    Arro, H.; Pihu, T.; Prikk, A.; Rootamm, R.; Konist, A.

    Over 90% of electricity produced in Estonia is made by power plants firing local oil shale and 25% of the boilers are of the circulating fluidised bed (CFB) variety. In 2007 approximately 6.5 million tons of ash was acquired as a byproduct of using oil shale for energy production. Approximately 1.5 million tons of that was ash from CFB boilers. Such ash is deposited in ash fields by means ofhydro ash removal.

  19. Detection and phylogenetic analysis of bacteriophage WO in spiders (Araneae).

    PubMed

    Yan, Qian; Qiao, Huping; Gao, Jin; Yun, Yueli; Liu, Fengxiang; Peng, Yu

    2015-11-01

    Phage WO is a bacteriophage found in Wolbachia. Herein, we represent the first phylogenetic study of WOs that infect spiders (Araneae). Seven species of spiders (Araneus alternidens, Nephila clavata, Hylyphantes graminicola, Prosoponoides sinensis, Pholcus crypticolens, Coleosoma octomaculatum, and Nurscia albofasciata) from six families were infected by Wolbachia and WO, followed by comprehensive sequence analysis. Interestingly, WO could be only detected Wolbachia-infected spiders. The relative infection rates of those seven species of spiders were 75, 100, 88.9, 100, 62.5, 72.7, and 100 %, respectively. Our results indicated that both Wolbachia and WO were found in three different body parts of N. clavata, and WO could be passed to the next generation of H. graminicola by vertical transmission. There were three different sequences for WO infected in A. alternidens and two different WO sequences from C. octomaculatum. Only one sequence of WO was found for the other five species of spiders. The discovered sequence of WO ranged from 239 to 311 bp. Phylogenetic tree was generated using maximum likelihood (ML) based on the orf7 gene sequences. According to the phylogenetic tree, WOs in N. clavata and H. graminicola were clustered in the same group. WOs from A. alternidens (WAlt1) and C. octomaculatum (WOct2) were closely related to another clade, whereas WO in P. sinensis was classified as a sole cluster.

  20. Reactivity of Hydrogen and Methanol on (001) Surfaces of WO3, ReO3, WO3/ReO3 and ReO3/WO3

    SciTech Connect

    Ling, Sanliang; Mei, Donghai; Gutowski, Maciej S.

    2011-05-16

    Bulk tungsten trioxide (WO3) and rhenium trioxide (ReO3) share very similar structures but display different electronic properties. WO3 is a wide bandgap semiconductor while ReO3 is an electronic conductor. With the advanced molecular beam epitaxy techniques, it is possible to make heterostructures comprised of layers of WO3 and ReO3. These heterostructures might display reactivity different than pure WO3 and ReO3. The interactions of two probe molecules (hydrogen and methanol) with the (001) surfaces of WO3, ReO3, and two heterostructures ReO3/WO3 and WO3/ReO3 were investigated at the density functional theory level. Atomic hydrogen prefers to adsorb at the terminal O1C sites forming a surface hydroxyl on four surfaces. Dissociative adsorption of a hydrogen molecule at the O1C site leads to formation of a water molecule adsorbed at the surface M5C site. This is thermodynamically the most stable state. A thermodynamically less stable dissociative state involves two surface hydroxyl groups O1CH and O2CH. The interaction of molecular hydrogen and methanol with pure ReO3 is stronger than with pure WO3 and the strength of the interaction substantially changes on the WO3/ReO3 and ReO3/WO3 heterostructures. The reaction barriers for decomposition and recombination reactions are sensitive to the nature of heterostructure. The calculated adsorption energy of methanol on WO3(001) of -65.6 kJ/mol is consistent with the previous experimental estimation of -67 kJ/mol. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  1. Photoelectrocatalytic degradation of oxalic acid using WO3 and stratified WO3/TiO2 photocatalysts under sunlight illumination.

    PubMed

    Hunge, Y M; Mahadik, M A; Moholkar, A V; Bhosale, C H

    2017-03-01

    The WO3 and stratified WO3/TiO2 thin films are successfully prepared by the spray pyrolysis method. The structural, morphological, compositional and photoelectrocatalytic properties of WO3 and stratified WO3/TiO2 thin films are studied. XRD analysis confirms that films are polycrystalline with monoclinic and tetragonal crystal structures for WO3 and TiO2 respectively. The SEM images clearly show 3D sheeted porous structure of the as-prepared TiO2 forms on WO3 in stratified WO3/TiO2 samples. The synthesized photoelectrodes was used as catalyst for photoelectrocatalytic degradation of oxalic acid in aqueous medium. The rate constant (k) was evaluated as a function of the initial concentration of species. A significant decrease in concentrations of organic species was observed from COD analysis. The photoelectrocatalytic degradation effect is relatively higher in the case of the stratified WO3/TiO2 than WO3 thin film photoelectrode in the degradation of oxalic acid and 83% removal efficiency of oxalic acid is obtained after 180min. Based on the obtained experimental data, the possible photoelectrocatalytic reaction mechanism was proposed. The photoelectrocatalytic experimental results indicate that stratified WO3/TiO2 photoelectrode is the promising material for removing of water pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. H2O Adsorption on WO3 and WO3-x (001) Surfaces.

    PubMed

    Albanese, Elisa; Di Valentin, Cristiana; Pacchioni, Gianfranco

    2017-07-12

    The nature of the interaction of water with the WO3 surface is of crucial importance for the use of this semiconductor oxide in photocatalysis. In this work, we investigate water adsorption and dissociation on both clean and O-deficient (001) WO3 surfaces by means of an accurate DFT approach. The O vacancy formation energy (computed with respect to O2) has been evaluated for all possible surface configurations, and the removal of the terminal O atom along the c axis is found to be preferred, costing about half the corresponding energy in the bulk. The presence of oxygen vacancies leads to a semiconductor to metal transition, confirming the experimental evidence of n-type conductivity in defective WO3 films. H2O preferably adsorbs on WO3 in a molecular undissociated form, due to the presence of W ions at the surface that act as Lewis acid sites. This interaction, about -1 eV per H2O molecule, is not very strong. Contrary to what is usually expected, the presence of oxygen vacancies does not significantly affect H2O adsorption. Finally, we investigated the H2O desorption from a hydroxylated surface. This suggests that the exposure of WO3 to H2 directly results in a hydroxylated surface and the corresponding H2O desorption turns out to be a very efficient mechanism to generate a reduced oxide surface, with important consequences on the electronic structure of this oxide.

  3. The distribution of ash in North America

    Treesearch

    Randall S. Morin

    2010-01-01

    Ash trees have been important to the people of North America for thousands of years. Of the nine ash species, white ash (Fraxinus americana L.) and green ash (F. pennsylvanica Marsh.) are the most widely distributed.

  4. Thermoluminescence of PbWO4 irradiated with UV light.

    PubMed

    Kim, T; Song, K; Woo, J; Kim, T; Whang, C

    2002-01-01

    PbWO4 single crystals were grown by the Czochralski method in argon and air. The glow curves induced by UV light and the absorption spectra of PbWO4 annealed at various temperatures were measured. The glow curves of PbWO4 were strongly dependent on the growing atmospheres. The activation energies of the 110 K peak of PbWO4 grown in argon and the 122 K peak of PbWO4 grown in air were calculated to be 0.23 eV and 0.29 eV, respectively. The ratio of the 2.76 eV emission band to the 2.48 eV or 2.26 eV emission bands of the PbWO4 grown in air was smaller than that of the PbWO4 grown in argon. The glow curve of PbWO4 grown in argon was similar to that of PbWO4 grown in air when the annealing temperatures were increased.

  5. Polarized Raman spectra of the oriented NaY(WO 4) 2 and KY(WO 4) 2 single crystals

    NASA Astrophysics Data System (ADS)

    Macalik, L.; Hanuza, J.; Kaminskii, A. A.

    2000-11-01

    Polarized Raman scattering spectra of the NaY(WO 4) 2 (NYW) single crystal have been measured. Its structure is described in the tetragonal space group isomorphic to CaWO 4 scheelite. The A g, B g and E g spectra were made and discussed in terms of factor group analysis. These spectra are compared to those of monoclinic KY(WO 4) 2 (KYW) single crystals whose structure differs from the other crystal. The NYW unit cell comprises of the isolated WO 4 tetrahedra whereas the KYW structure is built from the WO 6 octahedra joined by WO 2W double bonds and WOW single bridges. The vibrational characteristics of the bridge bond systems are proposed. On this basis, the role of the vibronic transitions for the KYW crystal doped with Eu 3+ ions is discussed.

  6. Ashes to ashes: Large Fraxinus germplasm collections and their fates

    Treesearch

    Kim C. Steiner; Paul. Lupo

    2010-01-01

    As the emerald ash borer (EAB) threatens the survival of our ash species, measures should be taken to preserve their genetic variability in the event that we discover a way to restore populations destroyed by the beetle. As it happens, large germplasm collections exist for our most important and widely distributed eastern species of the genus, white ash (...

  7. Emerald ash borer aftermath forests: the future of ash ecosystems

    Treesearch

    Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Kamal J.K. Gandhi; Catharine P. Herms

    2011-01-01

    The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program between the U.S. Forest Service and The Ohio State University. We are monitoring ash demographics, understory light availability, EAB population dynamics, native and non-native plants, and effects of ash...

  8. In situ synthesis of CdS/CdWO4/WO3 heterojunction films with enhanced photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Zhan, Faqi; Li, Jie; Li, Wenzhang; Yang, Yahui; Liu, Wenhua; Li, Yaomin

    2016-09-01

    CdS/CdWO4/WO3 heterojunction films on fluorine-doped tin oxide (FTO) substrates are for the first time prepared as an efficient photoanode for photoelectrochemical (PEC) hydrogen generation by an in situ conversion process. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet visible spectrometry (UV-vis) and X-ray photoelectron spectroscopy (XPS). The CdS hollow spheres (∼80 nm) sensitized WO3 plate film with a CdWO4 buffer-layer exhibits increased visible light absorption and a significantly improved photoelectrochemical performance. The photocurrent density at 0 V (vs. Ag/AgCl) of the CdS/CdWO4/WO3 anode is ∼3 times higher than that of the CdWO4/WO3 anode, and ∼9 times higher than that of pure WO3 under illumination. The highest incident-photon-to-current-efficiency (IPCE) value increased from 16% to 63% when the ternary heterojunction was formed. This study demonstrates that the synthesis of ternary composite photocatalysts by the in situ conversion process may be a promising approach to achieve high photoelectric conversion efficiency.

  9. Circle of Ashes

    NASA Image and Video Library

    2006-04-05

    This plot shows that a pulsar, the remnant of a stellar explosion, is surrounded by a disk of its own ashes. The disk, revealed by the two data points at the far right from NASA Spitzer Space Telescope, is the first ever found around a pulsar.

  10. Emerald Ash Borer

    Treesearch

    Deborah G. McCullough; Steven A. Katovich

    2004-01-01

    An exotic beetle from Asia was discovered in July 2002 feeding on ash (Fraxinus spp.) trees in southeastern Michigan. It was identified as Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Larvae feed in the cambium between the bark and wood, producing galleries that eventually girdle and kill branches and entire trees. Evidence suggests that A. planipennis has...

  11. Fabrication and characterization of WO3/Ag/WO3 multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes

    PubMed Central

    2012-01-01

    The dielectric/metal/dielectric multilayer is suitable for a transparent electrode because of its high-optical and high-electrical properties; however, it is fabricated by an expensive and inefficient multistep vacuum process. We present a WO3/Ag/WO3 (WAW) multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes (PLEDs). This WAW multilayer not only has high transmittance and low resistance but also can be easily and rapidly fabricated. We devised a novel method to deposit a thin WO3 layer by a solution process in an air environment. A tungstic acid solution was prepared from an aqueous solution of Na2WO4 and then converted to WO3 nanoparticles (NPs) by a thermal treatment. Thin WO3 NP layers form WAW multilayer with a thermal-evaporated Ag layer, and they improve the transmittance of the WAW multilayer because of its high transmittance and refractive index. Moreover, the surface of the WO3 layer is homogeneous and flat with low roughness because of the WO3 NP generation from the tungstic acid solution without aggregation. We performed optical simulation and experiments, and the optimized WAW multilayer had a high transmittance of 85% with a sheet resistance of 4 Ω/sq. Finally, PLEDs based on the WAW multilayer anode achieved a maximum luminance of 35,550 cd/m2 at 8 V, and this result implies that the solution-processed WAW multilayer is appropriate for use as a transparent anode in PLEDs. PMID:22587669

  12. Differential utilization of ash phloem by emerald ash borer larvae: Ash species and larval stage effects

    Treesearch

    Yigen Chen; Michael D. Ulyshen; Therese M. Poland

    2012-01-01

    Two experiments were performed to determine the extent to which ash species (black, green and white) and larval developmental stage (second, third and fourth instar) affect the efficiency of phloem amino acid utilization by emerald ash borer (EAB) Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) larvae. EAB larvae generally utilized green ash...

  13. Nd:SrWO 4 and Nd:BaWO 4 Raman lasers

    NASA Astrophysics Data System (ADS)

    Šulc, J.; Jelínková, H.; Basiev, T. T.; Doroschenko, M. E.; Ivleva, L. I.; Osiko, V. V.; Zverev, P. G.

    2007-09-01

    Properties of the laser operation and simultaneously stimulated Raman scattering in the SRS-active neodymium doped SrWO4 and BaWO4 crystals coherently end-pumped at wavelength 752 nm by pulsed free-running alexandrite laser radiation were investigated. The Nd3+ ion emission at wavelength λNd ˜ 1.06 μm was corresponding to 4F3/2 → 4I11/2 transition. To reach the SRS-self-conversion threshold inside Raman crystal the Nd3+ lasers were operating in a Q-switching regime. For Q-switching LiF:F2- crystal as a saturable absorber was used. Raman self-conversion at wavelength ˜1.17 μm was successfully reached with both tungstate crystals. The shortest generated pulse (1.3 ns FWHM) and highest peak power (615 kW) was obtained with Nd:BaWO4 Raman laser Q-switched by LiF:F2- crystal with initial transmission T0 = 60%. Up to 0.8 mJ was registered at the first Stokes wavelength 1169 nm. Using Q-switched Nd:SrWO4 laser higher energy in Raman emission was obtained (1.23 mJ) but generated pulse was longer (2.9 ns FWHM) resulting in lower peak power (430 kW).

  14. Lunar ash flows - Isothermal approximation.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  15. Dye-sensitized solar cells based on WO3.

    PubMed

    Zheng, Haidong; Tachibana, Yasuhiro; Kalantar-Zadeh, Kourosh

    2010-12-21

    In research on alternative photoanode materials for dye-sensitized solar cells (DSCs), there is rarely any report on WO(3), probably due to its acidic surface and more positive (vs NHE) conduction band edge position compared to TiO(2) and ZnO. For the first time, dye-sensitized solar cells based on porous WO(3) nanoparticle films were successfully fabricated with efficiency of up to 0.75%. The multicrystalline structure of WO(3) was examined by Raman spectroscopy and X-ray diffraction analysis. It was found that significant performance enhancement can be obtained from treating the WO(3) nanoparticle film with TiCl(4); the TiCl(4)-treated WO(3) DSCs were recorded with efficiency reaching 1.46%.

  16. Nd:SrWO4 Raman laser

    NASA Astrophysics Data System (ADS)

    Jelinkova, Helena; Sulc, Jan; Doroschenko, Maxim E.; Skornyakov, Vadim V.; Kravtsov, Sergey B.; Basiev, Tasoltan T.; Zverev, Peter G.

    2004-09-01

    Properties of the laser operation and simultaneously stimulated Raman scattering in the new SRS-active neodymium doped SrWO4 crystal coherently end-pumped by alexandrite 752 nm laser radiation were investigated. The maximum generated energy 90 mJ from the free-running Nd3+:SrWO4 laser at 1057 nm wavelength was obtained with the output coupler reflectivity 52%. The slope efficiency reached s = 0.52, the beam characteristic parameters M2 and divergence q were 2.5 +/- 0.1, and 1.5 +/- 0.1 mrad, respectively. Maximal output energy of 1.46 mJ for the fundamental wavelength was obtained for Q-switched Nd3+:SrWO4 oscillator with a double Fabry-Perrot as the output coupler (R = 48%), and with the 5% initial transmission of LiF:F2- saturable absorber. Up to 0.74 mJ energy was registered at the first Stokes frequency. The pulse duration was 5 ns and 2.4 ns for the fundamental and Stokes radiation, respectively. The energy of 1.25 mJ at 1170 nm was obtained for closed Raman resonator with special mirrors. For the case of mode-locking, two dye saturable absorbers (ML51 dye in dichlorethan and 3955 dye in ethanol) were used and SRS radiation in the form of pulse train was observed. The influence of the various Raman laser output couplers reflectivity as well as the initial transmissions of passive absorbers were investigated with the goal of the output energy maximization at the Stokes wavelength. In the output, the total measured energy was 1.8 mJ (for ML51 dye) and 2.4 mJ (for 3955 dye). The SRS output at 1170 nm was approximately 20% of total energy.

  17. Visible-Near-Infrared-Light-Driven Oxygen Evolution Reaction with Noble-Metal-Free WO2-WO3 Hybrid Nanorods.

    PubMed

    Wang, Song Ling; Mak, Yan Lin; Wang, Shijie; Chai, Jianwei; Pan, Feng; Foo, Maw Lin; Chen, Wei; Wu, Kai; Xu, Guo Qin

    2016-12-13

    Understanding and manipulating the one half-reaction of photoinduced hole-oxidation to oxygen are of fundamental importance to design and develop an efficient water-splitting process. To date, extensive studies on oxygen evolution from water splitting have focused on visible-light harvesting. However, capturing low-energy photons for oxygen evolution, such as near-infrared (NIR) light, is challenging and not well-understood. This report presents new insights into photocatalytic water oxidation using visible and NIR light. WO2-WO3 hybrid nanorods were in situ fabricated using a wet-chemistry route. The presence of metallic WO2 strengthens light absorption and promotes the charge-carrier separation of WO3. The efficiency of the oxygen evolution reaction over noble-metal-free WO2-WO3 hybrids was found to be significantly promoted. More importantly, NIR light (≥700 nm) can be effectively trapped to cause the photocatalytic water oxidation reaction. The oxygen evolution rates are even up to around 220 (λ = 700 nm) and 200 (λ = 800 nm) mmol g(-1) h(-1). These results demonstrate that the WO2-WO3 material is highly active for water oxidation with low-energy photons and opens new opportunities for multichannel solar energy conversion.

  18. Phase transformations upon doping in WO3

    NASA Astrophysics Data System (ADS)

    Wang, Wennie; Janotti, Anderson; Van de Walle, Chris G.

    2017-06-01

    High levels of doping in WO3 have been experimentally observed to lead to structural transformation towards higher symmetry phases. We explore the structural phase diagram with charge doping through first-principles methods based on hybrid density functional theory, as a function of doping the room-temperature monoclinic phase transitions to the orthorhombic, tetragonal, and finally cubic phase. Based on a decomposition of energies into electronic and strain contributions, we attribute the transformation to a gain in energy resulting from a lowering of the conduction band on an absolute energy scale.

  19. Sustainable Rejuvenation of Electrochromic WO3 Films.

    PubMed

    Wen, Rui-Tao; Niklasson, Gunnar A; Granqvist, Claes G

    2015-12-30

    Devices relying on ion transport normally suffer from a decline of their long-term performance due to irreversible ion accumulation in the host material, and this effect may severely curtail the operational lifetime of the device. In this work, we demonstrate that degraded electrochromic WO3 films can sustainably regain their initial performance through galvanostatic detrapping of Li(+) ions. The rejuvenated films displayed degradation features similar to those of the as-prepared films, thus indicating that the detrapping process is effectively reversible so that long-term performance degradation can be successfully avoided. Detrapping did not occur in the absence of an electric current.

  20. ASH EMISSIVITY CHARACTERIZATION AND PREDICTION

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor; Charlene R. Crocker

    1999-12-01

    The increased use of western subbituminous coals has generated concerns regarding highly reflective ash disrupting heat transfer in the radiant zone of pulverized-fuel boilers. Ash emissivity and reflectivity is primarily a function of ash particle size, with reflective deposits expected to consist of very small refractory ash materials such as CaO, MgO, or sulfate materials such as Na{sub 2}SO{sub 4}. For biomass fuels and biomass-coal blends, similar reflectivity issues may arise as a result of the presence of abundant organically associated calcium and potassium, which can transform during combustion to fine calcium, and potassium oxides and sulfates, which may act as reflective ash. The relationship of reflectivity to ash chemistry is a second-order effect, with the ash particle size distribution and melting point being determined by the size and chemistry of the minerals present in the starting fuel. Measurement of the emission properties of ash and deposits have been performed by several research groups (1-6) using both laboratory methods and measurements in pilot- and full-scale combustion systems. A review of the properties and thermal properties of ash stresses the important effect of ash deposits on heat transfer in the radiant boiler zone (1).

  1. Coal ash utilization in India

    SciTech Connect

    Michalski, S.R.; Brendel, G.F.; Gray, R.E.

    1998-12-31

    This paper describes methods of coal combustion product (CCP) management successfully employed in the US and considers their potential application in India. India produces about 66 million tons per year (mty) of coal ash from the combustion of 220 mty of domestically produced coal, the average ash content being about 30--40 percent as opposed to an average ash content of less than 10 percent in the US In other words, India produces coal ash at about triple the rate of the US. Currently, 95 percent of this ash is sluiced into slurry ponds, many located near urban centers and consuming vast areas of premium land. Indian coal-fired generating capacity is expected to triple in the next ten years, which will dramatically increase ash production. Advanced coal cleaning technology may help reduce this amount, but not significantly. Currently India utilizes two percent of the CCP`s produced with the remainder being disposed of primarily in large impoundments. The US utilizes about 25 percent of its coal ash with the remainder primarily being disposed of in nearly equal amounts between dry landfills and impoundments. There is an urgent need for India to improve its ash management practice and to develop efficient and environmentally sound disposal procedures as well as high volume ash uses in ash haulback to the coalfields. In addition, utilization should include: reclamation, structural fill, flowable backfill and road base.

  2. Volcanic ash melting under conditions relevant to ash turbine interactions

    PubMed Central

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-01-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200–2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824

  3. Volcanic ash melting under conditions relevant to ash turbine interactions

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-03-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  4. The green emission and local structure of the scintillator PbWO 4

    NASA Astrophysics Data System (ADS)

    Qi, Zeming; Shi, Chaoshu; Zhou, Dongfang; Tang, Honggao; Liu, Tao; Hu, Tiandou

    2001-12-01

    The green emission of lead tungstate (PbWO 4 ) is closely related to structure defects. For studying the mechanism of the green emission, the local structure of PbWO 4 has been first investigated by extended X-ray absorption fine structure using synchrotron radiation. The results indicate that the excess oxygen in air-annealed PbWO 4 exists and forms “WO 4+O i” centers. The green emission of PbWO 4 is not caused by (WO 3+F) centers, but probably originates from the centers of “WO 4+O i”.

  5. Synthesis of S-doped WO3 nanowires with enhanced photocatalytic performance towards dye degradation

    NASA Astrophysics Data System (ADS)

    Han, Fugui; Li, Heping; Fu, Li; Yang, Jun; Liu, Zhong

    2016-05-01

    In this letter, S-doped WO3 nanowires (S-WO3) were prepared using a hydrothermal method followed by a low-temperature solid-state annealing treatment. The synthesized S-WO3 was characterized by SEM, EDX, XRD, XPS, Raman spectroscopy, UV-vis DRS and photocurrent responses. The results indicated that S could enhance the light harvesting capacity of WO3 nanowires. The photocatalytic performance of the S-WO3 was investigated by photodegradation of methyl orange (MO) under visible light irradiation. Results demonstrated that the photocatalytic activity of the S-WO3 nanowires is much higher than that of pure WO3 nanowires.

  6. Modeling volcanic ash dispersal

    ScienceCinema

    None

    2016-07-12

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  7. Modeling volcanic ash dispersal

    SciTech Connect

    2010-10-22

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  8. Circle of Ashes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Circle of Ashes

    This plot tells astronomers that a pulsar, the remnant of a stellar explosion, is surrounded by a disk of its own ashes. The disk, revealed by the two data points at the far right from NASA's Spitzer Space Telescope, is the first ever found around a pulsar. Astronomers believe planets might rise up out of these stellar ashes.

    The data in this plot, or spectrum, were taken by ground-based telescopes and Spitzer. They show that light from around the pulsar can be divided into two categories: direct light from the pulsar, and light from the dusty disk swirling around the pulsar. This excess light was detected by Spitzer's infrared array camera. Dust gives off more infrared light than the pulsar because it's cooler.

    The pulsar, called 4U 0142+61, was once a massive star, until about 100,000 years ago, when it blew up in a supernova explosion and scattered dusty debris into space. Some of that debris was captured into what astronomers refer to as a 'fallback disk,' now circling the leftover stellar core, or pulsar. The disk resembles protoplanetary disks around young stars, out of which planets are thought to be born.

    The data have been corrected to remove the effects of light scattering from dust that lies between Earth and the pulsar.

    The ground-based data is from the Keck I telescope atop Mauna Kea, Hawaii.

  9. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    NASA Astrophysics Data System (ADS)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  10. An atlas of volcanic ash

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1974-01-01

    Volcanic ash samples collected from a variety of recent eruptions were studied, using petrography, chemical analyses, and scanning electron microscopy to characterize each ash type and to relate ash morphology to magma composition and eruption type. The ashes are best placed into two broad genetic categories: magnetic and hydrovolcanic (phreatomagmatic). Ashes from magmatic eruptions are formed when expanding gases in the magma form a froth that loses its coherence as it approaches the ground surface. During hydrovolcanic eruptions, the magma is chilled on contact with ground or surface waters, resulting in violent steam eruptions. Within these two genetic categories, ashes from different magma types can be characterized. The pigeon hole classification used here is for convenience; there are eruptions which are driven by both phreatic and magmatic gases.

  11. Ash in the Soil System

    NASA Astrophysics Data System (ADS)

    Pereira, P.

    2012-04-01

    Ash is the organic and inorganic residue produced by combustion, under laboratory and field conditions. This definition is far away to be accepted. Some researchers consider ash only as the inorganic part, others include also the material not completely combusted as charcoal or biochar. There is a need to have a convergence about this question and define clear "what means ash". After the fire and after spread ash onto soil surface, soil properties can be substantially changed depending on ash properties, that can be different according to the burned residue (e.g wood, coal, solid waste, peppermill, animal residues), material treatment before burning, time of exposition and storage conditions. Ash produced in boilers is different from the produced in fires because of the material diferent propertie and burning conditions. In addition, the ash produced in boilers is frequently treated (e.g pelletization, granulation, self curing) previously to application, to reduce the negative effects on soil (e.g rapid increase of pH, mycorrhiza, fine roots of trees and microfauna). These treatments normally reduce the rate of nutrients dissolution. In fires this does not happen. Thus the implications on soil properties are logically different. Depending on the combustion temperature and/or severity, ash could have different physical (e.g texture, wettability) and chemical properties (e.g amount and type of total and leached nutrients) and this will have implications on soil. Ash can increase and decrease soil aggregation, wettablity and water retention, bulk density, runoff and water infiltration. Normally, ash increases soil pH, Electrical Conductivity, and the amount of some basic nutrients as calcium, magnesium, sodium and potassium. However it is also a potential source of heavy metals, especially if ash pH is low. However the effect of ash on soil in space and time depends especially of the ash amount and characteristics, fire temperature, severity, topography, aspect

  12. Kinetics and mechanism of dye adsorption on WO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Adhikari, Sangeeta; Mandal, Sandip; Sarkar, Debasish; Kim, Do-Heyoung; Madras, Giridhar

    2017-10-01

    Monoclinic WO3 nanoparticles were synthesized by a simple acid catalyzed co-precipitation reaction. Spherical particles with average size ∼55 nm were confirmed from electron microscopy followed by functional, structural and optical characterizations. The adsorption of methylene blue was examined by using WO3 nanoparticles and the capacity was higher than most of the reported studies. The effect of pH and material loading on adsorption was determined. The mechanism of adsorption was examined by XPS and a detailed explanation of surface phenomena was proposed. Regeneration study was carried and a high stability of heat treated WO3 towards adsorption of methylene blue was observed.

  13. WO3 nanopaticles and PEDOT:PSS/WO3 composite thin films studied for photocatalytic and electrochromic applications

    NASA Astrophysics Data System (ADS)

    Ivanov Boyadjiev, Stefan; Manduca, Bruno; Szűcs, Júlia; Miklós Szilágyi, Imre

    2016-03-01

    WO3 is a widely studied material for electrochromic and photocatalytic applications. In the present study, WO3 nanoparticles with a controlled structure (monoclinic or hexagonal) were obtained by controlled thermal decomposition of hexagonal ammonium tungsten bronze in air at 500 °C and 600 °C, respectively. The formation, morphology, structure and composition of the as-prepared nanoparticles were studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX). The photocatalytic activity of the monoclinic and hexagonal WO3 nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. In order to study the electrochromic properties of the WO3 nanoparticles, as well to introduce them for self-cleaning photocatalytic surface applications, thin films were prepared from the WO3 particles together with a conductive polymer. For this, PEDOT:PSS was used, which gives excellent opportunities for obtaining transparent and conductive thin films, suitable for both electrochromic and photocatalytic applications. By spin-coating, transparent PEDOT:PSS/WO3 composite thin films were prepared, on which cyclic voltammetry measurements were performed, and the coloring and bleaching states were studied. Our initial results for the PEDOT:PSS/WO3 composite thin films are promising, suggesting that such composites, after further development, might be successfully used in electrochromic devices and photocatalysis.

  14. Volcanic ash infrared signature: realistic ash particle shapes compared to spherical ash particles

    NASA Astrophysics Data System (ADS)

    Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T.

    2013-10-01

    The reverse absorption technique is often used to detect volcanic clouds from thermal infrared satellite measurements. From these measurements particle size and mass loading may also be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculate thermal infrared optical properties of highly irregular and porous ash particles and compare these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry are calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres are found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates will underestimate the mass loading by several tens of percent compared to morphologically complex inhomogeneous ash particles.

  15. Ash, the emerald ash borer, and private forest land management

    Treesearch

    Tom. Crowe

    2010-01-01

    Forest management through emerald ash borer (EAB) will be a dynamic process that will change based on the best information available at the time. Management decisions will depend on the anticipated time of EAB arrival; the diameter and number of ash present in the forest stand; the diameter and number of other desirable and undesirable species present in the stand (...

  16. Fly ash quality and utilization

    SciTech Connect

    Barta, L.E.; Lachner, L.; Wenzel, G.B.; Beer, M.J.

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  17. Hydrothermally grown nanostructured WO3 films and their electrochromic characteristics

    NASA Astrophysics Data System (ADS)

    Jiao, Zhihui; Sun, Xiao Wei; Wang, Jinmin; Ke, Lin; Demir, Hilmi Volkan

    2010-07-01

    We report the synthesis of nanostructured tungsten trioxide (WO3) films and their electrochromic characteristics. Plate-like monoclinic WO3 nanostructures were grown directly on fluorine-doped tin oxide glass substrates by a simple and low-cost crystal-seed-assisted hydrothermal method. The growth mechanism of the film is investigated. HRTEM analysis reveals the single crystalline quality of the WO3 nanostructure. The film exhibits tunable transmittance modulation under different voltages and repetitive cycling between the clear and blue states has no deleterious effect on its electrochromic performance after 3000 cycles. The electrochromic device composed of the WO3 film has high electrochromic stability, colour contrast and reasonable switching response with a colouration efficiency of 38.2 cm2 C-1 at 632.8 nm.

  18. Electrochromic device based on electrospun WO{sub 3} nanofibers

    SciTech Connect

    Dulgerbaki, Cigdem; Maslakci, Neslihan Nohut; Komur, Ali Ihsan; Oksuz, Aysegul Uygun

    2015-12-15

    Highlights: • WO{sub 3} electrochromic nanofibers were prepared by electrospinning technique. • WO{sub 3} nanofibers switched reversibly from transparent to blue color. • Electrochromic device was assembled using ionic liquid based gel electrolyte. • Significant optical modulation and excellent cycling stability were achieved for ECD. - Abstract: The tungsten oxide (WO{sub 3}) nanofibers were grown directly onto an ITO-coated glass via an electrospinning method for electrochromic applications. The electrochromic properties of WO{sub 3} nanofibers were investigated in the presence of different electrolytes including a series of ionic liquids and classic LiClO{sub 4}-PC system. A significant optical modulation of 20.82% at 760 nm, reversible coloration with efficiency of 64.58 cm{sup 2}/C and excellent cycling stability were achieved for the nanofiber electrochromic device (ECD) with ionic liquid based gel electrolyte.

  19. Insight into Charge Separation in WO3/BiVO4 Heterojunction for Solar Water Splitting.

    PubMed

    Chae, Sang Youn; Lee, Chang Soo; Jung, Hyejin; Joo, Oh-Shim; Min, Byoung Koun; Kim, Jong Hak; Hwang, Yun Jeong

    2017-06-14

    Recently, the WO3/BiVO4 heterojunction has shown promising photoelectrochemical (PEC) water splitting activity based on its charge transfer and light absorption capability, and notable enhancement of the photocurrent has been achieved via morphological modification of WO3. We developed a graft copolymer-assisted protocol for the synthesis of WO3 mesoporous thin films on a transparent conducting electrode, wherein the particle size, particle shape, and thickness of the WO3 layer were controlled by tuning the interactions in the polymer/sol-gel hybrid. The PEC performance of the WO3 mesoporous photoanodes with various morphologies and the individual heterojunctions with BiVO4 (WO3/BiVO4) were characterized by measuring the photocurrents in the absence/presence of hole scavengers using light absorption spectroscopy and intensity-modulated photocurrent spectroscopy. The morphology of the WO3 photoanode directly influenced the charge separation efficiency within the WO3 layer and concomitant charge collection efficiency in the WO3/BiVO4 heterojunction, showing the smaller sized nanosphere WO3 layer showed higher values than did the plate-like or rod-like one. Notably, we observed that photocurrent density of WO3/BiVO4 was not dependent on the thickness of WO3 film or its charge collection time, implying slow charge flow from BiVO4 to WO3 can be a crucial issue in determining the photocurrent, rather than the charge separation within the nanosphere WO3 layer.

  20. Biogas purification with biomass ash.

    PubMed

    Fernández-Delgado Juárez, M; Mostbauer, P; Knapp, A; Müller, W; Tertsch, S; Bockreis, A; Insam, H

    2017-10-07

    The aim of the study was to investigate the option to purify biogas from small-scale biogas plants by entrapping CO2 and H2S with regionally available biomass ash. Connected to the existing biogas plant Neustift (Tyrol) wood ash placed in a 1 m(3) container was used as a trap for CO2 and H2S in the biogas. With the process conditions chosen, for a period of a few hours CO2 was trapped resulting in pure methane. The removal of H2S was much longer-lasting (up to 34 d). The cumulative H2S uptake by the biomass ash ranged from 0.56 to 1.25 kg H2S per ton of ash. The pH of the ash and the leachability of Lead and Barium were reduced by the flushing with biogas, however toxicity towards plants was increased thus reducing the potential of ash use in agriculture. It can be concluded that biomass ash may be used for removal of hydrogen sulphide from biogas in small and medium biogas plants. The economic evaluation, however, indicated that the application of this system is limited by transport distances for the ash and its potential use afterwards. Copyright © 2017. Published by Elsevier Ltd.

  1. Emerald ash borer flight potential

    Treesearch

    Robin A. Taylor; Leah S. Bauer; Deborah L. Miller; Robert A. Haack

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive pest of ash trees (Fraxinus spp.) that is rapidly spreading from the probable introduction site in Detroit, Michigan. The rapid spread to areas outside Michigan is undoubtedly due to phoretic transport on nursery stock, logs, and...

  2. Volcanic ash - Terrestrial versus extraterrestrial

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.

    1976-01-01

    A principal difference between terrestrial and extraterrestrial lavas may consist in the greater ability of terrestrial lavas to form thin films (like those of soap bubbles) and hence foams. It would follow that, in place of the pumice and spiny shards found in terrestrial volcanic ash, an extraterrestrial ash should contain minute spherules. This hypothesis may help to explain lunar microspherules.

  3. Incineration and incinerator ash processing

    SciTech Connect

    Blum, T.W.

    1991-01-01

    Parallel small-scale studies on the dissolution and anion exchange recovery of plutonium from Rocky Flats Plant incinerator ash were conducted at the Los Alamos National Laboratory and at the Rocky Flats Plant. Results from these two studies are discussed in context with incinerator design considerations that might help to mitigate ash processing related problems. 11 refs., 1 fig., 1 tab.

  4. Emerald Ash Borer (Coleoptera: Buprestidae)

    USDA-ARS?s Scientific Manuscript database

    The emerald ash borer, Agrilus planipennis Fairmaire, is an invasive beetle from Asia that has caused large scale ash (Fraxinus spp.) mortality in North America. This book chapter reviews the taxonomy, biology, life history of this invasive pest and its associated natural enemies in both its native ...

  5. Emerald ash borer life cycle

    Treesearch

    Leah S. Bauer; Robert A. Haack; Deborah L. Miller; Toby R. Petrice; Houping Liu

    2004-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), native to several Asian countries, was discovered in southeastern Michigan and nearby Ontario in June of 2002. EAB was identified as the cause of extensive ash (Fraxinus spp.) mortality in approximately 2,500 mi2, and...

  6. Emerald ash borer biological control

    Treesearch

    Leah Bauer; Juli Gould; Jian Duan; Mike. Ulyshen

    2011-01-01

    Emerald ash borer (EAB) (Agrilus planipennis), an invasive buprestid from northeast Asia, was identified in 2002 as the cause of ash (Fraxinus) tree mortality in southeast Michigan and adjacent areas of Ontario, Canada. This destructive beetle apparently arrived in North America via infested solid wood packaging materials from...

  7. Ash-Based Ceramic Materials.

    DTIC Science & Technology

    This patent discloses a ceramic material made from raw coal fly ash or raw municipal solid waste fly ash and (1) sodium tetraborate or (2) a mixture of sodium tetraborate and a calcium containing material that is triple superphosphate, lime, dolomite lime, or mixtures thereof.

  8. Bottom ash boosts poor soil

    SciTech Connect

    Stanley, D.

    1993-04-01

    This article describes agricultural uses of fluidized bed bottom ash residue from burning limestone and coal in electric power generating plants: as a limestone substitute, to increase calcium levels in both soil and plants, and as a gypsom-containing soil amendment. Apples and tomatoes are the crops used. The industrial perspective and other uses of bottom ash are also briefly described.

  9. Ash Plume from Shiveluch

    NASA Image and Video Library

    2017-09-27

    When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet. By the time NASA’s Aqua satellite passed over the area two hours later (bottom image), the volcano had erupted and sent a plume of ash over the Kamchatskiy Zaliv. The plume traveled about 90 kilometers (55 miles) toward the south-southeast, where a change in wind direction began pushing the plume toward the east. On October 6, 2012, the Kamchatka Volcanic Emergency Response Team (KVERT) reported that the ash plume from Shiveluch reached an altitude of 3 kilometers (9,800 feet) above sea level, and had traveled some 220 kilometers (140 miles) from the volcano summit. Shiveluch (also spelled Sheveluch) ranks among the biggest and most active volcanoes on the Kamchatka Peninsula. Rising to 3,283 meters (10,771 feet) above sea level, Shiveluch is a stratovolcano composed of alternating layers of hardened lava, compacted ash, and rocks ejected by previous eruptions. The beige-colored expanse of rock on the volcano’s southern slopes (visible in both images) is due to an explosive eruption that occurred in 1964. Part of Shiveluch’s southern flank collapsed, and the light-colored rock is avalanche debris left by that event. High-resolution imagery of Shiveluch shows very little vegetation within that avalanche zone. On October 6, 2012, KVERT cited observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on Terra and Aqua in detecting the Shiveluch eruption. This was not the first time that MODIS observed a Shiveluch eruption shortly after it started. In 2007, MODIS captured an image within minutes of the eruption’s start, before winds could blow the ash away from the summit. When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet (top image). By the time NASA

  10. Trace elements in coal ash

    USGS Publications Warehouse

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    In this fact sheet, the form, distribution, and behavior of trace elements of environmental interest in samples of coal fly ash were investigated in response to concerns about element mobility in the event of an ash spill. The study includes laboratory-based leaching experiments to examine the behavior of trace elements, such as arsenic (As) and chromium (Cr), in response to key environmental factors including redox conditions (degree of oxygenation), which are known to vary with depth within coal ash impoundments and in natural ecosystems. The experiments show that As dissolves from samples of coal fly ash into simulated freshwater under both oxic (highly oxygenated) and anoxic (poorly oxygenated) conditions, whereas dissolved Cr concentrations are very redox dependent. This U.S. Geological Survey research helps define the distribution of elements such as As in coal ash and shows that element mobility can vary considerably under different conditions expected in the environment.

  11. Beneficial uses of CFB ash

    SciTech Connect

    Young, L.J.; Cotton, J.L. Jr.

    1994-12-31

    Coal-fired generation accounts for almost 55 percent of the electricity produced in the United States. It has been estimated that over 90 million tons of coal combustion waste by-products were generated in 1990. Currently, only 30% of coal combustion waste is recycled for various beneficial applications. The remaining waste is primarily managed in landfills and surface impoundments. Circulating fluidized bed (CFB) combustion technology will play an important role in supplying power for future load growth and Title 4 of the 1990 Clean Air Act Amendments compliance. CFB ash by-products have many beneficial uses. This paper describes potential applications of CFB ashes based on the ash characteristics. The beneficial uses of CFB ash discussed in this study include agricultural applications, acidic waste stabilizer, ash rock, sludge stabilizer, strip mine reclamation, and structural fill.

  12. Using fly ash for construction

    SciTech Connect

    Valenti, M.

    1995-05-01

    Each year electrical utilities generate 80 million tons of fly ash, primarily from coal combustion. Typically, utilities dispose of fly ash by hauling it to landfills, but that is changing because of the increasing cost of landfilling, as well as environmental regulations. Now, the Electric Power Research Institute (EPRI), in Palo Alto, Calif., its member utilities, and manufacturers of building materials are finding ways of turning this energy byproduct into the building blocks of roads and structures by converting fly ash into construction materials. Some of these materials include concrete and autoclaved cellular concrete (ACC, also known as aerated concrete), flowable fill, and light-weight aggregate. EPRI is also exploring uses for fly ash other than in construction materials. One of the more high-end uses for the material is in metal matrix composites. In this application, fly ash is mixed with softer metals, such as aluminum and magnesium, to strengthen them, while retaining their lighter weight.

  13. Ash Aggregates in Proximal Settings

    NASA Astrophysics Data System (ADS)

    Porritt, L. A.; Russell, K.

    2012-12-01

    Ash aggregates are thought to have formed within and been deposited by the eruption column and plume and dilute density currents and their associated ash clouds. Moist, turbulent ash clouds are considered critical to ash aggregate formation by facilitating both collision and adhesion of particles. Consequently, they are most commonly found in distal deposits. Proximal deposits containing ash aggregates are less commonly observed but do occur. Here we describe two occurrences of vent proximal ash aggregate-rich deposits; the first within a kimberlite pipe where coated ash pellets and accretionary lapilli are found within the intra-vent sequence; and the second in a glaciovolcanic setting where cored pellets (armoured lapilli) occur within <1 km of the vent. The deposits within the A418 pipe, Diavik Diamond Mine, Canada, are the residual deposits within the conduit and vent of the volcano and are characterised by an abundance of ash aggregates. Coated ash pellets are dominant but are followed in abundance by ash pellets, accretionary lapilli and rare cored pellets. The coated ash pellets typically range from 1 - 5 mm in diameter and have core to rim ratios of approximately 10:1. The formation and preservation of these aggregates elucidates the style and nature of the explosive phase of kimberlite eruption at A418 (and other pipes?). First, these pyroclasts dictate the intensity of the kimberlite eruption; it must be energetic enough to cause intense fragmentation of the kimberlite to produce a substantial volume of very fine ash (<62 μm). Secondly, the ash aggregates indicate the involvement of moisture coupled with the presence of dilute expanded eruption clouds. The structure and distribution of these deposits throughout the kimberlite conduit demand that aggregation and deposition operate entirely within the confines of the vent; this indicates that aggregation is a rapid process. Ash aggregates within glaciovolcanic sequences are also rarely documented. The

  14. Driving Force for the WO3(001) Surface Relaxation

    SciTech Connect

    Yakovkin, Ivan N.; Gutowski, Maciej S.

    2007-03-15

    The optimized structure of the WO3(001) surface with various types of termination ((1x1)O, (1x1) WO2, and c(2x2)O) has been simulated using density functional theory with the Perdew-Wang 91 gradient-corrected exchange correlation functional. While energy of bulk WO3 depends weakly on the distortions and tilting of the WO6 octahedra, relaxation the (001) surface results in a significant decrease of surface energy (from 10.2x10-2 eV/Å2 for bulk-extracted, ReO3-like, c(2x2)O-terminated surface to 2.2x10-2 eV/Å2 for the relaxed surface). This feature illustrates important role of surface in formation of crystalline nano-size clusters of WO3. The surface relaxation is accompanied by a dramatic redistribution of density of states near the Fermi level, in particular the transformations of surface electronic states. This redistribution is responsible for the decrease of electronic energy and therefore is suggested to be the driving force for surface relaxation of the WO3(001) surface and, presumably, similar surfaces of other transition metal oxides. Battelle operates PNNL for the USDOE.

  15. Photoluminescence in solid solutions and thin films of tungstates CaWO{sub 4}-CdWO{sub 4}

    SciTech Connect

    Taoufyq, A.; Mauroy, V.; Guinneton, F.; Valmalette, J-C.; Fiorido, T.; Benlhachemi, A.; Lyoussi, A.; Nolibe, G.; Gavarri, J-R.

    2015-07-01

    In this study, we present two types of studies on the luminescence properties under UV and X-ray excitations of solid solutions Ca{sub 1-x}Cd{sub x}WO{sub 4} and of thin layers of CaWO{sub 4} and CdWO{sub 4}. These tungstate based solid solutions are susceptible to be integrated into new radiation sensors, in order to be used in different fields of applications such as reactor measurements, safeguards, homeland security, nuclear nondestructive assays, LINAC emission radiation measurement. However these complex materials were rarely investigated in the literature. One first objective of our studies was to establish correlations between luminescence efficiency, chemical substitution and the degree of crystallization resulting from elaboration conditions. A second objective will be to determine the efficiency of luminescence properties of thin layers of these materials. In the present work, we focus our attention on the role of chemical substitution on photon emissions under UV and X-ray irradiations. The luminescence spectra of Ca{sub 1-x}Cd{sub x}WO{sub 4} polycrystalline materials have been investigated at room temperature as a function of composition (0≤x≤1). In addition, we present a preliminary study of the luminescence of CaWO{sub 4} and CdWO{sub 4} thin layers: oscillations observed in the case of X-ray excitations in the luminescence spectra are discussed. (authors)

  16. In-situ transmission electron microscopy imaging of formation and evolution of Li{sub x}WO{sub 3} during lithiation of WO{sub 3} nanowires

    SciTech Connect

    Qi, Kuo; Li, Xiaomin; Sun, Muhua; Huang, Qianming; Wei, Jiake; Xu, Zhi E-mail: xdbai@iphy.ac.cn; Wang, Wenlong; Bai, Xuedong E-mail: xdbai@iphy.ac.cn; Wang, Enge

    2016-06-06

    The phase transition from monoclinic WO{sub 3} to cubic Li{sub x}WO{sub 3} during lithiation of WO{sub 3} is one of the key features for tungsten oxide as the most used electrochromic material. Conventionally, the lithium intercalation of WO{sub 3} has been studied by building generic layered electrochromic device combining with structural characterization and electrochemistry measurement at macro scale. In-situ transmission electron microscopy (in-situ TEM) has been proposed as a method for revealing the detailed mechanism of structural, physical, and chemical properties. Here, we use in-situ TEM method to investigate the formation and evolution of Li{sub x}WO{sub 3} in real-time during the electrochemical lithiation of WO{sub 3} nanowires. The dynamic lithiation process is recorded by TEM imaging, diffraction, and electron energy loss spectroscopy. The WO{sub 3}-Li{sub x}WO{sub 3} phase boundary of reaction front has been observed at high resolution. The timeliness of crystallinity of Li{sub x}WO{sub 3} and the intercalation channels for Li ions are also identified. Moreover, the co-existence of both polycrystalline Li-poor area and amorphous Li-rich phases of Li{sub x}WO{sub 3} was found. Our results provide an insight into the basic lithiation process of WO{sub 3}, which is significantly important for understanding the electrochromic mechanism of tungsten oxide.

  17. In-situ transmission electron microscopy imaging of formation and evolution of LixWO3 during lithiation of WO3 nanowires

    NASA Astrophysics Data System (ADS)

    Qi, Kuo; Li, Xiaomin; Sun, Muhua; Huang, Qianming; Wei, Jiake; Xu, Zhi; Wang, Wenlong; Bai, Xuedong; Wang, Enge

    2016-06-01

    The phase transition from monoclinic WO3 to cubic LixWO3 during lithiation of WO3 is one of the key features for tungsten oxide as the most used electrochromic material. Conventionally, the lithium intercalation of WO3 has been studied by building generic layered electrochromic device combining with structural characterization and electrochemistry measurement at macro scale. In-situ transmission electron microscopy (in-situ TEM) has been proposed as a method for revealing the detailed mechanism of structural, physical, and chemical properties. Here, we use in-situ TEM method to investigate the formation and evolution of LixWO3 in real-time during the electrochemical lithiation of WO3 nanowires. The dynamic lithiation process is recorded by TEM imaging, diffraction, and electron energy loss spectroscopy. The WO3-LixWO3 phase boundary of reaction front has been observed at high resolution. The timeliness of crystallinity of LixWO3 and the intercalation channels for Li ions are also identified. Moreover, the co-existence of both polycrystalline Li-poor area and amorphous Li-rich phases of LixWO3 was found. Our results provide an insight into the basic lithiation process of WO3, which is significantly important for understanding the electrochromic mechanism of tungsten oxide.

  18. Photocatalytic properties of h-WO3 nanoparticles obtained by annealing and h-WO3 nanorods prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Nagy-Kovács, Teodóra; Lukács, István; Szilágyi, Imre M.

    2016-03-01

    In the present study, two different methods for preparing hexagonal WO3 (h-WO3) photocatalysts were used - controlled thermal decomposition and hydrothermal synthesis. WO3 nanoparticles with hexagonal structure were obtained by annealing (NH4)xWO3-y at 500 °C in air. WO3 nanorods were prepared by a hydrothermal method using sodium tungstate Na2WO4, HCl, (COOH)2 and NaSO4 precursors at 200 °C. The formation, morphology, structure and composition of the as-prepared nanoparticles and nanorods were studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX). The photocatalytic activity of the h-WO3 nanoparticles and nanorods was studied by decomposing methyl orange in aqueous solution under UV light irradiation.

  19. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than 21...

  20. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than 21...

  1. Large-scale reintroduction of ash

    Treesearch

    Ronald. Overton

    2010-01-01

    No strategies currently exist for reintroducing ash; progression of emerald ash borer (EAB) through the eastern United States is likely to be a decades-long process, and extirpation of ash from this area is likely to take even longer. Reintroduction of ash into areas where it has been extirpated by EAB will require addressing technical issues as well as social and...

  2. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than 21...

  3. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than 21...

  4. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than 21...

  5. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment of calcined pyrites that are the residual ash of oil or coal fired power stations. (b) This section applies...

  6. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment of calcined pyrites that are the residual ash of oil or coal fired power stations. (b) This section applies...

  7. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment of calcined pyrites that are the residual ash of oil or coal fired power stations. (b) This section applies...

  8. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment of calcined pyrites that are the residual ash of oil or coal fired power stations. (b) This section applies...

  9. The quest for ash resistance to emerald ash borer: Towards a mechanistic understanding

    Treesearch

    D.A. Herms; D. Cipollini; K.S. Knight; J.L. Koch; T.M. Poland; C.M. Rigsby; J.G.A. Whitehill; P. Bonello

    2015-01-01

    Since emerald ash borer (EAB), Agrilus planipennis, was discovered in North America in 2002, it has killed many millions of ash trees in North America, and ash mortality now exceeds 99% near the epicenter of the invasion in southeast Michigan (Klooster et al. 2014). The development of EAB-resistant ash trees will be critical for restoration of ash...

  10. Phosphate-Bonded Fly Ash.

    DTIC Science & Technology

    1994-12-09

    FCODE OC ______________ ARLINGTON VA 22217-5660 - dis~bu~i.19~ 3 B Navy Case No. 75,787 PATENTS PHOSPHATE -BONDED FLY ASH IN’NA G. TALMY DEBORAH A. HAUGHT...2 3 , CaO. MgO, etc. with which the H.PO4 reacts to form the polymer-like phosphate bonds which hold the fly ash particles together. In the second...conventional means. The moisture (water) content of the aqueous HP0 4 /fly ash mixture is preferably from about 3 to about 5 weight percent for semidry

  11. Alkali ash material: a novel fly ash-based cement.

    PubMed

    Rostami, Hossein; Brendley, William

    2003-08-01

    The United States generates 110 million t of coal ash annually. Approximately 70 million t of this coal ash is fly ash, of which 27% is recycled and the remaining 73% is landfilled. Disposal of such a huge quantity of ash poses a significant environmental problem. A new cementitious material has been developed, called alkali ash material (AAM), which is used to produce concrete for construction. AAM can be used to create a variety of concrete strengths and could revolutionize the concrete product manufacturing industry due to its economic advantage. AAM contains 40-95% Class F fly ash and is used as cement to bind sand, stone, and fibers creating concrete. AAM concrete has been tested for strength, durability, mechanical properties, and, most importantly, economic viability. AAM concrete is economically and technically viable for many construction applications. Some properties include rapid strength gain (90% of ultimate in 1 d), high ultimate strengths (110 MPa or 16,000 psi in 1 d), excellent acid resistance, and freeze-thaw durability. AAM's resistance to chemical attack, such as sulfuric (H2SO4), nitric (HNO3), hydrochloric (HCl), and organic acids, is far better than portland cement concrete. AAM is resistant to freeze-thaw attack based on ASTM C-666 specifications. Potential immediate applications of AAM are blocks, pipe, median barriers, sound barriers, and overlaying materials. Eventual markets are high strength construction products, bridge beams, prestressed members, concrete tanks, highway appurtenances, and other concrete products.

  12. Improved red emission by codoping Li+ in ZnWO4:Eu3+ phosphors

    NASA Astrophysics Data System (ADS)

    Chen, Guiqiang; Wang, Fengli; Yu, Jie; Zhang, Haisheng; Zhang, Xiao

    2017-01-01

    ZnWO4:Eu3+ and ZnWO4:Eu3+/Li+ phosphors have been synthesized successfully by a microwave-assist hydrothermal process. The phase, morphology and luminescent properties are investigated carefully. The XRD and FTIR results indicate that ZnWO4:Eu3+ and ZnWO4:Eu3+/Li+ phosphors have the monoclinic phase. The SEM images indicate that ZnWO4:Eu3+ and ZnWO4:Eu3+/Li+ phosphors are cubes with average particle size about 1 μm. Under the excitation at 395 nm, ZnWO4:Eu3+ and ZnWO4:Eu3+/Li+ phosphors show emission bands originating from the 5D0 → 7Fj (j = 0, 1, 2 and 3) transitions of Eu3+ ions. The Li+ ion acts as charge compensator and results in the enhancement of emission intensity.

  13. Large single crystal growth of MnWO4-type materials from high-temperature solutions

    NASA Astrophysics Data System (ADS)

    Gattermann, U.; Röska, B.; Paulmann, C.; Park, S.-H.

    2016-11-01

    A simple high-temperature growth apparatus was constructed to obtain large crystals of chemically gradient (In, Na)-doped MnWO4solid-solutions. This paper presents the crystal growth and characterisation of both MnWO4and epitaxially grown (In, Na): MnWO4crystals on MnWO4. These large monolithic crystals were made in two steps: A MnWO4 crystal was grown in the crystallographic main direction [001] applying the Czochralski method, followed by the top seeded growth of (In, Na): MnWO4 solid-solutions with an oriented seed crystal of MnWO4. Such a monolithic crystal will serve to fundamental investigation of coupling properties at boundaries between various multiferroic MnWO4-typesolid-solutions.

  14. Optical Properties and Aging of Gasochromic WO3

    NASA Astrophysics Data System (ADS)

    Ghosh, Rudresh; Baker, Matthew B.; Lopez, Rene

    2008-10-01

    WO3 as a possible optical gas sensor has gained increasing importance with H2 becoming a major fuel of the future. This has led to efforts to understand the theoretical and practical aspects of the gasochromic behavior of WO3. WO3 films were fabricated using pulsed laser deposition (PLD). Morphological and stoichiometric ratios of films obtained were observed as functions of deposition parameters. We present the optical constants induced by 2% H2:Ar in WO3 films. This allows us to obtain the limits of the gasochromic change in comparison to ion injection. It was found using Langmuir's adsorption equation that at low H2 concentrations a high sensitivity is predicted but the coloration could saturate at 57.9 % of the material's maximum ion adsorption. Poisoning of the films was also addressed by coating with a permeable polydimethylsiloxane layer. It is shown that gasochromic degradation is prevented thus eliminating common atmospheric gases as possible contaminants. Our studies suggest WO3 thin films as highly sensitive and stable optical hydrogen sensors.

  15. Optical Properties and Aging of Gasochromic WO3

    NASA Astrophysics Data System (ADS)

    Ghosh, Rudresh; Baker, Matthew B.; Lopez, Rene

    2009-03-01

    WO3 as a possible optical gas sensor has gained increasing importance with H2 becoming a major fuel of the future. This has led to efforts to understand the theoretical and practical aspects of the gasochromic behavior of WO3. WO3 films were fabricated using pulsed laser deposition (PLD). Morphological and stoichiometric ratios of films obtained were observed as functions of deposition parameters. We present the optical constants induced by 2% H2:Ar in WO3 films. This allows us to obtain the limits of the gasochromic change in comparison to ion injection. It was found using Langmuir's adsorption equation that at low H2 concentrations a high sensitivity is predicted but the coloration could saturate at 57.9 % of the material's maximum ion adsorption. Poisoning of the films was also addressed by coating with a permeable polydimethylsiloxane layer. It is shown that gasochromic degradation is prevented thus eliminating common atmospheric gases as possible contaminants. Our studies suggest WO3 thin films as highly sensitive and stable optical hydrogen sensors. .

  16. Preparation and physical properties of CuxWO3

    NASA Astrophysics Data System (ADS)

    Koriche, N.; Bessekhouad, Y.; Bouguelia, A.; Trari, M.

    2012-04-01

    We report on the study of WO3 doped with Cu using sol-gel (CuxWO3d) and impregnation (CuxWO3i) methods. All materials are well crystallized and exhibit single phases whose crystallite size ranges from 17 to 100 nm depending on Cu amount and the preparation technique. The conductivity dependence on temperature demonstrates semiconductor behavior and follows the Arrhenius model, with activation energies, Eσ, commonly in the range 0.4-0.6 eV. Moreover, the thermopower study shows that CuxWO3d is mainly of p-type conductivity, whereas CuxWO3i is n-type. The mechanism of conduction is attributed to a small polaron hopping. The doping process is found to decrease the interband transition down to 520 nm depending on the preparation conditions. The photoelectrochemical characterization confirms the conductivity type and demonstrates that the photocurrent Jph increases with Cu-doping. Taking into consideration the activation energy, the flat band potential and the band gap energy, the band positions of each material are proposed according to the preparation method and Cu amount.

  17. Synthesis of high aspect ratio WO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Coşkun, Selim; Koziol, Krzysztof K. K.

    2016-02-01

    Tungsten oxide (WO2) nanorods and nanowires were prepared by the heat treatment of WO2 nanocrystalline powders in the presence of Ar. Nanocrystalline powders produced by a simple water-assisted route at the room temperature were annealed at different temperatures for different durations, which yielded orthorhombic and monoclinic WO2 crystals. Annealing the powders at 700 °C and above resulted in orthorhombic WO2 nanorods/nanowires with an average diameter of 60-70 nm beside the monoclinic WO2 nanocrystalline powders with a diameter of 5 nm. The lengths of the nanorods increased from several 100 nm up to several 10 µm with increasing temperature while their diameters did not change. With increased length, nanowires became more elastic in nature having a cotton-like fabric. The prepared nanostructures have been characterized by X-ray powder diffraction measurements, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. An oriented attachment mechanism leading to root growth from a parent structure was proposed.

  18. Photocatalytic activity of Bi2WO6/Bi2S3 heterojunctions: the facilitation of exposed facets of Bi2WO6 substrate

    NASA Astrophysics Data System (ADS)

    Yan, Long; Wang, Yufei; Shen, Huidong; Zhang, Yu; Li, Jian; Wang, Danjun

    2017-01-01

    Bi2S3/Bi2WO6 hybrid architectures with exposed (020) Bi2WO6 facets have been synthesized via a controlled anion exchange approach. X-ray photoelectron spectroscopy (XPS) reveals that a small amount of Bi2S3 was formed on the surface of Bi2WO6 during the anion exchange process, thus leading to the transformation from the Bi2WO6 to Bi2S3/Bi2WO6. A rhodamine B (RhB) aqueous solution was chosen as model organic pollutants to evaluate the photocatalytic activities of the Bi2S3/Bi2WO6 catalysts. Under visible light irradiation, the Bi2S3/Bi2WO6-TAA displayed the excellent visible light photoactivities compared with pure Bi2S3, Bi2WO6 and other composite photocatalysts. The efficient photocatalytic activity of the Bi2S3/Bi2WO6-TAA composite microspheres was ascribed to the constructed heterojunctions and the inner electric field caused by the exposed (020) Bi2WO6 facets. Active species trapping experiments revealed that h+ and O2rad - are the main active species in the photocatalytic process. Furthermore, the as-obtained photocatalysts showed good photocatalytic activity after four recycles. The results presented in this study provide a new concept for the rational design and development of highly efficient photocatalysts.

  19. AgBi(WO4)2 : A New Modification Material to Bi2 WO6 for Enhanced and Stable Visible-Light Photocatalyic Performance.

    PubMed

    Feng, Cuiyun; Dong, Yuming; Jiang, Pingping; Wang, Guangli; Zhang, Jingjing; Wu, Xiuming; Zhang, Chi

    2015-09-01

    In this work, we report a novel AgBi(WO4 )2 -Bi2 WO6 heterostructure, which was designed and synthesized by using a simple hydrothermal method. Methyl orange was used as a representative dye indicator to evaluate the visible-light catalytic activity and the catalytic mechanism was investigated. The as-synthesized AgBi(WO4 )2 -Bi2 WO6 composite displayed a 43 times higher photocatalytic activity than Bi2 WO6 . Owing to the matched band gap and distinctive heterostructure, AgBi(WO4 )2 -Bi2 WO6 reveals a high visible-light response and high-efficiency utilization of both photogenerated electrons and holes. AgBi(WO4 )2 reveals a similar energy level to and good lattice match with Bi2 WO6 , which are favorable qualities for band bending and fluent electron transfer. Furthermore, the photoexcited electrons can produce oxygen to generate (.) O2 (-) radicals, which is vital for the overall utilization of both holes and electrons. This is the first example of AgBi(WO4 )2 being used as photocatalytic material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Photoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3.

    PubMed

    Wang, Nan; Wang, Donge; Li, Mingrun; Shi, Jingying; Li, Can

    2014-02-21

    Hexagonal nanoflower WO3 arrays have been prepared by using RCOO(-) as the structure directing agent in the microwave-assisted hydrothermal synthesis process. The photoelectrochemical performance of the synthesized hexagonal flower-like WO3 electrode was enhanced compared with the block-like WO3 film.

  1. Biomimetic fabrication of WO3 for water splitting under visible light with high performance

    NASA Astrophysics Data System (ADS)

    Yin, Chao; Zhu, Shenmin; Yao, Fan; Gu, Jiajun; Zhang, Wang; Chen, Zhixin; Zhang, Di

    2013-08-01

    Inspired by the high light-harvesting properties of typical butterfly wings, ceramic WO3 butterfly wings with hierarchical structures of bio-butterfly wings was fabricated using a template of PapilioParis butterfly wings through a sol-gel method. The effect of calcination temperatures on the structures of the ceramic butterfly wings was investigated and the results showed that the WO3 butterfly wing replica calcined at 550 °C (WO3 replica-550) is a single phase and has a high crystallinity and relatively fine hierarchical structure. The average grain size of WO3 replica-550 and WO3 powder are around 32.6 and 42.2 nm, respectively. Compared with pure WO3 powder, WO3 replica-550 demonstrated a higher light-harvesting capability in the region from 460 to 700 nm and more importantly the higher charge separation rate, as evidenced by electron paramagnetic resonance measurements. Photocatalytic O2 evolutions from water were investigated on the ceramic butterfly wings and pure WO3 powder under visible light ( λ > 420 nm). The results showed that the amount of O2 produced from WO3 replica-550 is 50 % higher than that of the pure WO3 powder. The improved photocatalytic performance of WO3 replica-550 is attributed to the quasi-honeycomb structure inherited from the PapilioParis butterfly wings, providing both high light-harvesting efficiency and efficient charge transport through the WO3.

  2. ITER helium ash accumulation

    SciTech Connect

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. . Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  3. Long duration ash probe

    DOEpatents

    Hurley, John P.; McCollor, Don P.; Selle, Stanley J.

    1994-01-01

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

  4. Long duration ash probe

    DOEpatents

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  5. Degradation of methylene blue using porous WO3, SiO2-WO3, and their Au-loaded analogs: adsorption and photocatalytic studies.

    PubMed

    DePuccio, Daniel P; Botella, Pablo; O'Rourke, Bruce; Landry, Christopher C

    2015-01-28

    A facile sonochemical approach was used to deposit 3-5 nm monodisperse gold nanoparticles on porous SiO2-WO3 composite spheres, as confirmed by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). High-resolution TEM (HR-TEM) and energy dispersive X-ray spectroscopy (EDS) further characterized the supported Au nanoparticles within the Au-SiO2-WO3 composite. These analyses showed isolated Au nanoparticles within both SiO2- and WO3-containing regions. Selective etching of the SiO2 matrix from Au-SiO2-WO3 yielded a pure Au-WO3 material with well-dispersed 10 nm Au nanoparticles and moderate porosity. This combined sonochemical-nanocasting technique has not been previously used to synthesize Au-WO3 photocatalysts. Methylene blue (MB) served as a probe for the adsorption capacity and visible light photocatalytic activity of these WO3-containing catalysts. Extensive MB demethylation (azures A, B, C, and thionine) and polymerization of these products occurred over WO3 under dark conditions, as confirmed by electrospray ionization mass spectrometry (ESI-MS). Photoirradiation of these suspensions led to further degradation primarily through demethylation and polymerization pathways, regardless of the presence of Au nanoparticles. Ring-opening sulfur oxidation to the sulfone was a secondary photocatalytic pathway. According to UV-vis spectroscopy, pure WO3 materials showed superior MB adsorption compared to SiO2-WO3 composites. Compared to their respective nonloaded catalysts, Au-SiO2-WO3 and Au-WO3 catalysts exhibited enhanced visible light photocatalytic activity toward the degradation of MB. Specifically, the rates of MB degradation over Au-WO3 and Au-SiO2-WO3 during 300 min of irradiation were faster than those over their nonloaded counterparts (WO3 and SiO2-WO3). These studies highlight the ability of Au-WO3 to serve as an excellent adsorbant and photodegradation catalyst toward MB.

  6. Intrinsic Defects and H Doping in WO3

    PubMed Central

    Zhu, Jiajie; Vasilopoulou, Maria; Davazoglou, Dimitris; Kennou, Stella; Chroneos, Alexander; Schwingenschlögl, Udo

    2017-01-01

    WO3 is widely used as industrial catalyst. Intrinsic and/or extrinsic defects can tune the electronic properties and extend applications to gas sensors and optoelectonics. However, H doping is a challenge to WO3, the relevant mechanisms being hardly understood. In this context, we investigate intrinsic defects and H doping by density functional theory and experiments. Formation energies are calculated to determine the lowest energy defect states. O vacancies turn out to be stable in O-poor environment, in agreement with X-ray photoelectron spectroscopy, and O-H bond formation of H interstitial defects is predicted and confirmed by Fourier transform infrared spectroscopy. PMID:28098210

  7. Symmetry driven control of optical properties in WO3 films

    NASA Astrophysics Data System (ADS)

    Herklotz, A.; Rus, S. F.; KC, S.; Cooper, V. R.; Huon, A.; Guo, E.-J.; Ward, T. Z.

    2017-06-01

    In this work, we demonstrate that the optical bandgap of WO3 films can be continuously controlled through uniaxial strain induced by low-energy helium implantation. The insertion of He into epitaxially grown and coherently strained WO3 films can be used to induce single axis out-of-plane lattice expansion of up to 2%. Ellipsometric spectroscopy reveals that the optical bandgap is reduced by about 0.18 eV per percent expansion of the out-of-plane unit cell length. Density functional theory calculations show that this response is a direct result of changes in orbital degeneracy driven by changes in the octahedral rotations and tilts.

  8. Intrinsic Defects and H Doping in WO3

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajie; Vasilopoulou, Maria; Davazoglou, Dimitris; Kennou, Stella; Chroneos, Alexander; Schwingenschlögl, Udo

    2017-01-01

    WO3 is widely used as industrial catalyst. Intrinsic and/or extrinsic defects can tune the electronic properties and extend applications to gas sensors and optoelectonics. However, H doping is a challenge to WO3, the relevant mechanisms being hardly understood. In this context, we investigate intrinsic defects and H doping by density functional theory and experiments. Formation energies are calculated to determine the lowest energy defect states. O vacancies turn out to be stable in O-poor environment, in agreement with X-ray photoelectron spectroscopy, and O-H bond formation of H interstitial defects is predicted and confirmed by Fourier transform infrared spectroscopy.

  9. Facile Hydrogen Evolution Reaction on WO3Nanorods

    PubMed Central

    2007-01-01

    Tungsten trioxide nanorods have been generated by the thermal decomposition (450 °C) of tetrabutylammonium decatungstate. The synthesized tungsten trioxide (WO3) nanorods have been characterized by XRD, Raman, SEM, TEM, HRTEM and cyclic voltammetry. High resolution transmission electron microscopy and X-ray diffraction analysis showed that the synthesized WO3nanorods are crystalline in nature with monoclinic structure. The electrochemical experiments showed that they constitute a better electrocatalytic system for hydrogen evolution reaction in acid medium compared to their bulk counterpart.

  10. Phase behaviour of 2D MnWO x and FeWO x ternary oxide layers on Pd(1 0 0)

    NASA Astrophysics Data System (ADS)

    Doudin, N.; Kuhness, D.; Blatnik, M.; Netzer, F. P.; Surnev, S.

    2017-06-01

    The structure and properties of ternary oxide materials at the nanoscale are poorly explored both on experimental and theoretical levels. With this work we demonstrate the successful on-surface synthesis of two-dimensional (2D) ternary oxide, MnWO x and FeWO x , nanolayers on a Pd(1 0 0) surface and the understanding of their new structure and phase behaviour with the help of state-of-art surface structure and spectroscopy techniques. We find that the 2D MnWO x and FeWO x phases, prepared under identical thermodynamic conditions, exhibit similar structural properties, reflecting the similarity of the bulk MnWO4 and FeWO4 phases with the wolframite structure. Structure models of prototypical 2D ternary oxide phases are proposed and discussed in the light of new structure architecture concepts which have no analogues in the bulk.

  11. Synthesis of Shape-Tailored WO3 Micro-/Nanocrystals and the Photocatalytic Activity of WO3/TiO2 Composites

    PubMed Central

    Székely, István; Kovács, Gábor; Baia, Lucian; Danciu, Virginia; Pap, Zsolt

    2016-01-01

    A traditional semiconductor (WO3) was synthesized from different precursors via hydrothermal crystallization targeting the achievement of three different crystal shapes (nanoplates, nanorods and nanostars). The obtained WO3 microcrystals were analyzed by the means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectroscopy (DRS). These methods contributed to the detailed analysis of the crystal morphology and structural features. The synthesized bare WO3 photocatalysts were totally inactive, while the P25/WO3 composites were efficient under UV light radiation. Furthermore, the maximum achieved activity was even higher than the bare P25’s photocatalytic performance. A correlation was established between the shape of the WO3 crystallites and the observed photocatalytic activity registered during the degradation of different substrates by using P25/WO3 composites. PMID:28773386

  12. Fly ash chemical classification based on lime

    SciTech Connect

    Fox, J.

    2007-07-01

    Typically, total lime content (CaO) of fly ash is shown in fly ash reports, but its significance is not addressed in US specifications. For certain applications a low lime ash is preferred. When a class C fly ash must be cementitious, lime content above 20% is required. A ternary S-A-C phase diagram pilot is given showing the location of fly ash compositions by coal rank and source in North America. Fly ashes from subbituminous coal from the Powder River Basin usually contain sufficient lime to be cementitious but blending with other coals may result in calcium being present in phases other than tricalcium aluminate. 9 refs., 1 fig.

  13. Controlling formaldehyde emissions with boiler ash.

    PubMed

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to <1 ppmv. Methanol is removed to a much lower extent. The efficiency of formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  14. Reactive Sputter Deposition of WO3/Ag/WO3 Film for Indium Tin Oxide (ITO)-Free Electrochromic Devices.

    PubMed

    Yin, Yi; Lan, Changyong; Guo, Huayang; Li, Chun

    2016-02-17

    Functioning both as electrochromic (EC) and transparent-conductive (TC) coatings, WO3/Ag/WO3 (WAW) trilayer film shows promising potential application for ITO-free electrochromic devices. Reports on thermal-evaporated WAW films revealed that these bifunctional WAW films have distinct EC characteristics; however, their poor adhesive property leads to rapid degradation of coloring-bleaching cycling. Here, we show that WAW film with improved EC durability can be prepared by reactive sputtering using metal targets. We find that, by introducing an ultrathin tungsten (W) sacrificial layer before the deposition of external WO3, the oxidation of silver, which leads to film insulation and apparent optical haze, can be effectively avoided. We also find that the luminous transmittance and sheet resistance were sensitive to the thicknesses of tungsten and silver layers. The optimized structure for TC coating was obtained to be WO3 (45 nm)/Ag (10 nm)/W (2 nm)/WO3 (45 nm) with a sheet resistance of 16.3 Ω/□ and a luminous transmittance of 73.7%. Such film exhibits compelling EC performance with decent luminous transmittance modulation ΔTlum of 29.5%, fast switching time (6.6 s for coloring and 15.9 s for bleaching time), and long-term cycling stability (2000 cycles) with an applied potential of ±1.2 V. Thicker external WO3 layer (45/10/2/100 nm) leads to larger modulation with maximum ΔTlum of 46.4%, but at the cost of significantly increasing the sheet resistance. The strategy of introducing ultrathin metal sacrificial layer to avoid silver oxidation could be extended to fabricating other oxide-Ag-oxide transparent electrodes via low-cost reactive sputtering.

  15. Ash in fire affected ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  16. Ash phloem reduction models vary among species and growing conditions

    Treesearch

    Tara L. Bal; Andrew J. Storer; Linda M. Nagel

    2011-01-01

    The exotic insect, emerald ash borer (Agrilus planipennis), is responsible for the death of millions of ash trees. Removal of ash from areas in close proximity to outlier populations will reduce the potential population density of emerald ash borer (EAB).

  17. Multiple Horizontal Transfers of Bacteriophage WO and Host Wolbachia in Fig Wasps in a Closed Community.

    PubMed

    Wang, Ningxin; Jia, Sisi; Xu, Heng; Liu, Yong; Huang, Dawei

    2016-01-01

    Wolbachia-bacteriophage WO is a good model system for studying interactions between bacteria and viruses. Previous surveys of insect hosts have been conducted via sampling from open or semi-open communities; however, no studies have reported the infection patterns of phage WO of insects living in a closed community. Figs and fig wasps form a peculiar closed community in which the Ficus tree provides a compact syconium habitat for a variety of fig wasp. Therefore, in this study, we performed a thorough survey of Wolbachia and bacteriophage WO infection patterns in a total of 1406 individuals from 23 fig wasps species living on three different fig tree species. The infection rates of Wolbachia and phage WO were 82.6% (19/23) and 39.1% (9/23), respectively. Additionally, phage WO from fig wasps showed strong insect host specificity based on orf7 sequences from fig wasps and 21 other insect species. Probably due to the physical barrier of fig syconium, most phage WO from fig wasps form a specific clade. Phylogenetic analysis showed the absence of congruence between WO and host Wolbachia, WO and insect host, as well as Wolbachia and fig wasps, suggesting that both Wolbachia and phage WO exchanged frequently and independently within the closed syconium. Thus, the infection pattern of bacteriophage WO from fig wasps appeared quite different from that in other insects living outside, although the effect and the transfer routes of phage WO are unclear, which need to be investigated in the future.

  18. Multiple Horizontal Transfers of Bacteriophage WO and Host Wolbachia in Fig Wasps in a Closed Community

    PubMed Central

    Wang, Ningxin; Jia, Sisi; Xu, Heng; Liu, Yong; Huang, Dawei

    2016-01-01

    Wolbachia-bacteriophage WO is a good model system for studying interactions between bacteria and viruses. Previous surveys of insect hosts have been conducted via sampling from open or semi-open communities; however, no studies have reported the infection patterns of phage WO of insects living in a closed community. Figs and fig wasps form a peculiar closed community in which the Ficus tree provides a compact syconium habitat for a variety of fig wasp. Therefore, in this study, we performed a thorough survey of Wolbachia and bacteriophage WO infection patterns in a total of 1406 individuals from 23 fig wasps species living on three different fig tree species. The infection rates of Wolbachia and phage WO were 82.6% (19/23) and 39.1% (9/23), respectively. Additionally, phage WO from fig wasps showed strong insect host specificity based on orf7 sequences from fig wasps and 21 other insect species. Probably due to the physical barrier of fig syconium, most phage WO from fig wasps form a specific clade. Phylogenetic analysis showed the absence of congruence between WO and host Wolbachia, WO and insect host, as well as Wolbachia and fig wasps, suggesting that both Wolbachia and phage WO exchanged frequently and independently within the closed syconium. Thus, the infection pattern of bacteriophage WO from fig wasps appeared quite different from that in other insects living outside, although the effect and the transfer routes of phage WO are unclear, which need to be investigated in the future. PMID:26913026

  19. Tunable luminescence and enhanced photocatalytic activity for Eu(III) doped Bi2WO6 nanoparticles

    NASA Astrophysics Data System (ADS)

    Gu, Haidong; Yu, Lei; Wang, Juan; Ni, Min; Liu, Tingting; Chen, Feng

    2017-04-01

    A series of Eu(III) doped Bi2WO6 nanoparticles were synthesized by a hydrothermal process. The obtained Bi2WO6:Eu(III) nanoparticles were characterized by XRD, SEM, luminescence spectrophotometer and DRS. The XRD and TEM results indicate that the Eu(III) doping concentration has no influence on the phase and morphology. However, the Eu(III) doping can tune the luminescence and enhance the photocatalytic activity of Bi2WO6. With the increases of Eu3 + doping concentrations, the emission intensity of WO66 - group decreases nut the photocatalytic activity increases. The tunable luminescence of Bi2WO6:Eu(III) nanoparticles results from the energy transfer from WO66 - group to Eu(III) ion. The enhanced performance can be ascribed to efficient separation of electron and hole pairs after doping Eu(III) into the Bi2WO6 lattice.

  20. Tunable luminescence and enhanced photocatalytic activity for Eu(III) doped Bi2WO6 nanoparticles.

    PubMed

    Gu, Haidong; Yu, Lei; Wang, Juan; Ni, Min; Liu, Tingting; Chen, Feng

    2017-04-15

    A series of Eu(III) doped Bi2WO6 nanoparticles were synthesized by a hydrothermal process. The obtained Bi2WO6:Eu(III) nanoparticles were characterized by XRD, SEM, luminescence spectrophotometer and DRS. The XRD and TEM results indicate that the Eu(III) doping concentration has no influence on the phase and morphology. However, the Eu(III) doping can tune the luminescence and enhance the photocatalytic activity of Bi2WO6. With the increases of Eu(3+) doping concentrations, the emission intensity of WO6(6-) group decreases nut the photocatalytic activity increases. The tunable luminescence of Bi2WO6:Eu(III) nanoparticles results from the energy transfer from WO6(6-) group to Eu(III) ion. The enhanced performance can be ascribed to efficient separation of electron and hole pairs after doping Eu(III) into the Bi2WO6 lattice.

  1. Tripartite associations among bacteriophage WO, Wolbachia, and host affected by temperature and age in Tetranychus urticae.

    PubMed

    Lu, Ming-Hong; Zhang, Kai-Jun; Hong, Xiao-Yue

    2012-11-01

    A phage density model of cytoplasmic incompatibility (CI), which means lytic phages reduce bacterial density associated with CI, significantly enhances our understanding of the tripartite associations among bacteriophage WO, Wolbachia and host. However, WO may alternate between lytic and lysogenic life cycles or change phage production under certain conditions including temperature, host age and host species background. Here, extreme temperatures can induce an alteration in the life cycle of WO and change the tripartite associations among WO, Wolbachia and CI. Based on the accumulation of the WO load, WO can transform into the lytic life cycle with increasing age. These findings confirmed that the environment plays an important role in the associations among WO, Wolbachia and host.

  2. Synthesis of a highly reactive form of WO2Cl2, its conversion into nanocrystalline mono-hydrated WO3 and coordination compounds with tetramethylurea.

    PubMed

    Bortoluzzi, Marco; Evangelisti, Claudio; Marchetti, Fabio; Pampaloni, Guido; Piccinelli, Fabio; Zacchini, Stefano

    2016-10-21

    A new form of WO2Cl2 was obtained by modification of a literature procedure. Both the newly prepared WO2Cl2 and the commercial yellow WO2Cl2 exhibited an orthorhombic structure (powder X-ray diffraction, P-XRD), and their air exposure at room temperature afforded light green and lemon yellow WO3·H2O (orthorhombic phase), respectively. These materials were characterized by P-XRD, high-resolution transmission electron microscopy (HR-TEM) and scanning transmission electron microscopy (S-TEM). The analyses revealed the nanocrystalline nature of light green WO3·H2O, and the prevalent amorphism of lemon yellow WO3·H2O. The reactions of grey WO2Cl2 with one and two equivalents of tetramethylurea (tmu), in CH2Cl2 at room temperature, led to the isolation of the trinuclear complex [WO2Cl2(tmu)]3, 1 (45% yield), and the mononuclear one WO2Cl2(tmu)2, 2 (64%), respectively. Compounds 1 and 2 were fully characterized by analytical and spectroscopic methods, single crystal X-ray diffraction (SC-XRD) and DFT calculations.

  3. Development of novel ash hybrids to introgress resistance to emerald ash borer into north American ash species

    Treesearch

    Jennifer L. Koch; David W. Carey; Mary E. Mason

    2008-01-01

    Currently, there is no evidence that any of the native North American ash species have any resistance to the emerald ash borer (EAB). This means that the entire ash resource of the eastern United States and Canada is at risk of loss due to EAB. In contrast, outbreaks of EAB in Asian ash species are rare and appear to be isolated responses to stress (Bauer et al. 2005,...

  4. Emerald ash borer biocontrol in ash saplings: the potential for early stage recovery of North American ash

    USDA-ARS?s Scientific Manuscript database

    In many parts of North America, ash stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees and young basal sprouts, saplings, and seedlings. Without a seed bank, ash tree recovery will require survival and maturation of these younger cohorts...

  5. Mineral resource of the month: soda ash

    USGS Publications Warehouse

    Kostic, Dennis S.

    2006-01-01

    Soda ash, also known as sodium carbonate, is an alkali chemical that can be refined from the mineral trona and from sodium carbonate-bearing brines. Several chemical processes exist for manufacturing synthetic soda ash.

  6. The spatial distribution of riparian ash: implications for the dispersal of the emerald ash borer

    Treesearch

    Susan J. Crocker; W. Keith Moser; Mark H. Hansen; Mark D. Nelson

    2007-01-01

    A pilot study to assess riparian ash connectivity and its implications for emerald ash borer dispersal was conducted in three subbasins in Michigan's Southern Lower Peninsula. Forest Inventory and Analysis data were used to estimate ash biomass. The nineteen percent of plots in riparian physiographic classes contained 40 percent of ash biomass. Connectivity of...

  7. Exploring the molecular and biochemical basis of ash resistance to emerald ash borer

    Treesearch

    Justin G.A. Whitehill; Daniel A. Herms; Pierluigi. Bonello

    2010-01-01

    Larvae of the emerald ash borer (EAB) (Agrilus planipennis) feed on phloem of ash (Fraxinus spp.) trees. It is hypothesized that the resistance of Asian species of ash (e.g., Manchurian ash, F. mandshurica) to EAB is due to endogenous defenses present in phloem tissues in the form of defensive proteins and/or...

  8. Host resistance to emerald ash borer: development of novel ash hybrids

    Treesearch

    Jennifer L. Koch; David W. Carey; Richard Larson

    2007-01-01

    In contrast to the rapid destruction of ash trees in the United States by emerald ash borer (EAB, Agrilus planipennis Fairmaire), outbreaks of EAB in Asia appear to be isolated responses to stress, such as drought, and do not devastate the ash population. This indicates that in Asia, ash trees may have a level of inherent resistance. This resistance...

  9. The Te-ni-wo-ha: An Etymological Study.

    ERIC Educational Resources Information Center

    Jolly, Yukiko S.

    1972-01-01

    The designation of the Japanese word class "joshi" (in English known as particles, post-positional case markers, or relationals) by the term te-ni-wo-ha can be traced to the early superimposition of the Chinese writing system on Japanese speech. Because of the structural differences between the two languages and the existence of elements in…

  10. Characterisation and application of WO3 films for electrochromic devices

    NASA Astrophysics Data System (ADS)

    Stapinski, Thomas; Marszalek, Konstanty; Swatowska, Barbara; Stanco, Agnieszka

    2013-07-01

    Electrochromic system is the one of the most popular devices using color memory effect under the influence of an applied voltage. The electrochromic system was produced based on the thin WO3 electrochromic films. Films were prepared by RF magnetron sputtering from tungsten targets in a reactive Ar+O2 gas atmosphere of various Ar/O2 ratios. The technological gas mixture pressure was 3 Pa and process temperature 30°C. Structural and optical properties of WO3 films were investigated for as-deposited and heat treated samples at temperature range from 350°C to 450°C in air. The material revealed the dependence of properties on preparation conditions and on post-deposition heat treatment. Main parameters of thin WO3 films: thickness d, refractive index n, extinction coefficient k and energy gap Eg were determined and optimized for application in electrochromic system. The main components of the system were glass plate with transparent conducting oxides, electrolyte, and glass plate with transparent conducting oxides and WO3 layer. The optical properties of the system were investigated when a voltage was applied across it. The electrochromic cell revealed the controllable transmittance depended on the operation voltage.

  11. Morphologically different WO3 nanocrystals in photoelectrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Biswas, Soumya Kanti; Baeg, Jin-Ook; Moon, Sang-Jin; Kong, Ki-jeong; So, Won-Wook

    2012-01-01

    Different morphologies of WO3 nanocrystals such as nanorods and nanoplates have been obtained under hydrothermal conditions using ammonium metatungstate as the precursor in presence of different organic acids such as citric, oxalic, and tartaric acid in the reaction medium. Detailed characterization of the crystal structure, particle morphology, and optical band gap of the synthesized powders have been done by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and solid-state UV-visible spectroscopy study. The as-synthesized materials are WO3 hydrates with orthorhombic phase which transform to the hexagonal WO3 through dehydration upon heating at 350 °C. The resultant products are crystalline with nanoscale dimensions. Finally, the photoactivity of the synthesized materials annealed at 500 °C has been compared employing in photoelectrochemical water oxidation under the illumination of AM 1.5G simulated solar light (100 mWcm-2). The photocurrent measurements upon irradiation of light exhibit obvious photocatalytic activity with a photocurrent of about 0.77, 0.61, and 0.65 mAcm-2 for the WO3 film derived with the oxalic acid, tartaric, and citric acid assisting agents, respectively, at 1.8 V versus Ag/AgCl electrode.

  12. Enhanced photocatalytic properties in well-ordered mesoporous WO3.

    PubMed

    Li, Li; Krissanasaeranee, Methira; Pattinson, Sebastian W; Stefik, Morgan; Wiesner, Ulrich; Steiner, Ullrich; Eder, Dominik

    2010-10-28

    We used polyisoprene-block-ethyleneoxide copolymers as structure-directing agents to synthesise well-ordered and highly-crystalline mesoporous WO(3) architectures that possess improved photocatalytic properties due to enhanced dye-adsorption in absence of diffusion limitation.

  13. Current and voltage noise in WO3 nanoparticle films

    NASA Astrophysics Data System (ADS)

    Hoel, A.; Vandamme, L. K. J.; Kish, L. B.; Olsson, E.

    2002-04-01

    Current and voltage noise measurements have been carried out on nanoparticle WO3 films. The fluctuation dissipation theorem holds, which indicates that the observed noise is an equilibrium phenomenon. Results on the thinnest films show that noise measurements can be used for quality assessment of nanocrystalline insulating films.

  14. Rising from the ashes: Coal ash in recycling and construction

    SciTech Connect

    Naquin, D.

    1998-02-01

    Beneficial Ash Management (BAM, Clearfield, Pa.) has won an environmental award for its use of ash and other waste to fight acid mine drainage. The company`s workers take various waste materials, mainly fly ash from coal-burning plants, to make a cement-like material or grouting, says Ernest Roselli, BAM president. The grouting covers the soil, which helps prevent water from contacting materials. This, in turn, helps control chemical reactions, reducing or eliminating formation of acid mine drainage. The company is restoring the 1,400-acre Bark Camp coal mine site near Penfield in Clearfield County, Pa. Under a no-cost contract with the state of Pennsylvania, BAM is using boiler slag, causticizing byproducts (lime) and nonreclaimable clarifier sludge from International Paper Co. (Erie, Pa.). The mine reclamation techniques developed and monitored at the site include using man-made wetlands to treat acid mine drainage and testing anhydrous ammonia as a similar treatment agent. BAM researches and tests fly ash mixed with lime-based activators as fill material for land reclamation, and develops and uses artificial soil material from paper mill and tannery biosolids.

  15. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  16. Survival of emerald ash borer in chips

    Treesearch

    Deborah G. McCullough; Therese M. Poland; David L. Cappaert

    2005-01-01

    The ability of emerald ash borer (EAB), Agrilus planipennis Fairmaire, to survive following chipping or grinding of infested ash trees remains a critical question for regulatory officials. In October 2002, we felled eight infested ash trees and sampled sections of the trunk and large branches from each tree to estimate EAB density.

  17. Tungsten-based nanomaterials (WO3 & Bi2WO6): Modifications related to charge carrier transfer mechanisms and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Girish Kumar, S.; Koteswara Rao, K. S. R.

    2015-11-01

    Heterogeneous photocatalysis is an ideal green energy technology for the purification of wastewater. Although titania dominates as the reference photocatalyst, its wide band gap is a bottleneck for extended utility. Thus, search for non-TiO2 based nanomaterials has become an active area of research in recent years. In this regard, visible light absorbing polycrystalline WO3 (2.4-2.8 eV) and Bi2WO6 (2.8 eV) with versatile structure-electronic properties has gained considerable interest to promote the photocatalytic reactions. These materials are also explored in selective functional group transformation in organic reactions, because of low reduction and oxidation potential of WO3 CB and Bi2WO6 VB, respectively. In this focused review, various strategies such as foreign ion doping, noble metal deposition and heterostructuring with other semiconductors designed for efficient photocatalysis is discussed. These modifications not only extend the optical response to longer wavelengths, but also prolong the life-time of the charge carriers and strengthen the photocatalyst stability. The changes in the surface-bulk properties and the charge carrier transfer dynamics associated with each modification correlating to the high activity are emphasized. The presence of oxidizing agents, surface modification with Cu2+ ions and synthesis of exposed facets to promote the degradation rate is highlighted. In depth study on these nanomaterials is likely to sustain interest in wastewater remediation and envisaged to signify in various green energy applications.

  18. Photoelectrochemical Properties and Behavior of α-SnWO4 Photoanodes Synthesized by Hydrothermal Conversion of WO3 Films.

    PubMed

    Zhu, Zhehao; Sarker, Pranab; Zhao, Chenqi; Zhou, Lite; Grimm, Ronald L; Huda, Muhammad N; Rao, Pratap M

    2017-01-18

    Metal oxides with moderate band gaps are desired for efficient production of hydrogen from sunlight and water via photoelectrochemical (PEC) water splitting. Here, we report an α-SnWO4 photoanode synthesized by hydrothermal conversion of WO3 films that achieves photon to current conversion at wavelengths up to 700 nm (1.78 eV). This photoanode is promising for overall PEC water-splitting because the flat-band potential and voltage of photocurrent onset are more negative than the potential of hydrogen evolution. Furthermore, the photoanode utilizes a large portion of the solar spectrum. However, the photocurrent density reaches only a small fraction of that which is theoretically possible. Density functional theory based thermodynamic and electronic structure calculations were performed to elucidate the nature and impact of defects in α-SnWO4 prepared by this synthetic route, from which hole localization at Sn-at-W antisite defects was determined to be a likely cause for the poor photocurrent. Measurements further showed that the photocurrent decreases over time due to surface oxidation, which was suppressed by improving the kinetics of hole transfer at the semiconductor/electrolyte interface. Alternative synthetic methods and the addition of protective coatings and/or oxygen evolution catalysts are suggested to improve the PEC performance and stability of this promising α-SnWO4 material.

  19. WO{sub 3} nanoplates, hierarchical flower-like assemblies and their photocatalytic properties

    SciTech Connect

    Huang, Jianhua Xiao, Liang; Yang, Xiaolong

    2013-08-01

    Graphical abstract: WO{sub 3} nanoplates, hierarchical flower-like assemblies and their visible light-driven photocatalytic properties for degradation of rhodamine B. - Highlights: • Preparation of monoclinic WO{sub 3} by a hydrothermal reaction of PbWO{sub 4} in the presence of HNO{sub 3}. • Single-crystalline WO{sub 3} nanoplates were formed when 4 M HNO{sub 3} solution was used. • WO{sub 3} flowers were assembled by nanoplates when 15 M HNO{sub 3} solution was used. • The products showed excellent visible light-driven photodegradation of rhodamine B. - Abstract: Monoclinic WO{sub 3} was prepared by a hydrothermal reaction of PbWO{sub 4} in the presence of HNO{sub 3}. WO{sub 3} rectangular nanoplates with a side length of 50–150 nm and a thickness of about 25 nm were obtained at 4 M HNO{sub 3} solution. And the single crystal nature was confirmed by the selected area electron diffraction. Whereas WO{sub 3} hierarchical flower-like assemblies with 3–5 μm in diameter were self-organized by nanoplates in the presence of 15 M HNO{sub 3} solution. Compared with commercial WO{sub 3} particles, our products showed an enhancement of photocatalytic properties for the degradation of rhodamine B under visible light irradiation.

  20. Microwave Intercalation Synthesis of WO3 Nanoplates and Their NO-Sensing Properties

    NASA Astrophysics Data System (ADS)

    Tu, Yue; Li, Qiang; Jiang, Danyu; Wang, Qi; Feng, Tao

    2015-01-01

    Tungsten(VI) oxide (WO3) nanoplates were successfully synthesized by microwave intercalation. Through microwave processing, an intermediate product H2W2O7· xH2O was prepared quickly to greatly decrease the time used to prepare WO3 nanoplates. The crystal structure and morphology of WO3 were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected-area electron diffraction. The morphology of WO3 changed with an increase in calcining temperature. A mixed-potential NO x sensor using planar yttria-stabilized zirconia and WO3 as the sensing electrode (SE) was fabricated, and its performance in NO x detection at high temperature was examined. It was determined that at 500 °C, the sensor with the WO3-nanoplate SE had higher sensitivity to NO than the sensor with a SE consisting of WO3 microparticles. The response of the NO sensor with a WO3-nanoplate SE was linear with the logarithm of NO concentration in the range of 100-1000 ppm. The electrochemical impedance measurements indicate that the electrode reaction that occurred at the triple-phase boundary (TPB) of the sensor with WO3-nanoplate SE was stronger than the reaction that occurred at the TPB of the sensor with WO3-microparticle sensing electrode.

  1. Emerald ash borer adult dispersal

    Treesearch

    Robert A. Haack; Toby R. Petrice

    2003-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire, is an Asian buprestid beetle that was first discovered in Michigan and Ontario in 2002 (Haack et al. 2002). Smaller populations, resulting from movement of infested host material, were found in Ohio, Maryland, and Virginia in 2003. EAB adult dispersal has not been studied in Asia; however,...

  2. Hydrochemical Leaching of Wildfire Ash

    NASA Astrophysics Data System (ADS)

    Hamann, H.

    2008-12-01

    A century of fire suppression, combined with recent droughts has provoked some of the worst wildfire seasons in the western US. Although wild and prescribed fires are known to supply nutrients to grassland, shrubland and forest ecosystems, when ash and combustion byproducts are leached into surface waters the nutrients and other materials can affect aquatic ecosystems and pose a considerable risk to water quality. This ash may be persistent for periods as short as a storm or snowmelt event or up to several years, as suggested by periodic increases in dissolved nutrients and suspended solids. Here I present results from field sampling and bench scale experiments that examine the rate of change and chemical quality of leachate from ash samples collected from two wildfires that burned in Colorado in 2003 and 2006. Bench scale- experiments suggest that the conductivity of ash leachate increases in a continuous and modelable manner. Stream grab samples collected in burned and unburned areas within two weeks of the 2006 Mato Vega fire suggest an initial increase in pH, and conductivity, as well as an increase in solutes including dissolved organic carbon and manganese; however the results were spatially variable.

  3. Petrographic characterization of economizer fly ash

    SciTech Connect

    Valentim, B.; Hower, J.C.; Soares, S.; Guedes, A.; Garcia, C.; Flores, D.; Oliveira, A.

    2009-11-15

    Policies for reducing NOx emissions have led power plants to restrict O{sub 2}, resulting in high-carbon fly ash production. Therefore, some potentially useful fly ash, such as the economizer fly ash, is discarded without a thorough knowledge of its composition. In order to characterize this type of fly ash, samples were collected from the economizer Portuguese power plant burning two low-sulfur bituminous coals. Characterization was also performed on economizer fly ash subsamples after wet sieving, density and magnetic separation. Analysis included atomic absorption spectroscopy, loss-on-ignition, scanning electron microscopy/energy-dispersive X-ray spectroscopy, optical microscopy, and micro-Raman spectroscopy.

  4. Adsorptive properties of fly ash carbon

    SciTech Connect

    Graham, U.M.; Robl, T.L.; Rathbone, R.F.

    1996-12-31

    The driving force behind the development of this research project has been the increasing concerns about the detrimental effects of high carbon carryover into combustion ash. Without the carbon, combustion ash can be utilized in cement industry avoiding environmental implications in landfill operations. Because the carbon surfaces have been structurally altered while passing through the combustor, including the formation of a macro-porous surface, fly ash carbons, after separation from the ash, may constitute a unique precursor for the production of adsorbents. This paper discusses a novel approach for using fly ash carbons in the cleanup of organic pollutants.

  5. Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash

    PubMed Central

    Grau, Francisco; Choo, Hyunwook; Hu, Jong Wan; Jung, Jongwon

    2015-01-01

    Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing the natural materials as an economical and environmental alternative. This study is intended to provide an environmental solution for uncontrolled disposal of biomass ashes by way of recycling the biomass ash and replacing the soils in geotechnical engineering projects. Therefore, in this study, characteristic tests of wood and sugarcane bagasse ashes that are considered the most common biomass ashes are conducted. The test of chemical compositions of biomass ashes is conducted using energy dispersive X-ray spectroscopy (EDS), and Scanning Electron Microscope (SEM), and heavy metal analysis is also conducted. Engineering behaviors including hydraulic conductivity, constrained modulus and shear modulus are examined. Also, coal fly ash Class C is used in this study for comparison with biomass ashes, and Ottawa 20/30 sands containing biomass ashes are examined to identify the soil replacement effect of biomass ashes. The results show that the particle sizes of biomass ashes are halfway between coal fly ash Class C and Ottawa 20/30 sand, and biomass ashes consist of a heterogeneous mixture of different particle sizes and shapes. Also, all heavy metal concentrations were found to be below the US Environmental Protection Agency (EPA) maximum limit. Hydraulic conductivity values of Ottawa 20/30 sand decrease significantly when replacing them with only 1%–2% of biomass ashes. While both the constrained modulus and shear modulus of biomass ashes are lower than Ottawa 20/30 sand, those of mixtures containing up to 10% biomass ashes are little affected by replacing the soils with biomass ashes. PMID:28793611

  6. Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash.

    PubMed

    Grau, Francisco; Choo, Hyunwook; Hu, Jong Wan; Jung, Jongwon

    2015-10-12

    Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing the natural materials as an economical and environmental alternative. This study is intended to provide an environmental solution for uncontrolled disposal of biomass ashes by way of recycling the biomass ash and replacing the soils in geotechnical engineering projects. Therefore, in this study, characteristic tests of wood and sugarcane bagasse ashes that are considered the most common biomass ashes are conducted. The test of chemical compositions of biomass ashes is conducted using energy dispersive X-ray spectroscopy (EDS), and Scanning Electron Microscope (SEM), and heavy metal analysis is also conducted. Engineering behaviors including hydraulic conductivity, constrained modulus and shear modulus are examined. Also, coal fly ash Class C is used in this study for comparison with biomass ashes, and Ottawa 20/30 sands containing biomass ashes are examined to identify the soil replacement effect of biomass ashes. The results show that the particle sizes of biomass ashes are halfway between coal fly ash Class C and Ottawa 20/30 sand, and biomass ashes consist of a heterogeneous mixture of different particle sizes and shapes. Also, all heavy metal concentrations were found to be below the US Environmental Protection Agency (EPA) maximum limit. Hydraulic conductivity values of Ottawa 20/30 sand decrease significantly when replacing them with only 1%-2% of biomass ashes. While both the constrained modulus and shear modulus of biomass ashes are lower than Ottawa 20/30 sand, those of mixtures containing up to 10% biomass ashes are little affected by replacing the soils with biomass ashes.

  7. Forecasting exposure to volcanic ash based on ash dispersion modeling

    NASA Astrophysics Data System (ADS)

    Peterson, Rorik A.; Dean, Ken G.

    2008-03-01

    A technique has been developed that uses Puff, a volcanic ash transport and dispersion (VATD) model, to forecast the relative exposure of aircraft and ground facilities to ash from a volcanic eruption. VATD models couple numerical weather prediction (NWP) data with physical descriptions of the initial eruptive plume, atmospheric dispersion, and settling of ash particles. Three distinct examples of variations on the technique are given using ERA-40 archived reanalysis NWP data. The Feb. 2000 NASA DC-8 event involving an eruption of Hekla volcano, Iceland is first used for analyzing a single flight. Results corroborate previous analyses that conclude the aircraft did encounter a diffuse cloud of volcanic origin, and indicate exposure within a factor of 10 compared to measurements made on the flight. The sensitivity of the technique to dispersion physics is demonstrated. The Feb. 2001 eruption of Mt. Cleveland, Alaska is used as a second example to demonstrate how this technique can be utilized to quickly assess the potential exposure of a multitude of aircraft during and soon after an event. Using flight tracking data from over 40,000 routes over three days, several flights that may have encountered low concentrations of ash were identified, and the exposure calculated. Relative changes in the quantity of exposure when the eruption duration is varied are discussed, and no clear trend is evident as the exposure increased for some flights and decreased for others. A third application of this technique is demonstrated by forecasting the near-surface airborne concentrations of ash that the cities of Yakima Washington, Boise Idaho, and Kelowna British Columbia might have experienced from an eruption of Mt. St. Helens anytime during the year 2000. Results indicate that proximity to the source does not accurately determine the potential hazard. Although an eruption did not occur during this time, the results serve as a demonstration of how existing cities or potential

  8. ACAA fly ash basics: quick reference card

    SciTech Connect

    2006-07-01

    Fly ash is a fine powdery material created when coal is burned to generate electricity. Before escaping into the environment via the utility stacks, the ash is collected and may be stored for beneficial uses or disposed of, if necessary. The use of fly ash provides environmental benefits, such as the conservation of natural resources, the reduction of greenhouse gas emissions and eliminating the needed for ash disposal in landfills. It is also a valuable mineral resource that is used in construction and manufacturing. Fly ash is used in the production of Portland cement, concrete, mortars and stuccos, manufactured aggregates along with various agricultural applications. As mineral filler, fly ash can be used for paints, shingles, carpet backing, plastics, metal castings and other purposes. This quick reference card is intended to provide the reader basic source, identification and composition, information specifically related to fly ash.

  9. Utilization of coal fly ash. Master's thesis

    SciTech Connect

    Openshaw, S.C.

    1992-01-01

    Coal-fired power plants produce approximately 80 million tons of fly ash each year. Efforts to use fly ash have reached only a twenty to thirty percent reutilization rate. A literature review was performed to provide a consensus of the available information regarding fly ash. Fly ash is highly variable depending on the coal source, plant operations, and several other parameters. The various fly ash characteristics are discussed including classifications, physical characteristics, chemical properties and chemical compositions. Although extensive research has been performed on the use of fly ash, very little of this research has monitored any environmental impacts. The environmental concerns addressed include mobilization of toxic elements, biota impact, microbial impact, handling dangers, and pertinent regulations. Finally, the various disposal and reutilization options for fly ash are examined. A recommendation is provided for further research to cover deficiencies found in the literature.

  10. Risk to ash from emerald ash borer: can biological control prevent the loss of ash stands?

    Treesearch

    Jian J. Duan; Roy G. Van Driesche; Leah S. Bauer; Daniel M. Kashian; Daniel A. Herms

    2015-01-01

    Ash trees (Fraxinus spp.) are an important components of both natural forests and urban plantings in the United States and Canada (Federal Register, 2003; Nowak et al., 2003). There are approximately 16 species of Fraxinus native to North America (Harlow et al., 1996; USGS, 2014), each adapted to different ecological niches across...

  11. HRTEM Microstructural Characterization of β-WO3 Thin Films Deposited by Reactive RF Magnetron Sputtering

    PubMed Central

    Faudoa-Arzate, A.; Arteaga-Durán, A.; Saenz-Hernández, R.J.; Botello-Zubiate, M.E.; Realyvazquez-Guevara, P.R.; Matutes-Aquino, J.A.

    2017-01-01

    Though tungsten trioxide (WO3) in bulk, nanosphere, and thin film samples has been extensively studied, few studies have been dedicated to the crystallographic structure of WO3 thin films. In this work, the evolution from amorphous WO3 thin films to crystalline WO3 thin films is discussed. WO3 thin films were fabricated on silicon substrates (Si/SiO2) by RF reactive magnetron sputtering. Once a thin film was deposited, two successive annealing treatments were made: an initial annealing at 400 °C for 6 h was followed by a second annealing at 350 °C for 1 h. Film characterization was carried out by X-ray diffraction (XRD), high-resolution electron transmission microscopy (HRTEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. The β-WO3 final phase grew in form of columnar crystals and its growth plane was determined by HRTEM. PMID:28772559

  12. Photocatalytic Removal of Microcystin-LR by Advanced WO3-Based Nanoparticles under Simulated Solar Light

    PubMed Central

    Zhao, Chao; Li, Dawei; Feng, Chuanping; Zhang, Zhenya; Sugiura, Norio; Yang, Yingnan

    2015-01-01

    A series of advanced WO3-based photocatalysts including CuO/WO3, Pd/WO3, and Pt/WO3 were synthesized for the photocatalytic removal of microcystin-LR (MC-LR) under simulated solar light. In the present study, Pt/WO3 exhibited the best performance for the photocatalytic degradation of MC-LR. The MC-LR degradation can be described by pseudo-first-order kinetic model. Chloride ion (Cl−) with proper concentration could enhance the MC-LR degradation. The presence of metal cations (Cu2+ and Fe3+) improved the photocatalytic degradation of MC-LR. This study suggests that Pt/WO3 photocatalytic oxidation under solar light is a promising option for the purification of water containing MC-LR. PMID:25884038

  13. Nanoarchitectonics of a Au nanoprism array on WO3 film for synergistic optoelectronic response

    PubMed Central

    Chen, Xiaoqing; Li, Peng; Tong, Hua; Kako, Tetsuya; Ye, Jinhua

    2011-01-01

    A layered photoelectrode consisting of a conductive indium tin oxide substrate, a WO3 nanocrystalline film and an array of Au nanoprisms was fabricated via a multistep process. Scanning electron microscopy and atomic force microscopy showed that the Au nanoprisms had a uniform size and shape and formed periodic hexagonal patterns on the WO3 film. The optical absorption of the photoelectrode combined the intrinsic absorption of WO3 and plasmonic absorption of Au. Using this photoelectrode, we investigated the effect of the Au nanoprism array on the optoelectronic conversion performance of the WO3 film. Photoelectrochemical measurement indicated that the array substantially enhanced the photocurrent in the WO3 film. Electrochemical impedance measurements revealed that the Schottky junctions formed between Au and WO3 can facilitate the separation of photogenerated carriers as well as the interfacial carrier transfer. In this study, we demonstrate that covering a semiconductor with plasmonic noble metal nanoparticles can improve its optoelectronic conversion efficiency. PMID:27877412

  14. HRTEM Microstructural Characterization of β-WO3 Thin Films Deposited by Reactive RF Magnetron Sputtering.

    PubMed

    Faudoa-Arzate, A; Arteaga-Durán, A; Saenz-Hernández, R J; Botello-Zubiate, M E; Realyvazquez-Guevara, P R; Matutes-Aquino, J A

    2017-02-17

    Though tungsten trioxide (WO3) in bulk, nanosphere, and thin film samples has been extensively studied, few studies have been dedicated to the crystallographic structure of WO3 thin films. In this work, the evolution from amorphous WO3 thin films to crystalline WO3 thin films is discussed. WO3 thin films were fabricated on silicon substrates (Si/SiO2) by RF reactive magnetron sputtering. Once a thin film was deposited, two successive annealing treatments were made: an initial annealing at 400 °C for 6 h was followed by a second annealing at 350 °C for 1 h. Film characterization was carried out by X-ray diffraction (XRD), high-resolution electron transmission microscopy (HRTEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. The β-WO3 final phase grew in form of columnar crystals and its growth plane was determined by HRTEM.

  15. Facile synthesis of hierarchical double-shell WO3 microspheres with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Zhenfeng; Chu, Deqing; Wang, Limin; Wang, Lipeng; Hu, Wenhui; Chen, Xiangyu; Yang, Huifang; Sun, Jingjing

    2017-02-01

    Hierarchical double-shell WO3 microspheres (HDS-WO3) have been successfully obtained through the thermal decomposition of WO3·H2O formed by metal salts as the templates. The products were characterized by X-ray diffraction (XRD), and the morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, the HDS-WO3 microspheres were analyzed by the Thermogravimetric (TG) and Brunauer-Emmett-Teller (BET) analysis. The synthetic mechanism of the products with hierarchical structures was proposed. The obtained HDS-WO3 exhibits excellent photocatalytic efficiency (84.9%), which is much higher than other WO3 sample under visible light illumination.

  16. WO3 nanorods created by self-assembly of highly crystalline nanowires under hydrothermal conditions.

    PubMed

    Navarro, Julien R G; Mayence, Arnaud; Andrade, Juliana; Lerouge, Frédéric; Chaput, Frédéric; Oleynikov, Peter; Bergström, Lennart; Parola, Stephane; Pawlicka, Agnieszka

    2014-09-02

    WO3 nanorods and wires were obtained via hydrothermal synthesis using sodium tungstate as a precursor and either oxalic acid, citric acid, or poly(methacrylic acid) as a stabilizing agent. Transmission electron microscopy images showed that the organic acids with different numbers of carboxylic groups per molecule influence the final sizes and stacking nanostructures of WO3 wires. Three-dimensional electron diffraction tomography of a single nanocrystal revealed a hexagonal WO3 structure with preferential growth along the c-axis, which was confirmed by high-resolution transmission electron microscopy. WO3 nanowires were also spin-coated onto an indium tin oxide/glass conducting substrate, resulting in the formation of a film that was characterized by scanning electron microscopy. Finally, cyclic voltammetry measurements performed on the WO3 thin film showed voltammograms typical for the WO3 redox process.

  17. NixWO2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction

    DOE PAGES

    Xi, Zheng; Mendoza-Garcia, Adriana; Zhu, Huiyuan; ...

    2017-01-13

    NixWO2.72 nanorods (NRs) are synthesized by a one-pot reaction of Ni(acac)2 and WCl4. In the rod structure, Ni(II) intercalates in the defective perovskite-type WO2.72 and is stabilized. The NixWO2.72 NRs show the x-dependent electrocatalysis for the oxygen evolution reaction (OER) in 0.1M KOH with Ni0.78WO2.72 being the most efficient, even outperforming the commercial Ir-catalyst. Lastly, the synthesis is not limited to NixWO2.72 but can be extended to MxWO2.72 (M = Co, Fe) as well, providing a new class of oxide-based catalysts for efficient OER and other energy conversion reactions.

  18. Tailoring surface states in WO3 photoanodes for efficient photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Singh, Trilok; Müller, Ralf; Singh, Jai; Mathur, Sanjay

    2015-08-01

    The dynamics of photo-induced charge carriers are significantly influenced by the surface states of WO3 thin films, which were synthesized by reactive sputtering of tungsten substrates in oxygen plasma. Tailoring the surface properties by (i) hydrogen plasma treatment and (ii) anchoring plasmonic nanoparticles (Au and Ag) altered the light harvesting and charge separation/transport processes of WO3 photoanodes. Upon hydrogen plasma-treatment and coating of noble metal clusters, WO3 films showed enhanced visible light absorption and consequently higher photocurrent density (1.4 mA cm-2) compared to pristine WO3 (0.2 mA cm-2). Enhancement in hydrogen treated WO3 sample was found to be due to the reduction of W(VI) into W(V) centers, which produced substoichiometric WO3-x phases, whereas noble metal particles contributed towards both resonant and non-resonant scattering of incident light thereby increasing photon-to-current conversion efficiency.

  19. Fungus mediated biosynthesis of WO3 nanoparticles using Fusarium solani extract

    NASA Astrophysics Data System (ADS)

    Kavitha, N. S.; Venkatesh, K. S.; Palani, N. S.; Ilangovan, R.

    2017-05-01

    Currently nanoparticles were synthesized by emphasis bioremediation process due to less hazardous, eco-friendly and imperative applications on biogenic process. Fungus mediated biosynthesis strategy has been developed to prepare tungsten oxide nanoflakes (WO3, NFs) using the plant pathogenic fungus F.solani. The powder XRD pattern revealed the monoclinic crystal structure with improved crystalline nature of the synthesized WO3 nanoparticles. FESEM images showed the flake-like morphology of WO3, with average thickness and length around 40 nm and 300 nm respectively. The Raman spectrum of WO3 NFs showed their characteristic vibration modes that revealed the defect free nature of the WO3 NFs. Further, the elemental analysis indicated the stoichiometric composition of WO3 phase.

  20. Enhancement of the photocatalytic activity and electrochemical property of graphene-SrWO4 nanocomposite

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyan; Nie, Yu; Yang, Hongxun; Sun, Shengnan; Chen, Yingying; Yang, Tongyi; Lin, Shengling

    2016-05-01

    SrWO4 is a promising candidate as not only photocatalyst for the removal of organic pollutants from water, but also electrode material for energy storage devices. However, the drawbacks of its poor adsorptive performance, low electrical conductivity, and high recombination rate of photogenerated electron-hole pair impede its practical applications. In this work, we have developed a new graphene/SrWO4 nanocomposite synthesized via a facile chemical precipitation method. Characterizations show that SrWO4 nanoparticles with 80 nm or so deposited on the surface of graphene nanosheets. Graphene nanosheets in the graphene-SrWO4 hybrid could increase adsorptive property, improve the electrical conductivity of hybrid, and reduce the recombination of electron-hole pairs. As a kind of photocatalyst or electrode material for supercapacitor, the binary graphene-SrWO4 hybrid presents enhanced photocatalytic activity and electrochemical property compared to pure SrWO4.

  1. Preparation and characterization of WO3 nanoparticles, WO3/TiO2 core/shell nanocomposites and PEDOT:PSS/WO3 composite thin films for photocatalytic and electrochromic applications

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Santos, Gustavo dos Lopes; Szżcs, Júlia; Szilágyi, Imre M.

    2016-03-01

    In this study, monoclinic WO3 nanoparticles were obtained by thermal decomposition of (NH4)xWO3 in air at 600 °C. On them by atomic layer deposition (ALD) TiO2 films were deposited, and thus core/shell WO3/TiO2 nanocomposites were prepared. We prepared composites of WO3 nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO3 and core/shell WO3/TiO2 nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO3 thin films, and the coloring and bleaching states were studied.

  2. Preparation and characterization of WO{sub 3} nanoparticles, WO{sub 3}/TiO{sub 2} core/shell nanocomposites and PEDOT:PSS/WO{sub 3} composite thin films for photocatalytic and electrochromic applications

    SciTech Connect

    Boyadjiev, Stefan I.; Santos, Gustavo dos Lopes; Szűcs, Júlia; Szilágyi, Imre M.

    2016-03-25

    In this study, monoclinic WO{sub 3} nanoparticles were obtained by thermal decomposition of (NH{sub 4}){sub x}WO{sub 3} in air at 600 °C. On them by atomic layer deposition (ALD) TiO{sub 2} films were deposited, and thus core/shell WO{sub 3}/TiO{sub 2} nanocomposites were prepared. We prepared composites of WO{sub 3} nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO{sub 3} and core/shell WO{sub 3}/TiO{sub 2} nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO{sub 3} thin films, and the coloring and bleaching states were studied.

  3. Interspecific variation in resistance to emerald ash borer (Coleoptera: Buprestidae) among North American and Asian ash (Fraxinus spp.).

    PubMed

    Rebek, Eric J; Herms, Daniel A; Smitley, David R

    2008-02-01

    We conducted a 3-yr study to compare the susceptibility of selected North American ash and an Asian ash species to emerald ash borer, Agrilus planipennis Fairmaire, an invasive wood-boring beetle introduced to North America from Asia. Because of a coevolutionary relationship between Asian ashes and emerald ash borer, we hypothesized an Asian ash species, Manchurian ash, is more resistant to the beetle than its North American congeners. Consistent with our hypothesis, Manchurian ash experienced far less mortality and yielded far fewer adult beetles than several cultivars of North American green and white ash. Surprisingly, a black ash (North American) x Manchurian ash hybrid was highly susceptible to emerald ash borer, indicating this cultivar did not inherit emerald ash borer resistance from its Asian parent. A corollary study investigated the efficacy of soil-applied imidacloprid, a systemic, neonicotinoid insecticide, for controlling emerald ash borer in each of the five cultivars. Imidacloprid had no effect on emerald ash borer colonization of Manchurian ash, which was low in untreated and treated trees. In contrast, imidacloprid did enhance survival of the North American and hybrid cultivars and significantly reduced the number of emerald ash borer adults emerging from green and white ash cultivars. We identify a possible mechanism of resistance of Manchurian ash to emerald ash borer, which may prove useful for screening, selecting, and breeding emerald ash borer-resistant ash trees.

  4. Phage WO of Wolbachia: lambda of the endosymbiont world

    PubMed Central

    Kent, Bethany N.; Bordenstein, Seth R.

    2010-01-01

    The discovery of an extraordinarily high level of mobile elements in the genome of Wolbachia, a widespread arthropod and nematode endosymbiont, suggests that this bacterium could be an excellent model for assessing the evolution and function of mobile DNA in specialized bacteria. Here, we discuss how studies on the temperate bacteriophage WO of Wolbachia have revealed unexpected levels of genomic flux and are challenging previously held views about the clonality of obligate intracellular bacteria. We also discuss the roles that this phage might play in the Wolbachia-arthropod symbiosis, and infer how this research can be translated to combating human diseases vectored by arthropods. We expect that this temperate phage will be a preeminent model system to understand phage genetics, evolution, and ecology in obligate intracellular bacteria. In this sense, phage WO might be likened to phage λ of the endosymbiont world. PMID:20083406

  5. Symmetry driven control of optical properties in WO3 films

    DOE PAGES

    Herklotz, A.; Rus, S. F.; KC, S.; ...

    2017-06-23

    Optical band gap control of semiconducting thin films is critical for the optimization of photoelectronic and photochemical applications. In this work, we demonstrate that the optical band gap of WO3 films can be continuously controlled through uniaxial strain induced by low-energy helium implantation. We show that the implantation of He into epitaxially grown and coherently strained WO3 films can be used to induce single axis out-of-plane lattice expansion of up to 2%. Ellipsometric spectroscopy reveals that this lattice expansion shifts the absorption spectrum to lower energies and effectively reduces the optical band gap by about 0.18 eV per percent expansionmore » of the out-of-plane unit cell length. Furthermore, density functional calculations show that this response is a direct result of changes in orbital degeneracy driven by changes in the octahedral rotations and tilts.« less

  6. Snake River Plain FORGE Well Data for WO-2

    DOE Data Explorer

    Robert Podgorney

    1991-07-29

    Well data for the WO-2 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, and rock strength parameters for the WO-2 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  7. Invasion noise in nanoparticle WO3/Au thin film devices

    NASA Astrophysics Data System (ADS)

    Hoel, Anders; Ederth, Jesper; Heszler, Peter; Kish, Laszlo B.; Olsson, Eva; Granqvist, Claes-Goeran

    2001-11-01

    Conduction noise measurements were carried out in the 0.3 to 45 Hz frequency range on Au films covered by a thin layer of tungsten trioxide (WO3) nanoparticles. Exposing the films to alcohol vapor resulted in a gradually increased noise intensity which went through a maximum after an exposure time of the order of 15 min. The maximum noise intensity could increase by several orders of magnitude above the initial level. Longer exposure times made the noise decrease and approach its original value. This effect was not observed in the absence of WO3 nanoparticles. The phenomenon is discussed in terms of a new invasion noise model in which the noise is related to the insertion and extraction of mobile chemical species.

  8. Active mineral additives of sapropel ashes

    NASA Astrophysics Data System (ADS)

    Khomich, V. A.; Danilina, E. V.; Krivonos, O. I.; Plaksin, G. V.

    2015-01-01

    The goal of the presented research is to establish a scientific rational for the possibility of sapropel ashes usage as an active mineral additive. The research included the study of producing active mineral additives from sapropels by their thermal treatment at 850900 °C and afterpowdering, the investigation of the properties of paste matrix with an ash additive, and the study of the ash influence on the cement bonding agent. Thermogravimetric analysis and X-ray investigations allowed us to establish that while burning, organic substances are removed, clay minerals are dehydrated and their structure is broken. Sapropel ashes chemical composition was determined. An amorphous ash constituent is mainly formed from silica of the mineral sapropel part and alumosilicagels resulted from clay minerals decomposition. Properties of PC 400 and PC 500A0 sparopel ash additives were studied. Adding ashes containing Glenium plasticizer to the cement increases paste matrix strength and considerably reduces its water absorption. X-ray phase analysis data shows changes in the phase composition of the paste matrix with an ash additive. Ash additives produce a pozzolanic effect on the cement bonding agent. Besides, an ash additive due to the alumosilicagels content causes transformation from unstable calcium aluminate forms to the stable ones.

  9. Study on fusion characteristics of biomass ash.

    PubMed

    Niu, Yanqing; Tan, Hongzhang; Wang, Xuebin; Liu, Zhengning; Liu, Haiyu; Liu, Yang; Xu, Tongmo

    2010-12-01

    The ash fusion characteristics (AFC) of Capsicum stalks ashes, cotton stalks ashes and wheat stalks ashes that all prepared by ashing at 400 degrees C, 600 degrees C and 815 degrees C are consistent after 860 degrees C, 990 degrees C and 840 degrees C, respectively in the ash fusion temperature test and TG. Initial deformation temperature (IDT) increases with decreased K(2)O and went up with increased MgO, CaO, Fe(2)O(3) and Al(2)O(3). Softening temperature (ST), hemispherical temperature (HT) and fluid temperature (FT) do not affected by the concentrations of each element and the ashing temperature obviously. Therefore, the IDT may be as an evaluation index of biomass AFC rather than the ST used as an evaluation index of coal AFC. XRD shows that no matter what the ashing temperature is, the biomass ashes contain same high-temperature molten material. Therefore, evaluation of the biomass AFC should not be simply on the proportion of elements except IDT, but the high-temperature molten material in biomass ash. 2010 Elsevier Ltd. All rights reserved.

  10. Synthesis and ionic liquid gating of hexagonal WO3 thin films

    NASA Astrophysics Data System (ADS)

    Wu, Phillip M.; Ishii, Satoshi; Tanabe, Kenji; Munakata, Ko; Hammond, R. H.; Tokiwa, Kazuyasu; Geballe, T. H.; Beasley, M. R.

    2015-01-01

    Via thin film deposition techniques, the meta-stable in bulk crystal hexagonal phase of tungsten oxide (hex-WO3) is stabilized as a thin film. The hex-WO3 structure is potentially promising for numerous applications and is related to the structure for superconducting compounds found in WO3. Utilizing ionic liquid gating, carriers were electrostatically induced in the films and an insulator-to-metal transition is observed. These results show that ionic liquid gating is a viable technique to alter the electrical transport properties of WO3.

  11. Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles.

    PubMed

    Miyauchi, Masahiro

    2008-11-07

    The photocatalytic oxidation and photoinduced hydrophilicity of thin tungsten trioxide (WO(3)) films coupled with platinum (Pt) nanoparticles were investigated. WO(3) films with underlying Pt nanoparticles (WO(3)/Pt/substrate) and those with overlying Pt nanoparticles (Pt/WO(3)/substrate) were synthesized by sputtering and sol-gel methods. Between these films, underlying Pt nanoparticles greatly enhanced the photocatalytic oxidation activity of WO(3) without decreasing the photoinduced hydrophilic conversion. However, overlying Pt nanoparticles deteriorated the hydrophilicity of WO(3) because the Pt nanoparticle surface was hydrophobic. The enhanced photocatalytic reaction by the Pt nanoparticles was attributed to the multi-electron reduction in Pt, which is caused by the injected electrons from the conduction band of WO(3). The relationship between photocatalytic activity and thin film structure, including the size of Pt nanoparticles, the thickness and porosity of the WO(3) layer, were investigated. Consequently, the optimum structure for high performance in both photocatalysis and photoinduced hydrophilicity was WO(3) (50 nm)/Pt(1.5 nm)/substrate, and this film exhibited a significant self-cleaning property even under visible light irradiation.

  12. Formation of Monodisperse (WO3)3 Clusters on Ti02(110)

    SciTech Connect

    Bondarchuk, Olexsandr; Huang, Xin; Kim, Jooho; Kay, Bruce D.; Wang, Lai S.; White, J. M.; Dohnalek, Zdenek

    2006-07-01

    Monodisperse, adsorbed cyclic trimers of WO3 have been prepared and characterized. Powdered WO3 was sublimed onto TiO2(110) at 300 K. After annealing to 600 K, scanning tunneling microscopy (STM) images indicated monodispersity, X-ray photoelectron spectroscopy indicated fully oxidized W6+, and mass microbalance, coupled with STM, indicated that each nanocluster was (WO3)3. Within the STM image of each adsorbed nanocluster, there was structure ascribed, on the basis of density functional theory, to characteristic low-lying unoccupied molecular orbitals of the cyclic isomer of (WO3)3.

  13. Ag Nanoparticle-Sensitized WO3 Hollow Nanosphere for Localized Surface Plasmon Enhanced Gas Sensors.

    PubMed

    Yao, Yao; Ji, Fangxu; Yin, Mingli; Ren, Xianpei; Ma, Qiang; Yan, Junqing; Liu, Shengzhong Frank

    2016-07-20

    Ag nanoparticle (NP)-sensitized WO3 hollow nanospheres (Ag-WO3-HNSs) are fabricated via a simple sonochemical synthesis route. It is found that the Ag-WO3-HNS shows remarkable performance in gas sensors. Field-emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) images reveal that the Agx-WO3 adopts the HNS structure in which WO3 forms the outer shell framework and the Ag NPs are grown on the inner wall of the WO3 hollow sphere. The size of the Ag NPs can be controlled by adjusting the addition amount of WCl6 during the reaction. The sensor Agx-WO3 exhibits extremely high sensitivity and selectivity toward alcohol vapor. In particular, the Ag(15nm)-WO3 sensor shows significantly lower operating temperature (230 °C), superior detection limits as low as 0.09 ppb, and faster response (7 s). Light illumination was found to boost the sensor performance effectively, especially at 405 and 900 nm, where the light wavelength resonates with the absorption of Ag NPs and the surface oxygen vacancies of WO3, respectively. The improved sensor performance is attributed to the localized surface plasmon resonance (LSPR) effect.

  14. Surface oxygen vacancies on WO3 contributed to enhanced photothermo-synergistic effect

    NASA Astrophysics Data System (ADS)

    Li, Yingying; Wang, Changhua; Zheng, Han; Wan, Fangxu; Yu, Fei; Zhang, Xintong; Liu, Yichun

    2017-01-01

    Photothermooxidation has demonstrated a high efficiency in the removal of volatile organic compounds in air. Among photothermocatalysts, attention is presently focused on composites of noble metal/metal oxide or metal oxide/metal oxide. Instead, in this work, we present a case of single oxide WO3 subjected to hydrogen treatment as photothermocatalyst. With the increase of hydrogen treatment temperature, the color of WO3 changes from yellow to blue to dark blue and a phase transition from WO3 to WO2.72 to WO2 is accompanied, suggesting an increase of concentration of oxygen vacancy. Photothermocatalytic test against degradation of gaseous acetaldehyde at 60 °C under UV light shows that WO3-x sample with low concentration of oxygen vacancy displays the most significant synergetic effect between photocatalysis and thermocatalysis. Its photothermocatalytic activity in terms of CO2 evolution rate is 5.2 times higher than that of photocatalytic activity. However, WO3-WO2.72 and WO2 with high degree of oxygen deficiency show insignificant synergetic effect between photocatalysis and thermocatalysis. The reason for the different synergistic effect over above samples is believed to lie in balance between decreased activation energy of lattice oxygen and recombination of photogenerated electrons and holes induced by oxygen deficiency.

  15. Metastable Tetragonal CdWO4 Nanoparticles Synthesized with a Solvothermal Method

    SciTech Connect

    Rondinone, Adam Justin; Travaglini, Dustin H; Pawel, Michelle D; Mahurin, Shannon Mark; Dai, Sheng

    2007-01-01

    CdWO{sub 4} has only previously been reported in the monoclinic, or wolframite, phase. Here we report the first metastable, tetragonal or scheelite, CdWO4 nanopowder. The tetragonal CdWO{sub 4} was synthesized by a propylene glycol solvothermal method. The scheelite phase is stabilized by a combination of high surface area and surface complexation by the propylene glycol. The CdWO{sub 4} is stable at 1 bar to 300 C, and converts back to the monoclinic wolframite phase between 300 and 500 C. The nanopowder exhibits cubic morphology and the average particle size of the nanopowder is around 50 nm.

  16. Light-controlled resistive switching of ZnWO{sub 4} nanowires array

    SciTech Connect

    Zhao, W. X.; Sun, B.; Liu, Y. H.; Wei, L. J.; Li, H. W.; Chen, P.

    2014-07-15

    ZnWO{sub 4} nanowires array was prepared on the titanium substrate by a facile hydrothermal synthesis, in which the average length of ZnWO{sub 4} nanowires is about 2um and the diameter of individual ZnWO{sub 4} nanowire ranges from 50 to 70 nm. The bipolar resistive switching effect of ZnWO{sub 4} nanowires array was observed. Moreover, the performance of the resistive switching device is greatly improved under white light irradiation compared with that in the dark.

  17. Synthesis and ionic liquid gating of hexagonal WO{sub 3} thin films

    SciTech Connect

    Wu, Phillip M. E-mail: beasley@stanford.edu; Munakata, Ko; Hammond, R. H.; Geballe, T. H.; Beasley, M. R. E-mail: beasley@stanford.edu; Ishii, Satoshi; Tanabe, Kenji; Tokiwa, Kazuyasu

    2015-01-26

    Via thin film deposition techniques, the meta-stable in bulk crystal hexagonal phase of tungsten oxide (hex-WO{sub 3}) is stabilized as a thin film. The hex-WO{sub 3} structure is potentially promising for numerous applications and is related to the structure for superconducting compounds found in WO{sub 3}. Utilizing ionic liquid gating, carriers were electrostatically induced in the films and an insulator-to-metal transition is observed. These results show that ionic liquid gating is a viable technique to alter the electrical transport properties of WO{sub 3}.

  18. Volcanic Ash on Slopes of Karymsky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A volcanic eruption can produce gases, lava, bombs of rock, volcanic ash, or any combination of these elements. Of the volcanic products that linger on the land, most of us think of hardened lava flows, but volcanic ash can also persist on the landscape. One example of that persistence appeared on Siberia's Kamchatka Peninsula in spring 2007. On March 25, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the area around the Karymsky Volcano. In this image, volcanic ash from earlier eruptions has settled onto the snowy landscape, leaving dark gray swaths. The ash stains are confined to the south of the volcano's summit, one large stain fanning out toward the southwest, and another toward the east. At first glance, the ash stain toward the east appears to form a semicircle north of the volcano and sweep back east. Only part of this dark shape, however, is actually volcanic ash. Near the coast, the darker color may result from thicker vegetation. Similar darker coloring appears to the south. Volcanic ash is not really ash at all, but tiny, jagged bits of rock and glass. These jagged particles pose serious health risks to humans and animals who might inhale them. Likewise, the ash poses hazards to animals eating plants that have been coated with ash. Because wind can carry volcanic ash thousands of kilometers, it poses a more far-reaching hazard than other volcanic ejecta. Substantial amounts of ash can even affect climate by blocking sunlight. Karymsky is a stratovolcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. It is one of many active volcanoes on Russia's Kamchatka Peninsula, which is part of the 'Ring of Fire' around the Pacific Rim. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  19. Rapid toxicity screening of gasification ashes.

    PubMed

    Zhen, Xu; Rong, Le; Ng, Wei Cheng; Ong, Cynthia; Baeg, Gyeong Hun; Zhang, Wenlin; Lee, Si Ni; Li, Sam Fong Yau; Dai, Yanjun; Tong, Yen Wah; Neoh, Koon Gee; Wang, Chi-Hwa

    2016-04-01

    The solid residues including bottom ashes and fly ashes produced by waste gasification technology could be reused as secondary raw materials. However, the applications and utilizations of these ashes are very often restricted by their toxicity. Therefore, toxicity screening of ash is the primary condition for reusing the ash. In this manuscript, we establish a standard for rapid screening of gasification ashes on the basis of in vitro and in vivo testing, and henceforth guide the proper disposal of the ashes. We used three different test models comprising human cell lines (liver and lung cells), Drosophila melanogaster and Daphnia magna to examine the toxicity of six different types of ashes. For each ash, different leachate concentrations were used to examine the toxicity, with C0 being the original extracted leachate concentration, while C/C0 being subsequent diluted concentrations. The IC50 for each leachate was also quantified for use as an index to classify toxicity levels. The results demonstrated that the toxicity evaluation of different types of ashes using different models is consistent with each other. As the different models show consistent qualitative results, we chose one or two of the models (liver cells or lung cells models) as the standard for rapid toxicity screening of gasification ashes. We may classify the gasification ashes into three categories according to the IC50, 24h value on liver cells or lung cells models, namely "toxic level I" (IC50, 24h>C/C0=0.5), "toxic level II" (C/C0=0.05ashes generated in gasification plants every day. Subsequently, appropriate disposal methods can be recommended for each toxicity category. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Volcanic Ash on Slopes of Karymsky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A volcanic eruption can produce gases, lava, bombs of rock, volcanic ash, or any combination of these elements. Of the volcanic products that linger on the land, most of us think of hardened lava flows, but volcanic ash can also persist on the landscape. One example of that persistence appeared on Siberia's Kamchatka Peninsula in spring 2007. On March 25, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the area around the Karymsky Volcano. In this image, volcanic ash from earlier eruptions has settled onto the snowy landscape, leaving dark gray swaths. The ash stains are confined to the south of the volcano's summit, one large stain fanning out toward the southwest, and another toward the east. At first glance, the ash stain toward the east appears to form a semicircle north of the volcano and sweep back east. Only part of this dark shape, however, is actually volcanic ash. Near the coast, the darker color may result from thicker vegetation. Similar darker coloring appears to the south. Volcanic ash is not really ash at all, but tiny, jagged bits of rock and glass. These jagged particles pose serious health risks to humans and animals who might inhale them. Likewise, the ash poses hazards to animals eating plants that have been coated with ash. Because wind can carry volcanic ash thousands of kilometers, it poses a more far-reaching hazard than other volcanic ejecta. Substantial amounts of ash can even affect climate by blocking sunlight. Karymsky is a stratovolcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. It is one of many active volcanoes on Russia's Kamchatka Peninsula, which is part of the 'Ring of Fire' around the Pacific Rim. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  1. Ultrasonic ash/pyrite liberation

    SciTech Connect

    Yungman, B.A.; Buban, K.S.; Stotts, W.F.

    1990-06-01

    The objective of this project was to develop a coal preparation concept which employed ultrasonics to precondition coal prior to conventional or advanced physical beneficiation processes such that ash and pyrite separation were enhanced with improved combustible recovery. Research activities involved a series of experiments that subjected three different test coals, Illinois No. 6, Pittsburgh No. 8, and Upper Freeport, ground to three different size fractions (28 mesh [times] 0, 200 mesh [times] 0, and 325 mesh [times] 0), to a fixed (20 kHz) frequency ultrasonic signal prior to processing by conventional and microbubble flotation. The samples were also processed by conventional and microbubble flotation without ultrasonic pretreatment to establish baseline conditions. Product ash, sulfur and combustible recovery data were determined for both beneficiation processes.

  2. Eukaryotic association module in phage WO genomes from Wolbachia

    PubMed Central

    Bordenstein, Sarah R.; Bordenstein, Seth R.

    2016-01-01

    Viruses are trifurcated into eukaryotic, archaeal and bacterial categories. This domain-specific ecology underscores why eukaryotic viruses typically co-opt eukaryotic genes and bacteriophages commonly harbour bacterial genes. However, the presence of bacteriophages in obligate intracellular bacteria of eukaryotes may promote DNA transfers between eukaryotes and bacteriophages. Here we report a metagenomic analysis of purified bacteriophage WO particles of Wolbachia and uncover a eukaryotic association module in the complete WO genome. It harbours predicted domains, such as the black widow latrotoxin C-terminal domain, that are uninterrupted in bacteriophage genomes, enriched with eukaryotic protease cleavage sites and combined with additional domains to forge one of the largest bacteriophage genes to date (14,256 bp). To the best of our knowledge, these eukaryotic-like domains have never before been reported in packaged bacteriophages and their phylogeny, distribution and sequence diversity imply lateral transfers between bacteriophage/prophage and animal genomes. Finally, the WO genome sequences and identification of attachment sites will potentially advance genetic manipulation of Wolbachia. PMID:27727237

  3. Eukaryotic association module in phage WO genomes from Wolbachia.

    PubMed

    Bordenstein, Sarah R; Bordenstein, Seth R

    2016-10-11

    Viruses are trifurcated into eukaryotic, archaeal and bacterial categories. This domain-specific ecology underscores why eukaryotic viruses typically co-opt eukaryotic genes and bacteriophages commonly harbour bacterial genes. However, the presence of bacteriophages in obligate intracellular bacteria of eukaryotes may promote DNA transfers between eukaryotes and bacteriophages. Here we report a metagenomic analysis of purified bacteriophage WO particles of Wolbachia and uncover a eukaryotic association module in the complete WO genome. It harbours predicted domains, such as the black widow latrotoxin C-terminal domain, that are uninterrupted in bacteriophage genomes, enriched with eukaryotic protease cleavage sites and combined with additional domains to forge one of the largest bacteriophage genes to date (14,256 bp). To the best of our knowledge, these eukaryotic-like domains have never before been reported in packaged bacteriophages and their phylogeny, distribution and sequence diversity imply lateral transfers between bacteriophage/prophage and animal genomes. Finally, the WO genome sequences and identification of attachment sites will potentially advance genetic manipulation of Wolbachia.

  4. First-principles reinvestigation of bulk WO3

    NASA Astrophysics Data System (ADS)

    Hamdi, Hanen; Salje, Ekhard K. H.; Ghosez, Philippe; Bousquet, Eric

    2016-12-01

    Using first-principles calculations, we analyze the structural properties of tungsten trioxide WO3. Our calculations rely on density functional theory and the use of the B1-WC hybrid functional, which provides very good agreement with experimental data. We show that the hypothetical high-symmetry cubic reference structure combines several ferroelectric and antiferrodistortive (antipolar cation motions, rotations, and tilts of oxygen octahedra) structural instabilities. Although the ferroelectric instability is the largest, the instability related to antipolar W motions combines with those associated to oxygen rotations and tilts to produce the biggest energy reduction, yielding a P 21/c ground state. This nonpolar P 21/c phase is only different from the experimentally reported P c ground state by the absence of a very tiny additional ferroelectric distortion. The calculations performed on a stoichiometric compound so suggest that the low-temperature phase of WO3 is not intrinsically ferroelectric and that the experimentally observed ferroelectric character might arise from extrinsic defects such as oxygen vacancies. Independently, we also identify never observed R 3 m and R 3 c ferroelectric metastable phases with large polarizations and low energies close to the P 21/c ground state, which makes WO3 a potential antiferroelectric material. The relative stability of various phases is discussed in terms of the anharmonic couplings between different structural distortions, highlighting a very complex interplay.

  5. Electrochromism in sputtered WO{sub 3} thin films

    SciTech Connect

    Batchelor, R.A.; Burdis, M.S.; Siddle, J.R.

    1996-03-01

    There are large variations in the properties of WO{sub 3} sputtered under different conditions and two samples sputtered from an oxide target and reactively sputtered from a metal target were compared in detail. The thin film sputtered from an oxide target was found to color and bleach rapidly in 1 M LiClO{sub 4} in propylene carbonate, while the thin film reactively sputtered from a metal target could be colored deeply, but bleached only slowly. By calculating the rate of change of optical density during cyclic voltammetry, it was possible to directly compare the coloration response with the current/voltage behavior of the electrodes. In both cases at least two lithium insertion reactions appear to occur. The distinction between the two reactions was especially clear in the sample sputtered from a metal target, in which an insertion of high electrochromic efficiency occurred up to Li{sub 0.2}WO{sub 3} and then an insertion of considerably lower electrochromic efficiency up to Li{sub 0.5}WO{sub 3}. Although a small amount of coloration and bleaching continued to occur after switching the reactively sputtered sample to open circuit during the coloration and bleaching cycles; transmission change was largely halted by disconnecting the external current supply. The slow end to the bleach of the reactively sputtered sample corresponded to a reaction of high electrochromic efficiency.

  6. Plasma vitrification of fly ash

    SciTech Connect

    Beudin, V.; Guihard, B.; Pineau, D.; Labrot, M.; Soler, G.; Favier, J.M.; Boudeau, A.

    1995-12-31

    This paper presents the plasma vitrification of fly-ash produced by a Municipal Waste Incinerator, as programmed by Europlasma Company in France. It describes the main assumptions, technical and economical data and regulations taken into account to build and operate the first industrial pilot plant from 1995, near Bordeaux (France), using a non transferred plasma torch of 500 kW operated with air.

  7. Vitrification of municipal solid waste incineration fly ash using biomass ash as additives.

    PubMed

    Alhadj-Mallah, Moussa-Mallaye; Huang, Qunxing; Cai, Xu; Chi, Yong; Yan, JianHua

    2015-01-01

    Thermal melting is an energy-costing solution for stabilizing toxic fly ash discharged from the air pollution control system in the municipal solid waste incineration (MSWI) plant. In this paper, two different types of biomass ashes are used as additives to co-melt with the MSWI fly ash for reducing the melting temperature and energy cost. The effects of biomass ashes on the MSWI fly ash melting characteristics are investigated. A new mathematical model has been proposed to estimate the melting heat reduction based on the mass ratios of major ash components and measured melting temperature. Experimental and calculation results show that the melting temperatures for samples mixed with biomass ash are lower than those of the original MSWI fly ash and when the mass ratio of wood ash reaches 50%, the deformation temperature (DT), the softening, hemisphere temperature (HT) and fluid temperature (FT) are, respectively, reduced by 189°C, 207°C, 229°C, and 247°C. The melting heat of mixed ash samples ranges between 1650 and 2650 kJ/kg. When 50% wood ash is mixed, the melting heat is reduced by more than 700 kJ/kg for the samples studied in this paper. Therefore, for the vitrification treatment of the fly ash from MSW or other waste incineration plants, wood ash is a potential fluxing assistant.

  8. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture.

    PubMed

    Seco-Reigosa, Natalia; Peña-Rodríguez, Susana; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2013-04-01

    Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m(-1)), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m(-1). X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6%), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94%, As(V) >96% and Cr(VI) between 11 and 30% for shell ash; Hg(II) >98%, As(V) >88% and Cr(VI) between 30 and 88% for the waste mixture. Hg and As desorption was <5% for both shell ash and the waste mixture, while Cr desorption was between 92 and 45% for shell ash, and between 19 and 0% for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.

  9. Improvement of radiopurity level of enriched 116CdWO4 and ZnWO4 crystal scintillators by recrystallization

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.; Belli, P.; Bernabei, R.; Borovlev, Yu. A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Kobychev, V. V.; Konovalov, S. I.; Laubenstein, M.; Mokina, V. M.; Polischuk, O. G.; Safonova, O. E.; Shlegel, V. N.; Tretyak, V. I.; Tupitsyna, I. A.; Umatov, V. I.; Zhdankov, V. N.

    2016-10-01

    As low as possible radioactive contamination of a detector plays a crucial role to improve sensitivity of a double beta decay experiment. The radioactive contamination of a sample of 116CdWO4 crystal scintillator by thorium was reduced by a factor ≈10, down to the level 0.01 mBq/kg (228Th), by exploiting the recrystallization procedure. The total alpha activity of uranium and thorium daughters was reduced by a factor ≈3, down to 1.6 mBq/kg. No change in the specific activity (the total α activity and 228Th) was observed in a sample of ZnWO4 crystal produced by recrystallization after removing ≈0.4 mm surface layer of the crystal.

  10. Can vegetative ash be water repellent?

    NASA Astrophysics Data System (ADS)

    Bodí, M. B.; Cerdà, A.; Mataix-Solera, J.; Doerr, S. H.

    2012-04-01

    In most of the literature, ash is referred to as a highly wettable material (e.g. Cerdà and Doerr, 2008; Etiegni and Campbell, 1991; Woods and Balfour 2010). However, the contrary was suggested in few articles, albeit with no further quantification (Gabet and Sternberg, 2008; Khanna et al., 1996; Stark, 1977). To clarify this question, water repellency measurements on ash using the Water Drop Penetration Times (WDPT) method were performed on ash from Mediterranean ecosystems and it was found to be water repellent (Bodí et al. 2011). Water repellency on ash from different wildfires ranged from 40 to 10 % occurrence with samples being extreme repellent (lasting more than 3600 s to penetrate). Part of the ash produced in the laboratory was also water repellent. After that, other ash samples had been found water repellent in wildfires in Colorado (unpublished results), Portugal (Gonzalez-Pelayo, 2009), or in prescribed fires in Australia (Bodí et al. 2011b; Petter Nyman, personnal communication). All the samples exhibiting water repellent properties had in common that were combusted at low temperatures, yielding in general ash with dark colour and contents of organic carbon of more than 18 % (Bodí et al. 2011a), although these properties were not exactly proportional to its water repellency occurrence or persistence. In addition, the species studied in Bodí et al. (2011) had been found to produce different levels of WR repellency, being ash from Pinus halepensis more repellent than that from Quercus coccifera and Rosmarins officinalis. Ash from Eucaliptus radiata had been found also very water repellent, as Pinus halepensis (unpublished data). The reasons of the existance of water repellent ash are that the charred residue produced by fire (an also contained in the ash) can contain aromatic compounds that have a lower free energy than water and therefore behave as hydrophobic materials with reduced solubility (Almendros et al., 1992 and Knicker, 2007

  11. Photocatalytic properties of h-WO{sub 3} nanoparticles obtained by annealing and h-WO{sub 3} nanorods prepared by hydrothermal method

    SciTech Connect

    Boyadjiev, Stefan I.; Nagy-Kovács, Teodóra; Lukács, István; Szilágyi, Imre M.

    2016-03-25

    In the present study, two different methods for preparing hexagonal WO{sub 3} (h-WO{sub 3}) photocatalysts were used - controlled thermal decomposition and hydrothermal synthesis. WO{sub 3} nanoparticles with hexagonal structure were obtained by annealing (NH{sub 4}){sub x}WO{sub 3-y} at 500 °C in air. WO{sub 3} nanorods were prepared by a hydrothermal method using sodium tungstate Na{sub 2}WO{sub 4}, HCl, (COOH){sub 2} and NaSO{sub 4} precursors at 200 °C. The formation, morphology, structure and composition of the as-prepared nanoparticles and nanorods were studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX). The photocatalytic activity of the h-WO{sub 3} nanoparticles and nanorods was studied by decomposing methyl orange in aqueous solution under UV light irradiation.

  12. Proceedings of symposium on ash in North America

    Treesearch

    Charles H. Michler; Matthew D., eds. Ginzel

    2010-01-01

    Includes 5 papers and 30 abstracts covering topics related to the biology and ecology of the ash species, ash utilization and management, emerald ash borer, and other threats to ash, and genetics and conservation of ash species. A paper titled "Population-level variation of Fraxinus americana L. is influenced by climate...

  13. Volcanic ash infrared signature: porous non-spherical ash particle shapes compared to homogeneous spherical ash particles

    NASA Astrophysics Data System (ADS)

    Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T.

    2014-04-01

    The reverse absorption technique is often used to detect volcanic ash clouds from thermal infrared satellite measurements. From these measurements effective particle radius and mass loading may be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculated thermal infrared optical properties of highly irregular and porous ash particles and compared these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry were calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres were found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates was found to underestimate mass loading compared to morphologically complex inhomogeneous ash particles. The underestimate increases with the mass loading. For an ash cloud recorded during the Eyjafjallajökull 2010 eruption, the mass-equivalent spheres underestimate the total mass of the ash cloud by approximately 30% compared to the morphologically complex inhomogeneous particles.

  14. Mount St. Helens' volcanic ash: hemolytic activity.

    PubMed

    Vallyathan, V; Mentnech, M S; Stettler, L E; Dollberg, D D; Green, F H

    1983-04-01

    Volcanic ash samples from four Mount St. Helens' volcanic eruptions were subjected to mineralogical, analytical, and hemolytic studies in order to evaluate their potential for cytotoxicity and fibrogenicity. Plagioclase minerals constituted the major component of the ash with free crystalline silica concentrations ranging from 1.5 to 7.2%. The in vitro hemolytic activity of the volcanic ash was compared to similar concentrations of cytotoxic and inert minerals. The ash was markedly hemolytic, exhibiting an activity similar to chrysotile asbestos, a known fibrogenic agent. The hemolysis of the different ash samples varied with particle size but not with crystalline silica concentration. The results of these studies taken in conjunction with the results of our animal studies indicate a fibrogenic potential of volcanic ash in heavily exposed humans.

  15. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  16. Twenty million ash trees later: current status of emerald ash borer in Michigan

    Treesearch

    Therese M. Poland

    2007-01-01

    Since its discovery in 2002, the emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), appears to be living up to expectations and predictions about its potential spread and destruction of ash trees, Fraxinus spp., in North America.

  17. Temperature and acidity effects on WO{sub 3} nanostructures and gas-sensing properties of WO{sub 3} nanoplates

    SciTech Connect

    Zhang, Huili; Liu, Zhifang; Yang, Jiaqin; Guo, Wei; Zhu, Lianjie; Zheng, Wenjun

    2014-09-15

    Graphical abstract: Generally, large acid quantity and high temperature are beneficial to the formation of anhydrous WO3, but the acidity effect on the crystal phase is weaker than that of temperature. Large acid quantity is found helpful to the oriented growth of tungsten oxides, forming a nanoplate-like product. - Highlights: • Large acid quantity is propitious to the oriented growth of a WO{sub 3} nanoplate. • Effect of acid quantity on crystal phases of products is weaker than that of temperature. • One step hydrothermal synthesis of WO{sub 3} is facile and can be easily scaled up. • A WO{sub 3} nanoplate shows a fast response and distinct sensing selectivity to acetone gas. - Abstract: WO{sub 3} nanostructures were successfully synthesized by a facile hydrothermal method using Na{sub 2}WO{sub 4}·2H{sub 2}O and HNO{sub 3} as raw materials. They are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The specific surface area was obtained from N{sub 2} adsorption–desorption isotherm. The effects of the amount of HNO{sub 3}, hydrothermal temperature and reaction time on the crystal phases and morphologies of the WO{sub 3} nanostructures were investigated in detail, and the reaction mechanism was discussed. Large amount of acid is found for the first time to be helpful to the oriented growth of tungsten oxides, forming nanoplate-like products, while hydrothermal temperature has more influence on the crystal phase of the product. Gas-sensing properties of the series of as-prepared WO{sub 3} nanoplates were tested by means of acetone, ethanol, formaldehyde and ammonia. One of the WO{sub 3} nanoplates with high specific surface area and high crystallinity displays high sensitivity, fast response and distinct sensing selectivity to acetone gas.

  18. Characterization and valorization of biomass ashes.

    PubMed

    Trivedi, Nikhilesh S; Mandavgane, Sachin A; Mehetre, Sayaji; Kulkarni, Bhaskar D

    2016-10-01

    In India, farming is the primary source of income for many families. Following each harvest, a huge amount of biomass is generated. These are generally discarded as "agrowaste," but recent reports have indicated several beneficial uses for these biomasses and their ashes. However, before the utilization of biomass ashes (BMAs), their chemical and physical properties need to be investigated (characterized) so as to utilize their potential benefit to the fullest. In this paper, eight different biomass ashes (soybean plant ash, mustard plant ash, maize ash, groundnut plant ash, cotton plant ash, wheat plant ash, pigeon peas ash, and groundnut shell ash) were characterized, and their chemical properties are discussed. Surface chemical composition analysis, proximate analysis, and ultimate analysis were performed on all BMA samples, and properties such as porosity, particle density, bulk density, point of zero charge, BET surface area, water-absorption capacity, and bulk parameters such as surface pH and surface charges were determined. BMAs were characterized by SEM and FTIR. The surface areas of biomass ashes vary from 1.9 to 46 m(2)/g, and point of zero charge for all BMAs exceed 9.8, which confirmed the alkaline nature of these samples. Based on the chemical composition, BMAs are categorized into four types (S, C, K, and CK), and their utilization is proposed based on the type. BMAs find applications in agriculture and construction industries; glass, rubber, and zeolite manufacturing; and in adsorption (as a source of silica/zeolites). The paper also discusses the research challenges and opportunities in utilization of BMAs.

  19. Toxicity of waste gasification bottom ash leachate.

    PubMed

    Sivula, Leena; Oikari, Aimo; Rintala, Jukka

    2012-06-01

    Toxicity of waste gasification bottom ash leachate from landfill lysimeters (112 m(3)) was studied over three years. The leachate of grate incineration bottom ash from a parallel setup was used as reference material. Three aquatic organisms (bioluminescent bacteria, green algae and water flea) were used to study acute toxicity. In addition, an ethoxyresorufin-O-deethylase (EROD) assay was performed with mouse hepatoma cells to indicate the presence of organic contaminants. Concentrations of 14 elements and 15 PAH compounds were determined to characterise leachate. Gasification ash leachate had a high pH (9.2-12.4) and assays with and without pH adjustment to neutral were used. Gasification ash leachate was acutely toxic (EC(50) 0.09-62 vol-%) in all assays except in the algae assay with pH adjustment. The gasification ash toxicity lasted the entire study period and was at maximum after two years of disposal both in water flea (EC(50) 0.09 vol-%) and in algae assays (EC(50) 7.5 vol-%). The grate ash leachate showed decreasing toxicity during the first two years of disposal in water flea and algae assays, which then tapered off. Both in the grate ash and in the gasification ash leachates EROD-activity increased during the first two years of disposal and then tapered off, the highest inductions were observed with the gasification ash leachate. The higher toxicity of the gasification ash leachate was probably related to direct and indirect effects of high pH and to lower levels of TOC and DOC compared to the grate ash leachate. The grate ash leachate toxicity was similar to that previously reported in literature, therefore, confirming that used setup was both comparable and reliable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Fly ash beneficiation by carbon burnout

    SciTech Connect

    Cochran, J.W.; Boyd, T.J.

    1995-03-01

    The CBO process for fly ash beneficiation shows excellent potential. Values derived from avoided disposal costs, revenue from fly ash sales, environmental attributes and the ability to process 100% of the ash indicate the potential market for this process. Work has begun on the next phase of process development and commercialization and includes site specific application studies (technical and economic investigations for specific sites). Demonstration plant designs at approximately 100,000 TPY are being considered by several participating utilities.

  1. Ash recycling - the coming of age!

    SciTech Connect

    Barnes, J.M.; Roffman, H.K.; Roethel, F.J.

    1997-12-01

    A major concern of the Waste-To-Energy (WTE) industry is ash disposal and the uncertainty of controlled long term ash management. Ash management costs have risen steadily over the last ten years making it the fastest rising cost segment of the WTE industry. The challenge of how to curb the rising cost while maintaining the protection of human health and the environment has been accomplished by responsibly recycling the ash on a commercial basis. American Ash Recycling Corp. (AAR), utilizing the Duos Engineering (USA), Inc. patent pending ash recycling technology, has promoted ash recycling on a commercial basis in the United States. An important product of the processing and recycling of non-hazardous municipal waste combustor (MWC) ash is Treated Ash Aggregate (TAA). Additionally, ferrous and non-ferrous metals are recovered and unburned materials removed and returned to the WTE facility for re-combustion. The TAA is sized and then treated by the WES-PHix{reg_sign} immobilization process in order to reduce the potential solubility and environmental availability of the metal constituents of the MWC ash. The TAA is available for commercial use in such applications as an aggregate substitute in roadway materials, asphalt and concrete applications, as structural fill, and as landfill cover. Commercial and technical considerations that must be addressed before ash can be beneficially recycled are: permitting requirements, physical and chemical characteristics, potential end uses, environmental concerns (product safety), product market development, and economic viability. True recycling only occurs if all of these considerations can be addressed. This paper presents the details of AAR`s most recent experience in the development of an ash recycling facility in the State of Maine and the associated beneficial use of the TAA product. Each of the considerations listed above are discussed with a special focus on the permitting process.

  2. Annealing dynamics of WO{sub 3} by in situ XRD

    SciTech Connect

    Righettoni, Marco; Pratsinis, Sotiris E.

    2014-11-15

    Highlights: • Flame-made WO{sub 3} nanoparticles with closely controlled crystal and grain size. • Dynamic phase transition of annealing of pure and Si-doped WO{sub 3} by in situ XRD. • Irreversible evolution of WO{sub 3} crystallinity by heating/cooling during its annealing. • Si-doping alters the WO{sub 3} crystallinity dynamics and stabilizes nanosized WO{sub 3}. • Flame-made nano-WO{sub 3} can sense NO at the ppb level. - Abstract: Tungsten trioxide is a semiconductor with distinct applications in gas sensors, catalysis, batteries and pigments. As such the transition between its different crystal structures during its annealing are of interest, especially for sensor applications. Here, WO{sub 3} nanoparticles with closely controlled crystal and grain size (9–15 nm) and phase composition are made by flame spray pyrolysis and the formation of different WO{sub 3} phases during annealing is investigated. Most notably, the dynamic phase transition and crystal size evolution of WO{sub 3} during heating and cooling is monitored by in situ X-ray diffraction revealing how metastable WO{sub 3} phases can be captured stably. The effect of Si-doping is studied since it is used in practise to control crystal growth and phase transition during metal oxide synthesis and processing. Finally the influence of annealing on the WO{sub 3} sensing performance of NO, a lung inflammation tracer in the human breath, is explored at the ppb-level.

  3. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer

    Treesearch

    Justin G.A. Whitehill; Alexandra Popova-Butler; Kari B. Green-Church; Jennifer L. Koch; Daniel A. Herms; Pierluigi. Bonello

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F....

  4. Attracting structures in volcanic ash transport

    NASA Astrophysics Data System (ADS)

    Peng, Jifeng

    2009-11-01

    Volcanic eruptions and ash clouds are a natural hazard that poses direct threats to aviation safety. They may also affect human and ecosystem health. Many transport and dispersion models have been developed to forecast trajectories of volcanic ash clouds, as well as to plan safety measures. Predictions based on these models are heavily dependent on initial parameters of ash clouds, e.g., location, height, particle size and density distribution, water vs. ash content, etc. However, these initial parameters are usually difficult to determine, leading to possible inaccurate predictions of ash clouds trajectories. In this study, a dynamical systems approach is combined with volcanic ash transport models to help improve prediction. A type of attracting structures in volcanic ash transport is identified. These structures act as attractors in volcanic ash transport, and they are independent of initial parameters of specific volcanic eruptions. The attracting structures are associated with hazard zones with high concentrations of volcanic ash. And the prediction in hazard maps can be used to plan flight route diversions and ground evacuations.

  5. Attracting structures in volcanic ash transport

    NASA Astrophysics Data System (ADS)

    Peng, J.; Peterson, R.

    2009-12-01

    Volcanic eruptions and ash clouds are a natural hazard that poses direct threats to aviation safety. They may also affect human and ecosystem health. Many transport and dispersion models have been developed to forecast trajectories of volcanic ash clouds, as well as to plan safety measures. Predictions based on these models are heavily dependent on initial parameters of ash clouds, e.g., location, height, particle size and density distribution, water vs. ash content, etc. However, these initial parameters are usually difficult to determine, leading to possible inaccurate predictions of ash clouds trajectories. In this study, a dynamical systems approach is combined with volcanic ash transport models to help improve prediction. A type of attracting structures in volcanic ash transport is identified. These structures act as attractors in volcanic ash transport, and are largely independent of initial parameters of specific volcanic eruptions. The attracting structures are associated with hazard zones with high concentrations of volcanic ash. The prediction in hazard maps can be used to plan flight route diversions and ground evacuations.

  6. Volcanic ash at Santiaguito dome complex, Guatemala

    NASA Astrophysics Data System (ADS)

    Hornby, Adrian; Kendrick, Jackie; Lavallée, Yan; Cimarelli, Corrado; von Aulock, Felix; Rhodes, Emma; Kennedy, Ben; Wadsworth, Fabian

    2015-04-01

    Dome-building volcanoes often suffer episodic explosions. Examination of eruptive activity at Santiaguito dome complex (Guatemala) reveals that gas-and-ash explosions are concordant with rapid inflation/ deflation cycles of the active dome. During these explosions strain is accommodated along marginal faults, where tensional fracture mechanisms and friction dominate, complicating the model of ash generation by bubble rupture in magma. Here, we describe textural features, morphology and petrology of ash collected before, during and after a dome collapse event at Santiaguito dome complex on the 28th November 2012. We use QEM-scan (on more than 35000 grains), laser diffraction granulometry and optical and scanning microscopy to characterise the samples. The ash samples show a bimodal size distribution and a range of textures, crystal content and morphologies. The ash particles are angular to sub-angular and are relatively dense, so do not appear to comprise of pore walls. Instead the ash is generally blocky (>70%), similar to the products of shear magma failure. The ash samples show minor variation before, during and after dome collapse, specifically having a smaller grain size and a higher fraction of phenocrysts fragments before collapse. Textural analysis shows vestiges of chemically heterogeneous glass (melt) filaments originating from the crystals and crosscut by fragmentation during volcanic ash formation. High-velocity friction can induce melting of dome lavas, producing similar disequilibrium melting textures. This work shows the importance of deformation mechanisms in ash generation at lava domes and during Vulcanian activity.

  7. Hazards Associated With Recent Popocatepetl Ash Emissions

    NASA Astrophysics Data System (ADS)

    Nieto, A.; Martin, A.; Espinasa-Pereña, R.; Ferres, D.

    2013-05-01

    Popocatepetl has been producing ash from small eruptions since 1994. Until 2012 about 650 small ash emissions have been recorded at the monitoring system of Popocatépetl Volcano. Ash consists mainly of glassy lithic clasts from the recent crater domes, plagioclase and pyroxene crystals, and in major eruptions, olivine and/or hornblende. Dome forming eruptions produced a fine white ash which covers the coarser ash. This fine ash consists of plagioclase, glass and cristobalite particles mostly under15 microns. During the recent crisis at Popocatépetl, April and May2012 ash fell on villages to the east and west of the volcano, reaching Mexico City (more than 20 million people) and Puebla (2 million people). In 14 cases the plumes had heights over 2 km, the largest on May 2 and 11 (3 and 4 km in height, respectively). Heavier ash fall occurred on April 13, 14, 20, and 23 and May 2, 3, 5, 11, 14, 23, 24 and 25. A database for ash fall was constructed from April 13 with field observations, reports emitted by the Centro Nacional de Comunicaciones (CENACOM), ash fall advisories received at CENAPRED and alerts from the Servicios a la Navegación en el Espacio Aéreo Mexicano (SENEAM). This aim of this database is to calculate areas affected by the ash and estimate the ash fall volume emitted by Popocatépetl in each of these events. Heavy ash fall from the May 8 to May 11 combined with reduced visibility due to fog forced to closure of the Puebla airport during various periods of time, for up to 13 hours. Domestic and international flights were cancelled. Ash eruptions have caused respiratory conditions in the state of Puebla, to the east of the volcano, since 1994 (Rojas et al, 2001), but because of the changing wind conditions in the summer mainly, some of these ash plumes go westward to towns in the State of Mexico and even Mexico City. Preliminary analyses of these eruptions indicate that some ash emissions produced increased respiratory noninfectious problems

  8. An innovative vibration fluidized bed ash cooler

    SciTech Connect

    Duan, Y.; Zhang, M.; Liu, A.; Yao, Z.; Tang, H.; Liu, Q.

    1999-07-01

    With the ever-increasing versatility, scaling up and commercialization of coal-fired fluidized bed boiler technologies, it has become more and more important to improve the technique of draining bed ash from bubbling or circulating fluidized bed boilers. Choosing an ash cooler is a good way but highly stable and reliable system is hard to find for a massive ash flow rate having a broad particle size distributions. An innovative technique known as Vibration Fluidized Bed Ash Cooler (VFBAC) is proposed in this paper. It can drain bottom ash at a high temperature from FB or CFB boilers continuously and controllably. In this device, air used for cooling can be used as combustion-aided air or coal spreading air. The hot ash is cooled by the air to a temperature which it can be transported easily and safely by conventional technology. Meanwhile, an industrial apparatus utilizing the new technology was manufactured and used in a 35 t/h bubbling FB boiler. For the purpose of detecting residence time distribution of wide-sieved bed materials in this ash cooler systematically, advantage was taken of a new approach for physical quality discrimination. Investigations into the hydrodynamic characteristics of the gas-solid two-phase flows and theoretical analyses on hot operational performance were carried out. The results show that heat recovery efficiency of the ash cooler reaches 85% greater when operating at a ratio of air to ash of 1.5{approximately}2.5 Nm{sup 3}/kg.

  9. Survey for tolerance to emerald ash borer within North American ash species

    Treesearch

    Jennifer L. Koch; Mary E. Mason; David W. Carey; Kathleen Knight; Therese Poland; Daniel A. Herms

    2010-01-01

    Since the discovery of the emerald ash borer (EAB) near Detroit, MI, in 2002, more than 40 million ash trees have been killed and another 7.5 billion are at risk in the United States. When the EAB outbreak was initially discovered, our native ash species appeared to have no resistance to the pest.

  10. Use of unwounded ash trees for the detection of emerald ash borer adults: EAB landing behavior

    Treesearch

    Jordan M. Marshall; Melissa J. Porter; Andrew J. Storer

    2011-01-01

    Incorporation of multiple trapping techniques and sites within a survey program is essential to adequately identify the range of emerald ash borer (EAB) (Agrilus planipennis Fairmaire) infestation. Within natural forests, EAB lands on stick band traps wrapped around girdled ash trees at a rate similar to that on unwounded ash trees. The objective of...

  11. Feeding by emerald ash borer larvae induces systemic changes in black ash foliar chemistry

    Treesearch

    Yigen Chen; Justin G.A. Whitehill; Pierluigi Bonello; Therese M. Poland

    2011-01-01

    The exotic wood-boring pest, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has been threatening North American ash (Fraxinus spp.) resources, this being recognized since its first detection in Michigan, USA and Ontario, Canada in 2002. Ash trees are killed by larval feeding in the cambial region...

  12. Emerald Ash Borer: Invasion of the Urban Forest and the Threat to North America's Ash Resource

    Treesearch

    Therese M. Poland; Deborah G. McCullough

    2006-01-01

    The emerald ash borer (EAB), a phloem-feeding beetle native to Asia, was discovered killing ash trees in southeastern Michigan and Windsor, Ontario, in 2002. Like several other invasive forest pests, the EAB likely was introduced and became established in a highly urbanized setting, facilitated by international trade and abundant hosts. Up to 15 million ash trees in...

  13. Factors affecting the survival of ash (Fraxinus spp.) trees infested by emerald ash borer (Agrilus planipennis)

    Treesearch

    Kathleen S. Knight; John P. Brown; Robert P. Long

    2013-01-01

    Emerald ash borer (Agrilus planipennis) (EAB), an Asian woodboring beetle accidentally introduced in North America, has killed millions of ash (Fraxinus spp.) trees and is spreading rapidly. This study examined the effects of tree- and site-level factors on the mortality of ash trees in stands infested by EAB in OH, USA. Our data...

  14. Attraction of the emerald ash borer to ash trees stressed by girdling, herbicide treatment, or wounding

    Treesearch

    Deborah McCullough; Therese Poland; David. Cappaert

    2009-01-01

    New infestations of emerald ash borer, Agrilus planipennis Fairmaire, an invasive pest native to Asia, are difficult to detect until densities build and symptoms appear on affected ash (Fraxinus spp). We compared the attraction of A. planipennis to ash trees stressed by girdling (bark and phloem removed...

  15. Attraction of the emerald ash borer to ash trees stressed by girdling, herbicide treatment, or wounding

    Treesearch

    Deborah G. McCullough; Therese M. Poland; David Cappaert

    2009-01-01

    New infestations of emerald ash borer, Agrilus planipennis Fainnaire, an invasive pest native to Asia, are difficult to detect until densities build and symptoms appear on affected ash (Fraxinus spp). We compared the attraction of A. planipennis to ash trees stressed by girdling(bark and phloem removed from a 15...

  16. Characterization of ash cenospheres in fly ash from Australian power stations

    SciTech Connect

    Ling-ngee Ngu; Hongwei Wu; Dong-ke Zhang

    2007-12-15

    Ash cenospheres in fly ashes from five Australian power stations have been characterized. The experimental data show that ash cenosphere yield varies across the power stations. Ash partitioning occurred in the process of ash cenosphere formation during combustion. Contradictory to conclusions from the literature, iron does not seem to be essential to ash cenosphere formation in the cases examined in the present work. Further investigation was also undertaken on a series of size-fractioned ash cenosphere samples from Tarong power station. It is found that about 70 wt% of ash cenospheres in the bulk sample have sizes between 45 and 150 {mu}m. There are two different ash cenosphere structures, that is, single-ring structure and network structure. The percentage of ash cenospheres of a network structure increases with increasing ash cenosphere size. Small ash cenospheres (in the size fractions {lt}150 {mu}m) have a high SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and the majority of the ash cenospheres are spherical and of a single-ring structure. Large ash cenosphere particles (in the size fractions of 150-250 {mu}m and {gt}250 {mu}m) have a low SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and a high proportion of the ash cenospheres are nonspherical and of a network structure. A novel quantitative technique has been developed to measure the diameter and wall thickness of ash cenospheres on a particle-to-particle basis. A monolayer of size-fractioned ash cenospheres was dispersed on a pellet, which was then polished carefully before being examined using a scanning electron microscope and image analysis. The ash cenosphere wall thickness broadly increases with increasing ash cenosphere size. The ratios between wall thickness and diameter of ash cenospheres are limited between an upper bound of about 10.5% and a lower bound of about 2.5%, irrespective of the ash cenosphere size. 52 refs., 9 figs., 4 tabs.

  17. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett [Park City, UT

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  18. Hydrogen-treated commercial WO3 as an efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells.

    PubMed

    Cheng, Ling; Hou, Yu; Zhang, Bo; Yang, Shuang; Guo, Jian Wei; Wu, Long; Yang, Hua Gui

    2013-07-07

    The electrocatalytically inactive commercial WO3 can be transformed into an efficient counter electrode (CE) material for dye-sensitized solar cells (DSCs) via facile hydrogen treatment. The energy conversion efficiency of the DSCs with the hydrogen-treated WO3 CE was 5.43%, while the corresponding value for commercial WO3 with the stoichiometric surface was only 0.63%.

  19. Effect of crystallization water on the structural and electrical properties of CuWO{sub 4} under high pressure

    SciTech Connect

    Wang, Li; Yan, Jiejuan; Liu, Cailong; Liu, Xizhe; Han, Yonghao E-mail: cc060109@qq.com; Gao, Chunxiao E-mail: cc060109@qq.com; Ke, Feng; Wang, Qinglin; Li, Yanchun; Ma, Yanzhang

    2015-11-16

    The effect of crystallization water on the structural and electrical properties of CuWO{sub 4} under high pressure has been investigated by in situ X-ray diffraction and alternating current impedance spectra measurements. The crystallization water was found to be a key role in modulating the structural stability of CuWO{sub 4} at high pressures. The anhydrous CuWO{sub 4} undergoes two pressure-induced structural transitions at 8.8 and 18.5 GPa, respectively, while CuWO{sub 4}·2H{sub 2}O keeps its original structure up to 40.5 GPa. Besides, the crystallization water makes the electrical transport behavior of anhydrous CuWO{sub 4} and CuWO{sub 4}·2H{sub 2}O quite different. The charge carrier transportation is always isotropic in CuWO{sub 4}·2H{sub 2}O, but anisotropic in the triclinic and the third phase of anhydrous CuWO{sub 4}. The grain resistance of CuWO{sub 4}·2H{sub 2}O is always larger than that of anhydrous CuWO{sub 4} in the entire pressure range. By analyzing the relaxation response, we found that the large number of hydrogen bonds can soften the grain characteristic frequency of CuWO{sub 4}·2H{sub 2}O over CuWO{sub 4} by one order of magnitude.

  20. 10 Risk to Ash from Emerald Ash Borer: Can Biological Control Prevent the Loss of Ash Stands

    USDA-ARS?s Scientific Manuscript database

    Ash trees were once relatively free of serious, major diseases and insect pests in North America until the arrival of EAB, which was first detected in North America in Michigan in 2002. As of February 2014, EAB had been detected in 22 U.S. states and two Canadian provinces, killing millions of ash ...

  1. Emerald ash borer biocontrol in ash saplings: The potential for early stage recovery of North American ash trees

    Treesearch

    Jian J. Duan; Leah S. Bauer; Roy G. Van Driesche

    2017-01-01

    In many parts of North America, ash (Fraxinus) stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees, saplings, basal sprouts, and seedlings. Without a soil seed bank for Fraxinus spp., tree recovery will require survival and maturation of these...

  2. Lithium-titanate-nanotube-supported WO3 for enhancing transmittance contrast in electrochromics.

    PubMed

    Dong, Yunbing; Xiong, Chunrong; Zhang, Yilu; Xing, Shuai; Jiang, Hong

    2016-03-11

    Lithium titanate nanotubes (Li-TNTs) have been successfully synthesized. The inner and outer diameters of the nanotubes are 5 nm and 8 nm with an interlayer spacing of 0.83 nm. The nanotubes were in accordance with the Li1.81H0.19Ti2O5 · xH2O phase. The chemical component was Li0.9H1.1Ti2O5 · H2O as determined by ICP-AES. The Li-TNT-supported WO3 nanoparticle (WO3/Li-TNTs) thin film was prepared onto ITO glass via spin-coating and then fabricated with an electrochromic device. The Li ion diffusion coefficient in the WO3/Li-TNT film was 6.1 × 10(-10) cm(2) s(-1), which is eight times higher than that for the pure WO3 film. The transmittance contrast of the pure WO3-based ECD was 53.3% at 600 nm. However, this increased to 74.1% for the WO3/Li-TNT-based ECD. Meanwhile, the color-switching times of the WO3/Li-TNT-based ECD were apparently shorter than the ones for the WO3-based ECD.

  3. Lithium-titanate-nanotube-supported WO3 for enhancing transmittance contrast in electrochromics

    NASA Astrophysics Data System (ADS)

    Dong, Yunbing; Xiong, Chunrong; Zhang, Yilu; Xing, Shuai; Jiang, Hong

    2016-03-01

    Lithium titanate nanotubes (Li-TNTs) have been successfully synthesized. The inner and outer diameters of the nanotubes are 5 nm and 8 nm with an interlayer spacing of 0.83 nm. The nanotubes were in accordance with the Li1.81H0.19Ti2O5 · xH2O phase. The chemical component was Li0.9H1.1Ti2O5 · H2O as determined by ICP-AES. The Li-TNT-supported WO3 nanoparticle (WO3/Li-TNTs) thin film was prepared onto ITO glass via spin-coating and then fabricated with an electrochromic device. The Li ion diffusion coefficient in the WO3/Li-TNT film was 6.1 × 10-10 cm2 s-1, which is eight times higher than that for the pure WO3 film. The transmittance contrast of the pure WO3-based ECD was 53.3% at 600 nm. However, this increased to 74.1% for the WO3/Li-TNT-based ECD. Meanwhile, the color-switching times of the WO3/Li-TNT-based ECD were apparently shorter than the ones for the WO3-based ECD.

  4. Optical properties of WO{sub 3} thin films using surface plasmon resonance technique

    SciTech Connect

    Paliwal, Ayushi; Sharma, Anjali; Gupta, Vinay E-mail: vgupta@physics.du.ac.in; Tomar, Monika

    2014-01-28

    Indigenously assembled surface plasmon resonance (SPR) technique has been exploited to study the thickness dependent dielectric properties of WO{sub 3} thin films. WO{sub 3} thin films (80 nm to 200 nm) have been deposited onto gold (Au) coated glass prism by sputtering technique. The structural, optical properties and surface morphology of the deposited WO{sub 3} thin films were studied using X-ray diffraction, UV-visible spectrophotometer, Raman spectroscopy, and Scanning electron microscopy (SEM). XRD analysis shows that all the deposited WO{sub 3} thin films are exhibiting preferred (020) orientation and Raman data indicates that the films possess single phase monoclinic structure. SEM images reveal the variation in grain size with increase in thickness. The SPR reflectance curves of the WO{sub 3}/Au/prism structure were utilized to estimate the dielectric properties of WO{sub 3} thin films at optical frequency (λ = 633 nm). As the thickness of WO{sub 3} thin film increases from 80 nm to 200 nm, the dielectric constant is seen to be decreasing from 5.76 to 3.42, while the dielectric loss reduces from 0.098 to 0.01. The estimated value of refractive index of WO{sub 3} film is in agreement to that obtained from UV-visible spectroscopy studies. The strong dispersion in refractive index is observed with wavelength of incident laser light.

  5. Detecting hydrogen using graphene quantum dots/WO3 thin films

    NASA Astrophysics Data System (ADS)

    Fardindoost, Somayeh; Iraji zad, Azam; Sadat Hosseini, Zahra; Hatamie, Shadie

    2016-11-01

    In the present work we report an approach to resistive hydrogen sensing based on graphene quantum dots (GQDs)/WO3 thin films that work reproducibly at low temperatures. GQDs were chemically synthesized and evenly dispersed in WO3 solution with 1:1 molar ratio. The structural evaluation and crystallization of the prepared films was studied by x-ray diffraction, Raman and scanning electron microscopy (SEM) techniques. The SEM images showed uniform distribution of the GQDs in WO3 films with sizes around 50 nm. Raman experiment showed the GQDs are partially reduced with high edge defects as hydroxyl and carboxyl groups which involve both in bridging between WO3 grains via bindings as well as interacting with target gas molecules. GQDs can develop an electron conductive network and shorten the current transport paths inside the sensitive films. As a result, they improved the poor electrical properties and charge transfer of pure WO3. Resistive hydrogen sensing showed significant decrease in the working temperature for GQDs/WO3 films compared to pure WO3 films. The working temperature of about 150 °C with 15 and 40 s response and recovery times are significant characteristics of the introduced sensing structure. Then palladium (Pd) was added as a catalyst in GQDs/WO3 film to make the sensing materials selective to hydrogen. Pd doped film worked at temperature of 120 °C with high selectivity and improved response magnitude to hydrogen gas.

  6. Congruence of Behavioral Symptomatology in Children with ADD/H, ADD/WO, and Learning Disabilities.

    ERIC Educational Resources Information Center

    Stanford, Lisa D.; Hynd, George W.

    1994-01-01

    This study compared parent and teacher behavioral ratings for 77 children (ages 5-16) diagnosed as having attention deficit disorder with hyperactivity (ADD/H), attention deficit disorder without hyperactivity (ADD/WO), or learning disabilities (LD). ADD/WO and LD children were rated similarly on symptoms of withdrawal and impulsivity but differed…

  7. Correlation between surface chemistry, density and band gap in nanocrystalline WO3 thin films

    SciTech Connect

    Vemuri, Venkata Rama Ses; Engelhard, Mark H.; Ramana, C.V.

    2012-03-01

    Nanocrystalline WO3 thin films were produced by sputter-deposition by varying the ratio of argon to oxygen in the reactive gas mixture during deposition. The surface chemistry, physical characteristics, and optical properties of nanocrystalline WO3 films were evaluated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray reflectivity (XRR), and spectrophotometric measurements. The effect of ultra-microstructure was significant on the optical properties of WO3 films. The XPS analyses indicate the formation of stoichiometric WO3 with tungsten existing in fully oxidized valence state (W6+). However, WO3 films grown at high oxygen concentration (>60%) in the sputtering gas mixture were over stoichiometric with excess oxygen. XRR simulations, which are based on isotropic WO3 film - SiO2 interface - Si substrate model, indicate that the density of WO3 films is sensitive to the oxygen content in the sputtering gas. The spectral transmission of the films increased with the increasing oxygen. The band gap of these films increases from 2.78 eV to 3.25 eV with increasing oxygen. A direct correlation between the film-density and band gap in nanocrystalline WO3 films is established based on the observed results.

  8. Health of Children Living Near Coal Ash.

    PubMed

    Sears, Clara G; Zierold, Kristina M

    2017-01-01

    Coal ash, generated from coal combustion, is composed of small particles containing metals and other elements, such as metalloids. Coal ash is stored in open-air impoundments, frequently near communities. The objective of this study was to evaluate the prevalence of health and sleep problems in children living near coal ash and compare these prevalences to children not living near coal ash. In 2013 to 2014, we conducted a cross-sectional survey in a community adjacent to coal ash storage sites and a community not exposed to coal ash. Overall, 111 children who lived near coal ash were in the study; 55.9% (62) were males, 44.1% (49) were females, and the mean age was 10.3 years (SD = 3.9). Descriptive statistics and logistic regression were used to compare the prevalence of health and sleep problems. Attention-deficit hyperactivity disorder (P = .02), gastrointestinal problems (P = .01), difficulty falling asleep (P = .007), frequent night awakenings (P < .001), teeth grinding (P = .03), and complaint of leg cramps (P < .001) were significantly greater in the children living near coal ash. When adjusting for covariates, the odds of allergies excluding asthma, attention-deficit hyperactivity disorder, gastrointestinal problems, difficulty falling asleep, frequent night awakenings, sleep talking, and complaint of leg cramps were greater in children living near coal ash compared to children not living near coal ash (nonexposed). Several components of coal ash, such as heavy metals like lead, mercury, and arsenic, may be associated with health and sleep problems in children. More research is needed to investigate this relationship.

  9. State of volcanic ash dispersion prediction

    NASA Astrophysics Data System (ADS)

    Eliasson, Jonas; Palsson, Thorgeir; Weber, Konradin

    2017-04-01

    The Eyjafjallajokull 2010 and Grimsvotn 2011 eruptions created great problems for commercial aviation in Western Europe and in the North Atlantic region. Comparison of satellite images of the visible and predicted ash clouds showed the VAAC prediction to be much larger than the actual ash clouds. No official explanation of this discrepancy exists apart from the definition of the ash cloud boundary. Papers on simulation of the Eyjafjallajökull ash cloud in peer reviewed journals, typically attempted to simulate the VAAC predictions rather than focusing on the satellite pictures. Sporadic measurements made in-situ showed much lower ash concentrations over Europe than the predicted values. Two of the weak points in ash cloud prediction have been studied in airborne measurements of volcanic ash by the Universities in Kyoto Japan, Iceland and Düsseldorf Germany of eruptions in Sakurajima, Japan. It turns out that gravitational deformation of the plume and a streak fallout process make estimated ash content of clouds larger than the actual, both features are not included in the simulation model. Tropospheric plumes tend to ride in stable inversions this causes gravitational flattening (pancaking) of the volcanic plume, while diffusion in the mixing layer is insignificant. New rules from ICAO, effective from November 2014, reiterate that jetliners should avoid visible ash, this makes information on visible ash important. A procedure developed by JMÁs Tokyo VAAC uses satellite images of visible ash to correct the prediction. This and the fact that meteorological data necessary to model gravitational dispersion and streak fallout do not exist in the international database available to the VAAĆs. This shows that close monitoring by airborne measurements and satellite and other photographic surveillance is necessary.

  10. Silvics and silviculture of ash in mixed hardwood forests of the southern bottomlands and loessial hills

    Treesearch

    Steve. Meadows

    2010-01-01

    This presentation describes the silvics of green ash (Fraxinus pennsylvanica), pumpkin ash (F. profunda), Carolina ash (F. caroliniana), and white ash (F. americana). Green ash is the primary ash species in southern bottomlands. Pumpkin ash and Carolina ash are relatively minor species with...

  11. Changes of the ash structure

    NASA Astrophysics Data System (ADS)

    Peer, Václav; Friedel, Pavel; Janša, Jan

    2016-06-01

    The aim of the article is to appraisal of the changes in the structure of the ash due to the addition of compounds capable of the eutectics composition change. For the transformation were used limestone and dolomite dosed in amounts of 2, 5 and 10 wt.% with pellets of spruce wood, willow wood and refused derived fuel. Combustion temperatures of the mixtures were adjusted according to the temperatures reached during the using of fuels in power plants, i.e. 900, 1000, 1100 and 1200 °C.

  12. Strain Accommodation By Facile WO6 Octahedral Distortion and Tilting During WO3 Heteroepitaxy on SrTiO3(001)

    SciTech Connect

    Du, Yingge; Gu, Meng; Varga, Tamas; Wang, Chong M.; Bowden, Mark E.; Chambers, Scott A.

    2014-08-27

    In this paper, we show that compared to other BO6 octahedra in ABO3 structured perovskite oxides, the WO6 octahedra in tungsten trioxide (WO3) can withstand a much larger degree of distortion and tilting to accommodate interfacial strain, which in turn strongly impact the nucleation, structure, and defect formation during the epitaxial growth of WO3 on SrTiO3(001). A meta-stable tetragonal phase can be stabilized by epitaxy and a thickness dependent phase transition (tetragonal to monoclinic) is observed. In contrast to misfit dislocations to accommodate the interfacial stain, the facial WO6 octahedral distortion and tilting give rise to three types of planar defects that affect more than 15 monolayers from the interface. These atomically resolved, unusual interfacial defects may significantly alter the electronic, electrochromic, and mechanical properties of the epitaxial films.

  13. Microwave-assisted synthesis and photocatalytic properties of flower-like Bi2WO6 and Bi2O3-Bi2WO6 composite.

    PubMed

    Li, Zhao-Qian; Chen, Xue-Tai; Xue, Zi-Ling

    2013-03-15

    Flower-like Bi(2)WO(6) and Bi(2)O(3)-Bi(2)WO(6) composite microstructures have been synthesized via a facile and rapid microwave-assisted hydrothermal method through controlling the experimental parameters. The phases and morphologies of the products are characterized by powder X-ray diffraction (XRD), energy dispersion X-ray analysis (EDX), high resolution transmission electron microscopy (HRTEM), and scanning electron microscopy (SEM). Photocatalytic experiments indicate that such Bi(2)O(3)-Bi(2)WO(6) composite possesses higher photocatalytic activity for RhB degradation under visible-light irradiation in comparison with pure Bi(2)O(3) and Bi(2)WO(6). On the basis of the calculated energy band positions, the enhanced photocatalytic activity is attributed to the effective separation of electron-hole pairs between the two semiconductors. The present study provides a new strategy to design composite materials with enhanced photocatalytic activity.

  14. Electrochromic properties of WO3 thin film onto gold nanoparticles modified indium tin oxide electrodes

    NASA Astrophysics Data System (ADS)

    Deng, Jiajia; Gu, Ming; Di, Junwei

    2011-04-01

    Gold nanoparticles (GNPs) thin films, electrochemically deposited from hydrogen tetrachloroaurate onto transparent indium tin oxide (ITO) thin film coated glass, have different color prepared by variation of the deposition condition. The color of GNP film can vary from pale red to blue due to different particle size and their interaction. The characteristic of GNPs modified ITO electrodes was studied by UV-vis spectroscopy, scanning electron microscope (SEM) images and cyclic voltammetry. WO3 thin films were fabricated by sol-gel method onto the surface of GNPs modified electrode to form the WO3/GNPs composite films. The electrochromic properties of WO3/GNPs composite modified ITO electrode were investigated by UV-vis spectroscopy and cyclic voltammetry. It was found that the electrochromic performance of WO3/GNPs composite films was improved in comparison with a single component system of WO3.

  15. High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes.

    PubMed

    Guo, Yafeng; Quan, Xie; Lu, Na; Zhao, Huimin; Chen, Shuo

    2007-06-15

    Self-assembled nanoporous tungsten oxide (WO3) with preferential orientation (002) planes was successfully synthesized on the tungsten sheet by anodization in a 0.2 wt % NaF and 0.3% (V/V) HF mixture solution in a 1:1 ratio. The pores, of a highly ordered self-assembled structure, had an average size of approximately 70 nm. X-ray diffraction identified a monoclinic WO3 structure and fine preferential orientation of (002) planes. A maximum photoconversion efficiency of 17.2% was obtained for the self-assembled nanoporous WO3 under high-pressure mercury lamp illumination. The photocatalytic (PC) degradation of pentachlorophenol (PCP) in aqueous solution using the self-assembled nanoporous WO3 photocatalyst, performed under both high-pressure mercury lamp and Xe lamp illumination, showed more excellent PC capability than WO3 film and TiO2 nanotube arrays.

  16. Characterization of MAPLE deposited WO3 thin films for electrochromic applications

    NASA Astrophysics Data System (ADS)

    Boyadjiev, S. I.; Stefan, N.; Szilágyi, I. M.; Mihailescu, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Besleaga, C.; Iliev, M. T.; Gesheva, K. A.

    2017-01-01

    Tungsten trioxide (WO3) is a widely studied material for electrochromic applications. The structure, morphology and optical properties of WO3 thin films, grown by matrix assisted pulsed laser evaporation (MAPLE) from monoclinic WO3 nano-sized particles, were investigated for their possible application as electrochromic layers. A KrF* excimer (λ=248 nm, ζFWHM=25 ns) laser source was used in all experiments. The MAPLE deposited WO3 thin films were studied by atomic force microscopy (AFM), grazing incidence X-ray diffraction (GIXRD) and Fourier transform infrared spectroscopy (FTIR). Cyclic voltammetry measurements were also performed, and the coloring and bleaching were observed. The morpho-structural investigations disclosed the synthesis of single-phase monoclinic WO3 films consisting of crystalline nano-grains embedded in an amorphous matrix. All thin films showed good electrochromic properties, thus validating application of the MAPLE deposition technique for the further development of electrochromic devices.

  17. Gamma-ray irradiation induced bulk photochromism in WO3-P2O5 glass

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Baccaro, Stefania; Cemmi, Alessia; Xu, Xiaoqing; Chen, Guorong

    2015-11-01

    In the present work, photochromism of WO3-P2O5 glass under gamma-ray irradiation was reported. As-prepared glass samples with different WO3 content are all optically transparent in the visible wavelength range thanks to the addition of a small amount of oxidizing couple Sb2O3-NaNO3. The photochromic properties are identified by transmission spectra of the glasses before and after irradiation. The results show that the irradiation induced darkening results from the reduction of W6+ to W5+ or W4+. The existence of WO6 clusters in glasses of high WO3 content is proved by XPS, which is the main reason for the obvious photochromic effects. The WO3-P2O5 glass is a promising candidate in gamma-ray sensitive detector.

  18. Photoactivity and stability of Ag2WO4 for organic degradation in aqueous suspensions

    NASA Astrophysics Data System (ADS)

    Chen, Haihang; Xu, Yiming

    2014-11-01

    Silver tungstate as photocatalyst for water splitting and dye degradation has been reported, but the catalyst stability is not known. In this work, we find that both α- and β-Ag2WO4 are not stable under UV light for the photocatalytic degradation of phenol and azo-dye X3B in aqueous solutions. Comparatively, β-Ag2WO4 was more photoactive, but less stable than α-Ag2WO4. Solid characterization with X-ray diffraction and scanning electron microscope showed that metallic silver particles were produced with the two catalysts, consequently resulting into decrease in the activity for organic degradation. Measurement of photoluminescence revealed that β-Ag2WO4 had a weaker band gap emission and higher portion of structural defects than α-Ag2WO4. A possible mechanism responsible for the observed difference in photoactivity and stability between the two tungstates is proposed.

  19. Photoelectron spectromicroscopy study of metal-insulator transition in NaxWO3

    NASA Astrophysics Data System (ADS)

    Paul, Sanhita; Ghosh, Anirudha; Dudin, Pavel; Barinov, Alexei; Chakraborty, Anirban; Ray, Sugata; Sarma, D. D.; Oishi, Shuji; Raj, Satyabrata

    2013-07-01

    We have investigated the validity of percolation model, which is quite often invoked to explain the metal-insulator transition in sodium tungsten bronzes, NaxWO3 by photoelectron spectromicroscopy. The spatially resolved direct spectromicroscopic probing on both the insulating and metallic phases of high quality single crystals of NaxWO3 reveals the absence of any microscopic inhomogeneities embedded in the system within the experimental limit. Neither any metallic domains in the insulating host nor any insulating domains in the metallic host have been found to support the validity of percolation model to explain the metal-insulator transition in NaxWO3. The possible origin of insulating phase in NaxWO3 is due to the Anderson localization of all the states near EF. The localization occurs because of the strong disorder arising from random distribution of Na+ ions in the WO3 lattice.

  20. Scientists Outline Volcanic Ash Risks to Aviation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-01-01

    The ash clouds that belched out of Iceland's Eyjafjallajökull volcano last spring and dispersed over much of Europe, temporarily paralyzing aviation, were vast smoke signal warnings about the hazard that volcanic ash poses for air traffic around the world. At a 15 December news briefing at the AGU Fall Meeting in San Francisco, two experts with the U.S. Geological Survey (USGS) presented an overview of the damage airplanes can sustain from rock fragment- and mineral fragment-laden ash, an update on efforts to mitigate the hazard of ash, and an outline of further measures that are needed to address the problem. Between 1953 and 2009, there were 129 reported encounters of aircraft with volcanic ash clouds, according to a newly released USGS document cited at the briefing. The report, “Encounters of aircraft with volcanic ash clouds: A compilation of known incidents, 1953-2009,” by Marianne Guffanti, Thomas Casadevall, and Karin Budding, indicates that 26 encounters involved significant damage to the airplanes; nine of those incidents resulted in engine shutdown during flight. The report, which does not focus on the effects on airplanes of cumulative exposure to dilute ash and does not include data since 2009, indicates that “ash clouds continue to pose substantial risks to safe and efficient air travel globally.”

  1. How New York State saved its ash

    Treesearch

    C.L. Holmes; M. Marquand; E.M. Toth

    2017-01-01

    Across the United States, forest communities are faced with the prospect of extirpation of Fraxinus (ash) species owing to mortality caused by invasion of the emerald ash borer (Agrilus planipennis). However, with the advancement of ex situ seed conservation practices, we have the opportunity to conserve the ecoregional-based...

  2. Environmental assessment and utilization CFB ash

    SciTech Connect

    Conn, R.

    1997-12-31

    Landfill disposal has generally been accepted as the most common option for ash management in CFB power plants. However, the cost of ash disposal continues to increase due to a reduction in landfill capacity and more stringent environmental regulations. As a result, beneficial uses of CFB ashes (versus landfilling) are being investigated in order to provide a more cost effective ash management program. The chemical and physical characteristics of CFB by-products will influence both their environmental impact and potential utilization options. Compared to conventional pulverized coal boiler ashes, CFB ashes generally have different chemical properties which may limit their utilization for production of Portland cement. Other diverse utilization options have been identified for CFB residues which include: agricultural applications, structural fill, and waste stabilization. Most of these applications have to meet specifications by following certain test methods. The exact utilization options for CFB by-products will depend primarily on the type of fuel being fired, and to a lesser extent, the type of sorbent utilized for sulfur capture. Based on laboratory investigation of ash characteristics, utilization options were concluded for different Foster Wheeler commercial boilers throughout the US and abroad. Based on the results of this study, it was demonstrated that most CFB ashes could be utilized for one or more of the purposes noted above.

  3. Ash Leachate Can Reduce Surface Erosion

    Treesearch

    George J. Holcomb; Philip B. Durgin

    1979-01-01

    In laboratory analyses of the Larabee soil from north-western California, ash leachate flocculated the clay fractions. As a result, the soil quickly settled out of suspension. To test the hypothesis that field plots on disturbed areas treated with ash leachate would be more resistant to erosion than nontreated plots, a study was done in July and August 1978, on two...

  4. Laboratory rearing of emerald ash borer

    Treesearch

    Leah S. Bauer; Robert A. Haack; Deborah L. Miller; Houping Liu; Toby Petrice

    2004-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), native to several Asian countries, was identified in 2002 as the cause of ash (Fraxinus spp.) mortality throughout southeastern Michigan and southwestern Ontario. More isolated infestations continue to be found throughout Lower Michigan, northern...

  5. Flight potential of the emerald ash borer

    Treesearch

    Leah S. Bauer; Deborah L. Miller; Robin A.J. Taylor; Robert A. Haack

    2004-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive pest of ash trees (Fraxinus spp.) in North America. Native to several Asian countries, EAB was discovered in six southeastern Michigan counties and southwestern Ontario in 2002. EAB presumably emerged from infested solid wood...

  6. Managing the emerald ash borer in Canada

    Treesearch

    Kenneth R. Marchant

    2007-01-01

    The Emerald ash borer, (EAB, Agrilus planipennis Fairmaire) continues to pose a major risk to Canadian urban and rural forests and parklands. EAB now occurs in four counties in southwestern Ontario. An estimated 1 million ash trees in Essex County, Ontario, and millions more in adjacent counties are in peril. Little natural resistance has been...

  7. Emerald ash borer survival in firewood

    Treesearch

    Robert A. Haack; Toby R. Petrice

    2003-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is native to several countries in Asia (e.g., China, Korea, and Japan). EAB was discovered in Michigan and Ontario in 2002, and then in Ohio, Maryland, and Virginia in 2003. As of November 2003, EAB has only been found to infest ash (Fraxinus)...

  8. Emerald ash borer survival in firewood

    Treesearch

    Robert A. Haack; Toby R. Petrice

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is native to Asia and was first discovered in Michigan and Ontario in 2002. As of October 2004, EAB was only found to breed in ash (Fraxinus) trees in North America. EAB is spreading naturally through adult flight as well as artificially through...

  9. Microbial control of the emerald ash borer

    Treesearch

    Leah S. Bauer; Houping Liu; Deborah L. Miller

    2004-01-01

    In June 2002, emerald ash borer (EAB), Agrilus planipennis Fairmaire, a buprestid native to several Asian countries, was identified as the causative agent of ash (Fraxinus spp.) mortality in southeastern Michigan and southwestern Ontario. Currently, the only method known to control EAB is limited to identifying and destroying...

  10. Fly ash disposal in a limestone quarry

    SciTech Connect

    Peffer, J.R.

    1982-05-01

    Approximately 740 000 tons of eastern bituminous coal fly ash were deposited at the abandoned Zullinger limestone quarry from 1973-1980. The quarry extended below the water table and was not lined to isolate the ash from the aquifer. Long-term groundwater pollution has apparently not resulted.

  11. Physicochemical characterization of Spanish fly ashes

    SciTech Connect

    Querol, X.; Umana, J.C.; Alastuey, A.; Bertrana, C.; Lopez-Soler, A.; Plana, F.

    1999-12-01

    This article summarizes the results obtained from the physical, chemical, and mineralogical characterization of 14 fly ash samples. Major features that influence the utilization of each fly ash for zeolite synthesis are evidenced, and several fly ash types were selected as potential high-quality starting material for zeolite synthesis and ceramic applications. The main parameters influencing this selection were relatively small grain size; high Al and Si contents; high glass content; low CaO, S, and Fe contents; and relatively low heavy metal concentration. The Compostilla and Cou He fly ashes have high potential applications because of the low content of major impurities (such as Ca, Fe, and S) and the low content of soluble hazardous elements. The Espiel, Escucha, Los Barrios, As Pontes, Soto de Ribera, Meirama, Narcea, and Teruel fly ashes have important application potential, but this potential is slightly limited by the intermediate content of nonreactive impurities, such as Fe and Ca. The La Robla fly ash is of moderate interest, since the relatively high Ca and Fe oxide contents may reduce its potential applications. Finally, the Puertollano fly ash also has limited application because of the very high concentration of some heavy metals such as As, Cd, Ge, Hg, Pb, and Zn. From a mineralogical point of view, the Compostilla, Espiel, and Soto de Ribera fly ashes show the highest aluminum-silicate glass content and, consequently, the highest industrial application potential.

  12. Biology of emerald ash borer parasitoids

    Treesearch

    Leah S. Bauer; Jian J. Duan; Jonathan P. Lelito; Houping Liu; Juli R. Gould

    2015-01-01

    The emerald ash borer (EAB) (Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive beetle introduced from China (Bray et al., 2011), was identified as the cause of ash (Fraxinus spp.) mortality in southeast Michigan and nearby Ontario in 2002 (Haack et al., 2002; Federal Register, 2003; Cappaert et al., 2005)....

  13. Emerald ash borer biology and invasion history

    Treesearch

    Robert A. Haack; Yuri Baranchikov; Leah S. Bauer; Therese M. Poland

    2015-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is native to eastern Asia and is primarily a pest of ash (Fraxinus) trees (Fig. 1). Established populations of EAB were first detected in the United States and Canada in 2002 (Haack et al., 2002), and based on a dendrochronology study by Siegert...

  14. Exploration for emerald ash borer in China

    Treesearch

    Houping Liu; Toby R. Petrice; Leah S. Bauer; Robert A. Haack; Ruitong Gao; Tonghai Zhao

    2003-01-01

    In June 2002, the emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), native to several Asian countries, was identified as the cause of ash (Fraxinus spp.) mortality in greater than 2,500 square miles of southeastern Michigan and southwestern Ontario; more recent infestations were found in Ohio,...

  15. Energy efficient continuous flow ash lockhopper

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor); Suitor, Jerry W. (Inventor); Dubis, David (Inventor)

    1989-01-01

    The invention relates to an energy efficient continuous flow ash lockhopper, or other lockhopper for reactor product or byproduct. The invention includes an ash hopper at the outlet of a high temperature, high pressure reactor vessel containing heated high pressure gas, a fluidics control chamber having an input port connected to the ash hopper's output port and an output port connected to the input port of a pressure letdown means, and a control fluid supply for regulating the pressure in the control chamber to be equal to or greater than the internal gas pressure of the reactor vessel, whereby the reactor gas is contained while ash is permitted to continuously flow from the ash hopper's output port, impelled by gravity. The main novelty resides in the use of a control chamber to so control pressure under the lockhopper that gases will not exit from the reactor vessel, and to also regulate the ash flow rate. There is also novelty in the design of the ash lockhopper shown in two figures. The novelty there is the use of annular passages of progressively greater diameter, and rotating the center parts on a shaft, with the center part of each slightly offset from adjacent ones to better assure ash flow through the opening.

  16. Catalytic activities of noble metal atoms on WO3 (001): nitric oxide adsorption.

    PubMed

    Ren, Xiaoyan; Zhang, Shuai; Li, Chong; Li, Shunfang; Jia, Yu; Cho, Jun-Hyung

    2015-01-01

    Using first-principles density functional theory calculations within the generalized gradient approximation, we investigate the adsorption of NO molecule on a clean WO3(001) surface as well as on the noble metal atom (Cu, Ag, and Au)-deposited WO3(001) surfaces. We find that on a clean WO3 (001) surface, the NO molecule binds to the W atom with an adsorption energy (E ads) of -0.48 eV. On the Cu- and Ag-deposited WO3(001) surface where such noble metal atoms prefer to adsorb on the hollow site, the NO molecule also binds to the W atom with E ads = -1.69 and -1.41 eV, respectively. This relatively stronger bonding of NO to the W atom is found to be associated with the larger charge transfer of 0.43 e (Cu) and 0.33 e (Ag) from the surface to adsorbed NO. However, unlike the cases of Cu-WO3(001) and Ag-WO3(001), Au atoms prefer to adsorb on the top of W atom. On such an Au-WO3(001) complex, the NO molecule is found to form a bond to the Au atom with E ads = -1.32 eV. Because of a large electronegativity of Au atom, the adsorbed NO molecule captures the less electrons (0.04 e) from the surface compared to the Cu and Ag catalysts. Our findings not only provide useful information about the NO adsorption on a clean WO3(001) surface as well as on the noble metal atoms deposited WO3(001) surfaces but also shed light on a higher sensitive WO3 sensor for NO detection employing noble metal catalysts.

  17. MWCNT/WO{sub 3} nanocomposite photoanode for visible light induced water splitting

    SciTech Connect

    Yousefzadeh, Samira; Reyhani, Ali; Naseri, Naimeh; Moshfegh, Alireza Z.

    2013-08-15

    The Multi-walled carbon nanotube (MWCNT)/WO{sub 3} nanocomposite thin films with different MWCNT’s weight percentages were prepared by sol–gel method as visible light induced photoanode in water splitting reaction. Weight percentage of MWCNT in the all nanocomposite thin films was confirmed by TGA/DSC analysis. According to XPS analysis, oxygenated groups at the surface of the MWCNT and stoichiometric formation of WO{sub 3} thin films were determined, while the crystalline structure of the nanocomposite samples was studied by XRD indicating (0 0 2) peak of MWCNT in the monoclinic phase of WO{sub 3}. The influence of different weight percentage (wt%) of MWCNT on WO{sub 3} photoactivity showed that the electron conductivity, charge transfer and electron life time had improved as compared with the pure WO{sub 3}. Based on linear sweep voltammetry and chronoamperometry measurements, the (1 wt%) MWCNT/WO{sub 3} nanocomposite thin films photoanode has a maximum photocurrent density of ∼4.5 A/m{sup 2} and electron life time of about 57 s. - Graphical abstract: Photocurrent density versus time at constant potential (0.7 V) for the WO{sub 3} films containing different MWCNT weight percentages annealed at 400 °C under 1000 Wm{sup −2} visible photo-illumination. Display Omitted - Highlights: • MWCNT/ WO{sub 3} nanocomposite thin films were synthesized using sol–gel derived method. • TGA/DSC confirmed the weight percentage of MWCNT in the all nanocomposite thin films. • XPS analysis revealed that WO{sub 3} was attached on the oxygenated group of MWCNT surface. • The Highest Photoelectrochemical activity is achieved for (1 wt%)MWCNT/WO{sub 3} thin film.

  18. The enhanced alcohol-sensing response of ultrathin WO3 nanoplates

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Hou, Xianxiang; Wen, Hejing; Wang, Yu; Wang, Hailong; Li, Xinjian; Zhang, Rui; Lu, Hongxia; Xu, Hongliang; Guan, Shaokang; Sun, Jing; Gao, Lian

    2010-01-01

    Chemical sensors based on semiconducting metal oxide nanocrystals are of academic and practical significance in industrial processing and environment-related applications. Novel alcohol response sensors using two-dimensional WO3 nanoplates as active elements have been investigated in this paper. Single-crystalline WO3 nanoplates were synthesized through a topochemical approach on the basis of intercalation chemistry (Chen et al 2008 Small 4 1813). The as-obtained WO3 nanoplate pastes were coated on the surface of an Al2O3 ceramic microtube with four Pt electrodes to measure their alcohol-sensing properties. The results show that the WO3 nanoplate sensors are highly sensitive to alcohols (e.g., methanol, ethanol, isopropanol and butanol) at moderate operating temperatures (260-360 °C). For butanol, the WO3 nanoplate sensors have a sensitivity of 31 at 2 ppm and 161 at 100 ppm, operating at 300 °C. For other alcohols, WO3 nanoplate sensors also show high sensitivities: 33 for methanol at 300 ppm, 70 for ethanol at 200 ppm, and 75 for isopropanol at 200 ppm. The response and recovery times of the WO3 nanoplate sensors are less than 15 s for all the test alcohols. A good linear relationship between the sensitivity and alcohol concentrations has been observed in the range of 2-300 ppm, whereas the WO3 nanoparticle sensors have not shown such a linear relationship. The sensitivities of the WO3 nanoplate sensors decrease and their response times become short when the operating temperatures increase. The enhanced alcohol-sensing performance could be attributed to the ultrathin platelike morphology, the high crystallinity and the loosely assembling structure of the WO3 nanoplates, due to the advantages of the effective adsorption and rapid diffusion of the alcohol molecules.

  19. The enhanced alcohol-sensing response of ultrathin WO3 nanoplates.

    PubMed

    Chen, Deliang; Hou, Xianxiang; Wen, Hejing; Wang, Yu; Wang, Hailong; Li, Xinjian; Zhang, Rui; Lu, Hongxia; Xu, Hongliang; Guan, Shaokang; Sun, Jing; Gao, Lian

    2010-01-22

    Chemical sensors based on semiconducting metal oxide nanocrystals are of academic and practical significance in industrial processing and environment-related applications. Novel alcohol response sensors using two-dimensional WO(3) nanoplates as active elements have been investigated in this paper. Single-crystalline WO(3) nanoplates were synthesized through a topochemical approach on the basis of intercalation chemistry (Chen et al 2008 Small 4 1813). The as-obtained WO(3) nanoplate pastes were coated on the surface of an Al(2)O(3) ceramic microtube with four Pt electrodes to measure their alcohol-sensing properties. The results show that the WO(3) nanoplate sensors are highly sensitive to alcohols (e.g., methanol, ethanol, isopropanol and butanol) at moderate operating temperatures (260-360 degrees C). For butanol, the WO(3) nanoplate sensors have a sensitivity of 31 at 2 ppm and 161 at 100 ppm, operating at 300 degrees C. For other alcohols, WO(3) nanoplate sensors also show high sensitivities: 33 for methanol at 300 ppm, 70 for ethanol at 200 ppm, and 75 for isopropanol at 200 ppm. The response and recovery times of the WO(3) nanoplate sensors are less than 15 s for all the test alcohols. A good linear relationship between the sensitivity and alcohol concentrations has been observed in the range of 2-300 ppm, whereas the WO(3) nanoparticle sensors have not shown such a linear relationship. The sensitivities of the WO(3) nanoplate sensors decrease and their response times become short when the operating temperatures increase. The enhanced alcohol-sensing performance could be attributed to the ultrathin platelike morphology, the high crystallinity and the loosely assembling structure of the WO(3) nanoplates, due to the advantages of the effective adsorption and rapid diffusion of the alcohol molecules.

  20. Revival of "dead" memristive devices: case of WO3-x.

    PubMed

    Tan, Zheng-Hua; Yang, Rui; Terabe, Kazuya; Yin, Xue-Bing; Guo, Xin

    2016-01-21

    Inappropriate operation could make a memristive device "dead" and cause the loss of resistive switching performance. In this study, the revival of "dead" devices was investigated in the case of WO3-x-based memristive devices. It is believed that inappropriate operation with a high-voltage pulse creates an ordered structure of oxygen vacancies and such an ordered structure makes the normal reset process fail. By precisely controlled voltage sweeping at certain compliance currents, a "dead" device can be revived. The revival operation disrupts the ordered structure by Joule heating and recovers Schottky-like barrier modulation-based switching.

  1. Ion doping effects in multiferroic MnWO4

    NASA Astrophysics Data System (ADS)

    Bahoosh, Safa Golrokh; Wesselinowa, J. M.

    2012-04-01

    We have studied the ion doping effects in multiferroic MnWO4 proposing a microscopic model. It is shown that the exchange interaction constants can be changed due to the different ion doping radii. This leads to reduction of the magnetic phase transition temperature TN by doping with non-magnetic ions, such as Zn, Mg, whereas TN is enhanced by doping with transition metal ions, such as Fe, Co. The different behavior of the temperature T1 (where up-up-down-down collinear spin structure appears) by Fe and Co doping could be explained taking into account the single-ion anisotropy.

  2. Small polaron formation in porous WO3-x nanoparticle films

    NASA Astrophysics Data System (ADS)

    Ederth, J.; Hoel, A.; Niklasson, G. A.; Granqvist, C. G.

    2004-11-01

    Porous tungsten oxide nanoparticle films were prepared by reactive gas evaporation. The structure was studied by x-ray diffraction and scanning electron microscopy, and the oxygen nonstoichiometry was inferred by x-ray photoelectron spectroscopy, elastic recoil detection analysis, and neutron scattering. Specifically, the films consisted of WO3-x with 0.25

  3. Epitaxial growth of high quality WO3 thin films

    DOE PAGES

    Leng, X.; Pereiro, J.; Strle, J.; ...

    2015-09-09

    We have grown epitaxial WO3 films on various single-crystal substrates using radio-frequency (RF) magnetron sputtering. While pronounced surface roughness is observed in films grown on LaSrAlO4 substrates, films grown on YAlO3 substrates show atomically flat surfaces, as demonstrated by atomic force microscopy (AFM) and X-ray diffraction (XRD) measurements. The crystalline structure has been confirmed to be monoclinic by symmetric and skew-symmetric XRD. Furthermore, the dependence of the growth modes and the surface morphology on the lattice mismatch is discussed.

  4. Photoinduced (WO4)3--La3+ center in PbWO4: Electron spin resonance and thermally stimulated luminescence study

    NASA Astrophysics Data System (ADS)

    Laguta, V. V.; Martini, M.; Meinardi, F.; Vedda, A.; Hofstaetter, A.; Meyer, B. K.; Nikl, M.; Mihóková, E.; Rosa, J.; Usuki, Y.

    2000-10-01

    The localization of electrons at W6+ sites perturbed by lanthanum in PbWO4 is studied by electron spin resonance (ESR) and thermally stimulated luminescence (TSL) measurements. The (WO4)3--La3+ centers are created at the W6+ sites close to La3+ in two different ways: (i) direct trapping of electrons from the conduction band under ultraviolet or x-ray irradiation at T=60 K (ii) retrapping of electrons freed from unperturbed (WO4)3- centers after irradiation at T<40 K followed by heating up to T around 60 K. Electron transfer from La3+-perturbed to unperturbed W6+ sites stimulated by red light illumination is also observed. The proposed mechanism of electron localization at one of four equivalent tungstate ions close to La3+ is based on the pseudo-Jahn-Teller effect, which gives rise to a rhombic distortion of (WO4)3- complex. At T~95-98 K the (WO4)3--La3+ centers are thermally ionized giving rise to a TSL glow peak due to the recombination of detrapped electrons with localized holes. The emission spectrum of the TSL features one band peaking at 2.8 eV. The temperature dependence of both TSL and ESR intensity is analyzed in the frame of a general order recombination model. The thermal ionization energy of (WO4)3--La3+ centers has been calculated to be approximately 0.27 eV.

  5. Luminescence of CaWO4, CaMoO4, and ZnWO4 scintillating crystals under different excitations

    NASA Astrophysics Data System (ADS)

    Mikhailik, V. B.; Kraus, H.; Miller, G.; Mykhaylyk, M. S.; Wahl, D.

    2005-04-01

    The luminescence spectra of CaWO4, CaMoO4, and ZnWO4 scintillating crystals were investigated in the temperature range 8-400K. The excitation photon energy was varied from the ultraviolet (4.5eV ) to the hard x-ray region (35keV). It is found that as the excitation energy decreases the relative intensity of the low-energy luminescence band, attributed to the extrinsic emission of defect centers in CaWO4 and CaMoO4 crystals, increases. This observation is interpreted in terms of the total absorption of incident radiation, i.e., the variation of the mean penetration depth of the photons with their energy. It indicates that the centers responsible for the extrinsic emission in the crystals with scheelite structure are mainly localized in a thin (˜100nm ) surface layer. On the other hand no noticeable changes with the excitation energy were found in the emission spectra of ZnWO4 crystals with wolframite structure. The possible implication of this finding is discussed. The light yield of the crystals is compared at low temperature using monochromatic x-ray excitation and it is shown that ZnWO4 has ˜10% higher light yield than CaWO4, while this parameter has a factor of 4 lower in CaMoO4.

  6. Differential response in foliar chemistry of three ash species to emerald ash borer adult feeding.

    PubMed

    Chen, Yigen; Whitehill, Justin G A; Bonello, Pierluigi; Poland, Therese M

    2011-01-01

    The emerald ash borer (EAB; Agrilus planipennis Fairmaire; Coleoptera: Buprestidae), is an exotic wood-boring beetle that has been threatening North American ash (Fraxinus spp.) resources since its discovery in Michigan and Ontario in 2002. In this study, we investigated the phytochemical responses of the three most common North American ash species (black, green, and white ash) in northeastern USA to EAB adult feeding. Black ash was the least responsive to EAB adult feeding in terms of the induction of volatile compounds, and levels of only two (indole and benzyl cyanide) of the 11 compounds studied increased. In green ash, levels of two [(E)-β-ocimene and indole] of the 11 volatile compounds studied were elevated, while the levels of two green leaf volatiles [hexanal and (E)-2-hexenal] decreased. White ash showed the greatest response with an increase in levels of seven of the 11 compounds studied. Qualitative differences among ash species were detected. Among the phenolic compounds detected, ligustroside was the only one detected in all three species. Oleuropein aglycone and 2 unidentified compounds were found only in black ash; coumaroylquinic acid and feruloylquinic acid were detected only in green ash; and verbascoside hexoside was detected only in white ash. EAB adult feeding did not elicit or decrease concentrations of any selected individual phenolic compounds. However, although levels of total phenolics from black and green ash foliage were not affected by EAB adult feeding, they decreased significantly in white ash. EAB adult feeding elevated chymotrypsin inhibitors in black ash. The possible ecological implications of these findings are discussed.

  7. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  8. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  9. Synthesis of chemically bonded BiOCl@Bi2WO6 microspheres with exposed (0 2 0) Bi2WO6 facets and their enhanced photocatalytic activities under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Ma, Yongchao; Chen, Zhiwei; Qu, Dan; Shi, Jinsheng

    2016-01-01

    Bi2WO6 photocatalysts has been extensively studied for its photocatalytic activity. However, few works have been conducted on hierarchical Bi2WO6 composite photocatalysts with specifically exposed facets. In this work, we report a facile method to synthesize BiOCl@Bi2WO6 hierarchical composite microspheres. Bi2WO6 nanosheets with specifically exposed (0 2 0) facet were directly formed on the surface of BiOCl precursor microspheres via a controlled anion exchange route between BiOCl and Na2WO4. The visible-light photocatalytic activity of the BiOCl@Bi2WO6 heterojunction with exposed (0 2 0) facets (denoted as BiOCl@Bi2WO6) was investigated by degradation of Rhodamine B (RhB) and ciprofloxacin (CIP) aqueous solution under visible light irradiation. The experimental results indicated that the BiOCl@Bi2WO6 composite microsphere with intimate interfacial contacts exhibited improved efficiency for RhB photodegradation in comparison with pure BiOCl and Bi2WO6. The BiOCl@Bi2WO6 composite microsphere also shows high photocatalytic activity for degradation of CIP under visible light irradiation. The enhanced photocatalytic performance of BiOCl@Bi2WO6-020 hierarchical microspheres can be ascribed to the improved visible light harvesting ability, high charge separation and transfer. This work will make significant contributions toward the exploration of novel heterostructures with high potential in photocatalytic applications.

  10. Extended x-ray absorption fine structure spectroscopy and first-principles study of SnWO4

    NASA Astrophysics Data System (ADS)

    Kuzmin, A.; Anspoks, A.; Kalinko, A.; Timoshenko, J.; Kalendarev, R.

    2014-04-01

    The local atomic structure in α- and β-SnWO4 was studied by synchrotron radiation W L3-edge x-ray absorption spectroscopy at 10 and 300 K. Strongly distorted WO6 octahedra were found in α-SnWO4, whereas nearly regular WO4 tetrahedra were observed in β-SnWO4, confirming previous results. The structural results obtained were supported by the first-principles calculations, suggesting that the second-order Jahn-Teller effect is responsible for octahedral distortion.

  11. Laboratory Studies of Ice Nucleation on Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Tolbert, M. A.; Schill, G. P.; Genareau, K. D.

    2014-12-01

    Ice nucleation on volcanic ash controls both ash aggregation and cloud glaciation, which affect human respiratory health, atmospheric transport, and global climate. We have performed laboratory studies of the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman Microscopy coupled to an environmental cell. Ash from the Fuego (Basaltic Ash, Guatemala), Soufriere Hills (Andesetic Ash, Montserrat), and Taupo (Rhyolitic Ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. We find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice at ice saturation ratios of 1.05 ± 0.1. For immersion freezing, however, only the Taupo ash exhibited efficient heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  12. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett [Park City, UT; Akash, Akash [Salt lake City, UT; Zhao, Qiang [Natick, MA

    2012-05-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  13. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  14. Enhancement of visible-light photocatalytic activity of silver and mesoporous carbon co-modified Bi2WO6

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Gong, Ming; Liu, Wangping; Mao, Yulin; Le, Shukun; Ju, Shang; Long, Fei; Liu, Xiufang; Liu, Kai; Jiang, Tingshun

    2015-03-01

    Ordered mesoporous carbon CMK-3 was prepared by hard template method using SBA-15 as template, sucrose as carbon source. Flower/sphere-like Bi2WO6 and CMK-3/Bi2WO6 photocatalysts were synthesized by hydrothermal method, and then Ag/Bi2WO6 and Ag/Bi2WO6/CMK-3 composite photocatalysts were prepared via a photoreduction process. The samples were characterized by XRD, UV-vis, TEM (HR-TEM), SEM, N2 physical adsorption and PL and their photocatalytic activities were evaluated by the photocatalytic degradation of methylene blue (MB) under visible light irradiation. The results show that both incorporating of CMK-3 and Ag loading greatly improved the photocatalytic activity of Bi2WO6, and the content of CMK-3 and silver have an impact on the photocatalytic activity of Bi2WO6. The photocatalytic activity of Ag/Bi2WO6/CMK-3 photocatalyst is superior to the activities of CMK-3/Bi2WO6 and Ag/Bi2WO6 under comparable conditions, and Ag/Bi2WO6/CMK-3 photocatalyst has high stability and is easy to be recycled. Also, the mechanism for the enhancement of the photocatalytic activity of CMK-3 and Ag co-modified Bi2WO6 was also investigated.

  15. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation.

    PubMed

    Zhu, Wenyu; Liu, Jincheng; Yu, Shuyan; Zhou, Yan; Yan, Xiaoli

    2016-11-15

    Sulfonamides (SAs) are extensively used antibiotics and their residues in the water bodies propose potential threat to the public. In this study, degradation efficiency of sulfanilamide (SAM), which is the precursor of SAs, using WO3 nanoplates and their Ag heterogeneous as photocatalysts was investigated. WO3 nanoplates with uniform size were synthesized by a facile one step hydrothermal method. Different amount of Ag nanoparticles (Ag NPs) were loaded onto WO3 nanoplates using a photo-reduction method to generate WO3/Ag composites. The physio-chemical properties of synthesized nanomaterials were systematically characterized. Photodegradation of SAM by WO3 and WO3/Ag composites was conducted under visible light irradiation. The results show that WO3/Ag composites performed much better than pure WO3 where the highest removal rate was 96.2% in 5h. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO3, and 100% removal efficiency against Escherichia Coli and Bacillus subtilis could be achieved in 2h under visible light irradiation for all three WO3/Ag composites synthesized. The improved performance in terms of SAM degradation and antibacterial activity of WO3/Ag can be attributed to the improved electron-hole pair separation rate where Ag NPs act as effective electron trapper during the photocatalytic process.

  16. Worldwide high-volume coal ash utilization

    SciTech Connect

    Manz, O.E.

    1999-11-01

    Coal ash refers to fly ash as well as bottom ash and boiler slag. High-volume uses include those fly ash products that are either large in quantity or use huge percentages (over 50%) of fly ash. High-volume uses are typified by fills, embankments, backfills, highway base course, and soil stabilization and amendment. In 1992, 367 million tonnes of fly ash were produced, as well as 91.8 million tonnes of bottom ash and boiler slag; 152.8 million tonnes (33.3%) were used. The main uses of coal ash have been in cement and concrete manufacture, in road construction and as filler on construction sites, in cellular concrete, and in lightweight aggregate and brick. Worldwide in 1992, 40.2 million tonnes were used in cement and concrete manufacture; 47.5 million tonnes in road construction and as filler on construction sites, in cellular concrete, and in lightweight aggregate and brick. Worldwide in 1992, 40.2 million tonnes were used in cement and concrete manufacture; 47.5 million tonnes in road construction and as filler on construction sites; 7.2 million tonnes in cellular concrete; 3.1 million tonnes in lightweight aggregate and bricks; over 40 million tonnes for filler for mines, quarries, or pits; and almost 3 million tonnes for soil amendment. EPRI (the collaborative R and D organization with membership of over 700 electric utilities) initiated an ash utilization research and development program in 1979 aimed at supporting the increased use of fly ash in the United States. This paper includes a worldwide survey of the production and utilization of coal ash from 1964 to 1995. The data were collected from various working papers of the UN Group of Experts on the Utilization of Ash and from three papers by the author on the worldwide production and utilization of coal ash. For 1995, information was obtained through a questionnaire sent to selected individuals. The last available data for eastern Europe and the United Kingdom are for 1989.

  17. Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Li, Tao; Chen, Qianqian; Gao, Jiabing; Fan, Bingbing; Li, Jian; Li, Xinjian; Zhang, Rui; Sun, Jing; Gao, Lian

    2012-08-01

    The hierarchical photocatalysts of Ag/AgCl@plate-WO3 have been synthesized by anchoring Ag/AgCl nanocrystals on the surfaces of single-crystalline WO3 nanoplates that were obtained via an intercalation and topochemical approach. The heterogeneous precipitation process of the PVP-Ag+-WO3 suspensions with a Cl- solution added drop-wise was developed to synthesize AgCl@WO3 composites, which were then photoreduced to form Ag/AgCl@WO3 nanostructures in situ. WO3 nanocrystals with various shapes (i.e., nanoplates, nanorods, and nanoparticles) were used as the substrates to synthesize Ag/AgCl@WO3 photocatalysts, and the effects of the WO3 contents and photoreduction times on their visible-light-driven photocatalytic performance were investigated. The techniques of TEM, SEM, XPS, EDS, XRD, N2 adsorption-desorption and UV-vis DR spectra were used to characterize the compositions, phases and microstructures of the samples. The RhB aqueous solutions were used as the model system to estimate the photocatalytic performance of the as-obtained Ag/AgCl@WO3 nanostructures under visible light (λ >= 420 nm) and sunlight. The results indicated that the hierarchical Ag/AgCl@plate-WO3 photocatalyst has a higher photodegradation rate than Ag/AgCl, AgCl, AgCl@WO3 and TiO2 (P25). The contents and morphologies of the WO3 substrates in the Ag/AgCl@plate-WO3 photocatalysts have important effects on their photocatalytic performance. The related mechanisms for the enhancement in visible-light-driven photodegradation of RhB molecules were analyzed.The hierarchical photocatalysts of Ag/AgCl@plate-WO3 have been synthesized by anchoring Ag/AgCl nanocrystals on the surfaces of single-crystalline WO3 nanoplates that were obtained via an intercalation and topochemical approach. The heterogeneous precipitation process of the PVP-Ag+-WO3 suspensions with a Cl- solution added drop-wise was developed to synthesize AgCl@WO3 composites, which were then photoreduced to form Ag/AgCl@WO3 nanostructures in

  18. Leaching characteristics of lead from melting furnace fly ash generated by melting of incineration fly ash.

    PubMed

    Okada, Takashi; Tomikawa, Hiroki

    2012-11-15

    This study investigated the effect of the chemical composition of incineration fly ash on the leaching characteristics of Pb from melting furnace fly ash generated by melting incineration fly ash. Melting furnace fly ash from both a real-scale melting process and lab-scale melting experiments was analyzed. In addition, the theoretical behavior of Cl that affects the leaching characteristics of Pb was simulated by a thermodynamic equilibrium calculation. Proportions of water-soluble Pb in the melting furnace fly ash were correlated with equivalent ratios of total Pb in the ash and Cl transferred to gas. The amount of Cl in the gas increased with an increase in the molar ratio of Cl to Na and K in the incineration fly ash. The thermodynamic calculation predicted that HCl generation is promoted by the increase in the molar ratio, and X-ray photoelectron spectroscopy indicated a possible presence of PbCl(2) in the melting furnace fly ash. These results implied that the formation of water-soluble PbCl(2) with HCl was affected by the relationships among the amounts of Na, K, and Cl in the incineration fly ash. This is highly significant in determining the leaching characteristics of Pb from the melting furnace fly ash. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Characterization of metals released from coal fly ash during dredging at the Kingston ash recovery project.

    PubMed

    Bednar, A J; Averett, D E; Seiter, J M; Lafferty, B; Jones, W T; Hayes, C A; Chappell, M A; Clarke, J U; Steevens, J A

    2013-09-01

    A storage-pond dike failure occurred on December 22, 2008 at the Tennessee Valley Authority Kingston Fossil Plant resulting in the release of over 4million cubic meters (5million cubic yards) of fly ash. Approximately half of the released ash was deposited in the main channel of the Emory River, Tennessee, USA. Remediation efforts of the Emory River focused on hydraulic dredging, as well as mechanical excavation in targeted areas. However, agitation of the submerged fly ash during hydraulic dredging introduces river water into the fly ash material, which could promote dissolution and desorption of metals from the solid fly ash material. Furthermore, aeration of the dredge slurry could alter the redox state of metals in the fly ash material and thereby change their sorption, mobility, and toxicity properties. The research presented here focuses on the concentrations and speciation of metals during the fly ash recovery from the Emory River. Our results indicate that arsenite [As(III)] released from the fly ash material during dredging was slowly oxidized to arsenate [As(V)] in the slurry recovery system with subsequent removal through precipitation or sorption reactions with suspended fly ash material. Concentrations of other dissolved metals, including iron and manganese, also generally decreased in the ash recovery system prior to water discharge back to the river. Published by Elsevier Ltd.

  20. Giant Born effective charges in cubic WO_3.

    NASA Astrophysics Data System (ADS)

    Detraux, Francois; Ghosez, Philippe; Gonze, Xavier

    1997-03-01

    WO3 crystallizes in many different phases. It is also sometimes considered in a reference idealized simple cubic structure (defect-perovskite) where the tungsten is at the center of the cell and the oxygens at the middle of each face. Using a variational formulation of the density functional perturbation theory and a planewave-pseudopotential approach, we compute the Born effective charges for this idealized cubic structure, with an optimized lattice parameter of 3.73 ÅThe values obtained are anomalously large with respect to the nominal ionic charge (+6 on W and -2 on O). For the tungsten atom, the effective charge tensor is isotropic and Z_W= +12.43. For the oxygen, we must consider two different elements corresponding respectively to a displacement of the atom parallel or perpendicular to the W-O bond: Z^*O allel= -9.07 and Z^*O ⊥= -1.66. The giant anomalous contributions to Z^*W and Z^*O allel can be explained by transfer of charge produced by dynamic changes of hybridization between the O-2p and W-5d orbitals.

  1. Luminescence in trilanthanumtrichlorotungstate (La 3WO 6Cl 3)

    NASA Astrophysics Data System (ADS)

    Blasse, G.; Dirksen, G. J.; Brixner, L. H.

    1983-03-01

    The luminescence properties of La 3WO 6Cl 3 are reported and discussed. The tungstate group occurs as a trigonal prismatic WO 6-6 complex. The blue luminescence is, for the greater part, quenched at room temperature. No energy migration occurs in this lattice. The decay times are discussed in terms of a simple molecular-orbital (MO) scheme. The luminescence of the following activating ions was studied: Mo 6+, Bi 3+, Eu 3+, Sm 3+, Ce 3+, and Tb 3+. The molybdate group produces a red emission with low efficiency. The Bi 3+ ion induces a narrow band emission with small Stokes shift. This is interpreted using a Bi 3+O 2-W 6+ charge-transfer state. Except for Ce 3+, the rare earth activators show luminescence, but the total transfer efficiency from tungstate to the rare-earth ions is low. This is not due to the one-step tungstate-rare-earth transfer (which is efficient), but to the localized nature of the tungstate excitation. The Eu 3+ charge-transfer band is at very low energies.

  2. Combustion synthesis and characterization of nanocrystalline WO3.

    PubMed

    Morales, Walter; Cason, Michael; Aina, Olawunmi; de Tacconi, Norma R; Rajeshwar, Krishnan

    2008-05-21

    The energy payback time associated with the semiconductor active material is an important parameter in a photovoltaic solar cell device. Thus lowering the energy requirements for the semiconductor synthesis step or making it more energy-efficient is critical toward making the overall device economics more competitive relative to other nonpolluting energy options. In this communication, combustion synthesis is demonstrated to be a versatile and energy-efficient method for preparing inorganic oxide semiconductors such as tungsten trioxide (WO3) for photovoltaic or photocatalytic solar energy conversion. The energy efficiency of combustion synthesis accrues from the fact that high process temperatures are self-sustained by the exothermicity of the combustion process, and the only external thermal energy input needed is for dehydration of the fuel/oxidizer precursor mixture and bringing it to ignition. Importantly, we show that, in this approach, it is also possible to tune the optical characteristics of the oxide semiconductor (i.e., shift its response toward the visible range of the electromagnetic spectrum) in situ by doping the host semiconductor during the formative stage itself. As a bonus, the resultant material shows enhanced surface properties such as markedly improved organic dye uptake relative to benchmark samples obtained from commercial sources. Finally, this synthesis approach requires only very simple equipment, a feature that it shares with other "mild" inorganic semiconductor synthesis routes such as sol-gel chemistry, chemical bath deposition, and electrodeposition. The present study constitutes the first use of combustion synthesis for preparing WO3 powder comprising nanosized particles.

  3. Pickering w/o emulsions: drug release and topical delivery.

    PubMed

    Frelichowska, Justyna; Bolzinger, Marie-Alexandrine; Valour, Jean-Pierre; Mouaziz, Hanna; Pelletier, Jocelyne; Chevalier, Yves

    2009-02-23

    The skin absorption from Pickering emulsions as a new dosage form was investigated for the first time. Pickering emulsions are stabilized by adsorbed solid particles instead of emulsifier molecules. They are promising dosage forms that significantly differ from classical emulsions within several features. The skin permeation of a hydrophilic model penetrant (caffeine) was investigated from a w/o Pickering emulsion and compared to a w/o classical emulsion stabilized with an emulsifier. Both emulsions had the same composition and physicochemical properties in order to focus on the effect of the interfacial layer on the drug release and skin absorption processes. The highest permeation rates were obtained from the Pickering emulsion with a pseudo-steady state flux of 25 microg cm(-2)h(-1), threefold higher than from a classical emulsion (9.7 microg cm(-2)h(-1)). After 24h exposure, caffeine was mostly in the receptor fluid and in the dermis; cumulated amounts of caffeine were higher for the Pickering emulsion. Several physicochemical phenomena were investigated for clearing up the mechanisms of enhanced permeation from the Pickering emulsion. Among them, higher adhesion of Pickering emulsion droplets to skin surface was disclosed. The transport of caffeine adsorbed on silica particles was also considered relevant since skin stripping showed that aggregates of silica particles entered deeply the stratum corneum.

  4. Enhanced photocatalytic activity of cadmium-doped Bi2WO6 nanoparticles under simulated solar light

    NASA Astrophysics Data System (ADS)

    Song, Xu Chun; Li, Wen Ting; Huang, Wan Zhen; Zhou, Huan; Yin, Hao Yong; Zheng, Yi Fan

    2015-03-01

    Novel cadmium-doped Bi2WO6 nanoparticles with different Cd contents have been synthesized by a one-step route using ethylene glycol and water as solvents at 180 °C for 12 h. The as-synthesized samples were characterized in detailed by SEM, XRD, EDS, HRTEM, UV-Vis DRS, BET techniques, and so on. The results shown that with the increase of the Cd2+ addition, the crystal structure, lattice space, and absorption edge were not significantly changed and the calculated band gap value was 2.58 eV. However, the flower-like Bi2WO6 sphere was gradually destroyed. Simultaneously, the surface area and photocurrent responses of the catalysts were greatly increased. Photocatalytic activity of the Cd-doped Bi2WO6 samples was determined by monitoring the change of RhB concentration under simulated solar light. The results revealed that cadmium doping greatly improved the photocatalytic efficiency of Bi2WO6. The Bi2WO6 sample with R Cd = 0.05 displayed the highest photocatalytic activity, and the degradation rate is about two times greater than pure Bi2WO6. Moreover, the Cd-Bi2WO6 photocatalyst remained stable even after five consecutive cycles. A possible mechanism of photocatalytic activity enhancement on basis of the experimental results was proposed.

  5. Structural and gasochromic properties of WO3 films prepared by reactive sputtering deposition

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Hakoda, T.; Miyashita, A.; Yoshikawa, M.

    2015-02-01

    The effects of deposition temperature and film thickness on the structural and gasochromic properties of tungsten trioxide (WO3) films used for the optical detection of diluted cyclohexane gas have been investigated. The WO3 films were prepared on SiO2 substrates by magnetron sputtering, with the deposition temperature ranging from 300 to 550 °C in an Ar and O2 gas mixture. The films were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), and Rutherford backscattering spectroscopy (RBS). The gasochromic properties of the WO3 films, coated with a catalytic Pt layer, were examined by exposing them to up to 5% cyclohexane in N2 gas. It was found that (001)-oriented monoclinic WO3 films, with a columnar structure, grew at deposition temperatures between 400 and 450 °C. Furthermore, (010)-oriented WO3 films were preferably formed at deposition temperatures higher than 500 °C. The gasochromic characterization of the Pt/WO3 films revealed that (001)-oriented WO3 films, with cauliflower-like surface morphology, were appropriate for the optical detection of cyclohexane gas.

  6. Material and sensing properties of Pd-deposited WO3 thin films.

    PubMed

    Choi, Gwangpyo; Jin, Guanghu; Park, Si-Hyun; Lee, Woonyoung; Park, Jinseong

    2007-11-01

    The physicochemical and electrical properties of Pd-deposited WO3 thin films were investigated as a function of Pd thickness, annealing temperature, and operating temperature for application as a hydrogen gas sensor. WO3 thin films were deposited on an insulating material using a thermal evaporator. X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to evaluate the crystal structure, microstructure, surface roughness, and chemical property of the films, respectively. The deposited films grew into polycrystalline WO3 with a rhombohedral structure after annealing at 500 degrees C. Adding Pd had no effect on the crystallinity, but suppressed the growth of WO3 grains. The Pd was scattered as isolated small spherical particles of PdO2 on the WO3 thin film after annealing at 500 degrees C, while it agglomerated as irregular large particles or diffused into the WO3 after annealing at 600 degrees C. PdO2 reduction under H2 and reoxidation under air were dependent on both the Pd deposition thickness and annealing conditions. The WO3 thin film with a 2-nm-thick Pd deposit showed a good response and recovery to H2 gas at a 250 degrees C operating temperature.

  7. Ultrahigh-efficiency photocatalysts based on mesoporous Pt-WO3 nanohybrids.

    PubMed

    Wen, Zhenhai; Wu, Wei; Liu, Zhuang; Zhang, Hao; Li, Jinghong; Chen, Junhong

    2013-05-14

    A reliable nanocasting method has been developed to synthesize mesoporous hybrids of platinum (Pt) nanoparticles decorating tungsten trioxide (WO3). The process began with modification of the SBA-15 template with carbon polymers and Pt nanoparticles accompanied by adsorption of W(6+), which was then converted into m-Pt-WO3 composites by heat treatment and subsequent template removal. The synthetic strategy can be easily extended to prepare other mesoporous nanohybrids with metal oxide loaded precious metal composites. Comprehensive characterizations suggest that the as-developed m-Pt-WO3 nanohybrid exhibits unique properties with mesoporous structure, excellent crystalline structure, and high surface area. When the photocatalytic properties of m-Pt-WO3 nanohybrids were systematically investigated, it was revealed that the m-Pt-WO3 nanohybrids showed great promise for degrading the organic dye under visible light irradiation, which shows an excellent photocatalytic activity that far exceeded those of pure phase mesoporous WO3 and commercial TiO2 (P25), and was 10-fold more active than that of the bulk Pt-WO3 catalyst. The as-developed synthetic route opens up a new avenue for designing mesoporous hybrid materials for various applications benefiting from the unique porous structure, high surface area, and synergistic effects among constituents.

  8. Superconducting phase diagram of InxWO3 synthesized by indium deintercalation

    NASA Astrophysics Data System (ADS)

    Bocarsly, Joshua D.; Hirai, Daigorou; Ali, M. N.; Cava, R. J.

    2013-07-01

    We report the superconducting phase diagram of the hexagonal tungsten bronze (HTB) InxWO3. The InxWO3 samples were prepared by indium deintercalation of the thermodynamically stable parent phase In0.33WO3. By employing this technique, a lowest indium content in the HTB phase of x \\sim 0.07 was achieved, which cannot be obtained by conventional solid-state reaction. In addition, accurately and reproducibly controlled indium content and homogeneous samples enable us to perform a systematic study of the physical properties of InxWO3. Most of the InxWO3 samples exhibit a superconducting transition and the highest transition temperature T_{\\text{c}} = 4.2\\text{K} in InxWO3 was observed at x= 0.11 . The indium content dependence of T_{\\text{c}}(x) shows remarkable similarities to other MxWO3 (M=\\text{K} and Rb) HTBs. Our results reveal the universality of physical properties in the HTB family and give a strategy to achieve higher T_{\\text{c}} in HTBs.

  9. Preparation, structures and photoluminescent enhancement of CdWO 4-TiO 2 composite nanofilms

    NASA Astrophysics Data System (ADS)

    Jia, Runping; Zhang, Guoxin; Wu, Qingsheng; Ding, Yaping

    2006-12-01

    For the first time, Cadmium tungstate (CdWO4)-TiO2 composite nanofilms on a glass substrate were prepared by means of the dip-coating technique, in which collodion was used as a dispersant and film-forming agent. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermo gravimetric and thermal analyses (TG/DTA), FTIR and photoluminescence (PL) methods, respectively. SEM and XRD characterization of these films indicated that CdWO4 particles crystallized in a monoclinic wolframite-type structure whereas TiO2 particles were Anatase phase; and both of them were well distributed in the nanofilms. FTIR spectra proved the presence of CdWO4 on the nanofilms. Photoluminescent results showed that the emitting peak of CdWO4 films blue shifted slightly relative to that of CdWO4 crystal. Moreover, the PL intensity of CdWO4-TiO2 composite nanofilm was much higher than that of CdWO4 nanofilm. We ascribed that the introduction of TiO2 should be responsible for the PL enhancement.

  10. The climatic impact of supervolcanic ash blankets

    NASA Astrophysics Data System (ADS)

    Jones, Morgan T.; Sparks, R. Stephen J.; Valdes, Paul J.

    2007-11-01

    Supervolcanoes are large caldera systems that can expel vast quantities of ash, volcanic gases in a single eruption, far larger than any recorded in recent history. These super-eruptions have been suggested as possible catalysts for long-term climate change and may be responsible for bottlenecks in human and animal populations. Here, we consider the previously neglected climatic effects of a continent-sized ash deposit with a high albedo and show that a decadal climate forcing is expected. We use a coupled atmosphere-ocean General Circulation Model (GCM) to simulate the effect of an ash blanket from Yellowstone volcano, USA, covering much of North America. Reflectivity measurements of dry volcanic ash show albedo values as high as snow, implying that the effects of an ash blanket would be severe. The modeling results indicate major disturbances to the climate, particularly to oscillatory patterns such as the El Niño Southern Oscillation (ENSO). Atmospheric disruptions would continue for decades after the eruption due to extended ash blanket longevity. The climatic response to an ash blanket is not significant enough to instigate a change to stadial periods at present day boundary conditions, though this is one of several impacts associated with a super-eruption which may induce long-term climatic change.

  11. Erodibility of fly ash-treated minesoils

    SciTech Connect

    Gorman, J.M.; Sencindiver, J.C.; Singh, R.N.

    1997-12-31

    Fly ash, a by-product of coal-fired power plants, has been used successfully in reclaiming adverse mine sites such as abandoned mine lands by improving minesoil chemical and physical properties. But, the fine sand-silt particle size of fly ash may make it more susceptible to detachment and transport by erosive processes. Furthermore, the high content of silt-size particles in fly ash may make it more susceptable to surface crust formation resulting in reduced infiltration and increased surface runoff and erosion. In the summer of 1989, fly ash/wood waste mixtures were surface applied on two separate mine sites, one with 10% slope and the other 20% slope, in central Preston County, West Virginia. Erosion rates were measured directly using the Linear Erosion/Elevation Measuring Instrument (LEMI). Erosion measurements were taken during the first two growing seasons on both sites. Erosion values were up to five times greater on the fly ash-treated minesoil than on the minesoil without fly ash cover. Mulching with wood chips reduced fly ash erosion to about one-half the loss of the unmulched plots. Erosion was related to both the amount and type of ground cover. Increased vegetative ground cover resulted in reduced erosion. Mosses and fungi appeared to provide better erosion protection than grass-legume cover.

  12. Ash iron mobilization in volcanic eruption plumes

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, G.; Hort, M.; Langmann, B.

    2014-12-01

    It has been shown that volcanic ash fertilizes the Fe-limited areas of the surface ocean through releasing soluble iron. As ash iron is mostly insoluble upon the eruption, it is hypothesized that heterogeneous in-plume and in-cloud processing of the ash promote the iron solubilization. Direct evidences concerning such processes are, however, lacking. In this study, a 1-D numerical model is developed to simulate the physicochemical interactions of gas-ash-aerosol in volcanic eruption plumes focusing on the iron mobilization processes at temperatures between 600 and 0 °C. Results show that sulfuric acid and water vapor condense at ~150 and ~50 °C on the ash surface, respectively. This liquid phase then efficiently scavenges the surrounding gases (>95% of HCl, 3-20% of SO2 and 12-62% of HF) forming an extremely acidic coating at the ash surface. The low pH conditions of the aqueous film promote acid-mediated dissolution of the Fe-bearing phases present in the ash material. We estimate that 0.1 to 33% of the total iron available at the ash surface is dissolved in the aqueous phase before the freezing point is reached. The efficiency of dissolution is controlled by the halogen content of the erupted gas as well as the mineralogy of the iron at ash surface: elevated halogen concentrations and presence of Fe2+-carrying phases lead to the highest dissolution efficiency. Findings of this study are in agreement with the data obtained through leaching experiments.

  13. Marine mesocosm bacterial colonisation of volcanic ash

    NASA Astrophysics Data System (ADS)

    Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert

    2015-04-01

    Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the

  14. Dual preparation of hydrophobic and hydrophilic BaWO{sub 4}:Eu phosphors

    SciTech Connect

    Cho, Young-Sik; Huh, Young-Duk

    2016-06-15

    Highlights: • Red-emitting BaWO{sub 4}:Eu phosphors were prepared in hexane-water bilayer system. • The hydrophobic nanometer-sized BaWO{sub 4}:Eu phosphors were obtained in hexane. • The hydrophilic micrometer-sized BaWO{sub 4}:Eu dendrites were obtained in water. - Abstract: BaWO{sub 4}:Eu phosphors were prepared by performing a solvothermal reaction in a water–hexane bilayer system. A barium oleate (and europium oleate) complex was obtained in hexane via a phase transfer reaction involving Ba{sup 2+} (and Eu{sup 3+}) ions in an aqueous solution of sodium oleate. The outer surfaces of the nanometer-sized BaWO{sub 4}:Eu phosphors were capped by the long alkyl chain of oleate; therefore, the hydrophobic nanometer-sized BaWO{sub 4}:Eu phosphors preferentially dissolved in the hexane layer. The micrometer-sized BaWO{sub 4}:Eu phosphors were obtained in the water layer. The BaWO{sub 4}:Eu phosphors prepared in hexane and water yielded sharp strong absorption and emission peaks at 464 and 615 nm, respectively, due to the {sup 7}F{sub 0} → {sup 5}D{sub 2} and the {sup 5}D{sub 0} →{sup 7} F{sub 2} transitions of the Eu{sup 3+} ions. The BaWO{sub 4}:Eu phosphors are good candidate red-emitting phosphors for use in InGaN blue-emitting diodes, which have an emission wavelength of 465 nm.

  15. WO3 nanorolls self-assembled as thin films by hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Vankova, S.; Zanarini, S.; Amici, J.; Cámara, F.; Arletti, R.; Bodoardo, S.; Penazzi, N.

    2015-04-01

    We report a novel type of WO3 nanostructure, i.e. nanorolls obtained as a self-assembled thin film on a transparent conductive substrate. The mild conditions of preparation, avoiding the use of HCl, result in an eco-friendly hydrothermal method with reduced crystallization time. FESEM and HR-TEM show that WO3 nanocrystals are made of rolled nanoflakes with a telescope-like appearance at their tip. For their nano-porosity, electrochemical accessibility, good adhesion to substrates and the envisaged presence of nanocavities between the WO3 layers, these materials hold tremendous promise in nano-electronics, electrochromic devices, water photo-splitting cells, Li-ion batteries and nano-templated filters for UV radiation.We report a novel type of WO3 nanostructure, i.e. nanorolls obtained as a self-assembled thin film on a transparent conductive substrate. The mild conditions of preparation, avoiding the use of HCl, result in an eco-friendly hydrothermal method with reduced crystallization time. FESEM and HR-TEM show that WO3 nanocrystals are made of rolled nanoflakes with a telescope-like appearance at their tip. For their nano-porosity, electrochemical accessibility, good adhesion to substrates and the envisaged presence of nanocavities between the WO3 layers, these materials hold tremendous promise in nano-electronics, electrochromic devices, water photo-splitting cells, Li-ion batteries and nano-templated filters for UV radiation. Electronic supplementary information (ESI) available: Characterization techniques; additional FESEM micrographs; typical XRD pattern of WO3 nanoroll thin film; typical Nyquist plots at ambient temperature; indicative diameter and length of WO3 NR by varying the PVA chain length; effect of 2000 cycles of electrochemical switching on the STB, STC and ΔT% coloration efficiency of the WO3 NR. See DOI: 10.1039/c4nr07290a

  16. Hypocotyl derived in vitro regeneration of pumpkin ash (Fraxinus profunda)

    Treesearch

    Micah E. Stevens; Paula M. Pijut

    2012-01-01

    Pumpkin ash (Fraxinus profunda (Bush) Bush) is at risk for extirpation by an exotic insect, the emerald ash borer (EAB). Pumpkin ash is limited to wetland areas of the Eastern United States, and has been listed as an endangered species because of EAB activity. Pumpkin ash provides many benefits to the ecosystem, and its wood is used in the...

  17. Volcanic Ash Transport and Dispersion Forecasting

    NASA Astrophysics Data System (ADS)

    Servranckx, R.; Stunder, B.

    2006-12-01

    Volcanic ash transport and dispersion models (VATDM) have been used operationally since the mid 1990's by the International Civil Aviation Organization (ICAO) designated Volcanic Ash Advisory Centers (VAAC) to provide ash forecast guidance. Over the years, significant improvements in the detection and prediction of airborne volcanic ash have been realized thanks to improved models, increases in computing power, 24-hr real time monitoring by VAACs / Meteorological Watch Offices and close coordination with Volcano Observatories around the world. Yet, predicting accurately the spatial and temporal structures of airborne volcanic ash and the deposition at the earth's surface remains a difficult and challenging problem. The forecasting problem is influenced by 3 main components. The first one (ERUPTION SOURCE PARAMETERS) comprises all non-meteorological parameters that characterize a specific eruption or volcanic ash cloud. For example, the volume / mass of ash released in the atmosphere, the duration of the eruption, the altitude and distribution of the ash cloud, the particle size distribution, etc. The second component (METEOROLOGY) includes all meteorological parameters (wind, moisture, stability, etc.) that are calculated by Numerical Weather Prediction models and that serve as input to the VATDM. The third component (TRANSPORT AND DISPERSION) combines input from the other 2 components through the use of VATDM to transport and disperse airborne volcanic ash in the atmosphere as well as depositing it at the surface though various removal mechanisms. Any weakness in one of the components may adversely affect the accuracy of the forecast. In a real-time, operational response context such as exists at the VAACs, the rapid delivery of the modeling results puts some constraints on model resolution and computing time. Efforts are ongoing to evaluate the reliability of VATDM forecasts though the use of various methods, including ensemble techniques. Remote sensing data

  18. Fusibility and sintering characteristics of ash

    SciTech Connect

    Ots, A. A.

    2012-03-15

    The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R{sub B/A} of their alkaline and acid components between 0.03 and 4. Acritical value of R{sub B/A} is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

  19. Process for removing ash from coal

    SciTech Connect

    Harada, K.; Nakanishi, T.; Ogino, E.; Yoshida, N.

    1983-06-21

    A process for removing ash from coal comprising the steps of pulverizing the coal to fine particles, admixing water with the finely divided coal to prepare an ash-containing slurry of finely divided coal, mixing with the slurry an oil and seeds in the form of oleophilic solid grains and serving as granulating nuclei to granulate the finely divided coal, separating the resulting granules from the mixture and washing the granules with water to remove the ash, and disintegrating the washed granules to obtain a deashed coal and recover the seeds for reuse.

  20. Fly Ash Disposal in Ash Ponds: A Threat to Ground Water Contamination

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Gupta, N. C.; Guha, B. K.

    2016-09-01

    Ground water contamination due to deposition of fly ash in ash ponds was assessed by simulating the disposal site conditions using batch leaching test with fly ash samples from three thermal power plants. The periodic analysis of leachates was performed for selected elements, Fe, Cu, Ni, Cr, Pb and Cd in three different extraction solutions to determine the maximum amount that can be leached from fly ash. It was observed that at low pH value, maximum metals are released from the surface of the ash into leachate. The average concentration of these elements found in ground water samples from the nearby area of ash ponds shows that almost all the metals except `Cr' are crossing the prescribed limits of drinking water. The concentration of these elements at this level can endanger public health and environment.

  1. Enhanced field-emission from SnO2:WO(2.72) nanowire heterostructures.

    PubMed

    Shinde, Deodatta R; Chavan, Padmakar G; Sen, Shashwati; Joag, Dilip S; More, Mahendra A; Gadkari, S C; Gupta, S K

    2011-12-01

    The field-emission properties of SnO(2):WO(2.72) hierarchical nanowire heterostructure have been investigated. Nanoheterostructure consisting of SnO(2) nanowires as stem and WO(2.72) nanothorns as branches are synthesized in two steps by physical vapor deposition technique. Their field emission properties were recorded. A low turn-on field of ~0.82 V/μm (to draw an emission current density ~10 μA/cm(2)) is achieved along with stable emission for 4 h duration. The emission characteristic shows the SnO(2):WO(2.72) nanoheterostructures are extremely suitable for field-emission applications.

  2. CTAB-assisted ultrasonic synthesis, characterization and photocatalytic properties of WO{sub 3}

    SciTech Connect

    Sánchez-Martínez, D. Gomez-Solis, C.; Torres-Martinez, Leticia M.

    2015-01-15

    Highlights: • WO{sub 3} 2D nanostructures were synthesized by ultrasound method assisted with CTAB. • WO{sub 3} morphology was mainly of rectangular nanoplates with a thickness of ∼50 nm. • The highest surface area value of WO{sub 3} was obtained to lowest concentration of CTAB. • WO{sub 3} activity was attributed to morphology, surface area and the addition of CTAB. • WO{sub 3} nanoplates were able to causing almost complete mineralization of rhB and IC. - Abstract: WO{sub 3} 2D nanostructures have been prepared by ultrasound synthesis method assisted with CTAB using different molar ratios. The formation of monoclinic crystal structure of WO{sub 3} was confirmed by X-ray powder diffraction (XRD). The characterization of the WO{sub 3} samples was complemented by analysis of scanning electron microscopy (SEM), which revealed morphology mainly of rectangular nanoplates with a thickness of around 50 nm and length of 100–500 nm. Infrared spectroscopy (FT-IR) was used to confirm the elimination of the CTAB in the synthesized samples. The specific surface area was determinate by the BET method and by means of diffuse reflectance spectroscopy (DRS) it was determinate the band-gap energy (E{sub g}) of the WO{sub 3} samples. The photocatalytic activity of the WO{sub 3} oxide was evaluated in the degradation reactions of rhodamine B (rhB) and indigo carmine (IC) under Xenon lamp irradiation. The highest photocatalytic activity was observed in the samples containing low concentration of CTAB with morphology of rectangular nanoplates and with higher surface area value than commercial WO{sub 3}. Photodegradation of rhB and IC were followed by means of UV–vis absorption spectra. The mineralization degree of organic dyes by WO{sub 3} photocatalyst was determined by total organic carbon analysis (TOC) reaching percentages of mineralization of 92% for rhB and 50% for IC after 96 h of lamp irradiation.

  3. Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes.

    PubMed

    Bignozzi, Carlo Alberto; Caramori, Stefano; Cristino, Vito; Argazzi, Roberto; Meda, Laura; Tacca, Alessandra

    2013-03-21

    Some recent studies mainly addressing the preparation and the modification of nanostructured thin films based on WO(3) and their application to photoelectrolysis of aqueous electrolytes are reviewed with the aim of rationalizing the main factors at the basis of an efficient photoanodic response. WO(3) represents one of the few materials which can achieve efficient water photo-oxidation under visible illumination, stably operating under strongly oxidizing conditions; thus the discussion of the structure-related photoelectrochemical properties of WO(3) thin films and their optimization for achieving almost quantitative photon to electron conversion constitutes the core of this contribution.

  4. Scheelite (CaWO4)-type microphosphors: Facile synthesis, structural characterization and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Han, Yuanyuan; Wang, Dan; Liang, Danyang; Wang, Shiqi; Lu, Guoxin; Wang, Xiaoyu; Pei, Nana

    2016-11-01

    Scheelite (CaWO4)-type microphosphors were synthesized by the precipitation method assisted with cetyltrimethyl ammonium bromide (CTAB). All compounds crystallized in the tetragonal structure with space group I41/a (No. 88). FE-SEM micrographs illustrate the spherical-like morphologies and rough surface. PL spectra indicate the broad emission peak maximum at 613 nm under UV excitation. Luminescence decay curves monitored by 5D 6 -7F 0 transition (λex = 394 nm) of Eu3+ in doped CaWO4 are presented, the curves exhibit a single-exponential feature and the lifetime for doped CaWO4 is 0.61 ms.

  5. Electrodeposition of WO3 nanoparticles into surface mounted metal-organic framework HKUST-1 thin films

    NASA Astrophysics Data System (ADS)

    Yoo, Hyeonseok; Welle, Alexander; Guo, Wei; Choi, Jinsub; Redel, Engelbert

    2017-03-01

    We describe a novel procedure to fabricate WO3@surface-mounted metal-organic framework (SURMOF) hybrid materials by electrodeposition of WO3 nanoparticles into HKUST-1, also termed Cu3(BTC)2 SURMOFs. These materials have been characterized using x-ray diffraction, time-of-flight secondary ion mass spectrometry, scanning electron microscopy, x-ray photoelectron spectroscopy as well as linear sweep voltammetry. The WO3 semiconductor/SURMOF heterostructures were further tested as hybrid electrodes in their performance for hydrogen evolution reaction from water.

  6. High photocurrent conversion efficiency in self-organized porous WO{sub 3}

    SciTech Connect

    Berger, S.; Tsuchiya, H.; Ghicov, A.; Schmuki, P.

    2006-05-15

    Self-organized porous structures of WO{sub 3} were grown on tungsten by an anodic oxidation, and their photoelectrochemical properties were characterized. The porous WO{sub 3} layers show a regular morphology with average pore sizes of approximately 70 nm and a pore wall thickness of approximately 10 nm. As formed layers show an amorphous structure but the layers can be altered to a crystalline monoclinic structure by thermal annealing. The annealed porous WO{sub 3} layers show a very high specific photocurrent conversion efficiency.

  7. Electrodeposition of WO3 nanoparticles into surface mounted metal-organic framework HKUST-1 thin films.

    PubMed

    Yoo, Hyeonseok; Welle, Alexander; Guo, Wei; Choi, Jinsub; Redel, Engelbert

    2017-03-17

    We describe a novel procedure to fabricate WO3@surface-mounted metal-organic framework (SURMOF) hybrid materials by electrodeposition of WO3 nanoparticles into HKUST-1, also termed Cu3(BTC)2 SURMOFs. These materials have been characterized using x-ray diffraction, time-of-flight secondary ion mass spectrometry, scanning electron microscopy, x-ray photoelectron spectroscopy as well as linear sweep voltammetry. The WO3 semiconductor/SURMOF heterostructures were further tested as hybrid electrodes in their performance for hydrogen evolution reaction from water.

  8. Metal-insulator transition in NaxWO3: Photoemission spectromicroscopy study

    NASA Astrophysics Data System (ADS)

    Paul, Sanhita; Ghosh, Anirudha; Raj, Satyabrata

    2014-04-01

    We have investigated the validity of percolation model, which is quite often invoked to explain the metal-insulator transition in sodium tungsten bronzes, NaxWO3 by photoelectron spectromicroscopy. The spatially resolved direct spectromicroscopic probing on both the insulating and metallic phases of high quality single crystals of NaxWO3 reveals the absence of any microscopic inhomogeneities embedded in the system within the experimental limit. Neither any metallic domains in the insulating host nor any insulating domains in the metallic host have been found to support the validity of percolation model to explain the metal-insulator transition in NaxWO3.

  9. Fabrication and photocatalysis of mesoporous ZnWO{sub 4} with PAMAM as a template

    SciTech Connect

    Lin Shen Chen Jiebo; Weng Xiulan; Yang Liuyi; Chen Xinqin

    2009-05-06

    Mesoporous ZnWO{sub 4} was prepared with the template of PAMAM. The as-formed samples were characterized by X-ray diffraction (XRD), nitrogen absorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (DRS). It is found that the size of pore is in the range of 5-22 nm and that the porosity of ZnWO{sub 4} is composed of aggregated ZnWO{sub 4} nanoparticles. The photocatalytic activities towards degradation of rhodamine B (RhB) and malachite green (MG) under UV light has been investigated. The formation mechanism of mesoporous structures is proposed.

  10. Synthesis of WC powder through microwave heating of WO3-C mixture

    NASA Astrophysics Data System (ADS)

    Behnami, Amir Karimzadeh; Hoseinpur, Arman; Sakaki, Masoud; Bafghi, Mohammad Sh.; Yanagisawa, Kazumichi

    2017-02-01

    A simple, easy, and low-cost process for the fabrication of tungsten carbide (WC) powder through microwave heating of WO3-C mixtures was developed. Thermodynamic calculations and experimental investigations were carried out for WO3-C and W-C systems, and a formation mechanism was proposed. In the results, for the synthesis of WC, the use of over stoichiometric amount of C together with a specially assembled experimental setup (which effectively retains heat in the system) is necessary. The WC powder is successfully obtained by heating WO3:5C mixture for 900 s in a domestic microwave oven.

  11. Development of new ash cooling method for atmospheric fluidized beds

    SciTech Connect

    Li Xuantian; Luo Zhongyang; Ni Mingjiang; Cheng Leming; Gao Xiang; Fang Mengxiang; Cen Kefa

    1995-12-31

    The pollution caused by hot ash drained from the bed is another challenge to atmospheric fluidized bed combustion technology when low-rank, high ash fuels are used. A new technique is developed for ash cooling and utilization of the waste heat of ash. Results from the demonstration of an 1.5 T/H patented device have shown the potential to use this type of ash cooler for drying and secondary air preheating. Bottom ash sized in the range 0--13 mm can be cooled from 1,650 F (900 C) to tolerable temperatures for conveying machinery, and the cooled ash can be re-utilized for cement production.

  12. Using crystallographic shear to reduce lattice thermal conductivity: high temperature thermoelectric characterization of the spark plasma sintered Magnéli phases WO2.90 and WO2.722.

    PubMed

    Kieslich, Gregor; Veremchuk, Igor; Antonyshyn, Iryna; Zeier, Wolfgang G; Birkel, Christina S; Weldert, Kai; Heinrich, Christophe P; Visnow, Eduard; Panthöfer, Martin; Burkhardt, Ulrich; Grin, Yuri; Tremel, Wolfgang

    2013-10-07

    Engineering of nanoscale structures is a requisite for controlling the electrical and thermal transport in solids, in particular for thermoelectric applications that require a conflicting combination of low thermal conductivity and low electrical resistivity. We report the thermoelectric properties of spark plasma sintered Magnéli phases WO2.90 and WO2.722. The crystallographic shear planes, which are a typical feature of the crystal structures of Magnéli-type metal oxides, lead to a remarkably low thermal conductivity for WO2.90. The figures of merit (ZT = 0.13 at 1100 K for WO2.90 and 0.07 at 1100 K for WO2.722) are relatively high for tungsten-oxygen compounds and metal oxides in general. The electrical resistivity of WO2.722 shows a metallic behaviour with temperature, while WO2.90 has the characteristics of a heavily doped semiconductor. The low thermopower of 80 μV K(-1) at 1100 K for WO2.90 is attributed to its high charge carrier concentration. The enhanced thermoelectric performance for WO2.90 compared to WO2.722 originates from its much lower thermal conductivity, due to the presence of crystallographic shear and dislocations in the crystal structure. Our study is a proof of principle for the development of efficient and low-cost thermoelectric materials based on the use of intrinsically nanostructured materials rather than artificially structured layered systems to reduce lattice thermal conductivity.

  13. Outlook for ash in your forest: results of emerald ash borer research and implications for management

    Treesearch

    Kathleen S. Knight

    2014-01-01

    Since its accidental introduction near Detroit, Michigan, in the mid-1990s, emerald ash borer (EAB) has rapidly spread through much of the U.S. and adjacent Canada, leaving millions of dead ash trees in Midwestern states (4,11). Unfortunately, EAB attacks trees as small as an inch in stem diameter and it attacks all five ash species native to the region - white, green...

  14. Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash.

    PubMed

    Okada, Takashi; Suzuki, Masaru

    2013-11-30

    In some gasification-melting plants, generated melting furnace fly ash is returned back to the melting furnace for converting the ash to slag. This study investigated the effect of such ash circulation in the gasification-melting system on the concentration and leachability of lead in the melting furnace fly ash. The ash circulation in the melting process was simulated by a thermodynamic calculation, and an elemental analysis and leaching tests were performed on a melting furnace fly ash sample collected from the gasification-melting plant with the ash circulation. It was found that by the ash circulation in the gasification-melting, lead was highly concentrated in the melting furnace fly ash to the level equal to the fly ash from the ash-melting process. The thermodynamic calculation predicted that the lead volatilization by the chlorination is promoted by the ash circulation resulting in the high lead concentration. In addition, the lead extraction from the melting furnace fly ash into a NaOH solution was also enhanced by the ash circulation, and over 90% of lead in the fly ash was extracted in 5 min when using 0.5 mol l(-1) NaOH solution with L/S ratio of 10 at 100 °C. Based on the results, a combination of the gasification-melting with the ash circulation and the NaOH leaching method is proposed for the high efficient lead recovery.

  15. Dynamics of surviving ash (Fraxinus spp.) populations in areas long infested by emerald ash borer (Agrilus planipennis)

    Treesearch

    Kathleen S. Knight; Daniel Herms; Reid Plumb; Eileen Sawyer; Daniel Spalink; Elizabeth Pisarczyk; Bernadette Wiggin; Rachel Kappler; Emily Ziegler; Karen Menard

    2012-01-01

    Emerald ash borer (EAB) (Agrilus planipennis), an introduced wood-boring insect, has killed millions of ash (Fraxinus spp.) trees in the Midwest region of the United States and Canada. However, in some areas where EAB has caused almost complete mortality of mature ash trees, a small number of healthy ash trees intermingled with...

  16. Potential products from North Dakota lignite fly ash. Final report

    SciTech Connect

    Anderson, G R

    1980-06-01

    Four major areas where fly ash can be used are explored. Concrete building blocks with fly ash replacing 50% of the portland cement have proven to be successful using current ASTM standards. Results in the ceramics area show that a ceramic-like product using fly ash and crushed glass with a small amount of clay as a green binder. Some preliminary results using sulfur ash in building materials are reported and with results of making wallboard from ash. (MHR)

  17. Fine Ash Aggregation Processes Observed In Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    Rinkleff, P. G.

    2012-12-01

    Fine airborne volcanic ash was collected during the eruptions of Augustine in 2006, Pavlof in 2007, and Redoubt in 2009 using Davis Rotating Unit for Measurement (DRUM) inertial cascade impactors to observe atmospheric volcanic ash aggregation. Aerosol ash collection by DRUM sampler preserved particle morphologies and compositions that are altered or destroyed by deposition. DRUM samples were analyzed by Scanning Electron Microscopy with Energy Dispersive Spectroscopy to determine particle size, shape, and composition. Ash particles were observed as single grains, ash aggregates, and hybrid ash/marine aerosol aggregates. Single grain ash occurred as single angular silicate shards and likely formed under ash and marine aerosol limited conditions. Ash aggregates occurred as loosely consolidated silicate ash clumps in pyroclastic flow elutriation plumes and were found in a discrete aerodynamic size range between 2.5-1.15 μm. Ash aggregates likely formed in fine ash-rich conditions which resulted from clast milling in flows that also generated abundant electrostatic particle charge. Hybrid ash/marine aerosol aggregates were composed of silicate ash and sea salt with non-sea salt sulfates. The mass concentration of sulfate did not vary systematically with ash which indicated that the sulfate source was not necessarily volcanic. Hybrid ash was common in all samples and likely formed when downward mixing ash mingled with upward mixing sea salt and non-sea salt sulfate aerosol.EM image of ash aggregates with individual ash grains. EM image with EDS element maps of hybrid ash/marine aerosol aggregates. Si is present with marine Cl and S.

  18. Fluidized bed gasification ash reduction and removal system

    SciTech Connect

    Schenone, C.E.; Rosinski, J.

    1984-02-28

    In a fluidized bed gasification system, an ash removal system is disclosed to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  19. Fluidized bed gasification ash reduction and removal process

    DOEpatents

    Schenone, Carl E.; Rosinski, Joseph

    1984-12-04

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  20. Fluidized bed gasification ash reduction and removal system

    DOEpatents

    Schenone, Carl E.; Rosinski, Joseph

    1984-02-28

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  1. Biotic and abiotic factors affect green ash volatile production and emerald ash borer adult feeding preference.

    PubMed

    Chen, Yigen; Poland, Therese M

    2009-12-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an exotic woodborer first detected in 2002 in Michigan and Ontario and is threatening the ash resource in North America. We examined the effects of light exposure and girdling on green ash (Fraxinus pennsylvanica Marsh) volatile production, and effects of light exposure, girdling, and leaf age on emerald ash borer adult feeding preferences and phototaxis. Green ash seedlings grown under higher light exposure had lower amounts of three individual volatile compounds, (Z)-3-hexenol, (E)-beta-ocimene, and (Z,E)-alpha-farnesene, as well as the total amount of six detected volatile compounds. Girdling did not affect the levels of these volatiles. Emerald ash borer females preferred mature leaves, leaves from girdled trees, and leaves grown in the sun over young leaves, leaves from nongirdled trees, and leaves grown in the shade, respectively. These emerald ash borer preferences were most likely because of physical, nutritional, or biochemical changes in leaves in response to the different treatments. Emerald ash borer females and males showed positive phototaxis in laboratory arenas, a response consistent with emerald ash borer preference for host trees growing in sunlight.

  2. Electrochemical lithium insertion in the solid solution Bi{sub 2}WO{sub 6}-Sb{sub 2}WO{sub 6} with Aurivillius framework

    SciTech Connect

    Martinez-de la Cruz, A. Longoria Rodriguez, F.E.

    2007-10-02

    Following the structural evolution of the Aurivillius crystalline framework in the solid solution Bi{sub 2}WO{sub 6}-Sb{sub 2}WO{sub 6} we have carried out an electrochemical lithium insertion study in this system. A slight loss of the specific capacity of the electrochemical cell was observed as amount of Sb was increased. In general, the different compositions within solid solution Bi{sub 2-x}Sb{sub x}WO{sub 6} (0.25 {<=} x {<=} 0.75) exhibited a similar behaviour featured mainly by two semiconstant potential regions located at 1.7 and 0.8 V versus Li{sup +}/Li{sup o}. The oxide Sb{sub 2}WO{sub 6} with Autivillius structure but without Bi was tested as cathode too. The maximum amount of lithium inserted, 13.5 lithium atoms per formula, is the same amount inserted in its homologous bismuth oxide Bi{sub 2}WO{sub 6}.

  3. Growth and crystallographic characterization of molecular beam epitaxial WO3 and MoO3/WO3 thin films on sapphire substrates

    NASA Astrophysics Data System (ADS)

    Yano, Mitsuaki; Koike, Kazuto; Matsuo, Masayuki; Murayama, Takayuki; Harada, Yoshiyuki; Inaba, Katsuhiko

    2016-09-01

    Molecular beam epitaxy of tungsten trioxide (WO3) on (01 1 bar 2)-oriented (r-plane) sapphire substrates and molybdenum trioxide (MoO3) on the WO3 was studied by focusing on their crystallogrhaphic properties. Although polycrystalline monoclinic (γ-phase) WO3 films were grown at 500 °C and they became single-crystalline (0 0 1)-oriented γ-phase at 700 °C, the latter films were oxygen-deficient from stoichiometry and contained dense and deep thermal etchpits. By using a two-step growth method where only the initial 15 nm was grown at 700 °C and the rest part was grown at 500 °C, (0 0 1)-oriented γ-phase single-crystalline WO3 films with stoichiometric composition and smooth surface were obtained. On top of the 15-nm-thick WO3 initiation layer, (1 1 0)-oriented orthorhombic (α-phase) MoO3 films with smooth surface were obtained.

  4. Clay Improvement with Burned Olive Waste Ash

    PubMed Central

    Mutman, Utkan

    2013-01-01

    Olive oil is concentrated in the Mediterranean basin countries. Since the olive oil industries are incriminated for a high quantity of pollution, it has become imperative to solve this problem by developing optimized systems for the treatment of olive oil wastes. This study proposes a solution to the problem. Burned olive waste ash is evaluated for using it as clay stabilizer. In a laboratory, bentonite clay is used to improve olive waste ash. Before the laboratory, the olive waste is burned at 550°C in the high temperature oven. The burned olive waste ash was added to bentonite clay with increasing 1% by weight from 1% to 10%. The study consisted of the following tests on samples treated with burned olive waste ash: Atterberg Limits, Standard Proctor Density, and Unconfined Compressive Strength Tests. The test results show promise for this material to be used as stabilizer and to solve many of the problems associated with its accumulation. PMID:23766671

  5. Fly ash enhanced metal removal process

    SciTech Connect

    Nonavinakere, S.; Reed, B.E.

    1995-12-31

    The primary objective of the study was to evaluate the effectiveness of fly ashes from local thermal power plants in the removal of cadmium, nickel, chromium, lead, and copper from aqueous waste streams. Physical and chemical characteristics of fly ashes were determined, batch isotherm studies were conducted. A practical application of using fly ash in treating spent electroless nickel (EN) plating baths by modified conventional precipitation or solid enhanced metal removal process (SEMR) was investigated. In addition to nickel the EN baths also contains completing agents such as ammonium citrate and succinic acid reducing agents such as phosphate and hypophosphite. SEMR experiments were conducted at different pHs, fly ash type and concentrations, and settling times.

  6. Advances in the Study of Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Taddeucci, Jacopo; Scarlato, Piergiorgio; Andronico, Daniele; Cristaldi, Antonio; Büttner, Ralph; Zimanowski, Bernd; Küppers, Ullrich

    2007-06-01

    Every month, small-scale explosive volcanic eruptions inject more than a million cubic meters of ash into Earth's atmosphere [Simkin and Siebert, 2000]. Of all the troubles caused by this relatively mild volcanic activity, ashfall is by far the longest-reaching one, mantling the volcano slopes and surroundings with a slippery, heavy, unhealthy, and snow-like but Sun-resistant cover. Volcanic ash is composed of pyroclasts (fragments generated and emplaced by explosive eruptions) smaller than 2 millimeters, which are easily transported by wind and have a high surface-to-volume ratio. These same features, however, also allow safe collection of the ash away from the volcano. Such pyroclasts bear the signature of the fragmentation and dispersal processes they have experienced during eruption and transport. Thus, volcanic ash provides sample material well suited for studying quasi time correlated eruption dynamics [Taddeucci et al, 2002].

  7. Elm-ash-cottonwood forest type bibliography.

    Treesearch

    Stephen R Shifley; Kenneth M. Brown

    1978-01-01

    Lists 679 references, arranged by author's names, on the biology, ecology, silviculture and mensuration of the elm-ash-cottonwood type and its component species. Indices for species, subjects, and second authors are appended.

  8. Fly ash system technology improves opacity

    SciTech Connect

    2007-06-15

    Unit 3 of the Dave Johnston Power Plant east of Glenrock, WY, USA had problems staying at or below the opacity limits set by the state. The unit makes use of a Lodge Cottrell precipitator. When the plant changed to burning Power River Basin coal, ash buildup became a significant issue as the fly ash control system was unable to properly evacuate hoppers on the unit. To overcome the problem, the PLC on the unit was replaced with a software optimization package called SmartAsh for the precipitator fly ash control system, at a cost of $500,000. After the upgrade, there have been no plugged hoppers and the opacity has been reduced from around 20% to 3-5%. 2 figs.

  9. Building a comprehensive collection of ash germplasm

    Treesearch

    Mark P. Widrlechner

    2010-01-01

    The U.S. National Plant Germplasm System (NPGS) has conserved seed collections of ash (Fraxinus) germplasm at the USDA-ARS North Central Regional Plant Introduction Station (NCRPIS) in Ames, IA, since the 1970s.

  10. Photoreduction of non-noble metal Bi on the surface of Bi2WO6 for enhanced visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojing; Yu, Shan; Liu, Yang; Zhang, Qian; Zhou, Ying

    2017-02-01

    In this report, Bi2WO6-Bi composite was prepared through an in situ photoreduction method and was characterized systematically by X-Ray diffraction, transmission electron microscopy, X-Ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The as-prepared Bi2WO6-Bi maintains the same crystal structure with the pristine Bi2WO6 regardless of some surface defects. Nevertheless, these surface defects result in the change of surface oxygen adsorption mode from hydroxyl to molecular oxygen on Bi2WO6. Photocatalytic activity over Bi2WO6-Bi is 2.4 times higher than that of Bi2WO6 towards the degradation of organic dye Rhodamine B (RhB) under visible light irradiation (λ > 420 nm). A deep study shows that cleavage of benzene ring is the main pathway for RhB degradation over Bi2WO6, but both the benzene cleavage and de-ethylation pathway coexist for RhB decomposition in the presence of Bi2WO6-Bi as the photocatalyst. Photoelectrochemical study including transient photocurrent tests and electrochemical impedance spectroscopy measurements shows that Bi2WO6-Bi could facilitate the charge transfer process compared to Bi2WO6. These data above has indicated a new insight into the promotion mechanism based on Bi related heterostructures.

  11. Experimental and theoretical investigation on photocatalytic activities of 1D Ag/Ag2WO4 nanostructures.

    PubMed

    Liu, Danqing; Huang, Weicheng; Li, Long; Liu, Lu; Sun, Xiaojun; Liu, Bo; Yang, Bin; Guo, Chongshen

    2017-09-20

    Ag2WO4 is a significant photocatalyst that responds to UV light irradiation only, which greatly hinders it for further practical application for solar light. To address this problem, herein, 1D plasmonic Ag/Ag2WO4 photocatalysts have been fabricated by a successive process including hydrothermal synthesis to obtain Ag2WO4 followed by an additional in situ chemical-reduction process for Ag decoration. Then, the structural features, optical properties, and electronic structures of Ag2WO4 and Ag/Ag2WO4 nanowires were systematically investigated via a combination of theoretical calculations and experimental evidence. The plasmon-enhanced Ag/Ag2WO4 nanowires exhibited higher visible-light-driven photocatalytic activity, which performed a desired photodestruction ratio of 91.2% on methylene blue within 60 min and good stability in five cycles. The Ag decoration greatly facilitates visible-light harvesting and thus promotes photogenerated radical oxidation to dye, which is evidenced by the higher hydroxyl radical level of Ag/Ag2WO4 detected in the ESR test during the photocatalytic process. The theoretical calculation based on density functional theory indicates that Ag nanoparticles formed on the surface of Ag2WO4 could narrow the band gap of Ag2WO4. In addition, the surface plasmon resonance absorption effect and fast charge transfer effect in the metal-semiconductor system contribute to the photocatalytic performance of Ag/Ag2WO4.

  12. Experimental and theoretical investigation on photocatalytic activities of 1D Ag/Ag2WO4 nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Danqing; Huang, Weicheng; Li, Long; Liu, Lu; Sun, Xiaojun; Liu, Bo; Yang, Bin; Guo, Chongshen

    2017-09-01

    Ag2WO4 is a significant photocatalyst that responds to UV light irradiation only, which greatly hinders it for further practical application for solar light. To address this problem, herein, 1D plasmonic Ag/Ag2WO4 photocatalysts have been fabricated by a successive process including hydrothermal synthesis to obtain Ag2WO4 followed by an additional in situ chemical-reduction process for Ag decoration. Then, the structural features, optical properties, and electronic structures of Ag2WO4 and Ag/Ag2WO4 nanowires were systematically investigated via a combination of theoretical calculations and experimental evidence. The plasmon-enhanced Ag/Ag2WO4 nanowires exhibited higher visible-light-driven photocatalytic activity, which performed a desired photodestruction ratio of 91.2% on methylene blue within 60 min and good stability in five cycles. The Ag decoration greatly facilitates visible-light harvesting and thus promotes photogenerated radical oxidation to dye, which is evidenced by the higher hydroxyl radical level of Ag/Ag2WO4 detected in the ESR test during the photocatalytic process. The theoretical calculation based on density functional theory indicates that Ag nanoparticles formed on the surface of Ag2WO4 could narrow the band gap of Ag2WO4. In addition, the surface plasmon resonance absorption effect and fast charge transfer effect in the metal-semiconductor system contribute to the photocatalytic performance of Ag/Ag2WO4.

  13. Influence of molybdenum doping on the structural, optical and electronic properties of WO3 for improved solar water splitting.

    PubMed

    Kalanur, Shankara S; Seo, Hyungtak

    2017-09-08

    Doping WO3 with foreign atoms is a very efficient strategy to modify the structural, optical and electronic properties which could influence its photoelectrochemical (PEC) water splitting activity. In this study, we report a simple and efficient single-step strategy for the fabrication of molybdenum (Mo)-doped WO3 thin films. The characterization results show that doping Mo into WO3 leads to a significant change in the morphology without changing its crystal structure. Elemental mapping and EDS analysis revealed that Mo was homogeneously doped into the crystal lattice of WO3 in the at.% range of 0-10.31. The incorporation of Mo into WO3 reduced the band-gap of WO3 and increased its light absorption ability. Notably, X-ray photoelectron spectroscopic valence band-edge analysis confirmed that substitution of Mo into WO3 led to a downward shift in the conduction band minimum without any significant change in the valence band maximum with respect to Fermi level. The fabricated Mo-doped WO3 electrodes exhibited a higher photocurrent compared to undoped WO3 samples under simulated 1.5AM sunlight without the addition of a water oxidation catalyst. The procedure proposed herein provides a simple and systematic approach for the fabrication of band-gap-tailored WO3 photoanodes by Mo doping for efficient PEC water splitting. Copyright © 2017. Published by Elsevier Inc.

  14. Preparation of WO3/g-C3N4 composites and their application in oxidative desulfurization

    NASA Astrophysics Data System (ADS)

    Zhao, Rongxiang; Li, Xiuping; Su, Jianxun; Gao, Xiaohan

    2017-01-01

    WO3/graphitic carbon nitride (g-C3N4) composites were successfully synthesized through direct calcining of a mixture of WO3 and g-C3N4 at 400 °C for 2 h. The WO3 was prepared by calcination of phosphotungstic acid at 550 °C for 4 h, and the g-C3N4 was obtained by calcination of melamine at 520 °C for 4 h. The WO3/g-C3N4 composites were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and Brunner-Emmett-Teller analysis (BET). The WO3/g-C3N4 composites exhibited stronger XRD peaks of WO3 and g-C3N4 than the WO3 and pure g-C3N4. In addition, two WO3 peaks at 25.7° and 26.6° emerged for the 36% -WO3/g-C3N4 composite. This finding indicated that WO3 was highly dispersed on the surface of the g-C3N4 nanosheets and interacted with the nanosheets, which resulted in the appearance of (012) and (022) planes of WO3. The WO3/g-C3N4 composite also exhibited a larger specific surface area and higher degree of crystallization than WO3 or pure g-C3N4, which resulted in high catalytic activity of the catalyst. Desulfurization experiments demonstrated that the desulfurization rate of dibenzothiophene (DBT) in model oil reached 91.2% under optimal conditions. Moreover, the activity of the catalyst was not significantly decreased after five recycles.

  15. The chemical characterization of dispersed ash and ash layers at DSDP Site 52, Izu-Bonin

    NASA Astrophysics Data System (ADS)

    McKinley, C. C.; Scudder, R. P.; Murray, R. W.; Kutterolf, S.; Schindlbeck, J. C.

    2012-12-01

    As part of an on-going regional project, the focus of this study is the characterization of compositions and fluxes of dispersed ash and discrete ash layers in the northwest Pacific Ocean in the context of variability in time and space. Deep Sea Drilling Project Site 52 is located eastward of the Izu-Bonin-Marianas subduction zone (27.77N, 147.12E, water depth 5744 m). Site 52 was rotary drilled in 1969 during DSDP Leg 6, and its major sediments were initially described as "clay-rich volcanic ash and brown clay with abundant volcanic glass". We therefore selected this site as potential "ash-rich" end member in our regional assessment. We analyzed 60 bulk sediment and 8 discrete ash layer samples (the latter represents all layers that were recovered) by ICP-ES and ICP-MS, from the upper 60 mbsf. Ash layers are only present in the top 13 mbsf, perhaps due to drilling disturbance at deeper depths. No samples were collected between 60 and 69 mbsf because the sediment there was reported as flow-in. At 69 mbsf lithified ash and chert was encountered so drilling was discontinued. In addition to quantifying the abundance of dispersed ash in the bulk sediment, we compare the composition of the dispersed ash component to that of the discrete ash layers. In order to facilitate comparison between ash layers and the bulk sediment, all major element data are reported on an anhydrous basis. Indeed, the major element totals for the discrete ash population (approx. 92 wt. %) and bulk sediment (approx. 88 wt. %) are consistent with the bulk sediment incorporating more alteration products (i.e., authigenic clay). The discrete ash layers show at least two populations of compositions. "Ash 1" broadly is characterized by lower SiO2 (60-62 wt%) with higher TiO2 (0.8-0.9 wt. %), MgO (2.8-3.0 wt. %), Fe2O3 (7-10 wt. %), Sc (19-30 ppm), and V (125-160 ppm). This ash is generally similar to upper crustal materials such as loess and PAAS, but differs in several key diagnostic compositions

  16. Anomalously large Born effective charges in cubic WO3

    NASA Astrophysics Data System (ADS)

    Detraux, F.; Ghosez, Ph.; Gonze, X.

    1997-07-01

    Within density-functional theory, we compute the Born effective charges of tungsten trioxyde in its reference cubic phase (defect-perovskite structure). For the tungsten atom, the effective charge tensor is isotropic, with Z*W=+12.51. For the oxygen atoms, the two independent components of the tensor, corresponding, respectively, to a displacement of the atom parallel or perpendicular to the W-O bond, have the values Z*O||=-9.13 and Z*O⊥=-1.68. Z*W and Z*O|| are anomalously large with respect to the nominal ionic charges (+6 on W and -2 on O), but compatible with the Born effective charges found in related ABO3-perovskite compounds.

  17. Efficient photoelectrochemical water splitting by anodically grown WO3 electrodes.

    PubMed

    Cristino, Vito; Caramori, Stefano; Argazzi, Roberto; Meda, Laura; Marra, Gian Luigi; Bignozzi, Carlo Alberto

    2011-06-07

    The potentiostatic anodization of metallic tungsten has been investigated in different solvent/electrolyte compositions with the aim of improving the water oxidation ability of the tungsten oxide layer. In the NMF/H(2)O/NH(4)F solvent mixture, the anodization leads to highly efficient WO(3) photoanodes, which, combining spectral sensitivity, an electrochemically active surface, and improved charge-transfer kinetics, outperform, under simulated solar illumination, most of the reported nanocrystalline substrates produced by anodization in aqueous electrolytes and by sol-gel methods. The use of such electrodes results in high water electrolysis yields of between 70 and 90% in 1 M H(2)SO(4) under a potential bias of 1 V versus SCE and close to 100% in the presence of methanol.

  18. Sonochromic effect in WO{sup 3} colloidal suspensions

    SciTech Connect

    Kamat, P.V.; Vinodgopal, K.

    1996-11-13

    In recent years there has been a burst of activities in investigating sonolytic reactions. The usefulness of this technique in synthesizing colloidal semiconductors and metals and dissolution of MnO{sup 2} colloids has also been demonstrated. We have now employed semiconductor colloids to investigate the radical reactions in sonolytic processes. In this study we present our preliminary results from the reaction of WO{sup 3} colloids with sonolytically generated H atoms. Sodium tungstate, oxalic acid, and Acid Orange 7 were obtained from Aldrich. Acid Orange 7 was purified by column chromatography. All other chemicals were analytical reagents of highest available purity. The analysis experiments were carried out with a 640 kHz sonolysis setup of Ultrasonic Energy Systems (Panama City, FL). 24 refs., 4 figs.

  19. Piezo-optic coefficients of CaWO4 crystals

    NASA Astrophysics Data System (ADS)

    Mytsyk, B. G.; Kost', Ya. P.; Demyanyshyn, N. M.; Andrushchak, A. S.; Solskii, I. M.

    2015-01-01

    All components of the piezo-optic coefficient matrix of calcium tungstate crystals, belonging to the 4/ m symmetry class, are determined. The reliability of the piezo-optic effect measurements in CaWO4 crystals is achieved by determining each piezo-optic coefficient from several experimental geometries and is also based on the correlation of the absolute piezo-electric coefficients and the path-difference coefficients. The rotation-shear diagonal coefficients π44 and π66 and three principal piezo-optic coefficients π11, π13, and π31 are refined by the polarization-optical method. It is confirmed that both the interferometric and polarization-optical methods should be used to study the piezo-optic effect with high accuracy. The results show that calcium tungstate is a promising material for acousto-optical and photoelastic modulation.

  20. Characterization of Nanoporous WO3 Films Grown via Ballistic Deposition

    SciTech Connect

    Smid, Bretislav; Li, Zhenjun; Dohnalkova, Alice; Arey, Bruce W.; Smith, R. Scott; Matolin, Vladimir; Kay, Bruce D.; Dohnalek, Zdenek

    2012-05-17

    We report on the preparation and characterization of high surface area, supported nanoporous tungsten oxide films prepared under different conditions on polished polycrystalline Ta and Pt(111) substrates via direct sublimation of monodispersed gas phase of cyclic (WO3)3 clusters. Scanning Electron Microscopy and Transmission Electron Microscopy were used to investigate the film morphology on a nanometer scale. The films consist of arrays of separated filaments that are amorphous. The chemical composition and the thermal stability of the films were investigated by means of X-ray Photoelectron Spectroscopy. The surface area and the distribution of binding sites on the films are measured as functions of growth temperature, deposition angle, and annealing conditions using temperature programmed desorption of Kr. Films deposited at 20 K and at an incident angle of 65{sup o} from substrate normal display the greatest specific surface area of {approx}560 m2/g.

  1. A frictional law for volcanic ash gouge

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Hirose, T.; Kendrick, J. E.; De Angelis, S.; Petrakova, L.; Hornby, A. J.; Dingwell, D. B.

    2014-08-01

    Volcanic provinces are structurally active regions - undergoing continual deformation along faults. Within such fault structures, volcanic ash gouge, containing both crystalline and glassy material, may act as a potential fault plane lubricant. Here, we investigate the frictional properties of volcanic ash gouges with varying glass fractions using a rotary shear apparatus at a range of slip rates (1.3-1300 mm/s) and axial stresses (0.5-2.5 MPa). We show that the frictional behaviour of volcanic ash is in agreement with Byerlee's friction law at low slip velocities, irrespective of glass content. The results reveal a common non-linear reduction of the friction coefficient with slip velocity and yield a frictional law for fault zones containing volcanic ash gouge. Textural analysis reveals that strain localisation and the development of shear bands are more prominent at higher slip velocities (>10 mm/s). The textures observed here are similar to those recorded in ash gouge at the surface of extrusive spines at Mount St. Helens (USA). We use the rate-weakening component of the frictional law to estimate shear-stress-resistance reductions associated with episodic seismogenic slip events that accompany magma ascent pulses. We conclude that the internal structure of volcanic ash gouge may act as a kinematic marker of exogenic dome growth.

  2. Flue gas desulfurization gypsum and fly ash

    SciTech Connect

    Not Available

    1992-05-01

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority`s newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective.

  3. Hydrothermal reactions of fly ash. Final report

    SciTech Connect

    Brown, P.W.

    1995-12-31

    The emphasis of the work done has been to determine the reactivities of two ashes believed to be representative of those generated. A bituminous ash and a lignitic ash have been investigated. The reactions of these ashes undergo when subjected to mild hydrothermal conditions were explored. The nature of the reactions which the ashes undergo when alkaline activators, calcium hydroxide and calcium sulfate are present was also investigated. It was determined that calcium silicate hydrate, calcium aluminate hydrate, and the calcium sulfoaluminate hydrate ettringite form under these conditions. It appears 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}3CaSO{sub 4}{center_dot}32H{sub 2}O (ettringite) formation needs to be considered in ashes which contain significant amounts of sulfate. Therefore the stability region for ettringite was established. It was also determined that calcium silicate hydrate, exhibiting a high internal surface area, will readily form with hydrothermal treatment between 50{degrees} and 100{degrees}C. This phase is likely to have a significant capacity to take up heavy metals and oxyanions and this ability is being explored.

  4. Composite WO3/TiO2 nanostructures for high electrochromic activity.

    PubMed

    Reyes-Gil, Karla R; Stephens, Zachary D; Stavila, Vitalie; Robinson, David B

    2015-02-04

    A composite material consisting of TiO2 nanotubes (NT) with WO3 electrodeposited on its surface has been fabricated, detached from its Ti substrate, and attached to a fluorine-doped tin oxide (FTO) film on glass for application to electrochromic (EC) reactions. Several adhesion layers were tested, finding that a paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length and WO3 concentration on the EC performance were studied. The composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast, and longer memory time compared with the pure WO3 and TiO2 materials.

  5. Reflectance modulation with electrochromic Li sub x WO sub 3 films

    SciTech Connect

    Goldner, R.B.; Berera, G.; Arntz, F.O.; Haas, T.E.; Morel, B.; Wong, K.K.

    1989-01-01

    Reflectance-modulated Smart Glass Windows (or smart windows) is a potentially important application for electrochromic thin films. The question addressed in this paper is, what is the upper bound for the near infrared reflectivity modulation in Li{sub x}WO{sub 3} films Based upon recent research on bulk crystals of Na{sub x}WO{sub 3} and bulk crystals and thin films of polycrystalline Li{sub x}WO{sub 3}, it is concluded that the upper bound is probably close to that of bulk crystals of Na{sub x}WO{sub 3} (x > 0.5) for which near infrared reflectance >90% has been reported. 9 refs., 7 figs.

  6. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films

    PubMed Central

    Wen, Rui-Tao; Granqvist, Claes G.; Niklasson, Gunnar A.

    2015-01-01

    Amorphous WO3 thin films are of keen interest as cathodic electrodes in transmittance-modulating electrochromic devices. However, these films suffer from ion-trapping-induced degradation of optical modulation and reversibility upon extended Li+-ion exchange. Here, we demonstrate that ion-trapping-induced degradation, which is commonly believed to be irreversible, can be successfully eliminated by constant-current-driven de-trapping, i.e., WO3 films can be rejuvenated and regain their initial highly reversible electrochromic performance. Pronounced ion-trapping occurs when x exceeds ~0.65 in LixWO3 during ion insertion. We find two main kinds of Li+-ion trapping sites (intermediate and deep) in WO3, where the intermediate ones are most prevalent. Li+-ions can be completely removed from intermediate traps but are irreversibly bound in deep traps. Our results provide a general framework for developing and designing superior electrochromic materials and devices. PMID:26259104

  7. Synthesis of NiWO4 powder crystals of polyhedron for photocatalytic degradation of Rhodamine

    NASA Astrophysics Data System (ADS)

    Hao, Meifeng; Meng, Xiangrui; Miao, Yuqing

    2017-10-01

    The NiWO4 powder crystals were synthesized by a simple hydrothermal method. It is found that the morphologies of most of NiWO4 particles are the polyhedron including cube, decahedron and dodecahedron et al. The typical cubic structures show the side length around 3 μm. SEM, TEM, XRD, FTIR and UV-vis were employed to characterize the NiWO4 powder crystals. The band gap value of 1.48 eV was calculated according to UV-vis. The NiWO4 powder crystals exhibit high photocatalytic activity toward the degradation of Rh B under both UV and visible irradiations. Especially, under UV, only 17% Rh B remains after 40 min UV photodegradation and only 80 min is needed for the complete degradation.

  8. Composition control of InN/WO3 nanocomposite by in-situ reactive plasma annealing

    NASA Astrophysics Data System (ADS)

    Saroni, Azianty; Goh, Boon Tong; Alizadeh, Mahdi; Rahman, Saadah Abdul

    2016-05-01

    A composition control and formation of InN/WO3 nanocomposite on the as-grown In2O3 by in-situ reactive plasma annealing was investigated. The reactive plasma annealing changes the facets crystalline In2O3 structure to nanograin structure of InN/WO3 nanocomposite with the grain size of 100-200 nm. X-ray photoelectron spectroscopy (XPS) reveals the formation of In2O3, InN and WO3 nanostructures in the nanocomposite. In-situ reactive plasma annealing enhances the removing of In2O3 and facilitates the formation of InN/WO3 nanocomposite. Furthermore, the reduction of oxygen in In2O3 leads to a decreasing in optical energy gap from 2.91 to 2.63 eV.

  9. Nitrogen doping of nanoporous WO3 layers by NH3 treatment for increased visible light photoresponse.

    PubMed

    Nah, Yoon-Chae; Paramasivam, Indhumati; Hahn, Robert; Shrestha, Nabeen K; Schmuki, Patrik

    2010-03-12

    Nanoporous WO(3) layers were grown by electrochemical anodization of W in a fluoride containing electrolyte. These layers were exposed to a thermal treatment in NH(3) to achieve nitrogen doping of the material. The morphology, crystal structure, composition and photoresponse of pure and nitrogen doped WO(3) were compared using scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and photoelectrochemical measurements. The results clearly show that successful nitrogen doping into WO(3) layers can be achieved by controlling the temperature and time during the NH(3) treatment. Most importantly, it is demonstrated that for the nitrogen doped WO(3) layers the photocurrent is significantly enhanced in the visible light region.

  10. Visible-light active photocatalytic WO3 films loaded with Pt nanoparticles deposited by sputtering.

    PubMed

    Murata, Akiyo; Oka, Nobuto; Nakamura, Shinichi; Shigesato, Yuzo

    2012-06-01

    Visible-Light active photocatalytic tungsten trioxide (WO3) films were deposited at a substrate temperature of 800 degrees C by dc reactive magnetron sputtering using a W metal target. In addition, Platinum (Pt) was deposited on the WO3 film surfaces at room temperature, also by sputtering. In the early stages of Pt growth, formation of Pt nanoparticles could be expected because of the island structure observed in Volmer-Weber-type growth mode. The surface coverage of Pt on the WO3 films was estimated quantitatively by X-ray photoelectron spectroscopy and was found to be approximately 60% after 7 s deposition. High resolution electron microscopy (HREM) demonstrated that Pt nanoparticles with a diameter of about 2.5 nm were generated and dispersed uniformly on the entire surface area of the columnar polycrystalline WO3 films. These Pt-loaded films exhibited high photocatalytic activity in the decomposition of acetaldehyde (CH3CHO) under visible light irradiation.

  11. High capacity WO3 film as efficient charge collection electrode for solar rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjie; Wang, Xiao-Feng; Zheng, Enqiang; Wei, Yingjin; Sanehira, Yoshitaka; Chen, Gang

    2017-05-01

    In this work, we demonstrated the dye-sensitized solar rechargeable batteries devices sharing a structure of Dye-TiO2/electrolyte/Ni/WO3. The WO3 film was prepared by a simple sol-gel process exhibit high cavities and large surface area allowing efficient chemical/electrical reactions. The WO3 films with 2 ± 0.5 μm in thickness as charge collection electrodes exhibited a high energy density over other materials reported thus far. Under irradiation energy of 7.5 mWcm-2 in the photo-charging, the discharging time sustained 1758 s at the current density of 0.05 mA cm-2 in dark, the first specific discharge capacities of WO3 nano-film reach 40.6 mAh g-1 (0.0244 mAh cm-2). This work substantially pushes forward the easy processing solar rechargeable batteries for future potential applications.

  12. Hydrothermal Fabrication of WO3 Hierarchical Architectures: Structure, Growth and Response

    PubMed Central

    Wu, Chuan-Sheng

    2015-01-01

    Recently hierarchical architectures, consisting of two-dimensional (2D) nanostructures, are of great interest for potential applications in energy and environmental. Here, novel rose-like WO3 hierarchical architectures were successfully synthesized via a facile hydrothermal method. The as-prepared WO3 hierarchical architectures were in fact assembled by numerous nanosheets with an average thickness of ~30 nm. We found that the oxalic acid played a significant role in governing morphologies of WO3 during hydrothermal process. Based on comparative studies, a possible formation mechanism was also proposed in detail. Furthermore, gas-sensing measurement showed that the well-defined 3D WO3 hierarchical architectures exhibited the excellent gas sensing properties towards CO. PMID:28347062

  13. Sonochemically prepared PbWO4 tetragonal-bipyramidal microcrystals and their photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Kannan, S.; Mohanraj, K.; Sivakumar, G.

    2015-03-01

    Lead tungstate (PbWO4) microcrystals were synthesized for the first time, via different concentrations of PVA assisted sonochemical process. The concentration of PVA acts as a structure directing agent and played an important role in the morphological control of resulting PbWO4 microcrystals. The product PbWO4 composing of Pb, W and O and Wsbnd O stretching vibration band of WO4 tetrahedrons were confirmed through XRD, FTIR, FESEM and EDS. The TG/DTA curves showed that the particles are crystallized at room temperature itself and the thermal stability of the product is really good. The optical properties of the product shows extraordinarily high room temperature photoluminescence intensity compared to without PVA assisted product.

  14. Pd Nanoparticles Coupled to WO2.72 Nanorods for Enhanced Electrochemical Oxidation of Formic Acid.

    PubMed

    Xi, Zheng; Erdosy, Daniel P; Mendoza-Garcia, Adriana; Duchesne, Paul N; Li, Junrui; Muzzio, Michelle; Li, Qing; Zhang, Peng; Sun, Shouheng

    2017-04-12

    We synthesize a new type of hybrid Pd/WO2.72 structure with 5 nm Pd nanoparticles (NPs) anchored on 50 × 5 nm WO2.72 nanorods. The strong Pd/WO2.72 coupling results in the lattice expansion of Pd from 0.23 to 0.27 nm and the decrease of Pd surface electron density. As a result, the Pd/WO2.72 shows much enhanced catalysis toward electrochemical oxidation of formic acid in 0.1 M HClO4; it has a mass activity of ∼1600 mA/mgPd in a broad potential range of 0.4-0.85 V (vs RHE) and shows no obvious activity loss after a 12 h chronoamperometry test at 0.4 V. Our work demonstrates an important strategy to enhance Pd NP catalyst efficiency for energy conversion reactions.

  15. Bacteriophage WO Can Mediate Horizontal Gene Transfer in Endosymbiotic Wolbachia Genomes

    PubMed Central

    Wang, Guan H.; Sun, Bao F.; Xiong, Tuan L.; Wang, Yan K.; Murfin, Kristen E.; Xiao, Jin H.; Huang, Da W.

    2016-01-01

    Phage-mediated horizontal gene transfer (HGT) is common in free-living bacteria, and many transferred genes can play a significant role in their new bacterial hosts. However, there are few reports concerning phage-mediated HGT in endosymbionts (obligate intracellular bacteria within animal or plant hosts), such as Wolbachia. The Wolbachia-infecting temperate phage WO can actively shift among Wolbachia genomes and has the potential to mediate HGT between Wolbachia strains. In the present study, we extend previous findings by validating that the phage WO can mediate transfer of non-phage genes. To do so, we utilized bioinformatic, phylogenetic, and molecular analyses based on all sequenced Wolbachia and phage WO genomes. Our results show that the phage WO can mediate HGT between Wolbachia strains, regardless of whether the transferred genes originate from Wolbachia or other unrelated bacteria. PMID:27965627

  16. Hydrothermal synthesis of Bi2WO6 hierarchical flowers with their photonic and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Dumrongrojthanath, Phattharanit; Thongtem, Titipun; Phuruangrat, Anukorn; Thongtem, Somchai

    2013-02-01

    Bi2WO6 hierarchical multi-layered flower-like assemblies were synthesized by a hydrothermal method at 180 °C for 24 h. XRD patterns were specified as pure orthorhombic well-crystallized Bi2WO6 phase. Their FTIR spectra show main absorption bands at 400-1000 cm-1, assigned as the stretching modes of the Bi-O and W-O, and W-O-W bridging stretching modes. SEM analysis shows that the product was 3D hierarchical flower-like assemblies, constructed by orderly arranged 2D layers of nanoplates. The UV-visible absorption shows an absorbance in the ultraviolet region with 3.4 eV band gap. Photocatalytic activity of Bi2WO6 hierarchical flowers was determined from the degradation of rhodamine-B by Xe light at 88% for 360 min irradiation.

  17. Enhanced electrochemical performance of monoclinic WO3 thin film with redox additive aqueous electrolyte.

    PubMed

    Shinde, Pragati A; Lokhande, Vaibhav C; Chodankar, Nilesh R; Ji, Taeksoo; Kim, Jin Hyeok; Lokhande, Chandrakant D

    2016-12-01

    To achieve the highest electrochemical performance for supercapacitor, it is very essential to find out a suitable pair of an active electrode material and an electrolyte. In the present work, a simple approach is employed to enhance the supercapacitor performance of WO3 thin film. The WO3 thin film is prepared by a simple and cost effective chemical bath deposition method and its electrochemical performance is tested in conventional (H2SO4) and redox additive [H2SO4+hydroquinone (HQ)] electrolytes. Two-fold increment in electrochemical performance for WO3 thin film is observed in redox additive aqueous electrolyte compared to conventional electrolyte. WO3 thin film showed maximum specific capacitance of 725Fg(-1), energy density of 25.18Whkg(-1) at current density of 7mAcm(-2) with better cycling stability in redox electrolyte. This strategy provides the versatile way for designing the high performance energy storage devices.

  18. Fabrication of luminescent SrWO{sub 4} thin films by a novel electrochemical method

    SciTech Connect

    Chen Lianping Gao Yuanhong

    2007-10-02

    Highly crystallized SrWO{sub 4} thin films with single scheelite structure were prepared within 60 min by a cell electrochemical method. X-ray diffraction analysis shows that SrWO{sub 4} thin films have a tetragonal structure. Scanning electron microscopy examinations reveal that SrWO{sub 4} grains grow well in tetragonal tapers and grains like flowers or bunches, which can usually form by using the electrolysis electrochemical method, have disappeared under cell electrochemical conditions. X-ray photoelectron spectra and energy dispersive X-ray microanalysis examinations demonstrate that the composition of the film is consistent with its stoichiometry. These SrWO{sub 4} films show a single blue emission peak (located at 460 nm) using an excitation wave of 230 nm. The speed of cell electrochemical method can be controlled by changing temperature. The optimum treatment temperature is about 50-60 deg. C.

  19. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films.

    PubMed

    Wen, Rui-Tao; Granqvist, Claes G; Niklasson, Gunnar A

    2015-10-01

    There is keen interest in the use of amorphous WO3 thin films as cathodic electrodes in transmittance-modulating electrochromic devices. However, these films suffer from ion-trapping-induced degradation of optical modulation and reversibility on extended Li(+)-ion exchange. Here, we demonstrate that ion-trapping-induced degradation, which is commonly believed to be irreversible, can be successfully eliminated by constant-current-driven de-trapping; that is, WO3 films can be rejuvenated and regain their initial highly reversible electrochromic performance. Pronounced ion trapping occurs when x exceeds ∼0.65 in LixWO3 during ion insertion. We find two main kinds of Li(+)-ion-trapping site (intermediate and deep) in WO3, where the intermediate ones are most prevalent. Li(+) ions can be completely removed from intermediate traps but are irreversibly bound in deep traps. Our results provide a general framework for developing and designing superior electrochromic materials and devices.

  20. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films

    NASA Astrophysics Data System (ADS)

    Wen, Rui-Tao; Granqvist, Claes G.; Niklasson, Gunnar A.

    2015-10-01

    There is keen interest in the use of amorphous WO3 thin films as cathodic electrodes in transmittance-modulating electrochromic devices. However, these films suffer from ion-trapping-induced degradation of optical modulation and reversibility on extended Li+-ion exchange. Here, we demonstrate that ion-trapping-induced degradation, which is commonly believed to be irreversible, can be successfully eliminated by constant-current-driven de-trapping; that is, WO3 films can be rejuvenated and regain their initial highly reversible electrochromic performance. Pronounced ion trapping occurs when x exceeds ~0.65 in LixWO3 during ion insertion. We find two main kinds of Li+-ion-trapping site (intermediate and deep) in WO3, where the intermediate ones are most prevalent. Li+ ions can be completely removed from intermediate traps but are irreversibly bound in deep traps. Our results provide a general framework for developing and designing superior electrochromic materials and devices.

  1. Wildland fire ash: future research directions

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.; Martins, Deborah A.; Cerdà, Artemi; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Mataix-Solera, Jorge

    2014-05-01

    Ash is a key component of the forest fires affected land (Cerdà, 1998; Bodí et al., 2011; Pereira et al., 2013a). Ash controls the hydrological processes and determines the water repellency (Dlapa et al., 2012) and the infiltration rates (Cerdà and Doerr, 2008;). Moreover, ash is the key factor on runoff initiation and then on the soil erosion. Little is known about the impact of ash in different ecosystems, but during the last decade a substantial increase in the papers that show the role of ash in the Earth and Soil System were published (Bodí et al., 2012; Pereira et al., 2013b).. Ash is being found as the key component of the post-fire pedological, geomorphological and hydrological response after forest fires (Fernández et al., 2012; Martín et al., 2012; Bodí et al., 2013; Guénon et al., 2013; Pereira et al., 2013c). A recent State-of-the-Art review about wildland fire ash (Bodí et al., 2014) compiles the knowledge regarding the production, composition and eco-hydro-geomorphic effects of wildland fire ash. In the present paper we indicate the knowledge gaps detected and suggest topics that need more research effort concerning: i) data collection and analysis techniques: a) To develop standardized sampling techniques that allow cross comparison among sites and avoid inclusion of the underlying soil unless the burned surface soil forms part of the ash layer, b) To develop standardized methods to define and characterize ash, including its color, physical properties such as particle size distribution or density, proportion of pyrogenic C, chemical and biological reactivity and persistence in the environment, c) To validate, calibrate and test measurements collected through remote sensing with on-the-ground measurements. ii) ash production, deposition redistribution and fate: d) To untangle the significance of the effects of maximum temperature reached during combustion versus the duration of heating, e) To understand the production of ash by measuring its

  2. Synthesis and evaluation of α-Ag2WO4 as novel antifungal agent

    NASA Astrophysics Data System (ADS)

    Foggi, Camila C.; Fabbro, Maria T.; Santos, Luís P. S.; de Santana, Yuri V. B.; Vergani, Carlos E.; Machado, Ana L.; Cordoncillo, Eloisa; Andrés, Juan; Longo, Elson

    2017-04-01

    Because of the need for new antifungal materials with greater potency, microcrystals of α-Ag2WO4, a complex metal oxide, have been synthetized by a simple co-precipitation method, and their antifungal activity against Candida albicans has been investigated. A theoretical model based on clusters that are building blocks of α-Ag2WO4 has been proposed to explain the experimental results.

  3. Light-Driven Au-WO3@C Janus Micromotors for Rapid Photodegradation of Dye Pollutants.

    PubMed

    Zhang, Qilu; Dong, Renfeng; Wu, Yefei; Gao, Wei; He, Zihan; Ren, Biye

    2017-02-08

    A novel light-driven Au-WO3@C Janus micromotor based on colloidal carbon WO3 nanoparticle composite spheres (WO3@C) prepared by one-step hydrothermal treatment is described. The Janus micromotors can move in aqueous media at a speed of 16 μm/s under 40 mW/cm(2) UV light due to diffusiophoretic effects. The propulsion of such Au-WO3@C Janus micromotors (diameter ∼ 1.0 μm) can be generated by UV light in pure water without any external chemical fuels and readily modulated by light intensity. After depositing a paramagnetic Ni layer between the Au layer and WO3, the motion direction of the micromotor can be precisely controlled by an external magnetic field. Such magnetic micromotors not only facilitate recycling of motors but also promise more possibility of practical applications in the future. Moreover, the Au-WO3@C Janus micromotors show high sensitivity toward extremely low concentrations of sodium-2,6-dichloroindophenol (DCIP) and Rhodamine B (RhB). The moving speed of motors can be significantly accelerated to 26 and 29 μm/s in 5 × 10(-4) wt % DCIP and 5 × 10(-7) wt % RhB aqueous solutions, respectively, due to the enhanced diffusiophoretic effect, which results from the rapid photocatalytic degradation of DCIP and RhB by WO3. This photocatalytic acceleration of the Au-WO3@C Janus micromotors confirms the self-diffusiophoretic mechanism and opens an opportunity to tune the motility of the motors. This work also offers the light-driven micromotors a considerable potential for detection and rapid photodegradation of dye pollutants in water.

  4. Study of electrochromic APCVD WO3-V2O5 films

    NASA Astrophysics Data System (ADS)

    Bodurov, G.; Ivanova, T.; Abrashev, M.; Gesheva, K. A.

    2012-12-01

    WO3-V2O5 thin films were deposited by atmospheric pressure chemical vapour deposition (APCVD). WO3-V2O5 thin films are investigated related to their potential use as primary electrochromic layers (working electrodes) in Electrochromic Devices. A typical EC Device is a sandwich like structure with two conductive glasses and an electrolyte with working electrodes that possess electrochromic properties. APCVD has the advantages of scalability to large areas with uniform thickness and potentially low cost.

  5. Synthesis and structure of Na+-intercalated WO3(4,4-bipyridyl)0.5.

    PubMed

    Islah-u-din; Fox, Matthew R; Martin, Hélène; Gainsford, Graeme J; Kennedy, John; Markwitz, Andreas; Telfer, Shane G; Jameson, Geoffrey B; Tallon, Jeffery L

    2010-06-28

    WO3(4,4-bipyridyl)0.5 was doped with Na+ by ion implantation so as to alter the electronic structure. Single-crystal X-ray diffraction reveals layers of corner-shared WO5N octahedra linked by bipyridine. In the observed space group of Pbca, the fully-ordered bipyridyls form cages with Na+ disordered bimodally about the cage centre.

  6. Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material.

    PubMed

    Ahmed, Bilal; Kumar, Sumeet; Ojha, Animesh K; Donfack, P; Materny, A

    2017-03-15

    In this work, we have performed a facile and controlled synthesis of WO3 nanorods and sheets in different crystal phases (triclinic, orthorhombic and monoclinic) of WO3 using the sol-gel method. The detailed structures of the synthesized materials were examined by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy measurements. The shapes and crystal phases of the WO3 nanostructures were found to be highly dependent on the calcination temperature. The variation in crystalline phases and shapes is modified the electronic structure of the samples, which causes a variation in the value of optical band gap. The value of the Raman line intensity ratio I264/I320 has been successfully used to identify the structural transition from the triclinic to the orthorhombic phase of WO3. The PL spectra of the synthesized products excited at wavelengths 380, 400, and 420nm exhibit intense emission peaks that cover the complete visible range (blue-green-red). The emission peaks at ~460 and ~486nm were caused by the near band-edge and band to band transition, respectively. The peaks in spectral range 500-600nm might be originated from the presence of oxygen vacancies lying within the energy band gap. The synthesized WO3 nanostructures showed improved photocatalytic activity for the photodegradation of MB dye. The enhanced photocatalytic activity of WO3 nanosheets compared to WO3 nanorods for photodegradation of methylene blue (MB) dye could be due to the shape of the nanostructured WO3. The sheet type of structure provides more active surface for the interaction of dye molecules compared to the rods, which results in a more efficient degradation of the dye molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material

    NASA Astrophysics Data System (ADS)

    Ahmed, Bilal; Kumar, Sumeet; Ojha, Animesh K.; Donfack, P.; Materny, A.

    2017-03-01

    In this work, we have performed a facile and controlled synthesis of WO3 nanorods and sheets in different crystal phases (triclinic, orthorhombic and monoclinic) of WO3 using the sol-gel method. The detailed structures of the synthesized materials were examined by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy measurements. The shapes and crystal phases of the WO3 nanostructures were found to be highly dependent on the calcination temperature. The variation in crystalline phases and shapes is modified the electronic structure of the samples, which causes a variation in the value of optical band gap. The value of the Raman line intensity ratio I264/I320 has been successfully used to identify the structural transition from the triclinic to the orthorhombic phase of WO3. The PL spectra of the synthesized products excited at wavelengths 380, 400, and 420 nm exhibit intense emission peaks that cover the complete visible range (blue-green-red). The emission peaks at 460 and 486 nm were caused by the near band-edge and band to band transition, respectively. The peaks in spectral range 500-600 nm might be originated from the presence of oxygen vacancies lying within the energy band gap. The synthesized WO3 nanostructures showed improved photocatalytic activity for the photodegradation of MB dye. The enhanced photocatalytic activity of WO3 nanosheets compared to WO3 nanorods for photodegradation of methylene blue (MB) dye could be due to the shape of the nanostructured WO3. The sheet type of structure provides more active surface for the interaction of dye molecules compared to the rods, which results in a more efficient degradation of the dye molecules.

  8. Temperature Dependence of the Luminescence Decay Time of a PbWO4 Scintillator

    NASA Astrophysics Data System (ADS)

    Shi, Chao-shu; Deng, Jie; Han, Zheng-fu; Xie, Zhi-jian; Liao, Jing-ying; G, Zimmerer; J, Beker; M, Kamada; M, Runne; A, Schröder

    1998-06-01

    Experimental results are given for the temperature dependence of the decay time of the emission at 430 nm from PbWO4 crystal under vacuum-ultraviolet (82 nm) photon excitation in the temperature range of 80-300 K. The structures in the curve are interpreted for the first time by studying the thermoluminescence of PbWO4, which originates from the traps in the crystal.

  9. UV-VUV synchrotron radiation spectroscopy of NiWO4

    NASA Astrophysics Data System (ADS)

    Kuzmin, A.; Pankratov, V.; Kalinko, A.; Kotlov, A.; Shirmane, L.; Popov, A. I.

    2016-07-01

    Photoluminescence and excitation spectra of microcrystalline and nanocrystalline nickel tungstate (NiWO4) were measured using UV-VUV synchrotron radiation source. The origin of the bands is interpreted using comparative analysis with isostructural ZnWO4 tungstate and based on the results of recent first-principles band structure calculations. The influence of the local atomic structure relaxation and of Ni2+ intra-ion d-d transitions on the photoluminescence band intensity are discussed.

  10. [Doctor's degree thesis of Tomasz Adolf Wołkowiński "Carditidis rheumaticae historia"].

    PubMed

    Stembrowicz, W

    2001-01-01

    In 1817 on the University of Vilnius Faculty of Medicine, T. A. Wołkowiński, a student of the eminent clinician Józef Frank, defended his doctor's degree thesis about a direct relation between rheumatic disease and cardiomegaly. It was probably the first paper in Poland describing with details the rheumatic heart disease. Unfortunately we don't know much about T. A. Wołkowiński's life.

  11. Controllable synthesis of hierarchical nanostructures of CaWO{sub 4} and SrWO{sub 4} via a facile low-temperature route

    SciTech Connect

    Chen, Z.; Gong, Q.; Zhu, J.; Yuan, Y.P.; Qian, L.W.; Qian, X.F.

    2009-01-08

    CaWO{sub 4} and SrWO{sub 4} nanostructures have been synthesized via a simple microemulsion-mediated route. With careful control of the fundamental experimental parameters including the concentration of reactants, the reaction time and the temperature, the products with different morphologies of dumbbell, coral, rod and dendrite have been obtained, respectively. The possible formation mechanism of these unique morphologies has been proposed based on surfactant self-assembly under different experimental conditions. The as-synthesized CaWO{sub 4} samples with various morphologies exhibit different photoluminescence properties. X-ray powder diffraction, transmission electron microscopy, field-emission scanning electron microscopy, and luminescence spectroscopy were used to characterize these products.

  12. WO3/TiO2 nanotube photoanodes for solar water splitting with simultaneous wastewater treatment.

    SciTech Connect

    Reyes, Karla Rosa; Robinson, David B.

    2013-05-01

    Nanostructured WO3/TiO2 nanotubes with properties that enhance solar photoconversion reactions were developed, characterized and tested. The TiO2 nanotubes were prepared by anodization of Ti foil, and WO3 was electrodeposited on top of the nanotubes. SEM images show that these materials have the same ordered structure as TiO2 nanotubes, with an external nanostructured WO3 layer. Diffuse reflectance spectra showed an increase in the visible absorption relative to bare TiO2 nanotubes, and in the UV absorption relative to bare WO3 films. Incident simulated solar photon-to-current efficiency increased from 30% (for bare WO3) to 50% (for WO3/TiO2 composites). With the addition of diverse organic pollutants, the photocurrent densities exhibited more than a 5-fold increase. Chemical oxygen demand measurements showed the simultaneous photodegradation of organic pollutants. The results of this work indicate that the unique structure and composition of these composite materials enhance the charge carrier transport and optical properties compared with the parent materials.

  13. Memristive properties of hexagonal WO3 nanowires induced by oxygen vacancy migration

    PubMed Central

    2013-01-01

    Tungsten trioxide (WO3) is always oxygen-deficient or non-stoichiometric under atmospheric conditions. Positively charged oxygen vacancies prefer to drift as well as electrons when the electric field is strong enough, which will alter the distribution of oxygen vacancies and then endow WO3 with memristive properties. In Au/WO3 nanowire/Au sandwich structures with two ohmic contacts, the axial distribution of oxygen vacancies and then the electrical transport properties can be more easily modulated by bias voltage. The threshold electric field for oxygen vacancy drifting in single-crystal hexagonal WO3 nanowire is about 106 V/m, one order of magnitude less than that in its granular film. At elevated temperatures, the oxygen vacancy drifts and then the memristive effect can be enhanced remarkably. When the two metallic contacts are asymmetric, the WO3 nanowire devices even demonstrate good rectifying characteristic at elevated temperatures. Based on the drift of oxygen vacancies, nanoelectronic devices such as memristor, rectifier, and two-terminal resistive random access memory can be fabricated on individual WO3 nanowires. PMID:23347429

  14. Influence of annealing temperature of WO3 in photoelectrochemical conversion and energy storage for water splitting.

    PubMed

    Ng, Charlene; Ng, Yun Hau; Iwase, Akihide; Amal, Rose

    2013-06-12

    The current work demonstrates the importance of WO3 crystallinity in governing both photoenergy conversion efficiency and storage capacity of the flower structured WO3 electrode. The degree of crystallinity of the WO3 electrodes was varied by altering the calcination temperature from 200 to 600 °C. For the self-photochargeability phenomenon, the prevailing flexibility of the short-range order structure at low calcination temperature of 200 °C favors the intercalation of the positive cations, enabling more photoexcited electrons to be stored within WO3 framework. This leads to a larger amount of stored charges that can be discharged in an on-demand manner under the absence of irradiation for H2 generation. The stability of the electrodes calcined at 200 °C, however, is compromised because of the structural instability caused by the abundance insertion of cations. On the other hand, films that were calcined at 400 °C displayed the highest stability toward both intercalation of the cations and photoelectrochemical water splitting performance. Although crystallinty of WO3 was furthered improved at 600 °C heat treatment, the worsened contact between the WO3 platelets and the conducting substrate as induced by the significant sintering has been more detrimental toward the charge transport.

  15. Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation

    PubMed Central

    Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Fang; Liu, Chang; Ling, Jing; Lei, Le; Zhou, Weichang; Tang, Dongsheng

    2016-01-01

    In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching. PMID:27600368

  16. Epitaxial NiWO4 films on Ni(110): Experimental and theoretical study of surface stability

    NASA Astrophysics Data System (ADS)

    Doudin, N.; Pomp, S.; Blatnik, M.; Resel, R.; Vorokhta, M.; Goniakowski, J.; Noguera, C.; Netzer, F. P.; Surnev, S.

    2017-05-01

    Despite the application potential of nickel tungstate (NiWO4) in heterogeneous catalysis, humidity and gas sensing, etc, its surfaces have essentially remained unexplored. In this work, NiWO4 nanoparticles and films with the wolframite structure have been grown via a solid-state reaction of (WO3)3 clusters and a NiO(100) film on a Ni(110) crystal surface and characterized by a variety of experimental techniques, including x-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM) and x-ray diffraction (XRD), combined with ab-initio density functional theory (DFT) calculations. NiWO4 grows initially as three-dimensional (3D) crystalline nanoparticles displaying mainly two crystalline facets vicinal to the (100) surface, which merge with increasing the (WO3)3 coverage into a quasi-continuous epitaxial film. The DFT results provide an account of the energetics of NiWO4 low index surfaces and highlight the role of faceting in the stabilization of extended polar (100) terraces. These combined experimental and theoretical results show that interaction with a metal substrate and vertical confinement may stabilize oxide nano-objects with high energy facets, able to enhance their reactivity.

  17. Highly sensitive and selective trimethylamine sensors based on WO3 nanorods decorated with Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Song, Peng; Yang, Zhongxi; Wang, Qi

    2017-06-01

    One-dimensional tungsten oxide (WO3) gas sensing materials have been widely used for the detection of trimethylamine (TMA) gas. Furthermore, it is believed that an effective method to improve the gas sensing performance is to introduce noble metals into sensing materials. In this work, a novel gas sensing material was prepared by decorating Au nanoparticles on WO3 nanorods. Based on field emission scanning electron microscopy (FESEM/EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM), the morphology and microstructure of as-prepared samples were characterized. Results show that Au nanoparticles with diameter of 13-15 nm are loaded on the surface of WO3 nanorods with length of about 1-2 μm and width of 50-80 nm. Gas sensing tests reveal that the Au@WO3 sensor has remarkably enhanced response to TMA gas compared with pure WO3 nanorods. In addition, and the gas sensing mechanism has been investigated based on the experimental results. The superior sensing features indicate the present Au@WO3 nanocomposites are promising for gas sensors, which can be used in the detection of the trimethylamine gas and this work provides insights and strategies for the fabrication of sensing materials.

  18. Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation.

    PubMed

    Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Fang; Liu, Chang; Ling, Jing; Lei, Le; Zhou, Weichang; Tang, Dongsheng

    2016-09-07

    In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching.

  19. Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Fang; Liu, Chang; Ling, Jing; Lei, Le; Zhou, Weichang; Tang, Dongsheng

    2016-09-01

    In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching.

  20. Phonon properties of nanosized MnWO{sub 4} with different size and morphology

    SciTech Connect

    Maczka, MirosLaw; Ptak, Maciej; Kurnatowska, Michalina; Kepinski, Leszek; Tomaszewski, PaweL; Hanuza, Jerzy

    2011-09-15

    Highly hierarchical barlike and flowerlike MnWO{sub 4} microcrystals have been synthesized for the first time by a hydrothermal method, where ethanolamine (EA) and cetyltrimethylamonnium bromide (CTAB) play important roles in directing growth and self-assembly of these structures. The possible formation process has been proposed. In addition, platelike nanosized MnWO{sub 4} was also synthesized by annealing of a precursor obtained by coprecipitation method. The obtained samples were characterized by XRD, SEM, TEM, Raman and IR methods. Raman spectra showed relatively weak dependence on particle size and morphology of the particles. In contrast to this behavior, IR-active bands showed pronounced shifts and changes in relative intensities on particle size and the morphology. Origin of this behavior is discussed. - Graphical Abstract: SEM images of MnWO{sub 4} particles prepared by hydrothermal process at 150 deg. C (left panel) and 200 deg. C (right panel). Highlights: > Hydrothermal synthesis with ethanolamine enables growth of hierarchical nanosized MnWO{sub 4} particles. > Annealing of a precursor obtained by coprecipitation method enables growth of platelike MnWO{sub 4} nanoparticles. > Raman and IR spectra of MnWO{sub 4} nanoparticles depend on both size and morphology of the nanoparticles. > We discuss origin of this behavior.

  1. MWCNT/WO3 nanocomposite photoanode for visible light induced water splitting

    NASA Astrophysics Data System (ADS)

    Yousefzadeh, Samira; Reyhani, Ali; Naseri, Naimeh; Moshfegh, Alireza Z.

    2013-08-01

    The Multi-walled carbon nanotube (MWCNT)/WO3 nanocomposite thin films with different MWCNT’s weight percentages were prepared by sol-gel method as visible light induced photoanode in water splitting reaction. Weight percentage of MWCNT in the all nanocomposite thin films was confirmed by TGA/DSC analysis. According to XPS analysis, oxygenated groups at the surface of the MWCNT and stoichiometric formation of WO3 thin films were determined, while the crystalline structure of the nanocomposite samples was studied by XRD indicating (0 0 2) peak of MWCNT in the monoclinic phase of WO3. The influence of different weight percentage (wt%) of MWCNT on WO3 photoactivity showed that the electron conductivity, charge transfer and electron life time had improved as compared with the pure WO3. Based on linear sweep voltammetry and chronoamperometry measurements, the (1 wt%) MWCNT/WO3 nanocomposite thin films photoanode has a maximum photocurrent density of ~4.5 A/m2 and electron life time of about 57 s.

  2. Investigation of x-ray photoelectron spectroscopic (XPS), cyclic voltammetric analyses of WO3 films and their electrochromic response in FTO/WO3/electrolyte/FTO cells

    NASA Astrophysics Data System (ADS)

    Sivakumar, R.; Gopalakrishnan, R.; Jayachandran, M.; Sanjeeviraja, C.

    2006-06-01

    Electrochromic thin films of tungsten oxide (WO3) were prepared on transparent conducting oxide substrates, i.e., fluorine doped tin oxide coated (FTO or SnO2:F) glass and microscopic glass substrates by the electron beam evaporation technique using pure WO3 (99.99%) pellets at various substrate temperatures (i.e., Tsub = room temperature (RT, 30 °C), 100 °C and 200 °C). The films were prepared under vacuum of the order of 1 × 10-5 mbar. The room temperature prepared films were further post-heat-treated (Tanne) at 200 and 300 °C for about 1 h in the vacuum environment. The prepared films are in monoclinic phase. The chemical composition has been characterized by using the XPS technique. The W 4f and O 1s core levels of WO3 films have been studied on the samples. The obtained core level binding energies revealed the WO3 films contained six-valent tungsten (W6+). The electrochemical nature of the films was studied by a three-electrode electrochemical cell in the configuration of FTO/WO3/H2SO4/Pt, SCE, using the cyclic voltammetry (CV) technique. Electrochromic devices (ECDs) of the general type FTO/WO3/electrolyte/FTO were studied. The films produced at higher substrate temperature show smaller modulation of the visible spectrum, compared with the films produced at lower temperatures. The significant chemical bonding nature associated with the coloring/bleaching process which follows the H+ ion incorporation in the film is studied by FTIR analysis. The W-O-W framework peak was observed at 563 cm-1 and confirms the stability of the films in the electrochemical analysis. The results obtained from cyclic voltammetry technique and ECD cell characterization are used to emphasize the suitability for some applications of the solar control systems.

  3. Scale-Up and Demonstration of Fly Ash Ozonation Technology

    SciTech Connect

    Rui Afonso; R. Hurt; I. Kulaots

    2006-03-01

    The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

  4. Monitoring ash (Fraxinus spp.) decline and emerald ash borer (Agrilus planipennis) symptoms in infested areas

    Treesearch

    Kathleen S. Knight; Britton P. Flash; Rachel H. Kappler; Joel A. Throckmorton; Bernadette Grafton; Charles E. Flower

    2014-01-01

    Emerald ash borer (A. planipennis) (EAB) has had a devastating effect on ash (Fraxinus) species since its introduction to North America and has resulted in altered ecological processes across the area of infestation. Monitoring is an important tool for understanding and managing the impact of this threat, and the use of common...

  5. Enhancing performance and durability of slag made from incinerator bottom ash and fly ash.

    PubMed

    Chiou, Ing-Jia; Wang, Kuen-Sheng; Tsai, Chen-Chiu

    2009-02-01

    This work presents a method capable of melting the incinerator bottom ash and fly ash in a plasma furnace. The performance of slag and the strategies for recycling of bottom ash and fly ash are improved by adjusting chemical components of bottom ash and fly ash. Ashes are separated by a magnetic process to improve the performance of slag. Analytical results indicate that the air-cooled slag (ACS) and magnetic-separated slag (MSS) have hardness levels below 590 MPa, indicating fragility. Additionally, the hardness of crystallized slag (RTS) is between 655 and 686 MPa, indicating toughness. The leached concentrations of heavy metals for these three slags are all below the regulatory limits. ACS appears to have better chemical stability than MSS, and is not significantly different from RTS. In the potential alkali-silica reactivity of slag, MSS falls on the border between the harmless zone and the potentially harmful zone. ACS and RTS fall in the harmless zone. Hence, the magnetic separation procedure of ashes does not significantly improve the quality of slag. However, RTS appears to improve its quality.

  6. Laboratory bioassay of emerald ash borer adults with a Bacillus thuringiensis formulation sprayed on ash leaves

    Treesearch

    Leah S. Bauer; Deborah L. Miller; Diana. Londono

    2011-01-01

    The emerald ash borer (EAB) (Agrilus planipennis), a buprestid native to Asia that feeds on ash trees (Fraxinus spp.), was discovered in southeast Michigan and nearby Ontario in 2002. It apparently arrived in the 1990's via infested solid-wood packing materials from China. As of 2011, areas considered generally infested with...

  7. Validation of Volcanic Ash Forecasting Performed by the Washington Volcanic Ash Advisory Center

    NASA Astrophysics Data System (ADS)

    Salemi, A.; Hanna, J.

    2009-12-01

    In support of NOAA’s mission to protect life and property, the Satellite Analysis Branch (SAB) uses satellite imagery to monitor volcanic eruptions and track volcanic ash. The Washington Volcanic Ash Advisory Center (VAAC) was established in late 1997 through an agreement with the International Civil Aviation Organization (ICAO). A volcanic ash advisory (VAA) is issued every 6 hours while an eruption is occurring. Information about the current location and height of the volcanic ash as well as any pertinent meteorological information is contained within the VAA. In addition, when ash is detected in satellite imagery, 6-, 12- and 18-hour forecasts of ash height and location are provided. This information is garnered from many sources including Meteorological Watch Offices (MWOs), pilot reports (PIREPs), model forecast winds, radiosondes and volcano observatories. The Washington VAAC has performed a validation of their 6, 12 and 18 hour airborne volcanic ash forecasts issued since October, 2007. The volcanic ash forecasts are viewed dichotomously (yes/no) with the frequency of yes and no events placed into a contingency table. A large variety of categorical statistics useful in describing forecast performance are then computed from the resulting contingency table.

  8. Differential response in foliar chemistry of three ash species to emerald ash borer adult feeding

    Treesearch

    Yigen Chen; Justin G.A. Whitehill; Pierluigi Bonello; Therese M. Poland

    2011-01-01

    The emerald ash borer (EAB; Agrilus planipennis Fairmaire; Coleoptera: Buprestidae), is an exotic wood-boring beetle that has been threatening North American ash (Fraxinus spp.) resources since its discovery in Michigan and Ontario in 2002. In this study, we investigated the phytochemical responses of the three most common North...

  9. Effect of emerald ash borer on structure and material properties of ash trees

    USDA-ARS?s Scientific Manuscript database

    Emerald ash borer (EAB) currently occurs in fifteen states in the United States, as well as Ontario and Quebec in Canada. A decline in ash tree strength following EAB infestation is potentially hazardous to public safety, particularly when trees are left standing for several years after dying. Dead ...

  10. High fire resistance in blocks containing coal combustion fly ashes and bottom ash.

    PubMed

    García Arenas, Celia; Marrero, Madelyn; Leiva, Carlos; Solís-Guzmán, Jaime; Vilches Arenas, Luis F

    2011-08-01

    Fire resistance recycled blocks, containing fly ash and bottom ash from coal combustion power plants with a high fire resistance, are studied in this paper by testing different compositions using Portland cement type II, sand, coarse aggregate and fly ash (up to 50% of total weight) and bottom ash (up to 30% of total weight). The fire resistance, physical-chemical (density, pH, humidity, and water absorption capacity), mechanical (compressive and flexural strength), and leaching properties are measured on blocks made with different proportions of fly ash and bottom ash. The standard fire resistance test is reproduced on 28cm-high, 18cm-wide and 3cm-thick units, and is measured as the time needed to reach a temperature of 180°C on the non-exposed surface of the blocks for the different compositions. The results show that the replacement of fine aggregate with fly ash and of coarse aggregate with bottom ash have a remarkable influence on fire resistance and cause no detriment to the mechanical properties of the product. Additionally, according to the leaching tests, no environmental problems have been detected in the product. These results lead to an analysis of the recycling possibilities of these by-products in useful construction applications for the passive protection against fire.

  11. Prospects for long-term ash survival in the core emerald ash borer mortality zone

    Treesearch

    Jordan M. Marshall; Andrew J. Storer; Roger Mech; Steven A. Katovich

    2011-01-01

    Attacking all North American ash species (Fraxinus spp.), emerald ash borer (EAB) (Agrilus planipennis Fairmaire) has caused significant mortality within its introduced range. For other forest pests, host bark plays an important role in infestation density and oviposition behavior. The objectives of this study were to (1) locate...

  12. Comparative study on the characteristics of fly ash and bottom ash geopolymers.

    PubMed

    Chindaprasirt, Prinya; Jaturapitakkul, Chai; Chalee, Wichian; Rattanasak, Ubolluk

    2009-02-01

    This research was conducted to compare geopolymers made from fly ash and ground bottom ash. Sodium hydroxide (NaOH) and sodium silicate (Na(2)SiO(3)) solutions were used as activators. A mass ratio of 1.5 Na(2)SiO(3)/NaOH and three concentrations of NaOH (5, 10, and 15M) were used; the geopolymers were cured at 65 degrees C for 48 h. A Fourier transform infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM) were used on the geopolymer pastes. Geopolymer mortars were also prepared in order to investigate compressive strength. The results show that both fly ash and bottom ash can be utilized as source materials for the production of geopolymers. The properties of the geopolymers are dependent on source materials and the NaOH concentration. Fly ash is more reactive and produces a higher degree of geopolymerization in comparison with bottom ash. The moderate NaOH concentration of 10 M is found to be suitable and gives fly ash and bottom ash geopolymer mortars with compressive strengths of 35 and 18 MPa.

  13. Comparative study on the characteristics of fly ash and bottom ash geopolymers

    SciTech Connect

    Chindaprasirt, Prinya; Jaturapitakkul, Chai; Chalee, Wichian; Rattanasak, Ubolluk

    2009-02-15

    This research was conducted to compare geopolymers made from fly ash and ground bottom ash. Sodium hydroxide (NaOH) and sodium silicate (Na{sub 2}SiO{sub 3}) solutions were used as activators. A mass ratio of 1.5 Na{sub 2}SiO{sub 3}/NaOH and three concentrations of NaOH (5, 10, and 15 M) were used; the geopolymers were cured at 65 deg. C for 48 h. A Fourier transform infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM) were used on the geopolymer pastes. Geopolymer mortars were also prepared in order to investigate compressive strength. The results show that both fly ash and bottom ash can be utilized as source materials for the production of geopolymers. The properties of the geopolymers are dependent on source materials and the NaOH concentration. Fly ash is more reactive and produces a higher degree of geopolymerization in comparison with bottom ash. The moderate NaOH concentration of 10 M is found to be suitable and gives fly ash and bottom ash geopolymer mortars with compressive strengths of 35 and 18 MPa.

  14. Breeding strategies for the development of emerald ash borer - resistant North American ash

    Treesearch

    Jennifer L. Koch; David W. Carey; Kathleen S. Knight; Therese Poland; Daniel A. Herms; Mary E. Mason

    2012-01-01

    The emerald ash borer (Agrilus plannipennis; EAB) is a phloem-feeding beetle that is endemic to Asia. It was discovered in North America in 2002, found almost simultaneously near Detroit, Michigan and Windsor, Ontario, Canada. Adult beetles feed on ash (Fraxinus spp.) foliage, but larval feeding on phloem, cambium, and...

  15. Comparative studies of monoclinic and orthorhombic WO3 films used for hydrogen sensor fabrication on SiC crystal

    NASA Astrophysics Data System (ADS)

    Zuev, V. V.; Grigoriev, S. N.; Romanov, R. I.; Fominski, V. Y.; Volosova, M. A.; Demin, M. V.

    2016-09-01

    Amorphous WOx films were prepared on the SiC crystal by using two different methods, namely, reactive pulsed laser deposition (RPLD) and reactive deposition by ion sputtering (RDIS). After deposition, the WOx films were annealed in an air. The RISD film possessed a m-WO3 structure and consisted of closely packed microcrystals. Localized swelling of the films and micro-hills growth did not destroy dense crystal packing. RPLD film had layered β-WO3 structure with relatively smooth surface. Smoothness of the films were destroyed by localized swelling and the micro-openings formation was observed. Comparative study of m-WO3/SiC, Pt/m-WO3/SiC, and P-WO3/SiC samples shows that structural characteristics of the WO3 films strongly influence on the voltage/current response as well as on the rate of current growth during H2 detection at elevated temperatures.

  16. Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light

    PubMed Central

    2011-01-01

    WO3-treated fullerene/TiO2 composites (WO3-fullerene/TiO2) were prepared using a sol-gel method. The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis. A methyl orange (MO) solution under visible light irradiation was used to determine the photocatalytic activity. Excellent photocatalytic degradation of a MO solution was observed using the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2 composites under visible light. An increase in photocatalytic activity was observed, and WO3-fullerene/TiO2 has the best photocatalytic activity; it may attribute to the increase of the photo-absorption effect by the fullerene and the cooperative effect of the WO3. PMID:21774800

  17. DFT study of CO sensing mechanism on hexagonal WO3 (0 0 1) surface: The role of oxygen vacancy

    NASA Astrophysics Data System (ADS)

    Tian, FengHui; Zhao, Linghuan; Xue, Xu-Yan; Shen, Yaoyao; Jia, Xiangfeng; Chen, Shougang; Wang, Zonghua

    2014-08-01

    In this work, density functional theory (DFT) calculations have been used to study the adsorption of CO on the oxygen deficient hexagonal WO3 (h-WO3) (0 0 1) surface. Two different situations including the O- and WO-terminated h-WO3 (0 0 1) surfaces are considered. The influence of surface defect density is also concerned. Calculations proposed that the oxygen vacancy exert negative effects on the sensing ability of the h-WO3 material. Under relatively higher defect density, the presence of the oxygen vacancy on both of the O and WO-terminated (0 0 1) surfaces all decreases their sensitivity to CO gas to some extent, while they are still sensitive enough to detect CO gas with the charge transfers of 0.498 and 0.129 e, respectively. Whereas, under lower defect density, calculations indicated that the sensitivity of the material can be lowered largely.

  18. Constructing TiO2 decorated Bi2WO6 architectures with enhanced visible-light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyuan; Chen, Lu; Yang, Yun; Wang, Junjie; Huang, Yongkui; Liu, Xiaoxia; Yang, Shuijin

    2017-06-01

    TiO2 nanoparticles modified Bi2WO6 photocatalysts were prepared via a facile hydrothermal process. The photocatalytic activity of as-prepared TiO2/Bi2WO6 composites was investigated sufficiently by the photodegradation of rhodamine B (RhB), tetracycline hydrochloride (TC) and ciprofloxacin (CIP). The TiO2/Bi2WO6 composites, in which the molar ratio of TiO2 to Bi2WO6 is 1:1, exhibited optimum photocatalytic activity, which is found to increase by about 2.4 times more than that of pristine Bi2WO6 for the photodegradation of TC. The enhanced photocatalytic activity may be attributed to the higher surface area and the highly efficient charge separation between Bi2WO6 nanosheets and TiO2 nanoparticles. The mechanism of the photocatalysts is investigated by the determination of reactive species in the photocatalytic reactions, the photoluminescence measurement and photoelectrochemical analyses.

  19. Continuous-wave laser operation of Tm and Hoco-doped NaY(WO(4))(2) and NaLu(WO(4))(2) crystals.

    PubMed

    Han, X; Fusari, F; Serrano, M D; Lagatsky, A A; Cano-Torres, J M; Brown, C T A; Zaldo, C; Sibbett, W

    2010-03-15

    Tetragonal single crystals of NaT(WO(4))(2) (T = Y or Lu) co-doped with Tm(3+) and Ho(3+) ions have been employed for broadly tunable and efficient room-temperature laser operation at around 2 mum. With Ti:sapphire laser pumping at 795 nm, a slope efficiency and a maximum output power as high as 48% and 265 mW, respectively, have been achieved at 2050 nm from a Tm,Ho:NaY(WO(4))(2) crystal. Tuning from 1830 nm to 2080 nm has also been obtained using an intracavity Lyot filter.

  20. Insight of the fusion behavior of volcanic ash: Implications for Volcanic ash Hazards to Aircraft Safety

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Hess, Kai-Uwe; Küppers, Ulrich; Scheu, Bettina; Cimarelli, Corrado; Lavallée, Yan; Sohyun, Park; Gattermann, Ulf; Müller, Dirk; Dingwell, Donald Bruce

    2014-05-01

    The interaction of volcanic ash with jet turbines during via ingestion of ash into engines operating at supra-volcanic temperatures is widely recognized as a potentially fatal hazard for jet aircraft. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The fusibility of volcanic ash is believed to impact strongly its deposition in the hotter parts of jet engines. Despite this, explicit investigation of ash sintering using standardized techniques is in its infancy. Volcanic ash may vary widely in its physical state and chemical composition between and even within explosive volcanic eruptions. Thus a comparative study of the fusibility of ash which involves a standard recognized techniques would be highly desirable. In this work, nine samples of fine ash, deposited from co-pyroclastic offrom nine different volcanoes which cover a broad range of chemical composition, were investigated. Eight of them were collected from 2001-2009 eruptions. Because of the currently elevated level of eruptive activity and its potential hazards to aircraft safety and the remaining one sample was collected from a 12,121 ± 114 yr B.P. eruption. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the fusion phenomena as well as determine the volcanic ash melting behavior by defining four characteristic temperatures (shrinkage temperature, deformation temperature, hemispherical temperature, and flow temperature) by means of heating microscope instrument and different thermal analysis methods. Here, we find that there are similar sticking ability and flow behavior of

  1. Mechanical treatment of fly ashes. Part 1: Physico-chemical characterization of ground fly ashes

    SciTech Connect

    Paya, J.; Monzo, J.; Borrachero, M.V.; Peris-Mora, E.

    1995-10-01

    Physico-chemical characteristics of mechanically treated fly ashes are investigated. An original fly ash was ground, using a laboratory mill, for several times (from 10 to 60 minutes). Respect to physical characterization, fineness increasing of samples with grinding time was observed, but loss of effectiveness occurred for grinding time longer than 20 minutes. Ground samples showed higher specific gravity probably due to the presence of cenospheres in the original fly ash. Only a little change in mineralogical composition of fly ashes was observed when grinding: calcium carbonate formation by reaction of calcium oxide with carbon dioxide. Chemical behavior (pH and conductivity) of fly ash/water suspensions were studied and acid neutralization capacities measured.

  2. International Database of Volcanic Ash Impacts

    NASA Astrophysics Data System (ADS)

    Wallace, K.; Cameron, C.; Wilson, T. M.; Jenkins, S.; Brown, S.; Leonard, G.; Deligne, N.; Stewart, C.

    2015-12-01

    Volcanic ash creates extensive impacts to people and property, yet we lack a global ash impacts catalog to organize, distribute, and archive this important information. Critical impact information is often stored in ephemeral news articles or other isolated resources, which cannot be queried or located easily. A global ash impacts database would improve 1) warning messages, 2) public and lifeline emergency preparation, and 3) eruption response and recovery. Ashfall can have varying consequences, such as disabling critical lifeline infrastructure (e.g. electrical generation and transmission, water supplies, telecommunications, aircraft and airports) or merely creating limited and expensive inconvenience to local communities. Impacts to the aviation sector can be a far-reaching global issue. The international volcanic ash impacts community formed a committee to develop a database to catalog the impacts of volcanic ash. We identify three user populations for this database: 1) research teams, who would use the database to assist in systematic collection, recording, and storage of ash impact data, and to prioritize impact assessment trips and lab experiments 2) volcanic risk assessment scientists who rely on impact data for assessments (especially vulnerability/fragility assessments); a complete dataset would have utility for global, regional, national and local scale risk assessments, and 3) citizen science volcanic hazard reporting. Publication of an international ash impacts database will encourage standardization and development of best practices for collecting and reporting impact information. Data entered will be highly categorized, searchable, and open source. Systematic cataloging of impact data will allow users to query the data and extract valuable information to aid in the development of improved emergency preparedness, response and recovery measures.

  3. Isotopic paleoclimate from hydrated volcanic ash

    SciTech Connect

    Friedman, I.; Izett, G.A.; Gleason, J.D.

    1985-01-01

    The deuterium composition (deltaD) of secondary water in glass shards of volcanic ash can be used to calculate the deltaD--and hence the climatic association--of water that was in contact with the ash during the first 10,000 years after eruption of the ash; this being the approximate (+/-5000 years) time necessary for water to diffuse completely through the thin walls of the pumice and glass shards. The fractionation between environmental water and water diffusing into the glassy ash must be known in order to calculate the deltaD of the ancient ground water. With help from A.J. Gude and R.A. Sheppard, the authors have recently determined this fractionation, and have used it to derive a value for deltaD of water from 25 samples of glass from the Huckleberry Ridge (2.1 m.y.), Bishop Tuff (0.74 m.y.), and Lava Creek B (0.61 m.y.) ashes collected from sites throughout the Western US. All of these deltaD values correlate very well with latitude and with the present distribution of deltaD in surface water. For example, the deltaD of water in Huckleberry Ridge ash varies from -85 per thousand SMOW for samples collected in Texas, to -148 per thousand for samples from south-central Montana. Thus, water of hydration in rhyolitic ash represents samples of ancient environmental water and can be used to study changes in the deltaD of the precipitation through time.

  4. Salt-thermal zeolitization of fly ash.

    PubMed

    Choi, C L; Park, M; Lee, D H; Kim, I E; Park, B Y; Choi, J

    2001-07-01

    The molten-salt method has been recently proposed as a new approach to zeolitization of fly ash. Unlike the hydrothermal method, this method employs salt mixtures as the reaction medium without any addition of water. In this study, systematic investigation has been conducted on zeolitization of fly ash in a NaOH-NaNO3 system in order to elucidate the mechanism of zeolite formation and to achieve its optimization. Zeolitization of fly ash was conducted by thermally treating a powder mixture of fly ash, NaOH, and NaNO3. Zeolitization of fly ash took place above 200 degrees C, a temperature lower than the melting points of salt and base in the NaOH-NaNO3 system. However, it was uncertain whether the reactions took place in a local molten state or in a solid state. Therefore, the proposed method is renamed the "salt-thermal" method rather than the "molten-salt" method. Mainly because of difficulty in mobility of components in salt mixtures, zeolitization seems to occur within a local reaction system. In situ rearrangement of activated components seems to lead to zeolite formation. Particle growth, rather than crystal growth through agglomeration, resulted in no distinct morphologies of zeolite phases. Following are the optimal zeolitization conditions of the salt-thermal method: temperature, 250-350 degrees C; time, 3-12 h; weight ratio of NaOH/NaNO3, 0.3-0.5; weight ratio of NaNO3/fly ash, 0.7-1.4. Therefore, it is clear from this work that the salt-thermal method could be applied to massive zeolitization of fly ash as a new alternative method for recycling this waste.

  5. Lipid peroxidation and oxidative status compared in workers at a bottom ash recovery plant and fly ash treatment plants.

    PubMed

    Liu, Hung-Hsin; Shih, Tung-Sheng; Chen, I-Ju; Chen, Hsiu-Ling

    2008-01-01

    Fly ash and ambient emissions of municipal solid waste incinerators contain polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polycyclic aromatic hydrocarbons (PAHs), other organic compounds, metals, and gases. Hazardous substances such as PCDD/Fs, mercury vapors and other silicates, and the components of bottom ash and fly ash elevate the oxidative damage. We compared oxidative damage in workers exposed to hazardous substances at a bottom ash recovery plant and 3 fly ash treatment plants in Taiwan by measuring their levels of plasma malondialdehyde (MDA) and urine 8-hydroxydeoxyguanosine (8-OH-dG). Significantly higher MDA levels were found in fly ash treatment plant workers (3.20 microM) than in bottom ash plant workers (0.58 microM). There was a significant association between MDA levels in workers and their working environment, especially in the fly ash treatment plants. Levels of 8-OH-dG varied more widely in bottom ash workers than in fly ash workers. The association between occupational exposure and 8-OH-dG levels may be affected by the life style of the workers. Because more dioxins and metals may leach from fly ash than from bottom ash, fly ash treatment plant workers should, as much as possible, avoid exposing themselves to fly ash.

  6. Inductive effect of poly(vinyl pyrrolidone) on morphology and photocatalytic performance of Bi2WO6

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Chen, Jinxing; Xie, Yunyun; Wang, Mozhen; Ge, Xuewu

    2016-04-01

    Bi2WO6 has great potential applications in the field of photocatalyst due to its excellent visible-light photocatalytic performance. This work studied the detailed morphological evolution of Bi2WO6 particles synthesized in a simple hydrothermal system induced by the stabilizer poly(vinyl pyrrolidone) (PVP). The XRD and HRTEM results show PVP would not change the crystal structure of Bi2WO6, but the distribution of PVP on the initially formed Bi2WO6 nanosheets will induce the crystal growth, resulting in a distinct morphology evolution of Bi2WO6 with the increase of the concentration of PVP. At the same time, with the increase of the molecular weight of PVP, the morphology of Bi2WO6 varied from simple sheet-like (S-BWO) to some complicated morphology, such as flower-like (F-BWO), red blood cell-like (B-BWO), and square-pillar-like (SP-BWO). The photocatalytic performances of Bi2WO6 with various morphologies on the decomposition of RhB under visible light irradiation reveal that S-BWO has the best photocatalytic performance, while SP-BWO has the worst. This work not only gives the explanation of the inductive effect of PVP molecular chains on the morphological formation of Bi2WO6 particles, but also provides the controllable way to the preparation of Bi2WO6 with various morphologies taking advantage of the stabilizer PVP.

  7. WO3-enhanced TiO2 nanotube photoanodes for solar water splitting with simultaneous wastewater treatment.

    PubMed

    Reyes-Gil, Karla R; Robinson, David B

    2013-12-11

    Composite WO3/TiO2 nanostructures with optimal properties that enhance solar photoconversion reactions were developed, characterized, and tested. The TiO2 nanotubes were prepared by anodization of Ti foil and used as substrates for WO3 electrodeposition. The WO3 electrodeposition parameters were controlled to develop unique WO3 nanostructures with enhanced photoelectrochemical properties. Scanning electron microscopy (SEM) images showed that the nanomaterials with optimal photocurrent density have the same ordered structure as TiO2 nanotubes, with an external tubular nanostructured WO3 layer. Diffuse reflectance spectra showed an increase in the visible absorption relative to bare TiO2 nanotubes and in the UV absorption relative to bare WO3 films. Incident simulated solar photon-to-current efficiency (IPCE) increased from 30% (for bare WO3) to 50% (for tubular WO3/TiO2 composites). With the addition of diverse organic pollutants, the photocurrent densities exhibited more than a 5-fold increase. Chemical oxygen demand measurements showed the simultaneous photodegradation of organic pollutants. The results of this work showed that the unique structure and composition of these composite WO3/TiO2 materials enhance the IPCE efficiencies, optical properties, and photodegradation performance compared with the parent materials.

  8. Effect of fluorine, nitrogen, and carbon impurities on the electronic and magnetic properties of WO{sub 3}

    SciTech Connect

    Shein, I. R.; Ivanovskii, A. L.

    2013-06-15

    Within electron density functional theory with the use of the Vienna ab-initio simulation package (VASP), the effect of the sp substitutional impurities of fluorine (n-type dopant), nitrogen, and carbon (p-type dopants) on the electronic and magnetic properties of tungsten trioxide WO{sub 3} is studied. It is established that these impurities induce the transformation of tungsten trioxide (nonmagnetic semiconductor) into nonmagnetic metal (WO{sub 3}:F), magnetic semimetal (WO{sub 3}:N), or magnetic metal (WO{sub 3}:C) states.

  9. Thermal effects associated with the Raman spectroscopy of WO3 gas-sensor materials.

    PubMed

    Garcia-Sanchez, Raul F; Ahmido, Tariq; Casimir, Daniel; Baliga, Shankar; Misra, Prabhakar

    2013-12-19

    Metal oxides are suitable for detecting, through conductive measurements, a variety of reducing and oxidizing gases in environmental and sensing applications. Metal-oxide gas sensors can be developed with the goal of sensing gases under specific conditions and, as a whole, are heavily dependent on the manufacturing process. Tungsten oxide (WO3) is a promising metal-oxide material for gas-sensing applications. The purpose of this paper is to determine the existence of a correlation between thermal effects and the changes in the Raman spectra for multiple WO3 structures. We have obtained results utilizing Raman spectroscopy for three different structures of WO3 (monoclinic WO3 on Si substrate, nanopowder, and nanowires) that have been subjected to temperatures in the range of 30-160 °C. The major vibrational modes of the WO3:Si and the nanopowder samples, located at ~807, ~716, and ~271 cm(-1), correspond to the stretching of O-W-O bonds, the stretching of W-O, and the bending of O-W-O, respectively; these are consistent with a monoclinic WO3 structure. However in the nanowires sample only asymmetric stretching of the W-O bonds occurs, resulting in a 750 cm(-1) band, and the bending of the O-W-O mode (271 cm(-1)) is a stretching mode (239 cm(-1)) instead, suggesting the nanowires are not strictly monoclinic. The most notable effect of increasing the temperature of the samples is the appearance of the bending mode of W-OH bonds in the approximate range of 1550-1150 cm(-1), which is related to O-H bonding caused by humidity effects. In addition, features such as those at 750 cm(-1) for nanowires and at 492 and 670 cm(-1) for WO3:Si disappear as the temperature increases. A deeper understanding of the effect that temperature has on the Raman spectral characteristics of a metal oxide such as WO3 has helped to extend our knowledge regarding the behavior of metal oxide-gas interactions for sensing applications. This, in turn, will help to develop theoretical models for

  10. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer.

    PubMed

    Whitehill, Justin G A; Popova-Butler, Alexandra; Green-Church, Kari B; Koch, Jennifer L; Herms, Daniel A; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion.

  11. Interspecific Proteomic Comparisons Reveal Ash Phloem Genes Potentially Involved in Constitutive Resistance to the Emerald Ash Borer

    PubMed Central

    Whitehill, Justin G. A.; Popova-Butler, Alexandra; Green-Church, Kari B.; Koch, Jennifer L.; Herms, Daniel A.; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion. PMID:21949771

  12. Estimating volcanic ash hazard in European airspace

    NASA Astrophysics Data System (ADS)

    Dingwell, Adam; Rutgersson, Anna

    2014-10-01

    The widespread disruption of European air traffic in late April 2010, during the eruption of Eyjafjallajökull, showed the importance of early assessment of volcanic hazard from explosive eruptions. In this study, we focus on the short-term hazard of airborne ash from a climatological perspective, focusing on eruptions on Iceland. By studying eruptions of different intensity and frequency, we estimate the overall probability that ash concentration levels considered hazardous to aviation are exceeded over different parts of Europe. The method involves setting up a range of eruption scenarios based on the eruptive history of Icelandic volcanoes, and repeated simulation of these scenarios for 2 years' worth of meteorological data. Simulations are conducted using meteorological data from the ERA-Interim reanalysis set, which is downscaled using the Weather Research and Forecasting (WRF) model. The weather data are then used to drive the Lagrangian particle dispersion model FLEXPART-WRF for each of the eruption scenarios. A set of threshold values, commonly used in Volcanic Ash Advisories, are used to analyze concentration data from the dispersion model. We see that the dispersion of ash is highly dominated by the mid-latitude westerlies and mainly affect northern UK and the Scandinavian peninsula. The occurrence of high ash levels from Icelandic volcanoes is lower over continental Europe but should not be neglected for eruptions when the release rate of fine ash (< 16μ m) is in the order of 107 kg s - 1 or higher. There is a clear seasonal variation in the ash hazard. During the summer months, the dominating dispersion direction is less distinct with some plumes extending to the northwest and Greenland. In contrast, during the winter months, the strong westerly winds tend to transport most of the emissions eastwards. The affected area of a winter-time eruption is likely to be larger as high concentrations can be found at a further distance downwind from the volcano

  13. Marine Mesocosm Bacterial Colonisation of Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Witt, V.; Cimarelli, C.; Ayris, P. M.; Kueppers, U.; Erpenbeck, D.; Dingwell, D. B.; Woerheide, G.

    2014-12-01

    Explosive volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local or regional scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, ash deposition may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, it is currently unknown which bacteria are involved in pioneer colonisation. We hypothesize that physico-chemical properties (i.e., morphology, chemistry, mineralogy) of the ash may dictate bacterial colonisation. We have tested the effect of substrate properties on bacterial diversity and abundance colonising five substrates: i) quartz sand ii) crystalline ash from the Sakurajima volcano (Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size - by incubation in a controlled marine mesocosm (coral reef aquarium) under low light conditions for three months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis Of Similarity supports significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community and carried the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community

  14. National volcanic ash operations plan for aviation

    USGS Publications Warehouse

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  15. Coal ash behavior in reducing environments

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; Brekke, D.W.; Folkedahl, B.C.; Tibbetts, J.E.; Nowok, J.W.

    1994-10-01

    This project is a four-year program designed to investigate the transformations and properties of coal ash in reducing environment systems. This project is currently midway through its third year. The work to date has emphasized four areas of research: (1) the development of quantitative techniques to analyze reduced species, (2) the production of gasification-type samples under closely controlled conditions, (3) the systematic gasification of specific coals to produce information about their partitioning during gasification, and (4) the study of the physical properties of ashes and slags under reducing atmospheres. The project is organized into three tasks which provide a strong foundation for the project. Task 1, Analytical Methods Development, has concentrated on the special needs of analyzing samples produced under a reducing atmosphere as opposed to the more often studied combustion systems. Task 2, Inorganic Partitioning and Ash Deposition, has focused on the production of gasification-type samples under closely controlled conditions for the study of inorganic partitioning that may lead to deposition. Task 3, Ash and Slag Physical Properties, has made large gains in the areas of sintering and strength development of coal ashes under reducing atmospheres for the evaluation of deposition problems. Results are presented for all three tasks.

  16. Proceedings: Tenth international ash use symposium

    SciTech Connect

    Not Available

    1993-01-01

    The objective of the 1993 International Coal Ash Use Symposium, the tenth in a series since 1967, is to publicize innovations in coal ash technology. These symposia support the mission of the American Coal Ash Association (ACAA) to promote coal ash use in a variety of markets through technology transfer and commercialization. The two-volume publication contains 82 papers arranged in fourteen sections which include: waste solidification and stabilization; aggregate; agriculture; structural fill; mine reclamation; aquatic uses; environmental considerations; concrete and flowable fill; base stabilization; clean coal by-products; international and regional perspectives; research and development; fillers in plastic and aluminum; and manufactured products--marketable gypsum, masonry blocks, cast in-situ and precast houses, bricks, mineral wool fibers and ready-mixed concrete. The 82 papers were submitted to ACAA by authors from sixteen countries including. The symposium, with 45 percent of the papers from locations outside the USA, represents a truly international interest in the development of uses for coal ash. Individual reports are processed separately for the data bases.

  17. Hydrothermal reaction of fly ash. Final report

    SciTech Connect

    Brown, P.W.

    1994-12-31

    The reactions which occur when fly ash is treated under hydrothermal conditions were investigated. This was done for the following primary reasons. The first of these is to determine the nature of the phases that form to assess the stabilities of these phases in the ambient environment and, finally, to assess whether these phases are capable of sequestering hazardous species. The second reason for undertaking this study was whether, depending on the composition of the ash and the presence of selected additives, it would be possible under hydrothermal conditions to form compounds which have cementitious properties. Formation of four classes of compounds, which bracket likely fly ash compositional ranges, were selected for study. The classes are calcium silicate hydrates, calcium selenates, and calcium aluminosulfates, and silicate-based glasses. Specific compounds synthesized were determined and their stability regions assessed. As part of stability assessment, the extent to which selected hazardous species are sequestered was determined. Finally, the cementing properties of these compounds were established. The results obtained in this program have demonstrated that mild hydrothermal conditions can be employed to improve the reactivity of fly ash. Such improvements in reactivity can result in the formation of monolithic forms which may exhibit suitable mechanical properties for selected applications as building materials. If the ashes involved are considered hazardous, the mechanical properties exhibited indicated the forms could be handled in a manner which facilitates their disposal.

  18. Pressurized fluidized bed combustion ash management options

    SciTech Connect

    Bland, A.E.; Brown, T.H.; Young, L.J.; Wheeldon, J.M.

    1995-12-31

    Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration and commercial deployment in the United States, as well as throughout the world. American Electric Power`s (AEP) bubbling PFBC 70 MW{sub e} Tidd demonstration program in Ohio and pilot-scale work at Ahlstrom Pyropower`s 10 MW{sub e} circulating PFBC at Karhula, Finland have demonstrated the advantages of PFBC technology. Development of uses for solid wastes from PFBC coal conversion systems is being actively pursued as part of the commercial demonstration of PFBC technologies. Ash collected from the low-sulfur subbituminous coal-fired Ahlstrom pilot circulating PFBC tests in Karhula, Finland and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI). Ash use options evaluated for these PFBC ashes were construction-related applications, such as (1) cement production, (2) fills and embankment, (3) soil stabilization, (4) synthetic aggregate production, as well as an amendment for acidic and sodic soil and mine spoil.

  19. The climatic impact of supervolcanic ash blankets

    NASA Astrophysics Data System (ADS)

    Jones, M. T.; Sparks, S. J.; Valdes, P. J.

    2006-12-01

    Supervolcanoes are capable of ejecting 1000's of cubic kilometres of magmatic material in a single eruption, far surpassing anything recorded in human history. It has been postulated that these eruptions have acted as catalysts for long-term climate change and are responsible for bottlenecks in human and animal populations. Tephra deposits from a super-eruption are capable of covering an area the size of USA (~10,000,000 sq. km) with ash, destroying vegetation and considerably raising the surface albedo. Ecological responses to smaller eruptions show that recovery of flora takes over 15 years, while previous studies of ash blankets demonstrate sustained surface residence times. This suggests that a supervolcanic ash blanket would instigate a decadal climate response that would dominate in the aftermath of the effects of aerosols in the stratosphere. We use a coupled atmosphere-ocean General Circulation Model (GCM) to simulate the effect of an ash blanket from Yellowstone volcano, USA, and show that it causes major disruptions to the climate, particularly to oscillatory systems such as the El Niño Southern Oscillation (ENSO). The regional disturbance instigates a global response, with significant variations in surface temperatures, pressures and precipitation patterns. The ocean remains largely unaffected, though a marked increase in sea ice is seen in the North Atlantic. While the response to a supervolcanic ash blanket is predicted to be severe, the isolated effects of the disturbance are not significant enough to instigate long-term climate change at present day boundary conditions.

  20. Experimental and theoretical investigation of a mesoporous KxWO3 material having superior mechanical strength

    NASA Astrophysics Data System (ADS)

    Dey, Sonal; Anderson, Sean T.; Mayanovic, Robert A.; Sakidja, Ridwan; Landskron, Kai; Kokoszka, Berenika; Mandal, Manik; Wang, Zhongwu

    2016-01-01

    Mesoporous materials with tailored properties hold great promise for energy harvesting and industrial applications. We have synthesized a novel tungsten bronze mesoporous material (KxWO3; x ~ 0.07) having inverse FDU-12 type pore symmetry and a crystalline framework. In situ small angle X-ray scattering (SAXS) measurements of the mesoporous K0.07WO3 show persistence of a highly ordered meso-scale pore structure to high pressure conditions (~18.5 GPa) and a material with remarkable mechanical strength despite having ~35% porosity. Pressure dependent in situ SAXS measurements reveal a bulk modulus κ = 44 +/- 4 GPa for the mesoporous KxWO3 which is comparable to the corresponding value for the bulk monoclinic WO3 (γ-WO3). Evidence from middle angle (MAXS) and wide angle X-ray scattering (WAXS), high-resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy shows that the presence of potassium leads to the formation of a K-bearing orthorhombic tungsten bronze (OTB) phase within a monoclinic WO3 host structure. Our ab initio molecular dynamics calculations show that the formation of the OTB phase provides superior strength to the mesoporous K0.07WO3.Mesoporous materials with tailored properties hold great promise for energy harvesting and industrial applications. We have synthesized a novel tungsten bronze mesoporous material (KxWO3; x ~ 0.07) having inverse FDU-12 type pore symmetry and a crystalline framework. In situ small angle X-ray scattering (SAXS) measurements of the mesoporous K0.07WO3 show persistence of a highly ordered meso-scale pore structure to high pressure conditions (~18.5 GPa) and a material with remarkable mechanical strength despite having ~35% porosity. Pressure dependent in situ SAXS measurements reveal a bulk modulus κ = 44 +/- 4 GPa for the mesoporous KxWO3 which is comparable to the corresponding value for the bulk monoclinic WO3 (γ-WO3). Evidence from middle angle (MAXS) and wide angle X-ray scattering (WAXS), high

  1. Synthesis and photoactivity enhancement of Ba doped Bi{sub 2}WO{sub 6} photocatalyst

    SciTech Connect

    Li, Wen Ting; Huang, Wan Zhen; Zhou, Huan; Yin, Hao Yong; Zheng, Yi Fan; Song, Xu Chun

    2015-04-15

    Highlights: • The Ba-doped Bi{sub 2}WO{sub 6} photocatalyst have been synthesized by a hydrothermal route. • The photocatalytic activity of Bi{sub 2}WO{sub 6} was greatly enhanced by Ba-doping. • The effect of Ba on the catalytic activity of Bi{sub 2}WO{sub 6} was studied and discussed. - Abstract: In this study, Bi{sub 2}WO{sub 6} doped with different barium contents were successfully prepared by a simple hydrothermal route at 180 °C for 12 h. The as-synthesized samples were characterized in detailed by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffusere flectance spectroscopy (UV–vis DRS) and Brunauer–Emmet–Teller (BET) theory. Their photocatalytic activities were evaluated by photodegradation of Rhodamine B (RhB) under simulated solar light. As a result, the photocatalytic properties were enhanced after Ba doping and the Ba-doped Bi{sub 2}WO{sub 6} with R{sub Ba} = 0.15 showed the highest photocatalytic activities of 96.3% RhB was decomposed in 50 min. Close investigation revealed that the proper Ba doped into Bi{sub 2}WO{sub 6} could not only increases its BET surface area, decrease its crystalline size, but also act as electron traps and facilitate the separation of photogenerated electron–hole pairs. The mechanism of enhanced photocatalytic activities of Ba-doped Bi{sub 2}WO{sub 6} were further investigated.

  2. Guanidine sulfate-assisted synthesis of hexagonal WO3 nanoparticles with enhanced adsorption properties.

    PubMed

    Mu, Wanjun; Li, Mei; Li, Xingliang; Ma, Zongping; Zhang, Rui; Yu, Qianhong; Lv, Kai; Xie, Xiang; He, Jiaheng; Wei, Hongyuan; Jian, Yuan

    2015-04-28

    Large surface area hexagonal phase WO3 (h-WO3) nanowires were synthesized by a hydrothermal route with the assistance of C2H12N6O4S. They were characterized by XRD, SEM, TEM, BET, FT-IR and XPS. It is shown that C2H12N6O4S not only acts as a stabilizer to facilitate the generation of a metastable hexagonal phase, but also functions as a structure directing agent to assist the construction of nanowires. The obtained h-WO3 possesses a large specific surface area and numerous adsorption functional groups such as -OH groups. These characteristics result in an excellent adsorption performance for the removal of strontium from acidic aqueous solutions. A maximum adsorption capacity of 52.93 mg g(-1) was achieved on the h-WO3 prepared in the presence of C2H12N6O4S. This value is almost two times higher than that of bare h-WO3 (no C2H12N6O4S). The effects of pH, contact time, initial Sr(2+) concentration and ion strength on Sr(2+) removal from the solution by h-WO3 were systematically investigated. The adsorption mechanism involving the combination of electrostatic attraction and ion exchange for the adsorption of Sr(2+) is proposed. Based on our results, h-WO3 with high adsorption capacity and good surface characteristics exhibits great potential for the removal of Sr(2+) from radioactive wastewater.

  3. WO-Type Wolf-Rayet Stars: the Last Hurrah of the Most Massive Stars?

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    2014-10-01

    WO-type Wolf-Rayet (WR) stars are considered the final evolutionary stage of the highest mass stars, immediate precursors to Type Ic (He-poor) core-collapse supernovae. These WO stars are rare, and until recently only 6 were known. Our knowledge about their physical properties is mostly based on a single object, Sand 2 in the LMC. It was the only non-binary WO star both bright and unreddened enough that its FUV and NUV spectra could be obtained by FUSE and HST/FOS. A non-LTE analysis showed that Sand 2 is very hot and its (C+O)/He abundance ratio is higher than that found in WC-type WRs, suggesting it is indeed highly evolved. However, the O VI resonance doublet in the FUV required a considerably cooler temperature (120,000 K) model than did the optical O VI lines (170,000 K). Further, the enhanced chemical abundances did not match the predictions of stellar evolutionary models. Another non-LTE study found a 3x higher (C+O)/He abundance ratio and a cooler temperature. We have recently discovered two other bright, single, and lightly reddened WOs in the LMC, allowing us to take a fresh look at these important objects. Our newly found WOs span a range in excitation type, from WO1 (the highest) to WO4 (the lowest). Sand 2 is intermediate (WO3). We propose to use COS to obtain FUV and NUV data of all three stars for as comprehensive a study as is currently possible. These UV data will be combined with our optical Magellan spectra for a detailed analysis with CMFGEN with the latest atomic data. Knowing the degree of chemical evolution of these WO stars is crucial to determining their evolutionary status, and thus in understanding the final stages of the most massive stars.

  4. Structural evolution, growth mechanism and photoluminescence properties of CuWO4 nanocrystals.

    PubMed

    Souza, E L S; Sczancoski, J C; Nogueira, I C; Almeida, M A P; Orlandi, M O; Li, M S; Luz, R A S; Filho, M G R; Longo, E; Cavalcante, L S

    2017-09-01

    Copper tungstate (CuWO4) crystals were synthesized by the sonochemistry (SC) method, and then, heat treated in a conventional furnace at different temperatures for 1h. The structural evolution, growth mechanism and photoluminescence (PL) properties of these crystals were thoroughly investigated. X-ray diffraction patterns, micro-Raman spectra and Fourier transformed infrared spectra indicated that crystals heat treated and 100°C and 200°C have water molecules in their lattice (copper tungstate dihydrate (CuWO4·2H2O) with monoclinic structure), when the crystals are calcinated at 300°C have the presence of two phase (CuWO4·2H2O and CuWO4), while the others heat treated at 400°C and 500°C have a single CuWO4 triclinic structure. Field emission scanning electron microscopy revealed a change in the morphological features of these crystals with the increase of the heat treatment temperature. Transmission electron microscopy (TEM), high resolution-TEM images and selected area electron diffraction were employed to examine the shape, size and structure of these crystals. Ultraviolet-Visible spectra evidenced a decrease of band gap values with the increase of the temperature, which were correlated with the reduction of intermediary energy levels within the band gap. The intense photoluminescence (PL) emission was detected for the sample heat treat at 300°C for 1h, which have a mixture of CuWO4·2H2O and CuWO4 phases. Therefore, there is a synergic effect between the intermediary energy levels arising from these two phases during the electronic transitions responsible for PL emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Synthesis of WO 3 nanoparticles for superthermites by the template method from silica spheres

    NASA Astrophysics Data System (ADS)

    Gibot, Pierre; Comet, Marc; Vidal, Loic; Moitrier, Florence; Lacroix, Fabrice; Suma, Yves; Schnell, Fabien; Spitzer, Denis

    2011-05-01

    Nanosized WO 3 tungsten trioxide was prepared by calcination of H 3P 4W 12O 40· xH 2O phosphotungstic acid, previously dissolved in a silica colloidal solution. The influence of the silica spheres/tungsten precursor weight ratio ( x) was investigated. The pristine oxide powders were characterized by XRD, nitrogen adsorption, SEM and TEM techniques. A specific surface area and a pore volume of 64.2 m 2 g -1 and 0.33 cm 3 g -1, respectively, were obtained for the well-crystallized WO 3 powder prepared with x = 2/3 and after the removal of the silica template. The WO 3 particles exhibit a sphere-shaped morphology with a particle size of 13 and 320 nm as function of the x ratio. The performance and the sensitivity levels of the thermites prepared from aluminium nanoparticles mixed with (i) the smallest tungsten (VI) oxide material and (ii) the microscale WO 3 were compared. The combustion of these energetic composites was investigated by time resolved cinematography (TRC). This unconventional experimental technique consists to ignite the dried compressed composites by using a CO 2 laser beam, in order to determine their ignition delay time (IDT) and their combustion rate. The downsizing WO 3 particles improves, without ambiguity, the energetic performances of the WO 3/Al thermite. For instance, the ignition delay time was greatly shortened from 54 ± 10 ms to 5.7 ± 0.2 ms and the combustion velocity was increased by a factor 50 to reach a value of 4.1 ± 0.3 m/s. In addition, the use of WO 3 nanoparticles sensitizes the mixture to mechanical stimuli but decreases the sensitivity to electrostatic discharge.

  6. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes

    SciTech Connect

    Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James

    2015-09-27

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. Here, we measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometer and their ash fusion temperatures through optical image analysis. We made all measurements in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. Finally, an understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.

  7. Extraction of trace metals from fly ash

    DOEpatents

    Blander, Milton; Wai, Chien M.; Nagy, Zoltan

    1984-01-01

    A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  8. Extraction of trace metals from fly ash

    DOEpatents

    Blander, M.; Wai, C.M.; Nagy, Z.

    1983-08-15

    A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  9. Element bioaccumulation from coal fly ash

    SciTech Connect

    James, W.D.; Ogugbuaja, V.O.

    1986-01-01

    The hazard associated with exposure of populations to fossil-fuel combustion effluents has long been recognized. In this paper, work that was performed in an attempt to study the fate of various elements contained in coal fly ash after the exposure of ash to laboratory rats is described. Experiments were designed to examine relationships among exposure route, mass of exposure dose, and the rate and level of element accumulation in various body organs. Ash doses of 50 and 100 mg and 50, 100, and 200 mg were administered intratracheally and intragastrically, respectively, to female laboratory rats. Samples were pooled according to dose mass and administration route for each sacrifice day in groups of three rats. These samples were then analyzed using instrumental neutron activation analysis.

  10. Size dependent cytotoxicity of fly ash particles

    SciTech Connect

    Liu, W.K.; Tam, J.S.K.; Wong, M.H.

    1988-01-01

    Fly ash samples were collected from the electrostatic precipitator of a coal-fired power plant in Hong Kong. The particles of the respirable range (smaller than 10 {mu}m) were divided into 4 groups according to their particle size (mass median aerodynamic diameters). The surface morphology and the metal contents (Fe, Mn, Al and Zn) of fly ash particles were examined by a scanning electron microscopy and an inductively coupled plasma spectrophotometer, respectively. The particles were very heterogeneous in size and shape as well as the concentration of metals. The cytotoxicity of these four groups of fly ash particles were evaluated using an in vitro rat alveolar macrophages culture assay. The viability of alveolar macrophages was lower when incubated with smaller size particles. This relationship was also reflected by the damage of the surface morphology of the cells and the release of cytoplasmic (lactate dehydrogenase) and lysosomal (acid phosphatase and {beta}-glucuronidase) marker enzymes into the culture media.

  11. Deactivation of the TiO2 photocatalyst by coupling with WO3 and the electrochemically assisted high photocatalytic activity of WO3.

    PubMed

    Tada, Hiroaki; Kokubu, Akio; Iwasaki, Mitsunobu; Ito, Seisihro

    2004-05-25

    Patterned TiO2 stripes were formed on a sol-gel crystalline WO3 film by using a chemically modified sol-gel method (pat-TiO2/WO3), and the coupling effect on the photocatalytic activity was studied. Although the photoinduced electron transfer from TiO2 to WO3 was confirmed by labeling and visualization of the reduction sites with Ag particles, the photocatalytic activities of TiO2 for both the gas-phase oxidation of CH3CHO and the liquid-phase oxidation of 2-naphthol decreased significantly with the coupling. This finding was rationalized in terms of the decrease in the rate of the electron transfer from the semiconductor-(s) to 02 with the coupling, which was estimated from the kinetic analysis of the photopotential relaxation. When the excited electrons were removed by a SnO2 underlayer, the WO3 film exhibited a high photocatalytic activity exceeding that of TiO2 for the oxidation of 2-naphthol.

  12. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    PubMed

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  13. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    SciTech Connect

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-15

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  14. Emerald ash borer infestation rates in Michigan, Ohio, and Indiana.

    Treesearch

    Eric L. Smith; Andrew J. Storer; Bryan K. Roosien

    2009-01-01

    The goal of this study was to obtain an estimate of the infestation rate of ash trees with emerald ash borer (EAB) (Agrilus planipennis, Fairmaire; Coleoptera; Buprestidae), across its primary infestation zone of...

  15. Fusion characteristics of volcanic ash relevant to aviation hazards

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Hess, Kai-Uwe; Damby, David E.; Wadsworth, Fabian B.; Lavallée, Yan; Cimarelli, Corrado; Dingwell, Donald B.

    2014-04-01

    The fusion dynamics of volcanic ash strongly impacts deposition in hot parts of jet engines. In this study, we investigate the sintering behavior of volcanic ash using natural ash of intermediate composition, erupted in 2012 at Santiaguito Volcano, Guatemala. A material science procedure was followed in which we monitored the geometrical evolution of cylindrical-shaped volcanic ash compact upon heating from 50 to 1400°C in a heating microscope. Combined morphological, mineralogical, and rheological analyses helped define the evolution of volcanic ash during fusion and sintering and constrain their sticking potential as well as their ability to flow at characteristic temperatures. For the ash investigated, 1240°C marks the onset of adhesion and flowability. The much higher fusibility of ash compared to that of typical test sands demonstrates for the need of a more extensive fusion characterization of volcanic ash in order to mitigate the risk posed on jet engine operation.

  16. Market assessment and technical feasibility study of PFBC ash use

    SciTech Connect

    Smith, V.E.; Bland, A.E.; Brown, T.H.; Georgiou, D.N.; Wheeldon, J.

    1994-10-01

    The overall objectives of this study are to determine the market potential and the technical feasibility of using PFBC ash in high volume ash use applications. The information will be of direct use to the utility industry in assessing the economics of PFBC power generation in light of ash disposal avoidance through ash marketing. In addition, the research is expected to result in the generation of generic data on the use of PFBC ash that could lead to novel processing options and procedures. The specific objectives of the proposed research and demonstration effort are: Define resent and future market potential of PFBC ash for a range of applications (Phase I); assess the technical feasibility of PFBC ash use in construction, civil engineering and agricultural applications (Phase II); and demonstrate the most promising of the market and ash use options in full-scale field demonstrations (Phase III).

  17. Fly ash as an adsorbent for wastewater treatment

    SciTech Connect

    Shao, J.; Wang, Z.; Shao, X.; Li, H.

    1997-12-31

    Fly ash is a kind of finely divided residue that results from the combustion of ground or powdered coal in power stations. The production of large amount of fly ash causes serious environmental problems. The grain size of fly ash is very small. Fly ash has high specific surface and high porosity. The contents of active components, active silicon and aluminum, are high too. So, fly ash has high adsorptivity. Wastewater contains amounts of inorganic and organic materials that pollute the environments. Normal adsorbent, such as activated carbon, has a high cost and a complex production technique. Fly ash can adsorb many materials in wastewater and it can partly substitute for activated carbon. When fly ash is used in wastewater treatment, it can bring about economic and social benefits. As a kind of adsorbent, fly ash has good results for decolorization, deodorization, organic matter removal, COD removal, defluorization, dephosporization, heavy metal removal, and pH modification in wastewater treatment processes.

  18. Eco-friendly fly ash utilization: potential for land application

    SciTech Connect

    Malik, A.; Thapliyal, A.

    2009-07-01

    The increase in demand for power in domestic, agricultural, and industrial sectors has increased the pressure on coal combustion and aggravated the problem of fly ash generation/disposal. Consequently the research targeting effective utilization of fly ash has also gained momentum. Fly ash has proved to be an economical substitute for expensive adsorbents as well as a suitable raw material for brick manufacturing, zeolite synthesis, etc. Fly ash is a reservoir of essential minerals but is deficient in nitrogen and phosphorus. By amending fly ash with soil and/or various organic materials (sewage sludge, bioprocess materials) as well as microbial inoculants like mycorrhizae, enhanced plant growth can be realized. Based on the sound results of large scale studies, fly ash utilization has grown into prominent discipline supported by various internationally renowned organizations. This paper reviews attempts directed toward various utilization of fly ash, with an emphasis on land application of organic/microbial inoculants amended fly ash.

  19. Growth of Larval Agrilus planipennis (Coleoptera: Buprestidae) and Fitness of Tetrastichus planipennisi (Hymenoptera: Eulophidae) in Blue Ash (Fraxinus quadrangulata) and Green Ash (F. pennsylvanica).

    PubMed

    Peterson, Donnie L; Duan, Jian J; Yaninek, J S; Ginzel, Matthew D; Sadof, Clifford S

    2015-12-01

    Emerald ash borer (Agrilus planipennis Fairmaire) is an invasive primary pest of North American ash (Fraxinus spp.) trees. Blue ash (F. quadrangulata) is less susceptible to emerald ash borer infestations in the forest than other species of North American ash. Whereas other studies have examined adult host preferences, we compared the capacity of emerald ash borer larvae reared from emerald ash borer eggs in the field and in the laboratory to survive and grow in blue ash and the more susceptible green ash (F. pennsylvanica). Emerald ash borer larval survivorship was the same on both ash species. Mortality due to wound periderm formation was only observed in living field grown trees, but was low (<4%) in both green and blue ash. No difference in larval mortality in the absence of natural enemies suggests that both green and blue ash can support the development of emerald ash borer. Larvae reared from eggs on blue ash were smaller than on green ash growing in the field and also in bolts that were infested under laboratory conditions. In a laboratory study, parasitism rates of confined Tetrastichus planipennisi were similar on emerald ash borer larvae reared in blue and green ash bolts, as were fitness measures of the parasitoid including brood size, sex ratio, and adult female size. Thus, we postulate that emerald ash borer larvae infesting blue ash could support populations of T. planipennisi and serve as a potential reservoir for this introduced natural enemy after most of the other native ash trees have been killed.

  20. Estimating volcanic ash hazard in European airspace

    NASA Astrophysics Data System (ADS)

    Dingwell, Adam; Rutgersson, Anna

    2014-05-01

    The wide spread disruption of European air traffic in late April 2010, during the eruption of Eyjafjallajökull, showed the importance of early assessment of volcanic hazard from explosive eruptions. In this study we look at the short term hazard of airborne ash through a climatological perspective, focusing on eruptions on Iceland. By studying eruptions of different magnitude and frequency we attempt to estimate the overall probability that ash concentrations considered hazardous to aviation are exceeded over different parts of Europe. The method involves setting up a range of eruption scenarios based on the eruptive history of Icelandic volcanoes, and repeated simulation of these scenarios for several years' worth of weather data. Simulations are conducted using meteorological data from the ERA-Interim reanalysis set which is downscaled using the Weather Research and Forecasting (WRF) model. The weather data is then used to drive the Lagrangian particle dispersion model FLEXPART-WRF, which is set up appropriately for each eruption scenario. We see that the dispersion of ash is highly dominated by the mid-latitude westerlies and mainly affect northern UK and the Scandinavian peninsula. The occurrence of high ash levels from Icelandic volcanoes is lower over continental Europe but should not be neglected for eruptions of volcanic explosivity index (VEI) 5 or greater, which have a recurrence interval of about 120-150 years. There is a clear seasonal variation in the ash hazard. During the summer months there is no single dominating dispersion direction and high concentrations are restricted to a relatively small area around Iceland with some plumes extending to the northwest and Greenland. In contrast, during the winter months the strong westerly winds will transport most of the emissions eastwards. The affected area of a winter-time eruption will be larger as high concentrations can be found at a further distance downwind from the volcano, effectively increasing

  1. Structural, vibrational and luminescence properties of the (1−x)CaWO{sub 4}−xCdWO{sub 4} system

    SciTech Connect

    Taoufyq, A.; Guinneton, F.; Valmalette, J-C.; Arab, M.; Benlhachemi, A.; Bakiz, B.; Villain, S.; and others

    2014-11-15

    In the present work, we investigate the structural, microstructural, vibrational and luminescence properties of the system (1−x)CaWO{sub 4}−xCdWO{sub 4} with x ranging between 0 and 1. Polycrystalline samples were elaborated using a coprecipitation technique followed by thermal treatment at 1000 °C. The samples were then characterized using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and luminescence analyses. X-ray diffraction profile analyses using Rietveld method showed that two kinds of solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4} having scheelite and wolframite structures, with respectively tetragonal and monoclinic crystal cells, were observed, with a biphasic system for compositions x=0.6 and 0.7. The scanning electron microscopy experiments showed a complex evolution of morphologies and crystallite sizes as x increased. The vibration modes of Raman spectra were characteristic of composition-dependent disordered solid solutions with decreasing wavenumbers as x increased. Luminescence experiments were performed under UV-laser light irradiation. The energies of emission bands increased linearly with cadmium composition x. The integrated intensity of luminescence reached a maximum value for the substituted wolframite phase with composition x=0.8. - Graphical abstract: Luminescence on UV excitation (364.5 nm) of (1−x)CaWO{sub 4−x}CdWO{sub 4} system, elaborated from coprecipitation technique at 1000 °C, with 0WO{sub 4} polycrystalline phases with 0≤x≤0.5. (b) Maximum of luminescence intensity for the composition x=0.8. - Highlights: • Solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4} are elaborated from coprecipitation technique. • The structures of two types of solid solutions are refined using Rietveld method. • A maximum of luminescence is obtained for an intermediate composition x=0.8.

  2. Utilization options for fly ash, bottom ash, and slag in Eastern Europe

    SciTech Connect

    Manz, O.E.

    1995-12-01

    Since 1967, at least six ash utilization symposiums have been held in the United States, with papers presented by several European authors on the utilization of coal by-products in Eastern Europe. There is currently over 80,000 megawatts of installed coal-fired capacity available in that region. Unfortunately, of the 117,778,000 tonnes of fly ash, bottom ash, and slag produced in Eastern Europe in 1989, only 13% was utilized. This paper outlines the research and levels and kinds of coal by-product utilization taking place in Eastern Europe since the late 1960s.

  3. Fly Ash Characteristics and Carbon Sequestration Potential

    SciTech Connect

    Palumbo, Anthony V.; Amonette, James E.; Tarver, Jana R.; Fagan, Lisa A.; McNeilly, Meghan S.; Daniels, William L.

    2007-07-20

    Concerns for the effects of global warming have lead to an interest in the potential for inexpensive methods to sequester carbon dioxide (CO2). One of the proposed methods is the sequestration of carbon in soil though the growth of crops or forests.4,6 If there is an economic value placed on sequestration of carbon dioxide in soil there may be an an opportunity and funding to utilize fly ash in the reclamation of mine soils and other degraded lands. However, concerns associated with the use of fly ash must be addressed before this practice can be widely adopted. There is a vast extent of degraded lands across the world that has some degree of potential for use in carbon sequestration. Degraded lands comprise nearly 2 X 109 ha of land throughout the world.7 Although the potential is obviously smaller in the United States, there are still approximately 4 X 106 ha of degraded lands that previously resulted from mining operations14 and an additional 1.4 X 108 ha of poorly managed lands. Thus, according to Lal and others the potential is to sequester approximately 11 Pg of carbon over the next 50 years.1,10 The realization of this potential will likely be dependent on economic incentives and the use of soil amendments such as fly ash. There are many potential benefits documented for the use of fly ash as a soil amendment. For example, fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, HCO3-, Cl- and basic cations, although some effects are notably decreased in high-clay soils.8,13,9 The potential is that these effects will promote increased growth of plants (either trees or grasses) and result in greater carbon accumulation in the soil than in untreated degraded soils. This paper addresses the potential for carbon sequestration in soils amended with fly ash and examines some of the issues that should be considered in planning this option. We describe retrospective studies of soil carbon accumulation on

  4. Changeing of fly ash leachability after grinding

    NASA Astrophysics Data System (ADS)

    Lakatos, J.; Szabo, R.; Racz, A.; Banhidi, O.; Mucsi, G.

    2016-04-01

    Effect of grinding on the reactivity of fly ash used for geopolymer production was tested. Extraction technique using different alkaline and acidic solutions were used for detect the change of the solubility of elements due to the physical and mechano-chemical transformation of minerals in function of grinding time. Both the extraction with alkaline and acidic solution have detected improvement in solubility in function of grinding time. The enhancement in alkaline solution was approx. 100% in case of Si and Al. The acidic medium able to dissolve the fly ash higher manner than the alkaline, therefore the effect of grinding was found less pronounced.

  5. NRL Satellite Volcanic Ash Plume Monitoring

    NASA Astrophysics Data System (ADS)

    Hawkins, J.; Kuciauskas, A. P.; Richardson, K.; Solbrig, J.; Miller, S. D.; Pavolonis, M. J.; Bankert, R.; Lee, T.; Kent, J.; Tsui, T.

    2009-12-01

    The Naval Research Laboratory’s (NRL) Marine Meteorology Division (NRL-MRY) is assembling a unique suite of near real-time digital satellite products geared towards monitoring volcanic ash plumes which can create hazardous aviation conditions. Ash plume detection, areal extent, plume top height and mass loading will be extracted via automated algorithms from a combination of geostationary (GEO) and low earth orbiting (LEO) data sets that take advantage of their complimentary strengths since no one sensor has the required spectral, spatial and temporal attributes needed. This product suite would then be available to the Volcanic Ash Advisory Centers (VAAC) and other interested users via web distribution. Initially, GOES-West and the Japanese MTSAT data will be incorporated to view volcanic plumes within the north Pacific region. Although GEO sensor spectral channels are not optimized for ash detection, temporal changes over limited timeframes can assist in plume extraction, but not for those at the highest latitudes. Examples with multi-channel techniques will be highlighted via animations. LEO sensors provide a suite of spectral channels unmatched on GEO platforms and permit enhanced ash plume monitoring. NRL has exploited the Moderate Resolution Imaging Spectroradiometer (MODIS) and SeaWiFS via a “dust enhancement technique” that has demonstrated positive plume monitoring results. Multi-channel methods using the Advanced Very High Resolution Radiometer (AVHRR) will be highlighted to take advantage of the numerous NOAA LEO satellites carrying this wide swath sensor with frequent volcano overpasses at the higher latitudes. The DMSP Operational Linescan System (OLS) provides daytime visible/infrared, as well as night time visible data which has shown value in spotting ash plumes when sufficient lunar illumination is present. The following suite of products is potentially available for over twenty (20) volcano sites world-wide via our NexSat web site: http

  6. Using fly ash to mitigate explosions

    SciTech Connect

    Taulbee, D.

    2008-07-01

    In 2005 the University of Kentucky's Center for Applied Energy Research was given funding to evaluate the use of coal combustion by-products (CCBs) to reduce the explosive potential of ammonium nitrate (AN) fertilizers. Fly ash C (FAC), fly ash F (FAF) and flue gas desulfurization by-product (FGD) were evaluated. It was found that applying a CCB coating to the AN particles at concentrations of 5 wt% or greater prevented the AN explosion from propagating. The article reports on results so far and outlines further work to be done. 6 figs.

  7. A DDDAS Framework for Volcanic Ash Propagation and Hazard Analysis

    DTIC Science & Technology

    2012-01-01

    estimates of volcanic ash transport and dispersal. Our primary modeling tools will be a combination of a plume eruption model BENT and the ash transport... eruptions ,” J. of Volcanology and Geothermal Research, vol. 186, pp. 10–21, 2009, special issue on Volcanic Ash Clouds; L. Mastin and P.W. Webley (eds...J. Dehn, J. Bailey, and R. Peterson, “ Volcanic ash dispersion modeling of the 2006 eruption of Augustine Volcano ,” USGS Professional Paper: Augustine

  8. One dimensional lunar ash flow with and without heat transfer

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsieh, T.

    1971-01-01

    The characteristics of lunar ash flow are discussed in terms of the two phase flow theory of a mixture of a gas and small solid particles. A model is developed to present the fundamental equations and boundary conditions. Numerical solutions for special ash flow with and without heat transfer are presented. In the case of lunar ash flow with small initial velocity, the effect of the heat transfer makes the whole layer of ash flow more compacted together than the corresponding isothermal case.

  9. Chromic mechanism in amorphous WO{sub 3} films

    SciTech Connect

    Zhang, J G; Benson, D K; Tracy, C E; Deb, S K; Czanderna, A W; Bechinger, C

    1996-11-01

    The authors propose a new model for the chromic mechanism in amorphous tungsten oxide films (WO{sub 3{minus}y}{center_dot}nH{sub 2}O). This model not only explains a variety of seemingly conflicting experimental results reported in the literature that cannot be explained by existing models, it also has practical implications with respect to improving the coloring efficiency and durability of electrochromic devices. According to this model, a typical as-deposited tungsten oxide film has tungsten mainly in W{sup 6+} and W{sup 4+} states and can be represented as W{sub 1{minus}y}{sup 6+} W{sub y}{sup 4+}O{sub 3{minus}y}{center_dot}nH{sub 2}O. The proposed chromic mechanism is based on the small polaron transition between the charge-induced W{sup 5+} state and the original W{sup 4+} state instead of the W{sup 5+} and W{sup 6+} states as suggested in previous models. The correlation between the electrochromic and photochromic behavior in amorphous tungsten oxide films is also discussed.

  10. TiO2(B) nanoparticle-functionalized WO3 nanorods with enhanced gas sensing properties.

    PubMed

    Zhang, Hongxin; Wang, Shurong; Wang, Yanshuang; Yang, Jiedi; Gao, Xueling; Wang, Liwei

    2014-06-14

    In this work, TiO2(B) nanoparticle (NP)-functionalized WO3 nanorods (NRs) were synthesized by a two-step solution strategy, with a hydrothermal process for WO3 NRs and hydrolyzation of Ti(OBu)4 for the functionalization of TiO2(B) NPs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), were employed to investigate the morphology, microstructure, crystalline nature and chemical composition of the prepared TiO2(B) NP-functionalized WO3 NRs. SEM and TEM results revealed that the TiO2(B)-WO3 composite showed a rod-like nanostructure with a diameter in the range from 93 to 154 nm and a rough surface, which could increase the accessible surface area and the amount of surface active sites, thus improving the properties or performance of the as-prepared composite NRs. XRD and XPS analysis clearly verified that monoclinic TiO2(B) NPs, a metastable polymorph of TiO2, were successfully supported on the WO3 NRs. Gas sensing measurement results for several common reductive organic gases such as acetone, ethanol, ether, methanol and formaldehyde demonstrated that the sensor based on the as-obtained TiO2(B) NP-functionalized WO3 NRs exhibited obviously enhanced responses compared with a pure WO3 NR based sensor, as well as fast response-recovery speeds, good reproducibility and good stability, indicating their promising application in gas sensors. The excellent gas sensing performance could be attributed to the unique 1D rod-like nanostructure with a rough surface, the existence of TiO2-WO3 heterojunctions and the catalytic effect of the TiO2(B) NPs. The as-prepared TiO2(B) NP-functionalized WO3 NRs will also have very good prospects in electrochromic devices and catalysis applications.

  11. Economic analysis of emerald ash borer (Coleoptera: Buprestidae) management options.

    PubMed

    Vannatta, A R; Hauer, R H; Schuettpelz, N M

    2012-02-01

    Emerald ash borer, Agrilus planipennis (Fairmaire) (Coleoptera: Buprestidae), plays a significant role in the health and extent of management of native North American ash species in urban forests. An economic analysis of management options was performed to aid decision makers in preparing for likely future infestations. Separate ash tree population valuations were derived from the i-Tree Streets program and the Council of Tree and Landscape Appraisers (CTLA) methodology. A relative economic analysis was used to compare a control option (do-nothing approach, only removing ash trees as they die) to three distinct management options: 1) preemptive removal of all ash trees over a 5 yr period, 2) preemptive removal of all ash trees and replacement with comparable nonash trees, or 3) treating the entire population of ash trees with insecticides to minimize mortality. For each valuation and management option, an annual analysis was performed for both the remaining ash tree population and those lost to emerald ash borer. Retention of ash trees using insecticide treatments typically retained greater urban forest value, followed by doing nothing (control), which was better than preemptive removal and replacement. Preemptive removal without tree replacement, which was the least expensive management option, also provided the lowest net urban forest value over the 20-yr simulation. A "no emerald ash borer" scenario was modeled to further serve as a benchmark for each management option and provide a level of economic justification for regulatory programs aimed at slowing the movement of emerald ash borer.

  12. Methods for studying emerald ash borer parasitoids in the field

    Treesearch

    Leah Bauer; Jian Duan; Juli Gould; Kristopher Abell; Deborah Miller; Jason Hansen; Roy. Van Driesche

    2011-01-01

    The emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae), is an invasive phloemfeeding beetle from Asia that attacks ash (Fraxinus spp.) trees. EAB was determined to be the cause of extensive ash tree mortality throughout southeast Michigan and nearby Ontario in 2002. For several years, regulatory agencies...

  13. Utilization of CFB fly ash for construction applications

    SciTech Connect

    Conn, R.E.; Sellakumar, K.; Bland, A.E.

    1999-07-01

    Disposal in landfills has been the most common means of handling ash in circulating fluidized bed (CFB) boiler power plants. Recently, larger CFB boilers with generating capacities up to 300 MWe are currently being planned, resulting in increased volumes and disposal cost of ash by-product. Studies have shown that CFB ashes do not pose environmental concerns that should significantly limit their potential utilization. Many uses of CFB ash are being investigated by Foster Wheeler, which can provide more cost-effective ash management. Construction applications have been identified as one of the major uses for CFB ashes. Typically, CFB ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. However, CFB ashes can be used for other construction applications that require less stringent specifications including soil stabilization, road base, structural fill, and synthetic aggregate. In this study, potential construction applications were identified for fly ashes from several CFB boilers firing diverse fuels such as petroleum coke, refuse derived fuel (RDF) and coal. The compressive strength of hydrated fly ashes was measured in order to screen their potential for use in various construction applications. Based on the results of this work, the effects of both ash chemistry and carbon content on utilization potential were ascertained. Actual beneficial uses of ashes evaluated in this study are also discussed.

  14. ULTRAFINE ASH AEROSOLS FROM COAL COMBUSTION: CHARACTERIZATION AND HEALTH EFFECTS

    EPA Science Inventory

    Ultrafine coal fly ash particles, defined here as those with diameters less than 0.5 micrometer, typically comprise less than 1% of the total fly ash mass. These particles are formed almost exclusively through ash vaporization, nucleation, and coagulation/condensation mechanisms,...

  15. Emerald ash borer biological control release and recovery guidelines

    Treesearch

    Juli S. Gould; Leah S. Bauer; Jian. Duan

    2015-01-01

    Emerald ash borer (EAB), a beetle from Asia that feeds on ash trees, was discovered as the cause of extensive ash mortality in southeast Michigan and adjacent areas of Canada in 2002. It is thought that this destructive pest was introduced in the early 1990's in infested solid wood packing material originating in Asia. Shortly after EAB was discovered in North...

  16. Emerald ash borer biological control release and recovery guidelines

    Treesearch

    Juli S. Gould; Leah S. Bauer; Jian. Duan

    2016-01-01

    Emerald ash borer (EAB), a beetle from Asia that feeds on ash trees, was discovered as the cause of extensive ash mortality in southeast Michigan and adjacent areas of Canada in 2002. It is thought that this destructive pest was introduced in the early 1990's in infested solid wood packing material originating in Asia. Shortly after EAB was discovered in North...

  17. Emerald ash borer biological control release and recovery guidelines

    Treesearch

    Juli S. Gould; Leah S. Bauer; Jonathan Lelito; Jian. Duan

    2012-01-01

    Emerald ash borer (EAB), a beetle from Asia that feeds on ash trees, was discovered as the cause of extensive ash mortality in southeast Michigan and adjacent areas of Canada in 2002. It is thought that this destructive pest was introduced in the early 1990's in infested solid wood packing material originating in Asia. Shortly after EAB was discovered in North...

  18. Emerald ash borer in Russia: 2009 situation update

    Treesearch

    Y. Baranchikov; Y. Gninenko; G. Yurchenko

    2011-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire, is a beetle native to East Asia and the Russian Far East where it is considered a minor pest, attacking weakened or dying ash trees. In 2006, EAB was found to be responsible for enormous damage of ash species in Moscow, which causes serious concern for Europe. Recently we reviewed the EAB...

  19. 77 FR 55895 - Permanent Closure of Cincinnati Blue Ash Airport

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... Federal Aviation Administration Permanent Closure of Cincinnati Blue Ash Airport AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of permanent closure of Cincinnati Blue Ash Airport (ISZ). SUMMARY: The... Cincinnati advising that on August 29, 2012, it was permanently closing Cincinnati Blue Ash Airport...

  20. Invasion genetics of emerald ash borer (Agrilus planipennis Fairmaire)

    Treesearch

    Alicia M. Bray; Leah S. Bauer; Therese M. Poland; Bob A. Haack; James J. Smith

    2011-01-01

    Emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a devastating invasive pest of North American ash trees (Fraxinus spp.) that was first discovered outside of its native range of northeastern Asia in 2002 (Haack et al. 2002). With unintended assistance from human movement of infested ash material...

  1. Evaluation of Pollutant Leaching Potential of Coal Ashes for Recycling

    NASA Astrophysics Data System (ADS)

    Park, D.; Woo, N. C.; Kim, H.; Yoon, H.; Chung, D.

    2011-12-01

    By 2009, coal ashes produced from coal-based power plants in Korea have been reused as cement supplement materials; however, the rest is mostly disposed in landfills inside the plant properties. Continuous production of coal ashes and limited landfill sites require more recycles of coal ashes as base materials, specifically in constructions of roads and of huge industrial complex. Previous researches showed that coal ashes could contain various metals such as arsenic(As), chromium(Cr), lead(Pb), nickel(Ni), selenium(Se), etc. In this study, we collected four types of bottom ashes and two of fly ashes from four coal-based power plants. These ash samples were tested with distilled water through the column leaching process in oxidized conditions. The column test results were compared with those of total digestion, sequential extraction processes and TCLP. Concentrations of metals in outflows from columns are generally greater in fly ashes than in bottom ashes, specifically for As, Se, B, Sr and SO4. Only one fly ash (J2-F) shows high concentrations of arsenic and selenium in leachate. Sequential extraction results indicate that these metals are in readily soluble forms, such as adsorbed, carbonated, and reducible forms. Results of TCLP analysis indicate no potential contaminants leached from the ashes. In conclusion, recycling of coal combustion ashes could be encouraged with proper tests such as sequential and leaching experiments.

  2. Study on the scale of wet-ash transportation system

    SciTech Connect

    Chen Yafei; Gao Xiang; Fang Mengxiang; Luo Zhongyang; Shi Zhenglun; Chen Guanyi; Ye Chunzhen; Ni Mingjiang; Cen Kefa

    1997-12-31

    In this paper, the scale phenomenon of a wet-ash transportation system against SFDS-coal ash rich in CaO is studied. The mechanism of scale, the static state dissolution attribute of Ca{sup 2+} and scale dynamic state simulation are investigated. In the research of scale dynamic state simulation experiment, the following factors are analyzed separately: ash type, tube material, flow rate of ash-water, recovery rate of transportation water, retention period of ash-water in ash tanker, operating period in tube and scale along the tube with distance. Results show that the content of basic oxide, especially the content of soluble basic oxide in ash has a decisive effect on scale. Compared with metal tubes, a rubberish tube can reduce scale deposition efficiently. Improving flow rate of ash-water, recovery rate of transportation water and retention period of ash water in ash tanker can reduce scale, too. During ash-water flows in the ash transportation tube, initial scaling rate is lower at first, but it will improve as time goes on until it reaches a constant. Scale along the tube is different in time, scale rate is very high at the entrance but exponential decays along the tube.

  3. ULTRAFINE ASH AEROSOLS FROM COAL COMBUSTION: CHARACTERIZATION AND HEALTH EFFECTS

    EPA Science Inventory

    Ultrafine coal fly ash particles, defined here as those with diameters less than 0.5 micrometer, typically comprise less than 1% of the total fly ash mass. These particles are formed almost exclusively through ash vaporization, nucleation, and coagulation/condensation mechanisms,...

  4. The Rheology of Vegetative Ash-laden Debris Flows

    NASA Astrophysics Data System (ADS)

    Burns, K. A.; Gabet, E.

    2006-12-01

    There is mounting observational evidence that vegetative ash created in a forest fire may play a major role in reducing infiltration and leads to the generation of debris flows on these burned hillslopes. A viscometer was used to measure the viscosity of ash slurries of varying concentrations, as well as slurries containing both fine- grained clastic sediment (sand and silt sized) and vegetative ash at varying concentrations. Initial results from these experiments indicate that increasing the concentration of ash increases effective viscosity of the slurry. Increasing the ash concentration by 5% increases the effective viscosity of the slurry by 10-50% over a range of shear rates. Also, ash-only slurries appear to shear thin with increasing shear rate at all concentrations. For example, with a 60% ash concentration, increasing the shear rate from 5/s to 40/s reduces the effective viscosity by 90%. For the mixed ash and fine-grained sediment slurries, increasing the percentage of ash relative to the percentage of clastic sediment dramatically increases the viscosity of the slurry even though the ash and finest-grained sediment are approximately the same size. A 50% concentration slurry containing only silt-sized clastic particles has a 40-70% lower effective viscosity than a slurry of the same concentration containing only ash particles. Therefore, the ash particles behave differently than clastic sediment particles.

  5. Observation of Eyjafjallajökull volcano ash over Poland

    NASA Astrophysics Data System (ADS)

    Zielinski, T.; Petelski, T.; Makuch, P.; Kowalczyk, J.; Rozwadowska, A.; Drozdowska, V.; Markowicz, K.; Malinowski, S.; Kardas, A.; Posyniak, M.; Jagodnicka, A. K.; Stacewicz, T.; Piskozub, J.

    2010-05-01

    The plume of Eyjafjallajökull volcano ash has been identified over Poland using three instruments (two lidars and a ceilometer) stationed in two locations: Sopot in northern Poland and Warsaw in central-eastern Poland. The observations made it possible to establish the base of the ash layer. However ash concentration could not be determined.

  6. The adsorption of HCl on volcanic ash

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Xochilt; Schiavi, Federica; Keppler, Hans

    2016-03-01

    Understanding the interaction between volcanic gases and ash is important to derive gas compositions from ash leachates and to constrain the environmental impact of eruptions. Volcanic HCl could potentially damage the ozone layer, but it is unclear what fraction of HCl actually reaches the stratosphere. The adsorption of HCl on volcanic ash was therefore studied from -76 to +150 °C to simulate the behavior of HCl in the dilute parts of a volcanic plume. Finely ground synthetic glasses of andesitic, dacitic, and rhyolitic composition as well as a natural obsidian from Vulcano (Italy) served as proxies for fresh natural ash. HCl adsorption is an irreversible process and appears to increase with the total alkali content of the glass. Adsorption kinetics follow a first order law with rate constants of 2.13 ṡ10-6 s-1 to 1.80 ṡ10-4 s-1 in the temperature range investigated. For dacitic composition, the temperature and pressure dependence of adsorption can be described by the equation ln ⁡ c = 1.26 + 0.27 ln ⁡ p - 715.3 / T, where c is the surface concentration of adsorbed HCl in mg/m2, T is temperature in Kelvin, and p is the partial pressure of HCl in mbar. A comparison of this model with a large data set for the composition of volcanic ash suggests that adsorption of HCl from the gas phase at relatively low temperatures can quantitatively account for the majority of the observed Cl concentrations. The model implies that adsorption of HCl on ash increases with temperature, probably because of the increasing number of accessible adsorption sites. This temperature dependence is opposite to that observed for SO2, so that HCl and SO2 are fractionated by the adsorption process and the fractionation factor changes by four orders of magnitude over a temperature range of 250 K. The assumption of equal adsorption of different species is therefore not appropriate for deriving volcanic gas compositions from analyses of adsorbates on ash. However, with the experimental

  7. Nanobrick-like WO3 thin films: Hydrothermal synthesis and electrochromic application

    NASA Astrophysics Data System (ADS)

    Kondalkar, V. V.; Kharade, R. R.; Mali, S. S.; Mane, R. M.; Patil, P. B.; Patil, P. S.; Choudhury, S.; Bhosale, P. N.

    2014-09-01

    Nanobrick-like WO3 thin films have been synthesized via facile hydrothermal route. Nanostructured WO3 thin films were characterized using X-ray diffraction (XRD), UV-Vis-NIR spectrophotometer, scanning electron microscopy (SEM), atomic force microscopy (AFM) to investigate the intentional properties such as phase structure, optical properties and surface morphology. Moreover electrochromic (EC) performance of WO3 thin film was investigated in 0.5 M LiClO4/PC by means of cyclic voltammetry (CV), chronocoulometry (CC) and chronoamperometry (CA). The value of diffusion coefficient (D) was determined from anodic peak current and was found to be 1.51 × 10-9 cm2/s. The response time of 6.9 s for bleaching (tb) and 9.7 s for coloration (tc) was observed with excellent reversibility 76%. The coloration efficiency for nanobricks WO3 is 39.24 cm2/C. CIE 1931 L∗ab values for colored and bleached films were estimated at 2° observer using D-65 illumination. The electrochromic studies show highly reversible and the stable nature of WO3 thin film which provides a versatile and promising application towards the fabrication of smart windows.

  8. Synthesis of ZnWO4 Electrode with tailored facets: Deactivating the Microorganisms through Photoelectrocatalytic methods

    NASA Astrophysics Data System (ADS)

    Zhan, Su; Zhou, Feng; Huang, Naibao; Liu, Yujun; He, Qiuchen; Tian, Yu; Yang, Yifan; Ye, Fei

    2017-01-01

    The exotic invasive species from the ballast water in the ship will bring about serious damages to ecosystem. Photocatalyst films have been widely studied for sterilization. In this study, ZnWO4 with different exposed facets was synthesized by hydrothermal method, and ZnWO4 film electrodes have been applied in ballast water treatment through the electro-assisted photocatalytic system. Then the samples were investigated by X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS), Field emission on scanning electron microcopy (FE-SEM), Transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), BET specific surface area analysis, Fourier transform infrared (FT-IR) and Electrochemical impedance spectra (EIS). ZnWO4 with an appropriate exposure of (0 1 1) facets ratio exhibited the best photocatalytic and photoelectrocatalytic activities. The microorganisms deactivated completely in 10 min by ZnWO4 films with 3 V bias. The mechanisms of (0 1 1) facets enhanced the photocatalytic and photoelectrocatalytic activities which were deduced based on the calculated result from the first principles. Simultaneously, appropriate exposed facets and applied bias could reduce the recombination of the photogenerated electron-hole pairs, and improve the photocatalytic activities of ZnWO4.

  9. Oxygen partial pressure effects on the magnetron sputtered WO3 films

    NASA Astrophysics Data System (ADS)

    Merhan Muğlu, G.; Gür, E.

    2016-04-01

    Electrochromism is changing color of a substance in response to the applied an external electric field and the phenomenon is reversible. WO3 is very attractive material due to its electrochromic properties as well as it is also attractive for many different applications such as gas sensors, phosphorous screen, textile, glass industry. In this study, it is aimed to provide optimization of the optical and structural characteristics of WO3 by changing the growth parameters mainly the oxygen partial pressure. The partial pressure of oxygen was changed with increments of 0.7 mTorr. For the analysis, X-ray Diffraction (XRD), absorption, Raman spectroscopy measurements were used. When O2 gas increased, peaks belong to the WO3 was observed in XRD patterns at the 2 theta angles of 23.0, 11.0, 23.5 and 28.5 angles corresponding to the (002), (020) and (220) planes, respectively. This shows that there is a significant effect of increasing O2 partial pressure in the formation of WO3 films. The bandgap energy of the WO3 thin films are found to be around 3.0 eV. Raman measurements showed vibrational modes of W-O-W stretching and bending modes which shows small shifts depending on the partial pressures of the O2. Obtained results indicated that better crystal structure is obtained with higher O2 gas partial pressure.

  10. A study of Ti-doped WO3 thin films using comparative theoretical and experimental approach

    NASA Astrophysics Data System (ADS)

    Paez, Aurelio

    Metal oxides like Tungsten Oxide (WO3) are well documented and characterized in the literature, with uses in darkening windows and mirrors, flat computer displays, solar panel cooling, and sensors (of interest in this study). Ti doping of WO3 is less documented and the focus of this study. Sample thin films of pure WO3 and varyingly Ti doped WO3 were prepared using Radio Frequency magnetron sputtering (RF) (13.56 MHz) to grow thin films on a silicon substrate. This study aims to compare multiple Ti doping percentages in WO3 theoretically and then compare with experimental data taken from thin films of various Ti doping levels grown at temperatures ranging from room temperature to 400 0°C. Characterization of the materials was to be conducted using Fourier Transform Infrared Spectroscopy, Raman Spectroscopy, X-ray diffraction, and other theoretical and simulated approaches. Theoretical calculations optimized Ti doping at somewhere between 6.25% and 12%. Experimental data indicates that under the given growing conditions optimal Ti doping is 5%. The percentage of Ti may be able to be increased and the material retain desired characteristics with an increased growth temperature above 400 0°C as annealing samples post-growth has no positive impact on the thin film structure.

  11. The Facile Hydrothermal Preparation of Orthorhombic WO3 With (001) Facet and Its Photocatalytic Performance.

    PubMed

    Deng, Xiaoyan; Dou, Jinbiao; Li, Fenfen; Gao, Hongtao; Liu, Guangjun

    2015-12-01

    The orthorhombic WO3 nanoplates with (001) facet were fabricated via a facile hydrothermal process, using HBF4 as the acid source. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and UV-vis diffused reflectance spectroscopy (DRS), respectively. It indicated that the obtained product was orthorhombic WO3 (JCPDS No. 20-1324). And the energy gap was estimated to be 2.52 eV by the intersection point of the tangent of the absorption edge and the baseline. It was affirmed that WO3 crystalline grew along the (001) direction, indicating the product was exposed with (001) facet. The photocatalytic activity of (001) WO3 nanoplates was investigated on the degradation of Rhodamine B (RhB). It demonstrated that photocatalysts exhibited obvious photocatalytic performance under visible light irradiation. The degradation rate of RhB with the typical product reached 95% after being irradiated for 5 h. It indicated that the photocatalytic efficiency of WO3 could be improved by controlling the crystal growth and its morphology.

  12. Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting.

    PubMed

    Feng, Xiaoyang; Chen, Yubin; Qin, Zhixiao; Wang, Menglong; Guo, Liejin

    2016-07-20

    Herein, sandwich structured tungsten trioxide (WO3) nanoplate arrays were first synthesized for photoelectrochemical (PEC) water splitting via a facile hydrothermal method followed by an annealing treatment. It was demonstrated that the annealing temperature played an important role in determining the morphology and crystal phase of the WO3 film. Only when the hydrothermally prepared precursor was annealed at 500 °C could the sandwich structured WO3 nanoplates be achieved, probably due to the crystalline phase transition and increased thermal stress during the annealing process. The sandwich structured WO3 photoanode exhibited a photocurrent density of 1.88 mA cm(-2) and an incident photon-to-current conversion efficiency (IPCE) as high as 65% at 400 nm in neutral Na2SO4 solution under AM 1.5G illumination. To our knowledge, this value is one of the best PEC performances for WO3 photoanodes. Meanwhile, simultaneous hydrogen and oxygen evolution was demonstrated for the PEC water splitting. It was concluded that the high PEC performance should be attributed to the large electrochemically active surface area and active monoclinic phase. The present study can provide guidance to develop highly efficient nanostructured photoelectrodes with the favorable morphology.

  13. A visible-light active TiO2 photocatalyst multilayered with WO3.

    PubMed

    Jia, Junjun; Taniyama, Kenta; Imura, Masaaki; Kanai, Toshimasa; Shigesato, Yuzo

    2017-07-14

    Sputter-deposited TiO2 films with high visible-light photocatalytic activity were successfully realized by a hybrid TiO2/Pt/WO3 film structure with Pt nanoparticles uniformly distributed at the interface of the TiO2 and WO3 films. The TiO2/Pt/WO3 hybrid films enable the complete decomposition of CH3CHO under visible-light irradiation. The water contact angle of the TiO2/Pt/WO3 hybrid films reaches below 5° under visible-light irradiation. Pt nanoparticles are considered to act as a cocatalyst to improve the electron-hole separation efficiency. We demonstrate that the photogenerated holes in WO3 are transferred to the surface of the TiO2 film with less hole-trapping and induce high visible-light photocatalytic activity and hydrophilic behavior, and the photogenerated electrons are accumulated in the Pt nanoparticles. The highly hydrophilic thin films with high visible-light photocatalytic activity can be applied to various indoor products possessing self-cleaning and antifogging properties.

  14. Agx@WO3 core-shell nanostructure for LSP enhanced chemical sensors

    PubMed Central

    Xu, Lijie; Yin, Ming-Li; (Frank) Liu, Shengzhong

    2014-01-01

    Exceptional properties of graphene have triggered intensive research on other 2D materials. Surface plasmon is another subject being actively explored for many applications. Herein we report a new class of core-shell nanostructure in which the shell is made of a 2D material for effective plasmonic propagation. We have designed a much enhanced chemical sensor made of plasmonic Agx@(2D-WO3) that combines above advantages. Specifically, the sensor response increases from 38 for Agx-WO3 mixture to 217 for the Agx@(2D-WO3) core-shell structure; response and recovery time are shortened considerably to 2 and 5 seconds; and optimum sensor working temperature is lowered from 370°C to 340°C. Light irradiation is found to increase the Agx@(2D-WO3) sensor response, particularly at blue wavelength where it resonates with the absorption of Ag nanoparticles. Raman scattering shows significantly enhanced intensity for both the 2D-WO3 shell and surface adsorbates. Both the resonance sensor enhancement and the Raman suggest that the improved sensor performance is due to nanoplasmonic mechanism. It is demonstrated that (1) 2D material can be used as the shell component of a core-shell nanostructure, and (2) surface plasmon can effectively boost sensor performance. PMID:25339285

  15. Synthesis and characterization of WO{sub 3} spherical nanoparticles and nanorods

    SciTech Connect

    Adhikari, Sangeeta; Sarkar, Debasish Maiti, Himadri Sekhar

    2014-01-01

    Graphical abstract: Two different morphology WO{sub 3} nanoparticles are synthesized by a simple and new wet chemical route through control over pH, temperature and structure directing agents. Reaction mechanism has been proposed for the formation of different morphologies. Nanorod WO{sub 3} has better crystallinity with less specific surface area compared to the spherical nanoparticles. Comparable band gaps are obtained for both the nanoparticles. - Highlights: • Spherical WO{sub 3} nanoparticle and nanorod synthesis mechanisms proposed. • Thermal analysis and spectroscopy confirms the intermediate reactions. • Both of the morphology has pure and monoclinic phase with identical band gap energy. - Abstract: Simple and new wet chemical routes are adopted for the synthesis of tungsten trioxide (WO{sub 3}) nanopowders having two different morphologies such as spherical and rod-like. Acid catalyzed exothermic reaction and a structure directing reagent have been used to control the formation of spherical and rod shaped nanoparticles, respectively. Thermal analysis and FTIR spectral data have been used to confirm the formation of the intermediate and the ultimate reaction products. X-ray and Raman spectroscopic data indicate the monoclinic structure of both forms of the particles. Rod shaped WO{sub 3} particles exhibit better crystallinity and low specific surface area compared to those exhibited by spherical particles. Band gaps are found to be nearly identical irrespective of the morphology.

  16. Characterization of nanosized Al{sub 2}(WO{sub 4}){sub 3}

    SciTech Connect

    Nihtianova, D.; Velichkova, N.; Nikolova, R.; Koseva, I.; Yordanova, A.; Nikolov, V.

    2011-11-15

    Graphical abstract: TEM method allows to detect small quantities of impurities not detectable by other methods. In our case impurities of W{sub 5}O{sub 14} are detected in Al{sub 2}(WO{sub 4}){sub 3} nanopowder. Highlights: {yields} Nanosized Al{sub 2}(WO{sub 4}){sub 3} by simple co-precipitation method. {yields} Spherical particles with mean size of 22 nm distributed between 10 and 40 nm at 630 {sup o}C. {yields} XRD, DTA and TEM confirm well defined products with perfect structure. {yields} TEM locality allows detection of impurities not detectable by XRD and DTA. -- Abstract: Nanosized aluminum tungstate Al{sub 2}(WO{sub 4}){sub 3} was prepared by co-precipitation reaction between Na{sub 2}WO{sub 4} and Al(NO{sub 3}){sub 3} aqueous solutions. The powder size and shape, as well as size distribution are estimated after different conditions of powder preparation. The purity of the final product was investigated by XRD and DTA analyses, using the single crystal powder as reference. Between the specimen and the reference no difference was detected. The crystal structure of Al{sub 2}(WO{sub 4}){sub 3} nanosized powder was confirmed by TEM (SAED, HRTEM). In additional, TEM locality allows to detect some W{sub 5}O{sub 14} impurities, which are not visible by conventional X-ray powder diffraction and thermal analyses.

  17. Fabrication of core/shell ZnWO4/carbon nanorods and their Li electroactivity

    NASA Astrophysics Data System (ADS)

    Shim, Hyun-Woo; Lim, Ah-Hyeon; Lee, Gwang-Hee; Jung, Hang-Chul; Kim, Dong-Wan

    2012-01-01

    Carbon-coated ZnWO4 [C-ZW] nanorods with a one-dimensional core/shell structure were synthesised using hydrothermally prepared ZnWO4 and malic acid as precursors. The effects of the carbon coating on the ZnWO4 nanorods are investigated by thermogravimetry, high-resolution transmission electron microscopy, and Raman spectroscopy. The coating layer was found to be in uniform thickness of approximately 3 nm. Moreover, the D and G bands of carbon were clearly observed at around 1,350 and 1,600 cm-1, respectively, in the Raman spectra of the C-ZW nanorods. Furthermore, lithium electroactivities of the C-ZW nanorods were evaluated using cyclic voltammetry and galvanostatic cycling. In particular, the formed C-ZW nanorods exhibited excellent electrochemical performances, with rate capabilities better than those of bare ZnWO4 nanorods at different current rates, as well as a coulombic efficiency exceeding 98%. The specific capacity of the C-ZW nanorods maintained itself at approximately 170 mAh g-1, even at a high current rate of 3 C, which is much higher than pure ZnWO4 nanorods.

  18. Gas sensing studies of pulsed laser deposition deposited WO3 nanorod based thin films.

    PubMed

    Ahmad, Muhammad Z; Kang, Joonhee; Zoolfakar, Ahmad S; Sadek, Abu Z; Wlodarski, Wojtek

    2013-12-01

    WO3 nanorod based thin films were deposited via pulsed laser deposition onto quartz conductometric transducers with pre-patterned gold interdigitated transducers (IDT) employing the shortest wavelength (193 nm) ArF excimer laser. Micro-characterization techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed to study surface morphology and crystal structure. It was observed that the fabricated films showed nanocolumnar features perpendicular to the surface. The measured sizes of the nanorods were found to be approximately -50 nm in diameter. The high resolution TEM (HRTEM) image of the nanorods based WO3 showed the WO3 lattice spacing of 3.79 angstroms corresponding to the (020) plane of monoclinic WO3. Gas sensing characterizations of the developed sensors were tested towards hydrogen and ethanol at temperatures between room and 400 degrees C. The sensor exhibited high response towards H2 and ethanol at operating temperatures of 170 and 400 degrees C, respectively. The excellent sensing characteristics of WO3 films towards ethanol and H2 at low concentrations offer great potential for low cost and stable gas sensing.

  19. Characterization of PLD grown WO3 thin films for gas sensing

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Georgieva, Velichka; Stefan, Nicolaie; Stan, George E.; Mihailescu, Natalia; Visan, Anita; Mihailescu, Ion N.; Besleaga, Cristina; Szilágyi, Imre M.

    2017-09-01

    Tungsten trioxide (WO3) thin films were grown by pulsed laser deposition (PLD) with the aim to be applied in gas sensors. The films were studied by atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and profilometry. To study the gas sensing behavior of these WO3 films, they were deposited on quartz resonators and the quartz crystal microbalance (QCM) method was applied to analyze their gas sensitivity. Synthesis of tetragonal-WO3 films starting from a target with predominantly monoclinic WO3 phase was observed. The films deposited at 300 °C presented a surface topology favorable for the sorption properties, consisting of a film matrix with protruding craters/cavities. QCM prototype sensors with such films were tested for NO2 sensing. The PLD grown WO3 thin films show good sensitivity and fast reaction at room temperature, even in as-deposited state. With the presented technology, the manufacturing of QCM gas sensors is simple, fast and cost-effective, and it is also suitable for energy-effective portable equipment for on-line monitoring of environmental changes.

  20. Electrical characterization of H2S adsorption on hexagonal WO3 nanowire at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Binquan; Tang, Dongsheng; Zhou, Yong; Yin, Yanling; Peng, Yuehua; Zhou, Weichang; Qin, Zhu'ai; Zhang, Yong

    2014-10-01

    We have characterized the electrical transport properties of Au/WO3 nanowire/Au devices in ambient air and gaseous H2S to investigate the adsorption kinetics of H2S molecules on the surface of WO3 nanowire at room temperature. The WO3 nanowire devices exhibit increasing linear conductance and electrical hysteresis in H2S. Furthermore, the contact type between Au electrode and WO3 nanowire can be converted from original ohmic/Schottky to Schottky/ohmic after being exposed to H2S. These results suggest that adsorbed H2S molecules are oxidized by holes to form hydrogen ions and S atoms, which will result in formation of hydrogen tungsten bronze and desorption of previously chemically adsorbed H2O molecules. Adsorbed H2S molecules can also oxidize previously adsorbed and ionized oxygen, which will release the electrons from the ionized oxygen and then weaken upward band bending at the surface of WO3 nanowire.

  1. Cycloidal magnetism driven ferroelectricity in double tungstate LiFe (WO4)2

    NASA Astrophysics Data System (ADS)

    Liu, Meifeng; Lin, Lingfang; Zhang, Yang; Li, Shaozhen; Huang, Qingzhen; Garlea, V. Ovidiu; Zou, Tao; Xie, Yunlong; Wang, Yu; Lu, Chengliang; Yang, Lin; Yan, Zhibo; Wang, Xiuzhang; Dong, Shuai; Liu, Jun-Ming

    2017-05-01

    Tungstates A WO4 with the wolframite structure characterized by the A O6 octahedral zigzag chains along the c axis can be magnetic if A =Mn , Fe, Co, Cu, Ni. Among them, MnWO4 is a unique member with a cycloid Mn2 + spin order developed at low temperature, leading to an interesting type-II multiferroic behavior. However, so far no other multiferroic material in the tungstate family has been found. In this work, we present the synthesis and the systematic study of the double tungstate LiFe (WO4)2 . Experimental characterizations including structural, thermodynamic, magnetic, neutron powder diffraction, and pyroelectric measurements unambiguously confirm that LiFe (WO4)2 is the secondly found multiferroic system in the tungstate family. The cycloidal magnetism driven ferroelectricity is also verified by density functional theory calculations. Although here the magnetic couplings between Fe ions are indirect, namely via the so-called super-super-exchanges, the temperatures of magnetic and ferroelectric transitions are surprisingly much higher than those of MnWO4.

  2. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash.

    PubMed

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-07-15

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO₂. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials' thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  3. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash

    PubMed Central

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-01-01

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  4. Nutritional and defensive chemistry of three North American ash species: possible roles in host performance and preference by emerald ash borer

    Treesearch

    Yigen Chen; Therese M. Poland

    2010-01-01

    Black ash (Fraxinus nigra), green ash (F. pennsylvanica), and white ash (F. americana) are the three most abundant ash species in the northeastern USA. We compared emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), adult performance and preference among seedlings...

  5. Mössbauer characterization of feed coal, ash and fly ash from a thermal power plant

    NASA Astrophysics Data System (ADS)

    Reyes Caballero, F.; Martínez Ovalle, S. A.; Moreno Gutiérrez, M.

    2015-06-01

    The aim of this work was apply 57Fe Transmission Mössbauer Spectroscopy at room temperature in order to study the occurrence of iron-containing mineral phases in: 1) feed coal; 2) coal ash, obtained in different stages of the ASTM D3174 standard method; and 3) fly ash, produced when coal is burned in the TERMOPAIPA IV thermal power plant localized in Boyacá, Colombia. According to obtained results, we can conclude the occurrence of pyrite and jarosite in the feed coal; Fe2+ and Fe3+ crystalline paramagnetic phases, superparamagnetic hematite and hematite in coal ash; Fe2+ and Fe3+ noncrystalline and crystalline phases, magnetite and hematite in fly ash. Precisely, for a basic understanding, this work discusses some the possible transformations that take place during coal combustion.

  6. Processing of Sugarcane Bagasse ash and Reactivity of Ash-blended Cement Mortar

    NASA Astrophysics Data System (ADS)

    Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad

    Sugarcane bagasse ash (SCBA), a sugar-mill waste, has the potential of a partial cement replacement material if processed and obtained under controlled conditions. This paper discusses the reactivity of SCBA obtained by control burning of sugarcane bagasse procured from Punjab province of India. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were employed to ascertain the amorphousness and morphology of the minerals ash particles. Destructive and non-destructive tests were conducted on SCBA-blended mortar specimens. Ash-blended cement paste specimens were analyzed by XRD, thermal analysis, and SEM methods to evaluate the hydration reaction of SCBA with cement. Results showed that the SCBA processed at 600°C for 5 hours was reactive as ash-blended mortar specimens with up to 15% substitution of cement gave better strength than control specimens.

  7. Slowing ash mortality: a potential strategy to slam emerald ash borer in outlier sites

    Treesearch

    Deborah G. McCullough; Nathan W. Siegert; John Bedford

    2009-01-01

    Several isolated outlier populations of emerald ash borer (Agrilus planipennis Fairmaire) were discovered in 2008 and additional outliers will likely be found as detection surveys and public outreach activities...

  8. Synthesis, characterization and electrochemical studies of nanostructured CaWO{sub 4} as platinum support for oxygen reduction reaction

    SciTech Connect

    Farsi, Hossein; Barzgari, Zahra

    2014-11-15

    Highlights: • Nanostructured CaWO{sub 4} was fabricated by co-precipitation method. • Platinum was electrodeposited onto the surface prepared nanostructured CaWO{sub 4}. • Pt/CaWO{sub 4}-graphite demonstrate good oxygen reduction reaction activity. - Abstract: In the present work, we employed nanostructured calcium tungstate as a supporting material for platinum, a well-known electrocatalyst for oxygen reduction. The co-precipitation method has been utilized to synthesize nanostructured calcium tungstate from aqueous solution. The structure and morphology of the obtained CaWO{sub 4} were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Preparation of the Pt/CaWO{sub 4}-graphite catalyst was carried out by electrodeposition of Pt onto the surface of CaWO{sub 4}/graphite electrode. The physical properties of the catalyst were determined by scanning electron microscopy analysis and energy dispersive X-ray (SEM/EDX). The electrochemical activity of the Pt/CaWO{sub 4}-graphite for the oxygen reduction reaction (ORR) was investigated in acid solution by cyclic voltammetry measurements, linear sweep voltammetry, and electrochemical impedance spectroscopy. The results revealed that the Pt/CaWO{sub 4}-graphite has higher electrocatalytic activity for oxygen reduction in comparison with Pt/graphite catalyst.

  9. Enhancement of photoelectric response of bacteriorhodopsin by multilayered WO3 x H2O nanocrystals/PVA membrane.

    PubMed

    Li, Rui; Hu, Fengping; Bao, Qiaoliang; Bao, Shujuan; Qiao, Yan; Yu, Shucong; Guo, Jun; Li, Chang Ming

    2010-02-07

    For the first time, a multilayered WO(3) x H(2)O/PVA membrane on bacteriorhodopsin (bR) is constructed to significantly enhance the photoelectric response of bR by the spillover effect of WO(3) x H(2)O nanocrystals, providing great potential in its important applications in bioelectronics and proton exchange membrane fuel cells.

  10. H.sub.2O doped WO.sub.3, ultra-fast, high-sensitivity hydrogen sensors

    DOEpatents

    Liu, Ping [Denver, CO; Tracy, C Edwin [Golden, CO; Pitts, J Roland [Lakewood, CO; Lee, Se-Hee [Lakewood, CO

    2011-03-22

    An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO.sub.3 layer coated on the substrate; and a palladium layer coated on the water-doped WO.sub.3 layer.

  11. Flexible electrochromics: magnetron sputtered tungsten oxide (WO3-x) thin films on Lexan (optically transparent polycarbonate) substrates

    NASA Astrophysics Data System (ADS)

    Uday Kumar, K.; Murali, Dhanya S.; Subrahmanyam, A.

    2015-06-01

    Tungsten oxide (WO3-x) based electrochromics on flexible substrates is a topic of recent interest. The present communication reports the electrochromic properties of WO3-x thin films grown on lexan, an optically transparent polycarbonate thermoplastic substrate. The WO3-x films are prepared at room temperature (300 K) by the reactive DC magnetron sputtering technique. The physical properties of metal oxide thin films are known to be controlled by the oxygen stoichiometry of the film. In the present work, the WO3-x thin films are prepared by varying the oxygen flow rates. All the WO3-x thin films are amorphous in nature. The electrochromic performance of the WO3-x thin films is evaluated by cyclic voltammetry measurements on tin doped indium oxide (ITO) coated lexan and glass substrates. The optical band gap of WO3-x thin films grown on lexan substrates (at any given oxygen flow rate) is significantly higher than those grown on glass substrates. The coloration efficiency of WO3-x thin films (at an oxygen flow rate of 10 sccm) on lexan substrates is: 143.9 cm2 C-1 which is higher compared to that grown on glass: 90.4 cm2 C-1.

  12. A comparative study of humidity sensing and photocatalytic applications of pure and nickel (Ni)-doped WO3 thin films

    NASA Astrophysics Data System (ADS)

    Ramkumar, S.; Rajarajan, G.

    2017-06-01

    Nanocrystalline of pristine and nickel (Ni)-doped tungsten trioxide (WO3) thin films was deposited by chemical bath deposition method. The concentrations of Ni ions were varied from 0 to 10 wt%. In order to improve the crystallinity of the films were annealed at 600 °C for 2 h in the ambient atmosphere. X-ray diffraction results reveal that the WO3 doped with nickel crystallizes in monoclinic structure and the results are in good agreement with the standard JCPDS data (card no: 83-0951). AFM micrographs reveal that average grain size of about 27-39 nm for pure and Ni-doped WO3 thin films. In addition, the band gap of the Ni-doped WO3 nanostructures is facilely tunable by controlling the Ni contents. The humidity sensor setup was fabricated and measured for pure and Ni-doped WO3 thin film sensor with various level of RH (10-90%). The Ni-doped WO3 sensor showed fast response and high sensitivity than pure WO3. The photocatalytic activities of the films were evaluated by degradation of methyl orange, methylene blue and phenol in an aqueous solution under visible light irradiation. The photocatalytic activity of WO3 nanostructures could be remarkably enhanced by doping the Ni impurity.

  13. Influences of porous structurization and Pt addition on the improvement of photocatalytic performance of WO3 particles.

    PubMed

    Arutanti, Osi; Nandiyanto, Asep Bayu Dani; Ogi, Takashi; Kim, Tae Oh; Okuyama, Kikuo

    2015-02-11

    Tungsten trioxide (WO3) displays excellent performance in solar-related material applications. However, this material is rare and expensive. Therefore, developing efficient materials using smaller amounts of WO3 is inevitable. In this study, we investigated how to create high photocatalytic performance of WO3 particles containing platinum (Pt, as a co-catalyst) and homogeneously spherical macropores (as a medium to enable access of large molecules and light penetration into the remote internal regions of the catalyst). The present particles were prepared by spray drying of a precursor solution containing WO3 nanoparticles, Pt solution, and polystyrene (PS) spheres (as a colloidal template). Photocatalytic studies showed that changes in particle morphology (from dense with smooth surfaces, to dense with rough surfaces, to porous structures) and added Pt effectively improved the photocatalytic performance over WO3 nanoparticles. Our results showed that the best precursor (prepared using a PS/WO3 mass ratio of 0.32 and containing Pt co-catalyst) provided WO3 particles with a photocatalytic rate of more than 5 times that of pure 10 nm WO3 nanoparticles. Moreover, the catalyst can be effectively recycled without an apparent decrease in its photocatalytic activity. The experimental results were also supported by a proposal mechanism of the photocatalytic reaction phenomenon.

  14. Photocatalytic energy storage ability of TiO2-WO3 composite prepared by wet-chemical technique.

    PubMed

    Cao, Linglin; Yuan, Jian; Chen, Mingxia; Shangguan, Wenfeng

    2010-01-01

    TiO2-WO3 hybrid photocatalysts were prepared using wet-chemical technique, and their energy storage performance was characterized by electrochemical galvanostatic method. TiO2 powder was coupled with WO3 powder, which was used as electron pool and the reductive energy could be stored in. As a result, the prepared TiO2-WO3 had good energy storage ability while pure TiO2 showed no capacity and pure WO3 showed quite low performance. The energy storage ability was affected by the crystal structure of WO3 and calcination temperature. The photocatalyst had better capacity when WO3 had low degree of crystallinity, since its loose structure made it easier for electrons and cations to pass through. The photocatalytic energy storage performance was also affected by the molar ratio of TiO2 to WO3. Energy storage capacity was significantly dependent on the composition, reaching the maximum value at TiO2/WO3 1:1 (mol/mol).

  15. Surface Morphology and Sensing Property of NiO-WO3 Thin Films Prepared by Thermal Evaporation

    PubMed Central

    Na, Dong-myong; Satyanarayana, L.; Choi, Gwang-Pyo; Shin, Yong-Jin; Park, Jin Seong

    2005-01-01

    WO3 and NiO-WO3 thin films of various thicknesses were deposited on an Al2O3-Si (alumina-silicon) substrate using high vacuum thermal evaporation. After annealing at 500°C for 30 minutes in air, the crystallanity and surface morphology of WO3 and NiO-WO3 thin films were investigated using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). It is observed that the WO3 thin films were resulted in cracks between the polycrystalline grains and the grain growth was increased with increasing thickness causing deteriorated sensing characteristics of the films. On the other hand, an optimum deposition of NiO on WO3 thin film has inhibited the grain growth and improved the sensitivity of the films. The inhibition is limited to a certain thickness of WO3 and NiO content (mol %) of inclusion and below or above this limitation the grain growth could not be suppressed. Moreover, the deposition sequence of NiO and WO3 is also playing a significant role in controlling the grain growth. A probable mechanism for the control of grain growth and improving the sensing property has been discussed.

  16. Photoelectrocatalytic degradation of phthalic acid using spray deposited stratified WO3/ZnO thin films under sunlight illumination

    NASA Astrophysics Data System (ADS)

    Hunge, Y. M.; Mahadik, M. A.; Moholkar, A. V.; Bhosale, C. H.

    2017-10-01

    In the present work, stratified WO3/ZnO thin films have been prepared by simple chemical spray pyrolysis technique. The structural, morphological, compositional and photoelectrocatalytic properties of the stratified WO3/ZnO thin films are studied. The photoelectrochemical (PEC) study shows that, both short circuit current (Isc) and open circuit voltage (Voc) are (Isc = 1.023 mA and Voc = 0.980 V) relatively high at 40 ml spraying quantity of ZnO solution on pre-deposited WO3 thin films. XRD analysis reveals that stratified WO3/ZnO thin films are polycrystalline with monoclinic and hexagonal crystal structures for WO3 and ZnO respectively. The specific surface area of the stratified WO3/ZnO thin film is found to be 48.12 m2 g-1. The enhanced photoelectrocatalytic activity of stratified WO3/ZnO is mainly due to the suppressing the recombination of photo generated electron-hole pairs. The end result shows that the degradation percentage of phthalic acid (PA) using stratified WO3/ZnO photo electrode has reached 63.63% after 320 min. under sunlight illumination. The amount of mineralization of phthalic acid is studied with the help of chemical oxygen demand (COD) measurement.

  17. ZnWO{sub 4}–Cu system with enhanced photocatalytic activity by photo-Fenton-like synergistic reaction

    SciTech Connect

    Song, Jimei; Wang, Hong; Hu, Gang; Zhao, Shaojuan; Hu, Haiqin; Jin, Baokang

    2012-11-15

    Highlights: ► A novel coupled system of ZnWO{sub 4}–Cu exhibited much higher catalytic activity than pure ZnWO{sub 4} with H{sub 2}O{sub 2} under UV-light irradiation. ► The enhanced catalytic activity of ZnWO{sub 4}–Cu system was due to the synergistic effect of photocatalysis and Fenton-like process. ► The possible mechanism of the synergistic effect was proposed. -- Abstract: A novel coupled system of ZnWO{sub 4}–Cu, combining two different advanced oxidation processes of photocatalysis and Fenton-like for the degradation of organic dyes, was successfully synthesized. The as-synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS). The nanosized ZnWO{sub 4}–Cu samples exhibited much higher catalytic activity than pure ZnWO{sub 4}. In the presence of the ZC-0.2, the MB solution was completely degraded (the degradation ratio reached 97.79%); while for the ZC-0, the degradation ratio was only 72.29%. The effects of the amount of Cu on the photocatalytic performance of ZnWO{sub 4}–Cu were investigated in detail. The result showed that the synergistic effect between Cu and ZnWO{sub 4} played a key role. The possible mechanism of the synergistic system was proposed.

  18. High activity of Pd-WO3/C catalyst as anodic catalyst for direct formic acid fuel cell

    NASA Astrophysics Data System (ADS)

    Feng, Ligang; Yan, Liang; Cui, Zhiming; Liu, Changpeng; Xing, Wei

    2011-03-01

    Pd nanoparticles supported on the WO3/C hybrid are prepared by a two-step procedure and the catalysts are studied for the electrooxidation of formic acid. For the purpose of comparison, phosphotungstic acid (PWA) and sodium tungstate are used as the precursor of WO3. Both the Pd-WO3/C catalysts have much higher catalytic activity for the electrooxidation of formic acid than the Pd/C catalyst. The Pd-WO3/C catalyst prepared from PWA shows the best catalytic activity and stability for formic acid oxidation; it also shows the maximum power density of approximately 7.6 mW cm-2 when tested with a small single passive fuel cell. The increase of electrocatalytic activity and stability is ascribed to the interaction between the Pd and WO3, which promotes the oxidation of formic acid in the direct pathway. The precursors used for the preparation of the WO3/C hybrid support have a great effect on the performance of the Pd-WO3/C catalyst. The WO3/C hybrid support prepared from PWA is beneficial to the dispersion of Pd nanoparticles, and the catalyst has potential application for direct formic acid fuel cell.

  19. ZnO nanoplates surfaced-decorated by WO3 nanorods for NH3 gas sensing application

    NASA Astrophysics Data System (ADS)

    Dien Nguyen, Dac; Do, Duc Tho; Hien Vu, Xuan; Vuong Dang, Duc; Chien Nguyen, Duc

    2016-03-01

    Zinc oxide (ZnO) nanoplates and tungsten trioxide (WO3) nanorods were synthesized by hydrothermal treatment from zinc nitrate/potassium hydroxide and sodium tungstate/hydrochloric acid, respectively. The structure, morphology and compositions of the as-prepared WO3/ZnO nano-composites were characterized by x-ray diffraction, field emission scanning electron microscopy and energy dispersive spectroscopy. The obtained ZnO nanoplates have regular shape, single-crystal wurtzite structure with the thickness of 40 nm and 200 versus 400 nm in lateral dimensions. The WO3 nanorods possess the average diameter of 20 nm and the length of approximately 120 nm which were distributed on the surfaces of ZnO nanoplates. The WO3/ZnO nano-composites were prepared by grinding WO3 nanorods powder with ZnO nanoplates powder in various weight ratios (1:2, 1:1 and 2:1). The NH3 gas sensing properties of WO3/ZnO nano-composites were examined through the electrical resistance measurement. The gas sensing performance of the WO3/ZnO composite with weight ratio of 1:1 was better compared with that of other samples. For this sample, the maximum response to 300 ppm NH3 was 24 at the operating temperature of 250 °C. In addition, the gas sensing mechanism of the WO3/ZnO composites was discussed.

  20. Facile hydrothermal synthesis of TiO2-Bi2WO6 hollow superstructures with excellent photocatalysis and recycle properties.

    PubMed

    Hou, Ya-Fei; Liu, Shu-Juan; Zhang, Jing-huai; Cheng, Xiao; Wang, You

    2014-01-21

    One-dimensional mesoporous TiO2-Bi2WO6 hollow superstructures are prepared using a hydrothermal method and their photocatalysis and recycle properties are investigated. Experimental results indicate that anatase TiO2 nanoparticles are coupled with hierarchical Bi2WO6 hollow tubes on their surfaces. The TiO2-Bi2WO6 structure has a mesoporous wall and the pores in the wall are on average 21 nm. The hierarchical TiO2-Bi2WO6 heterostructures exhibit the highest photocatalytic activity in comparison with P25, pure Bi2WO6 hollow tube and mechanical mixture of Bi2WO6 tube and TiO2 nanoparticle in the degradation of rhodamine B (RhB) under simulated sunlight irradiation. The as-prepared TiO2-Bi2WO6 heterostructures can be easily recycled through sedimentation and they retains their high photocatalytic activity during the cycling use in the simulated sunlight-driving photodegradation process of RhB. The prepared mesoporous TiO2-Bi2WO6 with hollow superstructure is therefore a promising candidate material for water decontamination use.