Sample records for ashing wet

  1. Ash Analysis

    NASA Astrophysics Data System (ADS)

    Marshall, Maurice R.

    Ash refers to the inorganic residue remaining after either ignition or complete oxidation of organic matter in a foodstuff. A basic knowledge of the characteristics of various ashing procedures and types of equipment is essential to ensure reliable results. Two major types of ashing are used: dry ashing, primarily for proximate composition and for some types of specific mineral analyses; wet ashing (oxidation), as a preparation for the analysis of certain minerals. Microwave systems now are available for both dry and wet ashing, to speed the processes. Most dry samples (i.e., whole grain, cereals, dried vegetables) need no preparation, while fresh vegetables need to be dried prior to ashing. High-fat products such as meats may need to be dried and fat extracted before ashing. The ash content of foods can be expressed on either a wet weight (as is) or on a dry weight basis. For general and food-specific information on measuring ash content, see references (1-11).

  2. Wetting and Spreading of Molten Volcanic Ash in Jet Engines.

    PubMed

    Song, Wenjia; Lavallée, Yan; Wadsworth, Fabian B; Hess, Kai-Uwe; Dingwell, Donald B

    2017-04-20

    A major hazard to jet engines posed by volcanic ash is linked to the wetting and spreading of molten ash droplets on engine component surfaces. Here, using the sessile drop method, we study the evolution of the wettability and spreading of volcanic ash. We employ rapid temperature changes up to 1040-1450 °C, to replicate the heating conditions experienced by volcanic ash entering an operating jet engine. In this scenario, samples densify as particles coalesce under surface tension until they form a large system-sized droplet (containing remnant gas bubbles and crystals), which subsequently spreads on the surface. The data exhibit a transition from a heterogeneous to a homogeneous wetting regime above 1315 °C as crystals in the drops are dissolved in the melt. We infer that both viscosity and microstructural evolution are key controls on the attainment of equilibrium in the wetting of molten volcanic ash droplets.

  3. Spreading dynamic of viscous volcanic ash in stimulated jet engine conditions

    NASA Astrophysics Data System (ADS)

    song, wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado

    2016-04-01

    The ingestion of volcanic ash is widely recognised as a potentially fatal hazard for aircraft operation. The volcanic ash deposition process in a jet turbine is potentially complex. Volcanic ash in the air stream enters the inner liners of the combustors and partially or completely melts under the flames up to 2000 °C, at which point part of the ash deposits in the combustor fuel nozzle. Molten volcanic particles within high energy airflow escape the combustor to enter the turbine and impact the stationary (e.g., inlet nozzle guide vanes) and rotating airfoils (e.g., first stage high-pressure turbine blades) at high speed (up to Mach 1.25) in different directions, with the result that ash may stick, flow and remain liquid or solidify. Thus, the wetting behaviour of molten volcanic ash particle is fundamental to investigate impingement phenomena of ash droplet on the surface of real jet engine operation. The topic of wetting has received tremendous interest from both fundamental and applied points of view. However, due to the interdisciplinary gap between jet engine engineering and geology science, explicit investigation of wetting behaviour of volcanic ash at high temperature is in its infancy. We have taken a big step towards meeting this challenge. Here, we experimentally and theoretically investigate the wetting behaviour of viscous volcanic ash over a wide temperature range from 1100 to 1550 °C using an improved sessile-drop method. The results of our experiment demonstrate that temperature and viscosity play a critical role in determining the wetting possibility and governing the spreading kinetics of volcanic ash at high temperatures. Our systemic analysis of spreading of molten volcanic ash systems allows us to report on the fundamental differences between the mechanisms controlling spreading of organic liquids at room temperature and molten volcanic ash droplets.

  4. Volcanic ashfall accumulation and loading on gutters and pitched roofs from laboratory empirical experiments: Implications for risk assessment

    NASA Astrophysics Data System (ADS)

    Hampton, S. J.; Cole, J. W.; Wilson, G.; Wilson, T. M.; Broom, S.

    2015-10-01

    Volcanic ash load is dependent on the migration and accumulation of ash on roofing surfaces and guttering, of which limited research has been conducted. This study investigates this knowledge gap through the empirical experimental testing of volcanic ash on variably pitched metal sheet roofs with modern PVC gutter systems, highlighting the relative importance of accumulation, migration, remobilization, saturation, and subsequent load. A testing rig delivered ash onto variably pitched roofs (pitches 15°, 25°, 30°, 35°, and 45°) with two 45° tests involving a wet surface with subsequent ashfall, and the second of ashfall with periods of wetting, followed by wetting until failure. In testing, dry ash on a dry roof accumulates at pitches up to 35°, above this pitch the percentage of ash accumulating reduces with greater percentages infilling guttering and or lost to the ground. With the introduction of a wet roof surface at 45° pitch, adherence of dry ash greatly increases, increasing accumulated ash thickness as compared to dry tests from 8% to 38%. For testing involving periods of wetting at 45° roof pitch, accumulation percentages further increased to 50%. Ash migrating from the roof surface filled guttering more rapidly at greater pitches, which once full resulted in further migrating ash to spill over the front or back gutter lips. Collapse of guttering did not occur during testing, but deformation and bracket detachment did occur at loads > 1 kPa. This study provides data on load calculations on roofing and PVC guttering through the quantification and utilization of relationships between ash fate, pitch, and the influence of water, in the development of two scenarios for both roof and gutter. These two scenarios then enable the estimation of ash accumulation and thus the load and collapse thresholds for roof and gutter at different roof pitch, which could be adopted for volcanic risk modeling or risk management.

  5. Growth and elemental content of two tree species growing on abandoned coal fly ash basins. [Liquidambar styraciflua L. ; Platanus occidentalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, C.L.; Adriano, D.C.

    Differences in aboveground tissue concentrations of trace elements were assessed for sweetgum (Liquidambar styraciflua L.) and sycamore (Plantanus occidentalis L.) growing on two abandoned coal fly ash basins and a control soil. The wet basin (pH = 5.58) had originally received precipitator ash in an ash-water slurry, while the dry basin (pH = 8.26) had received both precipitator and bottom ash in dry form. In general, trees from the wet basin exhibited elevated trace element concentrations in comparison to the controls, while the dry basin trees exhibited reduced concentrations. On eof the most striking differenced in elemental concentrations among themore » ash basin and control trees was observed for Mn, with the control trees exhibiting concentrations orders of magnitude greater than the ash basin trees. Differences in foliar trace element concentrations among the sites can generally be explained by differences in substrate trace element concentrations and/or substrate pH. While trees from the wet ash basin generally had the highest trace element concentrations, these trees also attained the greatest height and diameter growth, suggesting that the elevated trace element concentrations in the wet basin substrate are not limiting the establishment of these two species. The greater height and diameter growth of the wet basin trees is presumably a result of the greater water-holding capacity of the substrate on this site. Differences in growth and tissue concentrations between sweetgum and sycamore highlight the importance of using more than one species when assessing metal toxicity or deficiency on a given substrate.« less

  6. Wet-dry cycles effect on ash water repellency. A laboratory experiment.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerdà, Artemi; Oliva, Marc; Mataix, Jorge; Jordán, Antonio

    2014-05-01

    In the immediate period after the fire, the ash layer has a strong influence on soil hydrological processes, as runoff, infiltration and erosion. Ash is very dynamic in the space and time. Until the first rainfall periods, ash is (re)distributed by the wind. After it can cover the soil surface, infiltrate or transported to other areas by water transport (Pereira et al., 2013a, b). This will have strong implications on nutrient redistribution and vegetation recovery. Ash layer may affect soil water repellency in different ways, depending on fire severity, soil properties and vegetation. Ash produced at low temperatures after low-severity burning is usually hydrophobic (Bodi et al., 2011, 2012). Wet-dry cycles have implications on ash physical and chemical properties, changing their effects in space and time. The aim of this study is to analyse the effects of fire temperature and severity on ash water repellency. Pinus sylvestris needles were collected in a Lithuania forest in Dzukija National Park (53º 54' N and 24º 22' E), transported to laboratory and washed with deionized water to remove soil particles and other residues. Needle samples were dried during 24 hours and exposed to different temperatures: 200, 300, 400 and 500 ºC, during 2 hours. Ash colour was analysed according to the Munsell Soil Color charts. Ash was black (10 YR 2/1) at 200 ºC, very dark grey (10YR 3/1) at 300 ºC, gray (10YR 5/1) at 400 ºC and light gray (10YR 7/1) at 500 ºC. Ten samples of ash released after each treatment were placed in plastic dishes (50 mm in diameter) in an amount enough to form a 5 mm thick layer, and ash water repellency was measured according to the Water Drop Penetration Test. Later, ash was carefully wetted with 15 ml of deionized water and placed in an oven during 4 days (96 hours), as in Bodí et al. (2012). This procedure was repeated 5 times in order to observe the effects of wet-dry cycles in ash water repellency. The results showed significant differences among wet-dry cycles (Chi Sqr = 184.13 p <0.001) and among temperatures, immediately after treatments (Kruskal-Wallis test: H = 13.64, p<0.01) and after first wet-dry cycle (Kruskal-Wallis test: H =13.85 p<0.01). In the second (Kruskal-Wallis test: =5.80, p >0.05), third (Kruskal-Wallis test: H =3.07, p>0.05), fourth (Kruskal-Wallis test: H=0.75, p>0.05) and fifth (Kruskal-Wallis test: H =0.199, p<0.05) wet-dry cycles, ash water repellency did not show significant differences. After wetting, ash water repellency decreased substantially in the first cycle. These results suggest that wet-dry cycles have important impacts in the reduction of ash water repellency. Nevertheless, this reduction at least in the first cycle is different according to the temperature/severity. Black ash (200 ºC) water repellency was significantly higher than the other temperatures/severities. Further research will be carried out using burned soils and different species. References Bodi, M.B., Doerr, S., Cerda, A., Mataix-Solera, J. (2012) Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma, 161, 14-23, 2011. DOI: 10.1016/j.geoderma.2012.01.006. Bodí, M.B., Mataix-Solera, J., Doerr, S.H., Cerdà, A. (2011). The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma 160, 599-607. DOI:10.1016/j.geoderma.2010.11.009. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2013a) Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development. DOI: 10.1002/ldr.2195. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Jordan, A. Burguet, M. (2013b) Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania, Solid Earth, 4, 153-165. DOI: 10.5194/se-4-153-2013.

  7. A pilot-scale study of wet torrefaction treatment for upgrading palm oil empty fruit bunches as clean solid fuel

    NASA Astrophysics Data System (ADS)

    Gusman, M. H.; Sastroredjo, P. N. E.; Prawisudha, P.; Hardianto, T.; Pasek, A. D.

    2017-05-01

    Less utilized empty fruit bunch (EFB) is seldom used as solid biofuel due to its high alkali content that potentially cause ash deposit called slagging and fouling. This phenomenon could harm biomass-fired power plant equipment. Some pre-treatment of EFB is needed to reduce EFB ash deposit potential. The effect of wet torrefaction pre-treatment in laboratory scale was successfully proven in decreasing slagging and fouling potential while increasing EFB calorific value that could fulfill clean solid fuel criteria. This research focuses on wet torrefaction process that conducted on a pilot scale with the capacity of 250 liters. It was found that wet torrefaction process can improve the product’s calorific value up to 9.41% while reduce its ash content down to 1.01% comparing to the raw EFB. The reduction of ash content also leads to the reduction of slagging and fouling tendency that presents in terms of alkali index. Alkali index is a quantitative method that can be calculated after obtaining metal oxides fraction on solid fuel. Metal oxides could be obtained by using energy dispersive x-ray spectroscopy.

  8. Causes of Variability in the Effects of Vegetative Ash on Post-Fire Runoff and Erosion

    NASA Astrophysics Data System (ADS)

    Balfour, V.; Woods, S.

    2008-12-01

    Vegetative ash formed during forest wildfires has varying effects on post-fire runoff and erosion. In some cases the ash layer reduces runoff and erosion by storing rainfall and by protecting the soil surface from surface sealing and rainsplash detachment. In other cases, the ash layer increases runoff and erosion by forming a surface crust, clogging soil pores, and providing a ready source of highly erodible fine material. Since only a handful of studies have measured the hydrogeomorphic effect of ash, it is unclear whether the observed variability in its effect reflects initial spatial variability in the ash properties due to factors such as fuel type and fire severity, or differences that develop over time due to compaction and erosion or exposure of the ash to rainfall and air. The goal of our research was to determine if the observed differences in the effect of ash on runoff and erosion are due to: 1) variability in initial ash hydrologic properties due to differences in combustion temperature and fuel type, or 2) variability in ash hydrologic properties caused by mineralogical phase changes that develop after the ash is exposed to water. We created ash in the laboratory using wood and needles of Lodgepole pine (Pinus contorta), Ponderosa pine (Pinus Ponderosa) and Douglas fir (Pseudotsuga menziesii) and at 100° C temperature increments from 300 to 900° C. A subsample of ash from each fuel type / temperature combination was saturated, left undisturbed for 24 hours and then oven dried at 104° C. Dry and wetted ash samples were characterized in terms of: structure (using a scanning electron microscope), carbon content, mineralogy (using X-ray diffraction), porosity, water retention properties and hydraulic conductivity. Ash produced at the higher combustion temperatures from all three fuel types contained lime (CaO), which on wetting was transformed to portlandite (Ca(OH)2) and calcite (CaCO3). This mineralogical transformation resulted in irreversible hardening and crusting of the ash, and hardened ash had a significantly lower hydraulic conductivity than unhardened ash. Ash produced by high severity fires may undergo this same hardening and crusting process after it is wetted by rainfall whereas ash produced by lower severity fires will not, and this may explain in part the contrasting hydrogeomorphic effects of ash that have been reported in the literature.

  9. Characterization of ash in algae and other materials by determination of wet acid indigestible ash and microscopic examination

    USDA-ARS?s Scientific Manuscript database

    Algae are known for high ash content. It is important to properly characterize their ash for value added utilization of algae as food, feed, and feedstock for biofuels. In this study, 12 algae of different sources were measured for proximate composition and mineral profile. Results showed that the r...

  10. [Conversion methods of freshwater snail tissue dry mass and ash free dry mass].

    PubMed

    Zhao, Wei-Hua; Wang, Hai-Jun; Wang, Hong-Zhu; Liu, Xue-Qin

    2009-06-01

    Mollusk biomass is usually expressed as wet mass with shell, but this expression fails to represent real biomass due to the high calcium carbonate content in shells. Tissue dry mass and ash free dry mass are relatively close to real biomass. However, the determination process of these two parameters is very complicated, and thus, it is necessary to establish simple and practical conversion methods for these two parameters. A total of six taxa of freshwater snails (Bellamya sp., Alocinma longicornis, Parafossarulus striatulus, Parafossarulus eximius, Semisulcospira cancellata, and Radix sp.) common in the Yangtze Basin were selected to explore the relations of their five shell dimension parameters, dry and wet mass with shells with their tissue dry mass and ash free dry mass. The regressions of the tissue dry mass and ash free dry mass with the five shell dimension parameters were all exponential (y = ax(b)). Among them, shell width and shell length were more precise (the average percentage error between observed and predicted value being 22.0% and 22.5%, respectively) than the other three parameters in the conversion of dry mass. Wet mass with shell could be directly converted to tissue dry mass and ash free dry mass, with an average percentage error of 21.7%. According to the essence of definition and the errors of conversion, ash free dry mass would be the optimum parameter to express snail biomass.

  11. Combining sieving and washing, a way to treat MSWI boiler fly ash.

    PubMed

    De Boom, Aurore; Degrez, Marc

    2015-05-01

    Municipal Solid Waste Incineration (MSWI) fly ashes contain some compounds that could be extracted and valorised. A process based on wet sieving and washing steps has been developed aiming to reach this objective. Such unique combination in MSWI fly ash treatment led to a non-hazardous fraction from incineration fly ashes. More specifically, MSWI Boiler Fly Ash (BFA) was separately sampled and treated. The BFA finer particles (13wt%) were found to be more contaminated in Pb and Zn than the coarser fractions. After three washing steps, the coarser fractions presented leaching concentrations acceptable to landfill for non-hazardous materials so that an eventual subsequent valorisation may be foreseen. At the contrary, too much Pb leached from the finest particles and this fraction should be further treated. Wet sieving and washing permit thus to reduce the leachability of MSWI BFA and to concentrate the Pb and Zn contamination in a small (in particle size and volume) fraction. Such combination would therefore constitute a straightforward and efficient basis to valorise coarse particles from MSWI fly ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Geochemically structural characteristics of municipal solid waste incineration fly ash particles and mineralogical surface conversions by chelate treatment.

    PubMed

    Kitamura, Hiroki; Sawada, Takaya; Shimaoka, Takayuki; Takahashi, Fumitake

    2016-01-01

    Leaching behaviors of heavy metals contained in municipal solid waste incineration (MSWI) fly ash have been studied well. However, micro-characteristics of MSWI fly ash particles are still uncertain and might be non-negligible to describe their leaching behaviors. Therefore, this study investigated micro-characteristics of MSWI fly ash particles, especially their structural properties and impacts of chelate treatment on surface characteristics. According to SEM observations, raw fly ash particles could be categorized into four types based on their shapes. Because chelate treatment changed the surface of fly ash particles dramatically owing to secondary mineral formations like ettringite, two more types could be categorized for chelate-treated fly ash particles. Acid extraction experiments suggest that fly ash particles, tested in this study, consist of Si-base insoluble core structure, Al/Ca/Si-base semi-soluble matrices inside the body, and KCl/NaCl-base soluble aggregates on the surface. Scanning electron microscope (SEM) observations of the same fly ash particles during twice moistening treatments showed that KCl/NaCl moved under wet condition and concentrated at different places on the particle surface. However, element mobility depended on secondary mineral formations. When insoluble mineral like gypsum was generated and covered the particle surface, it inhibited element transfer under wet condition. Surface characteristics including secondary mineral formation of MSWI fly ash particles are likely non-negligible to describe trace element leaching behaviors.

  13. Boron detection from blood samples by ICP-AES and ICP-MS during boron neutron capture therapy.

    PubMed

    Linko, S; Revitzer, H; Zilliacus, R; Kortesniemi, M; Kouri, M; Savolainen, S

    2008-01-01

    The concept of boron neutron capture therapy (BNCT) involves infusion of a (10)B containing tracer into the patient's bloodstream followed by local neutron irradiation(s). Accurate estimation of the blood boron level for the treatment field before irradiation is required. Boron concentration can be quantified by inductively coupled plasma atomic emission spectrometry (ICP-AES), mass spectrometry (ICP-MS), spectrofluorometric and direct current atomic emission spectrometry (DCP-AES) or by prompt gamma photon detection methods. The blood boron concentrations were analysed and compared using ICP-AES and ICP-MS to ensure congruency of the results if the analysis had to be changed during the treatment, e.g. for technical reasons. The effect of wet-ashing on the results was studied in addition. The mean of all samples analysed with ICP-MS was 5.8 % lower than with ICP-AES coupled to wet-ashing (R (2) = 0.88). Without wet-ashing, the mean of all samples analysed with ICP-MS was 9.1 % higher than with ICP-AES (R (2) = 0.99). Boron concentration analysed from whole blood samples with ICP-AES correlated well with the values of ICP-MS with wet-ashing of the sample matrix, which is generally considered the reference method. When using these methods in parallel at certain intervals during the treatments, reliability of the blood boron concentration values remains satisfactory, taking into account the required accuracy of dose determination in the irradiation of cancer patients.

  14. A comparison of techniques for preparing fish fillet for ICP-AES multielemental analysis and the microwave digestion of whole fish.

    PubMed

    Moeller, A; Ambrose, R F; Que Hee, S S

    2001-01-01

    Four catfish fillet homogenate treatments before multielemental metal analysis by simultaneous inductively coupled plasma/atomic emission spectroscopy were compared in triplicate. These treatments were: nitric acid wet-ashing by Parr bomb digestion; nitric acid wet-ashing by microwave digestion; tetramethylammonium hydroxide/nitric acid wet digestion; and dry-ashing. The tetramethylammonium hydroxide/nitric acid method was imprecise (coefficients of variation > 20%). The dry-ashing method was fast and sensitive but had low recoveries of 50% for spiked Pb and Al and was not as precise as the Parr bomb or microwave treatments. The Parr bomb method was the most precise method but was less sensitive than the microwave method which had nearly the same precision. The microwave method was then adapted to homogenates of small whole fish < or = 3 cm in length. The whole fish homogenate required more vigorous digestion conditions, and addition of more acid after the evaporative step because of the presence of less oxidizable and acid-soluble components than fillet. The whole fish homogenate was also more heterogeneous than catfish fillet. A quality assurance protocol to demonstrate homogenate uniformity is essential. The use of a non-specialized microwave oven system allowed precise results for fillet and whole fish homogenates.

  15. Determination of Lead in Blood by Atomic Absorption Spectrophotometry1

    PubMed Central

    Selander, Stig; Cramér, Kim

    1968-01-01

    Lead in blood was determined by atomic absorption spectrophotometry, using a wet ashing procedure and a procedure in which the proteins were precipitated with trichloroacetic acid. In both methods the lead was extracted into isobutylmethylketone before measurement, using ammonium pyrrolidine dithiocarbamate as chelator. The simpler precipitation procedure was shown to give results identical with those obtained with the ashing technique. In addition, blood specimens were examined by the precipitation method and by spectral analysis, which method includes wet ashing of the samples, with good agreement. All analyses were done on blood samples from `normal' persons or from lead-exposed workers, and no additions of inorganic lead were made. The relatively simple protein precipitation technique gave accurate results and is suitable for the large-scale control of lead-exposed workers. PMID:5663425

  16. PERFORMANCE OF ACTIVATED SLUDGE-POWDERED ACTIVATED CARBON-WET AIR REGENERATION SYSTEMS

    EPA Science Inventory

    The investigation summarized in the report was undertaken to evaluate the performance of powdered activated carbon (PAC) technology used in conjunction with wet air regeneration (WAR) at municipal wastewater treatment plants. Excessive ash concentrations accumulated in the mixed ...

  17. Detoxification and generation of useful products from coal combustion wastes: Quarterly technical report, (October--December 1988)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1988-01-01

    This quarter, samples of dry fly ash, wet bottom ash, and desulfurization gypsum slurry were provided from an Ohio Edison power plant. Chemical analysis mineralogical examination, and an anion analysis were performed on the samples. 2 figs., 1 tab. (CBS)

  18. [Analysis on Mechanism of Rainout Carried by Wet Stack of Thermal Power Plant].

    PubMed

    Ouyang, Li-hua; Zhuang, Ye; Liu, Ke-wei; Chen, Zhen-yu; Gu, Peng

    2015-06-01

    Rainout from wet-stack took placed in many thermal power plants with WFGD system. Research on causes of the rainout is important to solve the problem. The objective of this research is to analyze the mechanism of rainout. Field study was performed to collect experimental data in one thermal power plant, including the amount of desulfurization slurry carried by wet flue gas, liquor condensate from wet duct, and droplets from the wet stack. Source apportionment analysis was carried out based on physical and chemical data of liquid sample and solid sample. The result showed that mist eliminator operated well, which met the performance guarantee value. But the total amount of desulfurization slurry in flue gas and the sulfate concentration in liquid condensate discharge from the wet duct/stack increased. The liquid condensate accumulated in the wet duct/stack led to liquid re-entrainment. In conclusion, the rainout in this power plant was caused by the short of wet ductwork or liquid discharge system, the droplets caused by re-entrainment carried by the saturated gas released from the stack. The main undissolved components of the rainout were composite carbonate and aluminosilicate. Although ash concentration in this WFGD met the regulation criteria, source apportionment analysis showed that fly ash contributed to rainout was accounted for 60%. This percentage value was same as the data of solid particles in the condensate. It is important to optimize the wet ductwork, wet stack liner, liquid collectors and drainage. Avoiding the accumulation from saturated vapor thermal condensation is an effective way to solve the wet stack rainout.

  19. Bone growth and calcium balance during simulated weightlessness in the rat

    NASA Technical Reports Server (NTRS)

    Roer, Robert D.; Dillaman, Richard M.

    1990-01-01

    Rats, age 28 days, experiencing tail suspension in modified metabolic cages for 1, 2, and 3 wk were compared with littermate controls. Food and water consumption, urinary and fecal Ca excretion, and serum Ca were measured; hearts, fore- and hindlimb bones, skulls, and mandibles were removed for determination of wet, dry, and ash weights and Ca concentration and for histological examination. Weight gain and Ca intake and excretion were the same for both groups; both displayed net Ca gain. Suspended rats had significantly lower wet, dry, and ash weights of femora and tibiae. Dry weights of the humeri and radii/ulnae were moderately higher, and the skull and mandible dry and ash weights were significantly higher in suspended than in control rats. Cortical thickness of the femur, but not humerus, was less in suspended rats. The data are consistent with the hypothesis that bone growth is influenced by the cardiovascular changes associated with tail suspension.

  20. High performance of treated and washed MSWI bottom ash granulates as natural aggregate replacement within earth-moist concrete.

    PubMed

    Keulen, A; van Zomeren, A; Harpe, P; Aarnink, W; Simons, H A E; Brouwers, H J H

    2016-03-01

    Municipal solid waste incineration bottom ash was treated with specially designed dry and wet treatment processes, obtaining high quality bottom ash granulate fractions (BGF) suitable for up to 100% replacement of natural gravel in concrete. The wet treatment (using only water for separating and washing) significantly lowers the leaching of e.g. chloride and sulfate, heavy metals (antimony, molybdenum and copper) and dissolved organic carbon (DOC). Two potential bottom ash granulate fractions, both in compliance with the standard EN 12620 (aggregates for concrete), were added into earth-moist concrete mixtures. The fresh and hardened concrete physical performances (e.g. workability, strength and freeze-thaw) of high strength concrete mixtures were maintained or improved compared with the reference mixtures, even after replacing up to 100% of the initial natural gravel. Final element leaching of monolithic and crushed granular state BGF containing concretes, showed no differences with the gravel references. Leaching of all mixtures did not exceed the limit values set by the Dutch Soil Quality Degree. In addition, multiple-life-phase emission (pH static test) for the critical elements of input bottom ash, bottom ash granulate (BGF) and crushed BGF containing concrete were assessed. Simulation pH lowering or potential carbonation processes indicated that metal (antimony, barium, chrome and copper) and sulfate element leaching behavior are mainly pH dominated and controlled, although differ in mechanism and related mineral abundance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Ash Tree Leaf Litter (Fraxinus excelsior L.) Breakdown in Two Different Biotopes and Streams

    NASA Astrophysics Data System (ADS)

    Fleituch, Tadeusz; Leichtfried, Maria

    2004-11-01

    Coarse (0.5 mm) and fine (0.1 mm) mesh size bag methodology was used for comparing the breakdown of ash tree leaves (Fraxinus excelsior L.) in two biotopes (dry - terrestrial and wet - overflown stream zones) in two low order streams (the Oberer Seebach (OSB), Lower Austria and the Brzezowka stream (BRZ), Beskidy Mountains, southern Poland). In total, 96 bags were exposed in autumn 2000. Ash-free dry mass (AFDM) ranged in dry zones of both streams from 94-62% (OSB) and 85-53% (BRZ) respectively. The decomposition process was faster in wet zones: 96-33% (OSB) and 56-11% (B) during the study period. Significant differences in ash breakdown and its chemical content between studied streams were found. Total organic carbon (TOC) and total nitrogen content (TN) of AFDM of litter showed increased differences with experiment duration between zones and between two bag types for both streams. The strongest increase of TOC and TN content (100% on average initial content) for bag types, zones, and streams was observed in the first two weeks of the experiment. These results confirm the importance of chemical compounds for microbiological processes (biofilms) in different ecosystem biotopes. (

  2. Comparison of H2S adsorption by two hydrogel composite (HBC) derived by Empty Fruit Bunch (EFB) biochar and Coal Fly Ash (CFA)

    NASA Astrophysics Data System (ADS)

    Meri, N. H.; Alias, A. B.; Talib, N.; Rashid, Z. A.; Ghani, W. A. W. A. K.

    2018-03-01

    This study are covered the adsorption performance of two adsorbent Empty Fruit Bunch Hydrogel Biochar Composite (EFB-HBC) and Coal Fly Ash Hydrogel Composite (CFA-HC) on hydrogen sulphide. The EFB biochar were produce by pyrolysed and heated from room temperature to 550˚C at 10˚C/min under the Nitrogen flow. Meanwhile, coal fly ash collected from a power plant located in Selangor, Malaysia. Both of the materials is a waste from different industries and became the precursor to our adsorbents. EFB biochar and coal fly ash has been synthesized to become hydrogel by polymerization process with acrylamide (AAm) as monomer, N,N’-methylene bisacry lamide (MBA) as cross linker and ammonium persulfate (APS) as initiator. In addition, because of the speciality of hydrogel itself, which is has high ability in storing water, the effect of H2O wetness on EFB-HBC and CFA-HC were investigate in adsorption of H2S. EFB-HBC gave a longest breakthrough time and highest adsorption capacity compared with CFA-HC in both condition (dry/wet). The result also indicated that, the increased the bed height, increased the adsorption capacity.

  3. Compliance Testing of Grissom AFB Central Heating Plant Coal-Fired Boilers 3 and 5, Grissom AFB, Indiana

    DTIC Science & Technology

    1988-06-01

    common breeching and can be routed to the wet-scrubber or to a bypass stack. The scrubber is a double-alkali flue - gas desulfurization system using soda...Illustrations Figure Title Page 1 View of Scrubber and Bypass Stacks 3 2 Scrubber Stacks 4 3 Bypass Stack 5 4 Flue Gas Flow Diagram 6 5 ORSAT Sampling...of gases and to provide a positive static pressure at flue gas exhaust discharge points. The ash system pneumatically removes ash from bottom-ash

  4. Wet extraction of heavy metals and chloride from MSWI and straw combustion fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiar del Toro, M.; Calmano, W.; Ecke, H.

    2009-09-15

    Fly ash residues from combustion often do not meet the criteria neither for reuse as construction materials nor landfilling as non-hazardous waste, mainly because of the high concentration of heavy metals and chlorides. This work aimed to technically evaluate an innovative wet treatment process for the extraction of chloride (Cl{sup -}), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) from fly ashes from a municipal solid waste incineration (MSWI) plant and from a straw combustion (SC) facility. Factors investigated were liquid/solid (L/S) ratio, full carbonation (CO{sub 2} treatment), influence of pH and leaching time, using a two-level full factorialmore » design. The most significant factor for all responses was low pH, followed by L/S ratio. Multiple linear regression models describing the variation in extraction data had R{sup 2} values ranging from 58% to 98%. An optimization of the element extraction models was performed and a set of treatment conditions is suggested.« less

  5. The Effect of Fly Ash on the Corrosion Behaviour of Galvanised Steel Rebarsin Concrete

    NASA Astrophysics Data System (ADS)

    Tittarelli, Francesca; Mobili, Alessandra; Bellezze, Tiziano

    2017-08-01

    The effect of fly ash on the corrosion behaviour of galvanised steel rebars in cracked concrete specimens exposed to wet-dry cycles in a chloride solution has been investigated. The obtained results show that the use of fly ash, replacing either cement or aggregate, always improves the corrosion behaviour of galvanised steel reinforcements. In particular, the addition of fly ash, even in the presence of concrete cracks, decreases the corrosion rate monitored in very porous concretes, as those with w/c = 0.80, to values comparable with those obtained in good quality concretes, as those with w/c = 0.45. Therefore, fly ash cancels the negative effect, at least from the corrosion point of view, of a great porosity of the cement matrix.

  6. A Procedure for Determining the Resource Utilization Potential of Coal Ash.

    DTIC Science & Technology

    1981-09-01

    48 V Chapter Page Lime Replacement for Flue - Gas Desulfurization Ujnits . .. .. .. .. .. .. .. .. .. .. . .48 Refuse Pile Fire Abatemnent...exceeds the capability of a vacuum system to attain a satisfactory conveying rate. If thenfy ash is removed from the flue gas stream by a wet collector...the mixture some fertilizer value (21:44-45). Lime Replacement for Flue - Gas Desulfurization Units For conventional SO, lime-based removal systems

  7. Rainfall and wet and dry cycle's impact on ash thickness. A laboratory experiment

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Keestra, Saskia; Peters, Piet; Cerdà, Artemi

    2016-04-01

    Ash is the most important and effective soil protection in the immediate period after the fire (Cerda and Doerr, 2008; Pereira et al., 2015a). This protection can last for days or weeks depending on the fire severity, topography of the burned area and post-fire meteorological conditions. In the initial period after the fire, ash is easily transported by wind. However after the first rainfalls, ash is eroded, or bind in soil surface (Pereira et al., 2013, 2015a). Ash thickness has implications on soil protection. The soil protection against the erosion and the ash capacity to retain water increases with the ash thickness (Bodi et al., 2014). Ash cover is very important after fire because store water and releases into soil a large amount of nutrients, fundamental to vegetation recuperation (Pereira et al., 2014). Despite the importance of ash thickness in post fire environments, little information is available about the effects of rainfall and wet and dry cycle's effects on ash thickness. This work aims to fill this gap. The objective of this study is to investigate the impacts of rainfall and wet and dry cycles in the ash thickness of two different under laboratory conditions. Litter from Oak (Quercus robur) and Spruce (Picea abis) were collected to and exposed during 2 hours to produce ash at 200 and 400 C. Subsequently a layer of 15 mm ash was spread on soil surface in small boxes (24x32 cm) and then subjected to rainfall simulation. Boxes were placed at a 17% of inclination and a rainfall intensity of 55 mm/h during 40 minutes was applied. After the rainfall simulation the plots were stored in an Oven at the temperature of 25 C during four days, in order to identify the effects of wet and dry cycles (Bodi et al., 2013). Ash thickness was measured after the first rainfall (AFR), before the second rainfall (BSR) - after the dry period of 4 days - and after the second rainfall (ASR). In each box a grid with 57 points was designed in order to analyse ash thickness AFR, BSR and ASR. The results showed that AFR, ash thickness was reduced by 7.97% (±18.13) and 32.02 % (±37.44) in the Oak ash produced at 200 C (Oak 200) and 400 C (Oak 400), respectively. The spruce ash layer produced at 200 (Spruce 200) decreased 7.26% (±15.11) and 13.11 % (±18.40) in the ash produced at 400 C (Spruce 400). Before the second rainfall we identified that Oak 200 ash layer reduced approximately 15.95 (±15.81) while Oak 400 decreased 47.98% (±28.97). Spruce 200 ash layer was reduced by 14.52 (±14.57) and Spruce 400 by 18.68 (±17.54). In the last rainfall experiment, it was observed that Oak 200 ash layer decreased 14.88 (±14.09) and Oak 400 ash layer 44.52 (±28.85). Spruce 200 ash layer reduced 13.10 (±14.76) and spruce 400 18.33 (±21.69). The spatial pattern (assessed with Moran's I index) of the ash later of Oak 200 and Oak 400 AFR was significantly clustered (p<0.001). The spatial pattern of Spruce 200 was random (p>0.05) and Spruce 400 significantly clustered (p<0.001). Before the second rainfall, the spatial pattern of Oak 200 and Oak 400 was significantly clustered at a p<0.05 and p<0.001. The same situation was identified in Spruce 200 and Spruce 400 (p<0.001). Finally, ASR, the spatial pattern observed in Oak 200 and Oak 400 was significantly clustered at a p<0.05 and p<0.001. This was also identified in Spruce 200 and Spruce 400. Overall, the thickness decrease was higher in the ash layers produced at high temperature. The differences were mainly observed in oak ash. The dry cycle did not have an important impact on ash thickness in both species as the second rainfall cycle. The results from the Moran's I analysis showed that after the rainfall experiment the ash was mainly concentrated in a specific part of the plot. In this case it was located in the bottom of the experimental plot. Acknowledgments The authors are thankful to the Soil Physics and Land Management Group from Wageningen University, The Netherlands for provide the infrastructure to develop this work, to the RECARE project (grant agreement n° 603498), and to the COST action ES1306: Connecting European Connectivity Research for funding a STSM at the Wageningen University. References Bodi, M., Martin, D.A., Santin, C., Balfour, V., Doerr, S.H., Pereira, P., Cerda, A., Mataix-Solera, J. (2014) Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 130, 103-127. Bodi, M.B., Doerr, S.H., Cerda, A., Mataix-Solera, J. (2013) Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma, 191, 14-23. Cerdà, A., Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 74, 256-263. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Jordan, A. Burguet, M. (2013) Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania, Solid Earth, 4, 153-165. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2015) Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, 26, 180-192. Pereira, P., Jordan, A., Cerda, A., Martin, D. 2015a. Editorial: The role of ash in fire-affected ecosystems, Catena, 135, 337 - 379. Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., Cerdà, A., Burguet, M. (2014)Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal, Hydrological Processes, 28, 3681-3690

  8. Removal of fly-ash and dust particulate matters from syngas produced by gasification of coal by using a multi-stage dual-flow sieve plate wet scrubber.

    PubMed

    Kurella, Swamy; Meikap, Bhim Charan

    2016-08-23

    In this work, fly-ash water scrubbing experiments were conducted in a three-stage lab-scale dual-flow sieve plate scrubber to observe the performance of scrubber in fly-ash removal at different operating conditions by varying the liquid rate, gas rate and inlet fly-ash loading. The percentage of fly-ash removal efficiency increases with increase in inlet fly-ash loading, gas flow rate and liquid flow rate, and height of the scrubber; 98.55% maximum percentage of fly-ash removal efficiency (ηFA) is achieved at 19.36 × 10(-4) Nm(3)/s gas flow rate (QG) and 48.183 × 10(-6) m(3)/s liquid flow rate (QL) at 25 × 10(-3) kg/Nm(3) inlet fly-ash loading (CFA,i). A model has also been developed for the prediction of fly-ash removal efficiency of the column using the experimental results. The predicted values calculated using the correlation matched well with the experimental results. Deviations observed between the experimental and the predicted values were less than 20%.

  9. Ash chemistry and sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrifvars, B.J.; Backman, R.; Hupa, M.

    1996-10-01

    The chemistry of a fuel ash is important to consider when ash behavior in combustion or gasification is studied. Four different types of thermal behavior based bed agglomeration and deposit foliation mechanisms have been proposed to be important, (1) partial melting, (2) viscous flow, (3) chemical reaction sintering, and (4) solid state sintering. In this paper we present data from a broader study in which we have quantified the four mechanisms more in detail. The ashes from 10 different types of fuels have been tested for their sintering tendency by a compression strength sintering test. The ashes were also subjectmore » to quantitative wet chemical analyses and combined differential thermal, thermogravimetric (DT/TG) analyses. These thermal behavior predictions were compared with multi-component multi-phase thermodynamic phase equilibrium calculations and further with full scale combustion experience. The results and their relevance to full scale conversion systems are discussed in the paper.« less

  10. Leaching kinetics of As, Mo, and Se from acidic coal fly ash samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Ghanashyam; Donahoe, Rona J.; Bhattacharyya, Siddhartha

    Annually, coal-fired electric power plants produce large volumes potentially hazardous coal combustion products (CCPs) including fly ash. Since majority of the coal fly ash and other CCPs deposited in dry land fills or wet lagoons, they pose risk of contamination to local environment and hydrogeology. In this study, we present results of leaching kinetics for As, Mo, and Se from three acidic fly ash samples. This study shows that the leachate concentrations of As, Mo, and Se increase over time. Three kinetics equations, pseudo-second order, Elovich, and power-function, are able to adequately describe the experimental leaching kinetics data. Experimental leachingmore » data and modeling results indicate that the rate limiting leaching of As, Mo, and Se is largely controlled by the dissolution of the fly ash particles. Furthermore, it is important to adopt effective containment/treatment schemes to avoid potential and persistent dispersion of trace elements from ash disposal facilities to surrounding environment for a long time.« less

  11. Leaching kinetics of As, Mo, and Se from acidic coal fly ash samples

    DOE PAGES

    Neupane, Ghanashyam; Donahoe, Rona J.; Bhattacharyya, Siddhartha; ...

    2017-07-03

    Annually, coal-fired electric power plants produce large volumes potentially hazardous coal combustion products (CCPs) including fly ash. Since majority of the coal fly ash and other CCPs deposited in dry land fills or wet lagoons, they pose risk of contamination to local environment and hydrogeology. In this study, we present results of leaching kinetics for As, Mo, and Se from three acidic fly ash samples. This study shows that the leachate concentrations of As, Mo, and Se increase over time. Three kinetics equations, pseudo-second order, Elovich, and power-function, are able to adequately describe the experimental leaching kinetics data. Experimental leachingmore » data and modeling results indicate that the rate limiting leaching of As, Mo, and Se is largely controlled by the dissolution of the fly ash particles. Furthermore, it is important to adopt effective containment/treatment schemes to avoid potential and persistent dispersion of trace elements from ash disposal facilities to surrounding environment for a long time.« less

  12. Hail formation triggers rapid ash aggregation in volcanic plumes.

    PubMed

    Van Eaton, Alexa R; Mastin, Larry G; Herzog, Michael; Schwaiger, Hans F; Schneider, David J; Wallace, Kristi L; Clarke, Amanda B

    2015-08-03

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized 'wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits.

  13. Hail formation triggers rapid ash aggregation in volcanic plumes

    PubMed Central

    Van Eaton, Alexa R.; Mastin, Larry G.; Herzog, Michael; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi L.; Clarke, Amanda B.

    2015-01-01

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized ‘wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits. PMID:26235052

  14. Volcanic Ash Data Assimilation System for Atmospheric Transport Model

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Shimbori, T.; Sato, E.; Tokumoto, T.; Hayashi, Y.; Hashimoto, A.

    2017-12-01

    The Japan Meteorological Agency (JMA) has two operations for volcanic ash forecasts, which are Volcanic Ash Fall Forecast (VAFF) and Volcanic Ash Advisory (VAA). In these operations, the forecasts are calculated by atmospheric transport models including the advection process, the turbulent diffusion process, the gravitational fall process and the deposition process (wet/dry). The initial distribution of volcanic ash in the models is the most important but uncertain factor. In operations, the model of Suzuki (1983) with many empirical assumptions is adopted to the initial distribution. This adversely affects the reconstruction of actual eruption plumes.We are developing a volcanic ash data assimilation system using weather radars and meteorological satellite observation, in order to improve the initial distribution of the atmospheric transport models. Our data assimilation system is based on the three-dimensional variational data assimilation method (3D-Var). Analysis variables are ash concentration and size distribution parameters which are mutually independent. The radar observation is expected to provide three-dimensional parameters such as ash concentration and parameters of ash particle size distribution. On the other hand, the satellite observation is anticipated to provide two-dimensional parameters of ash clouds such as mass loading, top height and particle effective radius. In this study, we estimate the thickness of ash clouds using vertical wind shear of JMA numerical weather prediction, and apply for the volcanic ash data assimilation system.

  15. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash.

    PubMed

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M; Thomsen, Tobias P; Ahrenfeldt, Jesper; Hauggaard-Nielsen, Henrik

    2017-03-01

    Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ashes, a material that is rich in phosphorus, but which is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock supply, phosphorus recovery from sewage sludge ashes has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of phosphorus extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of phosphorus were achieved with a single ED step for incineration ashes and a sequential combination of two ED steps for gasification ashes, which was due to a higher influence of iron and/or aluminium in phosphorus solubility for the latter. A product with lower level of metallic impurities and comparable to wet process phosphoric acid was eventually obtained from gasification ashes. Thus, gasification becomes an interesting alternative to incineration also in terms of phosphorus separation.

  16. Microstructure Evolution from X-CT Measurements for Concrete/mortar under Multi-actions of Composite Salts Dry-wet Cycles and Loading

    NASA Astrophysics Data System (ADS)

    Chen, Yanjuan; Gao, Jianming; Shen, Daman

    2017-08-01

    Inthis research, microstructure evolution forconcrete/mortar under multi-actions of composite salts dry-wet cycles and loading was investigated through X-CT measurements. The evolution process of pores and micro-cracking with the erosion time were tracked. Compared the different erosion actions, it was found that dry-wet cycles promoted the pores become connected gradually. Besides, the dry-wet cycles accelerated the damage seriously on interface area between concrete and aggregate, whistle, loading contributes to the cracking propagation toward the internal. Moreover, fly ash played a positive role in the increasing of the number of harmless holes again and contributed to the durability of concrete.

  17. Investigation on electrical surface modification of waste to energy ash for possible use as an electrode material in microbial fuel cells.

    PubMed

    Webster, Megan; Lee, Hae Yang; Pepa, Kristi; Winkler, Nathan; Kretzschmar, Ilona; Castaldi, Marco J

    2018-03-01

    With the world population expected to reach 8.5 billion by 2030, demand for access to electricity and clean water will grow at unprecedented rates. Municipal solid waste combusted at waste to energy (WtE) facilities decreases waste volume and recovers energy, but yields ash as a byproduct, the beneficial uses of which are actively being investigated. Ash is intrinsically hydrophobic, highly oxidized, and exhibits high melting points and low conductivities. The research presented here explores the potential of ash to be used as an electrode material for a microbial fuel cell (MFC). This application requires increased conductivity and hydrophilicity, and a lowered melting point. Three ash samples were investigated. By applying an electric potential in the range 50-125 V across the ash in the presence of water, several key property changes were observed: lower melting point, a color change within the ash, evidence of changes in surface morphologies of ash particles, and completely wetting water-ash contact angles. We analyzed this system using a variety of analytical techniques including sector field inductively coupled plasma mass spectrometry, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and tensiometry. Ability to make such surface modifications and significant property changes could allow ash to become useful in an application such as an electrode material for a MFC.

  18. Development of the chemical and electrochemical coal cleaning process

    NASA Astrophysics Data System (ADS)

    Basilio, C. I.; Yoon, Roe-Hoan

    The continuous testing of the Chemical and Electrochemical Coal Cleaning (CECC) was completed successfully using Middle Wyodak and Elkhorn No. 3 coal samples. The CECC unit was run under the optimum conditions established for these coal samples. For the Middle Wyodak coal, the ash content was reduced from 6.96 percent to as low 1.61 percent, corresponding to an ash rejection (by weight) of about 83 percent. The ash and sulfur contents of the Elkhorn No. 3 coal were reduced to as low as 1.8 percent and 0.9 percent. The average ash and sulfur rejections were calculated to be around 84 percent and 47 percent. The CECC continuous unit was used to treat -325 mesh Elkhorn No. 3 coal samples and gave ash and sulfur rejection values of as high as 77 percent and 66 percent. In these test, the clean -325 mesh coal particles were separated from the liberated mineral matter through microbubble column flotation, instead of wet-screening.

  19. Aluminium alloys in municipal solid waste incineration bottom ash.

    PubMed

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.

  20. Ash chemistry and sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrifvars, B.J.; Backman, R.; Hupa, Mikko

    1996-12-31

    The thermal behavior of a fuel ash is one important factor to consider when fireside slagging and fouling problems in steam boilers are addressed. It is well known that different types of chemical reactions and melts in deposits play an important role in the build-up of problematic fireside deposits. Low viscous melts occur in steam boilers mainly when salt mixtures are present in the ash. Such are Merent mixtures of alkali and earth alkali sulfates, chlorides and carbonates. These mixtures do not melt at a certain temperature but form a melt in a temperature range which in some cases maymore » be several hundreds of degrees. The amount of melt is crucial for the deposit build-up. For some boilers it has been found that roughly 10 - 20 weight-% melt in an ash mixture would be enough to cause extensive deposit formation, while 60 - 80 weight-% melt would already cause the ash to be so wet it would flow down a vertical tube and not cause any further deposit growth.« less

  1. Earth observations taken by the Expedition 14 crew

    NASA Image and Video Library

    2007-03-01

    ISS014-E-15732 (1 March 2007) --- Salt ponds of Botswana are featured in this image photographed by an Expedition 14 crewmember on the International Space Station. This recent, detailed view shows the salt ponds of one of Africa's major producers of soda ash (sodium carbonate) and salt. Soda ash is used for glass making, in metallurgy, in the detergent industry, and in chemical manufacture. The image shows a small part of the great salt flats of central Botswana known as the Makgadikgadi Salt Pans. The soda ash and salt are both mainly exported (since 1989) to most countries in southern and central Africa. Brines from just beneath the pan floor are evaporated to produce the soda ash and salt -- a process for which the semiarid climate of Botswana is ideal. Red salt-loving algae in the ponds indicate that the salinity of the evaporating brines is medium to high. The salt pans of Botswana--a prominent visual photo target of interest for astronauts aboard the station--lie at the low point of a vast shallow continental basin. Rivers draining from as far away as central Angola - more than 1,000 kilometers away - supply water to the pans. According to scientists, during several wet climatic phases in the recent geological past the pans were permanently filled with water, for thousands of years, only to dry out when climates fluctuated to drier conditions. During dry phases water only reaches the pans underground. These are the brines that support the ash and salt industry. During wet phases when open water exists, beach ridges are constructed by wave action. One of these crosses the lower part of the view.

  2. Characterization of fly ash from low-sulfur and high-sulfur coal sources: Partitioning of carbon and trace elements with particle size

    USGS Publications Warehouse

    Hower, J.C.; Trimble, A.S.; Eble, C.F.; Palmer, C.A.; Kolker, A.

    1999-01-01

    Fly ash samples were collected in November and December of 1994, from generating units at a Kentucky power station using high- and low-sulfur feed coals. The samples are part of a two-year study of the coal and coal combustion byproducts from the power station. The ashes were wet screened at 100, 200, 325, and 500 mesh (150, 75, 42, and 25 ??m, respectively). The size fractions were then dried, weighed, split for petrographic and chemical analysis, and analyzed for ash yield and carbon content. The low-sulfur "heavy side" and "light side" ashes each have a similar size distribution in the November samples. In contrast, the December fly ashes showed the trend observed in later months, the light-side ash being finer (over 20 % more ash in the -500 mesh [-25 ??m] fraction) than the heavy-side ash. Carbon tended to be concentrated in the coarse fractions in the December samples. The dominance of the -325 mesh (-42 ??m) fractions in the overall size analysis implies, though, that carbon in the fine sizes may be an important consideration in the utilization of the fly ash. Element partitioning follows several patterns. Volatile elements, such as Zn and As, are enriched in the finer sizes, particularly in fly ashes collected at cooler, light-side electrostatic precipitator (ESP) temperatures. The latter trend is a function of precipitation at the cooler-ESP temperatures and of increasing concentration with the increased surface area of the finest fraction. Mercury concentrations are higher in high-carbon fly ashes, suggesting Hg adsorption on the fly ash carbon. Ni and Cr are associated, in part, with the spinel minerals in the fly ash. Copyright ?? 1999 Taylor & Francis.

  3. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern WWTPs can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20 years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating. This summary of volcanic ash impacts on critical infrastructure provides insight into the relative vulnerability of infrastructure under a range of different ashfall scenarios. Identifying and quantifying these impacts is an essential step in building resilience within these critical systems. We have attempted to consider interdependencies between sectors in a holistic way using systems thinking. As modern society becomes increasingly complex and interdependent this approach is likely to become increasingly necessary.

  4. Fertilisers production from ashes after sewage sludge combustion - A strategy towards sustainable development.

    PubMed

    Gorazda, Katarzyna; Tarko, Barbara; Wzorek, Zbigniew; Kominko, Halyna; Nowak, Anna K; Kulczycka, Joanna; Henclik, Anna; Smol, Marzena

    2017-04-01

    Sustainable development and circular economy rules force the global fertilizer industry to develop new phosphorous recovery methods from alternative sources. In this paper a phosphorus recovery technology from Polish industrial Sewage Sludge Ashes was investigated (PolFerAsh - Polish Fertilizers form Ash). A wet method with the use of mineral acid and neutralization was proposed. Detailed characteristic of SSA from largest mono-combustion plans were given and compared to raw materials used on the market. The technological factors associated with such materials were discussed. The composition of the extracts was compared to typical industrial phosphoric acid and standard values characterizing suspension fertilizers. The most favorable conditions for selective precipitation of phosphorus compounds were revealed. The fertilizers obtained also meet EU regulations in the case of the newly discussed Cd content. The process was scaled up and a flow mass diagram was defined. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Reconstructing the Lethal Part of the 1790 Eruption at Kilauea

    NASA Astrophysics Data System (ADS)

    Swanson, D.; Weaver, S. J.; Houghton, B. F.

    2011-12-01

    The most lethal known eruption from a volcano in the United States took place in November 1790 at Kilauea, killing perhaps 400-800 people (estimates range widely) who were crossing the summit on their way to a distant battle site. The eruption culminated ca. 300 years of sporadic explosive activity after the formation of Kilauea Caldera in about 1500. No contemporary account exists of the 1790 activity, but an eruption plume was observed from Kawaihae, 100 km NW of Kilauea, that probably was 10 km or higher. We are attempting to piece together the lethal event from a study of the 1790 and enclosing deposits and by using published accounts, written several decades later, based on interviews with survivors or others with knowledge of the tragedy. Determining what deposits actually formed in November 1790 is crucial. The best tie to that date is a deposit of phreatomagmatic lithic lapilli and ash that occurs SE of the caldera and must have been advected by high-level (>~10 km) westerly winds rather than low-level NE trade winds. It is the only contender for deposits from the high column observed in 1790. Small lapilli from the high column fell onto, and sank deeply into, a 3-5-cm-thick accretionary lapilli layer that was wet and likely no more than a few hours old. The wet ash occurs south of the caldera, where the lithic lapilli fell into it, and is also found west of the caldera in the saddle between Kilauea and Mauna Loa, where the victims were probably walking along a main foot trail still visible today. A lithic pyroclastic surge swept across the saddle, locally scouring away the wet accretionary lapilli layer but generally leaving a deposit <1 to 15 cm thick on the ash and embedding 1-cm lithic lapilli deeply within it. This indicates that the surge also erupted in November 1790, while the underlying ash was still wet. Though scattered ballistic blocks later fell in the area, the surge left the youngest continuous deposit on the west flank of Kilauea. An account written in 1843 by Rev. Sheldon Dibble describes the dead victims as lying on the surface or "sitting upright clasping with dying grasp their wives and children," not buried by ash or battered by falling debris, and "thoroughly scorched" but "in no place deeply burnt." These gruesome details suggest that the surge engulfed the victims, some of whom were clasping one another to keep from being blown away. The surge deposit covers an area of 12-15 sq km on the western flank of Kilauea between the Hawaiian Volcano Observatory (HVO) and the main highway around the island. The fatalities probably took place in this area, now visited daily by 5000 travelers to Hawai`i Volcanoes National Park. Several human footprints, barely discernible through the thin surge deposit, indent the surface of the accretionary lapilli ash near HVO. Do they record someone's last footsteps? We do not yet know when the eruption started or how many units older than the accretionary lapilli ash were also erupted in 1790. But we think we have identified the lethal surge of the eruption, and it is sobering to realize that it overwhelmed the place where this abstract is being written 221 years later.

  6. Effect of aggregate structure on VOC gas adsorption onto volcanic ash soil.

    PubMed

    Hamamoto, Shoichiro; Seki, Katsutoshi; Miyazaki, Tsuyoshi

    2009-07-15

    The understanding of the gaseous adsorption process and the parameters of volatile organic compounds such as organic solvents or fuels onto soils is very important in the analysis of the transport or fate of these chemicals in soils. Batch adsorption experiments with six different treatments were conducted to determine the adsorption of isohexane, a gaseous aliphatic, onto volcanic ash soil (Tachikawa loam). The measured gas adsorption coefficient for samples of Tachikawa loam used in the first three treatments, Control, AD (aggregate destroyed), and AD-OMR (aggregate destroyed and organic matter removed), implied that the aggregate structure of volcanic ash soil as well as organic matter strongly enhanced gas adsorption under the dry condition, whereas under the wet condition, the aggregate structure played an important role in gas adsorption regardless of the insolubility of isohexane. In the gas adsorption experiments for the last three treatments, soils were sieved in different sizes of mesh and were separated into three different aggregate or particle size fractions (2.0-1.0mm, 1.0-0.5mm, and less than 0.5mm). Tachikawa loam with a larger size fraction showed higher gas adsorption coefficient, suggesting the higher contributions of macroaggregates to isohexane gas adsorption under dry and wet conditions.

  7. Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash.

    PubMed

    Kuboňová, L; Langová, Š; Nowak, B; Winter, F

    2013-11-01

    Heavy metals in fly ash from municipal solid waste incinerators are present in high concentrations. Therefore fly ash must be treated as a hazardous material. On the other hand, it may be a potential source of heavy metals. Zinc, lead, cadmium, and copper can be relatively easily removed during the thermal treatment of fly ash, e.g. in the form of chlorides. In return, wet extraction methods could provide promising results for these elements including chromium and nickel. The aim of this study was to investigate and compare thermal and hydrometallurgical treatment of municipal solid waste fly ash. Thermal treatment of fly ash was performed in a rotary reactor at temperatures between 950 and 1050°C and in a muffle oven at temperatures from 500 to 1200°C. The removal more than 90% was reached by easy volatile heavy metals such as cadmium and lead and also by copper, however at higher temperature in the muffle oven. The alkaline (sodium hydroxide) and acid (sulphuric acid) leaching of the fly ash was carried out while the influence of temperature, time, concentration, and liquid/solid ratio were investigated. The combination of alkaline-acidic leaching enhanced the removal of, namely, zinc, chromium and nickel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Flue gas desulfurization gypsum and fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority`s newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned formore » all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective.« less

  9. Procedural uncertainties of Proctor compaction tests applied on MSWI bottom ash.

    PubMed

    Izquierdo, Maria; Querol, Xavier; Vazquez, Enric

    2011-02-28

    MSWI bottom ash is a well-graded highly compactable material that can be used as a road material in unbound pavements. Achieving the compactness assumed in the design of the pavement is of primary concern to ensure long term structural stability. Regulations on road construction in a number of EU countries rely on standard tests originally developed for natural aggregates, which may not be appropriate to accurately assess MSWI bottom ash. This study is intended to assist in consistently assessing MSWI bottom ash compaction by means of the Proctor method. This test is routinely applied to address unbound road materials and suggests two methods. Compaction parameters show a marked procedural dependency due to the particle morphology and weak particle strength of ash. Re-compacting a single batch sample to determine Proctor curves is a common practise that turns out to overvalue optimum moisture contents and maximum dry densities. This could result in wet-side compactions not meeting stiffness requirements. Inaccurate moisture content measurements during testing may also induce erroneous determinations of compaction parameters. The role of a number of physical properties of MSWI bottom ash in compaction is also investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Overview of IEA biomass combustion activities

    NASA Astrophysics Data System (ADS)

    Hustad, J. E.

    1994-07-01

    The objectives of the International Energy Agency (IEA) bioenergy program are: (1) to encourage cooperative research, development and use of energy and the increased utilization of alternatives to oil; and (2) to establish increased program and project cooperation between participants in the whole field of bioenergy. There are four Task Annexes to the Implementing Agreement during the period 1992-1994: Efficient and Environmentally Sound Biomass Production Systems; Harvesting and Supply of Woody Biomass for Energy; Biomass Utilization; and Conversion of Municipal Solid Waste Feedstock to Energy. The report describes the following biomass combustion activities during the period 1992-1994: Round robin test of a wood stove; Emissions from biomass combustion; A pilot project cofiring biomass with oil to reduce SO2 emissions; Small scale biomass chip handling; Energy from contaminated wood waste combustion; Modeling of biomass combustion; Wood chip cogeneration; Combustion of wet biomass feedstocks, ash reinjection and carbon burnout; Oxidation of wet biomass; Catalytic combustion in small wood burning appliances; Characterization of biomass fuels and ashes; Measurement techniques (FTIR).

  11. Comparative study of wet and dry torrefaction of corn stalk and the effect on biomass pyrolysis polygeneration.

    PubMed

    Wang, Xianhua; Wu, Jing; Chen, Yingquan; Pattiya, Adisak; Yang, Haiping; Chen, Hanping

    2018-06-01

    Wet torrefaction (WT) possesses some advantages over dry torrefaction (DT). In this study, a comparative analysis of torrefied corn stalk from WT and DT was conducted along with an investigation of their pyrolysis properties under optimal conditions for biomass pyrolysis polygeneration. Compared with DT, WT removed 98% of the ash and retained twice the amount of hydrogen. The impacts of DT and WT on the biomass macromolecular structure was also found to be different using two-dimensional perturbation correlation infrared spectroscopy (2D-PCIS). WT preserved the active hydroxyl groups and rearranged the macromolecule structure to allow cellulose to be more ordered, while DT removed these active hydroxyl groups and formed inter-crosslinking structures in macromolecules. Correspondingly, the bio-char yield after WT was lower than DT but the bio-char quality was upgraded due to high ash removal. Furthermore, higher bio-oil yield, higher sugar content, and higher H 2 generation, were obtained after WT. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Atmospheric distribution and removal of volcanic ash after the eruption of Kasatochi volcano: A regional model study

    NASA Astrophysics Data System (ADS)

    Langmann, Baerbel; ZakšEk, Klemen; Hort, Matthias

    2010-01-01

    In August 2008, Kasatochi volcano on the Aleutian Islands erupted without much advance warning. Volcanic ash released during this eruption quickly settled out of the atmosphere, mainly into the NE Pacific Ocean. The amount of volcanic ash, as well as the ash fall area and volume into the NE Pacific Ocean, remains speculative, as only a limited number of measurements is available. We used a three-dimensional atmosphere/chemistry-aerosol model to determine the atmospheric distribution of SO2 and volcanic ash and its fallout after the eruption of Kasatochi volcano. In a first step, modeled atmospheric SO2 distributions are compared with satellite data, thereby evaluating the model capabilities to reasonably reproduce atmospheric transport patterns. For modeled volcanic ash mass a considerable reduction of the atmospheric content already occurred by 10 August, the second day after the eruption in accordance with satellite observations. Gravitational settling is the most efficient removal process for volcanic ash mass, exceeding dry and wet deposition by far. Assuming an ash volume of 0.3 km3 released during the eruption of Kasatochi volcano and a median ash particle diameter of 4 μm, the mass of volcanic ash removed at ground within the 0.1 mm isopach covers an area of 7.6 × 105 km2 over the NE Pacific Ocean and makes up 49% of the removed material out of the atmosphere. The amount of ash and that of iron attached to it is sufficient to explain measured seawater CO2 decrease at the ocean station Papa in August 2008 induced by iron fertilization and subsequent phytoplankton production.

  13. Aluminum-fly ash metal matrix composites for automotive parts. [Reports for April 1 to June 30, 1999, and July 1 to September 30, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, David; Purgert, Robert; Rhudy, Richard

    1999-10-15

    Some highlights are: (1) During this quarter's field trials, sand mold castings of parts and permanent mold tensile testing bars, K mold bars, and ingots were made from aluminum alloy-fly ash melts. (2) Another objective was met, i.e., to use class ''F'' type precipitator fly ash consisting of particle sizes less than 100 microns. It was possible to pour the composite melt into the sand mold through a filter. (3) Trials were run to determine the required amount of the wetting agent, magnesium, to ensure appropriate mixing of the aluminum alloy and fly ash. The magnesium content required to mixmore » ''F'' fly ash was much lower compared to that required to mix hybrid ''C-F'' fly ash in similar melts. Fly ash particles of less than 100 microns were mixed in aluminum melt. Large scale field trials were undertaken at Eck Industries with the goal of standardizing procedures for producing aluminum-fly ash composite melts and to analyze the structure and properties of the resulting material. Limited testing of tensile properties has been done on pressure die cast parts, and attempts are underway to improve the distribution of fly ash in both sand cast and pressure die cast samples. Eck Industries performed radiographic, heat treatment, and tensile tests on permanent mold cast tensile test bars. After fly ash mixing experiments, the Lanxide high speed-high shear mixer (originally designed for mixing Al-SiC melts) was employed in an attempt to avoid fly ash agglomeration. It led to demixing (instead of deagglomerating) of some fly ash. However, the permanent mold tensile bars poured after high shear mixing displayed good distribution of fly ash in castings. A modified impeller design is being considered for high speed-high shear mixing of aluminum-fly ash melts.« less

  14. Stability and broad-sense heritaibility of mineral content in potato: copper and sulfur

    USDA-ARS?s Scientific Manuscript database

    Potato breeding lines and varieties in two separate trials were evaluated for copper and sulfur content by wet ashing and Inductively Coupled Argon Plasma Emission Spectrophotometer analysis. Stability and broad-sense heritability were determined. Copper contents ranged among genotypes between 2.0...

  15. Mercury in coals and fly ashes from Republika and Bobov dol thermoelectric power plants

    USGS Publications Warehouse

    Kostova, I.; Vassileva, C.; Hower, J.; Mastalerz, Maria; Vassilev, S.; Nikolova, N.

    2011-01-01

    Feed coal and y ash samples were collected at Republika and Bobov Dol thermoelectric power plants (TPPs). The y ashes (FAs) were collected fromthree rows of the hot-side electrostatic precipitators (ESPs) array. Each sam- ple was wet-screened at 100, 200, 325 and 500 mesh. The coals and y ashes were characterized with regard to their petrological and chemical composition (including mercury content) and to their surface area properties. The calculated enrichment factor (EF) shows that the Hg concentrations in the bulk coal samples from Republika and Bobov Dol TPPs are 2.19 and 1.41, respectively. In some coal size fractions the EF can be up to 4 times higher than the Clarke value. The calculated EF for fly ashes shows that the Hg concentrations in the bulk samples studied are lower (between 0.03 and 0.32) than the Clarke value. The most enriched in Hg are the fly ashes from the 3rd ESP row of Republika TPP. The Hg distribution in bulk FAs taken from dierent rows of the electrostatic precipitators of both TPPs studied shows well established tendency of gradual increase in the Hg content from the 1st to the 2nd and 3rd ESP rows. The correlation between Hg content and surface area, mesopore and micropore volume of y ashes was also done in the present investigation.

  16. Substrate composition and moisture in composting source-separated human faeces and food waste.

    PubMed

    Niwagaba, C; Nalubega, M; Vinnerås, B; Sundberg, C; Jönsson, H

    2009-04-14

    The composting of a faeces/ash mixture and food waste in relative proportions of 1:0, 1:1 and 1:3 was studied in three successive experiments conducted in Kampala, Uganda in 216 L reactors insulated with 75 mm styrofoam or not insulated. The faeces/ash mixture alone exceeded 50 degrees C for < or = 12 days in insulated reactors, but did not reach or maintain 50 degrees C in non-insulated reactors. Inclusion of food waste kept temperatures above 50 degrees C for over two weeks in insulated reactors except when the substrate was too wet. Escherichia coli and total coliform concentrations decreased below detection in material that exceeded 50 degrees C for at least six days. Enterococcus spp. decreased below detection in material that exceeded 50 degrees C for at least two weeks, but remained detectable after 1.5 months in material that exceeded 50 degrees C for less than two weeks, suggesting that a period of at least two weeks above 50 degrees C, combined with mixing, is needed to achieve sanitation. Initially substrates that were too wet proved a challenge to composting and ways of decreasing substrate moisture should be investigated. The results obtained are applicable to the management of small- to medium-scale composting of faeces/ash and food waste at household and institution levels, e.g. schools and restaurants.

  17. Electrodialytic remediation of municipal solid waste incineration residues using different membranes.

    PubMed

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M

    2017-02-01

    In the present work, three different commercial membrane brands were used in an identical electrodialytic cell setup and operating conditions, in order to reduce the leaching of metals and salt anions of two types of municipal solid waste incineration residues: air pollution control residues of a semi-dry flue-gas cleaning system and fly ashes from a plant with wet flue-gas cleaning system. The results showed a general reduction of the leaching in both residues after ED remediation. For the following elements, the leaching was found to be different after ED treatment depending on the membrane used, with statistical significance: • Air pollution control residues of the semi-dry flue-gas cleaning system: Cr, Cu, Ni, Pb, Zn; • Fly ashes from a plant with wet flue-gas cleaning system: Al, Ba, Cu, Ni, Zn, Cl, SO 4 . Final leaching values for some elements and membranes, but not the majority, were below than those of certified coal fly ash (e.g. Al or Cr), a material which is commonly used in construction materials; at the same time, some of these values were reduced to below the Danish law thresholds on the use of contaminated soil in constructions. These results show the potential of ED as a technology to upgrade municipal solid waste incineration residues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Biomimetic thermal barrier coating in jet engine to resist volcanic ash deposition

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Major, Zsuzsanna; Schulz, Uwe; Muth, Tobias; Lavallée, Yan; Hess, Kai-Uwe; Dingwell, Donald B.

    2017-04-01

    The threat of volcanic ash to aviation safety is attracting extensive attention when several commercial jet aircraft were damaged after flying through volcanic ash clouds from the May 1980 eruptions of Mount St. Helen in Washington, U.S. and especially after the air traffic disruption in 2010 Eyjafjallajökull eruption. A major hazard presented by volcanic ash to aircraft is linked to the wetting and spreading of molten ash droplets on engine component surfaces. Due to the fact ash has a lower melting point, around 1100 °C, than the gas temperature in the hot section (between 1400 to 2000 °C), this cause the ash to melt and potentially stick to the internal components (e.g., combustor and turbine blades), this cause the ash to melt and potentially stick to the internal components of the engine creating, substantial damage or even engine failure after ingestion. Here, inspiring form the natural surface of lotus leaf (exhibiting extreme water repellency, known as 'lotus effect'), we firstly create the multifunctional surface thermal barrier coatings (TBCs) by producing a hierarchical structure with femtosecond laser pulses. In detail, we investigate the effect of one of primary femtosecond laser irradiation process parameter (scanning speed) on the hydrophobicity of water droplets onto the two kinds of TBCs fabricated by electron-beam physical vapor deposition (EB-PVD) and air plasma spray (APS), respectively as well as their corresponding to morphology. It is found that, comparison with the original surface (without femtosecond laser ablation), all of the irradiated samples demonstrate more significant hydrophobic properties due to nanostructuring. On the basis of these preliminary room-temperature results, the wettability of volcanic ash droplets will be analysed at the high temperature to constrain the potential impact of volcanic ash on the jet engines.

  19. Effects of digestion, chemical separation, and deposition on Po-210 quantitative analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiner, Brienne N.; Morley, Shannon M.; Beacham, Tere A.

    Polonium-210 is a radioactive isotope often used to study sedimentation processes, food chains, aerosol behavior, and atmospheric circulations related to environmental sciences. Materials for the analysis of Po-210 range from tobacco leaves or cotton fibers, to soils and sediments. The purpose of this work was to determine polonium losses from a variety of sample types (soil, cotton fiber, and air filter) due to digestion technique, chemical separation, and deposition method for alpha energy analysis. Results demonstrated that yields from a perchloric acid wet-ash were similar to that from a microwave digestion. Both were greater than the dry-ash procedure. The poloniummore » yield from the perchloric acid wet ash was 87 ± 5%, the microwave digestion had a yield of 100 ± 7%, and the dry ash had a yield of 38 ± 5%. The chemical separation of polonium by an anion exchange resin was used only on the soil samples due to the complex nature of this sample. The yield of Po-209 tracer after chemical separation and deposition for alpha analysis was 83 ± 7% for the soil samples. Spontaneous deposition yields for the cotton and air filters were 87 ± 4% and 92 ± 6%, respectively. Based on the overall process yields for each sample type the amount of Po-210 was quantified using alpha energy analysis. The soil contained 0.18 ± 0.08 Bq/g, the cotton swipe contained 0.7 mBq/g, and the air filter contained 0.04 ± 0.02 mBq/g. High and robust yields of polonium are possible using a suitable digestion, separation, and deposition method.« less

  20. Study on the influence of the decoking agent on the activity of limestone in wet flue gas desulfurization

    NASA Astrophysics Data System (ADS)

    Li, Qianjun; Xu, Dongyang; Wu, Yunxia; Yu, Jin

    2017-01-01

    Influence of the main components of decoking agent (magnesium nitrate, aluminum nitrate, copper nitrate, ammonium nitrate and actual decoking agent) on the activity of limestone is studied in laboratory by MET method. Results show that magnesium nitrate, ammonium nitrate and copper nitrate almost has no effect on the activity of limestone. With the concentration increasing, aluminum nitrate has an increasing inhibition on the dissolution of limestone. Fly ash has inhibition on dissolution of limestone due to the blockage of limestone pore by fly ash. The actual decoking agent has almost no effect on the limestone.

  1. Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage.

    PubMed

    Kim, Youngmi; Mosier, Nathan S; Hendrickson, Rick; Ezeji, Thaddeus; Blaschek, Hans; Dien, Bruce; Cotta, Michael; Dale, Bruce; Ladisch, Michael R

    2008-08-01

    DDGS and wet distillers' grains are the major co-products of the dry grind ethanol facilities. As they are mainly used as animal feed, a typical compositional analysis of the DDGS and wet distillers' grains mainly focuses on defining the feedstock's nutritional characteristics. With an increasing demand for fuel ethanol, the DDGS and wet distillers' grains are viewed as a potential bridge feedstock for ethanol production from other cellulosic biomass. The introduction of DDGS or wet distillers' grains as an additional feed to the existing dry grind plants for increased ethanol yield requires a different approach to the compositional analysis of the material. Rather than focusing on its nutritional value, this new approach aims at determining more detailed chemical composition, especially on polymeric sugars such as cellulose, starch and xylan, which release fermentable sugars upon enzymatic hydrolysis. In this paper we present a detailed and complete compositional analysis procedure suggested for DDGS and wet distillers' grains, as well as the resulting compositions completed by three different research groups. Polymeric sugars, crude protein, crude oil and ash contents of DDGS and wet distillers' grains were accurately and reproducibly determined by the compositional analysis procedure described in this paper.

  2. Application of Modern Coal Technologies to Military Facilities. Volume II. Evaluation of the Applicability and Cost of Current and Emerging Coal Technologies for the Utilization of Coal as a Primary Energy Source

    DTIC Science & Technology

    1968-05-01

    flue gas . Is one. The more popular method Is wet limestone scrubbing. In the limestone Injection system, ground limestone Is mixed with the coal and...is removed. The remainder must be eliminated from the flue gas as SO2 by wet scrubbing. Reduced boiler efficiency, due to ash accumulation on the...use of the fluldlzed-bed boiler, rather than a conventional coal-fired boiler requiring a flue gas cleanup system, will result In an

  3. Characterization of Coal Combustion Residues from Electric Utilities Using Wet Scrubbers for Multi-Pollutant Control

    EPA Science Inventory

    This report evaluates changes that may occur to coal combustion residues (CCRs) in response to changes in air pollution control technology at coal-fired power plants, which will reduce emissions from the flue gas stack by transferring pollutants to fly ash and other air pollution...

  4. Compressive strength of marine material mixed concrete

    NASA Astrophysics Data System (ADS)

    Adnan; Parung, H.; Tjaronge, M. W.; Djamaluddin, R.

    2017-11-01

    Many cement factories have been incorporated fly ash with clinker cement to produce blended cement. PCC is a type of blended cement incorporated fly ash that produced in Indonesia cement factories. To promote the sustainable development in the remote islands this present paper attempted to study the suitability of sea water, marine sand that available abundantly surround the remote island with Portland Composite Cement (PCC) and crushed river stone to produce concrete. Slump test was conducted to evaluate the workability of fresh concrete and also compressive strength with stress-strain relationship was carried out to evaluate the hardened concrete that cured with two curing condition (e.g. sea water curing, and tap water-wet burlap curing). Test result indicated that fresh concrete had proper workability and all hardened specimens appeared a good compaction result. Compressive strength of specimens cured which sea water was higher than the specimens which cured by tap water-wet burlap where stress-strain behavior of specimens made with sea water, marine sand, and PCC had similar behavior with specimens which made with PCC and tap water.

  5. Site Simulation of Solidified Peat: Lab Monitoring

    NASA Astrophysics Data System (ADS)

    Durahim, N. H. Ab; Rahman, J. Abd; Tajuddin, S. F. Mohd; Mohamed, R. M. S. R.; Al-Gheethi, A. A.; Kassim, A. H. Mohd

    2018-04-01

    In the present research, the solidified peat on site simulation is conducted to obtain soil leaching from soil column study. Few raw materials used in testing such as Ordinary Portland Cement (OPC), Fly ash (FA) and bottom ash (BA) which containing in solidified peat (SP), fertilizer (F), and rainwater (RW) are also admixed in soil column in order to assess their effects. This research was conducted in two conditions which dry and wet condition. Distilled water used to represent rainfall during flushing process while rainwater used to gain leaching during dry and wet condition. The first testing made after leaching process done was Moisture Content (MC). Secondly, Unconfined Compressive Strength (UCS) will be conducted on SP to know the ability of SP strength. These MC and UCS were made before and after SP were applied in soil column. Hence, the both results were compared to see the reliability occur on SP. All leachate samples were tested using Absorption Atomic Spectroscopy (AAS), Ion Chromatography (IC) and Inductively-Coupled Plasma Spectrophotometry (ICP-MS) testing to know the anion and cation present in it.

  6. Forty years of vegetation change on the Missouri River floodplain

    USGS Publications Warehouse

    Johnson, W. Carter; Dixon, Mark D.; Scott, Michael L.; Rabbe, Lisa; Larson, Gary; Volke, Malia; Werner, Brett

    2012-01-01

    Comparative inventories in 1969 and 1970 and in 2008 of vegetation from 30 forest stands downstream of Garrison Dam on the Missouri River in central North Dakota showed (a) a sharp decline in Cottonwood regeneration; (b) a strong compositional shift toward dominance by green ash; and (c) large increases in invasive understory species, such as smooth brome, reed canary grass, and Canada thistle. These changes, and others discovered during remeasurement, have been caused by a complex of factors, some related to damming (altered hydrologic and sediment regimes, delta formation, and associated wet-dry cycles) and some not (diseases and expansion of invasive plants). Dominance of green ash, however, may be short lived, given the likelihood that the emerald ash borer will arrive in the Dakotas in 5-10 years, with potentially devastating effects. The prospects for recovery of this valuable ecosystem, rich in ecosystem goods and services and in American history, are daunting.

  7. Sulfate resistance of high calcium fly ash concrete

    NASA Astrophysics Data System (ADS)

    Dhole, Rajaram

    Sulfate attack is one of the mechanisms which can cause deterioration of concrete. In general, Class C fly ash mixtures are reported to provide poor sulfate resistance. Fly ashes, mainly those belonging to the Class C, were tested as per the ASTM C 1012 procedure to evaluate chemical sulfate resistance. Overall the Class C fly ashes showed poor resistance in the sulfate environment. Different strategies were used in this research work to improve the sulfate resistance of Class C fly ash mixes. The study revealed that some of the strategies such as use of low W/CM (water to cementing materials by mass ratio), silica fume or ultra fine fly ash, high volumes of fly ash and, ternary or quaternary mixes with suitable supplementary cementing materials, can successfully improve the sulfate resistance of the Class C fly ash mixes. Combined sulfate attack, involving physical and chemical action, was studied using sodium sulfate and calcium sulfate solutions. The specimens were subjected to wetting-drying cycles and temperature changes. These conditions were found to accelerate the rate of degradation of concrete placed in a sodium sulfate environment. W/CM was found to be the main governing factor in providing sulfate resistance to mixes. Calcium sulfate did not reveal damage as a result of mainly physical action. Characterization of the selected fly ashes was undertaken by using SEM, XRD and the Rietveld analysis techniques, to determine the relation between the composition of fly ashes and resistance to sulfate attack. The chemical composition of glass represented on the ternary diagram was the main factor which had a significant influence on the sulfate resistance of fly ash mixtures. Mixes prepared with fly ashes containing significant amounts of vulnerable crystalline phases offered poor sulfate resistance. Comparatively, fly ash mixes containing inert crystalline phases such as quartz, mullite and hematite offered good sulfate resistance. The analysis of hydrated lime-fly ash pastes confirmed that fly ash mortar or concrete mixes forming more monosulfate than ettringite before exposure to sulfates would offer poor sulfate resistance and vice versa. During quantitative Rietveld analysis carried out for determining ettringite, monosulfate and gypsum formed in the fly ash pastes, it was observed that fly ash mixtures showing more ettringite after exposures to sulfates, give poor sulfate resistance. A good relationship between the amounts of ettringite formed and expansions of mortar specimens in the ASTM C 1012 test was found.

  8. Investigation of heavy metal content of Turkish tobacco leaves, cigarette butt, ash, and smoke.

    PubMed

    Pelit, Füsun Okçu; Demirdöğen, Ruken Esra; Henden, Emür

    2013-11-01

    A procedure for the determination of cadmium, copper, manganese, and zinc in Turkish tobaccos, which were of different origins, years, and grades, and in the butt, ash, and smoke, which were obtained by smoking the cigarettes that were prepared manually from the said tobaccos in a smoking apparatus, was devised as proposed. The collected samples were digested by wet ashing technique by using HNO3-HClO4 and were analyzed by flame atomic absorption spectrometry with satisfactory recoveries (94% to 98%). The regression coefficients were above 0.99, and the detection limits were in the range of 0.03-0.12 mg/L(-1). The performance and accuracy of the method was tested by analyzing "Certified Reference Material GBW 08501-Peach Leaves." The determined values were in agreement with the standard values for the heavy metals analyzed. Thus, it was concluded that the developed method could offer a wide range of application for establishing a relationship between the makeup and composition of tobacco plant, products, ash, smoke, and smoking.

  9. Biometric studies on the bivalves Astarte elliptica, A. borealis and A. montagui in Kiel Bay (Western Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Schaefer, R.; Trutschler, K.; Rumohr, H.

    1985-09-01

    The three Astarte species were studied in June 1983 at two sites in Kiel Bay, “Süderfahrt” and “Schleimünde”, at 20 m depth. Shell length to live wet weight correlations are given for all three species; for A. elliptica also shell-free dry weight, shell dry weight, ash-free dry weight of the soft body and ash-free dry weight of the shell are recorded as functions of the shell length. In the logarithmic length/weight regression analysis the coefficients of slope for A. elliptica and A. borealis are 3. For A. montagui, that coefficient is significantly greater than 3. Weight conversion factors, calculated for A. elliptica, revealed a mean weight composition of 31.5 % water in the mantle cavity and tissue water, 64.5 % shell ash, 2.1 % organic content of shell, 1.7 % organic content of the soft body and 0.4 % ash of the soft body. An isometric growth of shell length and shell breadth is confirmed for A. borealis, while A. montagui exhibits positive allometric shell growth and changes its shape during life.

  10. Utilization of open pit burned household waste ash--a feasibility study in Dhaka.

    PubMed

    Haque, Md Obaidul; Sharif, Ahmed

    2014-05-01

    Informal incineration or open pit burning of waste materials is a common practice in the peripheral area of Dhaka, one of the fastest growing mega-cities in the world. This study deals with the effect of open pit burned (i.e. open burned) household waste bottom ash on fired clay bricks. Between 0 to 50% (by weight) of open pit burned household waste bottom ash was mixed with clay to make bricks. The molded specimens were air-dried at room temperature for 24 h and then oven dried at 100 °C for another 24 h to remove the water. The raw bricks were fired in a muffle furnace to a designated temperature (800, 900 and 1000 °C, respectively). The firing behaviour (mechanical strength, water absorption and shrinkage) was determined. The microstructures, phase compositions and leachates were evaluated for bricks manufactured at different firing temperatures. These results demonstrate that open pit burned ash can be recycled in clay bricks. This study also presents physical observations of the incinerated ash particles and determination of the chemical compositions of the raw materials by wet analysis. Open pit burned ash can be introduced easily into bricks up to 20% wt. The concentrations of hazardous components in the leachates were below the standard threshold for inert waste category landfill and their environmental risk during their use-life step can be considered negligible.

  11. Human Footprints in Relation to the 1790 Eruption of Kilauea

    NASA Astrophysics Data System (ADS)

    Swanson, D. A.; Rausch, J.

    2008-12-01

    In 1790, a party of warriors and their families was decimated by an explosive eruption of Kilauea; fatality estimates range from about 80 to 5,405. In 1920, thousands of footprints made by barefoot walkers in wet accretionary lapilli ash were found within a few kilometers southwest of Kilauea's summit. In 1921, Jaggar related the footprints to survivors or rescuers of the 1790 eruption, mainly because he assumed that few people visited the supposedly forbidden area except in 1790. Archaeologists from Hawai'i Volcanoes National Park recently questioned whether the footprints were made at that time and by warriors, citing a wide range of directions that people were walking and evidence of extensive human use of the area. Forensic and anthropologic studies indicate that a human foot is about 15 percent of an individual's height. A man's foot may be slightly more that 15 percent, a women's slightly less, but nonetheless the height can be estimated to within a few centimeters. We measured the heel-big toe length of more than 400 footprints and calculated an average height of 1.5 m, including some children only a little more than 1 m tall. Few calculated heights are 1.75 m or more. Early Europeans described Hawaiian warriors as tall, one missionary estimating an average height of 1.78 m. A footprint may be larger than a foot, particularly in slippery, wet ash, so our estimates of heights are probably somewhat too large. The data indicate that most of the footprints were made by women and children, not by men, much less warriors. We traced the footprint-bearing ash into the tephra section on the southwest side of Kilauea's caldera. It occurs high in the section, resting on older explosive deposits. Its surface is indented by small lithic lapilli, which fell into the ash while it was still wet; a few even landed in footprints. The lithic lapilli are at the edge of a thick block and lapilli deposit that fell from a high eruption column; the column reached well into the jet stream, because its fallout was mainly dispersed east-southeastward by westerlies, a wind direction found only at high altitudes in Hawai'i. Surges associated with the high eruption column swept over the southwest and west rims of the caldera. These relations indicate that the accretionary lapilli (footprints) ash was an early stage of a powerful eruption involving both high columns and lithic surges. Hawaiian oral tradition says that the 1790 eruption was large, and Jaggar calculated a column height probably greater than 9 km (30,000 ft) based on observations of a pillar (eruption column) seen over Mauna Loa when viewed from the north. This is about halfway through the jet stream. Our work found two deposits of the late 1700s dispersed east of Kilauea's summit. The younger was probably erupted in 1790. A reconstruction of events in 1790 suggests that the accretionary lapilli ash fell early in the eruption, blown southwestward into areas where family groups, mainly women and children, were chipping glass from old pahoehoe for tools. They probably sought shelter while the ash was falling. but once it stopped, they slogged through the mud, leaving footprints in the 2-cm-thick deposit.. Meanwhile, the warriors and their families, camped at Kilauea's summit (supposedly for 3 days) waiting for the eruption to end, saw the sky clear following the ash eruption and started walking southwestward along the west side of the summit area. Then the most powerful stage of the eruption began, sending surges westward across the path of the doomed group, killing many. Afterwards, any survivors or rescuers who walked on the accretionary lapilli ash, by now dry, left no footprints that are preserved.

  12. Leaching kinetics of bottom ash waste as a source of calcium ions.

    PubMed

    Koech, Lawrence; Everson, Ray; Neomagus, Hein; Rutto, Hilary

    2015-02-01

    Bottom ash is a waste material from coal-fired power plants, and it is known to contain elements that are potentially toxic at high concentration levels when disposed in landfills. This study investigates the use of bottom ash as a partial substitute sorbent for wet flue gas desulfurization (FGD) processes by focusing on its leaching kinetics in adipic acid. This was studied basing on the shrinking core model that was applied to the experimental data obtained by the authors presented at the International Conference on Industrial, Manufacturing, Automation and Mechanical Engineering, Johannesburg, South Africa, November 27-28, 2013) on dissolution of bottom ash. The leaching rate constant was obtained from different reaction variables, namely, temperature, pH, acid concentration, and solid-to-liquid ratio, that could affect the leaching process. The solid sample of bottom ash was characterized at different leaching periods using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that solid-to-liquid ratio had a significant effect on the leaching rate constant when compared with other variables. The leaching kinetics showed that diffusion through the product layer was the rate-controlling step during leaching, and the activation energy for the process was found to be 18.92 kJ/mol.

  13. Magnetic separation of coal fly ash from Bulgarian power plants.

    PubMed

    Shoumkova, Annie S

    2011-10-01

    Fly ash from three coal-burning power plants in Bulgaria: 'Maritza 3', 'Republika' and 'Rousse East' were subjected to wet low-intensity magnetic separation. The tests were performed at different combinations of magnetic field intensity, flow velocity and diameter of matrix elements. It was found that all parameters investigated affected the separation efficiency, but their influence was interlinked and was determined by the properties of the material and the combination of other conditions. Among the fly ash characteristics, the most important parameters, determining the magnetic separation applicability, were mineralogical composition and distribution of minerals in particles. The main factors limiting the process were the presence of paramagnetic Fe-containing mineral and amorphous matter, and the existence of poly-mineral particles and aggregates of magnetic and non-magnetic particles. It was demonstrated that the negative effect of both factors could be considerably limited by the selection of a proper set of separation conditions. The dependences between concentration of ferromagnetic iron in the ash, their magnetic properties and magnetic fraction yields were studied. It was experimentally proved that, for a certain set of separation conditions, the yields of magnetic fractions were directly proportional to the saturation magnetization of the ferromagnetic components of the ash. The main properties of typical magnetic and non-magnetic fractions were studied.

  14. Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuboňová, L., E-mail: lenka.kubonova@vsb.cz; Langová, Š.; Nowak, B.

    2013-11-15

    Highlights: • MSW fly ash was thermally and hydrometallurgically treated to remove heavy metals. • More than 90% of easy volatile heavy metals (Cd and Pb) were removed thermally. • More than 90% of Cd, Cr, Cu an Zn were removed by alkaline – acid leaching. • The best results were obtained for the solution of 3 M NaOH and 2 M H{sub 2}SO{sub 4}. - Abstract: Heavy metals in fly ash from municipal solid waste incinerators are present in high concentrations. Therefore fly ash must be treated as a hazardous material. On the other hand, it may be amore » potential source of heavy metals. Zinc, lead, cadmium, and copper can be relatively easily removed during the thermal treatment of fly ash, e.g. in the form of chlorides. In return, wet extraction methods could provide promising results for these elements including chromium and nickel. The aim of this study was to investigate and compare thermal and hydrometallurgical treatment of municipal solid waste fly ash. Thermal treatment of fly ash was performed in a rotary reactor at temperatures between 950 and 1050 °C and in a muffle oven at temperatures from 500 to 1200 °C. The removal more than 90% was reached by easy volatile heavy metals such as cadmium and lead and also by copper, however at higher temperature in the muffle oven. The alkaline (sodium hydroxide) and acid (sulphuric acid) leaching of the fly ash was carried out while the influence of temperature, time, concentration, and liquid/solid ratio were investigated. The combination of alkaline-acidic leaching enhanced the removal of, namely, zinc, chromium and nickel.« less

  15. Aluminum-fly ash metal matrix composites for automotive parts. [Reports for October 1 to December 31, 1999, and January 1 - to March 31, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, David; Purgert, Robert; Rhudy, Richard

    2000-04-21

    The highlights of this report are: (1) fly ash classified by less than 100 microns in size was mixed into a 300 lb melt of alloy 535 without the need of a magnesium additive; (2) a vibratory feeder fitted with a sieve was used as the means to minimize particle clustering while introducing fly ash into the aluminum alloy 535 melt; and (3) the industrial-size field test was successful in that sand mold castings and permanent mold castings of tensile bars, K mold bars, and ingots were made from aluminum alloy 535-fly ash mix. Use of aluminum alloy 535 containingmore » 7% magnesium precluded the need to introduce additional magnesium into the melt. The third round of sand mold castings as well as permanent mold castings produced components and ingots of alloy 535 instead of alloy 356. The ingots will be remelted and cast into parts to assess the improvement of flyash distribution which occurs through reheating and the solidification wetting process. Microstructure analysis continues on sand and permanent mold castings to study particle distribution in the components. A prototype sand cast intake manifold casting was found to be pressure tight which is a major performance requirement for this part. Another heat of pressure die cast brackets of A380-classified fly ash will be made to examine their strength and fly ash distribution. Ingots of A356-fly ash have been made at Eck for remelting at Thompson Aluminum for squeeze casting into motor mounts.« less

  16. Application of microwave digestion to the analysis of peat

    USGS Publications Warehouse

    Papp, C.S.E.; Fischer, L.B.

    1987-01-01

    A microwave digestion technique for the dissolution of peat is described and compared with a dry ashing method and a nitric - perchloric - hydrofluoric acid wet digestion. Peat samples with different organic matter contents were used and Ca, Mg, Fe, AI, Na, K, Mn, Zn, Cu and Li were determined by atomic absoprtion spectrometry. The results obtained using the three dissolution techniques were in good agreement. The microwave method has the advantage of digesting the samples in less than 2 h and uses less acid than the conventional wet digestion method. Keeping the volume of the acid mixture as small as possible minimises contamination and leads to lower blank values.

  17. Development and testing of a wet oxidation waste processing system. [for waste treatment aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Weitzmann, A. L.

    1977-01-01

    The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.

  18. 3D Micro-tomography on Aggregates from the 2014- 2015 Eruption of Hunga Tonga-Hunga Ha'apai Volcano

    NASA Astrophysics Data System (ADS)

    Colombier, M.; Scheu, B.; Cronin, S. J.; Tost, M.; Dobson, K. J.; Dingwell, D. B.

    2016-12-01

    In December 2014- January 2015, a surtseyan eruption at Hunga Tonga-Hunga Ha'apai volcano (Tonga) formed a new island. Three main eruptive phases were distinguished by observation and deposits: (i) mound and cone construction, involving collapse of 300-600 m-high wet tephra jets, grain flows, slope-remobilisation and energetic surges, with little or no convective plume (ii) The upper cone-building phase with lower jets (mainly <300 m) but greater ash production (weak, steam-rich plumes to 6 km) and weak surges, and (iii) final phase with weak surge, fall and ballistic deposits with more vesicular pyroclasts producing proximal capping deposits. Most sampled deposits contain ash, lapilli and bombs, and lapilli-sized aggregates are ubiquitous. We used high-resolution 3D X-ray microcomputed tomography (XCT) to quantify the grain size distribution (GSD) and porosity by sampling multiple stratigraphic units within the main eruptive sequences. We visualized and quantified the internal structure of the aggregates to understand the evolution of this surtseyan eruption. We present here an overview of the textural information: porosity, vesicle size distribution and morphology as well as the variability of the aggregation features. Aggregates from the fall deposits of the early wet phase are mostly loosely packed, poorly-structured ash clusters. Aggregates from the early surge sequence and the main cone building phase dominantly exhibit a central particle coated by ash cluster material. Vesicles in the particles from the early fall deposits tend to be smaller and more isolated than in the particles from the surge sequence and the main cone building phase. The GSD of aggregates obtained by XCT is highly valuable to correct the total GSD of volcaniclastic deposits. The strong variations in the aggregation features across the eruption suggest a range of different formation and deposition mechanisms related to varying degrees of magma-water-interaction, which changed the morphology and textural properties of the individual particles.

  19. Polyamines and inorganic ions extracted from woody tissues by freeze-thawing

    Treesearch

    Rakesh Minocha; Walter C. Shortle

    1994-01-01

    A simple and fast method for extraction of major inorganic ions (Ca, Mg, Mn, K, and P) and cellular polyamines from small quantities of wood and woody plant tissues is described. The method involves repeated freezing and thawing of samples instead of homogenization or wet ash digestion. The efficiency of extraction of both polyamines and inorganic ions by these methods...

  20. Mechanical properties of geopolymer lightweight brick with styrofoam pellet

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohd Mustafa Al Bakri; Tahir, Muhammad Faheem Mohd; Kadir, Aeslina Abdul; Hussin, Kamarudin; Samson, W. Saiful Iskandar W.

    2017-09-01

    The utilization of fly ash in brick as partial replacement of cement is gaining immense importance today, mainly on account of the improvement in the long-term durability of brick combined with ecological benefits. In this research, the lightweight brick was produced by using fly ash (class F) as a main material to replace Ordinary Portland Cement (OPC) in the composition of brick. Class F Fly Ash was mixed with an alkaline activator solution (a mixture of sodium silicate and NaOH), and styrofoam pellet was added to the geopolymer mixture to produce lightweight brick. The brick was prepared in two methods that is wet method and dry method due to different brick composition which is dry method for composition with sand and wet method for composition without sand. The bricks were cured in room temperature at 7 aging days. After 7 days, the compressive strength, water absorption, and density of the brick were investigated, where the optimum ratio for the best bricks has been determined from the lightweight density and has compressive strength more than minimum standard requirement. The best bricks are further produce for curing at 60°C in oven at 28 aging days. Those bricks also were characterized using optical microscope to measure the distribution of styrofoam in brick structure. From the result obtained, the brick that cured at 60°C in oven at 28 aging days has high strength compare to brick that cured in room temperature and at 7 day cured. The water absorption is decreasing as the curing temperature and aging days increased whereas density is increasing.

  1. Evaluation of rice husk ash as filler in tread compounds

    NASA Astrophysics Data System (ADS)

    Fernandes, M. R. S.; Furtado, C. R. G.; de Sousa, A. M. F.

    2014-05-01

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same time better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety).

  2. Constraining the alteration history of a Late Cretaceous Patagonian volcaniclastic bentonite-ash-mudstone sequence using K-Ar and 40Ar/39Ar isotopes

    NASA Astrophysics Data System (ADS)

    Warr, L. N.; Hofmann, H.; van der Pluijm, B. A.

    2017-01-01

    Smectite is typically considered unsuitable for radiometric dating, as argon (40Ar) produced from decay of exchangeable potassium (40K) located in the interlayer sites can be lost during fluid-rock interaction and/or during wet sample preparation in the laboratory. However, age analysis of Late Cretaceous Argentinian bentonites and associated volcaniclastic rocks from Lago Pellegrini, Northern Patagonia, indicates that, in the case of these very low-permeability rocks, the radioactive 40Ar was retained and thus can provide information on smectite age and the timing of rock alteration. This study presents isotopic results that indicate the ash-to-bentonite conversion and alteration of the overlying tuffaceous mudstones in Northern Patagonia was complete 13-17 my after middle Campanian sedimentation when the system isotopically closed. The general absence of illite in these smectite-rich lithologies reflects the low activity of K and the low temperature (<60 °C) of the formation waters that altered the parent ash.

  3. Atmospheric Processing of Volcanic Glass: Effects on Iron Solubility and Redox Speciation.

    PubMed

    Maters, Elena C; Delmelle, Pierre; Bonneville, Steeve

    2016-05-17

    Volcanic ash from explosive eruptions can provide iron (Fe) to oceanic regions where this micronutrient limits primary production. Controls on the soluble Fe fraction in ash remain poorly understood but Fe solubility is likely influenced during atmospheric transport by condensation-evaporation cycles which induce large pH fluctuations. Using glass powder as surrogate for ash, we experimentally simulate its atmospheric processing via cycles of pH 2 and 5 exposure. Glass fractional Fe solubility (maximum 0.4%) is governed by the pH 2 exposure duration rather than by the pH fluctuations, however; pH 5 exposure induces precipitation of Fe-bearing nanoparticles which (re)dissolve at pH 2. Glass leaching/dissolution release Fe(II) and Fe(III) which are differentially affected by changes in pH; the average dissolved Fe(II)/Fetot ratio is ∼0.09 at pH 2 versus ∼0.18 at pH 5. Iron release at pH 2 from glass with a relatively high bulk Fe(II)/Fetot ratio (0.5), limited aqueous Fe(II) oxidation at pH 5, and possibly glass-mediated aqueous Fe(III) reduction may render atmospherically processed ash a significant source of Fe(II) for phytoplankton. By providing new insight into the form(s) of Fe associated with ash as wet aerosol versus cloud droplet, we improve knowledge of atmospheric controls on volcanogenic Fe delivery to the ocean.

  4. Glass-ceramics from municipal incinerator fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boccaccini, A.R.; Petitmermet, M.; Wintermantel, E.

    1997-11-01

    In countries where the population density is high and the availability of space for landfilling is limited, such as the west-European countries and Japan, the significance of municipal solid waste incineration, as part of the waste management strategy, is continuously increasing. In Germany and Switzerland, for example, more than {approximately}40% of unrecycled waste is being or will be incinerated. Also, in other countries, including the US, the importance of waste incineration will increase in the next few years. Although incineration reduces the volume of the waste by {approximately} 90%, it leaves considerable amounts of solid residues, such as bottom andmore » boiler ashes, and filter fly ashes. Consequently, new technological options for the decontamination and/or inertization of incinerator filter fly ash are being developed with the objective of rendering a product that can be reused or, at least, be deposited in standard landfill sites with no risk. The proposed alternatives include immobilization by cement-based techniques, wet chemical treatments and thermal treatments of vitrification. Of these, vitrification is the most promising solution, because, if residues are melted at temperatures > 1,300 C, a relatively inert glass is produced. In the present investigation, glass-ceramics were obtained by a controlled crystallization heat treatment of vitrified incinerator filter fly ashes. The mechanical and other technical properties of the products were measured with special emphasis on assessing their in vitro toxic potential.« less

  5. Distinguishing styles of explosive eruptions at Erebus, Redoubt and Taupo volcanoes using multivariate analysis of ash morphometrics

    NASA Astrophysics Data System (ADS)

    Avery, Meredith R.; Panter, Kurt S.; Gorsevski, Pece V.

    2017-02-01

    The style and dynamics of volcanic eruptions control the level and type of hazards posed for local populations and can have a temporary long-range impact on climate if eruptions are extremely energetic. The purpose of this study is to provide a statistical approach to ash morphometrics in order to provide a means by which to evaluate diverse eruption styles and mechanisms of fragmentation. The methodology presented can be applied to tephra deposits worldwide and may aid volcanic hazard mitigation by better defining a volcano's history of explosive behavior. Ash-sized grains were collected from tephra deposits on Mount Erebus, Antarctica (< 10 ka, phonolitic unit SC4), Mount Redoubt, Alaska (2009, andesitic events 2-4 & 9-18), and the Taupo volcano, New Zealand (1.8 ka, rhyolitic unit 3D). Coarse ash from each deposit was carefully hand-sieved to 1 mm diameter and display diverse morphologies that vary from grains that are moderately vesicular and more rectangular (blocky) to highly vesiculated (spongy) grains that vary from angular to sub-rounded. A total of 264 grains were imaged by scanning electron microscopy. Morphometric properties were determined using image processing software and then evaluated by several statistical methods. Discriminant analysis of all parameters was found to be the best at differentiating the tephra deposits and allowing for interpretation of eruptive styles in conjunction with field observations. A linear array of data forming a positive slope in factor space, which explains > 99% of the total data variance, is interpreted to represent a continuum between fragmentations involving water-magma interaction ("wet") to grains that were formed predominately by magmatic ("dry") fragmentation mechanisms. The Taupo Hatepe ash, which was deposited from a phreatoplinian eruption column, has the highest factor values in the array, which signifies, in part, more rectangular/blocky morphologies with smooth grain edges. Factor values for the 2009 Redoubt eruption (events 2-4) are nearly as high as Hatepe ash and based on this we suggest that it was produced, in part, by phreatomagmatic fragmentation. This is supported by field observations that document melting and eruption through glacial ice during the early phases of the 2009 activity. Redoubt ash grains from later stages of the same eruption (events 9-18) show a significant shift to lower values in factor space (more irregular/vesiculated grains) and are interpreted to be a consequence of 'dryer' conditions. Coarse ash data from Mount Erebus are completely separated from Taupo and Redoubt grains in factor space due primarily to the difference in mean gray value, which is a proxy for vesicle density and size. The vesicle characteristics (larger and deeper) are consistent with documented strombolian-style activity and the scatter in grain shape data support fragmentation by a mixture of wet and dry processes as has previously been proposed based on deposit characteristics and resemblance to tephra produced by current activity.

  6. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility.

    PubMed

    Cao, Yan; Wang, Quan-Hai; Li, Jun; Cheng, Jen-Chieh; Chan, Chia-Chun; Cohron, Marten; Pan, Wei-Ping

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactorwas about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155 degrees C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155 degrees C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, attesting conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBr addition alone).

  7. The effectiveness of respiratory protection worn by communities to protect from volcanic ash inhalation. Part I: Filtration efficiency tests.

    PubMed

    Mueller, William; Horwell, Claire J; Apsley, Andrew; Steinle, Susanne; McPherson, Stephanie; Cherrie, John W; Galea, Karen S

    2018-04-22

    During volcanic eruptions and their aftermath, communities may be concerned about the impacts of inhaling volcanic ash. Access to effective respiratory protection (RP) is therefore important for many people in volcanic areas all over the world. However, evidence to support the use of effective RP during such crises is currently lacking. The aim of this study was to build the first evidence base on the effectiveness of common materials used to protect communities from ash inhalation in volcanic crises. We obtained 17 forms of RP, covering various types of cloth through to disposable masks (typically used in occupational settings), which communities are known to wear during volcanic crises. The RP materials were characterised and subjected to filtration efficiency (FE) tests, which were performed with three challenge dusts: ashes from Sakurajima (Japan) and Soufrière Hills (Montserrat) volcanoes and aluminium oxide (Aloxite), chosen as a low-toxicity surrogate dust of similar particle size distribution. FE tests were conducted at two concentrations (1.5 mg/m 3 and 2.5 mg/m 3 ) and two flow rates (equivalent to 40 and 80 l/min through 15.9 cm 2 sections of each RP type). Each material was held in a sample holder and PM 2.5 dust concentrations were measured both outside the mask material and inside the sample holder to determine FE. A limited number of tests were undertaken to assess the effect on FE of wetting a bandana and a surgical mask, as well as folding a bandana to provide multiple filter layers. Overall, four RP materials performed very well against volcanic ash, with median FEs in excess of 98% (N95-equiv., N99-equiv., PM 2.5 surgical (Japan), and Basic flat-fold (Indonesia)). The two standard surgical masks tested had median FEs of 89-91%. All other materials had median FEs ranging from 23 to 76% with no cloth materials achieving >44%. Folding a bandana resulted in better FE (40%; 3× folded) than single-layered material (29%). Wetting the bandana and surgical mask material did not improve FE overall. This first evidence base on the FE of common materials used to protect communities in volcanic crises from ash inhalation has been extended in a companion study (Steinle et al., 2018) on the total inward leakage of the best-performing masks when worn by human volunteers. This will provide a complete assessment of the effectiveness of these RP types. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  8. Effects of a layer of vegetative ash layer on wettable and water repellent soil hydrology

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.; Doerr, Stefan H.; Cerdà, Artemi; Mataix-Solera, Jorge

    2010-05-01

    Following a wildfire, a layer of vegetative ash often covers the ground until it is dissolved or redistributed by wind and water erosion. Much of the existing literature suggests that the ash layer temporally reduces infiltration by clogging soil pores or by forming a surface crust (Mallik et al., 1984; Onda et al., 2008). However, an increasing number of field-based studies have found that, at least in the short term, ash increases infiltration by storing rainfall and protecting the underlying soil from sealing (Cerdà and Doerr, 2008; Woods and Balfour, 2008). On the other hand, after a fire the soil may have produced, enhanced or reduced its water repellency (Doerr et al., 2000). Very few studies have been taken into account the interaction of the ash and the repellent soil. The layer of ash may have similar role as a litter layer in delaying runoff and reducing erosion by storing water. In order to examine this interaction, it was been made a series of experiments using a laboratory rainfall simulation. It has been assessed the effects of an ash layer i) on a wettable and water repellent soil (WDPT > 7200s), ii) with different ash thicknesses (bare soil and 5 mm, 15 mm and 30 mm of ash), iii) preceding and following the first rain after a fire when the ground is still wetted and after being partially dried. Three replicates were done, being a total of 40 simulations. The ash used was collected from a Wildfire in Teruel (Spain) during summer of 2009. The simulations were conducted in metal boxes of 30x30 cm and filled with 3 cm of soil. The slope of the box was set at 10° (17%) and the intensity applied was 78-84 mm h-1during 40 minutes. The splash detachment was determined also using four splash cups. Overland flow and subsurface drainage was collected at 1-minute intervals and the former stored every 5 min to allow determination of sediment concentrations, yield and erosion rates. Each sample was examined at the end in terms of water repellency, infiltration pattern and ash incorporation into the soil. The results show that when ash covers the wettable soil, runoff occur for a short period of time in the middle of the event. It occurred latter on time but larger in quantity as the ash thickness increases (from 0% to 2% of runoff coefficient) and at the same time drainage is reduced (from 57 to 24%). This suggests that the ash layer became saturated and produce runoff until the water is able to drain into the soil. Oppositely, in water repellent soil as ash thickness increases both runoff is reduced (from 78% to 26%) and drainage is increased (from 0 to 16%). That fact indicates a modification in the hydraulic conductivity of the repellent soil due to the pressure of the ash layer. Splash and erosion rates are bigger in water repellent soils yet erosion rates never exceed 2.5 g m-2 h-1. The fact of wetting increases the runoff and drainage rates in wettable but reduce them in the water repellent soil. An irregular infiltration pattern is observed afterwards. After drying the soil, the increase in runoff indicates a crust formation. Moreover, in water repellent soils part of the repellency is reestablished. These findings demonstrate that the interaction of the soil-ash layer should be considered and better studied in the immediate hydrological response after wildfire due to its particular behavior. References Cerdà, A. and Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74: 256-263. Doerr, S.H., Shakesby, R.A. and Walsh, R.P.D., 2000. Soil Water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth Science Reviews, 51: 33-65. Mallik, A.U., Gimingham, C.H. and Rahman, A.A., 1984. Ecological effects of heater burning. I. Water infiltration, moisture retention and porosity of surface soil. Journal of Ecology, 72: 767-776. Onda, Y., Dietrich, W.E. and Booker, F., 2008. Evolution of overland flow after a severe forest fire, Point Reyes, California. Catena, 72: 13-20. Woods, S.W. and Balfour, V., 2008. The effect of ash on runoff and erosion after a forest wildfire, Montana, U.S.A. International Journal of Wildland Fire, 17(5): 535-548.

  9. Description and mineralogy of Tertiary volcanic ash partings and their relationship to coal seams, near Homer, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinink-Smith, L.M.

    1985-04-01

    Outcrops of Tertiary coal-bearing units in sea cliffs of the Kenai Peninsula provide an excellent study area for volcanic ash partings in coals. Twenty mid-to late-Miocene, 50-cm to 3-m thick coal seams exposed in the sea cliffs about 10 km west of Homer contain an average of 10 volcanic ash or lapilli tuff partings each. The bedding relationships of the coal with any one parting cannot be predicted, and the contacts of the partings with the coal range from very sharp to predominantly gradational. These bedding relationships provide clues about the surface on which the ashes fell and on whichmore » the coal was accumulating. For example, some ashes fell in standing water, others on irregular subaerial surfaces. The partings are in various stages of alteration to kaolinite and bentonite, and vary in thickness from a few millimeters to about 10 cm. The consistency and texture of the partings depend on the degree of alteration; the less altered partings display visible pumice fragments and euhedral feldspars, commonly within a finer grained matrix. Separate pumice fragments, excluding matrix, can also occur as partings in the coal. The more altered partings may be wet and plastic, or they may be well indurated claystones; the colors range from gray-yellow to dark brown. The indurated prints are more common in older part of the section. The coal seams may be capped by volcanic ash partings and are commonly underlain by a pencil shale of nonvolcanic origin.« less

  10. Use of isotopic and hydrometric monitoring methods to partition hydrologic contributions to forested wetlands in the Upper Peninsula of Michigan

    NASA Astrophysics Data System (ADS)

    Van Grinsven, M. J.; Pypker, T. G.; Kolka, R. K.

    2012-12-01

    As a result of their landscape position and physical soil properties, northern forested wetlands are capable of retaining springtime snowmelt, rain and near surface groundwater inputs into the growing season. Hydrological conditions such as source water chemistry, duration of inundation, and magnitude of water table fluctuations are affected by the relative contribution of snow, rain, and groundwater sources, and in turn these hydrological conditions strongly influence the structure and function of northern forested wetlands. Black ash (Fraxinus nigra) is a facultative wet tree species, and is known to occur in 23 U.S. states and 7 Canadian provinces in northeastern North America. Black ash trees have ecological, economic, and cultural significance, and are currently threatened by the rapid expansion of the exotic emerald ash borer (Burprestidae: Agrilus planipennis). Since its initial detection in 2002 near Detroit, MI, the emerald ash borer has killed millions of ash trees in 15 U.S. states and 2 Canadian provinces. There is very little known about black ash wetland hydrology and ecology, and as a result of the looming infestation, there is a critical need to gain a better understanding of the hydrology in undisturbed ecosystems. The main objective of this study is to partition source water contributions in black ash wetlands in the western Upper Peninsula of Michigan. We hypothesize that snowmelt and near surface groundwater supply the majority of water to these wetlands annually, and summer rain is readily removed from the system through the evapotranspiration pathway. Hydrometric monitoring methods were used in conjunction with isotopic analysis using a linear mixing model to characterize source water contributions in nine black ash wetlands. The results suggest a connection with near surface groundwater during spring and early summer, and a short residence time for rain water following summer storm events. The outcome of this research aims to inform land managers in northeastern North America about the natural hydrologic condition of black ash wetlands, and provide baseline data that underscores potential water and forest resource impacts of current and future emerald ash borer infestations.

  11. Fly ash zeolite catalyst support for Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Campen, Adam

    This dissertation research aimed at evaluating a fly ash zeolite (FAZ) catalyst support for use in heterogeneous catalytic processes. Gas phase Fischer-Tropsch Synthesis (FTS) over a fixed-bed of the prepared catalyst/FAZ support was identified as an appropriate process for evaluation, by comparison with commercial catalyst supports (silica, alumina, and 13X). Fly ash, obtained from the Wabash River Generating Station, was first characterized using XRD, SEM/EDS, particle size, and nitrogen sorption techniques. Then, a parametric study of a two-step alkali fusion/hydrothermal treatment process for converting fly ash to zeolite frameworks was performed by varying the alkali fusion agent, agent:flyash ratio, fusion temperature, fused ash/water solution, aging time, and crystallization time. The optimal conditions for each were determined to be NaOH, 1.4 g NaOH: 1 g fly ash, 550 °C, 200 g/L, 12 hours, and 48 hours. This robust process was applied to the fly ash to obtain a faujasitic zeolite structure with increased crystallinity (40 %) and surface area (434 m2/g). Following the modification of fly ash to FAZ, ion exchange of H+ for Na+ and cobalt incipient wetness impregnation were used to prepare a FTS catalyst. FTS was performed on the catalysts at 250--300 °C, 300 psi, and with a syngas ratio H2:CO = 2. The HFAZ catalyst support loaded with 11 wt% cobalt resulted in a 75 % carbon selectivity for C5 -- C18 hydrocarbons, while methane and carbon dioxide were limited to 13 and 1 %, respectively. Catalyst characterization was performed by XRD, N2 sorption, TPR, and oxygen pulse titration to provide insight to the behavior of each catalyst. Overall, the HFAZ compared well with silica and 13X supports, and far exceeded the performance of the alumina support under the tested conditions. The successful completion of this research could add value to an underutilized waste product of coal combustion, in the form of catalyst supports in heterogeneous catalytic processes.

  12. Conversion of Army Heating Plants to Coal: Three Case Studies

    DTIC Science & Technology

    1982-03-01

    compared to the 50% wet sludge flue gas desulfurized product. All fly ash produced is collected without further processing. The product can be used to...Existing Turbine Generators 26 11 Picatinny Arsenal -- Summary of Capital Costs for Stoker Boilers, Flue Gas Desulfurization . New Turbine Generators...27 12 Picatinny Arsenal -- Summary of Operating Costs for Stoker Boilers, Flue Gas Desulfurization . New Turbine Generators 28 13 Picatinny Arsenal

  13. Sustainable High Quality Recycling of Aggregates from Waste-to-Energy, Treated in a Wet Bottom Ash Processing Installation, for Use in Concrete Products

    PubMed Central

    Van den Heede, Philip; Ringoot, Niels; Beirnaert, Arno; Van Brecht, Andres; Van den Brande, Erwin; De Schutter, Geert; De Belie, Nele

    2015-01-01

    Nowadays, more efforts towards sustainability are required from the concrete industry. Replacing traditional aggregates by recycled bottom ash (BA) from municipal solid waste incineration can contribute to this goal. Until now, only partial replacement has been considered to keep the concrete workability, strength and durability under control. In this research, the feasibility of a full aggregate replacement was investigated for producing prefabricated Lego bricks. It was found that the required compressive strength class for this purpose (C20/25) could be achieved. Nevertheless, a thorough understanding of the BA properties is needed to overcome other issues. As BA is highly absorptive, the concrete’s water demand is high. This workability issue can be dealt with by subjecting the fine BA fraction to a crushing operation to eliminate the porous elements and by pre-wetting the fine and coarse BA fractions in a controlled manner. In addition, a reactive NaOH washing is needed to avoid formation of longitudinal voids and the resulting expansion due to the metallic aluminum present in the BA. Regarding the long-term behavior, heavy metal leaching and freeze-thaw exposure are not problematic, though there is susceptibility to acetic and lactic acid attack and maybe increased sensitivity to alkali-silica reaction. PMID:28787809

  14. Sustainable High Quality Recycling of Aggregates from Waste-to-Energy, Treated in a Wet Bottom Ash Processing Installation, for Use in Concrete Products.

    PubMed

    Van den Heede, Philip; Ringoot, Niels; Beirnaert, Arno; Van Brecht, Andres; Van den Brande, Erwin; De Schutter, Geert; De Belie, Nele

    2015-12-25

    Nowadays, more efforts towards sustainability are required from the concrete industry. Replacing traditional aggregates by recycled bottom ash (BA) from municipal solid waste incineration can contribute to this goal. Until now, only partial replacement has been considered to keep the concrete workability, strength and durability under control. In this research, the feasibility of a full aggregate replacement was investigated for producing prefabricated Lego bricks. It was found that the required compressive strength class for this purpose (C20/25) could be achieved. Nevertheless, a thorough understanding of the BA properties is needed to overcome other issues. As BA is highly absorptive, the concrete's water demand is high. This workability issue can be dealt with by subjecting the fine BA fraction to a crushing operation to eliminate the porous elements and by pre-wetting the fine and coarse BA fractions in a controlled manner. In addition, a reactive NaOH washing is needed to avoid formation of longitudinal voids and the resulting expansion due to the metallic aluminum present in the BA. Regarding the long-term behavior, heavy metal leaching and freeze-thaw exposure are not problematic, though there is susceptibility to acetic and lactic acid attack and maybe increased sensitivity to alkali-silica reaction.

  15. Combined disc pelletisation and thermal treatment of MSWI fly ash.

    PubMed

    Huber, Florian; Herzel, Hannes; Adam, Christian; Mallow, Ole; Blasenbauer, Dominik; Fellner, Johann

    2018-03-01

    An environmentally friendly and cost efficient way for the management of municipal solid waste incineration (MSWI) fly ash represents its thermal co-treatment together with combustible waste. However, the safe introduction and storage of MSWI fly ash in the waste bunker is challenging and associated with severe problems (e.g. dust emissions, generation of undefined lumps and heat in case of moistened MSWI fly ash). Therefore, the aim of this study is to investigate the suitability of pelletisation as a pretreatment of MSWI fly ash. In particular, MSWI fly ash was characterised after sampling, pelletisation and thermal treatment and the transfer of constituents to secondary fly ash and flue gas was investigated. For this purpose, MSWI fly ash pellets with a water content of about 0.15 kg/kg and a diameter of about 8 mm have been produced by disc pelletiser and treated in an electrically heated pilot-scale rotary kiln at different temperatures, ranging from 450 °C to 1050 °C. The total contents of selected elements in the MSWI fly ash before and after thermal treatment and in the generated secondary fly ash have been analysed in order to understand the fate of each element. Furthermore, leachable contents of selected elements and total content of persistent organic pollutants of the thermally treated MSWI fly ash were determined. Due to the low total content of Hg (0.7 mg/kg) and the low leachate content of Pb (<0.36 mg/kg), even at the lowest treatment temperature of 450 °C, thermally treated MSWI fly ash pellets can be classified as non-hazardous waste. However, temperatures of at least 650 °C are necessary to decrease the toxic equivalency of PCDD/F and DL-PCB. The removal of toxic heavy metals like Cd and Pb is significantly improved at temperatures of 850 °C, 950 °C or even 1050 °C. The observed metal removal led to relatively high contents of e.g. Cu (up to 11,000 mg/kg), Pb (up to 91,000 mg/kg) and Zn (up to 21,000 mg/kg) in the secondary fly ash. This metal enriched secondary fly ash might represent a potential raw material for metal recovery (e.g. via acidic leaching). Due to the high content of total dissolved solids observed in the leachate of thermally treated MSWI fly ash pellets, a wet extraction procedure is suggested to enable its safe disposal at non-hazardous waste landfills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mineralogy of Layered Outcrops at Mawrth Vallis and Implications for Early Aqueous Geochemistry on Mars

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Gross, C.; Rampe, E. B.; Wray, J. J.; Parente, M.; Horgan, B.; Loizeau, D.; Viviano-Beck, C. E.; Clark, R. N.; Seelos, F. P.; hide

    2016-01-01

    Recently developed CRISM parameters and newly available DTMs are enabling refined characterization of the mineralogy at Mawrth Vallis. A stratigraphy including 5 units is mapped using HRSC DTMs across 100s of kms and using HiRISE DTMs across 100s of meters. Transitions in mineralogic units were characterized using spectral properties and surface morphology. The observations point to an ancient wet and warm geologic record that formed the thick nontronite unit, a period of wet/dry cycling to create acid alteration, followed by leaching or pedogenesis to result in Al-phyllosilicates, and finally a drier, colder climate that left the altered ash in the form of nanophase aluminosilicates, rather than crystalline clays.

  17. Evaluation of rice husk ash as filler in tread compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, M. R. S., E-mail: monica.fernandes@lanxess.com; Furtado, C. R. G., E-mail: russi@globo.com, E-mail: ana.furtado.sousa@gmail.com; Sousa, A. M. F. de, E-mail: russi@globo.com, E-mail: ana.furtado.sousa@gmail.com

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same timemore » better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety)« less

  18. Grain shape of basaltic ash populations: implications for fragmentation

    NASA Astrophysics Data System (ADS)

    Schmith, Johanne; Höskuldsson, Ármann; Holm, Paul Martin

    2017-02-01

    Here, we introduce a new quantitative method to produce grain shape data of bulk samples of volcanic ash, and we correlate the bulk average grain shape with magma fragmentation mechanisms. The method is based on automatic shape analysis of 2D projection ash grains in the size range 125-63 μm. Loose bulk samples from the deposits of six different basaltic eruptions were analyzed, and 20,000 shape measurements for each were obtained within 45 min using the Particle Insight™ dynamic shape analyzer (PIdsa). We used principal component analysis on a reference grain dataset to show that circularity, rectangularity, form factor, and elongation best discriminate between the grain shapes when combined. The grain population data show that the studied eruptive environments produce nearly the same range of grain shapes, although to different extents. Our new shape index (the regularity index (RI)) places an eruption on a spectrum between phreatomagmatic and dry magmatic fragmentation. Almost vesicle-free Surtseyan ash has an RI of 0.207 ± 0.002 (2σ), whereas vesiculated Hawaiian ash has an RI of 0.134 ± 0.001 (2σ). These two samples define the end-member RI, while two subglacial, one lacustrine, and another submarine ash sample show intermediate RIs of 0.168 ± 0.002 (2σ), 0.175 ± 0.002 (2σ), 0.187 ± 0.002 (2σ), and 0.191 ± 0.002 (2σ), respectively. The systematic change in RI between wet and dry eruptions suggests that the RI can be used to assess the relative roles of magmatic vs. phreatomagmatic fragmentation. We infer that both magmatic and phreatomagmatic fragmentation processes played a role in the subglacial eruptions.

  19. Mars Data Analysis Program

    NASA Technical Reports Server (NTRS)

    McGill, George E.

    2004-01-01

    Grant NAGS12158 addressed a major NASA objective concerning the possibility of a palm ocean or large lake in the northern lowlands of Mars. Our overall approach for this study was an analysis of the graben-bounded giant polygons of Utopia Planitia, but specifically those grabens that define circles rather than open polygons. These circular grabens overlie buried impact craters, and the grabens form because of differential compaction of the overlying material over crater rims and floors. Several years ago, I predicted that the graben circles would bound depressions, and that the depths of these depressions would scale with the diameters of the graben circles. These predictions have been verified by earlier analysis. During this one-year grant (with one-year no-cost extension) we greatly increased the sample size and validated the earlier research robustly. What remained unexplained was why most of the graben circles in Utopia Planitia were double. A new model, involving volumetric compaction rather than simply 2-D compaction, satisfactorily explains the double rings and also provides a measure of relative thickness of the cover material burying the craters as a function of radial distance from the center of the Utopia Basin. Only two materials are likely candidates for the compacting cover material: volcanic ash, or wet sediment. The water in the wet sediment is largely responsible for the volumetric compaction; dry ash will compact vertically but experiences very limited lateral shrinkage. Thus the depressions within the circular grabens and the model explaining the double rings strongly favor wet sediment and thus provide evidence in favor of a past body of standing water in the northern lowlands. Publications supported entirely or in part by this grant are listed below.

  20. A novel reactor for the simulation of gas and ash interactions in volcanic eruption plumes

    NASA Astrophysics Data System (ADS)

    Ayris, Paul M.; Cimarelli, Corrado; Delmelle, Pierre; Dingwell, Donald B.

    2014-05-01

    The chemical interactions between volcanic ash and the atmosphere, hydrosphere, pedosphere, cryosphere and biosphere are initially the result of rapid mobilisation of soluble salts and aqueous acids from wetted particle surfaces. Such surface features are attributable to the scavenging of sulphur and halide species by ash during its transport through the eruption plume and volcanic cloud. It has been historically considered (e.g., Rose, 1977) that the primary mechanism driving scavenging of sulphur and halide species is via condensation of acid aerosols onto ash surfaces within the cold volcanic cloud. However, for large explosive eruptions, insights from new experimental highlight the potential for scavenging via adsorption onto ash within the high-temperature eruption plume. In previous investigations on simple SO2 (Ayris et al. 2013a) and HCl systems (Ayris et al. 2013b), we identified ash composition, and the duration and temperature of gas-ash interaction as key determinants of adsorption-mode scavenging. However, the first generation of gas-ash reactors could not fully investigate the interactions between ash and the hydrous volcanic atmosphere; we have therefore developed an Advanced Gas Ash Reactor (AGAR), which can be fluxed with varying proportions of H2O, CO2, SO2 and HCl. The AGAR consists of a longitudinally-rotating quartz glass reaction bulb contained within a horizontal, three-stage tube furnace operating at temperatures of 25-900° C. A sample mass of up to 100 g can traverse a thermal gradient via manual repositioning of the reaction bulb within the furnace. In combination with existing melt synthesis capabilities in our laboratories, this facility permits a detailed investigation of the effects of ash and gas composition, and temperature on in-plume scavenging of SO2 and HCl. Additionally, the longitudinal rotation enables particle-particle interaction under an 'in-plume' atmosphere, and may yield insight into the effects of gas-ash interaction on aggregation processes. Large quantities of material can be processed in the AGAR. We invite discussions regarding collaboration with 'downstream' projects that would benefit from use of such materials, or from access to and further development of, the advanced gas-ash reactor. References Ayris, P. M., Lee, A. F., Wilson, K., Kueppers, U., Dingwell, D. B., & Delmelle, P. (2013a). SO2 sequestration in large volcanic eruptions: high-temperature scavenging by tephra. Geochimica et Cosmochimica Acta. Ayris, P. M., Delmelle, P., Maters, E., & Dingwell, D. B. (2013b). Quantifying HCl and SO2 adsorption by tephra in volcanic eruptions. In EGU General Assembly Conference Abstracts (Vol. 15, p. 2780). Rose, W. I. (1977). Scavenging of volcanic aerosol by ash: atmospheric and volcanologic implications. Geology, 5(10), 621-624.

  1. Archaeological Testing and Survey: Testing of Three Sites and Survey of a Road Detour within Proposed Project Construction Zones, Burlington Dam Flood Control Project Area, Upper Souris River, North Dakota,

    DTIC Science & Technology

    1980-01-01

    reported in Burgess et al. (1973:19). Low bottom species in the study area include American elm (Ulmus americanus), green ash (Fraxinus pennsylvanica...deposits with "Calgon" before water screening. Because of slow permeability clay is very slippery when it becomes wet and can be hazardous to workers. The

  2. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan Cao; Quan-Hai Wang; Jun Li

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gasmore » inside the reactor was about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155{sup o}C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155{sup o}C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, at testing conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBR addition alone). 25 refs., 5 figs., 1 tab.« less

  3. Unsaturated flow processes in structurally-variable pathways in wildfire-affected soils and ash

    NASA Astrophysics Data System (ADS)

    Ebel, B. A.

    2016-12-01

    Prediction of flash flood and debris flow generation in wildfire-affected soils and ash hinges on understanding unsaturated flow processes. Water resources issues, such as groundwater recharge, also rely on our ability to quantify subsurface flow. Soil-hydraulic property data provide insight into unsaturated flow processes and timescales. A literature review and synthesis of existing data from the literature for wildfire-affected soils, including ash and unburned soils, facilitated calculating metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and the Green-Ampt wetting front parameter (Ψf) were significantly lower in burned soils compared to unburned soils, while field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity was substantially reduced in burned soils, leading to faster ponding times in response to rainfall. Ash had large values of S and Kfs compared to unburned and burned soils but intermediate values of Ψf, suggesting that ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant ( 100 mm) for unburned soils, but was more variable in burned soils. Post-wildfire changes in this ratio suggested that unburned soils had a balance between gravity and capillarity contributions to infiltration, which may depend on soil organic matter, while burning shifted infiltration more towards gravity contributions by reducing S. Taken together, the changes in post-wildfire soil-hydraulic properties increased the propensity for surface runoff generation and may have enhanced subsurface preferential flow through pathways altered by wildfire.

  4. Separation and characterization of magnetic fractions from waste-to-energy bottom ash with an emphasis on the leachability of heavy metals.

    PubMed

    Wei, Yunmei; Mei, Xiaoxia; Shi, Dezhi; Liu, Guotao; Li, Li; Shimaoka, Takayuki

    2017-06-01

    Magnetic fractions were extracted from pulverized waste-to-energy (WTE) bottom ashes using a combined wet-dry extraction method. The resulting magnetic and non-magnetic fractions were subjected to compositional, mineralogical, and redox state analyses by X-ray diffraction (XRD), X-ray fluorescence, and X-ray photoelectron spectroscopy (XPS), respectively. The distribution and leaching toxicity of heavy metals were assessed to evaluate potential effects on the environment. Compositional analyses revealed that Fe accounted for 35% of the magnetic fraction of pulverized ashes, which was approximately seven times that of the raw ash. In addition to Fe, elemental Ni, Mn, and Cr were also significantly enriched in the magnetic fractions. The mineralogical analysis determined that Fe was primarily present as hematite and magnetite, and metallic iron was also identified in the magnetic fraction samples. The XPS analysis further proved the existence of zero-valence Fe. However, a significant amount of Fe remained in the non-magnetic fractions, which could partially be ascribed to the intergrowth structure of the various minerals. The elevated concentrations of toxicity characteristic leaching procedure (TCLP)-extracted Mn, Ni, Cr, Cu, Pb, and Zn were primarily ascribed to the lower buffering capability of the magnetic fractions, with the enrichment of Mn, Ni, and Cr in the magnetic fractions also contributing to this elevation.

  5. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China.

    PubMed

    Chen, Bingyu; Liu, Guijian; Sun, Ruoyu

    2016-05-01

    A better understanding on the partitioning behavior of mercury (Hg) during coal combustion in large-scale coal-fired power plants is fundamental for drafting Hg-emission control regulations. Two large coal-fired utility boilers, equipped with electrostatic precipitators (ESPs) and a wet flue gas desulfurization (WFGD) system, respectively, in coal energy-dominant Huainan City, China, were selected to investigate the distribution and fate of Hg during coal combustion. In three sampling campaigns, we found that Hg in bottom ash was severely depleted with a relative enrichment (RE) index <7 %, whereas the RE index for fly ash (9-54%) was comparatively higher and variable. Extremely high Hg was concentrated in gypsum (≤4500 ng/g), which is produced in the WFGD system. Mass balance calculation shows that the shares of Hg in bottom ash, fly ash, WFGD products (gypsum, effluents, sludge), and stack emissions were <2, 17-32, 7-22, and 54-82%, respectively. The Hg-removal efficiencies of ESPs, WFGD, and ESPs + WFGD were 17-32, 10-29, and 36-46%, respectively. The Hg-emission factor of studied boilers was in a high range of 0.24-0.29 g Hg/t coal. We estimated that Hg emissions in all Huainan coal-fired power plants varied from 1.8 Mg in 2003 to 7.3 Mg in 2010.

  6. Hydromagmatic and peperitic interactions: A new experimental approach.

    NASA Astrophysics Data System (ADS)

    Downey, W. S.; Spieler, O.; Kunzmann, T.; Mastin, L.; Dingwell, D. B.; Shaw, C. J.

    2007-12-01

    Hydromagmatic interactions in general and the formation of peperites in particular, are poorly understood. We have designed and tested a new series of experiments to analyze the formation of fine hydromagmatic basaltic ash, and the processes occurring during magma/wet-sediment interaction. This study evaluates the mechanism of "turbulent shedding", (Mastin, 2007) where fine hydromagmatic ash is produced by the removal of quenched glassy rinds on clast surfaces that are rapidly deforming within turbulent transport. During magma/wet-sediment interactions the rapid heat transfer rate can lead to oscillations in the vapor film, and its possible collapse to generate a vapor explosion, between the two media producing either fluidal or brecciated textures of the silicate. In these experiment 0.5 kg of basaltic melt is generated in an internally heated autoclave at temperatures of up to 1300 (º)C and ejected via gas pressure into a low pressure tank. The autoclave can be pressurized to 50 MPa and is designed to eject the melt directly into water, wet sediments or water spray. The later technique is commonly used by powder metallurgists to produce micron-sized fragments of metallic glass, and is the desired technique to aid in the production of fine-ash via "turbulent shedding". Two molybdenum wound furnaces are used to produce the melt while a third Kanthal-wound furnace is used to control the temperature at the ejection orifice. Six thermocouples are used to control the furnaces and to record the thermal gradient throughout the setup. Pressure transducers in the high and low pressure section record the expansion volume due thermal interaction. The autoclave is separated from the low pressure tank with a diaphragm to prevent water from entering the high temperature zone. The goal of these experiments is to give insight into the role of hydrodynamic process during magma/water interaction and in the generation of peperites. The first experiments have resulted in the formation of Pelee's hairs and tears reflecting the high strain rates accompanying melt ejection. Post-experiment, grain size and surface area analysis of the hydromagmatic clasts is in progress to quantify the thermal interaction area, the influence of the turbulence and the heat transfer rate on magma-water mixing. The sediments will be impregnated with epoxy to yield textural insights for comparison with field descriptions of peperites.

  7. Distribution of heavy metals in vegetation surrounding the Blackstone River, USA: considerations regarding sediment contamination and long term metals transport in freshwater riverine ecosystems.

    PubMed

    Ozdilek, Hasan Goksel; Mathisen, Paul P; Pellegrino, Don

    2007-04-01

    The Blackstone River, a 74 km interstate stream located in South Central Massachusetts and Rhode Island (USA), has had a long history of problems due to high concentrations of metals such as copper and lead. The river has been subjected to metals load that include contributions from urban runoff, wastewater discharges, contaminated sediments, and also resuspension of contaminated sediments in the river-bed. All of these effects lead to elevated concentrations of metals such as lead, copper, zinc, chromium, cadmium and arsenic. Furthermore, the contaminated sediments located behind impoundments become especially important when higher flows cause resuspension of the previously deposited sediments and associated metals. While it is known that high metals concentrations in this river are found in the bottom sediments, the fate of the metals and impact on the ecosystem are not well known. This paper addresses the potential impacts that metals may have on vegetation and plant tissues in the vicinity of the river Plant tissues (primarily mosses), were collected from a number of sampling sites along a 14 km stretch of this river. At each site, samples were collected from multiple distances from the riverbank. Laboratory analyses made use of both wet digestion and dry ashing digestion methods, followed by analysis using an atomic absorption spectrophotometer. The wet and dry ashing digestion methods yielded similar results, although the results afforded by the dry ashing methods were slightly lower than the results obtained from the wet method. The results showed that the metals concentrations in vegetation (as determined from plant tissue analyses) were generally inversely related to the distance between the vegetation and the riverbank, with higher metals concentrations existing in plant tissues located close to the riverbank. In addition, it was found that the transport of metals concentrations to the terrestrial vegetation adjacent to this section of the Blackstone River was affected by the river morphology and flow characteristics (including velocity, flow rate and depth of flow, which can govern the potential for plant submergence, as well as the dynamics of flow and transport in the soil near the river). The analyses help to provide an improved understanding of metals transport and potential significance of metals contamination in a terrestrial ecosystem that is located adjacent to a river.

  8. Characterization of zeolites synthesized from porous wastes using hydrothermal agitational leaching assisted by magnetic separation

    NASA Astrophysics Data System (ADS)

    Top, Soner; Vapur, Huseyin; Ekicibil, Ahmet

    2018-07-01

    In this study, zeolite Na-P1 synthesis from the fly ashes (FA) taken from dust catcher in Sugözü thermic power plant was researched. The structural and magnetic characteristics of the synthesized materials were studied by using the XRD, SEM, EDS, CEC, TGA, DTA, DSC and M-H techniques. High intensity wet magnetic separation was applied to the ashes at different magnetic field intensities. 61% of the iron oxide impurity (Fe2O3) was removed by single-stage high intensity wet magnetic separation at 1.5 T. Non-magnetic phase was accumulated in order to leach in alkali medium. 2 M NaOH was used as the synthesizing solution. Solid-liquid ratio was 0.3 kg:1 L. It was determined that the zeolitization degrees of the products depend on the reaction time. Zeolite Na-P1 (Na6Al6Si10O32·12H2O) which is the member of the group P zeolites was the dominant species after 10 h reaction time. Additionally, gismondine (Ca2Al4Si4O16·9H2O) presence was observed in the products. It was found out that the ferromagnetisms of the products were weakened by elapsed time. The CEC values of the synthesized products were the superior grades ranging from 269.63 meq/100 g to 388.85 meq/100 g.

  9. Influence of the Sostanj coal-fired thermal power plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia

    PubMed

    Kotnik; Horvat; Mandic; Logar

    2000-10-02

    Lake Velenje is located in one of the most polluted regions in Slovenia, the Salek Valley. The major source of pollution in the valley is the coal-fired thermal power plant in Sostanj (STPP, capacity 775 MW). It has five separate units. All units have electrostatic precipitators for fly ash removal. Unit 4 also has installed a wet flue gas desulfurisation system (FGD system). Total mercury (THg) concentrations were measured in lignite, slag and ash samples from the STPP. In flue gas, different mercury species (THg, MeHg, Hg2+, Hg0) were determined separately for unit 4 and unit 5 which use different flue gas cleaning technology. Mercury and methyl mercury (MeHg) concentrations were also measured in lake water at different depths, in inflow water, outflow water, rain, snow and lake sediments in order to establish the influence of the power plant on the lake. Most mercury emitted from the power plant is in the elemental form. The ratio between oxidised and elemental Hg depends on the flue gas cleaning technology. Mass balance calculations have been performed for the STPP. The results show that the major sources of mercury in Lake Velenje are wet deposition and lake inflows. Total and MeHg concentrations in the water column are very low and can be compared to other non-contaminated freshwater lakes in the world.

  10. Spatial trends in S and Cl in ash leachates of the May 18th, 1980 eruption of Mt. St Helens

    NASA Astrophysics Data System (ADS)

    Ayris, Paul M.; Delmelle, Pierre; Durant, Adam J.; Damby, David E.; Maters, Elena C.

    2014-05-01

    It has long been known that surficial deposits of salts and acids on volcanic ash particles derive from interactions of ash with sulphur and halide species within the eruption plume and volcanic cloud. These compounds are mobilised as ash particles are wetted, and beneficial or detrimental environmental and health impacts may be induced where the most concentrated solutions are produced. However, limited mechanistic understanding of gas-ash interactions currently precludes prediction of the spatial distribution or variation in leachate chemistry and concentration following an eruption. Sampling and leachate analysis of freshly-fallen ash therefore offers the sole method by which such variations can be observed. Previous ash leachate studies often involve a limited number of ash samples, and utilise a 'one-dimensional' analysis that considers variation in terms of absolute distance from the source volcano. Here, we demonstrate that extensive sampling and a 'two-dimensional' analysis can uncover more complex spatial trends. We compiled over 358 leachate compositions from the May 18th 1980 eruption of Mt. St. Helens. Of the water-extracted leachates, only 95 compositions from ash sampled at 45 localities between 35 and 1129 km from the volcano are sufficiently documented to be retrospectively comparable. To consider the effects of intra-deposit variability, we calculated average concentrations of leachate data within 11×22 km grid cells across the region, and defined a data quality parameter to reflect confidence in the derived values. To investigate any dependence of leachate composition on the grain size distribution, we generated an interpolated map of geometric specific surface area variation across the deposit, normalising ash leachate data to the calculated specific surface area at the corresponding sampling location. The data treatment identifies S and Cl enrichments in proximal blast deposits; relatively constant Cl concentrations across the ashfall deposits; and a core region of depleted S concentrations in ashfall deposits between 240 and 400 km from the volcano, coinciding with the distal thickening of the deposit attributed to particle aggregation and enhanced fallout. Blast deposit enrichments can be attributed to pre-eruptive uptake of SO2 and HCl gases within the cryptodome, while ashfall deposit trends could reflect differences in the rates of HCl and SO2 uptake by ash, modified by in-plume aggregation processes. However, to validate and interpret such trends with greater confidence would have required a greater spatial density and temporal resolution of sampling, with comprehensive characterisation of the recovered ash and the surrounding deposit. In the future, rigorous study and sampling of equivalent extent to that in the aftermath of the historic Mt. St. Helens eruption is likely required to extend insight into processes affecting the spatial distribution of leachate chemistry.

  11. The 2010 Eyjafjallajökull and 2011 Grimsvötn ash plumes as seen by GPS

    NASA Astrophysics Data System (ADS)

    Grapenthin, R.; Hreinsdottir, S.; Gudmundsson, M. T.

    2015-12-01

    The injection of a volcanic plume introduces a dynamic, localized, short-term heterogeneity in the atmosphere. Satellite-imagery based remote sensing techniques provide good spatial coverage for the detection of such plumes, but slow satellite repeat times (>30 minutes) and cloud cover can delay, if not entirely prevent, the detection. GPS, in turn, provides excellent temporal coverage, but requires favorable satellite-station-geometry such that the signal propagates through the plume if it is to be used for plume detection and analysis. Two methods exist to detect / analyze ash plumes with GPS: (a) Ash-heavy plumes result in signal dispersion and hence a lowered signal-to-noise ratio (SNR). A lowered SNR, recorded by some receivers, can provide useful information about the plume, such as location and velocity of ascent. These data can be evaluated directly as they are recorded by the receiver; without the need of solving for a receiver's position. (b) Wet plumes refract the GPS signals piercing the plume and hence induce a propagation delay. When solving for a receiver position GPS analysis tools do not model this localized phase delay effect and solutions for plume-piercing satellites do not fit the data well. This can be exploited for plume analysis such as the estimation of changes to the atmospheric refractivity index. We analyze GPS data of the ~2 month 2010 Eyafjallajökull erption and the week-long 2011 Grímsvötn eruption to infer a first order estimate of plume geometry and its progression. Using SNR and phase delay information, we evaluate the evolution of the partitioning of wet versus dry parts of the plume. During the GPS processing we iteratively solve for phase-delay and position and fix other parameters, hence reducing the mapping of least-squares misfit into position estimates and other parameters. Nearly continuous webcam imagery provides independent observations of first-order plume characteristics for the Eyafjallajökull event.

  12. Eruption processes and deposit characteristics at the monogenetic Mt. Gambier Volcanic Complex, SE Australia: implications for alternating magmatic and phreatomagmatic activity

    NASA Astrophysics Data System (ADS)

    van Otterloo, Jozua; Cas, Raymond A. F.; Sheard, Malcolm J.

    2013-08-01

    The ˜5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin-medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water-magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a "magmatic horizon" of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW-SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.

  13. Immersion freezing induced by different kinds of coal fly ash: Comparing particle generation methods and measurement techniques

    NASA Astrophysics Data System (ADS)

    Grawe, Sarah; Augustin-Bauditz, Stefanie; Clemen, Hans-Christian; Eriksen-Hammer, Stine; Lubitz, Jasmin; Schneider, Johannes; Stratmann, Frank; Wex, Heike

    2017-04-01

    To date, a lot of effort has been put into the identification and characterization of atmospheric ice nucleating particles (INPs), which may influence both weather and climate. The majority of studies focuses on INPs from natural origin such as biological particles or mineral dust particles (Hoose and Möhler 2012, Murray et al. 2012). Combustion ashes, being possible sources of anthropogenic INPs, have rarely been investigated in the past. Ash particles may be emitted into the atmosphere either by the action of wind from ash deposits on the ground (bottom ash), or during the combustion process (fly ash). Two recent studies (Umo et al., 2015; Grawe et al., 2016) identified fly ash from coal combustion as the most efficient of the investigated samples (including also bottom ashes from wood and coal combustion). These results motivate the here presented study in which we investigated the immersion freezing behavior of four coal fly ash samples taken from the filters of different coal-fired power plants in Germany. A combination of two instruments was used to capture the temperature range from 0 °C to the homogeneous freezing limit at around -38 °C. Firstly, the new Leipzig Ice Nucleation Array (LINA) was used, where droplets from an ash-water suspension are pipetted onto a cooled plate. Secondly, we used the Leipzig Aerosol Cloud Interaction Simulator (LACIS; Hartmann et al., 2011), a laminar flow tube in which every droplet contains a single size-segregated ash particle. Here, it was possible to study the effect of different kinds of particle generation, i.e., atomization of an ash-water suspension, and aerosolization of dry ash material. The composition of the ash particles was investigated by means of single particle aerosol mass spectrometry and particles were sampled on filters for environmental scanning electron microscope analysis. Our measurements show that all four fly ash samples feature a similar immersion freezing behavior (ice fractions vary by a factor of 5 at most) when particles are generated via dry dispersion. Furthermore, we found that the ice nucleation ability of all samples is lowered significantly when changing from dry to wet particle generation. The aim of the study is to identify possible reasons for these observations. References: S. Grawe, S. Augustin-Bauditz, S. Hartmann, L. Hellner, J. B. C. Pettersson, A. Prager, F. Stratmann, and H. Wex, Atmos. Chem. Phys., 16, 13911-13928, 2016 S. Hartmann, D. Niedermeier, J. Voigtländer, T. Clauß, R. A. Shaw, H. Wex, A. Kiselev, and F. Stratmann, Atmos. Chem. Phys., 11, 1753-1767, 2011 C. Hoose and O. Möhler, Atmos. Chem. Phys., 12, 9817-9854, 2012 B. J. Murray, D. O'Sullivan, J. D. Atkinson, and M. E. Webb, Chem. Soc. Rev., 41, 6519-6554, 2012 N. S. Umo, B. J. Murray, M. T. Baeza-Romero, J. M. Jones, A. R. Lea-Langton, T. L. Malkin, D. O'Sullivan, L. Neve, J. M. C. Plane, and A. Williams, Atmos. Chem. Phys., 15, 5195-5210, 2015

  14. Nutrient status of crop contents of rural scavenging local chickens in Tanzania.

    PubMed

    Mwalusanya, N A; Katule, A M; Mutayoba, S K; Minga, U M; Mtambo, M M A; Olsen, J E

    2002-03-01

    1. A total of 144 chickens purchased from peasants in Morogoro, Tanzania were slaughtered, their crops dissected and the contents analysed. The birds consisted of 48 chickens from each of three climatic zones (warm and wet, warm and dry, cool and wet). Seventy-two chickens were slaughtered in each season, that is short rainy and long rainy season. 2. Cereal grains, bran, green forages, insects/worms and kitchen food wastes were the main crop contents and their composition varied significantly with season and climate. 3. The overall mean chemical compositions (g/kg) of the crop contents were: 430.8 +/- 107.78 dry matter (DM), 104.4 +/- 43.47 crude protein (CP), 61.2 +/- 36.48 ether extract (EE), 58.2 +/- 26.29 crude fibre (CF), 125.4 +/- 58-27 ash, 6.3 +/- 5.19 calcium (Ca) and 3.6 +/- 2.41 phosphorus (P). 4. CP, EE, ash and P contents varied significantly (P<0.05) with season but contents of DM, CF and Ca were not significantly different. 5. CP content was significantly higher (P<0.05) in growers than in adults while the reverse was true for Ca content. Other variables did not differ significantly. 6. Significant differences (P<0.05) in chemical composition were observed among the zones in all parameters except for CP content. 7. The study showed that the chemical composition of feeds eaten by rural scavenging chickens was below the nutritional requirements and varied with season, climate and age of birds.

  15. Reconstruction of a phreatic eruption on 27 September 2014 at Ontake volcano, central Japan, based on proximal pyroclastic density current and fallout deposits

    NASA Astrophysics Data System (ADS)

    Maeno, Fukashi; Nakada, Setsuya; Oikawa, Teruki; Yoshimoto, Mitsuhiro; Komori, Jiro; Ishizuka, Yoshihiro; Takeshita, Yoshihiro; Shimano, Taketo; Kaneko, Takayuki; Nagai, Masashi

    2016-05-01

    The phreatic eruption at Ontake volcano on 27 September 2014, which caused the worst volcanic disaster in the past half-century in Japan, was reconstructed based on observations of the proximal pyroclastic density current (PDC) and fallout deposits. Witness observations were also used to clarify the eruption process. The deposits are divided into three major depositional units (Units A, B, and C) which are characterized by massive, extremely poorly sorted, and multimodal grain-size distribution with 30-50 wt% of fine ash (silt-clay component). The depositional condition was initially dry but eventually changed to wet. Unit A originated from gravity-driven turbulent PDCs in the relatively dry, vent-opening phase. Unit B was then produced mainly by fallout from a vigorous moist plume during vent development. Unit C was derived from wet ash fall in the declining stage. Ballistic ejecta continuously occurred during vent opening and development. As observed in the finest population of the grain-size distribution, aggregate particles were formed throughout the eruption, and the effect of water in the plume on the aggregation increased with time and distance. Based on the deposit thickness, duration, and grain-size data, and by applying a scaling analysis using a depth-averaged model of turbulent gravity currents, the particle concentration and initial flow speed of the PDC at the summit area were estimated as 2 × 10-4-2 × 10-3 and 24-28 m/s, respectively. The tephra thinning trend in the proximal area shows a steeper slope than in similar-sized magmatic eruptions, indicating a large tephra volume deposited over a short distance owing to the wet dispersal conditions. The Ontake eruption provided an opportunity to examine the deposits from a phreatic eruption with a complex eruption sequence that reflects the effect of external water on the eruption dynamics.

  16. Identification of organically associated trace elements in wood and coal by inductively coupled plasma mass spectrometry.

    PubMed

    Richaud, R; Lazaro, M J; Lachas, H; Miller, B B; Herod, A A; Dugwell, D R; Kandiyoti, R

    2000-01-01

    1-Methyl-2-pyrrolidinone (NMP) was used to extract samples of wood (forest residue) and coal; the extracts were analysed by inductively coupled plasma mass spectrometry (ICP-MS) using two different sample preparation methods, in order to identify trace elements associated with the organic part of the samples. A sample of fly ash was similarly extracted and analysed in order to assess the behaviour of the mineral matter contained within the wood and coal samples. 32% of the biomass was extracted at the higher temperature and 12% at room temperature while only 12% of the coal was extracted at the higher temperature and 3% at room temperature. Less than 2% of the ash dissolved at the higher temperature. Size exclusion chromatograms of the extracts indicated the presence of significant amounts of large molecular mass materials (>1000 mu) in the biomass and coal extracts but not in the ash extract. Trace element analyses were carried out using ICP-MS on the acid digests prepared by 'wet ashing' and microwave extraction. Sixteen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sb, Se, V and Zn) were quantified, in the samples before extraction, in the extracts and in the residues. Concentrations of trace elements in the original biomass sample were lower than in the coal sample while the concentrations in the ash sample were the highest. The major trace elements in the NMP extracts were Ba, Cu, Mn and Zn from the forest residue; Ba, Cu, Mn, Pb and Zn from the coal; Cu and Zn from the ash. These elements are believed to be associated with the organic extracts from the forest residue and coal, and also from the ash. Be and Sb were not quantified in the extracts because they were present at too low concentrations; up to 40% of Mn was extracted from the biomass sample at 202 degrees C, while Se was totally extracted from the ash sample. For the forest residue, approximately 7% (at room temperature) and 45% (at 202 degrees C) of the total trace elements studied were in the extract; for the coal, approximately 8% (at room temperature) and 23% (at 202 degrees C) were in the extract. For the ash, only 1.4% of the trace elements were extracted at 202 degrees C, comprising 25% of Cd but less than 1% of Pb. Copyright 2000 John Wiley & Sons, Ltd.

  17. Dielectric properties of wheat flour mixed with oat meal

    NASA Astrophysics Data System (ADS)

    Łuczycka, D.; Czubaszek, A.; Fujarczuk, M.; Pruski, K.

    2013-03-01

    Possibilities of using electric methods for determining admixtures of oat meal to wheat flour, type 650 are presented. In wheat flour, oat meal and mixtures containing 10, 20 and 30% of the oat meal, moisture, protein, starch and ash content, sedimentation value, yield and softening of wet gluten were determined. In samples containing 0, 5, 10, 15, 20, 25, 30 and 100% of oat meal, the dielectric loss factor and conductivity were determined using an impedance analyzer for electromagnetic field frequency ranging from 0.1-20 kHz. It was found that the dielectric loss factor varied for tested material. The best distinguishing between tested mixtures was obtained at the measuring electromagnetic field frequency of 20 kHz. The loss factor was significantly correlated with the yield of wet gluten and the sedimentation value, parameters indicating the amount and quality of gluten proteins in flour.

  18. Comparison of digestion methods for total elemental analysis of peat and separation of its organic and inorganic components

    USGS Publications Warehouse

    Papp, C.S.E.; Harms, T.F.

    1985-01-01

    In order to find the most efficient digestion method for the total elemental recovery in peat, ten samples were subjected to different techniques and analysed for Ca, Mg, Fe, AI, Na, K, Mn, P, Zn, Cu, Li, Cd, Co, Ni, Pb and Si using atomic-absorption spectrophotometry. The most satisfactory procedures were dry ashing followed by hydrofluoric acid treatment and wet digestion using a mixture of hot nitric, perchloric and hydrofluoric acids. The wet digestion offers the advantage of a single decomposition method for the determination of Ca, Mg, Fe, AI, K, Na, Mn, Cu, Li, Zn and P. An alkaline fusion technique was required for the determination of Si. Hydrogen peroxide was used to separate the peat into its organic and inorganic components, leading to the total recovery of the elements for both fractions.

  19. Reconstructing the deadly eruptive events of 1790 CE at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Swanson, Don; Weaver, Samantha J; Houghton, Bruce F.

    2014-01-01

    A large number of people died during an explosive eruption of Kīlauea Volcano in 1790 CE. Detailed study of the upper part of the Keanakāko‘i Tephra has identified the deposits that may have been responsible for the deaths. Three successive units record shifts in eruption style that agree well with accounts of the eruption based on survivor interviews 46 yr later. First, a wet fall of very fine, accretionary-lapilli–bearing ash created a “cloud of darkness.” People walked across the soft deposit, leaving footprints as evidence. While the ash was still unconsolidated, lithic lapilli fell into it from a high eruption column that was seen from 90 km away. Either just after this tephra fall or during its latest stage, pulsing dilute pyroclastic density currents, probably products of a phreatic eruption, swept across the western flank of Kīlauea, embedding lapilli in the muddy ash and crossing the trail along which the footprints occur. The pyroclastic density currents were most likely responsible for the fatalities, as judged from the reported condition and probable location of the bodies. This reconstruction is relevant today, as similar eruptions will probably occur in the future at Kīlauea and represent its most dangerous and least predictable hazard.

  20. [Testate amoebae inhabiting middle taiga bogs in Western Siberia].

    PubMed

    Kur'ina, I V; Preĭs, Iu I; Bobrov, A A

    2010-01-01

    The population of testate amoebae from the most typical middle taiga bogs of Western Siberia have been studied. More than one hundred (103) species and intraspecific taxons of testate amoebae have been revealed in recent surface samples. The relation between ecological characteristics of habitats and the composition of a Protozoa population has been demonstrated. The ecological preferences of species concerning the index of wetness, ash level, and acidity have been revealed. Using the correspondence analysis, the ecological optimums and the tolerance of species and intraspecific taxons of testate amoebae have been established.

  1. Raman spectroscopy for characterizing and determining the pozzolanic reactivity of fly ashes

    NASA Astrophysics Data System (ADS)

    Garg, Nishant

    The efficacy and potential of Raman spectroscopy in characterization of a commercial Ordinary Portland Cement (OPC) and three fly ashes (FA's), and their evolving hydration products were studied in this Master's thesis work. While there have been several studies focusing on the application of Raman spectroscopy to synthetic, pure samples, work on commercial cementitious systems is scarce. This work covers this gap by evaluating mixtures containing cements and fly ashes. The study first involved determination followed by establishment of instrumental configuration and testing parameters optimum for studying cementitious materials both in the dry and wet form. It was found that by tweaking several parameters, collection methodologies and analysis techniques, improved, representative and reproducible data could be obtained. Mapping a representative area to determine the spatial distribution and concentration of sulfates and hydroxides on sample surfaces was found to be the most effective way to study these complex and heterogeneous systems. The Raman dry analysis of OPC and three different FA's of varying calcium contents and reactivity was able to identify the major mineralogical phases in these binders and the results were in correlation with the X-ray diffraction data. The observed calcium and sulfate phases and their relative concentration also agreed well with the supplementary compositional data obtained from X-ray fluorescence and Atomic absorption spectrometry. The wet analysis of pastes prepared with 100% OPC and 50%OPC+50%FA(1,2,3) followed the hydration process of the systems for 56 days (0, 0.2, 2, 4, 8, 12, 16, 20, 24, 48, 72 hours, 7, 14, 21, 28, and 56 days). Consistency of trends in the hydration mechanism of such pastes was only obtained when studies were focused on narrow wavenumber ranges: 950--1050 cm-1 for evolution of sulfates and 3600--3700cm-1 for evolution of hydroxides. Gradual disappearance of Gypsum with a parallel formation of Ettringite was clearly visible in most mixes, while transition of AFt to AFm was not very obvious and needs further research. Evolution of hydroxides showed the gradual spatial growth of portlandite in the studied areas of the samples. The growth rate and concentration of portlandite in different fly ash-cement-water mixes was correlated to the reactivity of the given fly ashes. While a clear connection wasnot established, several observations were made based on the interpretation of the obtained data. This lack of agreement between expected and observed results may be attributed to the heterogeneity of the studied materials, potential problems in sample preparations as well as limitations of the technique. Overall, Raman was effectively applied to the study of commercial, cementitious systems---this work being one of the early attempts if not the first attempt to study multi-phase fly ash blended cement pastes. While Raman may not be able to completely characterize and analyze such systems as a standalone tool, it definitely has a great potential in serving as a supplementary tool for deeper understanding of cement chemistry and hydration mechanisms.

  2. Concentrations and source apportionment of PM10 and associated elemental and ionic species in a lignite-burning power generation area of southern Greece.

    PubMed

    Argyropoulos, G; Grigoratos, Th; Voutsinas, M; Samara, C

    2013-10-01

    Ambient concentrations of PM10 and associated elemental and ionic species were measured over the cold and the warm months of 2010 at an urban and two rural sites located in the lignite-fired power generation area of Megalopolis in Peloponnese, southern Greece. The PM10 concentrations at the urban site (44.2 ± 33.6 μg m(-3)) were significantly higher than those at the rural sites (23.7 ± 20.4 and 22.7 ± 26.9 μg m(-3)). Source apportionment of PM10 and associated components was accomplished by an advanced computational procedure, the robotic chemical mass balance model (RCMB), using chemical profiles for a variety of local fugitive dust sources (power plant fly ash, flue gas desulfurization wet ash, feeding lignite, infertile material from the opencast mines, paved and unpaved road dusts, soil), which were resuspended and sampled through a PM10 inlet onto filters and then chemically analyzed, as well as of other common sources such as vehicular traffic, residential oil combustion, biomass burning, uncontrolled waste burning, marine aerosol, and secondary aerosol formation. Geological dusts (road/soil dust) were found to be major PM10 contributors in both the cold and warm periods of the year, with average annual contribution of 32.6 % at the urban site vs. 22.0 and 29.0 % at the rural sites. Secondary aerosol also appeared to be a significant source, contributing 22.1 % at the urban site in comparison to 30.6 and 28.7 % at the rural sites. At all sites, the contribution of biomass burning was most significant in winter (28.2 % at the urban site vs. 14.6 and 24.6 % at the rural sites), whereas vehicular exhaust contribution appeared to be important mostly in the summer (21.9 % at the urban site vs. 11.5 and 10.5 % at the rural sites). The highest contribution of fly ash (33.2 %) was found at the rural site located to the north of the power plants during wintertime, when winds are favorable. In the warm period, the highest contribution of fly ash was found at the rural site located to the south of the power plants, although it was less important (7.2 %). Moderate contributions of fly ash were found at the urban site (5.4 and 2.7 % in the cold and the warm period, respectively). Finally, the mine field was identified as a minor PM10 source, occasionally contributing with lignite dust and/or deposited wet ash dust under dry summer conditions, with the summertime contributions ranging between 3.1 and 11.0 % among the three sites. The non-parametric bootstrapped potential source contribution function analysis was further applied to localize the regions of sources apportioned by the RCMB. For the majority of sources, source regions appeared as being located within short distances from the sampling sites (within the Peloponnesse Peninsula). More distant Greek areas of the NNE sector also appeared to be source regions for traffic emissions and secondary calcium sulfate dust.

  3. Survey of flue gas desulfurization systems: Duck Creek Station, Central Illinois Light Co. Final report, Jul-Dec 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laseke, B.A. Jr.

    The report presents the results of a survey of operational flue gas desulfurization (FGD) systems on coal-fired utility boilers in the United States. The FGD system installed on Unit 1 at the Duck Creek Station of Central Illinois Light Company is described in terms of design and performance. The system consists of four parallel, wet-limestone, rod-deck scrubber modules designed for 25% capacity each, providing a total sulfur dioxide removal efficiency of 85%. The bottom ash, fly ash, and scrubbing wastes are disposed of in a sludge pond lined with a natural impermeable material. The first module of this four modulemore » FGD system was placed in service on July 1, 1976, and operated intermittently throughout the remainder of the year and for approximately one month in early 1977. On July 23, 1978, the three remaining modules were completed and all four modules were placed in the gas path for treatment of high sulfur flue gas.« less

  4. Seasonal variation of chemical composition and biomethane production from the brown seaweed Ascophyllum nodosum.

    PubMed

    Tabassum, Muhammad Rizwan; Xia, Ao; Murphy, Jerry D

    2016-09-01

    Ascophyllum nodosum, an abundant Irish brown seaweed, shows significant seasonal variation in chemical composition and biogas production. The polyphenol content is shown to be a more important factor in biogas production than ash content. High polyphenol content in summer months adversely affected biogas production; suggesting two potential harvest dates, March and October. A. nodosum harvested in October showed a relatively low level of polyphenols (2% of TS) and ash (23% of volatile solids), and exhibited a specific methane yield of 215LCH4kgVS(-1), which was 44% of theoretical yield. The highest yield per wet weight of 47m(3)CH4t(-1) was achieved in October, which is 2.9 times higher than the lowest value (16m(3)CH4t(-1)), obtained in December. The gross energy yield of A. nodosum based on the optimal biogas production can achieve 116GJha(-1)yr(-1) in October. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Characterization of polychlorinated dibenzo-p-dioxin/dibenzofuran emissions from joss paper burned in a furnace with air pollution control devices.

    PubMed

    Hu, Ming-Tsan; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Yuan-Chung; Chang-Chien, Guo-Ping; Tsai, Jen-Hsiung

    2009-05-01

    Burning joss paper, a common practice in temples in some Asian countries, can release toxic pollutants. This study investigated polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F) emissions and profiles from burning joss paper in a temple furnace connected to two wet scrubbers. The mean total PCDD/F content and corresponding toxic equivalent quantity (TEQ) in joss paper were 193 ng kg(-1) and 0.645 ng I-TEQ kg(-1), respectively, whereas those in bottom ash from burned joss paper were 18.5 ng kg(-1) and 1.92 ng I-TEQ kg(-1), respectively. The wet scrubbers decreased individual PCDD/F emissions by 26.7-71.0% and those of total PCDD/Fs and I-TEQ by 47.2% and 66.0%, respectively. The total PCDD/F TEQ emission factors before and after the wet scrubbers were 8.14 and 3.42 microg I-TEQ ton-feedstock(-1), respectively. The estimated total PCDD/F and corresponding TEQ emissions were 5.29 g year(-1) and 0.462 g I-TEQ year(-1), respectively, in Taiwan. Burning joss paper in temple furnaces is a significant source of PCDD/F emissions.

  6. Osteoporotic-like effects of cadmium on bone mineral density and content in aged ovariectomized beagles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacco-Gibson, N.; Abrams, J.; Chaudhry, S.

    1992-12-31

    Our purpose was to evaluate the effects of ovariectomy in conjunction with cadmium (Cd) exposure on bone. Aged female beagles with {sup 45}Ca-labeled skeletons ovariectomized and exposed to Cd. Successive vertebral scans by dual photon absorptiometry monitored changes in bone mineral density (BMD) in each dog with time. Results showed that ovariectomy or Cd exposure alone caused significant decreases in BMD; ovariectomy with Cd exposure caused the greatest decrease. Ovariectomy alone did not decrease BMD in the distal end or mid-shaft of the tibia while BMD of the distal tibia decreased significantly due to Cd exposure alone. Combination treatment resultedmore » in significant decreases in BMD of both tibial regions. At necropsy, tibiae, humeri, lumbar vertebrae and ribs were obtained for biochemical analysis. No group-to-group differences in bone weights (wet, dry, ash), in ash/dry ratios, or in long bone and vertebral Ca/dry or Ca/ash ratios were observed. Significantly higher total {sup 45}Ca content and {sup 45}Ca/dry and {sup 45}Ca/ash ratios were observed in long bones and vertebrae of OV- and OV+ groups. In contrast, intact ribs showed significantly decreased Ca/dry and Ca/ash ratios compared to the SO-group. Quartered ribs demonstrated regional responses to specific treatment; decreases in total Ca content were greatest in the mid-rib region ({minus}36 to {minus}46%). Results suggest that in the aged female beagle, bone mineral loss associated with estrogen depletion is not only related to bone type (trabecular versus cortical) but also to bone Ca pools. Our results also suggest that a regional heterogeneity of bone plays a role in responsiveness to ovariectomy and Cd exposure. These aspects suggest that Cd is an exogenous factor affecting bone mineral loss independently of estrogen depletion. However, estrogen depletion primes bone for responsiveness to Cd-induced bone mineral loss.« less

  7. Physical and mathematical modeling of transient infiltration through shallow layered pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Damiano, Emilia; Greco, Roberto; Guida, Andrea; Olivares, Lucio; Picarelli, Luciano

    2017-04-01

    Layered pyroclastic deposits covering steep slopes, characteristic of large mountainous areas of Campania (southern Italy), are often affected by shallow landslides triggered by heavy rainfall events. In fact, the equilibrium of such deposits is usually guaranteed by the contribution to soil shear strength offered by soil suction, which decreases during wetting. As the return period of the triggering events has been in many cases not extreme, other factors concur to establish triggering conditions. In this respect, heterogeneities, strongly affecting transient infiltration, may in some cases play a crucial role. In this study, the effect of the presence of soil layers, characterized by markedly different hydraulic properties, on the rainwater infiltration process is investigated. In fact, the pyroclastic covers of Campania, being the result of the deposition of materials originated by several eruptions of the nearby volcanic complexes, usually consist of alternating layers of ashes (silty sands) and pumices (gravel with sand). The presence of coarse-textured pumices between finer ashes strongly affects the infiltration process. In fact, the pumices, which are characterized by saturated hydraulic conductivity larger than ashes, are capable of retaining less water than ashes in unsaturated conditions, so that their unsaturated hydraulic conductivity is usually very small. Hence, depending on the water potential distribution throughout the cover at the onset of rainfall, pumices may act as a barrier to the propagation of the wet front (the so-called capillary barrier effect), or, approaching saturation, let the water pass through them very quickly. Such a complex behavior has been studied by means of a series of infiltration experiments carried out in an instrumented flume in the Geotechnical Laboratory of the University of Campania (http://www.dicdea.unina2.it/it/dipartimento/laboratori/laboratorio-di-geotecnica). Starting from different initial moisture conditions, small scale physical models of layered slopes, with various geometry and inclination, have been subjected to rainfalls of various intensities. During the infiltration processes and the following water redistribution phases, soil moisture and matric potential have been measured at various locations by means of TDR probes and tensiometers, respectively. The interpretation of the experimental results has been aided by a 2D mathematical model based on the integration of Richards' equation with the finite differences method. The obtained results indicate that a layer of dry pumices may induce lateral redistribution of water through the overlying ashes. In steep sloping deposits, this may favor the establishment of downslope directed subsurface runoff, which drains part of the infiltrating water towards the toe of the slope. In real slopes, depending on local morphology, such a downslope flow may have a beneficial effect on slope stability, as some water is drained out of the slope, or may even contribute to the establishment of triggering conditions, as it can result in flow concentration leading to local failure.

  8. Bioaccumulation of selenium from coal fly ash and associated environmental hazards in a freshwater fish community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besser, J.; Giesy, J.; Brown, R.

    1995-12-31

    Bioaccumulation of Se by fish from Pigeon River and Pigeon Lake, Michigan, which receive inputs of Se from a coal fly-ash disposal facility, was studied to assess potential hazards of Se toxicity to fish and wildlife. Se concentrations in fish from sites receiving Se inputs from fly ash disposal ponds were significantly greater than concentrations in fish from upstream sites, which were near normal background concentrations. Se bioaccumulation differed substantially among fish species, especially in the most contaminated site, where whole-body Se concentrations for the five species analyzed ranged from 1.4 to 3.8 {micro}g/g (wet wt.). The top predator inmore » the community, northern pike (Esox lucius), had Se concentrations less than those in likely prey species. Among lower-order consumers, Se concentrations were greater in limnetic species (spottail shiner, Notropis hudsonius, and yellow perch, Perca flavescens), than in benthic species (white sucker, Catostomus commersoni, and rock bass, Ambloplites rupestris). Se concentrations in tissues of fish from the lower Pigeon River and Pigeon Lake approached, but did not exceed lowest observable effect concentrations (LOAECs) for Se in tissues of sensitive fish species. However, Se concentrations in several fish species exceeded LOAECs for dietary Se exposure of sensitive species of birds and mammals, suggesting that consumption of fish in these areas may pose a hazard to piscivorous wildlife.« less

  9. Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China

    NASA Astrophysics Data System (ADS)

    Wang, Shaobin; Luo, Kunli

    2017-08-01

    To study the mercury emission due to the combustion of steam coal and domestic coal in China, we analyzed the mercury contents of coal, fly ash, bottom ash and sluicing water in thermal power plants, steam boilers as well as domestic coal-stoves, in Shaanxi, Shanxi, Shandong and Yunnan Provinces. This study conduct an estimate of the Hg emission rates from steam coal and domestic coal combustion based on the method of mass distribution ratio of fly ash and bottom ash. The results show that the Hg emission rate of coal combustion in thermal power plants is about 50.21% (electrostatic precipitators + wet flue gas desulfurization), and that in heating boilers is about 67.23%, and 92.28% in industrial boilers without flue gas desulphurisation equipment. Furthermore, Hg emission rate is 83.61% due to domestic coal combustion in coal-stoves. The Hg emission amount into the atmosphere from power and heat generation, industrial boilers, domestic coal-stoves and spontaneous combustion of coal gangue is roughly estimated to be 133 ± 4, 100 ± 17, 11 ± 0.1 and 47 ± 26 tons in China in 2014, respectively, and the total Hg emission amount from this paper is estimated at 292 tons. The trends of Hg emission in China from 1991 to 2014 show an accelerating growth after 2002. The proportion of mercury emission due to thermal power, heating generation and industrial energy utilization continuously increased. The atmospheric emission of mercury due to combustion of steam coal, domestic coal and coal gangue accounts nearly 50% in total anthropogenic Hg emissions in China, indicating one of the largest sources of Hg emission in China which should draw more public and scientific attention in the future.

  10. Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals.

    PubMed

    Hsi, Hsing-Cheng; Lee, Hsiu-Hsia; Hwang, Jyh-Feng; Chen, Wang

    2010-05-01

    Mercury speciation and distribution in a 660-MW tangential-fired utility boiler in Taiwan burning Australian and Chinese bituminous coal blends was investigated. Flue gases were simultaneously sampled at the selective catalytic reduction (SCR) inlet, the SCR outlet, the electrostatic precipitator (ESP) outlet, and the stack. Samplings of coal, lime, bottom ash/slag, fly ash, and gypsum slurry were also conducted. Results indicated that flue gases at the inlet to SCR contained a great potion of particle-bound mercury (Hg(p)), 59-92% of the total mercury. Removal of mercury was not observed for the SCR system. However, repartitioning of mercury species across the SCR occurred that significantly increased the portion of elemental mercury (Hg0) to up to 29% and oxidized mercury (Hg2+) to up to 33% in the SCR outlet gas. Overreporting of Hg(p) at the inlet of SCR may cause the observed repartitioning; the high ammonia/nitric oxide circumstance in the SCR unit was also speculated to cause the mercury desorption from ash particles and subsequent reentrance into the gas phase. ESP can remove up to 99% of Hg(p), and wet flue gas desulfurization (FGD) can remove up to 84% of Hg2+. Mercury mass balances were calculated to range between 81 and 127.4%, with an average of 95.7% wherein 56-82% was in ESP fly ash, 8.7-18.6% was retained in the FGD gypsum, and 6.2-26.1% was emitted from the stack. Data presented here suggest that mercury removal can be largely enhanced by increasing the conversion of Hg0 into Hg(p) and Hg2+.

  11. Heterogeneous photochemistry of oxalic acid on Mauritanian sand and Icelandic volcanic ash.

    PubMed

    Styler, Sarah A; Donaldson, D J

    2012-08-21

    Teragram quantities of crustal and volcanic aerosol are released into the atmosphere on an annual basis. Although these substrates contain photoactive metal oxides, little is known about the role that they may play in catalyzing the heterogeneous phototransformation of semivolatile organic species. In the present study, we have investigated oxalic acid photochemistry at the surface of Fe(2)O(3), TiO(2), Mauritanian sand, and Icelandic volcanic ash in the presence and absence of oxygen using a photochemical Knudsen cell reactor. Illumination of all sample types resulted in the production of gas-phase CO(2). In the case of Mauritanian sand, the production of gas-phase CO(2) scaled with the loss of surface oxalic acid. In the absence of oxygen, the production of CO(2) by the sand and ash films scaled with the absorption spectrum of iron oxalate, which suggests that the reaction is at least in part iron-mediated. The presence of oxygen suppressed CO(2) production at the Fe(2)O(3) surface, enhanced CO(2) production at the Mauritanian sand surface, and did not have a net effect upon CO(2) production at the Icelandic ash surface. These different oxygen dependencies imply that oxalic acid photochemistry at the authentic surfaces under study was not solely iron-mediated. Experiments at the TiO(2) surface, which showed enhanced CO(2) production from oxalic acid in the presence of oxygen, suggest that Ti-mediated photochemistry played an important role. In summary, these results provide evidence that solid-phase aerosol photochemistry may influence the atmospheric lifetime of oxalic acid in arid regions, where its removal via wet deposition is insignificant.

  12. Determination of Trace Level Iodine in Biological and Botanical Reference Materials by Isotope Dilution Mass Spectrometry

    PubMed Central

    Gramlich, John W.; Murphy, Thomas J.

    1989-01-01

    A method has been developed for the determination of trace level iodine in biological and botanical materials. The method consists of spiking a sample with 129I, equilibration of the spike with the natural iodine, wet ashing under carefully controlled conditions, and separation of the iodine by co-precipitation with silver chloride. Measurement of the 129I/127I ratio is accomplished by negative thermal ionization mass spectrometry using LaB6 for ionization enhancement. The application of the method to the certification of trace iodine in two Standard Reference Materials is described. PMID:28053411

  13. Effect of gamma irradiation on physical characteristics of Jordanian durum wheat and quality of semolina and lasagna products

    NASA Astrophysics Data System (ADS)

    Azzeh, F. S.; Amr, A. S.

    2009-09-01

    This study was conducted to determine the effect of using varying gamma irradiation doses on the physiochemical and rheological properties of semolina and its products. Ash, protein and water content were not influenced with gamma irradiation, while falling number and fungi counts decreased with increasing irradiation dose. Irradiation adversely affected wet gluten at 5 kGy dose. Dough stability was deteriorated vigorously with increasing irradiation dose. Sensory evaluation showed that lasagna produced from 0.25- and 1 kGy-irradiated semolina did not show any significant differences as compared with the control sample.

  14. Recovery of Trace and Heavy Metals from Coal Combustion Residues for Reuse and Safe Disposal: A Review

    NASA Astrophysics Data System (ADS)

    Kumar, Ashvani; Samadder, Sukha Ranjan; Elumalai, Suresh Pandian

    2016-09-01

    The safe disposal of coal combustion residues (CCRs) will remain a major public issue as long as coal is used as a fuel for energy production. Both dry and wet disposal methods of CCRs create serious environmental problems. The dry disposal method creates air pollution initially, and the wet disposal method creates water pollution as a result of the presence of trace and heavy metals. These leached heavy metals from fly ash may become more hazardous when they form toxic compounds such as arsenic sulfite (As2S3) and lead nitrate (N2O6Pb). The available studies on trace and heavy metals present in CCRs cannot ensure environmentally safe utilization. In this work, a novel approach has been offered for the retrieval of trace and heavy metals from CCRs. If the proposed method becomes successful, then the recovered trace and heavy metals may become a resource and environmentally safe use of CCRs may be possible.

  15. Cadmium in tobacco and its fate during smoking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petering, H.G.; Menden, E.E.; Michael, L.W.

    Using a smoking machine, reference cigarettes, a commercial brand of nonfilter 85-millimeter cigarettes, a medium-priced cigar, and a popular brand of pipe tobacco, both wet-ashing and dry-ashing procedures were carried out to determine the cadmium content to which smokers were being exposed. Cigarettes varied from 1.31 to 1.28 micrograms (microg) of cadmium per cigarette, which corresponded to 1.17 to 1.62 microg per gram (g) of cigarette. For cigar tobacco a total of 1.86 microg/g was found and in pipe tobacco the content was 0.93 microg/g. Only 6 to 7% of the cadmium in the smoked portion of the cigarette appearedmore » in the tar, while the unsmoked butts were enriched with 10 to 27% of the cadmium of the smoked portions. The authors suggest that the remaining cadmium, 50 to 55%, is lost in the sidestream during smoking and between puffs. This indicated that not only is the one smoking at risk from cadmium exposure, but so are the others present in the vicinity.« less

  16. Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany.

    PubMed

    Holm, Olaf; Simon, Franz-Georg

    2017-01-01

    The industrial sector of bottom ash (BA) treatment from municipal solid waste incineration (MSWI) in Germany is currently changing. In order to increase the recovery rates of metals or to achieve a higher quality of mineral aggregates derived from BA, new procedures have been either implemented to existing plants or completely new treatment plants have been built recently. Three treatment trains, which are designated as entire sequences of selected processing techniques of BA, are introduced and compared. One treatment train is mainly characterized by usage of a high speed rotation accelerator whereas another is operating completely without crushing. In the third treatment train the BA is processed wet directly after incineration. The consequences for recovered metal fractions and the constitution of remaining mineral aggregates are discussed in the context of legislative and economical frameworks. Today the recycling or disposal options of mineral residues still have a high influence on the configuration and the operation mode of the treatment trains of BA despite of the high value of recovered metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of water vapor on flue gas conditioning in the electric fields with corona discharge.

    PubMed

    Liqiang, Qi; Yajuan, Zhang

    2013-07-15

    Sulfur dioxide (SO2) removal via pulsed discharge nonthermal plasma in the absence of ammonia was investigated to determine how electrostatic precipitators (ESPs) can effectively collect particulate matter less than 2.5μm in diameter from flue gas. SO2 removal increased as water vapor concentration increased. In a wet-type plasma reactor, directing a gas-phase discharge plasma toward the water film surface significantly enhanced the liquid-phase oxidation of HSO3(-) to SO4(2-). Comparisons of various absorbents revealed that the hydroxyl radical is a key factor in plasma-induced liquid-phase reactions. The resistivity, size distribution, and cohesive force of fly ash at different water vapor contents were measured using a Bahco centrifuge, which is a dust electrical resistivity test instrument, as well as a cohesive force test apparatus developed by the researchers. When water vapor content increased by 5%, fly ash resistivity in flue gas decreased by approximately two orders of magnitude, adhesive force and size increased, and specific surface area decreased. Therefore, ESP efficiency increased. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. What makes hydromagmatic eruptions violent? Some insights from the Keanakāko'i Ash, Kı̄lauea Volcano, Hawai'i

    USGS Publications Warehouse

    Mastin, Larry G.; Christiansen, Robert L.; Thornber, Carl R.; Lowenstern, Jacob B.; Beeson, Melvin H.

    2004-01-01

    Volcanic eruptions at the summit of Ki??ilauea volcano, Hawai'i, are of two dramatically contrasting types: (1) benign lava flows and lava fountains; and (2) violent, mostly prehistoric eruptions that dispersed tephra over hundreds of square kilometers. The violence of the latter eruptions has been attributed to mixing of water and magma within a wet summit caldera; however, magma injection into water at other volcanoes does not consistently produce widespread tephras. To identify other factors that may have contributed to the violence of these eruptions, we sampled tephra from the Keanaka??ko'i Ash, the most recent large hydromagmatic deposit, and measured vesicularity, bubble-number density and dissolved volatile content of juvenile matrix glass to constrain magma ascent rate and degree of degassing at the time of quenching. Bubble-number densities (9 ?? 104- 1 ?? 107 cm-3) of tephra fragments exceed those of most historically erupted Ki??lauean tephras (3 ?? 103-1.8 ?? 105 cm-3), and suggest exceptionally high magma effusion rates. Dissolved sulfur (average = 330 ppm) and water (0.15-0.45 wt.%) concentrations exceed equilibrium-saturation values at 1 atm pressure (100-150 ppm and ???0.09%, respectively), suggesting that clasts quenched before equilibrating to atmospheric pressure. We interpret these results to suggest rapid magma injection into a wet crater, perhaps similar to continuous-uprush jets at Surtsey. Estimates of Reynolds number suggest that the erupting magma was turbulent and would have mixed with surrounding water in vortices ranging downward in size to centimeters. Such fine-scale mixing would have ensured rapid heat exchange and extensive magma fragmentation, maximizing the violence of these eruptions.

  19. Determination of phosphorus fertilizer soil reactions by Raman and synchrotron infrared microspectroscopy.

    PubMed

    Vogel, Christian; Adam, Christian; Sekine, Ryo; Schiller, Tara; Lipiec, Ewelina; McNaughton, Don

    2013-10-01

    The reaction mechanisms of phosphate-bearing mineral phases from sewage sludge ash-based fertilizers in soil were determined by Raman and synchrotron infrared microspectroscopy. Different reaction mechanisms in wet soil were found for calcium and magnesium (pyro-) phosphates. Calcium orthophosphates were converted over time to hydroxyapatite. Conversely, different magnesium phosphates were transformed to trimagnesium phosphate. Since the magnesium phosphates are unable to form an apatite structure, the plant-available phosphorus remains in the soil, leading to better growth results observed in agricultural pot experiments. The pyrophosphates also reacted very differently. Calcium pyrophosphate is unreactive in soil. In contrast, magnesium pyrophosphate quickly formed plant-available dimagnesium phosphate.

  20. Improved selenium recovery from tissue with modified sample decomposition

    USGS Publications Warehouse

    Brumbaugh, W. G.; Walther, M.J.

    1991-01-01

    The present paper describes a simple modification of a recently reported decomposition method for determination of selenium in biological tissue by hydride generation atomic absorption. The modified method yielded slightly higher selenium recoveries (3-4%) for selected reference tissues and fish tissue spiked with selenomethionine. Radiotracer experiments indicated that the addition of a small volume of hydrochloric acid to the wet digestate mixture reduced slight losses of selenium as the sample initially went to dryness before ashing. With the modified method, selenium spiked as selenomethionine behaved more like the selenium in reference tissues than did the inorganic spike forms when this digestion modification was used.

  1. Comparison of Digestion Methods for the Determination of Trace Elements and Heavy Metals in Human Hair and Nails

    PubMed Central

    Ishak, Ismarulyusda; Rosli, Farah Dayana; Mohamed, Jamaludin; Mohd Ismail, Muhammad Faiz

    2015-01-01

    Background Microwave is the most reliable sample digestion method. However, it requires expensive microwave digester automation and has relatively low productivity. In this study, three non-automated digestion methods, i.e. wet acid digestion using nitric acid (HNO3) and hydrogen peroxide (H2O2), wet acid digestion using HNO3, and dry washing, are compared in order to determine the best approach. Methods Certified reference material IAEA-086 (International Atomic Energy Agency, Austria) and hair and nail samples from 20 female students of Universiti Kebangsaan Malaysia, aged 19 to 30 years, were collected and analysed using the three digestion methods. Results For hair samples, analysis of variance of repeated measures showed significant differences in the level of all elements (P < 0.001) between the three methods. For nail samples, only the copper (Cu) level showed no significant difference (P = 0.100) between methods. Wet acid digestion using HNO3 and H2O2 showed the best within- and between-run relative standard deviation (RSD) values, with within-run RSD for all elements, except for selenium (Se), < 5%. The between-run precision ranges from 6.14% to 17.96% for hair and from 3.53% to 11.52% for nail samples. Wet acid digestion using HNO3 and H2O2 showed both good accuracy and precision for manganese (Mn) and magnesium (Mg), with percentage recoveries of 110% and 96.9%, respectively. All elements show higher method detection limit (MDL) values than the previous study: 0.05 μg/g Mg for wet acid digestion using HNO3, 0.02 μg/g Se for wet acid digestion using HNO3 and H2O2, and 0.2 μg/g Mg for dry ash method. Conclusion Wet acid digestion using HNO3 and H2O2 proved to be the best method in terms of precision, accuracy, recovery, and MDL. However, only Mn and Mg showed adequate precision, accuracy, and percentage of recovery. PMID:28223880

  2. Wet calcining of trona (sodium sesquicarbonate) and bicarbonate in a mixed solvent

    NASA Astrophysics Data System (ADS)

    Gärtner, R. S.; Witkamp, G. J.

    2002-04-01

    Trona ore is used in large amounts for the production of soda ash. A key step in this process is the conversion of trona (sodium sesquicarbonate: Na 2CO 3·NaHCO 3·2H 2O) into soda (sodium carbonate anhydrate: Na 2CO 3). Currently, this conversion is done industrially by calcining of the raw ore in rotary calciners at ca. 120°C or higher (Natural Soda Ash—Occurrences, Processing, and Use, Van Nostrand Reinhold, New York, 1991, p. 267). Trona can however be converted at lower temperatures by using a "wet calcining" technique. In this technique, trona is contacted with an organic or mixed organic-aqueous solvent at a conversion temperature that depends on the water activity of the used solvent. In pure ethylene glycol this temperature can be as low as 55°C. The conversion by "wet calcining" occurs very similar to that in the regular dry calcining process via a solid phase conversion. The anhydrate crystals form directly from the solid trona. This produces pseudomorphs (J. Chem. Eng. Data 8(3) (1963) 301), i.e. agglomerates of fine anhydrate crystals (1-10 μm). At high temperatures, dense, finely pored agglomerates are formed, while the outer shape of the agglomerate retains the prism shape of the trona crystal. At low conversion temperatures, loosely packed or even unstable agglomerates are found.

  3. Another one bites the dust: faecal silica levels in large herbivores correlate with high-crowned teeth

    PubMed Central

    Hummel, Jürgen; Findeisen, Eva; Südekum, Karl-Heinz; Ruf, Irina; Kaiser, Thomas M.; Bucher, Martin; Clauss, Marcus; Codron, Daryl

    2011-01-01

    The circumstances of the evolution of hypsodonty (= high-crowned teeth) are a bone of contention. Hypsodonty is usually linked to diet abrasiveness, either from siliceous phytoliths (monocotyledons) or from grit (dusty environments). However, any empirical quantitative approach testing the relation of ingested silica and hypsodonty is lacking. In this study, faecal silica content was quantified as acid detergent insoluble ash and used as proxy for silica ingested by large African herbivores of different digestive types, feeding strategies and hypsodonty levels. Separate sample sets were used for the dry (n = 15 species) and wet (n = 13 species) season. Average faecal silica contents were 17–46 g kg−1 dry matter (DM) for browsing and 52–163 g kg−1 DM for grazing herbivores. No difference was detected between the wet (97.5 ± 14.4 g kg−1 DM) and dry season (93.5 ± 13.7 g kg−1 DM) faecal silica. In a phylogenetically controlled analysis, a strong positive correlation (dry season r = 0.80, p < 0.0005; wet season r = 0.74, p < 0.005) was found between hypsodonty index and faecal silica levels. While surprisingly our results do not indicate major seasonal changes in silica ingested, the correlation of faecal silica and hypsodonty supports a scenario of a dominant role of abrasive silica in the evolution of high-crowned teeth. PMID:21068036

  4. Multi-disciplinary approach in volcanic areas: case study of Kamchatka, Far East of Russia

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena

    2017-04-01

    Volcanic ash is associated with a considerable proportion of the Earth's land surface. At the same time, it is estimated that 15% of the land surface is affected by permafrost and glacial ice. As a consequences volcanic ash may play an important role in the aggradation and degradation of cold regions (Kellerer-Pirklbauer et al., 2007; Froese et al., 2008). An understanding of the influence of volcanic ash on these frozen areas allows for more accurate prediction of their stability in the future and provides a better knowledge of the factors affecting past climates, soils and soil stability. Vital to making accurate predictions is an understanding of the thermal properties of volcanic ash (Juen et al., 2013). For example, even for the same region of Kamchatka in eastern Russia volcanic ash may have not only different ages, different chemical composition of the glass, but also different weathering stages, mineralogical composition, and water saturation, furthermore, these ashes may be permanently frozen or unfrozen, all of which may affect their thermal properties (Kuznetsova & Motenko, 2014). These differences might be the reason why the critical thickness of tephra, at which the effect on ice and snow is rather insulating than ablative, for the volcanic material from different volcanoes may vary so much. The determined values of critical thickness deviate from 24 mm reported by Driedger (1980) for the glaciers at Mt. St. Helens, USA, and by (Manville et al., 2000) for tephra erupted in 1996 by Mt. Ruapehu, New Zealand, to <5.5 mm for tephra from the 1947 eruption of Hekla volcano and from Villarica volcano, Chile, reported by Kirkbride and Dugmore (2003) and by Brock et al. (2007). So far the reasons of disparity are not known. Ayris and Delmelle (2012) assumed that the particle size and porosity might be the reason. Taking into considerations that during ablation period tephra covering the glaciers is wet, thermal conductivity of this material should not be overlooked (Kuznetsova et al., 2012). Of particular importance in understanding the thermal behavior of frozen soils is a knowledge of their unfrozen water content. In the glacier interlayers the unfrozen water between ice and particles can work as lubricants to modify the stress transfer at the contacts between ice-particle and particle-particle through indirect influence on relaxing the interaction between particles and ice (Moore, 2014). The paper discusses the application of multidisciplinary research on volcanic material covering permafrost and glaciers in volcanic areas. In cold environments, volcanic ash is widely used in different science disciplines in process-based studies examining paleoclimate reconstruction; the influence of permafrost aggradation and degradation; influence of tephra on snow and ice ablation; glacier fluctuations, volcanic glass weathering and new minerals formation (e.g. allophane, palagonite). The special properties of volcanic ash are critically reviewed particularly in relation to recent research in Kamchatka in the Far East of Russia. Of particular importance are the thermal properties and the unfrozen water contents of ash layers and the rate at which the weathering of volcanic glass takes place.

  5. Method validation for simultaneous determination of chromium, molybdenum and selenium in infant formulas by ICP-OES and ICP-MS.

    PubMed

    Khan, Naeem; Jeong, In Seon; Hwang, In Min; Kim, Jae Sung; Choi, Sung Hwa; Nho, Eun Yeong; Choi, Ji Yeon; Kwak, Byung-Man; Ahn, Jang-Hyuk; Yoon, Taehyung; Kim, Kyong Su

    2013-12-15

    This study aimed to validate the analytical method for simultaneous determination of chromium (Cr), molybdenum (Mo), and selenium (Se) in infant formulas available in South Korea. Various digestion methods of dry-ashing, wet-digestion and microwave were evaluated for samples preparation and both inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) were compared for analysis. The analytical techniques were validated by detection limits, precision, accuracy and recovery experiments. Results showed that wet-digestion and microwave methods were giving satisfactory results for sample preparation, while ICP-MS was found more sensitive and effective technique than ICP-OES. The recovery (%) of Se, Mo and Cr by ICP-OES were 40.9, 109.4 and 0, compared to 99.1, 98.7 and 98.4, respectively by ICP-MS. The contents of Cr, Mo and Se in infant formulas by ICP-MS were found in good nutritional values in accordance to nutrient standards for infant formulas CODEX values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Evaluation of resource recovery from waste incineration residues--the case of zinc.

    PubMed

    Fellner, J; Lederer, J; Purgar, A; Winterstetter, A; Rechberger, H; Winter, F; Laner, D

    2015-03-01

    Solid residues generated at European Waste to Energy plants contain altogether about 69,000 t/a of Zn, of which more than 50% accumulates in air pollution control residues, mainly boiler and filter ashes. Intensive research activities aiming at Zn recovery from such residues recently resulted in a technical scale Zn recovery plant at a Swiss waste incinerator. By acidic leaching and subsequent electrolysis this technology (FLUREC) allows generating metallic Zn of purity>99.9%. In the present paper the economic viability of the FLUREC technology with respect to Zn recovery from different solid residues of waste incineration has been investigated and subsequently been categorised according to the mineral resource classification scheme of McKelvey. The results of the analysis demonstrate that recovery costs for Zn are highly dependent on the costs for current fly ash disposal (e.g. cost for subsurface landfilling). Assuming current disposal practice costs of 220€/ton fly ash, resulting recovery costs for Zn are generally higher than its current market price of 1.6€/kg Zn. With respect to the resource classification this outcome indicates that none of the identified Zn resources present in incineration residues can be economically extracted and thus cannot be classified as a reserve. Only for about 4800 t/a of Zn an extraction would be marginally economic, meaning that recovery costs are only slightly (less than 20%) higher than the current market price for Zn. For the remaining Zn resources production costs are between 1.5 and 4 times (7900 t/a Zn) and 10-80 times (55,300 t/a Zn) higher than the current market value. The economic potential for Zn recovery from waste incineration residues is highest for filter ashes generated at grate incinerators equipped with wet air pollution control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Chiyoda Thoroughbred CT-121 clean coal project at Georgia Power`s Plant Yates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burford, D.P.

    1997-12-31

    The Chiyoda Thoroughbred CT-121 flue gas desulfurization (FGD) process at Georgia Power`s Plant Yates completed a two year demonstration of its capabilities in late 1994 under both high- and low-particulate loading conditions. This $43 million demonstration was co-funded by Southern Company, the Electric Power Research Institute and the DOE under the auspices of the US Department of Energy`s Round II Innovative Clean Coal Technology (ICCT) program. The focus of the Yates Project was to demonstrate several cost-saving modifications to Chiyoda`s already efficient CT-121 process. These modifications included: the extensive use of fiberglass reinforced plastics (FRP) in the construction of themore » scrubber vessel and other associated vessels, the elimination of flue gas reheat through the use of an FRP wet chimney, and reliable operation without a spare absorber module. This paper focuses on the testing results from the last trimester of the second phase of testing (high-ash loading). Specifically, operation under elevated ash loading conditions, the effects of low- and high-sulfur coal, air toxics verification testing results and unexpected improvements in byproduct gypsum quality are discussed.« less

  8. Mercury stabilization in chemically bonded phosphate ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, Arun S.; Jeong, Seung-Young; Singh, Dileep

    1997-07-01

    We have investigated mercury stabilization in chemically bonded phosphate ceramic (CBPC) using four surrogate waste streams that represent U.S. Department of Energy (DOE) ash, soil, and two secondary waste streams resulting from the destruction of DOE`s high-organic wastes by the DETOX{sup SM} Wet Oxidation Process. Hg content in the waste streams was 0.1 to 0.5 wt.% (added as soluble salts). Sulfidation of Hg and its concurrent stabilization in the CBPC matrix yielded highly nonleachable waste forms. The Toxicity Characteristic Leaching Procedure showed that leaching levels were well below the U.S. Environmental Protection Agency`s regulatory limits. The American Nuclear Society`s ANSmore » 16.1 immersion test also gave very high leaching indices, indicating excellent retention of the contaminants. In particular, leaching levels of Hg in the ash waste form were below the measurement detection limit in neutral and alkaline water, negligibly low but measureable in the first 72 h of leaching in acid water, and below the detection limit after that. These studies indicate that the waste forms are stable in a wide range of chemical environments during storage. 9 refs., 5 tabs.« less

  9. Ultrasonically assisted extraction of calcium and ash from char

    NASA Astrophysics Data System (ADS)

    Mathumba, E. E.; Mbaya, R. K. K.; Kolesnikov, A.

    2018-03-01

    This study characterized and removed calcium and ash content from char to improve the chemical quality of char as reductant for titanium smelting application. Calcium in char can be classified in two parts: mineral matter and cationic metals associated with organic matrix. Virgin and chemically treated char was characterized by using ISO 1171, wet chemistry methods, ISO 19579, XRF, and B.E.T. methods. In this present work, demineralization of char with mild chemical leachants such as acetic acid, citric acid, gluconic acid and Ethylene Diamine Tetra Acetic acid with three different ultrasonic power input (150 W, 270 W and 300 W) and semi-dual frequency of 40 kHz tank was investigated. Actual power dissipated into the system was calculated from the calorimetric measurement. An optimum set of process parameters are identified and validated. The ultrasound technology was compared with soaking technology to determine the efficiency of ultrasound system for the removal of calcium. The removal of calcium was exponentially higher with ultrasonic treatment than without it. Results revealed that mild chemical reagents do not harm the carbon content of char. It is evident from the results that amongst the leachants used; acetic and citric acid has caused significant removal of mineral phases.

  10. Effects of vibratory microscreening on proximate composition and recovery of poultry processing wastewater particulate matter.

    PubMed

    Kiepper, B H; Merka, W C; Fletcher, D L

    2008-12-01

    Experiments were conducted to compare the effects of tertiary microscreen gap size on the proximate composition and rate of recovery of particulate matter from poultry processing wastewater (PPW). A high-speed vibratory screen was installed within the wastewater treatment area of a southeast US broiler slaughter plant after the existing primary and secondary mechanical rotary screens. Microscreen panels with nominal gap size openings of 212, 106 and 45mum were investigated. The particulate matter samples recovered were subjected to proximate analysis to determine percent moisture, fat, protein, crude fiber and ash. The average percent wet weight moisture (%WW) content for all samples was 79.1. The average percent dry matter (%DM) fat, protein, crude fiber and ash were 63.5, 17.5, 4.8 and 1.5, respectively. The mean concentration of total solids (TS) recovered from all microscreen runs was 668mg/L, which represents a potential additional daily offal recovery rate of 12.1metric tons (MT) per 3.78 million L (1.0 million gallons US) of PPW. There was no significant difference in the performance of the three microscreen gap sizes with regard to proximate composition or mass of particulate matter recovered.

  11. Wetland hydrology and tree distribution of the Apalachicola River flood plain, Florida

    USGS Publications Warehouse

    Leitman, H.M.; Sohm, J.E.; Franklin, M.A.

    1982-01-01

    The Apalachicola River is part of a 50,800-square-kilometer drainage basin in northwest Florida, Alabama, and Georgia. The river is formed by the confluence of the Chattahoochee and Flint Rivers at Jim Woodruff Dam and flows 171 kilometers to Apalachicola Bay in the Gulf of Mexico. Its flood plain supports 450 square kilometers of bottom-land hardwood and tupelco-cypress forests. The most common trees, constituting 62 percent of the total basal area, were five wet-site species; water tupelo, Ogeeche tupelo, baldcypress, Carolina ash, and swamp tupelo. Other common species were sweetgum, overcup oak, planertree, green ash, water hickory, sugarberry, and diamond-leaf oak. Five forest types were defined based on species predominance by basal area. Biomass increased downstream and was greatest in forests growing on permanently saturated soils. Water and tree relations varied with river location because range in water-level fluctuation and topographic relief in the flood plain diminished downstream. Heights of natural riverbank levees and size and distribution of breaks in levees had a major controlling effect on flood-plain hydrology. Depth of water, duration of inundation and saturation, and river location, but not water velocity, were very highly correlated with forest types. (USGS)

  12. Effects of boron supplements on bones from rats fed calcium and magnesium deficient diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, H.; Irwin, A.; Kenney, M.A.

    1991-03-15

    Sixty female, weanling rats were fed, for 6 wks, diets providing: casein, 20; CHO, 40; fat, 40. Vitamins and minerals, except Ca and Mg, were fed according to AIN'76 recommendations. Gp A (control) was fed 100% AIN Ca, Mg and P with no boron (B) added. Gps CD and CD+B were fed 30% AIN Ca and 100% AIN Mg and P; Gps MD and MD+B were fed 20% AIN Mg and 100% AIN Ca and P; Gps CMD and CMD+B were fed 20% AIN Mg, 30% AIN Ca and 100% AIN P. The +B groups were supplemented with B atmore » 12 mcg/g diet. Femurs (F) and 2 vertebrae (V) were scraped clean, weighed, sealed in saline-wet gauze, and refrigerated overnight. Bones were equilibrated at {sup {approximately}}25C. F lengths and diameters at the breakpoint were measured before a 3-point flexure test. V were subjected to a compression test. Maximum force (kg) at breakpoint was recorded. Data for right and left F and for 2 V were pooled. Although DIET' (CD, MD, CMD) affected numerous characteristics of F and V, B supplementation of diets affected only % moisture in F, Ca concentration in dry F and in F ash for CD and CMD diets. Interactions between B and diet affected F Mg concentrations in bone and in ash. Group CMD+B had higher Mg/g F than CMD. B increased Mg/g ash for CMD, decreased it for CD and did not affect it for MD.« less

  13. 1980 scrubber highlights: dry-process startups, dual-alkali progress highlight scrubber advances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-06-01

    A survey of electric utilities reports scrubbers on 13% of existing capacity and estimates 29% by 1990, but compliance with the New Source Performance Standards may raise the total even higher. Dry scrubbers at two Northern States Power installations show test performances that indicate sound design and report modest manpower requirements. Other utilities are ordering demonstration dry-scrubber units, although orders for wet scrubbers continue to do well. A new dual-alkali scrubber is performing well at three installations in terms of availability and sulfur-dioxide-removal efficiency. A full-scale utility dump site test will identify any hazardous materials in pollution control ash andmore » sludge wastes. (DCK)« less

  14. Evaluation of the contribution of smoking to total blood polonium-210 in Saudi population.

    PubMed

    Shabana, E I; Abd Elaziz, M A; Al-Arifi, M N; Al-Dhawailie, A A; Al-Bokari, M M

    2000-01-01

    A preliminary study of 210Po concentrations in the blood of some smokers and nonsmokers is presented in order to evaluate the contribution of smoking to total blood 210Po in Saudi population. Blood samples were collected from 30 volunteers and analyzed by high resolution alpha-spectrometry using a radiochemical technique. The technique is based on the separation of polonium from other components of the sample by wet ashing with an HNO3/H2O2 oxidizing mixture and spontaneous deposition on a silver disc under the relevant conditions for alpha-particle counting. The results indicated that a significant fraction (about 30%) of blood 210Po is related to smoking.

  15. [Determination of calcium, magnesium and potassium in nurtured cell by AAS with quick-pulsed nebulization technique and NaOH base digestion].

    PubMed

    Shi, C; Gao, S; Gun, S

    1997-06-01

    The sample is digested with 6% NaOH solution and an amount of 50 microl is used for protein content analysis by the method of Comassie Brilliant Blue G250, the residual is diluted with equal 0.4% Lathanurm-EDTA solution. Its Calcium magensium and potassium content are determined by AAS. With quick-pulsed nebulization technique. When a self-made micro-sampling device is used, 20microl of sample volume is needed and it is only the 1/10 approximately 1/20 of the sample volume required for conventional determination. Sensitivity, precision and rate of recovery agree well with those using regular wet ashing method.

  16. Particle interaction and rheological behavior of cement-based materials at micro- and macro-scales

    NASA Astrophysics Data System (ADS)

    Lomboy, Gilson Rescober

    Rheology of cement based materials is controlled by the interactions at the particle level. The present study investigates the particle interactions and rheological properties of cement-based materials in the micro- and macro-scales. The cementitious materials studied are Portland cement (PC), fly ash (FA), ground granulated blast furnace slag (GGBFS) and densified silica fume (SF). At the micro-scale, aside from the forces on particles due to collisions, interactions of particles in a flowing system include the adhesion and friction. Adhesion is due to the attraction between materials and friction depends on the properties of the sliding surfaces. Atomic Force Microscopy (AFM) is used to measure the adhesion force and coefficient of friction. The adhesion force is measured by pull-off force measurements and is used to calculate Hamaker constants. The coefficient of friction is measured by increasing the deflection set-points on AFM probes with sliding particles, thereby increasing normal loads and friction force. AFM probes were commercial Si3N4 tips and cementitious particles attached to the tips of probe cantilevers. SF was not included in the micro-scale tests due to its limiting size when attaching it to the AFM probes. Other materials included in the tests were silica, calcite and mica, which were used for verification of the developed test method for the adhesion study. The AFM experiments were conducted in dry air and fluid environments at pH levels of 7, 8, 9, 11 and 13. The results in dry air indicate that the Hamaker constant of Class F FA can be similar to PC, but Class C FA can have a high Hamaker constant, also when in contact with other cementitious materials. The results in fluid environments showed low Hamaker constants for Class F fly ashes compared to PC and also showed high Hamaker constants for PC and Class C fly ash. The results for the friction test in dry air indicated that the coefficient of friction of PC is lower than fly ashes, which is attributed to the asperities present on the particle surface. At the macro-scale, flow of cementitious materials may be in its dry or wet state, during transport and handling or when it is used in concrete mixtures, respectively. Hence, the behavior of bulk cementitious materials in their dry state and wet form are studied. In the dry state, the compression, recompression and swell indices, and stiffness modulus of plain and blended cementitious materials are determined by confined uniaxial compression. The coefficients of friction of the bulk materials studied are determined by a direct shear test. The results indicate that shape of particles has a great influence on the compression and shear parameters. The indices for PC blends with FA do not change with FA replacement, while it increases with GGBFS replacement. Replacement with GGBFS slightly decreases coefficient of friction, while replacement with FA significantly decreases coefficient of friction. At low SF replacement, coefficient of friction decreases. In wet state, unary, binary, ternary and quaternary mixes with w/b of 0.35, 0.45 and 0.55 were tested for yield stress, viscosity and thixotropy. It is found that fly ash replacement lowers the rheological properties and replacement with GGBFS and SF increases rheological properties. The distinct element method (DEM) was employed to model particle interaction and bulk behavior. The AFM force curve measurement is simulated to validate the adhesion model in the DEM. The contact due to asperities was incorporated by considering the asperities as a percentage of the radius of the contacting particles. The results of the simulation matches the force-curve obtained from actual AFM experiments. The confined uniaxial compression test is simulated to verify the use of DEM to relate micro-scale properties to macros-scale behavior. The bulk stiffness from the physical experiments is matched in the DEM simulation. The particle stiffness and coefficient of friction are found to have a direct relation to bulk stiffness.

  17. Does bioelectrical impedance analysis accurately estimate the condition of threatened and endangered desert fish species?

    USGS Publications Warehouse

    Dibble, Kimberly L.; Yard, Micheal D.; Ward, David L.; Yackulic, Charles B.

    2017-01-01

    Bioelectrical impedance analysis (BIA) is a nonlethal tool with which to estimate the physiological condition of animals that has potential value in research on endangered species. However, the effectiveness of BIA varies by species, the methodology continues to be refined, and incidental mortality rates are unknown. Under laboratory conditions we tested the value of using BIA in addition to morphological measurements such as total length and wet mass to estimate proximate composition (lipid, protein, ash, water, dry mass, energy density) in the endangered Humpback Chub Gila cypha and Bonytail G. elegans and the species of concern Roundtail Chub G. robusta and conducted separate trials to estimate the mortality rates of these sensitive species. Although Humpback and Roundtail Chub exhibited no or low mortality in response to taking BIA measurements versus handling for length and wet-mass measurements, Bonytails exhibited 14% and 47% mortality in the BIA and handling experiments, respectively, indicating that survival following stress is species specific. Derived BIA measurements were included in the best models for most proximate components; however, the added value of BIA as a predictor was marginal except in the absence of accurate wet-mass data. Bioelectrical impedance analysis improved the R2 of the best percentage-based models by no more than 4% relative to models based on morphology. Simulated field conditions indicated that BIA models became increasingly better than morphometric models at estimating proximate composition as the observation error around wet-mass measurements increased. However, since the overall proportion of variance explained by percentage-based models was low and BIA was mostly a redundant predictor, we caution against the use of BIA in field applications for these sensitive fish species.

  18. Investigation on the water retention curve of loose pyroclastic ashes of Campania (Italy) and its potential implications on slope stability

    NASA Astrophysics Data System (ADS)

    Comegna, Luca; Damiano, Emilia; Greco, Roberto; Olivares, Lucio; Piccolo, Marco; Picarelli, Luciano

    2017-04-01

    Loose pyroclastic soils in Campania cover a large amount of steep slopes in the area surrounding the volcanic complex of Somma-Vesuvius. The stability of such slopes is assured by the contribution of suction to soil shear strength, which decreases during rainy periods till the possible attainment of a failure condition. The resulting landslide may evolve in form of a fast flow, if at the onset of instability the soil is nearly saturated and undrained conditions establish, so that soil liquefaction arises. The attainment of instability near saturation is not uncommon, as it requires the slope to have an inclination close to the friction angle of the soil constituting the deposit. The pyroclastic ashes of Campania are typically silty sands with friction angle between 36° and 38°, and small or even null cohesion. Many of the flow-like landslides, occurred during the last decades, were indeed triggered along slopes with inclination around 40°, which are quite common in Campania. As a suction of few kPa may be enough to guarantee the stability of a slope, knowledge of the water retention curve of the soil constituting the deposit is mandatory to correctly predict soil conditions at failure. Several studies report that the pyroclastic ashes of Campania exhibit a quite complex water retention behavior, showing a bimodal porosity distribution and, in some cases, a marked hysteresis domain, possibly enhanced by air entrapment during the infiltration of steep wetting fronts. In this study, a series of vertical infiltration and evaporation cycles have been carried out over two reconstituted specimens, both 20cm high, of pyroclastic ashes collected at the slope of Cervinara. TDR probes and minitensiometers were buried at various depths to provide coupled measurements of soil water content and suction. In order to highlight the possible hysteretic effects due to air entrapment, different hydraulic boundary conditions were established at the base of the two specimens: in one case a pervious boundary was realized by means of a geogrid covered with a geotextile layer in free contact with atmosphere; in the other case, the impervious boundary was constituted by a plexiglass panel. The obtained results indicate that the water retention curves followed by the soil during the wetting and drying phases were different, and that such a difference is more pronounced in the specimen with impervious bottom, thus confirming that air entrapment may be significant, especially during fast transient infiltration. In the field, where the infiltration front penetrates at much larger depths, the effect of air entrapment is expected to be even higher, leading to infiltration processes evolving under smaller suction at a given water content, and approaching a smaller saturated water content. Hence, the establishment of slope instability in unsaturated conditions is favored, and the evolution of the landslide in form of a flow is more unlikely.

  19. Constitution of Drop-Tube-Generated Coal Chars from Vitrinite- and Inertinite-Rich South African Coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louw, Enette B.; Mitchell, Gareth D.; Wang, Juan

    The structural transformations of coal and the resultant char morphologies are strongly dependent on the initial structure and degree of thermoplasticity achieved during coal-to-char transition. These are a function of petrographic composition, rank, particle size, and heating rate and strongly affect combustion behavior. This study compares the devolatilization and subsequent combustion behavior of an inertinite-rich (87.7% dmmf) and a vitrinite-rich (91.8% dmmf) South African coal, wet-screened to a narrow particle size distribution of 200 x 400 mesh. Pyrolysis chars were generated under rapid-heating conditions (104-105 °C/s) in a drop-tube reactor to closely resemble chars generated in pulverized combustion conditions. Themore » inertinite-rich coal took ~ 400 ms to devolatilize in the drop-tube, compared to only ~ 240 ms for the vitrinite-rich sample. The chemical and physical structure (the constitution) of the chars were investigated through a range of chemical, physical, and optical characteristics including the maceral differences, and high ash yields. To evaluate the combustion reactivity non-isothermal burn-out profiles were obtained through thermogravimetrical analyses (TGA) in air. The vitrinite-rich char had on average 20% higher reaction rates than the inertinite-rich char under the various combustion conditions. The char samples were de-ashed with HCl and HF acid which resulted in an increase in combustion reactivity. The maximum reaction rate of the high-ash (36% ash yield) inertinite-rich char increased with 80% after de-ashing. While the vitrinite-rich char with an ash yield of 15%, had a 20% increase in reactivity after de-ashing. The ash acted as a barrier, and the removal of ash most likely increased the access to reactive surface area. The chemical and physical structures of the chars were characterized through a range of different analytical techniques to quantify the factors contributing to reactivity differences. The morphologies of the chars were characterized with SEM and optical microscopy, while quantitative information on the ordered nature of chars was obtained through XRD on de-ashed chars. The inertinite-rich coal experienced limited fluidity during heat-treatment, resulting in slower devolatilization, limited growth in crystallite height (11.8 to 12.6Å), only rounding of particle edges, and producing > 40% of mixed-dense type chars. The vitrinite-char showed more significant structural transformations; producing mostly (80%) extensively swollen crassisphere, tenuisphere, and network-type chars, and XRD showed a large increase in crystallite height (4.3 to 11.7Å). Nitrogen adsorption and small-angle X-ray scattering (SAXS) were utilized to compare the nitrogen surface areas and pore size distributions. Both chars were mostly mesoporous but the inertinite-rich char had double the average pore size, which also resulted in a larger nitrogen surface area since nitrogen can only access surface areas in larger pores. The BET surface area was 3.9 and 2.7 m2/g for the inertinite- and vitrinite-rich chars respectively. SAXS data showed that the vitrinite-rich char had 60% higher frequencies of pores in the micropore range. Helium porosimetry indicated that the inertinite-rich coal and resultant char had higher densities than the vitrinite coal and char; 1.6 and 2.0 g/cm3, compared to 1.3 and 1.9 g/cm3 (dry basis). Non-isothermal TGA burnout profiles showed the inertinite-rich char had a burnout temperature of 680°C, slightly higher than the vitrinite-rich char’s 650 °C. This, along with the peak shape and position in the burnout profiles indicate that the vitrinite-rich char has a higher reactivity. The higher reactivity is due to a combination of factors likely including less organization, grater porosity and access to the reactive site, less ash blocking, and char morphology differences.« less

  20. Mercury emission and speciation of coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Wang, S. X.; Zhang, L.; Li, G. H.; Wu, Y.; Hao, J. M.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2010-02-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  1. Mercury emission and speciation of coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, L.; Li, G.; Wu, Y.; Hao, J.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2009-11-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of selective catalyst reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  2. Use of mixed solid waste as a soil amendment for saline-sodic soil remediation and oat seedling growth improvement.

    PubMed

    Fan, Yuan; Ge, Tian; Zheng, Yanli; Li, Hua; Cheng, Fangqin

    2016-11-01

    Soil salinization has become a worldwide problem that imposes restrictions on crop production and food quality. This study utilizes a soil column experiment to address the potential of using mixed solid waste (vinegar residue, fly ash, and sewage sludge) as soil amendment to ameliorate saline-sodic soil and enhance crop growth. Mixed solid waste with vinegar residue content ranging from 60-90 %, sewage sludge of 8.7-30 %, and fly ash of 1.3-10 % was added to saline-sodic soil (electrical conductivity (EC 1:5 ) = 1.83 dS m -1 , sodium adsorption ratio (SAR 1:5 ) = 129.3 (mmol c L -1 ) 1/2 , pH = 9.73) at rates of 0 (control), 130, 260, and 650 kg ha -1 . Results showed that the application of waste amendment significantly reduced SAR, while increasing soil soluble K + , Ca 2+ , and Mg 2+ , at a dose of 650 kg ha -1 . The wet stability of macro-aggregates (>1 mm) was improved 90.7-133.7 % when the application rate of amendment was greater than 260 kg ha -1 . The application of this amendment significantly reduced soil pH. Germination rates and plant heights of oats were improved with the increasing rate of application. There was a positive correlation between the percentage of vinegar residue and the K/Na ratio in the soil solutions and roots. These findings suggest that applying a mixed waste amendment (vinegar residue, fly ash, and sewage sludge) could be a cost-effective method for the reclamation of saline-sodic soil and the improvement of the growth of salt-tolerant plants.

  3. Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro- and forest-based biomass residues.

    PubMed

    Wikberg, Hanne; Grönqvist, Stina; Niemi, Piritta; Mikkelson, Atte; Siika-Aho, Matti; Kanerva, Heimo; Käsper, Andres; Tamminen, Tarja

    2017-07-01

    The suitability of several abundant but underutilized agro and forest based biomass residues for hydrothermal treatment followed by enzymatic hydrolysis as well as for hydrothermal carbonization was studied. The selected approaches represent simple biotechnical and thermochemical treatment routes suitable for wet biomass. Based on the results, the hydrothermal pre-treatment followed by enzymatic hydrolysis seemed to be most suitable for processing of carbohydrate rich corn leaves, corn stover, wheat straw and willow. High content of thermally stable components (i.e. lignin) and low content of ash in the biomass were advantageous for hydrothermal carbonization of grape pomace, coffee cake, Scots pine bark and willow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Evaluation and comparison of alternative designs for water/solid-waste processing systems for spacecraft

    NASA Technical Reports Server (NTRS)

    Spurlock, J. M.

    1975-01-01

    Promising candidate designs currently being considered for the management of spacecraft solid waste and waste-water materials were assessed. The candidate processes were: (1) the radioisotope thermal energy evaporation/incinerator process; (2) the dry incineration process; and (3) the wet oxidation process. The types of spacecraft waste materials that were included in the base-line computational input to the candidate systems were feces, urine residues, trash and waste-water concentrates. The performance characteristics and system requirements for each candidate process to handle this input and produce the specified acceptable output (i.e., potable water, a storable dry ash, and vapor phase products that can be handled by a spacecraft atmosphere control system) were estimated and compared. Recommendations are presented.

  5. Chemical changes associated with lotus and water lily natto production

    NASA Astrophysics Data System (ADS)

    Lestari, S. D.; Fatimah, N.; Nopianti, R.

    2017-04-01

    Natto is a traditional Japanese food made by fermenting whole soybean seeds with pure culture of Bacillus subtilis subsp. natto. The purpose of this study was to investigate the suitability of lotus (Nelumbo nucifera) and water lily (Nymphaea stellata) seeds as the raw materials for natto production. Chemical (proximate, amino acids and minerals) changes were observed on raw, steamed and fermented seeds. Proximate compositions of all samples were calculated in both wet basis and dry basis. In wet basis calculation, steaming and fermentation tended to lower the carbohydrates, ashes, fats and protein content which were attributed to the increase of moisture. The total amino acid, iron and magnesium contents of raw lotus seeds were 24.29%, 5.08 mg 100g-1 and 174.23 mg 100g-1 dry matter, respectively. After a 24h-fermentation at 40°C, the total amino acids decreased while iron and magnesium contents increased significantly reaching, in respective order, 9.9 mg 100g-1 and 411.36 mg 100g-1 dry matter. Changes in chemical composition after fermentation were more pronounced in lotus seeds than water lily seeds indicating that their nutrient composition were more suitable to support Bacillus subtilis growth.

  6. Proximate composition, fatty acids, cholesterol, minerals in frozen red porgy.

    PubMed

    Miniadis-Meimaroglou, Sofia; Dimizas, Christos; Loukas, Vassilis; Moukas, Athanasios; Vlachos, Alexandra; Thomaidis, Nikolaos; Paraskevopoulou, Vassiliki; Dasenakis, Manolis

    2007-04-01

    The proximate composition of frozen red porgy (Pagrus pagrus) was determined. The moisture, ash, protein and total lipids (45.5+/-1.4% PL of which 90.4+/-2.0% PhL) were found to be 71.7+/-1.0%, 1.73+/-0.12%, 21.5+/-0.8% and 0.81+/-0.09% of the wet muscle tissue, respectively. 16:0 and 18:0 were the main SFA, 18:1 (omega-9 and omega-7) the main MUFA while DHA, EPA and arachidonic acid were the main polyunsaturated fatty acids (PUFA). The SFA/PUFA ratio was 1.5 and the omega-3/omega-6 ratio was 3.02. The cholesterol content was found to be 8.18+/-0.34 mg/100 g of the wet muscle tissue. Ni, Cr, Mn, Cu, Zn, Fe and Mg were determined in the muscles, skin, hepatopancreas and head of the fish. The covering percentage of the recommended daily allowance/intake (RDA/RDI) for each mineral, in the muscle tissue, has been calculated to 14.2% (males) and 7.89% (females) for Fe, 2.87% for Cu, 4.07% for Zn 0.4% for Mn, 13.9% for Ni, 20.2% for Cr and 10.4% for Mg.

  7. Nanomaterial disposal by incineration.

    PubMed

    Holder, Amara L; Vejerano, Eric P; Zhou, Xinzhe; Marr, Linsey C

    2013-09-01

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which nanomaterials may enter incinerator waste streams and the fate of these nanomaterials during the incineration process. Although the literature on incineration of nanomaterials is scarce, results from studies of their behavior at high temperature or in combustion environments for other applications can help predict their fate within an incinerator. Preliminary evidence suggests nanomaterials may catalyze the formation or destruction of combustion by-products. Depending on their composition, nanomaterials may undergo physical and chemical transformations within the incinerator, impacting their partitioning within the incineration system (e.g., bottom ash, fly ash) and the effectiveness of control technology for removing them. These transformations may also drastically affect nanomaterial transport and impacts in the environment. Current regulations on incinerator emissions do not specifically address nanomaterials, but limits on particle and metal emissions may prove somewhat effective at reducing the release of nanomaterials in incinerator effluent. Control technology used to meet these regulations, such as fabric filters, electrostatic precipitators, and wet electrostatic scrubbers, are expected to be at least partially effective at removing nanomaterials from incinerator flue gas.

  8. Fate of hazardous air pollutants in oxygen-fired coal combustion with different flue gas recycling.

    PubMed

    Zhuang, Ye; Pavlish, John H

    2012-04-17

    Experiments were performed to characterize transformation and speciation of hazardous air pollutants (HAPs), including SO(2)/SO(3), NO(x), HCl, particulate matter, mercury, and other trace elements in oxygen-firing bituminous coal with recirculation flue gas (RFG) from 1) an electrostatic precipitator outlet or 2) a wet scrubber outlet. The experimental results showed that oxycombustion with RFG generated a flue gas with less volume and containing HAPs at higher levels, while the actual emissions of HAPs per unit of energy produced were much less than that of air-blown combustion. NO(x) reduction was achieved in oxycombustion because of the elimination of nitrogen and the destruction of NO in the RFG. The elevated SO(2)/SO(3) in flue gas improved sulfur self-retention. SO(3) vapor could reach its dew point in the flue gas with high moisture, which limits the amount of SO(3) vapor in flue gas and possibly induces material corrosion. Most nonvolatile trace elements were less enriched in fly ash in oxycombustion than air-firing because of lower oxycombustion temperatures occurring in the present study. Meanwhile, Hg and Se were found to be enriched on submicrometer fly ash at higher levels in oxy-firing than in air-blown combustion.

  9. Volcanic Ash Cloud Observations with the DLR-Falcon over Europe during Airspace Closure

    NASA Astrophysics Data System (ADS)

    Schumann, Ulrich; Weinzierl, Bernadett; Reitebuch, Oliver; Minikin, Andreas; Schlager, Hans; Rahm, Stephan; Scheibe, Monika; Lichtenstern, Michael; Forster, Caroline

    2010-05-01

    At the time of the EGU conference, the volcano ash plume originating from the Eyjafjallajökull volcano eruption in Iceland was probed during 9 flights with the DLR Falcon research aircraft in the region between Germany and Iceland at 1-11 km altitudes between April 19 and May 3, 2010. The Falcon was instrumented with a downward looking, scanning 2-µm-Wind-Lidar (aerosol backscattering and horizontal wind, 100 m vertical resolution), and several in-situ instruments. The particle instrumentation, including wing station probes (PCASP, FSSP-300) cover particle number and size from 5 nm to some tens of µm. Further in-situ instruments measured O3, CO, SO2, H2O, and standard meteorological parameters. Flight planning was based on numerical weather forecasts, trajectory-based particle-dispersion models, satellite observations and ground based Lidar observations, from many sources. During the flight on April 19, 2010, layers of volcanic ash were detected first by Lidar and then probed in-situ. The horizontal and vertical distribution of the volcanic ash layers over Eastern Germany was highly variable at that time. Calculations with the particle dispersion model FLEXPART indicate that the volcanic ash plumes measured by the Falcon had an age of 4-5 days. The concentrations of large particles measured in the volcanic aerosol layers are comparable to concentrations measured typically in fresh (age < 2 days) Saharan dust plumes. An estimation of the particle mass concentration in the elevated volcanic ash plume probed as part of a vertical profile over Leipzig at about 4 km altitude yields 60 µg/m3 (possibly 100 µg/m3), with an uncertainty of factor two. Of the total mass only less than 10 percent was residing in the particle size range below 2.5 µm. This emphasizes the need for adequate instrumentation to fully capture the size distribution of volcanic ash. During April 29-May 3, a sequence of flights has been performed between Germany, Scotland, and Iceland. Lidar measurements have been performed in a distance between 0-200 km downstream the Eyjafjal Volcano in Iceland. On May 2, the Lidar and insitu measurements occurred above and within the upper part of the ash plume over the North Atlantic in a quasi-Lagrangian experiment 7 h later.. The data are now being used to determine the volumetric flow in the plume and the mass flux of particles in the size range of up to about 30 micrometers. Major scientific and operational conclusions, include: - Falcon measurements have been performed between April 19 and May 3, 2010: with 2- mm-Lidar, in-situ aerosols, CO, O3, SO2, H2O - Particles sizes measured: 10 nm - 30 µm age dependent (mainly silicate, ammonia sulfate, more Na, K than in Saharan dust), - Mass loading (about 60 µg/m3, Leipzig, 5 days) comparable to Saharan dust (< 0.2 mg/m3) - 200 km distance, 3-4 h age: 40 km wide, 2 km thick, 15 m/s, sharply edged, strong wet convective turbulence, well mixed? - 450 km distance (same plume), 7 h age: at upper plume edge: 400-3400 µg/m3, no 2-DC probe particles, mass flux > 3000 kg/s, strong chemistry - Lidar signal and FSSP-300 signal strongly dependent on refractive index, ash density, particle size spectrum 1- 50 µm - Mid-European airspace closure was justified until Sat. April 17; thereafter ageing ash clouds dominated. - Keflavik/Iceland was found to be free of ash as predicted on April 29 - May 2 - The Quality of forecasts was found to be quite reliable for aviation planning - For the future we recommend combinations of models + lidar + satellite + in-situ - We suggest an improved linking between operations and academia - The DLR Falcon will continue to operate as Emergency Aircraft for some time Further scientific investigations (ash plume dispersion, aerosol ageing, mass concentration estimates, heterogeneous chemistry, comparison to other observations and models) have been initiated. The results had been provided to the German Weather Service (DWD) and others partly during the flights by satellite telephone and within 24 hours as quicklooks, and made available to the public by internet. The results had immediate impact on the decisions of the responsible agencies in Germany and the Volcanic Ash Advisory Centre (VAAC) in London. After the flights the Falcon inspections showed no obvious damage due to volcanic ash impact.

  10. Effect of water content on the water repellency for hydrophobized sands

    NASA Astrophysics Data System (ADS)

    Subedi, S.; Kawamoto, K.; Kuroda, T.; Moldrup, P.; Komatsu, T.

    2011-12-01

    Alternative earthen covers such as capillary barriers (CBs) and evapotranspirative covers are recognized as useful technical and low-cost solutions for limiting water infiltration and controlling seepage flow at solid waste landfills in semi-arid and arid regions. However, their application to the landfills at wet regions seems to be matter of concern due to loss of their impending capability under high precipitation. One of the possible techniques to enhance the impermeable properties of CBs is to alter soil grain surfaces to be water-repellent by mixing/coating hydrophobic agents (HAs). In order to examine a potential use of model sands hydrophobized with locally available and environmental-friendly HAs such as oleic acid (OA) and stearic acid (SA) for hydrophobic CBs. In the present study, we first characterized the effect of water content on the degree of water repellency (WR) for hydrophobized sands and volcanic ash soil at different depth. Secondly, the time dependency of the contact angle in hydrophobized sands and volcanic ash soils at different water content was evaluated. Further, the effects of hydrophobic organic matter contents on the WR of hydrophobized sands were investigated by horizontal infiltration test. We investigated the degree of WR as functions of volumetric water content (θ) of a volcanic ash soil samples from different depth and water adjusted hydrophobized sand samples with different ratio of HAs by using sessile drop method (SDM). The initial contact angle (αi) measured from SDM decreased gradually with increasing water content in OA and SA coated samples. Measured αi values for volcanic ash soils increased with increasing water content and reached a peak values of 111.7o at θ= 0.325 cm3 cm-3, where-after αi gradually decreased. Each test sample exhibited sharp decrease in contact angle with time at higher water content. Sorptivity values for oleic acid coated samples decreased with increasing HA content and reached the minimum value of 0.068 cm s-1/2 at 1 g HA kg-1 sand, and then gradually increased.

  11. Multi-level emulation of a volcanic ash transport and dispersion model to quantify sensitivity to uncertain parameters

    NASA Astrophysics Data System (ADS)

    Harvey, Natalie J.; Huntley, Nathan; Dacre, Helen F.; Goldstein, Michael; Thomson, David; Webster, Helen

    2018-01-01

    Following the disruption to European airspace caused by the eruption of Eyjafjallajökull in 2010 there has been a move towards producing quantitative predictions of volcanic ash concentration using volcanic ash transport and dispersion simulators. However, there is no formal framework for determining the uncertainties of these predictions and performing many simulations using these complex models is computationally expensive. In this paper a Bayesian linear emulation approach is applied to the Numerical Atmospheric-dispersion Modelling Environment (NAME) to better understand the influence of source and internal model parameters on the simulator output. Emulation is a statistical method for predicting the output of a computer simulator at new parameter choices without actually running the simulator. A multi-level emulation approach is applied using two configurations of NAME with different numbers of model particles. Information from many evaluations of the computationally faster configuration is combined with results from relatively few evaluations of the slower, more accurate, configuration. This approach is effective when it is not possible to run the accurate simulator many times and when there is also little prior knowledge about the influence of parameters. The approach is applied to the mean ash column loading in 75 geographical regions on 14 May 2010. Through this analysis it has been found that the parameters that contribute the most to the output uncertainty are initial plume rise height, mass eruption rate, free tropospheric turbulence levels and precipitation threshold for wet deposition. This information can be used to inform future model development and observational campaigns and routine monitoring. The analysis presented here suggests the need for further observational and theoretical research into parameterisation of atmospheric turbulence. Furthermore it can also be used to inform the most important parameter perturbations for a small operational ensemble of simulations. The use of an emulator also identifies the input and internal parameters that do not contribute significantly to simulator uncertainty. Finally, the analysis highlights that the faster, less accurate, configuration of NAME can, on its own, provide useful information for the problem of predicting average column load over large areas.

  12. Evaluation of toxic and genotoxic potential of a wet gas scrubber effluent obtained from wooden-based biomass furnaces: A case study in the red ceramic industry in southern Brazil.

    PubMed

    Bortolotto, Tiago; da Silva, Jaqueline; Sant'Ana, Alex Célio; Tomazi, Kamila Osowski; Geremias, Reginaldo; Angioletto, Elídio; Pich, Claus Tröger

    2017-09-01

    Red ceramic industry in southern Brazil commonly uses wood biomass as furnace fuel generating great amounts of gas emissions and ash. To avoid their impact on atmospheric environment, wet scrubbing is currently being applied in several plants. However, the water leachate formed could be potentially toxic and not managed as a common water-based effluent, since the resulting wastewater could carry many toxic compounds derived from wood pyrolysis. There is a lack of studies regarding this kind of effluent obtained specifically and strictly from wooden-based biomass furnaces. Therefore, we conducted an evaluation of toxic and genotoxic potentials of this particular type of wet gas scrubber effluent. Physical-chemical analysis showed high contents of several contaminants, including phenols, sulphates and ammoniacal nitrogen, as well as the total and suspended solids. The effluent cause significant toxicity towards microcrustacean Artemia sp. (LC 50 = 34.4%) and Daphnia magna (Toxicity Factor = 6 on average) and to higher plants (Lactuca sativa L. and Allium cepa L.) with acute and sub-acute effects in several parameters. Besides, using plasmid DNA, significant damage was observed in concentrations 12.5% and higher. In cellular DNA, concentrations starting from 12.5% and 6.25% showed significant increase in Damage Index (DI) and Damage Frequency (DF), respectively. The results altogether suggest that the effluent components, such phenols, produced by wood combustion can be volatilized, water scrubbed, resulting in a toxic and genotoxic effluent which could contaminate the environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Research on a new type of additive for CWS from low temperature pyrolysis tar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Guoguang; Wang Zuna

    1997-12-31

    In this paper, coal tar from flash pyrolysis of Ping Zhuang lignite with solid heat carrier was used as raw material, which was directly synthesized a new type of additive for coal water slurry (CWS) in the laboratory. The wetting heat between the lignite and distilled water and solution of additive has been determined. It is evident that the wetting heat between the lignite and distilled water is very high, up to 44.56 J/g, which is harmful to preparing CWS. The wetting heat between the lignite and a solution of additive is reduced, which is related to its characteristics suchmore » as surface properties, oxygen functional groups and structure. The effect of coal properties on preparing CWS has also been analyzed systematically. It is suggested that the concentration of CWS is regularly changed with oxygen content of coal based on moisture and ash content. It is emphasized that when the influence of macerals on slurriability of coal is observed, inherent properties of each maceral such as pore structure, porosity, oxygen functional groups, grindability must be tightly combined to evaluate comprehensively. The structural characteristics of the additive matches well the molecular structure and surface properties of the coal. It is seen by synthetic experiments that suitable a degree of sulphonating and condensation are beneficial to preparing CWS. The rheology and stability of CWS have also been investigated. The result indicates that the stability of CWS using the new type of additive is improved, and the production cost of the additive synthesized from low temperature pyrolysis coal tar can be reduced.« less

  14. Impact of drainage on wettability of fen peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Szajdak, L.; Szatyłowicz, J.; Brandyk, T.

    2009-04-01

    High water retention in peat is attributed to structural voids (macro-pores) due to the partial degradation of the structure of peat-forming plants, and molecular absorption sites (micro-pores) associated with the formation of humic substances. Water retention by the heterogeneously-structured system in peat organic matter depends on the chemical structure of solid surfaces. These naturally wet solids, if dried sufficiently, lose the ability to rewet quickly when immersed in water. The ability of peat surfaces to attract and hold water is attributed to hydrophilic functional groups which characterize the organic substances of peat. The investigations of chemical and physical properties were performed for three different peat-moorsh soils located in the Biebrza River Valley in Poland. All examined soils were used as meadow. Soil samples were taken from two depths: 5-10 cm (moorsh) and 50-80 cm (peat). Total organic carbon (TOC), dissolved organic carbon (DOC) and humic acids (HA) extracted from these samples were analysed. Also basic physical properties such as ash content and bulk density were measured. Wetting behavior of soils was quantified using water drop penetration time test (WDPT) and measured values of the soil-water contact angle using sessile drop method. The measurements were conducted on air-dry soil samples which volumetric moisture content was not exceeding 7%. The significant differences in the concentrations of TOC, DOC and properties of HA between two investigated depth of among peat and moorsh samples were observed. The measured concentrations of total organic carbon in the considered soils ranged from 37.2 to 45.6%. Generally, the decrease of total organic carbon concentration with depth of profiles was observed. The contents of dissolved organic carbon in the soils ranged from 5.3 to 19.4%. The quantities of dissolved organic carbon decreased simultaneously with E4/E6 values and with the depth of the soil profiles. For the investigated peat's, an increase of the depth is accompanied by the decrease in the degree of humification or an increase in chemical maturity of HA. The measured values of the contact angle for investigated soils were in the range from 81.4˚ to 114.3˚ what indicates their high water repellency. The WDPT was positively correlated with total organic carbon, organic matter and humic acids content while ash content, soil bulk density, pH and absorbance were correlated negatively. The highest value of correlation coefficient (statistically significant) was obtained for relation between WDPT and ash content. The soil water contact angle was less correlated with peat-moorsh soil properties in comparison with WDPT with one exception pH. The pH against the contact angle indicates tendency of increasing the contact angle with decreasing pH.

  15. Size matters: relationships between body size and body mass of common coastal, aquatic invertebrates in the Baltic Sea

    PubMed Central

    Austin, Åsa; Bergström, Ulf; Donadi, Serena; Eriksson, Britas D.H.K.; Hansen, Joakim; Sundblad, Göran

    2017-01-01

    Background Organism biomass is one of the most important variables in ecological studies, making biomass estimations one of the most common laboratory tasks. Biomass of small macroinvertebrates is usually estimated as dry mass or ash-free dry mass (hereafter ‘DM’ vs. ‘AFDM’) per sample; a laborious and time consuming process, that often can be speeded up using easily measured and reliable proxy variables like body size or wet (fresh) mass. Another common way of estimating AFDM (one of the most accurate but also time-consuming estimates of biologically active tissue mass) is the use of AFDM/DM ratios as conversion factors. So far, however, these ratios typically ignore the possibility that the relative mass of biologically active vs. non-active support tissue (e.g., protective exoskeleton or shell)—and therefore, also AFDM/DM ratios—may change with body size, as previously shown for taxa like spiders, vertebrates and trees. Methods We collected aquatic, epibenthic macroinvertebrates (>1 mm) in 32 shallow bays along a 360 km stretch of the Swedish coast along the Baltic Sea; one of the largest brackish water bodies on Earth. We then estimated statistical relationships between the body size (length or height in mm), body dry mass and ash-free dry mass for 14 of the most common taxa; five gastropods, three bivalves, three crustaceans and three insect larvae. Finally, we statistically estimated the potential influence of body size on the AFDM/DM ratio per taxon. Results For most taxa, non-linear regression models describing the power relationship between body size and (i) DM and (ii) AFDM fit the data well (as indicated by low SE and high R2). Moreover, for more than half of the taxa studied (including the vast majority of the shelled molluscs), body size had a negative influence on organism AFDM/DM ratios. Discussion The good fit of the modelled power relationships suggests that the constants reported here can be used to quickly estimate organism dry- and ash-free dry mass based on body size, thereby freeing up considerable work resources. However, the considerable differences in constants between taxa emphasize the need for taxon-specific relationships, and the potential dangers associated with ignoring body size. The negative influence of body size on the AFDM/DM ratio found in a majority of the molluscs could be caused by increasingly thicker shells with organism age, and/or spawning-induced loss of biologically active tissue in adults. Consequently, future studies utilizing AFDM/DM (and presumably also AFDM/wet mass) ratios should carefully assess the potential influence of body size to ensure more reliable estimates of organism body mass. PMID:28149685

  16. Aspects on the analysis of 210Po.

    PubMed

    Henricsson, F; Ranebo, Y; Holm, E; Roos, P

    2011-05-01

    There has been little development regarding analysis of polonium (Po) in environmental samples since the 1960 ies. This is due to the straightforward spontaneous deposition of this element on silver (Ag), nickel (Ni) or copper (Cu) without any radiochemical separation. For many years, no radiochemical yield determinant was used and it was generally supposed that the yield was 100% after two depositions. Counting was often done using ZnS scintillation counter coupled to a photomultiplier tube. However, the use of the yield determinants (208)Po and (209)Po and the development of alpha spectrometry showed that the yield was lower. Furthermore, the tendency of Po to volatilize at low temperatures constrains the sample preparation techniques; dry-ashing cannot be used. But during the wet-ashing procedure, there are still some losses. The aim of this study was to evaluate the Po losses during wet-ashing by the use of a double-tracer technique. We have found that the losses were about 30% when open glass beakers were used and about 17% when the samples were digested in microwave oven. When long-necked bottles (Kjeldahl flasks) were used, a loss of about 20% was registered. It has also been observed that (210)Pb to some extent is plating out together with its daughter nuclide Po during the electrochemical deposition. This will result in a systematic error since an unknown amount of supported (210)Po will be produced from the (210)Pb decay depending on the fraction of (210)Pb being deposited on the disc and the waiting time between deposition and measurement of the sample. A further consequence of this is that in the assessment of the (210)Pb content in the sample, very often the remaining liquid is stored after deposition for build-up of (210)Po. Since some (210)Pb is lost on the disc, the result for (210)Pb will be too low. Both these systematic errors give rise to a too high (210)Po/(210)Pb ratio. The fraction of (210)Pb which is plating out has been assessed in this study for different matrices and is about 50-90%. During the measurement by solid state Si-detectors, some Po is evaporated in the vacuum conditions contaminating the detectors. Experiments have here been done by heating the discs after deposition which indicate that less Po is evaporated from Ag than from Ni. The losses from Ag are less than that from the other metals probably due to a deeper penetration into the surface of Po. We conclude that in most aspects, Ag is better to use than the other plating metals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Size matters: relationships between body size and body mass of common coastal, aquatic invertebrates in the Baltic Sea.

    PubMed

    Eklöf, Johan; Austin, Åsa; Bergström, Ulf; Donadi, Serena; Eriksson, Britas D H K; Hansen, Joakim; Sundblad, Göran

    2017-01-01

    Organism biomass is one of the most important variables in ecological studies, making biomass estimations one of the most common laboratory tasks. Biomass of small macroinvertebrates is usually estimated as dry mass or ash-free dry mass (hereafter 'DM' vs. 'AFDM') per sample; a laborious and time consuming process, that often can be speeded up using easily measured and reliable proxy variables like body size or wet (fresh) mass. Another common way of estimating AFDM (one of the most accurate but also time-consuming estimates of biologically active tissue mass) is the use of AFDM/DM ratios as conversion factors. So far, however, these ratios typically ignore the possibility that the relative mass of biologically active vs. non-active support tissue (e.g., protective exoskeleton or shell)-and therefore, also AFDM/DM ratios-may change with body size, as previously shown for taxa like spiders, vertebrates and trees. We collected aquatic, epibenthic macroinvertebrates (>1 mm) in 32 shallow bays along a 360 km stretch of the Swedish coast along the Baltic Sea; one of the largest brackish water bodies on Earth. We then estimated statistical relationships between the body size (length or height in mm), body dry mass and ash-free dry mass for 14 of the most common taxa; five gastropods, three bivalves, three crustaceans and three insect larvae. Finally, we statistically estimated the potential influence of body size on the AFDM/DM ratio per taxon. For most taxa, non-linear regression models describing the power relationship between body size and (i) DM and (ii) AFDM fit the data well (as indicated by low SE and high R 2 ). Moreover, for more than half of the taxa studied (including the vast majority of the shelled molluscs), body size had a negative influence on organism AFDM/DM ratios. The good fit of the modelled power relationships suggests that the constants reported here can be used to quickly estimate organism dry- and ash-free dry mass based on body size, thereby freeing up considerable work resources. However, the considerable differences in constants between taxa emphasize the need for taxon-specific relationships, and the potential dangers associated with ignoring body size. The negative influence of body size on the AFDM/DM ratio found in a majority of the molluscs could be caused by increasingly thicker shells with organism age, and/or spawning-induced loss of biologically active tissue in adults. Consequently, future studies utilizing AFDM/DM (and presumably also AFDM/wet mass) ratios should carefully assess the potential influence of body size to ensure more reliable estimates of organism body mass.

  18. Efficient removal of UDMH from dilute nitride MOCVD exhaust streams

    NASA Astrophysics Data System (ADS)

    Pahle, Jörg; Czerniak, Mike; Seeley, Andy; Baker, Derek

    2004-12-01

    Unsymmetrical dimethyl hydrazine (UDMH) (CH 3) 2N 2H 2 is often used in the deposition of dilute nitride semiconductors because it provides a source of nitrogen with a low thermal decomposition temperature (Temperature-dependent carrier lifetime in GaNAs using resonant-coupled photoconductive decay, NCPV Program Review Meeting, Lakewood, Colorado, 14-17 October, 2001). The problems with using this material, however, are its significant toxicity (0.01 ppm compared to ammonia's 25 ppm) and also the fact that it blocks the action of conventional dosed wet scrubbers sometimes used on nitride applications, resulting in diminished efficiency in removing arsine (the source of arsenic), and arsine being similarly toxic (TLV of 0.05 ppm). Efficient removal of UDMH, AsH 3 and hydrogen (which, though not toxic poses a potential safety hazard) by means of a combined thermal oxidation reaction and wet scrubber in series is described at input gas flow rates exceeding those typically encountered in practice. The detection technique employed was Fourier transform infra red spectroscopy (FTIR), and the calibration and resolution techniques will be described. For input UDMH flows of up to 445 sccm (i.e. 1.85×10 -2 mol/min), destructive reaction efficiencies (DREs) of >99.9% were demonstrated, corresponding to the background detection resolution of 0.4 ppm.

  19. Measurement of Mercury in Flue Gas Based on an Aluminum Matrix Sorbent

    PubMed Central

    Wang, Juan; Xu, Wei; Wang, Xiaohao; Wang, Wenhua

    2011-01-01

    The measurement of total mercury in flue gas based on an economical aluminum matrix sorbent was developed in this paper. A sorbent trap consisted of three tubes was employed to capture Hg from flue gas. Hg trapped on sorbent was transferred into solution by acid leaching and then detected by CVAAS. Hg adsorbed on sorbent was recovered completely by leaching process. The 87.7% recovery of Hg in flue gas by tube 1 and tube 2 was obtained on the equipment of coal combustion and sampling in lab. In order to evaluate the ability to recover and accurately quantify Hg0 on the sorbent media, the analytical bias test on tube 3 spiked with Hg0 was also performed and got the average recovery of 97.1%. Mercury measurements based on this method were conducted for three coal-fired power plants in China. The mercury in coal is distributed into bottom ash, electrostatic precipitator (ESP) ash, wet flue gas desulfurization (WFGD) reactant, and flue gas, and the relative distribution varied depending on factors such as the coal type and the operation conditions of plants. The mercury mass balances of three plants were also calculated which were 91.6%, 77.1%, and 118%, respectively. The reliability of this method was verified by the Ontario Hydro (OH) method either in lab or in field. PMID:22235178

  20. A comparison of methods for organ-weight data adjustment in chicks.

    PubMed

    Brown, D R; Southern, L L; Baker, D H

    1985-02-01

    An experiment was conducted with 168 Arbor Acre X Peterson unsexed, crossbred broiler chicks to compare methods of expressing organ-weight data and to assess changes in organ weights and physiological parameters as body weight (97 to 791 g) and age (5 to 26 days) increased. Actual wet weight of liver, heart, intestine, spleen, and pancreas and percent bone ash increased (P less than .01) as age and body weight increased. Tibia length-to-width ratio decreased (P less than .01) as age and body weight increased. Blood hemoglobin, hematocrit, and plasma protein were not affected (P greater than .1) by age or by body weight. Liver, heart, and intestinal weight decreased (P less than .01) and spleen weight increased (P less than .01) as body weight and age increased when these tissue weights were expressed as percent of body weight. Liver weight adjusted for body weight by covariance analysis, however, remained constant; adjusted heart and intestinal weights decreased (P less than .01), and adjusted spleen weights increased (P less than .01) with increasing age and body weight. The covariate, body weight, was not significant (P greater than .1) for pancreas weight, tibia length-to-width ratio, and percent bone ash. Except for spleen, adjustment by covariance analysis more effectively reduced variation due to body weight than did expression as percent of body weight.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Origin of Phytolith Carbon Revealed by Isotopic Measurements of Extracted Phytoliths from FACE Grasses

    NASA Astrophysics Data System (ADS)

    Reyerson, P. E.; Santos, G.; Alexandre, A. E.; Harutyunyan, A.; Badeck, F.; Cattivelli, L.

    2013-12-01

    Radiocarbon dating of C encapsulated in phytoliths (phytC) is being explored as an age control tool in many Earth Science disciplines with limited success. However, because plants take up small amounts of C (1-3%) of varying ages from soils, recent studies have suggested that phytC is at least partially derived from soil organic matter (SOM) based on anomalously old 14C phytC ages derived from living plants. It appears that most phytolith digestion methods are not able to fully dissolve the more weathering-resistant SOM already stored in plant tissue [2,3], leading to a proportional increase of transported soil-C residues, thus biasing the 14C values [4]. We extracted phytoliths from graminae spp. grown in free-air carbon enrichment experiments (FACE). For each grass set, one group was grown under 14C-free elevated CO2 conditions (shifting the bulk plant tissue towards thousands of years old) while the other was grown under ambient atmospheric CO2. We used two newly developed protocols, which produce pure phytoliths [5]: a multiple-step wet-oxidation process with KOH digestion (pH≥14); and a multiple-step dry ashing at 500°C coupled with wet-oxidation. Radiocarbon analyses of phytC yielded initially contradictory results: a) when phytoliths were extracted by both protocols, ambient-air phytC 14C ages were thousands of years old; b) when a mild wet-oxidation extraction was employed (KOH; pH≥11), ambient-air 14C phytC values were post-bomb (modern), but still 14C depleted. To evaluate the thermal behavior of the C species of phytC, we used a thermal-optical C aerosol analyzer, with a stepwise temperature ramp from zero to 860°C under an oxidizing atmosphere. Thermograms indicate that the phytoliths contain a complex array of phytC molecules, with some of the C species released at temperatures as low as 300°C, and suggesting that phytC is formed by a continuum of C (possibly of several ages). This was verified by 'roasting' duplicates of pure phytolith extracts obtained through wet-oxidation protocol (enriched and ambient), which yielded ages thousands of years old, similar to the previous 14C results. These findings suggest that aggressive cleaning steps (ashing at 500°C, high pH) isolate this oldest C fraction, as less recalcitrant forms of C were lost. These results imply that most phytC is of photosynthetic origin; however, phytC from living plants often fail to produce contemporaneous 14C values, which also implies that some of the old soil-C stored in plant tissue can be transported and encapsulated within phytoliths leading to erroneous 14C age chronologies. We also attempted to map the Si distribution of individual phytoliths and biosilica fragments through SEM and NanoSIMS, which will also be shown and discussed. [1] Santos et al. 2010 Radiocarbon 52:113 [2] Santos et al. 2012 Biogeosci. 9:1873 [3] Sullivan and Parr 2013 Biogeosci. 10:977 [4] Santos et al. 2012 Biogeosci. Discussion 9:C6114 [5] Corbineau et al. 2013 R. Paleobot. Palyn. 197: 179

  2. Interspecific variation in resistance to emerald ash borer (Coleoptera: Buprestidae) among North American and Asian ash (Fraxinus spp.).

    PubMed

    Rebek, Eric J; Herms, Daniel A; Smitley, David R

    2008-02-01

    We conducted a 3-yr study to compare the susceptibility of selected North American ash and an Asian ash species to emerald ash borer, Agrilus planipennis Fairmaire, an invasive wood-boring beetle introduced to North America from Asia. Because of a coevolutionary relationship between Asian ashes and emerald ash borer, we hypothesized an Asian ash species, Manchurian ash, is more resistant to the beetle than its North American congeners. Consistent with our hypothesis, Manchurian ash experienced far less mortality and yielded far fewer adult beetles than several cultivars of North American green and white ash. Surprisingly, a black ash (North American) x Manchurian ash hybrid was highly susceptible to emerald ash borer, indicating this cultivar did not inherit emerald ash borer resistance from its Asian parent. A corollary study investigated the efficacy of soil-applied imidacloprid, a systemic, neonicotinoid insecticide, for controlling emerald ash borer in each of the five cultivars. Imidacloprid had no effect on emerald ash borer colonization of Manchurian ash, which was low in untreated and treated trees. In contrast, imidacloprid did enhance survival of the North American and hybrid cultivars and significantly reduced the number of emerald ash borer adults emerging from green and white ash cultivars. We identify a possible mechanism of resistance of Manchurian ash to emerald ash borer, which may prove useful for screening, selecting, and breeding emerald ash borer-resistant ash trees.

  3. Interfacial properties and coal cleaning in the LICADO process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, S.M.B.

    1986-01-01

    The LICADO LIquid CArbon DiOxide process is currently being investigated as a new technique for cleaning coal. It relies on the relative wettability of clean coal and mineral particles between liquid CO/sub 2/ and water so that when liquid CO/sub 2/ is dispersed into a coal-water slurry, it tends to form agglomerates with the clean coal particles and float them to the liquid CO/sub 2/ phase. The mineral particles, on the other hand, remain in the aqueous phase as refuse. Since the surface/interfacial properties of fine coal particles play such an important role in this coal cleaning operation, an understandingmore » of their behavior becomes indispensable. In order to understand the separation mechanisms involved in the LICADO process, it is necessary to study the interfacial interactions occurring in the CO/sub 2/-water-coal system. It is believed that a relationship between the process performance and the wetting characteristics of the coal/refuse particles can be established. Upper Freeport -200 mesh coal from Indiana County, PA with 23.5% ash content was selected for the experimental work. A specially designed high pressure experimental unit, equipped with necessary optical and photographic accessories, was constructed for this study. Contact angles were also measured on the coal surface under two different sample pretreatment conditions: water-first-wet and liquid CO/sub 2/-first-wet. The results infer that an optimum mixing is necessary to provide sufficient shear force to expose the clean coal particles to the CO/sub 2/ droplets. The coal maceral and mineral association on the coal particle surface was determined based on the reflective grey level distinction between the mineral and Litho-type of various coal components.« less

  4. Bi/In thermal resist for both Si anisotropic wet etching and Si/SiO2 plasma etching

    NASA Astrophysics Data System (ADS)

    Chapman, Glenn H.; Tu, Yuqiang; Peng, Jun

    2004-01-01

    Bi/In thermal resist is a bilayer structure of Bi over In films which can be exposed by laser with a wide range of wavelengths and can be developed by diluted RCA2 solutions. Current research shows bimetallic resist can work as etch masking layer for both dry plasma etching and wet anisotropic etching. It can act as both patterning and masking layers for Si and SiO2 with plasma "dry" etch using CF4/CHF3. The etching condition is CF4 flow rate 50 sccm, pressure 150 mTorr, and RF power 100 - 600W. The profile of etched structures can be tuned by adding CHF3 and other gases such as Ar, and by changing the CF4/CHF3 ratio. Depending on the fluorocarbon plasma etching recipe the etch rate of laser exposed Bi/In can be as low as 0.1 nm/min, 500 times lower than organic photoresists. O2 plasma ashing has little etching effect on exposed Bi/In. Bi/In also creates etch masking layers for alkaline-based (KOH, TMAH and EDP) "wet" anisotropic bulk Si etch without the need of SiO2 masking steps. The laser exposed Bi/In etches two times more slowly than SiO2. Experiment result shows that single metal Indium film exhibits thermal resist characteristics but at twice the exposure levels. It can be developed in diluted RCA2 solution and used as an etch mask layer for Si anisotropic etch. X-ray diffraction analysis shows that laser exposure causes both Bi and In single film to oxidize. In film may become amorphous when exposed to high laser power.

  5. Ecosystem recharge by volcanic dust drives broad-scale variation in bird abundance.

    PubMed

    Gunnarsson, Tómas Grétar; Arnalds, Ólafur; Appleton, Graham; Méndez, Verónica; Gill, Jennifer A

    2015-06-01

    Across the globe, deserts and volcanic eruptions produce large volumes of atmospheric dust, and the amount of dust is predicted to increase with global warming. The effects of long-distance airborne dust inputs on ecosystem productivity are potentially far-reaching but have primarily been measured in soil and plants. Airborne dust could also drive distribution and abundance at higher trophic levels, but opportunities to explore these relationships are rare. Here we use Iceland's steep dust deposition gradients to assess the influence of dust on the distribution and abundance of internationally important ground-nesting bird populations. Surveys of the abundance of breeding birds at 729 locations throughout lowland Iceland were used to explore the influence of dust deposition on bird abundance in agricultural, dry, and wet habitats. Dust deposition had a strong positive effect on bird abundance across Iceland in dry and wet habitats, but not in agricultural land where nutrient levels are managed. The abundance of breeding waders, the dominant group of terrestrial birds in Iceland, tripled on average between the lowest and highest dust deposition classes in both wet and dry habitats. The deposition and redistribution of volcanic materials can have powerful impacts in terrestrial ecosystems and can be a major driver of the abundance of higher trophic-level organisms at broad spatial scales. The impacts of volcanic ash deposition during eruptions and subsequent redistribution of unstable volcanic materials are strong enough to override effects of underlying variation in organic matter and clay content on ecosystem fertility. Global rates of atmospheric dust deposition are likely to increase with increasing desertification and glacier retreat, and this study demonstrates that the effects on ecosystems are likely to be far-reaching, both in terms of spatial scales and ecosystem components.

  6. Material handling systems for the fluidized-bed combustion boiler at Rivesville, West Virginia

    NASA Technical Reports Server (NTRS)

    Branam, J. G.; Rosborough, W. W.

    1977-01-01

    The 300,000 lbs/hr steam capacity multicell fluidized-bed boiler (MFB) utilizes complex material handling systems. The material handling systems can be divided into the following areas: (1) coal preparation; transfer and delivery, (2) limestone handling system, (3) fly-ash removal and (4) bed material handling system. Each of the above systems are described in detail and some of the potential problem areas are discussed. A major potential problem that exists is the coal drying system. The coal dryer is designed to use 600 F preheated combustion air as drying medium and the dryer effluent is designed to enter a hot electrostatic precipitator (730 F) after passage through a cyclone. Other problem areas to be discussed include the steam generator coal and limestone feed system which may have operating difficulties with wet coal and/or coal fines.

  7. Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils

    USGS Publications Warehouse

    Ebel, Brian A.; Moody, John A.

    2017-01-01

    We collected soil-hydraulic property data from the literature for wildfire-affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil-structural changes, organic matter impacts, quantitative water repellency trends, and soil-water content along with soil-hydraulic properties could drive the development of better techniques for numerically simulating infiltration in burned areas.

  8. Growth of Larval Agrilus planipennis (Coleoptera: Buprestidae) and Fitness of Tetrastichus planipennisi (Hymenoptera: Eulophidae) in Blue Ash (Fraxinus quadrangulata) and Green Ash (F. pennsylvanica).

    PubMed

    Peterson, Donnie L; Duan, Jian J; Yaninek, J S; Ginzel, Matthew D; Sadof, Clifford S

    2015-12-01

    Emerald ash borer (Agrilus planipennis Fairmaire) is an invasive primary pest of North American ash (Fraxinus spp.) trees. Blue ash (F. quadrangulata) is less susceptible to emerald ash borer infestations in the forest than other species of North American ash. Whereas other studies have examined adult host preferences, we compared the capacity of emerald ash borer larvae reared from emerald ash borer eggs in the field and in the laboratory to survive and grow in blue ash and the more susceptible green ash (F. pennsylvanica). Emerald ash borer larval survivorship was the same on both ash species. Mortality due to wound periderm formation was only observed in living field grown trees, but was low (<4%) in both green and blue ash. No difference in larval mortality in the absence of natural enemies suggests that both green and blue ash can support the development of emerald ash borer. Larvae reared from eggs on blue ash were smaller than on green ash growing in the field and also in bolts that were infested under laboratory conditions. In a laboratory study, parasitism rates of confined Tetrastichus planipennisi were similar on emerald ash borer larvae reared in blue and green ash bolts, as were fitness measures of the parasitoid including brood size, sex ratio, and adult female size. Thus, we postulate that emerald ash borer larvae infesting blue ash could support populations of T. planipennisi and serve as a potential reservoir for this introduced natural enemy after most of the other native ash trees have been killed. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Occurrence of emerald ash borer (Coleoptera: Buprestidae) and biotic factors affecting its immature stages in the Russian Far East.

    PubMed

    Duan, Jian J; Yurchenko, Galina; Fuester, Roger

    2012-04-01

    Field surveys were conducted from 2008 to 2011 in the Khabarovsk and Vladivostok regions of Russia to investigate the occurrence of emerald ash borer, Agrilus planipennis Fairmaire, and mortality factors affecting its immature stages. We found emerald ash borer infesting both introduced North American green ash (Fraxinus pennsylvanica Marshall) and native oriental ashes (F. mandshurica Rupr. and F. rhynchophylla Hance) in both regions. Emerald ash borer densities (larvae/m(2) of phloem area) were markedly higher on green ash (11.3-76.7 in the Khabarovsk area and 77-245 in the Vladivostok area) than on artificially stressed Manchurian ash (2.2) or Oriental ash (10-59). Mortality of emerald ash borer larvae caused by different biotic factors (woodpecker predation, host plant resistance and/or undetermined diseases, and parasitism) varied with date, site, and ash species. In general, predation of emerald ash borer larvae by woodpeckers was low. While low rates (3-27%) of emerald ash borer larval mortality were caused by undetermined biotic factors on green ash between 2009 and 2011, higher rates (26-95%) of emerald ash borer larval mortality were caused by putative plant resistance in Oriental ash species in both regions. Little (<1%) parasitism of emerald ash borer larvae was observed in Khabarovsk; however, three hymenopteran parasitoids (Spathius sp., Atanycolus nigriventris Vojnovskaja-Krieger, and Tetrastichus planipennisi Yang) were observed attacking third - fourth instars of emerald ash borer in the Vladivostok area, parasitizing 0-8.3% of emerald ash borer larvae infesting Oriental ash trees and 7.3-62.7% of those on green ash trees (primarily by Spathius sp.) in two of the three study sites. Relevance of these findings to the classical biological control of emerald ash borer in newly invaded regions is discussed.

  10. Interspecific Proteomic Comparisons Reveal Ash Phloem Genes Potentially Involved in Constitutive Resistance to the Emerald Ash Borer

    PubMed Central

    Whitehill, Justin G. A.; Popova-Butler, Alexandra; Green-Church, Kari B.; Koch, Jennifer L.; Herms, Daniel A.; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion. PMID:21949771

  11. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer.

    PubMed

    Whitehill, Justin G A; Popova-Butler, Alexandra; Green-Church, Kari B; Koch, Jennifer L; Herms, Daniel A; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion.

  12. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett [Park City, UT

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  13. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett [Park City, UT; Akash, Akash [Salt lake City, UT; Zhao, Qiang [Natick, MA

    2012-05-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  14. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  15. Paradigms and proboscideans in the southern Great Lakes region, USA

    USGS Publications Warehouse

    Saunders, J.J.; Grimm, E.C.; Widga, C.C.; Campbell, G.D.; Curry, B. Brandon; Grimley, D.A.; Hanson, P.R.; McCullum, J.P.; Oliver, J.S.; Treworgy, J.D.

    2010-01-01

    Thirteen new chronometric dates for Illinois proboscideans are considered in relation to well-dated pollen records from northeastern and central Illinois. These dates span an interval from 21,228 to 12,944 cal BP. When compared to pollen spectra, it is evident that Mammut americanum inhabited spruce (Picea) and black ash (Fraxinus nigra) forest during the B??lling-Aller??d (14,700-12,900 cal BP) and early Younger Dryas (12,900-11,650 cal BP) chronozones. Both Mammuthus jeffersonii and Mammuthus primigenius inhabited spruce dominated open-woodland during the Oldest Dryas chronozone, while M.??primigenius persisted in a forest of predominantly black ash during the Aller??d chronozone. A newly discovered specimen from Lincoln, IL, clarifies the taxonomic distinction between M. primigenius and M.??jeffersonii. Hitherto, a paradigm of proboscidean succession during the full- to late-glacial periods was based on the vegetation succession of steppe tundra-like vegetation to spruce forest to spruce-deciduous forest. The presumed proboscidean succession was that of cold, dry steppe-adapted M. primigenius succeeded by more mesic-tolerant M. jeffersonii that in turn was succeeded by the wet forest-adapted M.??americanum. Reported data do not support this view and indicate a need for re-evaluation of assumptions of proboscidean ecology and history, e.g., the environmental tolerances and habits of M.??primigenius in regions south of 55??N, and its dynamic relationship with other proboscidean taxa. ?? 2009 Elsevier Ltd and INQUA.

  16. Lung burden of a glass fiber by inhalation.

    PubMed

    Tanaka, I; Akiyama, T; Kido, M

    1991-01-01

    Pulmonary deposition and clearance of deposited particles from lungs are very important factors in order to induce pneumoconioses. In this paper, five Wistar male rats were exposed to glass fiber particles (mass median aerodynamic diameter (MMAD), 2.8 microns) for 6 hrs/day, 5 days/week for 4 weeks. The average exposure concentration was controlled by a continuous fluidized bed with a screw feeder and an overflow pipe at 0.79 mg/m3 during the exposure period. The fibrous particles concentrations in the exposure chamber were monitored by a light scattering method and showed to be constant during the exposure. The rats were sacrificed at 24 hours after the termination of the exposure and then the wet lung weight and the silica concentration in the lungs were measured. The lungs were treated for low temperature ashing (ca. 150 degrees C) by a plasma asher. After ashing, these samples were melted with sodium carbonate in platinum pot for the measurement of the silica content by the absorption spectrophotometry. The maximum content of SiO2 was 45 micrograms in the exposed rats and 20 micrograms in the control. The deposited amount of SiO2 by the exposure to glass fiber was 25 micrograms. The apparent deposition fraction defined as the deposited amount in the lungs to the amount of the inhaled glass fiber during the exposure was 6.8%. There was no significant difference of the apparent deposition fraction at same MMAD between glass fiber in this study and non-fibrous particles.

  17. Application of sludge-based carbonaceous materials in a hybrid water treatment process based on adsorption and catalytic wet air oxidation.

    PubMed

    Julcour Lebigue, Carine; Andriantsiferana, Caroline; N'Guessan Krou; Ayral, Catherine; Mohamed, Elham; Wilhelm, Anne-Marie; Delmas, Henri; Le Coq, Laurence; Gerente, Claire; Smith, Karl M; Pullket, Suangusa; Fowler, Geoffrey D; Graham, Nigel J D

    2010-12-01

    This paper describes a preliminary evaluation of the performance of carbonaceous materials prepared from sewage sludges (SBCMs) in a hybrid water treatment process based on adsorption and catalytic wet air oxidation; phenol was used as the model pollutant. Three different sewage sludges were treated by either carbonisation or steam activation, and the physico-chemical properties of the resultant carbonaceous materials (e.g. hardness, BET surface area, ash and elemental content, surface chemistry) were evaluated and compared with a commercial reference activated carbon (PICA F22). The adsorption capacity for phenol of the SBCMs was greater than suggested by their BET surface area, but less than F22; a steam activated, dewatered raw sludge (SA_DRAW) had the greatest adsorption capacity of the SBCMs in the investigated range of concentrations (<0.05 mol L(-1)). In batch oxidation tests, the SBCMs demonstrated catalytic behaviour arising from their substrate adsorptivity and metal content. Recycling of SA_DRAW in successive oxidations led to significant structural attrition and a hardened SA_DRAW was evaluated, but found to be unsatisfactory during the oxidation step. In a combined adsorption-oxidation sequence, both the PICA carbon and a selected SBCM showed deterioration in phenol adsorption after oxidative regeneration, but a steady state performance was reached after 2 or 3 cycles. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    A test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPs) was conducted . Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical characterization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions. Field testing was conducted in twomore » phases. The Phase I field program was performed over the period of August 24 through September 20, 1992, at the Tennessee Valley Authority Widows Creek Unit 8 Power Station, located near Stevenson (Jackson County), Alabama, on the Tennessee River. Sampling activities for Phase II were conducted from September 11 through October 14, 1993. Widows Creek Unit 8 is a 575-megawatt plant that uses bituminous coal averaging 3.7% sulfur and 13% ash. Downstream of the boiler, a venture wet scrubbing system is used for control of both sulfur dioxide and particulate emissions. There is no electrostatic precipitator (ESP) in this system. This system is atypical and represents only about 5% of the US utility industry. However, this site was chosen for this study because of the lack of information available for this particulate emission control system.« less

  19. Pliocene and Pleistocene geologic and climatic evolution in the San Luis Valley of south-central Colorado

    USGS Publications Warehouse

    Rogers, K.L.; Larson, E.E.; Smith, G.; Katzman, D.; Smith, G.R.; Cerling, T.; Wang, Y.; Baker, R.G.; Lohmann, K.C.; Repenning, C.A.; Patterson, P.; Mackie, G.

    1992-01-01

    Sediments of the Alamosa Formation spanning the upper part of the Gauss and most of the Matuyama Chrons were recovered by coring in the high (2300 m) San Luis Valley of south-central Colorado. The study site is located at the northern end of the Rio Grande rift. Lithologic changes in the core sediments provide evidence of events leading to integration of the San Luis drainage basin into the Rio Grande. The section, which includes the Huckleberry Ridge Ash (2.02 Ma) and spans the entire Matuyama Chron, contains pollen, and invertebrate and vertebrate fossils. Stable isotope analyses of inorganic and biogenic carbonate taken over most of the core indicate substantially warmer temperatures than occur today in the San Luis Valley. At the end of the Olduvai Subchron, summer precipitation decreased, summer pan evaporation increased, and temperatures increased slightly compared to the earlier climate represented in the core. By the end of the Jaramillo Subchron, however, cold/wet and warm/dry cycles become evident and continue into the cold/wet regime associated with the deep-sea oxygen-isotope Stage 22 glaciation previously determined from outcrops at the same locality. Correspondence between the Hansen Bluff climatic record and the deep-sea oxygen-isotope record (oxygen-isotope stages from about 110-18) is apparent, indicating that climate at Hansen Bluff was responding to global climatic changes. ?? 1992.

  20. Analysis of heavy metal lead (Pb) levels with Aas in cow's milk by giving cumin (Cuminum cyminum L.), white turmeric (Curcuma zedoaria Rosc.) and mango turmeric (Curcuma mangga Val.).

    PubMed

    Nurdin, E; Putra, D P; Amelia, T

    2013-11-01

    The aim of this study was to determine the effect of giving Cumin (Cuminum cyminum L.), White Turmeric (Curcuma zedoaria Rosc.) and Mango Turmeric (Curcuma mango Val.) on levels of heavy metals lead (Pb) in cow's milk produced. The study was conducted in West Java with experimental method in 16 Fries Holland dairy cows with lactation period of 2-4 months and lactation months of 3-4 months. The design used is simple randomized design with 4 treatments such as Group A (control/no treatment), Group B (Cumin 0.03% body weight), Group C (White Turmeric 0.02% body weight) and Group D (Mango Turmeric 0.06% body weight). Measurement of Pb levels in milk using the method of wet destruction, while Pb measurements on faeces using wet ashing method, by means of Atomic Absorption Spectrophotometry. Based on the researsch results showed that administration of Cumin, White Turmeric and Mango Turmeric have very real effect on reducing levels of heavy metals lead (Pb) in cow's milk produced, with a consecutive decrease 98.36, 99.33 and 99.37% and the very real effect on elevated levels of Pb in faeces by 68.01, 64.52 and 80.54%. Mango Turmeric is the best treatment of three treatment in decreasing lead level in milk.

  1. Spatiotemporal patterns in community structure of macroinvertebrates inhabiting calcareous periphyton mats

    USGS Publications Warehouse

    Liston, S.E.; Trexler, J.C.

    2005-01-01

    Calcareous floating periphyton mats in the southern Everglades provide habitat for a diverse macroinvertebrate community that has not been well characterized. Our study described this community in an oligotrophic marsh, compared it with the macroinvertebrate community associated with adjacent epiphytic algae attached to macrophytes in the water column, and detected spatial patterns in density and community structure. The floating periphyton mat (floating mat) and epiphytic algae in the water column (submerged epiphyton) were sampled at 4 sites (???1 km apart) in northern Shark River Slough, Everglades National Park (ENP), in the early (July) and late (November) wet season. Two perpendicular 90-m transects were established at each site and ???100 samples were taken in a nested design. Sites were located in wet-prairie spikerush-dominated sloughs with similar water depths and emergent macrophyte communities. Floating mats were sampled by taking cores (6-cm diameter) that were sorted under magnification to enumerate infauna retained on a 250-??m-mesh sieve and with a maximum dimension >1 mm. Our results showed that floating mats provide habitat for a macroinvertebrate community with higher densities (no. animals/g ash-free dry mass) of Hyalella azteca, Dasyhelea spp., and Cladocera, and lower densities of Chironomidae and Planorbella spp. than communities associated with submerged epiphyton. Densities of the most common taxa increased 3x to 15x from early to late wet season, and community differences between the 2 habitat types became more pronounced. Floating-mat coverage and estimated floating-mat biomass increased 20 to 30%, and 30 to 110%, respectively, at most sites in the late wet season. Some intersite variation was observed in individual taxa, but no consistent spatial pattern in any taxon was detected at any scale (from 0.2 m to 3 km). Floating mats and their resident macroinvertebrate communities are important components in the Everglades food web. This community should be included in environmental monitoring programs because degradation and eventual loss of the calcareous periphyton mat is associated with P enrichment in this ecosystem. ?? 2005 by The North American Benthological Society.

  2. The High Teperature Influence on Geopolymer Fly Ash Mixture’s Compressisive Strength with Insudtrial Waste Material Substitution

    NASA Astrophysics Data System (ADS)

    Bayuaji, R.; Wibowo, B.; Subekti, S.; Santoso, S. E.; Hardiyanto, E.; Kaelani, Y.; Mallu, L. L.

    2017-11-01

    This research aimed to figure out the influence of fly ash mixture from the industrial waste at the temperatures of 150°C, 450°C, 750°C viewed from the strength and resistance of geopolymer paste. As a result, cement will be substituted by industrial waste like fly ash. This experimental research was conducted on the mix design of geopolymer concrete which was made by dimension with 2.5 cm in diameter and 5 cm in height from four mixture composition of fly ash and industrial waste i.e. 100% fly ash, 50% fly ash+50% bottom ash, 50% fly ash+50% sandblast, and 50% fly ash+50% carbide waste. Each mixture was tested in terms of porosity and compressive strength. In conclusion, in the mixture of 50% fly ash+50% Sandblast and 50% fly ash+50% bottom ash in 12 molars, 1.5 activator comparison can be used to substitute fly ash at high temperature. Meanwhile, the mixture of 50% fly ash+50% carbide waste in 8 molars, 0.5 activator comparison has very small strength remaining if it is compared to the mixture of fly ash and other industrial waste (Bottom ash and Sandblast). The performance of mixture paste of 50% fly ash+50% carbide waste was very vulnerable after being burnt. Consequently, it cannot be used as the main structure at high temperature.

  3. Experimental Studies on Behaviour of Reinforced Geopolymer Concrete Beams Subjected to Monotonic Static Loading

    NASA Astrophysics Data System (ADS)

    Madheswaran, C. K.; Ambily, P. S.; Dattatreya, J. K.; Ramesh, G.

    2015-06-01

    This work describes the experimental investigation on behaviour of reinforced GPC beams subjected to monotonic static loading. The overall dimensions of the GPC beams are 250 mm × 300 mm × 2200 mm. The effective span of beam is 1600 mm. The beams have been designed to be critical in shear as per IS:456 provisions. The specimens were produced from a mix incorporating fly ash and ground granulated blast furnace slag, which was designed for a compressive strength of 40 MPa at 28 days. The reinforced concrete specimens are subjected to curing at ambient temperature under wet burlap. The parameters being investigated include shear span to depth ratio (a/d = 1.5 and 2.0). Experiments are conducted on 12 GPC beams and four OPCC control beams. All the beams are tested using 2000 kN servo-controlled hydraulic actuator. This paper presents the results of experimental studies.

  4. Composition of Indigo naturalis.

    PubMed

    Plitzko, Inken; Mohn, Tobias; Sedlacek, Natalie; Hamburger, Matthias

    2009-06-01

    A proposal for a European Pharmacopoeia monograph concerning Indigo naturalis has recently been published, whereby the indigo (1) and indirubin (2) content should be determined by HPLC-UV. This method was tested, but problems were seen with the dosage of indigo due to poor solubility. A quantitative assay for indigo based on (1)H-NMR was developed as an alternative. The HPLC and qNMR assays were compared with eight Indigo naturalis samples. The HPLC assay consistently gave much lower indigo concentrations because solubility was the limiting factor in sample preparation. In one sample, sucrose was identified by (1)H-NMR as an organic additive. Simple wet chemistry assays for undeclared additives such as sugars and starch were tested with artificially spiked Indigo naturalis samples to establish their limits of detection, and sulfate ash determinations were carried out in view of a better assessment of Indigo naturalis in a future European monograph.

  5. Impact of lignins isolated from pretreated lignocelluloses on enzymatic cellulose saccharification.

    PubMed

    Barsberg, Søren; Selig, Michael Joseph; Felby, Claus

    2013-02-01

    Lignins were enzymatically isolated from corn stover and wheat straw samples and subjected to hydrothermal or wet oxidation pretreatments for enzyme adsorption experimentations. Lignin contents of the isolates ranged from 26 to 71 % (w/w); cellulose ranged from 3 to 22 % (w/w); xylan from 0.7 to 6 % (w/w) and ash was from 5.8 to 30 % (w/w). ATR-IR analyses indicated significant and similar levels of calcium in all lignin isolates. Commercial cellulase adsorption studies showed that the presence of these lignins had no significant impact on the total amount of adsorbed enzyme in cellulose and cellulose-lignin systems. Consequently, the presence of the lignins had minimal effect, if any, on enzymatic cellulose conversion. Furthermore, this result, coupled with significant calcium levels in the isolated lignins, supports previous work suggesting lignin-calcium complexes reduce enzyme-lignin interactions.

  6. Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.

    PubMed

    Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier

    2013-08-01

    This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Proximate body composition and energy content of plaice ( Pleuronectes platessa) in relation to the condition factor

    NASA Astrophysics Data System (ADS)

    Costopoulos, C. G.; Fonds, M.

    Length, wet weight, dry weight, and the content of lipid, ash and protein of young plaice were determined. The energy content of the fish was estimated by multiplying lipid and protein content by the commonly used calorific equivalents. The data were sorted from low to high condition factor of the fish and grouped according to condition factor (K = 100·W·L -3) into 8 condition groups. Mean values of percentage body composition and energy content were calculated for each condition group. Equations giving the best fit between condition factor and the parameters of body composition and energy content are presented. From the decrease in condition factor in fasting fish the relative losses of lipid and protein energy are calculated. The accuracy of equations for the calculation of energy content of plaice from condition factor is discussed.

  8. Yield of four Agaricus bisporus strains in three compost formulations and chemical composition analyses of the mushrooms

    PubMed Central

    de Andrade, Meire Cristina Nogueira; Zied, Diego Cunha; de Almeida Minhoni, Marli Teixeira; Kopytowski Filho, João

    2008-01-01

    Three compost formulations, consisting of two varieties of Cynodom dactylon (L.) Pers. (Coast-cross and Tyfton) and oat (Avena sativa) straw were tested for the cultivation of A. bisporus strains ABI-01/01, ABI-04/02, ABI-05/03, and ABI-06/04. A completely randomized experimental design in a factorial scheme was adopted, with 12 treatments (4 A. bisporus strains × 3 types of compost) and 8 replicates. Each experimental unit corresponded to one box containing 12 – 12.5 kg fresh wet compost. The data were submitted to analysis of variance and the means were compared by Tukey test. According to the results, productivity of mushrooms was influenced by strain and/or compost type. It was also verified that crude protein, ash, and crude fiber contents in the mushroom varied with A. bisporus strain and straw used in the formulation of the compost. PMID:24031271

  9. Nutritional and defensive chemistry of three North American ash species: possible roles in host performance and preference by emerald ash borer

    Treesearch

    Yigen Chen; Therese M. Poland

    2010-01-01

    Black ash (Fraxinus nigra), green ash (F. pennsylvanica), and white ash (F. americana) are the three most abundant ash species in the northeastern USA. We compared emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), adult performance and preference among seedlings...

  10. Effects of nano-SiO(2) and different ash particle sizes on sludge ash-cement mortar.

    PubMed

    Lin, K L; Chang, W C; Lin, D F; Luo, H L; Tsai, M C

    2008-09-01

    The effects of nano-SiO(2) on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO(2) was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash-cement mortar increased as more nano-SiO(2) was added. Additionally, with 2% nano-SiO(2) added and a cure length of 7 days, the compressive strength of the ash-cement mortar with 1 microm ash particle size was about 1.5 times better that of 75microm particle size. Further, nano-SiO(2) functioned to fill pores for ash-cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO(2) better influenced the ash-cement mortar with larger ash particle sizes.

  11. Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash

    PubMed Central

    Grau, Francisco; Choo, Hyunwook; Hu, Jong Wan; Jung, Jongwon

    2015-01-01

    Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing the natural materials as an economical and environmental alternative. This study is intended to provide an environmental solution for uncontrolled disposal of biomass ashes by way of recycling the biomass ash and replacing the soils in geotechnical engineering projects. Therefore, in this study, characteristic tests of wood and sugarcane bagasse ashes that are considered the most common biomass ashes are conducted. The test of chemical compositions of biomass ashes is conducted using energy dispersive X-ray spectroscopy (EDS), and Scanning Electron Microscope (SEM), and heavy metal analysis is also conducted. Engineering behaviors including hydraulic conductivity, constrained modulus and shear modulus are examined. Also, coal fly ash Class C is used in this study for comparison with biomass ashes, and Ottawa 20/30 sands containing biomass ashes are examined to identify the soil replacement effect of biomass ashes. The results show that the particle sizes of biomass ashes are halfway between coal fly ash Class C and Ottawa 20/30 sand, and biomass ashes consist of a heterogeneous mixture of different particle sizes and shapes. Also, all heavy metal concentrations were found to be below the US Environmental Protection Agency (EPA) maximum limit. Hydraulic conductivity values of Ottawa 20/30 sand decrease significantly when replacing them with only 1%–2% of biomass ashes. While both the constrained modulus and shear modulus of biomass ashes are lower than Ottawa 20/30 sand, those of mixtures containing up to 10% biomass ashes are little affected by replacing the soils with biomass ashes. PMID:28793611

  12. CO.sub.2 utilization in electrochemical systems

    DOEpatents

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-22

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  13. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer

    Treesearch

    Justin G.A. Whitehill; Alexandra Popova-Butler; Kari B. Green-Church; Jennifer L. Koch; Daniel A. Herms; Pierluigi Bonello

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F....

  14. Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel.

    PubMed

    Lanzerstorfer, Christof

    2017-04-01

    Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composition of ashes from the combustion of Miscanthus and practically no data about their physical properties. However, for handling, treatment and utilization of the ashes this information is important. In this study ashes from two biomass combustion plants using Miscanthus as fuel were investigated. The density of the ashes was 2230±35kg/m 3 , which was similar to the density of ashes from straw combustion. Also the bulk densities were close to those reported for straw ashes. The flowability of the ashes was a little worse than the flowability of ashes from wood combustion. The measured heavy metal concentrations were below the usual limits for utilization of the ashes as soil conditioner. The concentrations in the bottom ash were similar to those reported for ash from forest residue combustion plants. In comparison with cyclone fly ashes from forest residue combustion the measured heavy metal concentrations in the cyclone fly ash were considerably lower. Cl - , S and Zn were enriched in the cyclone fly ash which is also known for ashes from wood combustion. In comparison with literature data obtained from Miscanthus plant material the concentrations of K, Cl - and S were lower. This can be attributed to the fact that the finest fly ash is not collected by the cyclone de-dusting system of the Miscanthus combustion plants. Copyright © 2016. Published by Elsevier B.V.

  15. Environmental history and tephrostratigraphy at Carp Lake, southwestern Columbia Basin, Washington, USA

    USGS Publications Warehouse

    Whitlock, C.; Sarna-Wojcicki, A. M.; Bartlein, P.J.; Nickmann, R.J.

    2000-01-01

    Sediment cores from Carp Lake provide a pollen record of the last ca. 125,000 years that helps disclose vegetational and climatic conditions from the present day to the previous interglaciation (120-133 ka). The core also contained 15 tephra layers, which were characterised by electron-microprobe analysis of volcanic glass shards. Identified tephra include Mount St. Helens Ye, 3.69 ka; Mazama ash bed, 7.54 ka; Mount St. Helens layer C, 35-50 ka; an unnamed Mount St. Helens tephra, 75-150 ka; the tephra equivalent of layer E at Pringle Falls, Oregon, <218 ka; and an andesitic tephra layer similar to that at Tulelake, California, 174 ka. Ten calibrated radiocarbon ages and the ages of Mount St. Helens Ye, Mazama ash, and the unnamed Mount St. Helens tephra were used to develop an age-depth model. This model was refined by also incorporating the age of marine oxygen isotope stage (IS) boundary 4/5 (73.9 ka) and the age of IS-5e (125 ka). The justification for this age-model is based on an analysis of the pollen record and lithologic data. The pollen record is divided into 11 assemblage zones that describe alternations between periods of montane conifer forest, pine forest, and steppe. The previous interglacial period (IS-5e) supported temperate xerothermic forests of pine and oak and a northward and westward expansion of steppe and juniper woodland, compared to their present occurrence. The period from 83 to 117 ka contains intervals of pine forest and parkland alternating with pine-spruce forest, suggesting shifts from cold humid to cool temperate conditions. Between 73 and 83 ka, a forest of oak, hemlock, Douglas-fir, and fir was present that has no modem analogue. It suggests warm wet summers and cool wet winters. Cool humid conditions during the mid-Wisconsin interval supported mixed conifer forest with Douglas-fir and spruce. The glacial interval featured cold dry steppe, with an expansion of spruce in the late-glacial. Xerothermic communities prevailed in the early Holocene, when temperate steppe was widespread and the lake dried intermittently. The middle Holocene was characterised by ponderosa pine forest, and the modem vegetation was established in the last 3900 yr, when ponderosa pine, Douglas-fir, fir, and oak were part of the local vegetation.

  16. Proceedings of symposium on ash in North America

    Treesearch

    Charles H. Michler; Matthew D., eds. Ginzel

    2010-01-01

    Includes 5 papers and 30 abstracts covering topics related to the biology and ecology of the ash species, ash utilization and management, emerald ash borer, and other threats to ash, and genetics and conservation of ash species. A paper titled "Population-level variation of Fraxinus americana L. is influenced by climate...

  17. 40 CFR 302.6 - Notification requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transportation of coal and coal ash (including fly ash, bottom ash, and boiler slags), including the dumping and... coal and coal ash, including fly ash, bottom ash, and boiler slags. (d) Except for releases of..., chromium, copper, lead, nickel, selenium, silver, thallium, or zinc is not required if the mean diameter of...

  18. Fluidized bed combustion bottom ash: A better and alternative geo-material resource for construction.

    PubMed

    Mandal, A K; Paramkusam, Bala Ramudu; Sinha, O P

    2018-04-01

    Though the majority of research on fly ash has proved its worth as a construction material, the utility of bottom ash is yet questionable due to its generation during the pulverized combustion process. The bottom ash produced during the fluidized bed combustion (FBC) process is attracting more attention due to the novelty of coal combustion technology. But, to establish its suitability as construction material, it is necessary to characterize it thoroughly with respect to the geotechnical as well as mineralogical points of view. For fulfilling these objectives, the present study mainly aims at characterizing the FBC bottom ash and its comparison with pulverized coal combustion (PCC) bottom ash, collected from the same origin of coal. Suitability of FBC bottom ash as a dike filter material in contrast to PCC bottom ash in replacing traditional filter material such as sand was also studied. The suitability criteria for utilization of both bottom ash and river sand as filter material on pond ash as a base material were evaluated, and both river sand and FBC bottom ash were found to be satisfactory. The study shows that FBC bottom ash is a better geo-material than PCC bottom ash, and it could be highly recommended as an alternative suitable filter material for constructing ash dikes in place of conventional sand.

  19. Study on Strength Behavior of Organic Soil Stabilized with Fly Ash

    PubMed Central

    Molla, Md. Keramat Ali; Sarkar, Grytan

    2017-01-01

    The aim of this study is to investigate the effect of fly ash on the consistency, compactness, acidic properties, and strength of organic soil. The presence of organic content in the soil has detrimental impacts on the physical and strength behavior of soil. To investigate the effectiveness of fly ash in the stabilization of organic soil, two types of fly ashes (Type I and Type II) at different percentages were used. It is found that fly ash significantly reduces the plasticity index of the organic soil, whereas the liquid and plastic limits increase. The dry density of the fly ash-soil mixture increases significantly, while the water requirement reduces due to the addition of fly ash. The increase of dry density compromises higher strength. The increase of qu with the increase of fly ash content is mainly due to the pozzolanic reaction of fly ash, although the reduction in water content results from the addition of dry fly ash solid. Moreover, Type I fly ash contributes a higher value of qu compared to Type II fly ash. This is attributed to the characteristics of fly ash including CaO and CaO/SiO2 ratio. PMID:29085881

  20. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition

    PubMed Central

    Bang-Andreasen, Toke; Nielsen, Jeppe T.; Voriskova, Jana; Heise, Janine; Rønn, Regin; Kjøller, Rasmus; Hansen, Hans C. B.; Jacobsen, Carsten S.

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha-1. We used culture-based enumerations of general bacteria, Pseudomonas and sporeforming bacteria combined with 16S rRNA gene amplicon sequencing to valuate soil bacterial responses to wood ash application. Results showed that wood ash addition strongly increased soil pH and electrical conductivity. Soil pH increased from acidic through neutral at 22 t ha-1 to alkaline at 167 t ha-1. Bacterial numbers significantly increased up to a wood ash dose of 22 t ha-1 followed by significant decrease at 167 t ha-1 wood ash. The soil bacterial community composition changed after wood ash application with copiotrophic bacteria responding positively up to a wood ash dose of 22 t ha-1 while the adverse effect was seen for oligotrophic bacteria. Marked changes in bacterial community composition occurred at a wood ash dose of 167 t ha-1 with a single alkaliphilic genus dominating. Additionally, spore-formers became abundant at an ash dose of 167 t ha-1 whereas this was not the case at lower ash doses. Lastly, bacterial richness and diversity strongly decreased with increasing amount of wood ash applied. All of the observed bacterial responses can be directly explained by the wood ash induced changes in pH, electrical conductivity and the addition of wood ash inherent nutrients. PMID:28804476

  1. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition.

    PubMed

    Bang-Andreasen, Toke; Nielsen, Jeppe T; Voriskova, Jana; Heise, Janine; Rønn, Regin; Kjøller, Rasmus; Hansen, Hans C B; Jacobsen, Carsten S

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha -1 . We used culture-based enumerations of general bacteria, Pseudomonas and sporeforming bacteria combined with 16S rRNA gene amplicon sequencing to valuate soil bacterial responses to wood ash application. Results showed that wood ash addition strongly increased soil pH and electrical conductivity. Soil pH increased from acidic through neutral at 22 t ha -1 to alkaline at 167 t ha -1 . Bacterial numbers significantly increased up to a wood ash dose of 22 t ha -1 followed by significant decrease at 167 t ha -1 wood ash. The soil bacterial community composition changed after wood ash application with copiotrophic bacteria responding positively up to a wood ash dose of 22 t ha -1 while the adverse effect was seen for oligotrophic bacteria. Marked changes in bacterial community composition occurred at a wood ash dose of 167 t ha -1 with a single alkaliphilic genus dominating. Additionally, spore-formers became abundant at an ash dose of 167 t ha -1 whereas this was not the case at lower ash doses. Lastly, bacterial richness and diversity strongly decreased with increasing amount of wood ash applied. All of the observed bacterial responses can be directly explained by the wood ash induced changes in pH, electrical conductivity and the addition of wood ash inherent nutrients.

  2. Properties of Fly Ash Blocks Made from Adobe Mould

    NASA Astrophysics Data System (ADS)

    Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.

    2018-02-01

    Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.

  3. Properties of Fly Ash Blocks Made from Adobe Mould

    NASA Astrophysics Data System (ADS)

    Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.

    2018-06-01

    Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.

  4. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  5. Differential response in foliar chemistry of three ash species to emerald ash borer adult feeding.

    PubMed

    Chen, Yigen; Whitehill, Justin G A; Bonello, Pierluigi; Poland, Therese M

    2011-01-01

    The emerald ash borer (EAB; Agrilus planipennis Fairmaire; Coleoptera: Buprestidae), is an exotic wood-boring beetle that has been threatening North American ash (Fraxinus spp.) resources since its discovery in Michigan and Ontario in 2002. In this study, we investigated the phytochemical responses of the three most common North American ash species (black, green, and white ash) in northeastern USA to EAB adult feeding. Black ash was the least responsive to EAB adult feeding in terms of the induction of volatile compounds, and levels of only two (indole and benzyl cyanide) of the 11 compounds studied increased. In green ash, levels of two [(E)-β-ocimene and indole] of the 11 volatile compounds studied were elevated, while the levels of two green leaf volatiles [hexanal and (E)-2-hexenal] decreased. White ash showed the greatest response with an increase in levels of seven of the 11 compounds studied. Qualitative differences among ash species were detected. Among the phenolic compounds detected, ligustroside was the only one detected in all three species. Oleuropein aglycone and 2 unidentified compounds were found only in black ash; coumaroylquinic acid and feruloylquinic acid were detected only in green ash; and verbascoside hexoside was detected only in white ash. EAB adult feeding did not elicit or decrease concentrations of any selected individual phenolic compounds. However, although levels of total phenolics from black and green ash foliage were not affected by EAB adult feeding, they decreased significantly in white ash. EAB adult feeding elevated chymotrypsin inhibitors in black ash. The possible ecological implications of these findings are discussed.

  6. Three-year progression of emerald ash borer-induced decline and mortality in southeastern Michigan

    Treesearch

    Kamal J.K. Gandhi; Annemarie Smith; Robert P. Long; Robin A.J. Taylor; Daniel A. Herms

    2008-01-01

    We monitored the progression of ash (Fraxinus spp.) decline and mortality due to emerald ash borer (EAB), Agrilus planipennis, in 38 forest stands in the upper Huron River watershed region of southeastern Michigan from 2004-2007. Black ash (F. nigra), green ash (F. pennsylvanica), and white ash...

  7. Genetic transformation of Fraxinus spp. for resistance to the emerald ash borer

    Treesearch

    Paula M. Pijut; Rochelle R. Beasley; Kaitlin J. Palla

    2010-01-01

    The emerald ash borer (EAB; Agrilus planipennis Fairmaire) (Coleoptera; Buprestidae) is a wood-boring beetle that poses substantial risk to the ash resource in North America. Ash species native to the United States and known to be susceptible to EAB are Fraxinus pennsylvanica (green ash), F. americana (white ash...

  8. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk, E-mail: ubolluk@buu.ac.t

    2010-04-15

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electronmore » microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.« less

  9. Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media.

    PubMed

    Mohanram, Arvind; Ray, Chittaranjan; Harvey, Ronald W; Metge, David W; Ryan, Joseph N; Chorover, Jon; Eberl, D D

    2010-10-01

    In order to gain more information about the fate of Cryptosporidium parvum oocysts in tropical volcanic soils, the transport and attachment behaviors of oocysts and oocyst-sized polystyrene microspheres were studied in the presence of two soils. These soils were chosen because of their differing chemical and physical properties, i.e., an organic-rich (43-46% by mass) volcanic ash-derived soil from the island of Hawaii, and a red, iron (22-29% by mass), aluminum (29-45% by mass), and clay-rich (68-76% by mass) volcanic soil from the island of Oahu. A third agricultural soil, an organic- (13% by mass) and quartz-rich (40% by mass) soil from Illinois, was included for reference. In 10-cm long flow-through columns, oocysts and microspheres advecting through the red volcanic soil were almost completely (98% and 99%) immobilized. The modest breakthrough resulted from preferential flow-path structure inadvertently created by soil-particle aggregation during the re-wetting process. Although a high (99%) removal of oocysts and microsphere within the volcanic ash soil occurred initially, further examination revealed that transport was merely retarded because of highly reversible interactions with grain surfaces. Judging from the slope of the substantive and protracted tail of the breakthrough curve for the 1.8-μm microspheres, almost all (>99%) predictably would be recovered within ∼4000 pore volumes. This suggests that once contaminated, the volcanic ash soil could serve as a reservoir for subsequent contamination of groundwater, at least for pathogens of similar size or smaller. Because of the highly reversible nature of organic colloid immobilization in this soil type, C. parvum could contaminate surface water should overland flow during heavy precipitation events pick up near-surface grains to which they are attached. Surprisingly, oocyst and microsphere attachment to the reference soil from Illinois appeared to be at least as sensitive to changes in pH as was observed for the red, metal-oxide rich soil from Oahu. In contrast, colloidal attachment in the organic-rich, volcanic ash soil was relatively insensitive to changes in pH in spite of the high iron content. Given the fundamental differences in transport behavior of oocyst-sized colloids within the two volcanic soils of similar origin, agricultural practices modified to lessen C. parvum contamination of ground or surface water would necessitate taking the individual soil properties into account. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media

    USGS Publications Warehouse

    Mohanram, Arvind; Ray, Chittaranjan; Harvey, Ronald W.; Metge, David W.; Ryan, Joseph N.; Chorover, Jon; Eberl, D.D.

    2010-01-01

    In order to gain more information about the fate of Cryptosporidium parvum oocysts in tropical volcanic soils, the transport and attachment behaviors of oocysts and oocyst-sized polystyrene microspheres were studied in the presence of two soils. These soils were chosen because of their differing chemical and physical properties, i.e., an organic-rich (43–46% by mass) volcanic ash-derived soil from the island of Hawaii, and a red, iron (22–29% by mass), aluminum (29–45% by mass), and clay-rich (68–76% by mass) volcanic soil from the island of Oahu. A third agricultural soil, an organic- (13% by mass) and quartz-rich (40% by mass) soil from Illinois, was included for reference. In 10-cm long flow-through columns, oocysts and microspheres advecting through the red volcanic soil were almost completely (98% and 99%) immobilized. The modest breakthrough resulted from preferential flow-path structure inadvertently created by soil-particle aggregation during the re-wetting process. Although a high (99%) removal of oocysts and microsphere within the volcanic ash soil occurred initially, further examination revealed that transport was merely retarded because of highly reversible interactions with grain surfaces. Judging from the slope of the substantive and protracted tail of the breakthrough curve for the 1.8-μm microspheres, almost all (>99%) predictably would be recovered within ∼4000 pore volumes. This suggests that once contaminated, the volcanic ash soil could serve as a reservoir for subsequent contamination of groundwater, at least for pathogens of similar size or smaller. Because of the highly reversible nature of organic colloid immobilization in this soil type, C. parvum could contaminate surface water should overland flow during heavy precipitation events pick up near-surface grains to which they are attached. Surprisingly, oocyst and microsphere attachment to the reference soil from Illinois appeared to be at least as sensitive to changes in pH as was observed for the red, metal-oxide rich soil from Oahu. In contrast, colloidal attachment in the organic-rich, volcanic ash soil was relatively insensitive to changes in pH in spite of the high iron content. Given the fundamental differences in transport behavior of oocyst-sized colloids within the two volcanic soils of similar origin, agricultural practices modified to lessen C. parvum contamination of ground or surface water would necessitate taking the individual soil properties into account.

  11. Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media

    USGS Publications Warehouse

    Mohanram, A.; Ray, C.; Harvey, R.W.; Metge, D.W.; Ryan, J.N.; Chorover, J.; Eberl, D.D.

    2010-01-01

    In order to gain more information about the fate of Cryptosporidium parvum oocysts in tropical volcanic soils, the transport and attachment behaviors of oocysts and oocyst-sized polystyrene microspheres were studied in the presence of two soils. These soils were chosen because of their differing chemical and physical properties, i.e., an organic-rich (43-46% by mass) volcanic ash-derived soil from the island of Hawaii, and a red, iron (22-29% by mass), aluminum (29-45% by mass), and clay-rich (68-76% by mass) volcanic soil from the island of Oahu. A third agricultural soil, an organic- (13% by mass) and quartz-rich (40% by mass) soil from Illinois, was included for reference. In 10-cm long flow-through columns, oocysts and microspheres advecting through the red volcanic soil were almost completely (98% and 99%) immobilized. The modest breakthrough resulted from preferential flow-path structure inadvertently created by soil-particle aggregation during the re-wetting process. Although a high (99%) removal of oocysts and microsphere within the volcanic ash soil occurred initially, further examination revealed that transport was merely retarded because of highly reversible interactions with grain surfaces. Judging from the slope of the substantive and protracted tail of the breakthrough curve for the 1.8-??m microspheres, almost all (>99%) predictably would be recovered within ~4000 pore volumes. This suggests that once contaminated, the volcanic ash soil could serve as a reservoir for subsequent contamination of groundwater, at least for pathogens of similar size or smaller. Because of the highly reversible nature of organic colloid immobilization in this soil type, C. parvum could contaminate surface water should overland flow during heavy precipitation events pick up near-surface grains to which they are attached. Surprisingly, oocyst and microsphere attachment to the reference soil from Illinois appeared to be at least as sensitive to changes in pH as was observed for the red, metal-oxide rich soil from Oahu. In contrast, colloidal attachment in the organic-rich, volcanic ash soil was relatively insensitive to changes in pH in spite of the high iron content. Given the fundamental differences in transport behavior of oocyst-sized colloids within the two volcanic soils of similar origin, agricultural practices modified to lessen C. parvum contamination of ground or surface water would necessitate taking the individual soil properties into account. ?? 2010.

  12. Integrating multidisciplinary science, modelling and impact data into evolving, syn-event volcanic hazard mapping and communication: A case study from the 2012 Tongariro eruption crisis, New Zealand

    NASA Astrophysics Data System (ADS)

    Leonard, Graham S.; Stewart, Carol; Wilson, Thomas M.; Procter, Jonathan N.; Scott, Bradley J.; Keys, Harry J.; Jolly, Gill E.; Wardman, Johnny B.; Cronin, Shane J.; McBride, Sara K.

    2014-10-01

    New Zealand's Tongariro National Park volcanoes produce hazardous eruptions every few years to decades. On 6 August 2012 the Te Maari vent of Tongariro Volcano erupted, producing a series of explosions and a fine ash of minor volume which was dispersed rapidly to the east. This manuscript presents a summary of the eruption impacts and the way these supported science communication during the crisis, particularly in terms of hazard map development. The most significant proximal impact was damage from pyroclastic surges and ballistics to the popular and economically-important Tongariro Alpine Crossing track. The only hazard to affect the medial impact zone was a few mms of ashfall with minor impacts. Field testing indicated that the Te Maari ash had extremely low resistivity when wetted, implying a very high potential to cause disruption to nationally-important power transmission networks via the mechanism of insulator flashover. This was not observed, presumably due to insufficient ash accumulation on insulators. Virtually no impacts from distal ashfall were reported. Post-event analysis of PM10 data demonstrates the additional value of regional air quality monitoring networks in quantifying population exposure to airborne respirable ash. While the eruption was minor, it generated a high level of public interest and a demand for information on volcanic hazards and impacts from emergency managers, the public, critical infrastructure managers, health officials, and the agriculture sector. Meeting this demand fully taxed available resources. We present here aspects of the New Zealand experience which may have wider applicability in moving towards improved integration of hazard impact information, mapping, and communication. These include wide use of a wiki technical clearinghouse and email listservs, a focus on multi-agency consistent messages, and a recently developed environment of collaboration and alignment of both research funding and technical science advice. Hazard maps were integral to science communication during the crisis, but there is limited international best practice information available on hazard maps as communication devices, as most volcanic hazard mapping literature is concerned with defining hazard zones. We propose that hazard maps are only as good as the communications framework and inter-agency relationships in which they are embedded, and we document in detail the crisis hazard map development process. We distinguish crisis hazard maps from background hazard maps and ashfall prediction maps, illustrating the complementary nature of these three distinct communication mechanisms. We highlight issues that arose and implications for the development of future maps.

  13. Wood ash residue causes a mixture of growth promotion and toxicity in Lemna minor.

    PubMed

    Jagodzinski, Lucas S; O'Donoghue, Marian T; Heffernan, Liam B; van Pelt, Frank N A M; O'Halloran, John; Jansen, Marcel A K

    2018-06-01

    The use of wood as a sustainable biofuel results in the generation of residual wood ash. The ash contains high amounts of plant macronutrients such as phosphorus, potassium, calcium as well as several micronutrients. To explore the potential use of wood ash as a fertiliser, the growth enhancing properties of Sitka spruce (Picea sitchensis Bong.) wood ash were contrasted with the potential toxic action, using common duckweed (Lemna minor L.) as a model test species. The growth of L. minor exposed to wood bottom and fly ash solids and corresponding leachates was assessed in ultra-oligotrophic and eutrophic media. Ash solids and leachates were also tested as neutralized preparations. Suspended ash solids promoted L. minor growth up to concentrations of 2.5-5g/L. Leachates promoted growth up to 10g ash equivalents per litre, but for bottom ash only. Beneficial effects of wood ash were most pronounced on ultra-oligotrophic medium. However, on such nutrient-deficient medium severe inhibition of L. minor biomass and frond growth was observed at relatively low concentrations of fly ash (EC 50 =14g/L). On standard, eutrophic medium, higher concentrations of fly ash (EC 50 =21g/L), or neutralized fly ash (EC 50 =37g/L) were required to impede growth. Bottom ash, or neutralized bottom ash retarded growth at concentrations of 51g/L and 74g/L (EC 50 ), respectively, in eutrophic medium. It appears that phytotoxicity is due to the elemental composition of the ash, its alkaline character, and possible interactions between these two properties. Growth promotion was due to the substantial content of plant nutrients. This study underlines the importance of the receiving environment (nutrient status and pH) in determining the balance between toxicity and growth promotion, and shows that the margin between growth promoting and toxicity inducing concentrations can be enlarged through ash neutralization. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Evaluation of ash from some tropical plants of Nigeria for the control of Sclerotium rolfsii Sacc. on wheat (Triticum aestivum L.).

    PubMed

    Enikuomehin, O A; Ikotun, T; Ekpo, E J

    1998-01-01

    Eleven ash samples, from organs of nine tropical plants, were screened for their abilities to inhibit mycelial growth and sclerotial germination of a Nigerian isolate of Sclerotium rolfsii on agar and in the soil. Ten ash samples showed some activity against mycelial growth of S. rolfsii in vitro. Ash samples from Delonix regia stem wood, Mangifera indica leaf and Vernonia amygdalina leaf were most effective as each totally inhibited mycelial growth of S. rolfsii in vitro. Ocimum gratissimum leaf ash, D. regia wood ash and Musa paradisiaca flower bract ash inhibited sclerotial germination on agar. Nine ash samples protected seeds against pre-emergence rot. Ash from M. indica leaf, V. amygdalina leaf and Azadirachta indica leaf protected seedlings against post-emergence infection. Eichornia crassipes ash, which was ineffective in vitro, offered some protection to seeds in soil against pre-emergence rot. The study demonstrates potentials of ash samples from tropical plants in control of S. rolfsii on wheat.

  15. Development of novel ash hybrids to introgress resistance to emerald ash borer into north American ash species

    Treesearch

    Jennifer L. Koch; David W. Carey; Mary E. Mason

    2008-01-01

    Currently, there is no evidence that any of the native North American ash species have any resistance to the emerald ash borer (EAB). This means that the entire ash resource of the eastern United States and Canada is at risk of loss due to EAB. In contrast, outbreaks of EAB in Asian ash species are rare and appear to be isolated responses to stress (Bauer et al. 2005,...

  16. Ash bed level control system for a fixed-bed coal gasifier

    DOEpatents

    Fasching, George E.; Rotunda, John R.

    1984-01-01

    An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.

  17. Differential utilization of ash phloem by emerald ash borer larvae: Ash species and larval stage effects

    Treesearch

    Yigen Chen; Michael D. Ulyshen; Therese M. Poland

    2012-01-01

    Two experiments were performed to determine the extent to which ash species (black, green and white) and larval developmental stage (second, third and fourth instar) affect the efficiency of phloem amino acid utilization by emerald ash borer (EAB) Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) larvae. EAB larvae generally utilized green ash...

  18. Emerald ash borer biocontrol in ash saplings: the potential for early stage recovery of North American ash

    USDA-ARS?s Scientific Manuscript database

    In many parts of North America, ash stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees and young basal sprouts, saplings, and seedlings. Without a seed bank, ash tree recovery will require survival and maturation of these younger cohorts...

  19. Ecological and Topographic Features of Volcanic Ash-Influenced Forest Soils

    Treesearch

    Mark Kimsey; Brian Gardner; Alan Busacca

    2007-01-01

    Volcanic ash distribution and thickness were determined for a forested region of north-central Idaho. Mean ash thickness and multiple linear regression analyses were used to model the effect of environmental variables on ash thickness. Slope and slope curvature relationships with volcanic ash thickness varied on a local spatial scale across the study area. Ash...

  20. Exploring the molecular and biochemical basis of ash resistance to emerald ash borer

    Treesearch

    Justin G.A. Whitehill; Daniel A. Herms; Pierluigi Bonello

    2010-01-01

    Larvae of the emerald ash borer (EAB) (Agrilus planipennis) feed on phloem of ash (Fraxinus spp.) trees. It is hypothesized that the resistance of Asian species of ash (e.g., Manchurian ash, F. mandshurica) to EAB is due to endogenous defenses present in phloem tissues in the form of defensive proteins and/or...

  1. Progression of ash canopy thinning and dieback outward from the initial infestation of emerald ash borer (Coleoptera: Buprestidae) in southeastern Michigan.

    PubMed

    Smitley, David; Davis, Terrance; Rebek, Eric

    2008-10-01

    Our objective was to characterize the rate at which ash (Fraxinus spp.) trees decline in areas adjacent to the leading edge of visible ash canopy thinning due to emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Trees in southeastern Michigan were surveyed from 2003 to 2006 for canopy thinning and dieback by comparing survey trees with a set of 11 standard photographs. Freeways stemming from Detroit in all directions were used as survey transects. Between 750 and 1,100 trees were surveyed each year. A rapid method of sampling populations of emerald ash borer was developed by counting emerald ash borer emergence holes with binoculars and then felling trees to validate binocular counts. Approximately 25% of the trees surveyed for canopy thinning in 2005 and 2006 also were sampled for emerald ash borer emergence holes using binoculars. Regression analysis indicates that 41-53% of the variation in ash canopy thinning can be explained by the number of emerald ash borer emergence holes per tree. Emerald ash borer emergence holes were found at every site where ash canopy thinning averaged > 40%. In 2003, ash canopy thinning averaged 40% at a distance of 19.3 km from the epicenter of the emerald ash borer infestation in Canton. By 2006, the point at which ash trees averaged 40% canopy thinning had increased to a distance of 51.2 km away from Canton. Therefore, the point at which ash trees averaged 40% canopy thinning, a state of decline clearly visible to the average person, moved outward at a rate of 10.6 km/yr during this period.

  2. Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants.

    PubMed

    Lanzerstorfer, Christof

    2015-04-01

    For the handling, treatment and utilization of fly ash from biomass combustion its chemical composition and physical properties are important. In this study eight filter fly ashes from different grate-fired biomass combustion plants were investigated. In fly ash from straw combustion high concentrations of (K) were found, whereas in the fly ash from wood combustion the concentrations of Ca and Mg were higher. The average concentration of PO4(3-) was similar in both types of fly ashes. In all wood fly ashes some measured heavy metal concentrations were above the limits for utilization. The straw fly ashes were much less contaminated and can be utilized. For wood fly ash most parameters showed little variation, except from one fly ash where the dust pre-separator is in poor condition. The average values were: mass median diameter 4.3±0.8 μm, spread of particle size distribution 19±11, particle density 2620±80 kg/m3 and angle of repose 50°±1°. The density of the straw fly ashes is lower (2260±80 kg/m3) and the spread of the size distribution is higher (72±24). For one straw combustion fly ash the values of the mass median diameter and the angle of repose were similar to the values of wood combustion fly ash, for the other straw fly ash the values differed considerably. While the particle size of this fly ash was much smaller, surprisingly the angle of repose was also lower. This can be attributed to the formation of small agglomerates in this fly ash, which were not disintegrated without a certain stress. Copyright © 2015. Published by Elsevier B.V.

  3. Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan.

    PubMed

    Yang, Renbo; Liao, Wing-Ping; Wu, Pin-Han

    2012-08-15

    Approximately 19.2% of Taiwan's municipal solid waste (MSW) that passes through incineration disposal is converted into ashes (including bottom ash and fly ash). Although bottom ash can pass nearly all of the standards of the toxicity characteristic leaching procedure (TCLP), its high chloride content makes its reuse limited; it generally cannot be used as a fine aggregate material in concrete applications. This research examined washing four types of bottom ash (BA) and fly ash (FA) with water to reduce their chloride content. The optimal water intensity for washing pretreated bottom ash was found to be 7-8L of water per kg of bottom ash, and the optimal water intensity for washing untreated fly ash was found to be 20-25 L of water per kg of fly ash. Based on regression analyses of the chloride concentrations of the leachates and their electrical conductivity (EC) values, each MSW incineration plant has its own ash characteristics as well as a specific regression line in bottom or fly ash leachate. Clearly, it is possible to monitor the EC values of the leachates online by estimation from regression equations to determine the chloride concentrations in the leachates. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  4. Comparative Effect of Bio-waste Ashes on Strength Properties of Cement Mortar

    NASA Astrophysics Data System (ADS)

    Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad; Ahmed, Mohamed Anwar

    Biomass fuels produce about 400 million tonnes of ashes as waste material. This paper discusses the pozzolanic character of bio-waste ashes obtained from dry tree leaves (AML), Korai grass (KRI) and Tifton grass (TFT). Ashes were obtained by control incineration of the wastes at 600°C for 5 hours and mortar specimens were prepared by substituting cement with 10, 20 and 30% ash. Strength development of ash-blended mortar specimens was evaluated by conducting destructive tests as well as non-destructive tests till 91 days. X-ray diffraction, scanning electron microscopic and thermo-gravimetric techniques were used to analyze the influence of ash substitution on strength properties of blended-mortar. Pozzolanic reactivity of AML- and KRI-ash was confirmed, but TFT-ash did not show enough reactivity. Overall results confirmed that up to 20% substitution of cement can be made with AML- or KRI-ash with strength approaching 90% of that of control.

  5. Dynamics of surviving ash (Fraxinus spp.) populations in areas long infested by emerald ash borer (Agrilus planipennis)

    Treesearch

    Kathleen S. Knight; Daniel Herms; Reid Plumb; Eileen Sawyer; Daniel Spalink; Elizabeth Pisarczyk; Bernadette Wiggin; Rachel Kappler; Emily Ziegler; Karen Menard

    2012-01-01

    Emerald ash borer (EAB) (Agrilus planipennis), an introduced wood-boring insect, has killed millions of ash (Fraxinus spp.) trees in the Midwest region of the United States and Canada. However, in some areas where EAB has caused almost complete mortality of mature ash trees, a small number of healthy ash trees intermingled with...

  6. Host resistance to emerald ash borer: development of novel ash hybrids

    Treesearch

    Jennifer L. Koch; David W. Carey; Richard Larson

    2007-01-01

    In contrast to the rapid destruction of ash trees in the United States by emerald ash borer (EAB, Agrilus planipennis Fairmaire), outbreaks of EAB in Asia appear to be isolated responses to stress, such as drought, and do not devastate the ash population. This indicates that in Asia, ash trees may have a level of inherent resistance. This resistance...

  7. Protecting black ash from the emerald ash borer

    Treesearch

    Les Benedict

    2010-01-01

    Black ash (Fraxinus nigra) is an important resource for Tribes in the Northeast and Great Lakes regions of the North American continent. Ash in North America is being threatened with widespread destruction as a result of the introduction of emerald ash borer beetle (Agrilus planipennis) in 2002. Measures are being taken to slow the spread of emerald ash borer beetle....

  8. The spatial distribution of riparian ash: implications for the dispersal of the emerald ash borer

    Treesearch

    Susan J. Crocker; W. Keith Moser; Mark H. Hansen; Mark D. Nelson

    2007-01-01

    A pilot study to assess riparian ash connectivity and its implications for emerald ash borer dispersal was conducted in three subbasins in Michigan's Southern Lower Peninsula. Forest Inventory and Analysis data were used to estimate ash biomass. The nineteen percent of plots in riparian physiographic classes contained 40 percent of ash biomass. Connectivity of...

  9. Morphology and petrography of volcanic ashes.

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1972-01-01

    Study of volcanic ash samples collected from a variety of recent eruptions using petrography, chemical analyses, and scanning electron microscopy to characterize each type and to relate ash morphology to magma composition and the type of eruption. The ashes are placed in the broad genetic categories of magmatic and phreatomagmatic. The morphology of ash particles from magmatic eruptions of high viscosity magma is governed primarily by vesicle density and shape. Ash particles from eruptions of low viscosity magmas are mostly droplets. The morphology of ash particles from phreatomagmatic eruptions is controlled by stresses within the chilled magma which result in fragmentation of the glass to form small blocky or pyramidal glass ash particles.

  10. The Effects of Bottom Ash on Setting Time and Compressive Strength of Fly Ash Geopolymer Paste

    NASA Astrophysics Data System (ADS)

    Affandhie, B. A.; Kurniasari, P. T.; Darmawan, M. S.; Subekti, S.; Wibowo, B.; Husin, N. A.; Bayuaji, R.; Irawan, S.

    2017-11-01

    This research is to find out the contribution of waste energy utilization of fly ash and bottom ash coal as binding agent of geopolymer concrete. This research methodology uses experimental approach in laboratory by making cylinder paste test object with dimension diameter of 2.5 cm x height 5 cm with some combination of fly ash and bottom ash mix with time setting test (ASTM C 191-04a) and compressive strength (ASTM C 39-04a). The research concludes that the effect of bottom ash on fly ash-based geopolymer paste shows good results in setting time and compressive strength.

  11. Study of PCDD/Fs distribution in fly ash, ash deposits, and bottom ash from a medical waste incinerator in China.

    PubMed

    Du, Yingzhe; Jin, Yuqi; Lu, Shengyong; Peng, Zheng; Li, Xiaodong; Yan, Jianhua

    2013-02-01

    Over the past decades in China, the number of medical waste incinerators (MWIs) has been rising rapidly, causing emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). In this study, samples of fly ash, ash deposits, and bottom ash from typical MWIs were analyzed for PCDD/Fs and their distribution characteristics. Results showed international toxic equivalent (I-TEQ) values in the range of 6.9-67 ng I-TEQ/g in fly ash and ash deposits, whereas the concentration in bottom ash was extremely low (only 1.33 pg I-TEQ/g), yet the generation of PCDD/Fs was mostly de novo synthesis in fly ash and ash deposits according to the ratio of PCDFs to PCDDs; the major distribution differences of PCDD/Fs in fly ash was manifested by the content of toxic furan 2,3,7,8-TCDF but other toxic PCDD/Fs showed similar distribution. Other findings are that 2,3,4,7,8-PeCDF had the most contribution to TEQ concentration, and that the most abundant toxic furan congener is 1,2,3,4,6,7,8-HpCDF. Correlation analysis showed that there was no significant correlation between PCDD/Fs concentration and several other physical and chemical parameters. This paper is of interest because it presents the emission performances of PCDD/Fs in ash from medical waste incineration in China. PCDD/F contents in fly ash and ash deposits vary between 6.9 and 67.3 ng I-TEQ/g. However, the concentration in bottom ash was extremely low (only 1.33 x 10(-3) ng I-TEQ/g). The fingerprints of PCDD/Fs in fly ash are almost similar, except for 2,3,7,8-TCDF. There is no marked correlation between PCDD/Fs and other physicochemical properties.

  12. Transcriptomic Signatures of Ash (Fraxinus spp.) Phloem

    PubMed Central

    Mamidala, Praveen; Bonello, Pierluigi; Herms, Daniel A.; Mittapalli, Omprakash

    2011-01-01

    Background Ash (Fraxinus spp.) is a dominant tree species throughout urban and forested landscapes of North America (NA). The rapid invasion of NA by emerald ash borer (Agrilus planipennis), a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra), green (F. pennsylvannica) and white (F. americana) are highly susceptible, the Asian species Manchurian ash (F. mandshurica) is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem. Methodology and Principal Findings Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3) revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species. Conclusions and Significance The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future ash breeding programs for marker development. PMID:21283712

  13. Research Of The Influence Of Reftinskii SDPP’S Ash On The Processes Of Cement Stone’S Structure Forming

    NASA Astrophysics Data System (ADS)

    Zimakova, G. A.; Solonina, V. A.; Zelig, M. P.

    2017-01-01

    The article describes the experimental research of cement stone. Cement stone forming involves highly dispersive mineral additive - ground ash. It is stated that the substitution of some part of cement with activated ash leaves cement strength high. This is possible due to the activity of ash in structure forming processes. Activation of ash provides the increase in its puzzolanic activity, complete hydration processes. it is stated that ash grinding leads to a selective crystallization hydrated neoformations. Their morthology is different on outer and inner surfaces of ash spheres. The usage of ash can provide cement economy on condition that rheological characteristics of concrete stay constant. Besides, the usage of ash will improve physical and mechanic characteristics of cement stone and concrete.

  14. Natural weathering in dry disposed ash dump: Insight from chemical, mineralogical and geochemical analysis of fresh and unsaturated drilled cores.

    PubMed

    Akinyemi, S A; Akinlua, A; Gitari, W M; Khuse, N; Eze, P; Akinyeye, R O; Petrik, L F

    2012-07-15

    Some existing alternative applications of coal fly ash such as cement manufacturing; road construction; landfill; and concrete and waste stabilisation use fresh ash directly collected from coal-fired power generating stations. Thus, if the rate of usage continues, the demand for fresh ash for various applications will exceed supply and use of weathered dry disposed ash will become necessary alternative. As a result it's imperative to understand the chemistry and pH behaviour of some metals inherent in dry disposed fly ash. The bulk chemical composition as determined by XRF analysis showed that SiO2, Al2O3 and Fe2O3 were the major oxides in fresh ash and unsaturated weathered ashes. The unsaturated weathered ashes are relatively depleted in CaO, Fe2O3, TiO2, SiO2, Na2O and P2O5 due to dissolution and hydrolysis caused by chemical interaction with ingressing CO2 from the atmosphere and infiltrating rain water. Observed accumulations of Fe2O3, TiO2, CaO, K2O, Na2O and SO3 and Zn, Zr, Sr, Pb, Ni, Cr and Co in the lower layers indicate progressive downward movement through the ash dump though at a slow rate. The bulk mineralogy of unsaturated weathered dry disposed ash, as determined by XRD analysis, revealed quartz and mullite as the major crystalline phases; while anorthite, hematite, enstatite, lime, calcite, and mica were present as minor mineral phases. Pore water chemistry revealed a low concentration of readily soluble metals in unsaturated weathered ashes in comparison with fresh ash, which shows high leachability. This suggests that over time the precipitation of transient minor secondary mineral phases; such as calcite and mica might retard residual metal release from unsaturated weathered ash. Chloride and sulphate species of the water soluble extracts of weathered ash are at equilibrium with Na+ and K+; these demonstrate progressive leaching over time and become supersaturated at the base of unsaturated weathered ash. This suggests that the ash dump does not encapsulate the salt or act as a sustainable salt sink due to over time reduction in pore water pH. The leaching behaviours of Ca, Mg, Na+, K+, Se, Cr and Sr are controlled by the pH of the leachant in both fresh and unsaturated weathered ash. Other trace metals like As, Mo and Pb showed amphoteric behaviour with respect to the pH of the leachant. The precipitation of minor quantities of secondary mineral phases in the unsaturated weathered ash has significant effects on the acid susceptibility and leaching patterns of chemical species in comparison with fresh ash. The unsaturated weathered ash had lower buffering capacity at neutral pH (7.94-8.00) compared to fresh (unweathered) ash. This may be due to the initial high leaching/flushing of soluble basic buffering constituents from fly ash after disposal. The overall results of the acid susceptibility tests suggest that both fresh ash and unsaturated weathered ash would release a large percentage of their chemical species when in contact with slightly acidified rain. Proper management of ash dumps is therefore essential to safeguard the environmental risks of water percolation in different fly ashes behaviour. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Deposition and immersion-mode nucleation of ice by three distinct samples of volcanic ash

    NASA Astrophysics Data System (ADS)

    Schill, G. P.; Genareau, K.; Tolbert, M. A.

    2015-07-01

    Ice nucleation of volcanic ash controls both ash aggregation and cloud glaciation, which affect atmospheric transport and global climate. Previously, it has been suggested that there is one characteristic ice nucleation efficiency for all volcanic ash, regardless of its composition, when accounting for surface area; however, this claim is derived from data from only two volcanic eruptions. In this work, we have studied the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman microscopy coupled to an environmental cell. Ash from the Fuego (basaltic ash, Guatemala), Soufrière Hills (andesitic ash, Montserrat), and Taupo (Oruanui eruption, rhyolitic ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. In the present study, we find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice from 225 to 235 K at ice saturation ratios of 1.05 ± 0.01, comparable to the mineral dust proxy kaolinite. Since depositional ice nucleation will be more important at colder temperatures, fine volcanic ash may represent a global source of cold-cloud ice nuclei. For immersion freezing relevant to mixed-phase clouds, however, only the Oruanui ash exhibited appreciable heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  16. Properties of Controlled Low Strength Material with Circulating Fluidized Bed Combustion Ash and Recycled Aggregates

    PubMed Central

    Weng, Tsai-Lung; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi

    2018-01-01

    This study aims to investigate the effect of adding circulating fluidized bed combustion (CFBC) ash, desulfurization slag, air-cooled blast-furnace slag and coal bottom ash to the controlled low-strength material (CLSM). Test methods include slump flow test, ball drop test, water soluble chloride ion content measurement, compressive strength and length change measurement. The results show that (1) the use of CFBC hydration ash with desulfurization slag of slump flow is the best, and the use of CFBC hydration ash with coal bottom ash and slump flow is the worst; (2) CFBC hydration ash with desulfurization slag and chloride ion content is the highest; (3) 24 h ball drop test (diameter ≤ 76 mm), and test results are 70 mm to 76 mm; (4) CFBC hydration ash with desulfurization slag and compression strength is the highest, with the coal bottom ash being the lowest; increase of CFBC hydration ash can reduce compressive strength; and (5) the water-quenched blast furnace slag and CFBC hydration ash would expand, which results in length changes of CLSM specimens. PMID:29724055

  17. Methods to Improve Survival and Growth of Planted Alternative Species Seedlings in Black Ash Ecosystems Threatened by Emerald Ash Borer

    Treesearch

    Nicholas Bolton; Joseph Shannon; Joshua Davis; Matthew Grinsven; Nam Noh; Shon Schooler; Randall Kolka; Thomas Pypker; Joseph Wagenbrenner

    2018-01-01

    Emerald ash borer (EAB) continues to spread across North America, infesting native ash trees and changing the forested landscape. Black ash wetland forests are severely affected by EAB. As black ash wetland forests provide integral ecosystem services, alternative approaches to maintain forest cover on the landscape are needed. We implemented simulated EAB infestations...

  18. Growth of larval agrilus planipennis (Coleoptera: Buprestidae) and fitness of tetrastichus planipennisi (Hymenoptera: Eulophidae) in blue ash (Fraxinus quadrangulata) and green ash (F. pennsylvanica)

    USDA-ARS?s Scientific Manuscript database

    Emerald ash borer (EAB) (Agrilus planipennis) is a primary pest of North American ash (Fraxinus spp.) trees. Blue ash (F. quadrangulata) is more resistant than other North American ash and able to survive EAB infestation. This tree may affect EAB larvae and T. planipennisi. We compared the capacity ...

  19. Investigation of polycyclic aromatic hydrocarbon content in fly ash and bottom ash of biomass incineration plants in relation to the operating temperature and unburned carbon content.

    PubMed

    Košnář, Zdeněk; Mercl, Filip; Perná, Ivana; Tlustoš, Pavel

    2016-09-01

    The use of biomass fuels in incineration power plants is increasing worldwide. The produced ashes may pose a serious threat to the environment due to the presence of polycyclic aromatic hydrocarbons (PAHs), because some PAHs are potent carcinogens, mutagens and teratogens. The objective of this study was to investigate the content of total and individual PAHs in fly and bottom ash derived from incineration of phytomass and dendromass, because the data on PAH content in biomass ashes is limited. Various operating temperatures of incineration were examined and the relationship between total PAH content and unburned carbon in ashes was also considered. The analysis of PAHs was carried out in fly and bottom ash samples collected from various biomass incineration plants. PAH determination was performed using gas chromatography coupled with mass spectrometry. The correlations between the low, medium and high molecular weight PAHs and each other in ashes were conducted. The relationship between PAH content and unburned carbon, determined as a loss on ignition (L.O.I.) in biomass ashes, was performed using regression analysis. The PAH content in biomass ashes varied from 41.1±1.8 to 53,800.9±13,818.4ng/g dw. This variation may be explained by the differences in boiler operating conditions and biomass fuel composition. The correlation coefficients for PAHs in ash ranged from 0.8025 to 0.9790. The regression models were designed and the coefficients of determination varied from 0.908 to 0.980. The PAH content in ash varied widely with fuel type and the effect of operating temperature on PAH content in ash was evident. Fly ashes contained higher amounts of PAHs than bottom ashes. The low molecular weight PAHs prevailed in tested ashes. The exponential relationship between the PAH content and L.O.I. for fly ashes and the linear for bottom ashes was observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Structure, properties, and surfactant adsorption behavior of fly ash carbon

    NASA Astrophysics Data System (ADS)

    Kulaots, Indrek

    The objective of this research was to suggest methods by which certain problems associated with use of coal fly ash as a pozzolanic agent in concrete mixtures could be alleviated, guided by a better characterization of fly ash properties. A sample suite of eighty fly ashes was gathered from utilities across the world (mainly US-based) and included ashes from coals ranging in rank from bituminous to lignite. The widely used foam index test is used to characterize ashes with respect to their propensity to adsorb surfactants (called Air Entraining Admixtures or AEAs) used to impart freeze-thaw resistance to concrete. In ash-containing concrete mixtures, AEAs are adsorbed from the polar concrete-water solution onto non-polar unburned carbon surfaces in the ash. The AEA uptake by fly ashes only crudely correlates with the amount of carbon in the fly ash, because carbon surface area, accessibility and polarity all play a role in determining adsorption capacities. Fly ash carbon particle size distribution is also a key factor. Fine carbon particles in fly ash fractions of <106mum are responsible for about 90% of surfactant adsorption capacity. Surfactant adsorption on fly ash carbon is, in the foam index test, a dynamic process. The time of the test (typically <10 minutes) is not long enough to permit penetration of small porosity by the relatively large AEA molecules, and only the most readily available adsorption surface near the geometrical surface of the carbon particles is utilized. The nature of the foam index test was also examined, and it is recommended that a more standardized test procedure based upon pure reagents be adopted for examining the nature of fly ashes. Several possible reagents were identified. Room temperature fly ash ozonation is a powerful technique that allows increasing fly ash surface polarity in a relatively short time and thus is very effective for decreasing the AEA uptake capacity. Depending on the ozone input concentration, sample amount and contact time, surfactant uptake capacity decreases by a factor of two or more following reaction of only 0--1g O3/kg-ash, bringing many ashes into compliance with AEA uptake requirements.

  1. Advancing the Renewable Industry in Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparby, Michael; Doering, Alan; Timmerman, Denny

    This report deals with seven topics: 1. "Utilizing Ash Wastes as a Nutrient Source for Corn": As forms of gasification and combustion grow in the area of renewable energy in Minnesota the question arises regarding the utilization/application of the ash co product produced from these processes. Currently there are four facilities in Minnesota producing an ash co product (three ethanol facilities and one combusting biomass to produce energy). These ash wastes are generated from using ethanol by-products as a fuel or heating source for fermentation. Other ash wastes from agricultural sources include turkey litter ash. When applied to agricultural fields,more » ash wastes can be a source of nutrients for agricultural crops. Chemical analyses of ash wastes vary, but 200 to 300 lb of P 2O 5 and K 2O per ton of ash is typical. The value of ash wastes as a fertilizer has increased because commercial fertilizer prices have increased significantly over the last few years. Specifically: Compaction/Agglomeration research- Research included development of an appropriate product for use in current delivery systems by densifying the ash into the form of pellets or briquettes which may reduce fertilizer input cost to farmers. The initiative addresses the use of phosphorus and potassium from co-firing or gasification processes as a fertilizer source. 2. "Use of Glycerol as a Corn Replacement in Calf Starter Diets": Glycerol is a sugar alcohol by-product of bio-diesel production. About 1 gallon of glycerin is produced for every 10 gallons of bio-diesel of which the glycerol content may vary between 63 and almost 100%. There is some uncertainty of the exact energy value of glycerol as an ingredient for animal feed but it has been successfully used as a replacement for corn up to 10% of the diet dry matter for lactating dairy cows. There is a lack of information on incorporating glycerol into diets for pre- and post weaned dairy heifer calves which has the potential to expand the market for this by product. Preliminary work at SROC indicates that there are no palatability problems using glycerol up to 6% of the mix in post weaning pellets for group fed dairy heifers. 3. "Intervention Strategies for Reduction of Food-borne Pathogens in Cattle Fed Ethanol Byproducts": Ethanol plants and cattle producers create a symbiotic relationship: The use of wet and dry distiller’s grains in beef cattle rations provides significant improvement in overall feedlot performance for many producers in Minnesota and the Upper Midwest. Distiller’s grain is the coproduct that remains following the distillation of ethanol. It may be dehydrated to produce dried distiller’s grain (DDG) which is then commonly used as livestock feed. The use of distiller’s grains in livestock rations has been the subject of numerous research projects over the past ten years. Recently published research data conducted at Kansas State University (K-State) has created controversy over the feeding of distiller’s grains in beef cattle rations. The research indicates that cattle fed distiller’s grain may have an increased probability of Escherichia coli O157 in their hindgut. Specifically: This research assessment was a two part project consisting of feeding trials conducted at the University of Minnesota and an intervention study conducted at Kansas State University. This report is the Kansas State University portion. This report is a task-level final technical report. 4. "Impact of Distillers' Grains and Glycerin on Cattle Fecal Shedding of Escherichia coli O157:H7" 5. "Study Assessing the Opportunities and Potential of Soybean Based Products and Technologies": Based on demand/market potential, economic feasibility, stage of development and strength of institutional support, Informa Economics, Inc. ("Informa") narrowed down a list of more than 100 emerging soybean products and to 8 of the most promising for soybean, considered to have the greatest potential to add significant value to Minnesota's soybean commodity production. However, as with the potential of any biobased product or technology, the development of these emerging soybean products and technologies will be heavily reliant on future market price environments (especially for petroleum) and government policies. This report identifies what the contractor believes are the top 8 products and technologies for soybeans at the time of publishing. 6. "Study Assessing the Opportunities and Potential of Corn-Based Products and Technologies": Based on demand/market potential, economic feasibility, stage of development and strength of institutional support, Informa Economics, Inc. ("Informa") narrowed down a list of more than 100 emerging corn products and technologies to 8 of the most promising for corn, considered to have the greatest potential to add significant value to Minnesota's corn commodity production. However, as with the potential of any biobased product or technology, the development of these emerging corn products and technologies will be heavily reliant on future market price environments (especially for petroleum) and government policies. This report identifies what the contractor believes are the top 8 products and technologies for corn at the time of publishing. 7. "Distributed Power Generation Technology (Roseau Gasification)."« less

  2. Leaching of PAHs from agricultural soils treated with oil shale combustion ash: an experimental study.

    PubMed

    Jefimova, Jekaterina; Adamson, Jasper; Reinik, Janek; Irha, Natalya

    2016-10-01

    The present study focuses on the fate of polycyclic aromatic hydrocarbons (PAHs) in soils amended with oil shale ash (OSA). Leachability studies to assess the release of PAHs to the environment are essential before the application of OSA in agriculture. A quantitative estimation of the leaching of PAHs from two types of soil and two types of OSA was undertaken in this study. Two leaching approaches were chosen: (1) a traditional one step leaching scheme and (2) a leaching scheme with pretreatment, i.e.., incubation of the material in wet conditions imitating the field conditions, followed by a traditional leaching procedure keeping the total amount of water constant. The total amount of PAHs leached from soil/OSA mixtures was in the range of 15 to 48 μg/kg. The amount of total PAHs leached was higher for the incubation method, compared to the traditional leaching method, particularly for Podzolic Gleysols soil. This suggests that for the incubation method, the content of organic matter and clay minerals of the soil influence the fate of PAHs more strongly compared to the traditional leaching scheme. The amount of PAHs leached from OSA samples is higher than from soil/OSA mixtures, which suggests soils to inhibit the release of PAHs. Calculated amount of PAHs from experimental soil and OSA leaching experiments differed considerably from real values. Thus, it is not possible to estimate the amount of PAHs leached from soil/OSA mixtures based on the knowledge of the amount of PAHs leached from soil and OSA samples separately.

  3. Trends in the recovery of phosphorus in bioavailable forms from wastewater.

    PubMed

    Melia, Patrick M; Cundy, Andrew B; Sohi, Saran P; Hooda, Peter S; Busquets, Rosa

    2017-11-01

    Addressing food security issues arising from phosphorus (P) scarcity is described as one of the greatest global challenges of the 21st Century. Dependence on inorganic phosphate fertilisers derived from limited geological sources of P creates an urgent need to recover P from wastes and treated waters, in safe forms that are also effective agriculturally - the established process of P removal by chemical precipitation using Fe or Al salts, is effective for P removal but leads to residues with limited bioavailability and contamination concerns. One of the greatest opportunities for P recovery is at wastewater treatment plants (WWTPs) where the crystallisation of struvite and Ca-P from enhanced biological P removal (EBPR) sludge is well developed and already shown to be economically and operationally feasible in some WWTPs. However, recovery through this approach can be limited to <25% efficiency unless chemical extraction is applied. Thermochemical treatment of sludge ash produces detoxified residues that are currently utilised by the fertiliser industry; wet chemical extraction can be economically feasible in recovering P and other by-products. The bioavailability of recovered P depends on soil pH as well as the P-rich material in question. Struvite is a superior recovered P product in terms of plant availability, while use of Ca-P and thermochemically treated sewage sludge ash is limited to acidic soils. These technologies, in addition to others less developed, will be commercially pushed forward by revised fertiliser legislation and foreseeable legislative limits for WWTPs to achieve discharges of <1 mg P/L. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A new U-Pb zircon age and a volcanogenic model for the early Permian Chemnitz Fossil Forest

    NASA Astrophysics Data System (ADS)

    Luthardt, Ludwig; Hofmann, Mandy; Linnemann, Ulf; Gerdes, Axel; Marko, Linda; Rößler, Ronny

    2018-04-01

    The Chemnitz Fossil Forest depicts one of the most completely preserved forest ecosystems in late Paleozoic Northern Hemisphere of tropical Pangaea. Fossil biota was preserved as a T0 taphocoenosis resulting from the instantaneous entombment by volcanic ashes of the Zeisigwald Tuff. The eruption depicts one of the late magmatic events of post-variscan rhyolitic volcanism in Central Europe. This study represents a multi-method evaluation of the pyroclastic ejecta encompassing sedimentological and (isotope) geochemical approaches to shed light on magmatic and volcanic processes, and their role in preserving the fossil assemblage. The Zeisigwald Tuff pyroclastics (ZTP) reveal a radiometric age of 291 ± 2 Ma, pointing to a late Sakmarian/early Artinskian (early Permian) stratigraphic position for the Chemnitz Fossil Forest. The initial eruption was of phreatomagmatic style producing deposits of cool, wet ashes, which deposited from pyroclastic fall out and density currents. Culmination of the eruption is reflected by massive hot and dry ignimbrites. Whole-rock geochemistry and zircon grain analysis show that pyroclastic deposits originated from a felsic, highly specialised magma, which underwent advanced fractionation, and is probably related to post-Carboniferous magmatism in the Western Erzgebirge. The ascending magma recycled old cadomic crust of the Saxo-thuringian zone, likely induced by a mantle-derived heat flow during a phase of post-variscan crustal delamination. Geochemical trends within the succession of the basal pyroclastic horizons reflect inverse zonation of the magma chamber and provide evidence for the continuous eruption and thus a simultaneous burial of the diverse ecosystem.

  5. Recycled asphalt pavement - fly ash geopolymer as a sustainable stabilized pavement material

    NASA Astrophysics Data System (ADS)

    Horpibulsuk, S.; Hoy, M.; Witchayaphong, P.; Rachan, R.; Arulrajah, A.

    2017-11-01

    Strength, durability, microstructure and leachate characteristics of Recycled Asphalt Pavement and Fly Ash (RAP-FA) geopolymers and RAP-FA blends as a sustainable pavement material are evaluated in this paper. The strength development of the stabilized materials with and without effect wetting-drying (w-d) cycles was determined by Unconfined Compression Strength (UCS) test. The mineralogical and microstructural changes of the stabilized material were analyzed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The leachability of the heavy metals were measured by Toxicity Characteristic Leaching Procedure (TCLP) and compared with international standard. The results show that both RAP-FA blend and RAP-FA geopolymer increase with increasing the number of w-d cycles (C), reaching its peak at 6 w-d cycles. The XRD and SEM analyses indicate that the strength development of RAP-FA blend occurs due to stimulation of the chemical reaction between the high amount to Calcium in RAP and the high amount of Silica and Alumina in FA leaching to production of Calcium Aluminium (Silicate) Hydrate, while the geopolymerization reaction is observed in RAP-FA geopolymer. For C> 6, the significant macro- and micro-cracks developed during w-d cycles cause strength reduction for both RAP-FA blend and geopolymer. The TCLP results demonstrate that there is no environmental risk for these stabilized materials. Furthermore, FA-geopolymer can reduce the leachability of heavy metal in RAP-FA blend. The outcome from this research confirms the viability of using RAP-FA blend and RAP-FA geopolymer as alternative sustainable pavement materials.

  6. Low-temperature catalytic oxidation of aldehyde mixtures using wood fly ash: kinetics, mechanism, and effect of ozone.

    PubMed

    Kolar, Praveen; Kastner, James R

    2010-02-01

    Poultry rendering emissions contain volatile organic compounds (VOCs) that are nuisance, odorous, and smog and particulate matter precursors. Present treatment options, such as wet scrubbers, do not eliminate a significant fraction of the VOCs emitted including, 2-methylbutanal (2-MB), 3-methylbutanal, and hexanal. This research investigated the low-temperature (25-160 degrees C) catalytic oxidation of 2-MB and hexanal vapors in a differential, plug flow reactor using wood fly ash (WFA) as a catalyst and oxygen and ozone as oxidants. The oxidation rates of 2-MB and hexanal ranged between 3.0 and 3.5 x 10(-9)mol g(-1)s(-1) at 25 degrees C and the activation energies were 2.2 and 1.9 kcal mol(-1), respectively. The catalytic activity of WFA was comparable to other commercially available metal and metal oxide catalysts. We theorize that WFA catalyzed a free radical reaction in which 2-butanone and CO(2) were formed as end products of 2-MB oxidation, while CO(2), pentanal, and butanal were formed as end products of hexanal oxidation. When tested as a binary mixture at 25 and 160 degrees C, no inhibition was observed. Additionally, when ozone was tested as an oxidant at 160 degrees C, 100% removal was achieved within a 2-s reaction time. These results may be used to design catalytic oxidation processes for VOC removal at poultry rendering facilities and potentially replace energy and water intensive air pollution treatment technologies currently in use. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  7. Emergency health risk communication during the 2007 San Diego wildfires: comprehension, compliance, and recall.

    PubMed

    Sugerman, David E; Keir, Jane M; Dee, Deborah L; Lipman, Harvey; Waterman, Stephen H; Ginsberg, Michele; Fishbein, Daniel B

    2012-01-01

    In October 2007, wildfires burned nearly 300,000 acres in San Diego County, California. Emergency risk communication messages were broadcast to reduce community exposure to air pollution caused by the fires. The objective of this investigation was to determine residents' exposure to, understanding of, and compliance with these messages. From March to June 2008, the authors surveyed San Diego County residents using a 40-question instrument and random digit dialing. The 1,802 respondents sampled were predominantly 35-64 years old (65.9%), White (65.5%), and educated past high school (79.0%). Most (82.5%) lived more than 1 mile away from the fires, although many were exposed to smoky air for 5-7 days (60.7%) inside and outside their homes. Most persons surveyed reported hearing fire-related health messages (87.9%) and nearly all (97.9%) understood the messages they heard. Respondents complied with most to all of the nontechnical health messages, including staying inside the home (58.7%), avoiding outdoor exercise (88.4%), keeping windows and doors closed (75.8%), and wetting ash before cleanup (75.6%). In contrast, few (<5%) recalled hearing technical messages to place air conditioners on recirculate, use High-Efficiency Particulate Air filters, or use N-95 respirators during ash cleanup, and less than 10% of all respondents followed these specific recommendations. The authors found that nontechnical message recall, understanding, and compliance were high during the wildfires, and reported recall and compliance with technical messages were much lower. Future disaster health communication should further explore barriers to recall and compliance with technical recommendations.

  8. Ranking Coal Ash Materials for Their Potential to Leach Arsenic and Selenium: Relative Importance of Ash Chemistry and Site Biogeochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Grace E.; Hower, James C.; Phillips, Allison L.

    The chemical composition of coal ash is highly heterogeneous and dependent on the origin of the source coal, combustion parameters, and type and configuration of air pollution control devices. This heterogeneity results in uncertainty in the evaluation of leaching potential of contaminants from coal ash. The goal of this work was to identify whether a single leaching protocol could roughly group high-leaching potential coal ash from low-leaching potential coal ash, with respect to arsenic (As) and selenium (Se). We used four different leaching tests, including the Toxicity Characteristic Leaching Protocol (TCLP), natural pH, aerobic sediment microcosms, and anaerobic sediment microcosmsmore » on 10 different coal ash materials, including fly ash, lime-treated ash, and flue gas desulfurization materials. Leaching tests showed promise in categorizing high and low-leaching potential ash materials, indicating that a single point test could act as a first screening measure to identify high-risk ash materials. However, the amount of contaminant leached varied widely across tests, reflecting the importance of ambient conditions (pH, redox state) on leaching. These results demonstrate that on-site geochemical conditions play a critical role in As and Se mobilization from coal ash, underscoring the need to develop a situation-based risk assessment framework for contamination by coal ash pollutants.« less

  9. Ranking Coal Ash Materials for Their Potential to Leach Arsenic and Selenium: Relative Importance of Ash Chemistry and Site Biogeochemistry

    DOE PAGES

    Schwartz, Grace E.; Hower, James C.; Phillips, Allison L.; ...

    2018-01-23

    The chemical composition of coal ash is highly heterogeneous and dependent on the origin of the source coal, combustion parameters, and type and configuration of air pollution control devices. This heterogeneity results in uncertainty in the evaluation of leaching potential of contaminants from coal ash. The goal of this work was to identify whether a single leaching protocol could roughly group high-leaching potential coal ash from low-leaching potential coal ash, with respect to arsenic (As) and selenium (Se). We used four different leaching tests, including the Toxicity Characteristic Leaching Protocol (TCLP), natural pH, aerobic sediment microcosms, and anaerobic sediment microcosmsmore » on 10 different coal ash materials, including fly ash, lime-treated ash, and flue gas desulfurization materials. Leaching tests showed promise in categorizing high and low-leaching potential ash materials, indicating that a single point test could act as a first screening measure to identify high-risk ash materials. However, the amount of contaminant leached varied widely across tests, reflecting the importance of ambient conditions (pH, redox state) on leaching. These results demonstrate that on-site geochemical conditions play a critical role in As and Se mobilization from coal ash, underscoring the need to develop a situation-based risk assessment framework for contamination by coal ash pollutants.« less

  10. Evaluation of Pollutant Leaching Potential of Coal Ashes for Recycling

    NASA Astrophysics Data System (ADS)

    Park, D.; Woo, N. C.; Kim, H.; Yoon, H.; Chung, D.

    2011-12-01

    By 2009, coal ashes produced from coal-based power plants in Korea have been reused as cement supplement materials; however, the rest is mostly disposed in landfills inside the plant properties. Continuous production of coal ashes and limited landfill sites require more recycles of coal ashes as base materials, specifically in constructions of roads and of huge industrial complex. Previous researches showed that coal ashes could contain various metals such as arsenic(As), chromium(Cr), lead(Pb), nickel(Ni), selenium(Se), etc. In this study, we collected four types of bottom ashes and two of fly ashes from four coal-based power plants. These ash samples were tested with distilled water through the column leaching process in oxidized conditions. The column test results were compared with those of total digestion, sequential extraction processes and TCLP. Concentrations of metals in outflows from columns are generally greater in fly ashes than in bottom ashes, specifically for As, Se, B, Sr and SO4. Only one fly ash (J2-F) shows high concentrations of arsenic and selenium in leachate. Sequential extraction results indicate that these metals are in readily soluble forms, such as adsorbed, carbonated, and reducible forms. Results of TCLP analysis indicate no potential contaminants leached from the ashes. In conclusion, recycling of coal combustion ashes could be encouraged with proper tests such as sequential and leaching experiments.

  11. Comparison of leaching characteristics of heavy metals from bottom and fly ashes in Korea and Japan.

    PubMed

    Shim, Young-Sook; Rhee, Seung-Whee; Lee, Woo-Keun

    2005-01-01

    The objective of this research was to compare the leaching characteristics of heavy metals such as cadmium, chromium, copper, nickel, lead, etc., in Korean and Japanese municipal solid waste incineration (MSWI) ash. The rate of leaching of heavy metal was measured by KSLT and JTL-13, and the amount of heavy metals leached was compared with the metal content in each waste component. Finally, bio-availability testing was performed to assess the risks associated with heavy metals leached from bottom ash and fly ash. From the results, the value of neutralization ability in Japanese fly ash was four times higher than that in Korean fly ash. The reason was the difference in the content of Ca(OH)(2) in fly ash. The amount of lead leached exceeded the regulatory level in both Japanese and Korean fly ash. The rate of leaching was relatively low in ash with a pH in the range of 6-10. The bio-availability test in fly ash demonstrated that the amount of heavy metals leached was Pb>Cd>Cr, but the order was changed to Pb>Cr>Cd in the bottom ash. The leaching concentration of lead exceeded the Japanese risk level in all fly ashes from the two countries, but the leaching concentration of cadmium exceeded the regulatory level in Korean fly ash only.

  12. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses

    NASA Astrophysics Data System (ADS)

    Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO 2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis, 1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project.

  13. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses

    NASA Technical Reports Server (NTRS)

    Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project. Published by Elsevier Ltd on behalf of COSPAR.

  14. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses.

    PubMed

    Peterson, B V; Hummerick, M; Roberts, M S; Krumins, V; Kish, A L; Garland, J L; Maxwell, S; Mills, A

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project. Published by Elsevier Ltd on behalf of COSPAR.

  15. Sulfidation treatment of molten incineration fly ashes with Na2S for zinc, lead and copper resource recovery.

    PubMed

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2007-04-01

    The present study focuses on the conversion of heavy metals involved in molten incineration fly ashes to metal sulfides which could be thereafter separated by flotation. The sulfidation treatment was carried out for five molten incineration fly ashes (Fly ash-A to Fly ash-E) by contacting each fly ash with Na(2)S solution for a period of 10 min to 6h. The initial molar ratio of S(2-) to Me(2+) was adjusted to 1.20. The conversion of heavy metals to metal sulfides was evaluated by measuring the S(2-) residual concentrations using an ion selective electrode. The formation of metal sulfides was studied by XRD and SEM-EDS analyses. In the case of Fly ash-A to Fly ash-D, more than 79% of heavy metals of zinc, lead and copper was converted to metal sulfides within the contacting period of 0.5h owing to a fast conversion of metal chlorides to metal sulfides. By contrast, the conversion of about 35% was achieved for Fly ash-E within the same contacting period, which was attributed to a high content of metal oxides. Further, the S(2-) to Me(2+) molar ratio was reduced to 1.00 to minimize Na(2)S consumption and the conversions obtained within the contacting period of 0.5h varied from 76% for Fly ash-D to 91% for Fly ash-C. Finally, soluble salts such as NaCl and KCl were removed during the sulfidation treatment, which brought about a significant enrichment in metals content by a factor varying from 1.5 for Fly ash-D to 4.9 for Fly ash-A.

  16. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    NASA Astrophysics Data System (ADS)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  17. Larval Survival and Growth of Emerald Ash Borer (Coleoptera: Buprestidae) on White Ash and White Fringetree Saplings Under Well-Watered and Water-Deficit Conditions.

    PubMed

    Rutledge, Claire E; Arango-Velez, Adriana

    2017-04-01

    Emerald ash borer (Agrilus planipennis Fairmaire) was recently found on a novel host in North America, white fringetree (Chionanthus virginicus L.) (Oleaceae). In this study, we artificially infested 4-yr-old, naïve white fringetree and white ash (Fraxinus americana L.) saplings under well-watered and water-deficit conditions with emerald ash borer eggs. We used physiological and phenotypical approaches to investigate both plant response to emerald ash borer and insect development at 21, 36, and 61 d postinfestation. Photosynthesis was reduced in both tree species by larval feeding, but not by water deficits. Emerald ash borer larvae established and survived successfully on white ash. Both establishment and survival were lower on white fringetree than on white ash. Larvae were larger, and had reached higher instars at all three time points on white ash than on white fringetrees. Larvae grew faster in white ash under water-deficit conditions; however, water-deficit conditions negatively impacted survival of larvae at 61 d postinfestation in white fringetrees, although head size did not differ among surviving larvae. White ash showed higher callus formation in well-watered trees, but no impact on larval survival was observed. In white fringetree, callus formation was not affected by water treatment, and was inversely related to larval survival. The higher rate of mortality and slow growth rate of larvae in white fringetree as compared to white ash suggest that populations of emerald ash borer may be sustained by white fringetree, but may grow more slowly than in white ash. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Controls on the surface chemical reactivity of volcanic ash investigated with probe gases

    NASA Astrophysics Data System (ADS)

    Maters, Elena C.; Delmelle, Pierre; Rossi, Michel J.; Ayris, Paul M.; Bernard, Alain

    2016-09-01

    Increasing recognition that volcanic ash emissions can have significant impacts on the natural and human environment calls for a better understanding of ash chemical reactivity as mediated by its surface characteristics. However, previous studies of ash surface properties have relied on techniques that lack the sensitivity required to adequately investigate them. Here we characterise at the molecular monolayer scale the surfaces of ash erupted from Eyjafjallajökull, Tungurahua, Pinatubo and Chaitén volcanoes. Interrogation of the ash with four probe gases, trimethylamine (TMA; N(CH3)3), trifluoroacetic acid (TFA; CF3COOH), hydroxylamine (HA; NH2OH) and ozone (O3), reveals the abundances of acid-base and redox sites on ash surfaces. Measurements on aluminosilicate glass powders, as compositional proxies for the primary constituent of volcanic ash, are also conducted. We attribute the greater proportion of acidic and oxidised sites on ash relative to glass surfaces, evidenced by comparison of TMA/TFA and HA/O3 uptake ratios, in part to ash interaction with volcanic gases and condensates (e.g., H2O, SO2, H2SO4, HCl, HF) during the eruption. The strong influence of ash surface processing in the eruption plume and/or cloud is further supported by particular abundances of oxidised and reduced sites on the ash samples resulting from specific characteristics of their eruptions of origin. Intense interaction with water vapour may result in a higher fraction of oxidised sites on ash produced by phreatomagmatic than by magmatic activity. This study constitutes the first quantification of ash chemical properties at the molecular monolayer scale, and is an important step towards better understanding the factors that govern the role of ash as a chemical agent within atmospheric, terrestrial, aquatic or biotic systems.

  19. On the removal of hexavalent chromium from a Class F fly ash.

    PubMed

    Huggins, F E; Rezaee, M; Honaker, R Q; Hower, J C

    2016-05-01

    Coarse and fine samples of a Class F fly ash obtained from commercial combustion of Illinois bituminous coal have been exposed to two long-term leaching tests designed to simulate conditions in waste impoundments. ICP-AES analysis indicated that the coarse and fine fly ash samples contained 135 and 171mg/kg Cr, respectively. Measurements by XAFS spectroscopy showed that the ash samples originally contained 5 and 8% of the chromium, respectively, in the hexavalent oxidation state, Cr(VI). After exposure to water for more than four months, the percentage of chromium as Cr(VI) in the fly-ash decreased significantly for the coarse and fine fly-ash in both tests. Combining the XAFS data with ICP-AES data on the concentration of chromium in the leachates indicated that, after the nineteen-week-long, more aggressive, kinetic test on the coarse fly ash, approximately 60% of the Cr(VI) had been leached, 20% had been reduced to Cr(III) and retained in the ash, and 20% remained as Cr(VI) in the ash. In contrast, during the six-month-long baseline test, very little Cr was actually leached from either the coarse or the fine fly-ash (<0.1mg/kg); rather, about 66% and 20%, respectively, of the original Cr(VI) in the coarse and fine fly-ash was retained in the ash in that form, while the remainder, 34% and 80%, respectively, was reduced and retained in the ash as Cr(III). The results are interpreted as indicating that Cr(VI) present in Class F fly-ash can be reduced to Cr(III) when in contact with water and that such chemical reduction can compete with physical removal of Cr(VI) from the ash by aqueous leaching. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Sterilization Effect of Wet Oxygen Plasma in the Bubbling Method.

    PubMed

    Tamazawa, Kaoru; Shintani, Hideharu; Tamazawa, Yoshinori; Shimauchi, Hidetoshi

    2015-01-01

    A new low-temperature sterilization method to replace the ethylene oxide gas sterilization is needed. Strong bactericidal effects of OH and O2H radicals are well known. The purpose of this study was to evaluate the sterilization effect of wet oxygen ("O2+H2O") plasma in the bubbling method, confirming the effect of humidity. Sterility assurance was confirmed by using a biological indicator (Geobacillus stearothermophilus ATCC7953, Namsa, USA). One hundred and eight samples (10(5) spores/carrier) were divided into three groups of 36 in each for treatment with a different type of gas (O2, O2+H2O, Air+H2O). Plasma processing was conducted using a plasma ashing apparatus (13.56 MHz, PACK-3(®), Y. A. C., Japan) under various gas pressures (13, 25, 50 Pa) and gas flows (50, 100, 200 sccm). Fixed plasma treatment parameters were power at 150 W, temperature of 60 ℃, treatment time of 10 min. The samples after treatment were incubated in trypticase soy broth at 58 ℃ for 72 h. The negative culture rate in the "O2+H2O" group was significantly (Mantel-Haenszel procedure, p<0.001) higher than in the other gas groups. It is suggested that the significant sterilization effect of the "O2+H2O" group depends on the bubbling method which is the method of introducing vapor into the chamber. The bubbling method seems able to generate OH and O2H radicals in a stable way.

  1. Optimization of conditions for isolation of high quality chitin from shrimp processing raw byproducts using response surface methodology and its characterization.

    PubMed

    Nidheesh, T; Suresh, P V

    2015-06-01

    Chitin is one of the most abundant bioactive biopolymer on earth. It is commercially extracted from seafood processing crustacean shell byproducts by harsh thermochemical treatments. The extraction conditions, the source and pretreatment of raw material significantly affect its quality and bioactivity. In this investigation response surface methodology (RSM) has been applied to optimize and evaluate the interaction of variables for extraction of high quality chitin from shrimp processing raw byproducts. Variables such as, concentration of HCl (%, v/v) 4.5 (for wet) and 4.9 (for dry), reaction time 3 h, solid liquid ratio of HCl (w/v) 1:5.5 (for wet) and 1:7.9 (for dry) with two treatments achieved >98 % demineralization of shrimp byproduct. Variables such as, concentration of NaOH 3.6 % (w/v), reaction time 2.5 h, temperature 69.0 ± 1 °C, solid liquid ratio of NaOH 7.4 (w/v) and two treatments accomplished >98 % deproteinization of demineralized byproducts. Significant (p ≤ 0.05-0.001) interactive effects were observed between different variables. Chitin obtained in these conditions had residual content (%, w/w) of ash <0.4 and protein <0.8 and the degree of N-acetylation was >93 % with purity of >98 %. In conclusion, the optimized conditions by RSM can be applied for large scale preparation of high quality chitin from raw shrimp byproduct.

  2. Comparison of emerald ash borer preference for ash of different species, sun exposure, age, and stress treatments in relation to foliar volatiles and nutrition

    Treesearch

    Therese M. Poland; Deepa S. Pureswaran; Yigen Chen

    2009-01-01

    We investigated the host selection behavior and feeding preference of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) on six different species of ash including Manchurian ash (F...

  3. Ash content of bones in the pigtail monkey, Macaca nemestrina.

    NASA Technical Reports Server (NTRS)

    Vose, G. P.; Roach, T. L.

    1972-01-01

    Ash analyses of skeletons of four adult primates, Macaca nemestrina, revealed some similarities and some marked contrasts when compared with published data on human skeletal ash. The skull in both Macaca nemestrina and man has the highest ash content of all bones in the skeleton. While the bones of the arms of humans have an ash content nearly identical to that of the legs (0.3% difference), in Macaca nemestrina the humeri and radii contain 5.4% more ash than the femora and tibiae. Similarly in Macaca nemestrina the bones of the hands contain 3.5% more ash than the bones of the feet, while in humans the same bones agree within 0.3% implying that adaptive use function is a factor in bone ash concentration. The ribs of Macaca nemestrina showed an unexpectedly high ash content in comparison with those of humans. In contrast with the relatively constant ash content throughout the vertebrae in humans, a conspicuous decrease axially was noted in Macaca nemestrina.

  4. Ash production and dispersal from sustained low-intensity Mono-Inyo eruptions

    NASA Astrophysics Data System (ADS)

    Black, Benjamin A.; Manga, Michael; Andrews, Benjamin

    2016-08-01

    Recent rhyolitic volcanism has demonstrated that prolonged low-intensity ash venting may accompany effusive dome formation. We examine the possibility and some consequences of episodes of extended, weak ash venting at the rhyolitic Mono-Inyo chain in Eastern California. We describe ash-filled cracks within one of the youngest domes, Panum Crater, which provide a textural record of ash venting during dome effusion. We use synchrotron-based X-ray computed tomography to characterize the particles in these tuffisites. Particle sizes in well-sorted tuffisite layers agree well with grain size distributions observed during weak ash venting at Soufrière Hills Volcano, Montserrat, and yield approximate upper and lower bounds on gas velocity and mass flux during the formation of those layers. We simulate ash dispersal with Ash3d to assess the consequences of long-lived Mono-Inyo ash venting for ash deposition and the accompanying volcanic hazards. Our results highlight the sensitivity of large-scale outcomes of volcanic eruptions to small-scale processes.

  5. Study on cement mortar and concrete made with sewage sludge ash.

    PubMed

    Chang, F C; Lin, J D; Tsai, C C; Wang, K S

    2010-01-01

    This study investigated the feasibility of reusing wastewater sludge ash in construction materials to replace partial materials. Wastewater sludge sampled from thermal power plant was burned into sludge ash at 800°C in the laboratory. The sludge incineration ash has low heavy metal including Pb, Cd, Cr and Cu, so it belongs to general enterprise waste. The chemical composition of sludge incineration ash was summed up in SiO₂, CaO, Fe₂O₃ and MgO. Then the wastewater sludge ash is also found to be a porous material with irregular surface. When the sludge ash was used to replace mortar or concrete cement, its water-adsorption capability will result in the reduction of mortar workability and compressive strength. Cement is being substituted for sludge ash, and 10 percent of sludge ash is more appropriate. Sludge ash is reused to take the place of construction materials and satisfies the requests of standard specification except for higher water absorption.

  6. Review of ecosystem level impacts of emerald ash borer on black ash wetlands: What does the future hold?

    Treesearch

    Randall K. Kolka; Anthony W. D' Amato; Joseph W. Wagenbrenner; Robert A. Slesak; Thomas G. Pypker; Melissa B. Youngquist; Alexis R. Grinde; Brian J. Palik

    2018-01-01

    The emerald ash borer (EAB) is rapidly spreading throughout eastern North America and devastating ecosystems where ash is a component tree. This rapid and sustained loss of ash trees has already resulted in ecological impacts on both terrestrial and aquatic ecosystems and is projected to be even more severe as EAB invades black ash-dominated wetlands of the western...

  7. Chemical ecology and behavioral studies on the emerald ash borer: an update

    Treesearch

    Deepa Pureswaran; Therese Poland

    2008-01-01

    In 2006, we tested host selection and feeding preference of the emerald ash borer (EAB) on four species of ash species (green, black, white, and blue ash) that are native to North America but exotic to the beetle. For comparison, we also included Manchurian ash (which is native to the beetle) and European ash (which is exotic to the beetle) in the test. Beetles were...

  8. Leaching characteristics of arsenic and selenium from coal fly ash: role of calcium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian Wang; Jianmin Wang; Yulin Tang

    2009-05-15

    Understanding the leaching behavior of arsenic (As) and selenium (Se) in coal fly ash is important in evaluating the potential environmental impact of coal fly ash. Batch experiments were employed to systematically investigate the leaching behavior of As and Se in two major types of coal fly ashes, bituminous coal ash and sub-bituminous coal ash, and to determine the underlying processes that control As and Se leaching. The effects of pH, solid/liquid (S/L) ratio, calcium addition, and leaching time on the release of As and Se were studied. Overall, bituminous coal ash leached significantly more As and Se than sub-bituminousmore » coal ash, and Se was more readily leachable, in both absolute concentration and relative fraction, than As for both types of fly ashes. Adsorption/desorption played a major role on As and Se leaching from bituminous coal ashes. However, calcium precipitation played the most important role in reducing As and Se leaching from sub-bituminous coal ashes in the entire experimental pH range. The leaching of As and Se from bituminous coal ashes generally increased with increases in the S/L ratio and leaching time. However, for sub-bituminous coal ashes, the leaching of As was not detected under most experimental conditions, while the leaching of Se increased with increases in the S/L ratio and leaching time. As{sup V} and Se{sup IV} were found to be the major species in all ash leachates in this study. 46 refs., 7 figs., 1 tab.« less

  9. Molecular recognition of emerald ash borer infestation using leaf spray mass spectrometry.

    PubMed

    Falcone, Caitlin E; Cooks, R Graham

    2016-06-15

    The introduction of the emerald ash borer (Agrilus planipennis) (EAB) from Asia to Michigan, USA, in the 1990s caused the widespread death of ash trees in two Canadian provinces and 24 US states. The three current methods for the detection of emerald ash borer infestation, visual surveys, tree girdling and artificial traps, can be unreliable, and there is clearly a need for a rapid, dependable technique for the detection of emerald ash borer infestation. Leaf spray, an ambient ionization method for mass spectrometry (MS), gives direct chemical information on a leaf sample by applying a high voltage to a naturally or artificially sharply pointed leaf piece causing ions to be generated directly from the leaf tip for MS analysis. Leaflets from 23 healthy and EAB-infested ash trees were analyzed by leaf spray mass spectrometry in an attempt to distinguish healthy and EAB-infested ash trees. In negative ion mode, healthy ash trees showed an increased abundance of ions m/z 455.5, 471.5 and 487.5, and ash trees infested with the EAB displayed an increased abundance of ions m/z 181 and 217. The identities of the chemical discriminators ursolic acid and oleanolic acid in healthy ash trees, and six-carbon sugar alcohols in infested ash trees, were determined by tandem mass spectrometry and confirmed with standards. This preliminary study suggests that leaf spray mass spectrometry of ash tree leaflets provides a potential tool for the early detection of ash tree infestation by the emerald ash borer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Thermal co-treatment of combustible hazardous waste and waste incineration fly ash in a rotary kiln.

    PubMed

    Huber, Florian; Blasenbauer, Dominik; Mallow, Ole; Lederer, Jakob; Winter, Franz; Fellner, Johann

    2016-12-01

    As current disposal practices for municipal solid waste incineration (MSWI) fly ash are either associated with significant costs or negative environmental impacts, an alternative treatment was investigated in a field scale experiment. Thereto, two rotary kilns were fed with hazardous waste, and moistened MSWI fly ash (water content of 23%) was added to the fuel of one kiln with a ratio of 169kg/Mg hazardous waste for 54h and 300kg/Mg hazardous waste for 48h while the other kiln was used as a reference. It was shown that the vast majority (>90%) of the inserted MSWI fly ash was transferred to the bottom ash of the rotary kiln. This bottom ash complied with the legal limits for non-hazardous waste landfills, thereby demonstrating the potential of the investigated method to transfer hazardous waste (MSWI fly ash) into non-hazardous waste (bottom ash). The results of a simple mixing test (MSWI fly ash and rotary kiln bottom ash have been mixed accordingly without thermal treatment) revealed that the observed transformation of hazardous MSWI fly ash into non-hazardous bottom ash during thermal co-treatment cannot be referred to dilution, as the mixture did not comply with legal limits for non-hazardous waste landfills. For the newly generated fly ash of the kiln, an increase in the concentration of Cd, K and Pb by 54%, 57% and 22%, respectively, was observed. In general, the operation of the rotary kiln was not impaired by the MSWI fly ash addition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  12. Bubbles and Dust: Dissolution Rates of Unhydrated Volcanic Ash as a Function of Morphology, Composition, and Particle Size

    NASA Astrophysics Data System (ADS)

    Wygel, C. M.; Sahagian, D. L.

    2017-12-01

    Volcanic eruptions are natural hazards due to their explosive nature and widespread transportation and deposition of ash particles. After deposition and subsequent leaching in soils or water bodies, ash deposition positively (nutrients) and negatively (contaminants) impacts the health of flora and fauna, including humans. The effects of ash leachates have been difficult to replicate in field and laboratory studies due to the many complexities and differences between ash particles. Ash morphology is characteristic for each eruption, dependent upon eruption energy, and should play a critical role in determining leaching rates. Morphology reflects overall particle surface area, which is strongly influenced by the presence of surface dust. In addition, ash composition, which in part controls morphology and particle size, may also affect leaching rates. This study determines the extent to which ash morphology, surface area, composition, and particle size control ash dissolution rates. Further, it is necessary to determine whether compound vesicular ash particles permit water into their interior structures to understand if both the internal and external surface areas are available for leaching. To address this, six fresh, unhydrated ash samples from diverse volcanic environments and a large range in morphology, from Pele's spheres to vesicular compound ash, are tested in the laboratory. Ash morphology was characterized on the Scanning Electron Microscope (SEM) before and after leaching and surface area was quantified by Brunauer Emmett Teller (BET) analysis and with geometric calculations. Column Leachate Tests (CLT) were conducted to compare leaching rates over a range of basaltic to silicic ashes as a function of time and surface area, to recreate the effects of ash deposition in diverse volcanic environments. After the CLT, post-leaching water analyses were conducted by Ion Coupled Plasma-Mass Spectrometry (ICP-MS) and Ion Chromatography (IC). We find that leaching rates are correlated to characteristic surface area of ash particles.

  13. Physiological responses of emerald ash borer larvae to feeding on different ash species reveal putative resistance mechanisms and insect counter-adaptations.

    PubMed

    Rigsby, C M; Showalter, D N; Herms, D A; Koch, J L; Bonello, P; Cipollini, D

    2015-07-01

    Emerald ash borer, Agrilus planipennis Fairmaire, an Asian wood-boring beetle, has devastated ash (Fraxinus spp.) trees in North American forests and landscapes since its discovery there in 2002. In this study, we collected living larvae from EAB-resistant Manchurian ash (Fraxinus mandschurica), and susceptible white (Fraxinus americana) and green (Fraxinus pennsylvanica) ash hosts, and quantified the activity and production of selected detoxification, digestive, and antioxidant enzymes. We hypothesized that differences in larval physiology could be used to infer resistance mechanisms of ash. We found no differences in cytochrome P450, glutathione-S-transferase, carboxylesterase, sulfotransferase, and tryptic BApNAase activities between larvae feeding on different hosts. Despite this, Manchurian ash-fed larvae produced a single isozyme of low electrophoretic mobility that was not produced in white or green ash-fed larvae. Additionally, larvae feeding on white and green ash produced two serine protease isozymes of high electrophoretic mobility that were not observed in Manchurian ash-fed larvae. We also found lower activity of β-glucosidase and higher activities of monoamine oxidase, ortho-quinone reductase, catalase, superoxide dismutase, and glutathione reductase in Manchurian ash-fed larvae compared to larvae that had fed on susceptible ash. A single isozyme was detected for both catalase and superoxide dismutase in all larval groups. The activities of the quinone-protective and antioxidant enzymes are consistent with the resistance phenotype of the host species, with the highest activities measured in larvae feeding on resistant Manchurian ash. We conclude that larvae feeding on Manchurian ash could be under quinone and oxidative stress, suggesting these may be potential mechanisms of resistance of Manchurian ash to EAB larvae, and that quinone-protective and antioxidant enzymes are important counter-adaptations of larvae for dealing with these resistance mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Ultraviolet Satellite Measurements of Volcanic Ash. Chapter 12

    NASA Technical Reports Server (NTRS)

    Carn, S. A.; Krotkov, N. A.

    2016-01-01

    Ultraviolet (UV) remote sensing of volcanic ash and other absorbing aerosols from space began with the launch of the first Total Ozone Mapping Spectrometer (TOMS) instrument in 1978. Subsequent UV satellite missions (TOMS, GOME, SCIAMACHY, OMI, GOME-2, OMPS) have extended UV ash measurements to the present, generating a unique multidecadal record. A UV Aerosol Index (UVAI) based on two near-UV wavelengths, equally applicable to multispectral (TOMS, DSCOVR) or hyperspectral (GOME, SCIAMACHY, OMI, GOME-2, OMPS) instruments, has been used to derive a unique absorbing aerosol climatology across multiple UV satellite missions. Advantages of UV ash measurements relative to infrared (IR) techniques include the ability to detect ash at any altitude (assuming no clouds), above clouds, and over bright surfaces, where visible and IR techniques may fail. Disadvantages include the daytime-only restriction and nonspecificity to silicate ash, since UV measurements are sensitive to any UV-absorbing aerosol, including smoke, desert dust, and pollution. However, simultaneous retrieval of sulfur dioxide (SO2) abundance and UVAI provides robust discrimination of volcanic clouds. Although the UVAI is only semiquantitative, it has proved successful at detecting and tracking volcanic ash clouds from many volcanic eruptions since 1978. NASA A-Train measurements since 2006 (eg, CALIOP) have provided much improved constraints on volcanic ash altitude, and also permit identification of aerosol type through sensor synergy. Quantitative UV retrievals of ash optical depth, effective particle size, and ash column mass are possible and require assumptions of ash refractive index, particle size distribution, and ash layer altitude. The lack of extensive ash refractive index data in the UV-visible and the effects of ash particle shape on retrievals introduce significant uncertainty in the retrieved parameters, although limited validation against IR ash retrievals has been successful. In this contribution, we review UV ash detection and retrieval techniques and provide examples of volcanic eruptions detected in the approx. 37 year data record.

  15. Study on the valorization routes of ashes from thermoelectric power plants working under mono-and co-combustion regimes

    NASA Astrophysics Data System (ADS)

    Barbosa, Rui Pedro Fernandes

    The main objective of this thesis was to study new valorization routes of ashes produced in combustion and co-combustion processes. Three main valorization pathways were analyzed: (i)production of cement mortars, (ii) production of concretes, and (iii) use as chemical agents to remove contaminants from wastewaters. Firstly, the ashes produced during the mono-combustion of coal, co-combustion of coal and meat and bone meal (MBM), and mono-combustion of MBM were characterized. The aim of this study was to understand the ashes properties in extreme levels of substitution of coal by a residue with a high contamination of specific metals. The substitution of coal by MBM produced ashes with higher content of heavy metals. Secondly, the ashes coming from an industrial power plant working under mono-combustion(coal) and co-combustion conditions (coal+sewage sludge+MBM) were studied. The use of cofuels did not promote significant changes in the chemical and ecotoxicological properties of ashes. Fly ashes were successfully stabilized/solidified in cement mortar, and bottom and circulating ashes were successfully used as raw materials in concrete. The third step involved the characterization and valorization of biomass ashes resulting from the combustion of forestry residues. The highest concentrations of metals/metalloids were found in the lowest particle size fractions of ashes. Biomass ashes successfully substituted cement and natural aggregates in concretes, without compromising their mechanical, chemical, and ecotoxicological properties. Finally, the biomass ashes were tested as chemical agents to remove contaminants from wastewaters. The removal of P, mainly phosphates, and Pb from wastewaters was assayed. Biomass ashes presented a high capacity to remove phosphates. As fly ashes were more efficient in removing phosphates, they were further used to remove Pb from wastewaters. Again, they presented a high efficiency in Pb removal. New potential valorization routes for these ashes are now opened, contributing to improve their valorization rates.

  16. Water Level Controls on Sap Flux of Canopy Species in Black Ash Wetlands

    Treesearch

    Joseph Shannon; Matthew Van Grinsven; Joshua Davis; Nicholas Bolton; Nam Noh; Thomas Pypker; Randall Kolka

    2018-01-01

    Black ash (Fraxinus nigra Marsh.) exhibits canopy dominance in regularly inundated wetlands, suggesting advantageous adaptation. Black ash mortality due to emerald ash borer (Agrilus planipennis Fairmaire) will alter canopy composition and site hydrology. Retention of these forested wetlands requires understanding black ash...

  17. COAL-FIRED POWER PLANT ASH UTILIZATION IN THE TVA REGION

    EPA Science Inventory

    The report gives results of a study: (1) to summarize (a) production of coal ash nationally and by TVA's 12 major ash-producing steam/electric power plants, and (b) the physical/chemical characteristics of coal ash that affect ash disposal and/or use; (2) to review reported metho...

  18. The relationship between the emerald ash borer (Agrilus planipennis) and ash (Fraxinus spp.) tree decline: Using visual canopy condition assessments and leaf isotope measurements to assess pest damage

    Treesearch

    Charles E. Flower; Kathleen S. Knight; Joanne Rebbeck; Miquel A. Gonzalez-Meler

    2013-01-01

    Ash trees (Fraxinus spp.) in North America are being severely impacted by the invasive emerald ash borer (Agrilus planipennis Fairmaire) which was inadvertently introduced to the US in the 1990s from Asia. The emerald ash borer (EAB) is a phloem boring beetle which relies exclusively on ash trees to complete its life cycle. Larvae...

  19. Controlling formaldehyde emissions with boiler ash.

    PubMed

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to <1 ppmv. Methanol is removed to a much lower extent. The efficiency of formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  20. Utilization of SRS pond ash in controlled low strength material. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.A.; Rajendran, N.

    1995-12-01

    Design mixes for Controlled Low Strength Material (CLSM) were developed which incorporate pond ashes (fly ashes) from the A-Area Ash Pile, the old F-Area Ash Basin and the D-Area Ash Basin. CLSM is a pumpable, flowable, excavatable backfill used in a variety of construction applications at SRS. Results indicate that CLSM which meets all of the SRS design specifications for backfill, can be made with the A-, D-, and F-Area pond ashes. Formulations for the design mixes are provided in this report. Use of the pond ashes may result in a cost savings for CLSM used at SRS and willmore » utilize a by-product waste material, thereby decreasing the amount of material requiring disposal.« less

  1. The use of shale ash in dry mix construction materials

    NASA Astrophysics Data System (ADS)

    Gulbe, L.; Setina, J.; Juhnevica, I.

    2017-10-01

    The research was made to determine the use of shale ash usage in dry mix construction materials by replacing part of cement amount. Cement mortar ZM produced by SIA Sakret and two types of shale ashes from Narva Power plant (cyclone ash and electrostatic precipitator ash) were used. Fresh mortar properties, hardened mortar bulk density, thermal conductivity (λ10, dry) (table value) were tested in mortar ZM samples and mortar samples in which 20% of the amount of cement was replaced by ash. Compressive strenght, frost resistance and resistance to sulphate salt solutions were checked. It was stated that the use of electrostatic precipitator ash had a little change of the material properties, but the cyclone ash significantly reduced the mechanical strength of the material.

  2. Sulfur-bearing coatings on fly ash from a coal-fired power plant: Composition, origin, and influence on ash alteration

    USGS Publications Warehouse

    Fishman, N.S.; Rice, C.A.; Breit, G.N.; Johnson, R.D.

    1999-01-01

    Fly ash samples collected from two locations in the exhaust stream of a coal-fired power plant differ markedly with respect to the abundance of thin (???0.1 ??m) sulfur-rich surface coatings that are observable by scanning electron microscopy. The coatings, tentatively identified as an aluminum-potassium-sulfate phase, probably form upon reaction between condensed sulfuric acid aerosols and glass surfaces, and are preferentially concentrated on ash exposed to exhaust stream gases for longer. The coatings are highly soluble and if sufficiently abundant, can impart an acidic pH to solutions initially in contact with ash. These observations suggest that proposals for ash use and predictions of ash behavior during disposal should consider the transient, acid-generating potential of some ash fractions and the possible effects on initial ash leachability and alteration. ?? 1998 Elsevier Science Ltd.

  3. Fusion characteristics of volcanic ash relevant to aviation hazards

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Hess, Kai-Uwe; Damby, David E.; Wadsworth, Fabian B.; Lavallée, Yan; Cimarelli, Corrado; Dingwell, Donald B.

    2014-04-01

    The fusion dynamics of volcanic ash strongly impacts deposition in hot parts of jet engines. In this study, we investigate the sintering behavior of volcanic ash using natural ash of intermediate composition, erupted in 2012 at Santiaguito Volcano, Guatemala. A material science procedure was followed in which we monitored the geometrical evolution of cylindrical-shaped volcanic ash compact upon heating from 50 to 1400°C in a heating microscope. Combined morphological, mineralogical, and rheological analyses helped define the evolution of volcanic ash during fusion and sintering and constrain their sticking potential as well as their ability to flow at characteristic temperatures. For the ash investigated, 1240°C marks the onset of adhesion and flowability. The much higher fusibility of ash compared to that of typical test sands demonstrates for the need of a more extensive fusion characterization of volcanic ash in order to mitigate the risk posed on jet engine operation.

  4. Fly ash carbon passivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most ofmore » the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.« less

  5. Can pore-clogging by ash explain post-fire runoff?

    USGS Publications Warehouse

    Stoof, Cathelijne R.; Gevaert, Anouk I.; Baver, Christine; Hassanpour, Bahareh; Morales, Veronica L.; Zhang, Wei; Martin, Deborah; Giri, Shree K.; Steenhuis, Tammo S.

    2016-01-01

    Ash plays an important role in controlling runoff and erosion processes after wildfire and has frequently been hypothesised to clog soil pores and reduce infiltration. Yet evidence for clogging is incomplete, as research has focussed on identifying the presence of ash in soil; the actual flow processes remain unknown. We conducted laboratory infiltration experiments coupled with microscope observations in pure sands, saturated hydraulic conductivity analysis, and interaction energy calculations, to test whether ash can clog pores (i.e. block pores such that infiltration is hampered and ponding occurs). Although results confirmed previous observations of ash washing into pores, clogging was not observed in the pure sands tested, nor were conditions found for which this does occur. Clogging by means of strong attachment of ash to sand was deemed unlikely given the negative surface charge of the two materials. Ponding due to washing in of ash was also considered improbable given the high saturated conductivity of pure ash and ash–sand mixtures. This first mechanistic step towards analysing ash transport and attachment processes in field soils therefore suggests that pore clogging by ash is unlikely to occur in sands. Discussion is provided on other mechanisms by which ash can affect post-fire hydrology.

  6. Biotic and abiotic factors affect green ash volatile production and emerald ash borer adult feeding preference.

    PubMed

    Chen, Yigen; Poland, Therese M

    2009-12-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an exotic woodborer first detected in 2002 in Michigan and Ontario and is threatening the ash resource in North America. We examined the effects of light exposure and girdling on green ash (Fraxinus pennsylvanica Marsh) volatile production, and effects of light exposure, girdling, and leaf age on emerald ash borer adult feeding preferences and phototaxis. Green ash seedlings grown under higher light exposure had lower amounts of three individual volatile compounds, (Z)-3-hexenol, (E)-beta-ocimene, and (Z,E)-alpha-farnesene, as well as the total amount of six detected volatile compounds. Girdling did not affect the levels of these volatiles. Emerald ash borer females preferred mature leaves, leaves from girdled trees, and leaves grown in the sun over young leaves, leaves from nongirdled trees, and leaves grown in the shade, respectively. These emerald ash borer preferences were most likely because of physical, nutritional, or biochemical changes in leaves in response to the different treatments. Emerald ash borer females and males showed positive phototaxis in laboratory arenas, a response consistent with emerald ash borer preference for host trees growing in sunlight.

  7. Optical properties of volcanic ash: improving remote sensing observations.

    NASA Astrophysics Data System (ADS)

    Whelley, Patrick; Colarco, Peter; Aquila, Valentina; Krotkov, Nickolay; Bleacher, Jake; Garry, Brent; Young, Kelsey; Rocha Lima, Adriana; Martins, Vanderlei; Carn, Simon

    2016-04-01

    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation.

  8. Treatment of fly ash from power plants using thermal plasma.

    PubMed

    Al-Mayman, Sulaiman; AlShunaifi, Ibrahim; Albeladi, Abdullah; Ghiloufi, Imed; Binjuwair, Saud

    2017-01-01

    Fly ash from power plants is very toxic because it contains heavy metals. In this study fly ash was treated with a thermal plasma. Before their treatment, the fly ash was analyzed by many technics such as X-ray fluorescence, CHN elemental analysis, inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy. With these technics, the composition, the chemical and physical proprieties of fly ash are determined. The results obtained by these analysis show that fly ash is mainly composed of carbon, and it contains also sulfur and metals such as V, Ca, Mg, Na, Fe, Ni, and Rh. The scanning electron microscopy analysis shows that fly ash particles are porous and have very irregular shapes with particle sizes of 20-50 μm. The treatment of fly ash was carried out in a plasma reactor and in two steps. In the first step, fly ash was treated in a pyrolysis/combustion plasma system to reduce the fraction of carbon. In the second step, the product obtained by the combustion of fly ash was vitrified in a plasma furnace. The leaching results show that the fly ash was detoxified by plasma vitrification and the produced slag is amorphous and glassy.

  9. Treatment of fly ash from power plants using thermal plasma

    PubMed Central

    Al-Mayman, Sulaiman; AlShunaifi, Ibrahim; Albeladi, Abdullah; Binjuwair, Saud

    2017-01-01

    Fly ash from power plants is very toxic because it contains heavy metals. In this study fly ash was treated with a thermal plasma. Before their treatment, the fly ash was analyzed by many technics such as X-ray fluorescence, CHN elemental analysis, inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy. With these technics, the composition, the chemical and physical proprieties of fly ash are determined. The results obtained by these analysis show that fly ash is mainly composed of carbon, and it contains also sulfur and metals such as V, Ca, Mg, Na, Fe, Ni, and Rh. The scanning electron microscopy analysis shows that fly ash particles are porous and have very irregular shapes with particle sizes of 20–50 μm. The treatment of fly ash was carried out in a plasma reactor and in two steps. In the first step, fly ash was treated in a pyrolysis/combustion plasma system to reduce the fraction of carbon. In the second step, the product obtained by the combustion of fly ash was vitrified in a plasma furnace. The leaching results show that the fly ash was detoxified by plasma vitrification and the produced slag is amorphous and glassy. PMID:28546898

  10. MSW fly ash stabilized with coal ash for geotechnical application.

    PubMed

    Kamon, M; Katsumi, T; Sano, Y

    2000-09-15

    The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments.

  11. Active mineral additives of sapropel ashes

    NASA Astrophysics Data System (ADS)

    Khomich, V. A.; Danilina, E. V.; Krivonos, O. I.; Plaksin, G. V.

    2015-01-01

    The goal of the presented research is to establish a scientific rational for the possibility of sapropel ashes usage as an active mineral additive. The research included the study of producing active mineral additives from sapropels by their thermal treatment at 850900 °C and afterpowdering, the investigation of the properties of paste matrix with an ash additive, and the study of the ash influence on the cement bonding agent. Thermogravimetric analysis and X-ray investigations allowed us to establish that while burning, organic substances are removed, clay minerals are dehydrated and their structure is broken. Sapropel ashes chemical composition was determined. An amorphous ash constituent is mainly formed from silica of the mineral sapropel part and alumosilicagels resulted from clay minerals decomposition. Properties of PC 400 and PC 500A0 sparopel ash additives were studied. Adding ashes containing Glenium plasticizer to the cement increases paste matrix strength and considerably reduces its water absorption. X-ray phase analysis data shows changes in the phase composition of the paste matrix with an ash additive. Ash additives produce a pozzolanic effect on the cement bonding agent. Besides, an ash additive due to the alumosilicagels content causes transformation from unstable calcium aluminate forms to the stable ones.

  12. Influence of Cements Containing Calcareous Fly Ash as a Main Component Properties of Fresh Cement Mixtures

    NASA Astrophysics Data System (ADS)

    Gołaszewski, Jacek; Kostrzanowska-Siedlarz, Aleksandra; Ponikiewski, Tomasz; Miera, Patrycja

    2017-10-01

    The main goal of presented research was to examine usability of cements containing calcareous fly ash (W) from technological point of view. In the paper the results of tests concerning the influence of CEM II and CEM IV cements containing fly ash (W) on rheological properties, air content, setting times and plastic shrinkage of mortars are presented and discussed. Moreover, compatibility of plasticizers with cements containing fly ash (W) was also studied. Additionally, setting time and hydration heat of cements containing calcareous fly ash (W) were determined. In a broader aspect, the research contributes to promulgation of the possibility of using calcareous fly ash (W) in cement and concrete technology, what greatly benefits the environment protection (utilization of waste fly ash). Calcareous fly ash can be used successfully as the main component of cement. Cements produced by blending with processed fly ash or cements produced by interginding are characterized by acceptable technological properties. In respect to CEM I cements, cements containing calcareous fly ash worsen workability, decrease air content, delay setting time of mixtures. Cements with calcareous fly ash show good compatibility with plasticizers.

  13. Tentative to use wastes from thermal power plants for construction building materials

    NASA Astrophysics Data System (ADS)

    Bui, Quoc-Bao; Phan, To-Anh-Vu; Tran, Minh-Tung; Le, Duc-Hien

    2018-04-01

    Thermal power plants (TPP) generates wastes (bottom and fly ashes) which become a serious environmental problem in Vietnam. Indeed, although in several countries fly ash can be used for cement industry, fly ash from actual TPP in Vietnam does not have enough good quality for cement production, because the fly ash treatment phase has not yet included in the generations of existing Vietnamese TPP. That is why bottom ash and fly ash purely become wastes and their evacuation is an urgent demand of the society. This paper presents an investigation using fly and bottom ashes in the manufacturing of construction materials. The main aims of this study is to reduce environmental impacts of fly and bottom ashes, and to test another non-conventional binder to replace cement in the manufacture of unburnt bricks. Several proportions of fly ash, bottom ash, cement, gravel, sand and water were tested to manufacture concretes. Then, geopolymer was prepared from the fly ash and an activator. Specimens were tested in uniaxial compressions. Results showed that the cement concrete tested had the compressive strengths which could be used for low rise constructions and the material using geopolymer could be used for non-load-bearing materials (unburnt bricks).

  14. Economic analysis of emerald ash borer (Coleoptera: Buprestidae) management options.

    PubMed

    Vannatta, A R; Hauer, R H; Schuettpelz, N M

    2012-02-01

    Emerald ash borer, Agrilus planipennis (Fairmaire) (Coleoptera: Buprestidae), plays a significant role in the health and extent of management of native North American ash species in urban forests. An economic analysis of management options was performed to aid decision makers in preparing for likely future infestations. Separate ash tree population valuations were derived from the i-Tree Streets program and the Council of Tree and Landscape Appraisers (CTLA) methodology. A relative economic analysis was used to compare a control option (do-nothing approach, only removing ash trees as they die) to three distinct management options: 1) preemptive removal of all ash trees over a 5 yr period, 2) preemptive removal of all ash trees and replacement with comparable nonash trees, or 3) treating the entire population of ash trees with insecticides to minimize mortality. For each valuation and management option, an annual analysis was performed for both the remaining ash tree population and those lost to emerald ash borer. Retention of ash trees using insecticide treatments typically retained greater urban forest value, followed by doing nothing (control), which was better than preemptive removal and replacement. Preemptive removal without tree replacement, which was the least expensive management option, also provided the lowest net urban forest value over the 20-yr simulation. A "no emerald ash borer" scenario was modeled to further serve as a benchmark for each management option and provide a level of economic justification for regulatory programs aimed at slowing the movement of emerald ash borer.

  15. Nitrogen mineralization from sludge in an alkaline, saline coal gasification ash environment.

    PubMed

    Mbakwe, Ikenna; De Jager, Pieter C; Annandale, John G; Matema, Taurai

    2013-01-01

    Rehabilitating coal gasification ash dumps by amendment with waste-activated sludge has been shown to improve the physical and chemical properties of ash and to facilitate the establishment of vegetation. However, mineralization of organic N from sludge in such an alkaline and saline medium and the effect that ash weathering has on the process are poorly understood and need to be ascertained to make decisions regarding the suitability of this rehabilitation option. This study investigated the rate and pattern of N mineralization from sludge in a coal gasification ash medium to determine the prevalent inorganic N form in the system and assess the effect of ash weathering on N mineralization. An incubation experiment was performed in which fresh ash, weathered ash, and soil were amended with the equivalent of 90 Mg ha sludge, and N mineralization was evaluated over 63 d. More N (24%) was mineralized in fresh ash than in weathered ash and soil, both of which mineralized 15% of the initial organic N in sludge. More nitrification occurred in soil, and most of the N mineralized in ash was in the form of ammonium, indicating an inhibition of nitrifying organisms in the ash medium and suggesting that, at least initially, plants used for rehabilitation of coal gasification ash dumps will take up N mostly as ammonium. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Feasible experimental study on the utilization of a 300 MW CFB boiler desulfurizating bottom ash for construction applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, X.F.; Amano, R.S.

    2006-12-15

    CFB boiler ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. The disposal in landfills has been the most common means of handling ash in circulating fluidized bed boiler power plants. However for a 300 MW CFB boiler power plant, there will be 600,000 tons of ash discharged per year and will result in great volumes and disposal cost of ash byproduct. It was very necessary to solve the utilization of CFB ash and to decrease the disposal cost of CFB ash. The feasible experimental study results on the utilization of themore » bottom ashes of a 300 MW CFB boiler in Baima power plant in China were reported in this paper. The bottom ashes used for test came from the discharged bottom ashes in a 100 MW CFB boiler in which the anthracite and limestone designed for the 300 MW CFB project was burned. The results of this study showed that the bottom ash could be used for cementitious material, road concrete, and road base material. The masonry cements, road concrete with 30 MPa compressive strength and 4.0 MPa flexural strength, and the road base material used for base courses of the expressway, the main road and the minor lane were all prepared with milled CFB bottom ashes in the lab. The better methods of utilization of the bottom ashes were discussed in this paper.« less

  17. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.

    PubMed

    Ribé, V; Nehrenheim, E; Odlare, M

    2014-10-01

    Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction as well as a source of renewable energy. In the process fly and bottom ash is generated as a waste material. The ash residue may vary greatly in composition depending on the type of waste incinerated and it can contain elevated levels of harmful contaminants such as heavy metals. In this study, the ecotoxicity of a weathered, untreated incineration bottom ash was characterized as defined by the H14 criterion of the EU Waste Framework Directive by means of an elemental analysis, leaching tests followed by a chemical analysis and a combination of aquatic and solid-phase bioassays. The experiments were conducted to assess the mobility and bioavailability of ash contaminants. A combination of aquatic and terrestrial bioassays was used to determine potentially adverse acute effects of exposure to the solid ash and aqueous ash leachates. The results from the study showed that the bottom ash from a municipal waste incineration plant in mid-Sweden contained levels of metals such as Cu, Pb and Zn, which exceeded the Swedish EPA limit values for inert wastes. The chemical analysis of the ash leachates showed high concentrations of particularly Cr. The leachate concentration of Cr exceeded the limit value for L/S 10 leaching for inert wastes. Filtration of leachates prior to analysis may have underestimated the leachability of complex-forming metals such as Cu and Pb. The germination test of solid ash and ash leachates using T. repens showed a higher inhibition of seedling emergence of seeds exposed to the solid ash than the seeds exposed to ash leachates. This indicated a relatively low mobility of toxicants from the solid ash into the leachates, although some metals exceeded the L/S 10 leaching limit values for inert wastes. The Microtox® toxicity test showed only a very low toxic response to the ash leachate exposure, while the D. magna immobility test showed a moderately high toxic effect of the ash leachates. Overall, the results from this study showed an ecotoxic effect of the solid MSW bottom ash and the corresponding ash leachates. The material may therefore pose an environmental risk if used in construction applications. However, as the testing of the solid ash was rather limited and the ash leachate showed an unusually high leaching of Cr, further assessments are required in order to conclusively characterize the bottom ash studied herein as hazardous according to the H14 criterion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects

    USGS Publications Warehouse

    Bodi, Merche B.; Martin, Deborah; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Cerda, Artemi; Mataix-Solera, Jorge

    2014-01-01

    Fire transforms fuels (i.e. biomass, necromass, soil organic matter) into materials with different chemical and physical properties. One of these materials is ash, which is the particulate residue remaining or deposited on the ground that consists of mineral materials and charred organic components. The quantity and characteristics of ash produced during a wildland fire depend mainly on (1) the total burned fuel (i.e. fuel load), (2) fuel type and (3) its combustion completeness. For a given fuel load and type, a higher combustion completeness will reduce the ash organic carbon content, increasing the relative mineral content, and hence reducing total mass of ash produced. The homogeneity and thickness of the ash layer can vary substantially in space and time and reported average thicknesses range from close to 0 to 50 mm. Ash is a highly mobile material that, after its deposition, may be incorporated into the soil profile, redistributed or removed from a burned site within days or weeks by wind and water erosion to surface depressions, footslopes, streams, lakes, reservoirs and, potentially, into marine deposits.Research on the composition, properties and effects of ash on the burned ecosystem has been conducted on material collected in the field after wildland and prescribed fires as well as on material produced in the laboratory. At low combustion completeness (typically T < 450 °C), ash is organic-rich, with organic carbon as the main component. At high combustion completeness (T > 450 °C), most organic carbon is volatized and the remaining mineral ash has elevated pH when in solution. It is composed mainly of calcium, magnesium, sodium, potassium, silicon and phosphorous in the form of inorganic carbonates, whereas at T > 580 °C the most common forms are oxides. Ash produced under lower combustion completeness is usually darker, coarser, and less dense and has a higher saturated hydraulic conductivity than ash with higher combustion completeness, although physical reactions with CO2 and when moistened produce further changes in ash characteristics.As a new material present after a wildland fire, ash can have profound effects on ecosystems. It affects biogeochemical cycles, including the C cycle, not only within the burned area, but also globally. Ash incorporated into the soil increases temporarily soil pH and nutrient pools and changes physical properties such as albedo, soil texture and hydraulic properties including water repellency. Ash modifies soil hydrologic behavior by creating a two-layer system: the soil and the ash layer, which can function in different ways depending on (1) ash depth and type, (2) soil type and (3) rainfall characteristics. Key parameters are the ash's water holding capacity, hydraulic conductivity and its potential to clog soil pores. Runoff from burned areas carries soluble nutrients contained in ash, which can lead to problems for potable water supplies. Ash deposition also stimulates soil microbial activity and vegetation growth.Further work is needed to (1) standardize methods for investigating ash and its effects on the ecosystem, (2) characterize ash properties for specific ecosystems and wildland fire types, (3) determine the effects of ash on human and ecosystem health, especially when transported by wind or water, (4) investigate ash's controls on water and soil losses at slope and catchment scales, (5) examine its role in the C cycle, and (6) study its redistribution and fate in the environment.

  19. The influence of using volcanic ash and lime ash as filler on compressive strength in self compacting concrete

    NASA Astrophysics Data System (ADS)

    Karolina, Rahmi; Panatap Simanjuntak, Murydrischy

    2018-03-01

    Self Compacting Concrete (SCC) is a technology which is developing today in which concrete solidifies by itself without using vibrator. Casting conventional concrete which has a lot of reinforcement bars sometimes finds difficulty in achieving optimal solidity. The method used to solve this problem is by using SCC technology. SCC was made by using filler, volcanic ash, and lime ash as the filling materials so that the concrete became more solid and hollow space could be filled up. The variation of using these two materials was 10%, 15%, 20%, and 25% of the cementitious mass and using 1% of superplasticizer from cementitious material. The supporting testing was done by using the test when the concrete was still fluid and when it was solid. Malleable concrete was tested by using EFNARC 2002 standard in slump flow test, v-funnel test, l-shaped box test, and j-ring test to obtain filling ability and passing ability. In this malleable lime concrete test, there was the decrease, compared with normal SCC concrete without adding volcanic ash and lime ash. Testing was also done in solid concrete in compressive strength, tensile strength, and concrete absorption. The result of the testing showed that the optimum tensile strength in Variation 1, without volcanic ash and lime ash – with 1% of superplasticizer was 39.556 MPa, the optimum tensile strength in Variation 1, without volcanic ash and lime ash- with 1% of super-plasticizer was 3.563 MPa, while the value of optimum absorption which occurred in Variation 5 (25% of volcanic ash + 25% of lime ash + 50% of cement + 1% of superplasticizer) was 1.313%. This was caused by the addition of volcanic ash and lime ash which had high water absorption.

  20. Comparison of heterogeneous photolytic reduction of Hg(II) in the coal fly ashes and synthetic aerosols

    NASA Astrophysics Data System (ADS)

    Tong, Yindong; Eichhorst, Terry; Olson, Michael R.; Rutter, Andrew P.; Shafer, Martin M.; Wang, Xuejun; Schauer, James J.

    2014-03-01

    In this study, we examined the heterogeneous reduction of Hg(II) on the coal fly ash samples and synthetic aerosols under different light conditions in a controlled laboratory reactor. Three types of coal fly ashes were studied: a high carbon fly ash from a stoker boiler, a low carbon/low sulfate fly ash from a pulverized coal combustor burning low sulfur coal, and a high sulfate fly ash from a pulverized coal combustor burning high sulfur coal. The rate of Hg(II) reduction on the three diverse fly ash samples was found to be relatively fast with an average half-life of 1.6 h under clear sky atmospheric conditions (under the irradiance of 1000 W/m2). The reduction rate in the low sulfate/low carbon fly ash was approximately 1.5 times faster than with the other coal fly ash samples. Synthetic aerosols made of carbon black and levoglucosan produced Hg(II) reduction rates similar to coal fly ashes. However, aerosols composed of adipic acid resulted in reduction rates that were 3-5 times faster. The sensitivity of adipic acid reduction to light source wavelength was found to be greater than for the coal fly ash and other synthetic aerosols. Aerosols made from the water extracts of coal fly ash samples produced reduction rates equal to or slightly higher than with the native fly ash suggesting that the soluble components of fly ash play a significant role in the reduction mechanism. The measured reduction rates are likely important in the chemical processing of mercury in power plant plumes and potentially in the atmosphere and should be considered for incorporation in atmospheric transport models that are used to understand the fate of atmospheric mercury.

  1. Nutritional attributes of ash (Fraxinus spp.) outer bark and phloem and their relationships to resistance against the emerald ash borer.

    PubMed

    Hill, Amy L; Whitehill, Justin G A; Opiyo, Stephen O; Phelan, P Larry; Bonello, Pierluigi

    2012-12-01

    The emerald ash borer (Agrilus planipennis Fairmaire, EAB) is an alien, invasive wood-boring insect that is responsible for killing millions of ash trees since its discovery in North America in 2002. All North American ash species (Fraxinus spp.) that EAB has encountered have shown various degrees of susceptibility, while Manchurian ash (Fraxinus mandshurica Ruprecht), which shares a co-evolutionary history with this insect, is resistant. Recent studies have looked into constitutive resistance mechanisms in Manchurian ash, concentrating on the secondary phloem, which is the feeding substrate for the insect. In addition to specialized metabolism and defense-related components, primary metabolites and nutritional summaries can also be important to understand the feeding behavior of insect herbivores. Here, we have compared the nutritional characteristics (water content, total protein, free amino acids, total soluble sugars and starch, percent carbon and nitrogen, and macro- and micronutrients) of outer bark and phloem from black, green, white and Manchurian ash to determine their relevance to resistance or susceptibility to EAB. Water content and concentrations of Al, Ba, Cu, Fe, K, Li, tryptophan and an unknown compound were found to separate black and Manchurian ash from green and white ash in a principal component analysis (PCA), confirming their phylogenetic placements into two distinct clades. The traits that distinguished Manchurian ash from black ash in the PCA were water content and concentrations of total soluble sugars, histidine, lysine, methionine, ornithine, proline, sarcosine, tyramine, tyrosol, Al, Fe, K, Na, V and an unknown compound. However, only proline, tyramine and tyrosol were significantly different, and higher, in Manchurian ash than in black ash.

  2. Lube oil-dependent ash chemistry on soot oxidation reactivity in a gasoline direct-injection engine

    DOE PAGES

    Choi, Seungmok; Seong, Heeje

    2016-09-30

    Gasoline particulate filters (GPF) are considered an enabling technology to meet stringent particulate matter (PM) regulations for gasoline direct-injection (GDI) engines, which are known to produce significant PM emissions. While ash loading in filters has been recognized to be detrimental in filter performance by increasing back pressure, increased ash fractions in soot were observed to enhance soot oxidation. In this study, GDI soot samples derived from different gasoline/lube oil blends were evaluated to identify potential promoting factors when formulated lube oils were dosed into gasoline fuel. Ca-derived ash enhanced soot oxidation remarkably, while P- and ZDDP-derived ash deteriorated soot oxidation.more » It is apparent that the promoting effect of lube oil-derived ash is due mainly to the Ca component that is the most abundant among additive components in lube oil. Bulk and surface analyses of these ash compounds indicate that Ca-derived ash would be complex compounds, while the contribution of CaSO 4, which is one of the most abundant ash compounds from diesel engines, is almost negligible. For the validation of the ash promoting impact in filters, the regeneration experiments were compared for a TWC-coated GPF in a GDI engine before and after ash loading was performed. The pressure drop of the ash-loaded GPF decreased noticeably in the initial regeneration stage and it increased gradually, whereas that of no ash-loaded GPF increased gradually without any reduction. So, it is concluded that the ash layer in the GPF assisted soot oxidation in the early regeneration stage when it was in close contact with soot.« less

  3. High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes.

    PubMed

    Clark, Malcolm W; Despland, Laure M; Lake, Neal J; Yee, Lachlan H; Anstoetz, Manuela; Arif, Elisabeth; Parr, Jeffery F; Doumit, Philip

    2017-04-01

    Sugarcane bagasse ash re-utilisation has been advocated as a silica-rich feed for zeolites, pozzolans in cements and concretes, and geopolymers. However, many papers report variable success with the incorporation of such materials in these products as the ash can be inconsistent in nature. Therefore, understanding what variables affect the ash quality in real mills and understanding the processes to characterise ashes is critical in predicting successful ash waste utilisation. This paper investigated sugarcane bagasse ash from three sugar mills (Northern NSW, Australia) where two are used for the co-generation of electricity. Data shows that the burn temperatures of the bagasse in the high-efficiency co-generation boilers are much higher than those reported at the temperature measuring points. Silica polymorph transitions indicate the high burn temperatures of ≈1550 °C, produces ash dominated α -quartz rather than expected α-cristobilite and amorphous silica; although α-cristobilite, and amorphous silica are present. Furthermore, burn temperatures must be ≤1700 °C, because of the absence of lechatelierite where silica fusing and globulisation dominates. Consequently, silica-mineralogy changes deactivate the bagasse ash by reducing silica solubility, thus making bagasse ash utilisation in synthetic zeolites, geopolymers, or a pozzolanic material in mortars and concretes more difficult. For the ashes investigated, use as a filler material in cements and concrete has the greatest potential. Reported mill boiler temperatures discrepancies and the physical characteristics of the ash, highlight the importance of accurate temperature monitoring at the combustion seat if bagasse ash quality is to be prioritised to ensure a usable final ash product.

  4. Lube oil-dependent ash chemistry on soot oxidation reactivity in a gasoline direct-injection engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Seungmok; Seong, Heeje

    Gasoline particulate filters (GPF) are considered an enabling technology to meet stringent particulate matter (PM) regulations for gasoline direct-injection (GDI) engines, which are known to produce significant PM emissions. While ash loading in filters has been recognized to be detrimental in filter performance by increasing back pressure, increased ash fractions in soot were observed to enhance soot oxidation. In this study, GDI soot samples derived from different gasoline/lube oil blends were evaluated to identify potential promoting factors when formulated lube oils were dosed into gasoline fuel. Ca-derived ash enhanced soot oxidation remarkably, while P- and ZDDP-derived ash deteriorated soot oxidation.more » It is apparent that the promoting effect of lube oil-derived ash is due mainly to the Ca component that is the most abundant among additive components in lube oil. Bulk and surface analyses of these ash compounds indicate that Ca-derived ash would be complex compounds, while the contribution of CaSO 4, which is one of the most abundant ash compounds from diesel engines, is almost negligible. For the validation of the ash promoting impact in filters, the regeneration experiments were compared for a TWC-coated GPF in a GDI engine before and after ash loading was performed. The pressure drop of the ash-loaded GPF decreased noticeably in the initial regeneration stage and it increased gradually, whereas that of no ash-loaded GPF increased gradually without any reduction. So, it is concluded that the ash layer in the GPF assisted soot oxidation in the early regeneration stage when it was in close contact with soot.« less

  5. Photosynthetic pigment concentrations, gas exchange and vegetative growth for selected monocots and dicots treated with two contrasting coal fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunusa, I.A.M.; Burchett, M.D.; Manoharan, V.

    2009-07-15

    There is uncertainty as to the rates of coal fly ash needed for optimum physiological processes and growth. In the current study we tested the hyothesis that photosynthetic pigments concentrations and CO{sub 2} assimilation (A) are more sensitive than dry weights in plants grown on media amended with coal fly ash. We applied the Terrestrial Plant Growth Test (Guideline 208) protocols of the Organization for Economic Cooperation and Development (OECD) to monocots (barley (Hordeum vulgare) and ryegrass (Secale cereale)) and dicots (canola (Brasica napus), radish (Raphanus sativus), field peas (Pisum sativum), and lucerne (Medicago sativa)) on media amended with flymore » ashes derived from semi-bituminous (gray ash) or lignite (red ash) coals at rates of 0, 2.5, 5.0, 10, or 20 Mg ha(-1). The red ash had higher elemental concentrations and salinity than the gray ash. Fly ash addition had no significant effect on germination by any of the six species. At moderate rates ({<=}10 Mg ha{sup -1}) both ashes increased (P < 0.05) growth rates and concentrations of chlorophylls a and b, but reduced carotenoid concentrations. Addition of either ash increased A in radish and transpiration in barley. Growth rates and final dry weights were reduced for all of the six test species when addition rates exceeded 10 Mg ha{sup -1} for gray ash and 5 Mg ha{sup -1} for red ash. We concluded that plant dry weights, rather than pigment concentrations and/or instantaneous rates of photosynthesis, are more consistent for assessing subsequent growth in plants supplied with fly ash.« less

  6. Characterizations of Deposited Ash During Co-Firing of White Pine and Lignite in Fluidized Bed Combustor

    NASA Astrophysics Data System (ADS)

    Shao, Yuanyuan; Zhu, Jesse; Preto, Fernando; Tourigny, Guy; Wang, Jinsheng; Badour, Chadi; Li, Hanning; Xu, Chunbao Charles

    Characterizations of ash deposits from co-firing/co-combusting of a woody biomass (i.e., white pine) and lignite coal were investigated in a fluidized-bed combustor using a custom designed air-cooled probe installed in the freeboard region of the reactor. Ash deposition behaviors on a heat transfer surface were comprehensively investigated and discussed under different conditions including fuel type, fuel blending ratios (20-80% biomass on a thermal basis), and moisture contents. For the combustion of 100% lignite, the compositions of the deposited ash were very similar to those of the fuel ash, while in the combustion of 100% white pine pellets or sawdust the deposited ash contained a much lower contents of CaO, SO3, K2O and P2O5 compared with the fuel ash, but the deposited ash was enriched with SiO2, Al2O3 and MgO. A small addition of white pine (20% on a heat input basis) to the coal led to the highest ash deposition rates likely due to the strong interaction of the CaO and MgO (from the biomass ash) with the alumina and silica (from the lignite ash) during the co-combustion process, evidenced by the detection of high concentrations of calcium/magnesium sulfates, aluminates and silicates in the ash deposits. Interestingly, co-firing of white pine pellets and lignite at a 50% blending ratio led to the lowest ash deposition rates. Ash deposition rates in combustion of fuels as received with a higher moisture content was found to be much lower than those of oven-dried fuels.

  7. Characterization of metals released from coal fly ash during dredging at the Kingston ash recovery project.

    PubMed

    Bednar, A J; Averett, D E; Seiter, J M; Lafferty, B; Jones, W T; Hayes, C A; Chappell, M A; Clarke, J U; Steevens, J A

    2013-09-01

    A storage-pond dike failure occurred on December 22, 2008 at the Tennessee Valley Authority Kingston Fossil Plant resulting in the release of over 4million cubic meters (5million cubic yards) of fly ash. Approximately half of the released ash was deposited in the main channel of the Emory River, Tennessee, USA. Remediation efforts of the Emory River focused on hydraulic dredging, as well as mechanical excavation in targeted areas. However, agitation of the submerged fly ash during hydraulic dredging introduces river water into the fly ash material, which could promote dissolution and desorption of metals from the solid fly ash material. Furthermore, aeration of the dredge slurry could alter the redox state of metals in the fly ash material and thereby change their sorption, mobility, and toxicity properties. The research presented here focuses on the concentrations and speciation of metals during the fly ash recovery from the Emory River. Our results indicate that arsenite [As(III)] released from the fly ash material during dredging was slowly oxidized to arsenate [As(V)] in the slurry recovery system with subsequent removal through precipitation or sorption reactions with suspended fly ash material. Concentrations of other dissolved metals, including iron and manganese, also generally decreased in the ash recovery system prior to water discharge back to the river. Published by Elsevier Ltd.

  8. Remobilisation of industrial lead depositions in ash during Australian wildfires.

    PubMed

    Wu, Liqin; Taylor, Mark Patrick; Handley, Heather K

    2017-12-01

    This study examined the recycling of lead (Pb) in ash from wildfires, its source and potential contribution to environmental contamination. Ash from wildfires was collected from four Australian sites following uncontrolled fires during 2012 to 2013 close to major urban populations in Sydney (New South Wales), Hobart (Tasmania) and Adelaide (South Australia). The samples were analysed for their total Pb concentration and Pb isotopic composition to determine the sources of Pb and the extent, if any, of industrial contamination and its recycling into the ecosystem. Median ash concentrations (23mg/kg) released from a wildfire close to Australia's largest city, Sydney, exceeded the median ash Pb concentrations from wildfires from the less populated locations of Hobart, Adelaide and NSW Central Coast. Lead isotopic compositions of Duffys Forest wildfire ash demonstrate that anthropogenic inputs from legacy leaded petrol depositions were the predominant source of contamination. Despite the cessation of leaded petrol use in Australia in 2002, historic petrol Pb deposits continue to be a substantial source of contamination in ash: petrol Pb contributed 35% of the Pb in the Woy Woy ash, 73% in Duffys Forest ash, 39% in Forcett ash and 5% in Cherryville ash. The remobilisation of legacy industrial Pb depositions by wildfires in ash results in it being a persistent and problematic contaminant in contemporary environmental systems because of its known toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Comparing metabolomic profiles of Asian and North American ash species (genus Fraxinus) to investigate the basis for resistance to emerald ash borer

    Treesearch

    Darla French; Rick Meilan

    2010-01-01

    At present, North American ash (Fraxinus spp.) are under attack by the emerald ash borer (Agrilus planipennis Fairmaire; EAB), an invasive species native to eastern Asia. Interestingly, Asian ash species are comparatively resistant to this phloem-feeding insect.

  10. Emerald ash borer aftermath forests: the future of ash ecosystems

    Treesearch

    Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Kamal J.K. Gandhi; Catharine P. Herms

    2011-01-01

    The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program between the U.S. Forest Service and The Ohio State University. We are monitoring ash demographics, understory light availability, EAB population dynamics, native and non-native plants, and effects of ash...

  11. Emerald ash borer infestation of ash stumps

    Treesearch

    Robert A. Haack; Toby R. Petrice

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Buprestidae), was first found in North America in 2002. Eradication efforts are currently underway for this insect in both Canada and the United States. As part of the eradication program, thousands of ash trees are cut and chipped. Ash trees are known to produce stump sprouts, and therefore...

  12. Feeding by emerald ash borer larvae induces systemic changes in black ash foliar chemistry

    Treesearch

    Yigen Chen; Justin G.A. Whitehill; Pierluigi Bonello; Therese M. Poland

    2011-01-01

    The exotic wood-boring pest, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has been threatening North American ash (Fraxinus spp.) resources, this being recognized since its first detection in Michigan, USA and Ontario, Canada in 2002. Ash trees are killed by larval feeding in the cambial region...

  13. Attraction of the emerald ash borer to ash trees stressed by girdling, herbicide treatment, or wounding

    Treesearch

    Deborah McCullough; Therese Poland; David Cappaert

    2009-01-01

    New infestations of emerald ash borer, Agrilus planipennis Fairmaire, an invasive pest native to Asia, are difficult to detect until densities build and symptoms appear on affected ash (Fraxinus spp). We compared the attraction of A. planipennis to ash trees stressed by girdling (bark and phloem removed...

  14. Environmental hazard of oil shale combustion fly ash.

    PubMed

    Blinova, Irina; Bityukova, Liidia; Kasemets, Kaja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Bondarenko, Olesja; Kanarbik, Liina; Sihtmäe, Mariliis; Aruoja, Villem; Schvede, Hedi; Kahru, Anne

    2012-08-30

    The combined chemical and ecotoxicological characterization of oil shale combustion fly ash was performed. Ash was sampled from the most distant point of the ash-separation systems of the Balti and Eesti Thermal Power Plants in North-Eastern Estonia. The fly ash proved potentially hazardous for tested aquatic organisms and high alkalinity of the leachates (pH>10) is apparently the key factor determining its toxicity. The leachates were not genotoxic in the Ames assay. Also, the analysis showed that despite long-term intensive oil-shale combustion accompanied by considerable fly ash emissions has not led to significant soil contamination by hazardous trace elements in North-Eastern Estonia. Comparative study of the fly ash originating from the 'new' circulating fluidized bed (CFB) combustion technology and the 'old' pulverized-fired (PF) one showed that CFB fly ash was less toxic than PF fly ash. Thus, complete transfer to the 'new' technology will reduce (i) atmospheric emission of hazardous trace elements and (ii) fly ash toxicity to aquatic organisms as compared with the 'old' technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Physical-durable performance of concrete incorporating high loss on ignition-fly ash

    NASA Astrophysics Data System (ADS)

    Huynh, Trong-Phuoc; Ngo, Si-Huy; Hwang, Chao-Lung

    2018-04-01

    This study investigates the feasibility of using raw fly ash with a high loss on ignition in concrete. The fly ash-free concrete samples were prepared with different water-to-binder (w/b) ratios of 0.35, 0.40, and 0.45, whereas the fly ash concrete samples were prepared with a constant w/b of 0.40 and with various fly ash contents (10%, 20%, and 30%) as a cement substitution. The physical properties and durability performance of the concretes were evaluated through fresh concrete properties, compressive strength, strength efficiency of cement, ultrasonic pulse velocity, and resistance to sulfate attack. Test results show that the w/b ratio affected the concrete properties significantly. The incorporation of fly ash increased the workability and reduced the unit weight of fresh concrete. In addition, the fly ash concrete samples containing up to 20% fly ash exhibited an improved strength at long-term ages. Further, all of the fly ash concrete samples showed a good durability performance with ultrasonic pulse velocity value of greater than 4100 m/s and a comparable sulfate resistance to the no-fly ash concrete.

  16. Assessing fly ash treatment: remediation and stabilization of heavy metals.

    PubMed

    Lima, A T; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2012-03-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant

    NASA Astrophysics Data System (ADS)

    Izzati Raihan Ramzi, Nurul; Shahidan, Shahiron; Zulkhairi Maarof, Mohamad; Ali, Noorwirdawati

    2016-11-01

    The objective of this study is to determine the physical and chemical characteristics of Coal Bottom Ash (CBA) obtained from Tanjung Bin Power Plant Station and compare them with the characteristics of natural river sand (as a replacement of fine aggregates). Bottom ash is the by-product of coal combustion during the electricity generating process. However, excess bottom ash production due to the high production of electricity in Malaysia has caused several environmental problems. Therefore, several tests have been conducted in order to determine the physical and chemical properties of bottom ash such as specific gravity, density, particle size distribution, Scanning Electron Microscopic (SEM) and X- Ray Fluorescence (XRF) in the attempt to produce sustainable material from waste. The results indicated that the natural fine aggregate and coal bottom ash have very different physical and chemical properties. Bottom ash was classified as Class C ash. The porous structure, angular and rough texture of bottom ash affected its specific gravity and particle density. From the tests, it was found that bottom ash is recommended to be used in concrete as a replacement for fine aggregates.

  18. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus.

    PubMed

    Skoglund, Nils; Grimm, Alejandro; Ohman, Marcus; Boström, Dan

    2014-02-20

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K 2 CO 3 ) and alkaline-earth metal (CaCO 3 ) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%-95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca 9 (K,Mg,Fe)(PO 4 ) 7 , for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO 2 ) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi 2 O 6 ) was formed. Most of the alkaline-earth metals calcium and magnesium were also found in the bed ash. Both the formation of aluminum-containing alkali silicates and inclusion of calcium and magnesium in bed ash could assist in preventing bed agglomeration during co-combustion of biosolids with other renewable fuels in a full-scale bubbling fluidized bed.

  19. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus

    PubMed Central

    2014-01-01

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K2CO3) and alkaline-earth metal (CaCO3) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%–95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca9(K,Mg,Fe)(PO4)7, for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO2) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi2O6) was formed. Most of the alkaline-earth metals calcium and magnesium were also found in the bed ash. Both the formation of aluminum-containing alkali silicates and inclusion of calcium and magnesium in bed ash could assist in preventing bed agglomeration during co-combustion of biosolids with other renewable fuels in a full-scale bubbling fluidized bed. PMID:24678140

  20. Peak exposures to main components of ash and gaseous diesel exhausts in closed and open ash loading stations at biomass-fuelled power plants.

    PubMed

    Laitinen, Juha; Koponen, Hanna; Sippula, Olli; Korpijärvi, Kirsi; Jumpponen, Mika; Laitinen, Sirpa; Aatamila, Marjaleena; Tissari, Jarkko; Karhunen, Tommi; Ojanen, Kari; Jokiniemi, Jorma; Korpinen, Leena

    2017-10-01

    Fly and bottom ashes are collected at power plants to reduce the environmental effects of energy production. However, handling the ashes causes health problems for operators, maintenance workers and truck drivers at the power plants. Hence, we evaluated ash loaders' peak inhalation exposures to the chemical components of ash and diesel exhausts in open and closed ash loading stations at biomass-fuelled combined heat and power plants. We also carried out chemical and morphological analyses of the ashes to evaluate their health hazard potential in order to find practical technical measures to reduce workers' exposure. On the basis of X-ray diffraction analyses, the main respirable crystalline ash compounds were SiO 2 , CaSO 4 , CaO, Ca 2 Al 2 SiO 7 , NaCl and Ca 3 Al 2 O 6 in the fly ashes and SiO 2 , KAlSi 3 O 8 , NaAlSi 3 O 8 and Ca 2 Al 2 SiO 7 in the bottom ashes. The short-term exposure levels of respirable crystalline silica, inhalable inorganic dust, Cr, Mn, Ni and nitric oxide exceeded their Finnish eight hours occupational exposure limit values in the closed ash loading station. According to our observations, more attention should be paid to the ash-moistening process, the use of tank trucks instead of open cassette flatbed trucks, and the sealing of the loading line from the silo to the truck which would prevent spreading the ash into the air. The idling time of diesel trucks should also be limited, and ash loading stations should be equipped with exhaust gas ventilators. If working conditions make it impossible to keep to the OEL values, workers must use respirators and protect their eyes and skin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. EVALUATION OF THE EFFECTS OF COAL FLY ASH AMENDMENTS ON THE TOXICITY OF A CONTAMINATED MARINE SEDIMENT

    PubMed Central

    Burgess, Robert M.; Perron, Monique M.; Friedman, Carey L.; Suuberg, Eric M.; Pennell, Kelly G.; Cantwell, Mark G.; Pelletier, Marguerite C.; Ho, Kay T.; Serbst, Jonathan R.; Ryba, Stephan A.

    2013-01-01

    Approaches for cleaning-up contaminated sediments range from dredging to in situ treatment. In the present report, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7 d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspected that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of post-oxidation treatment to reduce nitrous oxides emissions. Relatively simple methods exist to remove ammonia from fly ash prior to use and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. There was no evidence of the release of the metals cadmium, copper, nickel or lead from the fly ashes. A preliminary 28 d polychaete bioaccumulation study with one of the high carbon fly ashes and a reference sediment was also performed. Although preliminary, there was no evidence of adverse effects to worm growth or lipid content, or the accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon contents may represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments. PMID:18717615

  2. Ash reduction strategies in corn stover facilitated by anatomical and size fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.

    There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less

  3. Ash reduction strategies in corn stover facilitated by anatomical and size fractionation

    DOE PAGES

    Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.; ...

    2016-04-22

    There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less

  4. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  5. Evaluation of the Biotoxicity of Tree Wood Ashes in Zebrafish Embryos.

    PubMed

    Consigli, Veronica; Guarienti, Michela; Bilo, Fabjola; Benassi, Laura; Depero, Laura E; Bontempi, Elza; Presta, Marco

    2016-10-01

    Ashes derived from biomass combustion and used as soil fertilizers can generate negative environmental and human health risks, related to leaching of heavy metals and other putative toxic elements. Tree wood ash composition may vary depending on geographical location and surrounding industrial processes. In this study, we evaluated the biotoxicity of lixiviated tree wood ash samples from trees of the Ash (Fraxinus), Cherry (Pronus), Hazel (Corylus), and Black locust (Robinia) genus collected in an industrialized region in Northern Italy. Elemental chemical analysis of the samples was performed by total reflection X-ray fluorescence technique and their biotoxicity was assessed in zebrafish (Danio rerio) embryos. Ashes from Ash, Cherry, and Hazel trees, but not Black locust trees, had a high concentration of heavy metals and other putative toxic elements. Accordingly, a dose-dependent increase in mortality rate and morphological and teratogenic defects was observed in zebrafish embryos treated with lixiviated Ash, Cherry, and Hazel tree wood samples, whereas the toxicity of Black locust tree wood ashes was negligible. In conclusion, lixiviated wood ashes from different plants show a different content of toxic elements that correlate with their biotoxic effects on zebrafish embryos. Tree wood ashes derived from biomass combustion may represent a potential risk for the environment and human health.

  6. High-performance self-compacting concrete with the use of coal burning waste

    NASA Astrophysics Data System (ADS)

    Bakhrakh, Anton; Solodov, Artyom; Naruts, Vitaly; Larsen, Oksana; Alimov, Lev; Voronin, Victor

    2017-10-01

    Today, thermal power plants are the main producers of energy in Russia. Most of thermal power plants use coal as fuel. The remaining waste of coal burning is ash, In Russia ash is usually kept at dumps. The amount of utilized ash is quite small, less than 13%. Meanwhile, each ash dump is a local ecological disaster. Ash dumps take a lot of place and destroy natural landscape. The use of fly ash in building materials can solve the problem of fly ash dumps in Russia. A lot of papers of scientists are devoted to the use of fly ash as filler in concrete. The main advantage of admixing fly ash in concrete is decrease of amount of used cement. This investigation was held to find out if it is possible to utilize fly ash by its use in high amounts in self-compacting concrete. During experiments three mixtures of SCC with different properties were obtained. The first one is experimental and shows the possibility of obtaining SCC with high compressive strength with 60% of fly ash from the mass of cement. Two other mixtures were optimized with the help of the math planning method to obtain high 7-day and 28-day high compressive strength.

  7. Reuse of Coconut Shell, Rice Husk, and Coal Ash Blends in Geopolymer Synthesis

    NASA Astrophysics Data System (ADS)

    Walmiki Samadhi, Tjokorde; Wulandari, Winny; Prasetyo, Muhammad Iqbal; Rizki Fernando, Muhammad

    2017-10-01

    Mixtures of biomass and coal ashes are likely to be produced in increasing volume as biomass-based energy production is gaining importance in Indonesia. This work highlights the reuse of coconut shell ash (CSA), rice husk ash (RHA), and coal fly ash (FA) for geopolymer synthesis by an activator solution containing concentrated KOH and Na2SiO3. Ash blend compositions are varied according to a simplex-centroid mixture experimental design. Activator to ash mass ratios are varied from 0.8 to 2.0, the higher value being applied for ash compositions with higher Si/Al ratio. The impact of ash blend composition on early strength is adequately modeled by an incomplete quadratic mixture model. Overall, the ashes can produce geopolymer mortars with an early strength exceeding the Indonesian SNI 15-2049-2004 standard minimum value of 2.0 MPa. Good workability of the geopolymer is indicated by their initial setting times which are longer than the minimum value of 45 mins. Geopolymers composed predominantly of RHA composition exhibit poor strength and excessive setting time. FTIR spectroscopy confirms the geopolymerization of the ashes by the shift of the Si-O-Si/Al asymmetric stretching vibrational mode. Overall, these results point to the feasibility of geopolymerization as a reuse pathway for biomass combustion waste.

  8. Characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption

    USGS Publications Warehouse

    Lu, Y.; Rostam-Abadi, M.; Chang, R.; Richardson, C.; Paradis, J.

    2007-01-01

    Nine fly ash samples were collected from the particulate collection devices (baghouse or electrostatic precipitator) of four full-scale pulverized coal (PC) utility boilers burning eastern bituminous coals (EB-PC ashes) and three cyclone utility boilers burning either Powder River Basin (PRB) coals or PRB blends,(PRB-CYC ashes). As-received fly ash samples were mechanically sieved to obtain six size fractions. Unburned carbon (UBC) content, mercury content, and Brunauer-Emmett-Teller (BET)-N2 surface areas of as-received fly ashes and their size fractions were measured. In addition, UBC particles were examined by scanning electron microscopy, high-resolution transmission microscopy, and thermogravimetry to obtain information on their surface morphology, structure, and oxidation reactivity. It was found that the UBC particles contained amorphous carbon, ribbon-shaped graphitic carbon, and highly ordered graphite structures. The mercury contents of the UBCs (Hg/UBC, in ppm) in raw ash samples were comparable to those of the UBC-enriched samples, indicating that mercury was mainly adsorbed on the UBC in fly ash. The UBC content decreased with a decreasing particle size range for all nine ashes. There was no correlation between the mercury and UBC contents of different size fractions of as-received ashes. The mercury content of the UBCs in each size fraction, however, generally increased with a decreasing particle size for the nine ashes. The mercury contents and surface areas of the UBCs in the PRB-CYC ashes were about 8 and 3 times higher than UBCs in the EB-PC ashes, respectively. It appeared that both the particle size and surface area of UBC could contribute to mercury capture. The particle size of the UBC in PRB-CYC ash and thus the external mass transfer was found to be the major factor impacting the mercury adsorption. Both the particle size and surface reactivity of the UBC in EB-PC ash, which generally had a lower carbon oxidation reactivity than the PRB-PC ashes, appeared to be important for the mercury adsorption. ?? 2007 American Chemical Society.

  9. Biomass fly ash incorporation in cement based materials =

    NASA Astrophysics Data System (ADS)

    Rajamma, Rejini

    In recent years, pressures on global environment and energy security have led to an increasing demand on renewable energy sources, and diversification of Europe's energy supply. Among these resources the biomass could exert an important role, since it is considered a renewable and CO2 neutral energy resource once the consumption rate is lower than the growth rate, and can potentially provide energy for heat, power and transports from the same installation. Currently, most of the biomass ash produced in industrial plants is either disposed of in landfill or recycled on agricultural fields or forest, and most times this goes on without any form of control. However, considering that the disposal cost of biomass ashes are raising, and that biomass ash volumes are increasing worldwide, a sustainable ash management has to be established. The main objective of the present study is the effect of biomass fly ashes in cement mortars and concretes in order to be used as a supplementary cementitious material. The wastes analyzed in the study were collected from the fluidized bed boilers and grate boilers available in the thermal power plants and paper pulp plants situated in Portugal. The physical as well as chemical characterisations of the biomass fly ashes were investigated. The cement was replaced by the biomass fly ashes in 10, 20 and 30% (weight %) in order to investigate the fresh properties as well as the hardened properties of biomass fly ash incorporated cement mortar and concrete formulations. Expansion reactions such as alkali silica reaction (ASR), sulphate attack (external and internal) were conducted in order to check the durability of the biomass fly ash incorporated cement mortars and concretes. Alternative applications such as incorporation in lime mortars and alkali activation of the biomass fly ashes were also attempted. The biomass fly ash particles were irregular in shape and fine in nature. The chemical characterization revealed that the biomass fly ashes were similar to a class C fly ash. The mortar results showed a good scope for biomass fly ashes as supplementary cementitious materials in lower dosages (<20%). The poor workability, concerns about the organic content, alkalis, chlorides and sulphates stand as the reasons for preventing the use of biomass fly ash in high content in the cement mortars. The results obtained from the durability tests have shown a clear reduction in expansion for the biomass fly ash mortars/concretes and the binder blend made with biomass fly ash (20%) and metakaolin (10%) inhibited the ASR reaction effectively. The biomass fly ash incorporation in lime mortars did not improve the mortar properties significantly though the carbonation was enhanced in the 15-20% incorporation. The biomass fly ash metakaolin blend worked well in the alkali activated complex binder application also. Portland cement free binders (with 30-40 MPa compressive strength) were obtained on the alkali activation of biomass fly ashes (60-80%) blended with metakaolin (20-40%).

  10. Potential species replacements for black ash (Fraxinus nigra) at the confluence of two threats: Emerald ash borer and a changing climate

    Treesearch

    Louis Iverson; Kathleen S. Knight; Anantha Prasad; Daniel A. Herms; Stephen Matthews; Matthew Peters; Annemarie Smith; Diane M. Hartzler; Robert Long; John Almendinger

    2015-01-01

    The emerald ash borer (Agrilus planipennis; EAB) is causing widespread mortality of ash (Fraxinus spp.) and climate change is altering habitats of tree species throughout large portions of North America. Black ash (F. nigra), a moist-soil species common in the Northwoods of Minnesota, Wisconsin, and...

  11. Distribution of trunk-injected 14C-imidacloprid in ash trees and effects on emerald ash borer (Coleoptera: Buprestidae) adults

    Treesearch

    David Mota-Sánchez; Bert M. Cregg; Deborah G. McCullough; Therese M. Poland; Robert M. Hollingworth

    2009-01-01

    The emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae) is a destructive exotic pest of North American ash (Fraxinus sp.) trees. Trunk injection of imidacloprid is commonly used to protect landscape ash trees from A. planipennis damage. Efficacy can vary and little is known about the...

  12. Source water contributions and hydrologic responses to simulated emerald ash borer infestations in depressional black ash wetlands

    Treesearch

    Matthew J. Van Grinsven; Joseph P. Shannon; Joshua C. Davis; Nicholas W. Bolton; Joseph W. Wagenbrenner; Randall K. Kolka; Thomas Grant Pypker

    2017-01-01

    Forested wetlands dominated by black ash (Fraxinus nigra) are currently threatened by the rapid expansion of the exotic emerald ash borer (EAB) (Agrilus planipennis, Coleoptera: Buprestidae) in North America, and very little is known about the hydrology and ecology of black ash wetlands. The ecohydrological response of...

  13. Physiological responses of emerald ash borer larvae to feeding on different ash species reveal putative resistance mechanisms and insect counter-adaptations

    Treesearch

    C.M. Rigsby; D.N. Showalter; D.A. Herms; J.L. Koch; P. Bonello; D. Cipollini

    2015-01-01

    Emerald ash borer, Agrilus planipennis Fairmaire, an Asian wood-boring beetle, has devastated ash (Fraxinus spp.) trees in North American forests and landscapes since its discovery there in 2002. In this study, we collected living larvae from EAB-resistant Manchurian ash (Fraxinus mandschurica), and susceptible...

  14. Survey for tolerance to emerald ash borer within North American ash species

    Treesearch

    Jennifer L. Koch; Mary E. Mason; David W. Carey; Kathleen Knight; Therese Poland; Daniel A. Herms

    2010-01-01

    Since the discovery of the emerald ash borer (EAB) near Detroit, MI, in 2002, more than 40 million ash trees have been killed and another 7.5 billion are at risk in the United States. When the EAB outbreak was initially discovered, our native ash species appeared to have no resistance to the pest.

  15. Synthetic studies toward 7-epi-sesquithujene, bicyclic sesquiterpene antennally active to emerald ash borer

    USDA-ARS?s Scientific Manuscript database

    Emerald ash borer, Agrilus planipennis, is an invasive beetle that has been causing extensive mortality of ash trees since arriving in North America in 2002. 7-epi-Sesquithujene (1) is produced by stressed ash and elicits a strong EAD response on the emerald ash borer antennae. In the course of ma...

  16. Large-scale reintroduction of ash

    Treesearch

    Ronald. Overton

    2010-01-01

    No strategies currently exist for reintroducing ash; progression of emerald ash borer (EAB) through the eastern United States is likely to be a decades-long process, and extirpation of ash from this area is likely to take even longer. Reintroduction of ash into areas where it has been extirpated by EAB will require addressing technical issues as well as social and...

  17. Emerald ash borer biocontrol in ash saplings: The potential for early stage recovery of North American ash trees

    Treesearch

    Jian J. Duan; Leah S. Bauer; Roy G. Van Driesche

    2017-01-01

    In many parts of North America, ash (Fraxinus) stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees, saplings, basal sprouts, and seedlings. Without a soil seed bank for Fraxinus spp., tree recovery will require survival and maturation of these...

  18. The Role of Biocontrol of Emerald Ash Borer in Protecting Ash Regeneration after Invasion

    USDA-ARS?s Scientific Manuscript database

    Emerald ash borer (EAB) is an invasive Asian beetle that is destroying ash in forests over much of eastern North America because of the high susceptibility of our native ash and a lack of effective natural enemies. To increase mortality of EAB larvae and eggs, the USDA (FS, ARS and APHIS) is carryin...

  19. Evaluation of log submergence to control EAB and preserve black ash for native American basketry

    Treesearch

    Therese M. Poland; Damon J. Crook; Tina M. Ciaramitaro

    2011-01-01

    Many Native American cultures use black ash, Fraxinus nigra, for basket-making because its ring-porous wood allows the annual layers of xylem to be easily separated. The emerald ash borer (EAB, Agrilus planipennis) is threatening North America's ash resource including black ash, and a centuries-old native art form. Native...

  20. Availability of residual phosphorus from broiler litter ash and layer manure ash amended soil for Paspalum vaginatum uptake

    USDA-ARS?s Scientific Manuscript database

    It has been hypothesized by several scientists that poultry litter ash could be used as a slow releasing phosphorus fertilizer that will become available over time. To test this hypothesis, a greenhouse study was conducted using a broiler litter ash, layer manure ash and calcium phosphate to determ...

  1. Attraction of the emerald ash borer to ash trees stressed by girdling, herbicide treatment, or wounding

    Treesearch

    Deborah G. McCullough; Therese M. Poland; David Cappaert

    2009-01-01

    New infestations of emerald ash borer, Agrilus planipennis Fainnaire, an invasive pest native to Asia, are difficult to detect until densities build and symptoms appear on affected ash (Fraxinus spp). We compared the attraction of A. planipennis to ash trees stressed by girdling(bark and phloem removed from a 15...

  2. Fly ash in landfill top covers - a review.

    PubMed

    Brännvall, E; Kumpiene, J

    2016-01-01

    Increase of energy recovery from municipal solid waste by incineration results in the increased amounts of incineration residues, such as fly ash, that have to be taken care of. Material properties should define whether fly ash is a waste or a viable resource to be used for various applications. Here, two areas of potential fly ash application are reviewed: the use of fly ash in a landfill top cover either as a liner material or as a soil amendment in vegetation layer. Fly ashes from incineration of three types of fuel are considered: refuse derived fuel (RDF), municipal solid waste incineration (MSWI) and biofuel. Based on the observations, RDF and MSWI fly ash is considered as suitable materials to be used in a landfill top cover liner. Whereas MSWI and biofuel fly ashes based on element availability for plant studies, could be considered suitable for the vegetation layer of the top cover. Responsible application of MSWI ashes is, however, warranted in order to avoid element accumulation in soil and elevation of background values over time.

  3. Physical and biological studies of coal and oil fly ash.

    PubMed Central

    Fisher, G L; McNeill, K L; Prentice, B A; McFarland, A R

    1983-01-01

    Studies were performed to compare the physical and chemical characteristics and the in vitro macrophage cytotoxicity of oil and coal fly ash. Sampling methodology was developed to collect size-fractionated particulate matter from the smokestack of either a coal-fired or an oil-fired power plant. Morphological studies demonstrated particle heterogeneity, although most coal fly ash particles appeared to be spherical. Oil fly ash contained two major morphologies; nonopaque amorphous particles and opaque amorphous particles. Elemental analysis indicates that the coal ash is predominantly composed of aluminosilicate particles, while the oil ash is predominantly inorganic sulfates and carbonaceous particles. In vitro macrophage assays demonstrate that the finest coal fly ash particles are the most cytotoxic; the cytotoxicity is significantly less than that of alpha-quartz, the positive control particle. In contrast, the oil fly ash particles are more cytotoxic than quartz. The cytotoxicity of oil fly ash is due to soluble components, possibly vanadium salts. Images FIGURE 2. A FIGURE 2. B FIGURE 2. C FIGURE 2. D PMID:6641653

  4. Experimental study on durability improvement of fly ash concrete with durability improving admixture.

    PubMed

    Quan, Hong-zhu; Kasami, Hideo

    2014-01-01

    In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%-20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized.

  5. Eco-friendly fly ash utilization: potential for land application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, A.; Thapliyal, A.

    2009-07-01

    The increase in demand for power in domestic, agricultural, and industrial sectors has increased the pressure on coal combustion and aggravated the problem of fly ash generation/disposal. Consequently the research targeting effective utilization of fly ash has also gained momentum. Fly ash has proved to be an economical substitute for expensive adsorbents as well as a suitable raw material for brick manufacturing, zeolite synthesis, etc. Fly ash is a reservoir of essential minerals but is deficient in nitrogen and phosphorus. By amending fly ash with soil and/or various organic materials (sewage sludge, bioprocess materials) as well as microbial inoculants likemore » mycorrhizae, enhanced plant growth can be realized. Based on the sound results of large scale studies, fly ash utilization has grown into prominent discipline supported by various internationally renowned organizations. This paper reviews attempts directed toward various utilization of fly ash, with an emphasis on land application of organic/microbial inoculants amended fly ash.« less

  6. Pore Structure Characterization in Concrete Prepared with Carbonated Fly Ash

    NASA Astrophysics Data System (ADS)

    Sahoo, Sanjukta

    2018-03-01

    Carbon dioxide capture and storage (CCS) is a technique to address the global concern of continuously rising CO2 level in the atmosphere. Fly ash is considered as a suitable medium for CCS due to presence of metal oxides. The fly ash which has already sequestered carbon dioxide is referred to as carbonated fly ash. Recent research reveals better durability of concretes using carbonated fly ash as part replacement of cement. In the present research pore structure characterization of the carbonated fly ash concrete has been carried out. Mercury Intrusion porosimetry test has been conducted on control concrete and concrete specimens using fly ash and carbonated fly ash at replacement levels of 25% and 40%. The specimens have been water cured for 28 days and 90 days. It is observed that porosity reduction rate is more pronounced in carbonated fly ash concrete compared to control concrete at higher water curing age. Correlation analysis is also carried out which indicates moderately linear relationship between porosity % and pore distribution with particle size and water curing.

  7. Testing exposure of a jet engine to a dilute volcanic-ash cloud

    NASA Astrophysics Data System (ADS)

    Guffanti, M.; Mastin, L. G.; Schneider, D. J.; Holliday, C. R.; Murray, J. J.

    2013-12-01

    An experiment to test the effects of volcanic-ash ingestion by a jet engine is being planned for 2014 by a consortium of U.S. Government agencies and engine manufacturers, under the auspices of NASA's Vehicle Integrated Propulsion Research Program. The experiment, using a 757-type engine, will be an on-ground, on-wing test carried out at Edwards Air Force Base, California. The experiment will involve the use of advanced jet-engine sensor technology for detecting and diagnosing engine health. A primary test objective is to determine the effect on the engine of many hours of exposure to ash concentrations (1 and 10 mg/cu m) representative of ash clouds many 100's to >1000 km from a volcanic source, an aviation environment of great interest since the 2010 Eyjafjallajökull, Iceland, eruption. A natural volcanic ash will be used; candidate sources are being evaluated. Data from previous ash/aircraft encounters, as well as published airborne measurements of the Eyjafjallajökull ash cloud, suggest the ash used should be composed primarily of glassy particles of andesitic to rhyolitic composition (SiO2 of 57-77%), with some mineral crystals, and a few tens of microns in size. Collected ash will be commercially processed less than 63 microns in size with the expectation that the ash particles will be further pulverized to smaller sizes in the engine during the test. For a nominally planned 80 hour test at multiple ash-concentration levels, the test will require roughly 500 kg of processed (appropriately sized) ash to be introduced into the engine core. Although volcanic ash clouds commonly contain volcanic gases such as sulfur dioxide, testing will not include volcanic gas or aerosol interactions as these present complex processes beyond the scope of the planned experiment. The viscous behavior of ash particles in the engine is a key issue in the experiment. The small glassy ash particles are expected to soften in the engine's hot combustion chamber, then stick to cooler parts of the turbine. Composition (primarily silica content) and dissolved water content, both of which affect the softening temperature of silicate melts, will be taken into account when evaluating candidate ash sources, although the practicalities of collecting, shipping, and processing a substantial amount of ash are a major decision factor in source selection.

  8. Publication sites productive uses of combustion ash

    Science.gov Websites

    Publication Sites Productive Uses of Combustion Ash For more information contact: e:mail: Public waste combustion ash in landfills. The new technology brief describes recent studies where ash was used

  9. Lunar ash flows - Isothermal approximation.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  10. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?

    PubMed

    Sormunen, Laura Annika; Rantsi, Riina

    2015-11-01

    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland. © The Author(s) 2015.

  11. Regional-scale input of dispersed and discrete volcanic ash to the Izu-Bonin and Mariana subduction zones

    NASA Astrophysics Data System (ADS)

    Scudder, Rachel P.; Murray, Richard W.; Schindlbeck, Julie C.; Kutterolf, Steffen; Hauff, Folkmar; McKinley, Claire C.

    2014-11-01

    We have geochemically and statistically characterized bulk marine sediment and ash layers at Ocean Drilling Program Site 1149 (Izu-Bonin Arc) and Deep Sea Drilling Project Site 52 (Mariana Arc), and have quantified that multiple dispersed ash sources collectively comprise ˜30-35% of the hemipelagic sediment mass entering the Izu-Bonin-Mariana subduction system. Multivariate statistical analyses indicate that the bulk sediment at Site 1149 is a mixture of Chinese Loess, a second compositionally distinct eolian source, a dispersed mafic ash, and a dispersed felsic ash. We interpret the source of these ashes as, respectively, being basalt from the Izu-Bonin Front Arc (IBFA) and rhyolite from the Honshu Arc. Sr-, Nd-, and Pb isotopic analyses of the bulk sediment are consistent with the chemical/statistical-based interpretations. Comparison of the mass accumulation rate of the dispersed ash component to discrete ash layer parameters (thickness, sedimentation rate, and number of layers) suggests that eruption frequency, rather than eruption size, drives the dispersed ash record. At Site 52, the geochemistry and statistical modeling indicates that Chinese Loess, IBFA, dispersed BNN (boninite from Izu-Bonin), and a dispersed felsic ash of unknown origin are the sources. At Site 1149, the ash layers and the dispersed ash are compositionally coupled, whereas at Site 52 they are decoupled in that there are no boninite layers, yet boninite is dispersed within the sediment. Changes in the volcanic and eolian inputs through time indicate strong arc-related and climate-related controls.

  12. Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment.

    PubMed

    Havukainen, Jouni; Nguyen, Mai Thanh; Hermann, Ludwig; Horttanainen, Mika; Mikkilä, Mirja; Deviatkin, Ivan; Linnanen, Lassi

    2016-03-01

    All life forms require phosphorus (P), which has no substitute in food production. The risk of phosphorus loss from soil and limited P rock reserves has led to the development of recycling P from industrial residues. This study investigates the potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment (ASH DEC) in Finland. An ASH DEC plant could receive 46-76 kt/a of sewage sludge ash to produce 51-85 kt/a of a P-rich product with a P2O5 content of 13-18%, while 320-750 kt/a of manure ash could be supplied to produce 350-830 kt/a of a P-rich product with a P content of 4-5%. The P2O5 potential in the total P-rich product from the ASH DEC process using sewage sludge and manure ash is estimated to be 25-47 kt/a, which is significantly more than the P fertilizer demand in Finland's agricultural industries. The energy efficiency of integrated incineration and the ASH DEC process is more dependent on the total solid content and the subsequent need for mechanical dewatering and thermal drying than on the energy required by the ASH DEC process. According to the results of this study, the treated sewage sludge and manure ash using the ASH DEC process represent significant potential phosphorus sources for P fertilizer production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Synthesis of geopolymer from biomass-coal ash blends

    NASA Astrophysics Data System (ADS)

    Samadhi, Tjokorde Walmiki; Wulandari, Winny; Prasetyo, Muhammad Iqbal; Fernando, Muhammad Rizki; Purbasari, Aprilina

    2017-09-01

    Geopolymer is an environmentally attractive Portland cement substitute, owing to its lower carbon footprint and its ability to consume various aluminosilicate waste materials as its precursors. This work describes the development of geopolymer formulation based on biomass-coal ash blends, which is predicted to be the prevalent type of waste when biomass-based thermal energy production becomes mainstream in Indonesia. The ash blends contain an ASTM Class F coal fly ash (FA), rice husk ash (RHA), and coconut shell ash (CSA). A mixture of Na2SiO3 and concentrated KOH is used as the activator solution. A preliminary experiment identified the appropriate activator/ash mass ratio to be 2.0, while the activator Na2SiO3/KOH ratio varies from 0.8 to 2.0 with increasing ash blend Si/Al ratio. Both non-blended FA and CSA are able to produce geopolymer mortars with 7-day compressive strength exceeding the Indonesian national SNI 15-2049-2004 standard minimum value of 2.0 MPa stipulated for Portland cement mortars. Ash blends have to be formulated with a maximum RHA content of approximately 50 %-mass to yield satisfactory 7-day strength. No optimum ash blend composition is identified within the simplex ternary ash blend compositional region. The strength decreases with Si/Al ratio of the ash blends due to increasing amount of unreacted silicate raw materials at the end of the geopolymer hardening period. Overall, it is confirmed that CSA and blended RHA are feasible raw materials for geopolymer production..

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, R.M.; Perron, M.M.; Friedman, C.L.

    Approaches for cleaning up contaminated sediments range from dredging to in situ treatment. In this study, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7-d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspectedmore » that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of postoxidation treatment to reduce nitrous oxide emissions. Relatively simple methods exist to remove ammonia from fly ash before use, and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. No evidence was seen of the release of the metals cadmium, copper, nickel, or lead from the fly ashes. A preliminary 28-d polychaete bioaccumulation study with one of the high-carbon fly ashes and a reference sediment was also performed. Although preliminary, no evidence was seen of adverse effects to worm growth or lipid content or of accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon content could represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments.« less

  15. Preliminary study on the mode of occurrence of arsenic in high arsenic coals from southwest Guizhou Province

    USGS Publications Warehouse

    Ding, Z.; Zheng, B.; Zhang, Jiahua; Belkin, H.E.; Finkelman, R.B.; Zhao, F.; Zhou, D.; Zhou, Y.; Chen, C.

    1999-01-01

    Coal samples from high arsenic coal areas have been analyzed by electron microprobe analyzer (EMPA), scanning electron microscopy with an energy dispersive X-ray analyzer (SEM-EDX), X-ray diffraction analysis (XRD), low temperature ashing (LTA), transmission electron microscopy (TEM), X-ray absorption fine structure (XAFS), instrument neutron activation analysis (INAA) and wet chemical analysis. Although some As-bearing minerals such as pyrite, arsenopyrite, realgar (?), As-bearing sulfate, and As-bearing clays are found in the high arsenic coals, their contents do not account for the abundance of arsenic in the some coals. Analysis of the coal indicates that arsenic exists mainly in the form of As5+ and As3+, combined with compounds in the organic matrix. The occurrence of such exceptionally high arsenic contents in coal and the fact that the arsenic is dominantly organically associated are unique observations. The modes of occurrence of arsenic in high As-coals are discussed.

  16. Nutritional and functional characterization of barley flaxseed based functional dry soup mix.

    PubMed

    Kaur, Sumeet; Das, Madhusweta

    2015-09-01

    Barley flaxseed based functional dry soup mix (BFSM) was developed from whole barely flour (46.296%), roasted flaxseed powder (23.148%) and the seasoning (30.555%) comprising several flavoring compounds and anticaking agent, using simple processing technique. Developed BFSM was nutritious. On dry matter basis it contained: protein (14.31%), carbohydrate excluding crude fiber (54.70%), fat (8.70%), ash (17.45%) and crude fiber (4.84%). It was low glycemic soup, free of antinutritional risk and had calorific value of 319.77 kcal/100 g (wet or sample basis, sb) estimated from its composition. 100 g (sb) of BFSM contained 4.36 g β-glucans and 8.08 g total lipid of which 25.6% was ω-3 fatty acids. Different extracts of BFSM revealed the presence of total phenols (0.57-1.86 mg gallic acid equivalent/g, sb) with antioxidants equivalence of DPPH (20.69-39.07%) and FRAP (120-331 μm Fe (II)/g, sb).

  17. Using Kettle Lake Records to Date and Interpret Holocene Ash Deposition in Upper Cook Inlet, Anchorage, AK

    NASA Astrophysics Data System (ADS)

    Werner, A.; Kathan, K. M.; Kaufman, D. S.; Hancock, J. R.; Waythomas, C. F.; Wallace, K. L.

    2004-12-01

    Fourteen sediment cores recovered from three kettle lakes (Goose, Little Campbell and Lorraine) near Anchorage, AK were used to document and date Holocene volcanic ash deposition in the upper Cook Inlet area. Small lakes (<0.5 km2) with small (<1.5 km2), low relief (<50 m), and well-vegetated drainage areas were selected in order to minimize ash remobilization by mass wasting and fluvial processes. The resulting stratigraphic records are interpreted as primary terpha-fall stratigraphies. Relative to the surrounding lacustrine sediments, the ash layers exhibit low organic-matter content (as determined by loss-on-ignition, LOI), high magnetic susceptibility (MS), increased density (X-radiographs), and bubble-wall glass shards. Some ash layers are up to 1 cm thick (macrotephra) consisting of pure glass, some occur as light bands, while others (microtephra) can only be located using non-visual techniques (MS, LOI and X-radiography). The thinnest microtephras observed occur either as discrete (1 mm) layers or diffuse laminations composed of tephra mixed with ambient lake sediment. Forty-five AMS C-14 dates on terrestrial macro fossils were used to constrain sedimentation-rate models for the cores, and to assign absolute ages to ash units. Comparison of inferred tephra ages corroborates our intra and inter basin stratigraphic correlations (+/- 200 yrs) based on physical and MS stratigraphy. Ten out of 12 macrotephras can be confidently correlated among all three lakes, whereas, two of the prominent tephras occur in one basin but not in the others. This suggests subtle differences in ash plume extents or differences in tephra preservation between lakes. A total of 24 Holocene ash units (12 macro and 12 micro) have been recognized and dated in the Anchorage area, suggesting an ash-fall frequency of about 2.4/1000 yrs. By comparison, historical records suggest more frequent ash-fall events (120/1000 yrs). Our data indicate that, either the ash layers are not consistently preserved in the kettle basins, or more likely, these records lack the resolution to differentiate closely spaced ash-fall events. Core top stratigraphies support the latter interpretation: The 10-12 historically observed ash-fall events are represented by two diffuse zones in the upper 15 cm of the cores. As such, ash records from small kettle lakes should be regarded as conservative statements of ash deposition. Further, ash plumes can have narrow geographic distributions and ash-fall thicknesses can change markedly over short distances. Therefore distal ash-fall stratigraphies underestimate eruption frequencies.

  18. Factors affecting the survival of ash (Fraxinus spp.) trees infested by emerald ash borer (Agrilus planipennis)

    Treesearch

    Kathleen S. Knight; John P. Brown; Robert P. Long

    2013-01-01

    Emerald ash borer (Agrilus planipennis) (EAB), an Asian woodboring beetle accidentally introduced in North America, has killed millions of ash (Fraxinus spp.) trees and is spreading rapidly. This study examined the effects of tree- and site-level factors on the mortality of ash trees in stands infested by EAB in OH, USA. Our data...

  19. Response of black ash wetland gaseous soil carbon fluxes to a simulated emerald ash borer infestation

    Treesearch

    Matthew Van Grinsven; Joseph Shannon; Nicholas Bolton; Joshua Davis; Nam Noh; Joseph Wagenbrenner; Randall Kolka; Thomas Pypker

    2018-01-01

    The rapid and extensive expansion of emerald ash borer (EAB) in North America since 2002 may eliminate most existing ash stands, likely affecting critical ecosystem services associated with water and carbon cycling. To our knowledge, no studies have evaluated the coupled response of black ash (Fraxinus nigra Marsh.) wetland water tables, soil...

  20. 10 Risk to Ash from Emerald Ash Borer: Can Biological Control Prevent the Loss of Ash Stands

    USDA-ARS?s Scientific Manuscript database

    Ash trees were once relatively free of serious, major diseases and insect pests in North America until the arrival of EAB, which was first detected in North America in Michigan in 2002. As of February 2014, EAB had been detected in 22 U.S. states and two Canadian provinces, killing millions of ash ...

  1. Hypocotyl derived in vitro regeneration of pumpkin ash (Fraxinus profunda)

    Treesearch

    Micah E. Stevens; Paula M. Pijut

    2012-01-01

    Pumpkin ash (Fraxinus profunda (Bush) Bush) is at risk for extirpation by an exotic insect, the emerald ash borer (EAB). Pumpkin ash is limited to wetland areas of the Eastern United States, and has been listed as an endangered species because of EAB activity. Pumpkin ash provides many benefits to the ecosystem, and its wood is used in the...

  2. High spatial resolution spectral unmixing for mapping ash species across a complex urban environment

    Treesearch

    Jennifer Pontius; Ryan P. Hanavan; Richard A. Hallett; Bruce D. Cook; Lawrence A. Corp

    2017-01-01

    Ash (Fraxinus L.) species are currently threatened by the emerald ash borer (EAB; Agrilus planipennis Fairmaire) across a growing area in the eastern US. Accurate mapping of ash species is required to monitor the host resource, predict EAB spread and better understand the short- and long-term effects of EAB on the ash resource...

  3. Effects of cutting time, stump height, and herbicide application on ash (Fraxinus spp.) stump sprouting and colonization by emerald ash borer (Agrilus planipennis)

    Treesearch

    Toby R. Petrice; Robert A. Haack

    2011-01-01

    Efforts to eradicate or slow the spread of emerald ash borer (EAB) (Agrilus planipennis Fairmaire [Coleoptera: Buprestidae]) include cutting infested and nearby uninfested ash (Fraxinus spp.) trees. However, ash trees readily sprout after they have been cut, providing potential host material for EAB. In 2004-2005, we conducted...

  4. Potential effects of foundation species loss on wetland communities: A case study of black ash wetlands threatened by emerald ash borer

    Treesearch

    Melissa B. Youngquist; Sue L. Eggert; Anthony W. D' Amato; Brian J. Palik; Robert A. Slesak

    2017-01-01

    The emerald ash borer (EAB; Agrilus planipennis) is an invasive beetle that causes almost complete mortality of ash trees (Fraxinus spp.) in North America and Europe. Northern temperate wetlands, where black ash (F. nigra) is a dominant and foundation species, will likely undergo dramatic shifts after EAB...

  5. Ashes to ashes: Large Fraxinus germplasm collections and their fates

    Treesearch

    Kim C. Steiner; Paul. Lupo

    2010-01-01

    As the emerald ash borer (EAB) threatens the survival of our ash species, measures should be taken to preserve their genetic variability in the event that we discover a way to restore populations destroyed by the beetle. As it happens, large germplasm collections exist for our most important and widely distributed eastern species of the genus, white ash (...

  6. Use of unwounded ash trees for the detection of emerald ash borer adults: EAB landing behavior

    Treesearch

    Jordan M. Marshall; Melissa J. Porter; Andrew J. Storer

    2011-01-01

    Incorporation of multiple trapping techniques and sites within a survey program is essential to adequately identify the range of emerald ash borer (EAB) (Agrilus planipennis Fairmaire) infestation. Within natural forests, EAB lands on stick band traps wrapped around girdled ash trees at a rate similar to that on unwounded ash trees. The objective of...

  7. Growth and physiological response of lemongrass (Cymbopogon citratus (D.C.) Stapf.) under different levels of fly ash-amended soil.

    PubMed

    Panda, Debabrata; Panda, Dibyajyoti; Padhan, Bandana; Biswas, Meghali

    2018-05-12

    Revegetation with metal tolerant plants for management of fly ash deposits is an important environmental perspective nowadays. Growth performance, photosynthesis, and antioxidant defense of lemongrass (Cymbopogon citratus (D.C.) Stapf.) were evaluated under various combination of fly ash amended with garden soil in order to assess its fly ash tolerance potential. Under low level of fly ash (25%) amended soil, the plant growth parameters such as shoot, root, and total plant biomass as well as metal tolerance index were increased compared to the control plants grown on garden soil, followed by decline under higher concentration of fly ash (50%, 75% and 100%). In addition, leaf photosynthetic rate, stomatal conductance, and photosystem (PS) II activity were not significantly changed under low level of fly ash (25%) amended soil compared to the garden soil but these parameters were significantly decreased further with increase of fly ash concentrations. Furthermore, increase of activities of some antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase over control were noticed in lemongrass under all fly ash treatments. Taken together, the study suggests that lemongrass can be used for phytoremediation of fly ash at 25% amended soil.

  8. Interspecific comparison of constitutive ash phloem phenolic chemistry reveals compounds unique to manchurian ash, a species resistant to emerald ash borer.

    PubMed

    Whitehill, Justin G A; Opiyo, Stephen O; Koch, Jennifer L; Herms, Daniel A; Cipollini, Donald F; Bonello, Pierluigi

    2012-05-01

    The emerald ash borer (Agrilus planipennis, EAB) is an invasive wood-borer indigenous to Asia and is responsible for widespread ash (Fraxinus spp.) mortality in the U.S. and Canada. Resistance and susceptibility to EAB varies among Fraxinus spp., which is a result of their co-evolutionary history with the pest. We characterized constitutive phenolic profiles and lignin levels in the phloem of green, white, black, blue, European, and Manchurian ash. Phloem was sampled twice during the growing season, coinciding with phenology of early and late instar EAB. We identified 66 metabolites that displayed a pattern of variation, which corresponded strongly with phylogeny. Previously identified lignans and lignan derivatives were confirmed to be unique to Manchurian ash, and may contribute to its high level of resistance to EAB. Other compounds that had been considered unique to Manchurian ash, including hydroxycoumarins and the phenylethanoids calceolarioside A and B, were detected in closely related, but susceptible species, and thus are unlikely to contribute to EAB resistance of Manchurian ash. The distinct phenolic profile of blue ash may contribute to its relatively high resistance to EAB.

  9. Validation of Volcanic Ash Forecasting Performed by the Washington Volcanic Ash Advisory Center

    NASA Astrophysics Data System (ADS)

    Salemi, A.; Hanna, J.

    2009-12-01

    In support of NOAA’s mission to protect life and property, the Satellite Analysis Branch (SAB) uses satellite imagery to monitor volcanic eruptions and track volcanic ash. The Washington Volcanic Ash Advisory Center (VAAC) was established in late 1997 through an agreement with the International Civil Aviation Organization (ICAO). A volcanic ash advisory (VAA) is issued every 6 hours while an eruption is occurring. Information about the current location and height of the volcanic ash as well as any pertinent meteorological information is contained within the VAA. In addition, when ash is detected in satellite imagery, 6-, 12- and 18-hour forecasts of ash height and location are provided. This information is garnered from many sources including Meteorological Watch Offices (MWOs), pilot reports (PIREPs), model forecast winds, radiosondes and volcano observatories. The Washington VAAC has performed a validation of their 6, 12 and 18 hour airborne volcanic ash forecasts issued since October, 2007. The volcanic ash forecasts are viewed dichotomously (yes/no) with the frequency of yes and no events placed into a contingency table. A large variety of categorical statistics useful in describing forecast performance are then computed from the resulting contingency table.

  10. Higher Activities of Defense-Associated Enzymes may Contribute to Greater Resistance of Manchurian Ash to Emerald Ash Borer Than A closely Related and Susceptible Congener.

    PubMed

    Rigsby, Chad M; Herms, Daniel A; Bonello, Pierluigi; Cipollini, Don

    2016-08-01

    Emerald ash borer (EAB) is an invasive beetle native to Asia that infests and kills ash (Fraxinus spp.) in North America. Previous experiments indicated that larvae feeding on co-evolved, resistant Manchurian ash (F. mandshurica) have increased antioxidant and quinone-protective enzyme activities compared to larvae feeding on susceptible North American species. Here, we examined mechanisms of host-generated oxidative and quinone-based stress and other putative defenses in Manchurian ash and the closely related and chemically similar, but susceptible, black ash (F. nigra), with and without exogenous application of methyl jasmonate (MeJA) to induce resistance mechanisms. Peroxidase activities were 4.6-13.3 times higher in Manchurian than black ash, although both species appeared to express the same three peroxidase isozymes. Additionally, peroxidase-mediated protein cross-linking activity was stronger in Manchurian ash. Polyphenol oxidase, β-glucosidase, chitinase, and lipoxygenase activities also were greater in Manchurian ash, but only lipoxygenase activity increased with MeJA application. Phloem H 2 O 2 levels were similar and were increased by MeJA application in both species. Lastly, trypsin inhibitor activity was detected in methanol and water extracts that were not allowed to oxidize, indicating the presence of phenolic-based trypsin inhibitors. However, no proteinaceous trypsin inhibitor activity was detected in either species. In response to MeJA application, Manchurian ash had higher trypsin inhibitor activity than black ash using the unoxidized water extracts, but no treatment effects were detected using methanol extracts. Based on these results we hypothesize that peroxidases, lignin polymerization, and quinone generation contribute to the greater resistance to EAB displayed by Manchurian ash.

  11. Variation in the Volatile Profiles of Black and Manchurian Ash in Relation to Emerald Ash Borer Oviposition Preferences.

    PubMed

    Rigsby, Chad M; McCartney, Nathaniel B; Herms, Daniel A; Tumlinson, James H; Cipollini, Don

    2017-08-01

    Emerald ash borer (EAB; Agrilus planipennis) is a devastating pest of ash (Fraxinus spp.) in its invaded range in North America. Its coevolved Asian hosts are more resistant and less preferred for oviposition than susceptible North American species. We compared EAB oviposition preferences and bark and canopy volatile organic compound (VOC) emissions of resistant Manchurian ash and susceptible black ash, and examined relationships between VOC profiles and oviposition. In the field, black ash was highly preferred for oviposition while no eggs were laid on Manchurian ash, and we found clear differences in the VOC profiles of Manchurian and black ash. We detected 78 compounds emitted from these species, including 16 compounds that elicited EAB antennal activity in prior studies. Four compounds were unique to black and 11 to Manchurian ash. Emission rates of 14 canopy and 19 bark volatiles varied among the two species, including four previously reported as antennally active. Specifically, 7-epi-sesquithujene (bark) emissions were greater from black ash, while β-caryophyllene (canopy), linalool (bark), and α-cubebene (bark) were emitted at higher rates by Manchurian ash. No relationships were found between the emission rate of any single compound or group of compounds (e.g. monoterpenes) suggesting that preference may be based on complex profile combinations. This is the first study to directly compare VOCs of black and Manchurian ash as well as the first to examine bark- and canopy-specific VOCs. The unique bark and canopy VOC profiles of these two species implicates potentially important variation in VOCs between a closely related resistant and susceptible species that provides a foundation for future studies of host preferences of EAB.

  12. Failure to phytosanitize ash firewood infested with emerald ash borer in a small dry kiln using ISPM-15 standards.

    PubMed

    Goebel, P Charles; Bumgardner, Matthew S; Herms, Daniel A; Sabula, Andrew

    2010-06-01

    Although current USDA-APHIS standards suggest that a core temperature of 71.1 degrees C (160 degrees F) for 75 min is needed to adequately sanitize emerald ash borer, Agrilus planipennis Fairmaire-infested firewood, it is unclear whether more moderate (and economical) treatment regimes will adequately eradicate emerald ash borer larvae and prepupae from ash firewood. We constructed a small dry kiln in an effort to emulate the type of technology a small- to medium-sized firewood producer might use to examine whether treatments with lower temperature and time regimes successfully eliminate emerald ash borer from both spilt and roundwood firewood. Using white ash (Fraxinus americana L.) firewood collected from a stand with a heavy infestation of emerald ash borer in Delaware, OH, we treated the firewood using the following temperature and time regime: 46 degrees C (114.8 degrees F) for 30 min, 46 degrees C (114.8 degrees F) for 60 min, 56 degrees C (132.8 degrees F) for 30 min, and 56 degrees C (132.8 degrees F) for 60 min. Temperatures were recorded for the outer 2.54-cm (1-in.) of firewood. After treatment, all firewood was placed under mesh netting and emerald ash borer were allowed to develop and emerge under natural conditions. No treatments seemed to be successful at eliminating emerald ash borer larvae and perpupae as all treatments (including two nontreated controls) experienced some emerald ash borer emergence. However, the 56 degrees C (132.8 degrees F) treatments did result in considerably less emerald ash borer emergence than the 46 degrees C (114.8 degrees F) treatments. Further investigation is needed to determine whether longer exposure to the higher temperature (56 degrees C) will successfully sanitize emerald ash borer-infested firewood.

  13. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Tomikawa, Hiroki

    2013-03-15

    Highlights: ► Separation of Pb and Zn from Fe and Cu in ash-melting of municipal solid waste. ► Molar ratio of Cl to Na and K in fly ash affected the metal-separation efficiency. ► The low molar ratio and a non-oxidative atmosphere were better for the separation. - Abstract: In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of themore » ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu.« less

  14. Thermochemical formation of polychlorinated dibenzo-p-dioxins and dibenzofurans on the fly ash matrix from metal smelting sources.

    PubMed

    Wu, Xiaolin; Zheng, Minghui; Zhao, Yuyang; Yang, Hongbo; Yang, Lili; Jin, Rong; Xu, Yang; Xiao, Ke; Liu, Wenbin; Liu, Guorui

    2018-01-01

    Metal smelting processes are important sources of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). The present work aims to clarify the formation characteristics of PCDD/Fs by heterogeneous mechanisms on fly ash from typical multiple secondary aluminum (SAl), secondary lead (SPb) smelting, and iron ore sintering (SNT) sources in China. The formation characteristics of PCDD/Fs on fly ash were studied in the temperature range 250-450 °C for 10-150 min. Substantial thermochemical formation of PCDD/Fs on SAl and SNT ash was observed. The maximum increase of PCDD/F concentrations under 350 °C for 30 min was 604 times greater than the initial concentration in SAl ash. The concentration of PCDD/Fs was 77 times greater than that of SNT fly ash under 350 °C for 30 min. However, the maximum increase of PCDD/F concentrations was less than 8 times that in raw SPb ash under 350 °C. Contents of total organic carbon (TOC), Cu, Al, Zn and Cl, which are widely recognized as important elements for promoting PCDD/F formation, were obviously higher in SAl and SNT ash than in SPb ash. This may explain the greater observed formation times of PCDD/Fs on SAl and SNT ash than that on SPb ash. It was found that several congeners tended to form at higher temperatures than those for SAl ash. Activation energy calculation according to the Arrhenius equations could explain the dominant formation of those congeners at much higher temperatures on SAl ash. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Probabilistic detection of volcanic ash using a Bayesian approach.

    PubMed

    Mackie, Shona; Watson, Matthew

    2014-03-16

    Airborne volcanic ash can pose a hazard to aviation, agriculture, and both human and animal health. It is therefore important that ash clouds are monitored both day and night, even when they travel far from their source. Infrared satellite data provide perhaps the only means of doing this, and since the hugely expensive ash crisis that followed the 2010 Eyjafjalljökull eruption, much research has been carried out into techniques for discriminating ash in such data and for deriving key properties. Such techniques are generally specific to data from particular sensors, and most approaches result in a binary classification of pixels into "ash" and "ash free" classes with no indication of the classification certainty for individual pixels. Furthermore, almost all operational methods rely on expert-set thresholds to determine what constitutes "ash" and can therefore be criticized for being subjective and dependent on expertise that may not remain with an institution. Very few existing methods exploit available contemporaneous atmospheric data to inform the detection, despite the sensitivity of most techniques to atmospheric parameters. The Bayesian method proposed here does exploit such data and gives a probabilistic, physically based classification. We provide an example of the method's implementation for a scene containing both land and sea observations, and a large area of desert dust (often misidentified as ash by other methods). The technique has already been successfully applied to other detection problems in remote sensing, and this work shows that it will be a useful and effective tool for ash detection. Presentation of a probabilistic volcanic ash detection schemeMethod for calculation of probability density function for ash observationsDemonstration of a remote sensing technique for monitoring volcanic ash hazards.

  16. Improved prediction and tracking of volcanic ash clouds

    USGS Publications Warehouse

    Mastin, Larry G.; Webley, Peter

    2009-01-01

    During the past 30??years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality. ?? 2008 Elsevier B.V.

  17. 40 CFR 240.211-3 - Recommended procedures: Operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... every 60 minutes and as changes are made. (5) Weights of bottom ash, grate siftings, and fly ash.... (10) Gross calorific value of daily representative samples of bottom ash, grate siftings, and fly ash...

  18. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.

    PubMed

    Taggart, Ross K; Hower, James C; Dwyer, Gary S; Hsu-Kim, Heileen

    2016-06-07

    Rare earth elements (REEs) are critical and strategic materials in the defense, energy, electronics, and automotive industries. The reclamation of REEs from coal combustion fly ash has been proposed as a way to supplement REE mining. However, the typical REE contents in coal fly ash, particularly in the United States, have not been comprehensively documented or compared among the major types of coal feedstocks that determine fly ash composition. The objective of this study was to characterize a broad selection of U.S. fly ashes of varied geological origin in order to rank their potential for REE recovery. The total and nitric acid-extractable REE content for more than 100 ash samples were correlated with characteristics such as the major element content and coal basin to elucidate trends in REE enrichment. Average total REE content (defined as the sum of the lanthanides, yttrium, and scandium) for ashes derived from Appalachian sources was 591 mg kg(-1) and significantly greater than in ashes from Illinois and Powder River basin coals (403 and 337 mg kg(-1), respectively). The fraction of critical REEs (Nd, Eu, Tb, Dy, Y, and Er) in the fly ashes was 34-38% of the total and considerably higher than in conventional ores (typically less than 15%). Powder River Basin ashes had the highest extractable REE content, with 70% of the total REE recovered by heated nitric acid digestion. This is likely due to the higher calcium content of Powder River Basin ashes, which enhances their solubility in nitric acid. Sc, Nd, and Dy were the major contributors to the total REE value in fly ash, based on their contents and recent market prices. Overall, this study shows that coal fly ash production could provide a substantial domestic supply of REEs, but the feasibility of recovery depends on the development of extraction technologies that could be tailored to the major mineral content and origins of the feed coal for the ash.

  19. Volcanic Ash on Slopes of Karymsky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A volcanic eruption can produce gases, lava, bombs of rock, volcanic ash, or any combination of these elements. Of the volcanic products that linger on the land, most of us think of hardened lava flows, but volcanic ash can also persist on the landscape. One example of that persistence appeared on Siberia's Kamchatka Peninsula in spring 2007. On March 25, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the area around the Karymsky Volcano. In this image, volcanic ash from earlier eruptions has settled onto the snowy landscape, leaving dark gray swaths. The ash stains are confined to the south of the volcano's summit, one large stain fanning out toward the southwest, and another toward the east. At first glance, the ash stain toward the east appears to form a semicircle north of the volcano and sweep back east. Only part of this dark shape, however, is actually volcanic ash. Near the coast, the darker color may result from thicker vegetation. Similar darker coloring appears to the south. Volcanic ash is not really ash at all, but tiny, jagged bits of rock and glass. These jagged particles pose serious health risks to humans and animals who might inhale them. Likewise, the ash poses hazards to animals eating plants that have been coated with ash. Because wind can carry volcanic ash thousands of kilometers, it poses a more far-reaching hazard than other volcanic ejecta. Substantial amounts of ash can even affect climate by blocking sunlight. Karymsky is a stratovolcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. It is one of many active volcanoes on Russia's Kamchatka Peninsula, which is part of the 'Ring of Fire' around the Pacific Rim. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  20. Mobility and toxicity of heavy metal(loid)s arising from contaminated wood ash application to a pasture grassland soil.

    PubMed

    Mollon, L C; Norton, G J; Trakal, L; Moreno-Jimenez, E; Elouali, F Z; Hough, R L; Beesley, L

    2016-11-01

    Heavy metal(loid) rich ash (≤10,000 mg kg -1 total As, Cr, Cu and Zn) originating from the combustion of contaminated wood was subjected to several experimental procedures involving its incorporation into an upland pasture soil. Ash was added to soil that had been prior amended with local cattle manure, replicating practices employed at the farm scale. Metal(loid) concentrations were measured in soil pore water and ryegrass grown on soil/manure plus ash mixtures (0.1-3.0% vol. ash) in a pot experiment; toxicity evaluation was performed on the same pore water samples by means of a bacterial luminescence biosensor assay. Thereafter a sequential extraction procedure was carried out on selected soil, manure and ash mixtures to elucidate the geochemical association of ash derived metal(loid)s with soil constituents. Predictive modelling was applied to selected data from the pot experiment to determine the risk of transfer of As to meat and milk products in cattle grazing pasture amended with ash. The inclusion of manure to soils receiving ash reduced phyto-toxicity and increased ryegrass biomass yields, compared to soil with ash, but without manure. Elevated As and Cu concentrations in pore water and ryegrass tissue resulting from ash additions were reduced furthest by the inclusion of manure due to an increase in their geochemical association with organic matter. Zinc was the only measured metal(loid) to remain uniformly soluble and bioavailable regardless of the addition of ash and manure. Risk modelling on pot experimental data highlighted that an ash addition of >1% (vol.) to this pasture soil could result in As concentrations in milk and meat products exceeding acceptable limits. The results of this study therefore suggest that even singular low doses of ash applied to soil increase the risk of leaching of metal(loid)s and intensify the risk of As transfer in the food chain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effects of fire on ash thickness in a Lithuanian grassland and short-term spatio-temporal changes

    NASA Astrophysics Data System (ADS)

    Pereira, P.; Cerdà, A.; Úbeda, X.; Mataix-Solera, J.; Martin, D.; Jordán, A.; Burguet, M.

    2012-12-01

    Ash thickness is a key variable in the protection of soil against erosion agents after planned and unplanned fires. Thicker ash provides better protection against raindrop impact and reduces the runoff response by retaining water and promoting water infiltration although little is known about the distribution and the evolution of the ash layer after the fires. Ash thickness measurements were conducted along two transects (flat and sloping areas) following a a grid experimental design. Both transects extended from the burned area into an adjacent unburned area. We analysed ash thickness evolution according to time and fire severity. In order to interpolate data with accuracy and identify the techniques with the least bias, several interpolation methods were tested in the grid plot. Overall, the fire had a low severity. The fire significantly reduced the ground cover, especially on sloping areas owing to the higher fire severity and/or less biomass previous to the fire. Ash thickness depends on fire severity and is thin where fire severity was higher and thicker in lower fire severity sites. The ash thickness decreased with time after the fire. Between 4 and 16 days after the fire, ash was transported by wind. The major reduction took place between 16 and 34 days after the fire as a result of rainfall, and was more efficient where fire severity was higher. Between 34 and 45 days after the fire no significant differences in ash thickness were identified among ash colours and only traces of the ash layer remained. The omni-directional experimental variograms shown that variable structure did not change importantly with the time, however, the most accurate interpolation methods were different highlighting the slight different patterns of ash thickness distribution with the time. The ash spatial variability increased with the time, particularly on the slope, as a result of water erosion.

  2. Leaching characteristics of ash from the May 18, 1980, eruption of Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Smith, David Burl; Zielinski, Robert A.; Taylor, Howard E.

    1982-01-01

    Leaching of freshly erupted air-fall ash, unaffected by rain, from the May 18, 1.980,eruption of Mount St. Helens volcano, Washington, shows that Ca 2+, Na+, Mg+, SO4 2-, and Cl- are the predominant chemical species released on first exposure of the ash to water. Extremely high correlation of Ca with SO4 and Na with Cl in water leachates suggests the presence of CaSO4 and NaCl salts on the ash. The amount of water soluble material on ash increases with distance from source and with the weight fraction of small (less than 63 micrometers) ash particles of high-surface area. This suggests that surface reactions such as adsorption are responsible for concentrating the soluble material. CaSO4, NaCl, and other salts are probably formed as microscopic crystals in the high-temperature core of the eruption column and are then adsorbed by silicate ash particles. The environmentally important elements Zn, Cu, Cd, F, Pb, and Ba are released by a water leach in concentrations which could pose short-term hazards to some forms of aquatic life. However, calculated concentrations are based on a water-to-ash ratio of 4:1 or less, which is probably an underestimation of the regionally operative ratio. A subsequent leach of ash by warm alkaline solution shows dramatic increases in the amount of dissolved SiO2, U, and V, which are probably caused by increased dissolution of the glassy component of ash. Glass dissolution by alkaline ground water is a mechanism for providing these three elements to sedimentary traps where they may co-accumulate as uraniferous silica or U-V minerals. Leaching characteristics of ash from Mount St. Helens are comparable to characteristics of ash of similar composition from volcanoes in Guatemala. Ashes from each locality show similar ions predominating for a given leachate and similar fractions of a particular element in the ash removed on contact with the leach solution.

  3. Retrieval of volcanic ash properties from the Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Astrophysics Data System (ADS)

    Ventress, Lucy; Carboni, Elisa; Smith, Andrew; Grainger, Don; Dudhia, Anu; Hayer, Catherine

    2014-05-01

    The Infrared Atmospheric Sounding Interferometer (IASI), on board both the MetOp-A and MetOp-B platforms, is a Fourier transform spectrometer covering the mid-infrared (IR) from 645-2760cm-1 (3.62-15.5 μm) with a spectral resolution of 0.5cm-1 (apodised) and a pixel diameter at nadir of 12km. These characteristics allow global coverage to be achieved twice daily for each instrument and make IASI a very useful tool for the observation of larger aerosol particles (such as desert dust and volcanic ash) and the tracking of volcanic plumes. In recent years, following the eruption of Eyjafjallajökull, interest in the the ability to detect and characterise volcanic ash plumes has peaked due to the hazards to aviation. The thermal infrared spectra shows a rapid variation with wavelength due to absorption lines from atmospheric and volcanic gases as well as broad scale features principally due to particulate absorption. The ash signature depends upon both the composition and size distribution of ash particles as well as the altitude of the volcanic plume. To retrieve ash properties, IASI brightness temperature spectra are analysed using an optimal estimation retrieval scheme and a forward model based on RTTOV. Initially, IASI pixels are flagged for the presence of volcanic ash using a linear retrieval detection method based on departures from a background state. Given a positive ash signal, the RTTOV output for a clean atmosphere (containing atmospheric gases but no cloud or aerosol/ash) is combined with an ash/cloud layer using the same scheme as for the Oxford-RAL Retrieval of Aerosol and Cloud (ORAC) algorithm. The retrieved parameters are ash optical depth (at a reference wavelength of 550nm), ash effective radius, layer altitude and surface temperature. The potential for distinguishing between different ash types is explored and a sensitivity study of the retrieval algorithm is presented. Results are shown from studies of the evolution and composition of ash plumes for recent volcanic eruptions.

  4. Environmentally friendly use of non-coal ashes in Sweden.

    PubMed

    Ribbing, C

    2007-01-01

    The Swedish Thermal Engineering Research Institute (Värmeforsk) initiated an applied research program "Environmentally friendly use of non-coal ashes", in 2002. The program aims at increasing knowledge on the by-products of energy production and their application. The goal of formulating technical and environmental guidelines and assessments is a major point of the program, which is supported by about forty authorities and private organisations. The programme has been divided into four areas: recycling of ashes to forests, geotechnical applications, use in landfilling, and environmental aspects and chemistry. Among all results obtained, the following progress is shown: *Evidence for the positive effects of spreading ashes on forest growth. *A proposal for environmental guidelines on the utilisation of ashes in construction. *A handbook for using non-coal fly ashes in unpaved roads. *Technical and environmental assessments of MSWI bottom ashes in road construction. *Development of the use of ashes with municipal wastewater sludge as a cover for landfills and mine tailings. *Use of ashes from bio-fuels in concrete and replacement of cement in stoop mining. *A method to classify those by-products from combustion that have mirror entries in the EWC as a hazardous or non-hazardous compound. The Ash Programme has also made it possible to increase knowledge on ashes as valuable materials, on quality assurance and on markets for recovered materials.

  5. Intra- and inter-unit variation in fly ash petrography and mercury adsorption: Examples from a western Kentucky power station

    USGS Publications Warehouse

    Hower, J.C.; Finkelman, R.B.; Rathbone, R.F.; Goodman, J.

    2000-01-01

    Fly ash was collected from eight mechanical and 10 baghouse hoppers at each of the twin 150-MW wall-fired units in a western Kentucky power station. The fuel burned at that time was a blend of many low-sulfur, high-volatile bituminous Central Appalachian coals. The baghouse ash showed less variation between units than the mechanical hoppers. The mechanical fly ash, coarser than the baghouse ash, showed significant differences in the amount of total carbon and in the ratio of isotropic coke to both total carbon and total coke - the latter excluding inertinite and other unburned, uncoked coal. There was no significant variation in proportions of inorganic fly ash constituents. The inter-unit differences in the amount and forms of mechanical fly ash carbon appear to be related to differences in pulverizer efficiency, leading to greater amounts of coarse coal, therefore unburned carbon, in one of the units. Mercury capture is a function of both the total carbon content and the gas temperature at the point of fly ash separation, mercury content increasing with an increase in carbon for a specific collection system. Mercury adsorption on fly ash carbon increases at lower flue-gas temperatures. Baghouse fly ash, collected at a lower temperature than the higher-carbon mechanically separated fly ash, contains a significantly greater amount of Hg.

  6. A review on the effect of fly ash characteristics and their variations on the synthesis of fly ash based geopolymer

    NASA Astrophysics Data System (ADS)

    Wattimena, Oswyn K.; Antoni, Hardjito, Djwantoro

    2017-09-01

    There are more than four decades since the last 1970s where geopolymers concrete was first introduced and developed to use as a replacement to conventional concrete material which uses cement as a binder. And since the last two decades, geopolymers which utilized fly ash as aluminosilicate source material, i.e. fly ash based geopolymers, have been investigated. Many researchers present how to produce the best fly ash based geopolymer with a various source of constituent material as well as mixing formula to achieve exceptional concrete performance. Although there is a similar trend towards factors affecting the result of fly ash based geopolymer synthesis, there is still remain a wide range in mixture proportion. The considerable variation in fly ash characteristics as source material in the synthesis can very likely be one of the causes of this problem. This paper attempts to identify the effect of source material variation of geopolymer concrete, particularly which use fly ash as source material and focuses on the variation of its characteristics and the effects to properties of concrete. From the reviews it concluded that different sources (and even the same source, but different batch) of fly ash materials will give some different characteristics of the fly ash, where it would affect the synthesis process of the fly ash based geopolymer concretes.

  7. Effects of water availability on emerald ash borer larval performance and phloem phenolics of Manchurian and black ash.

    PubMed

    Chakraborty, Sourav; Whitehill, Justin G A; Hill, Amy L; Opiyo, Stephen O; Cipollini, Don; Herms, Daniel A; Bonello, Pierluigi

    2014-04-01

    The invasive emerald ash borer (EAB) beetle is a significant threat to the survival of North American ash. In previous work, we identified putative biochemical and molecular markers of constitutive EAB resistance in Manchurian ash, an Asian species co-evolved with EAB. Here, we employed high-throughput high-performance liquid chromatography with photodiode array detection and mass spectrometry (HPLC-PDA-MS) to characterize the induced response of soluble phloem phenolics to EAB attack in resistant Manchurian and susceptible black ash under conditions of either normal or low water availability, and the effects of water availability on larval performance. Total larval mass per tree was lower in Manchurian than in black ash. Low water increased larval numbers and mean larval mass overall, but more so in Manchurian ash. Low water did not affect levels of phenolics in either host species, but six phenolics decreased in response to EAB. In both ashes, pinoresinol A was induced by EAB, especially in Manchurian ash. Pinoresinol A and pinoresinol B were negatively correlated with each other in both species. The higher accumulation of pinoresinol A in Manchurian ash after attack may help explain the resistance of this species to EAB, but none of the responses measured here could explain increased larval performance in trees subjected to low water availability. © 2013 John Wiley & Sons Ltd.

  8. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator.

    PubMed

    Yang, Y; Xiao, Y; Voncken, J H L; Wilson, N

    2008-06-15

    Boiler ash generated from municipal solid waste (MSW) incinerators is usually classified as hazardous materials and requires special disposal. In the present study, the boiler ash was characterized for the chemical compositions, morphology and microstructure. The thermal chemical behavior during ash heating was investigated with thermal balance. Vitrification of the ash was conducted at a temperature of 1400 degrees C in order to generate a stable silicate slag, and the formed slag was examined with chemical and mineralogical analyses. The effect of vitrification on the leaching characteristics of various elements in the ash was evaluated with acid leaching. The study shows that the boiler ash as a heterogeneous fine powder contains mainly silicate, carbonate, sulfates, chlorides, and residues of organic materials and heavy metal compounds. At elevated temperatures, the boiler ash goes through the initial moisture removal, volatilization, decomposition, sintering, melting, and slag formation. At 1400 degrees C a thin layer of salt melt and a homogeneous glassy slag was formed. The experimental results indicate that leaching values of the vitrified slag are significantly reduced compared to the original boiler ash, and the vitrification could be an interesting alternative for a safer disposal of the boiler ash. Ash compacting, e.g., pelletizing can reduce volatilization and weight loss by about 50%, and would be a good option for the feed preparation before vitrification.

  9. The leaching characteristics of selenium from coal fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T.; Wang, J.; Burken, J.G.

    2007-11-15

    The leaching characteristics of selenium from several bituminous and subbituminous coal fly ashes under different pH conditions were investigated using batch methods. Results indicated that pH had a significant effect on selenium leaching from bituminous coal ash. The minimum selenium leaching occurred in the pH range between 3 and 4, while the maximum selenium leaching occurred at pH 12. The release of selenium from subbituminous coal ashes was very low for the entire experimental pH range, possibly due to the high content of calcium which can form hydration or precipitation products as a sink for selenium. The adsorption results formore » different selenium species indicated that Se(VI) was hardly adsorbable on either bituminous coal ashes or subbitumminous coal ashes at any pH. However, Se(I) was highly adsorbed by bituminous coal ashes under acidic pH conditions and was mostly removed by subbitumminous coal ashes across the entire pH range. This result suggests that the majority of selenium released from the tested fly ashes was Se(IV). A speciation-based model was developed to simulate the adsorption of Se(IV) on bituminous coal fly ash, and the pH-independent adsorption constants of HSeO{sup 3-} and SeO{sub 3}{sup 2-} were determined. The modeling approach is useful for understanding and predicting the release process of selenium from fly ash.« less

  10. High-volume fly ash concrete.

    DOT National Transportation Integrated Search

    2013-06-01

    The objective of the proposed study is to design, test, and evaluate high-volume fly ash concrete mixtures. Traditional specifications : limit the amount of fly ash to 40% or less cement replacement. This program attempts to increase the ash content ...

  11. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-10-28

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.

  12. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.

  13. Possibilities of municipal solid waste incinerator fly ash utilisation.

    PubMed

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  14. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOEpatents

    Beaufrere, A.H.

    1982-04-30

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas fired furnances or boilers. Two concentric shells define a combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  15. The study of the burning possibilities of solid combustibles in the determined conditions for complete usage of caloric [energy] and ashes resulted

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voina, N.I.; Barca, F.; Mogos, D.

    1995-12-31

    In modern combustors, 95--98% of the organic mass of a solid combustible is converted into caloric energy; 2--4% remain in the fly ash captured in electrofilters and hydraulically removed in most cases. The 2--4% unburned materials in fly ash, together with the water from being hydraulically transported, make it difficult for the use of the fly ash for metal extraction or as a binder in the materials industry. This work presents the research results of a study in which the burning process was modified to result in fly ash without carbon content and fly ash removal by dry capture. Laboratorymore » fluidized-bed combustion of lignite with and without addition of limestone for sulfur capture was used to generate ashes for further study. The ashes were studied for their use as binders and as a cement substitute.« less

  16. Geochemical and analytical implications of extensive sulfur retention in ash from Indonesian peats

    USGS Publications Warehouse

    Kane, Jean S.; Neuzil, Sandra G.

    1993-01-01

    Sulfur is an analyte of considerable importance to the complete major element analysis of ash from low-sulfur, low-ash Indonesian peats. Most analytical schemes for major element peat- and coal-ash analyses, including the inductively coupled plasma atomic emission spectrometry method used in this work, do not permit measurement of sulfur in the ash. As a result, oxide totals cannot be used as a check on accuracy of analysis. Alternative quality control checks verify the accuracy of the cation analyses. Cation and sulfur correlations with percent ash yield suggest that silicon and titanium, and to a lesser extent, aluminum, generally originate as minerals, whereas magnesium and sulfur generally originate from organic matter. Cation correlations with oxide totals indicate that, for these Indonesian peats, magnesium dominates sulfur fixation during ashing because it is considerably more abundant in the ash than calcium, the next most important cation in sulfur fixation.

  17. The Wireless Sensor Network (WSN) Based Coal Ash Impoundments Safety Monitoring System

    NASA Astrophysics Data System (ADS)

    Sun, E. J.; Nieto, A.; Zhang, X. K.

    2017-01-01

    Coal ash impoundments are inevitable production of the coal-fired power plants. All coal ash impoundments in North Carolina USA that tested for groundwater contamination are leaking toxic heavy metals and other pollutants. Coal ash impoundments are toxic sources of dangerous pollutants that pose a danger to human and environmental health if the toxins spread to adjacent surface waters and drinking water wells. Coal ash impoundments failures accidents resulted in serious water contamination along with toxic heavy metals. To improve the design and stability of coal ash impoundments, the Development of a Coal Ash Impoundment Safety Monitoring System (CAISM) was proposed based on the implementation of a wireless sensor network (WSN) with the ability to monitor the stability of coal ash impoundments, water level, and saturation levels on-demand and remotely. The monitoring system based on a robust Ad-hoc network could be adapted to different safety conditions.

  18. Volcanic ash melting under conditions relevant to ash turbine interactions.

    PubMed

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B

    2016-03-02

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  19. Construction of a Dry Ash Dam with Soilbags and Slope Stability Analysis

    NASA Astrophysics Data System (ADS)

    Li, Hui; Song, Yingjun; Gao, Jiaorong; Li, Longhua; Zhou, Yuqi; Qi, Hui

    2017-12-01

    In thermal power plants, it is necessary to build ash dams to store fly ash, which is the by-product after the combustion of coals. To solve the problem of lacking rockfill materials in Africa, A new technology of constructing ash dams using solibags filled with local sands is proposed and the method of analyzing its slope stability is suggested. The design of the ash dam using soilbags in Lamb Thermal Power Plant of Kenya is introduced in detail. The slope stability of the soilbags-constructed ash dam was analyzed by adopting the suggested method. The results show that the soilbags filled with ash or sands have high compressive strength, and the primary dam constructed with soilbags can effectively retain the backfill ash and the stacking dam reinforced with soilbags can stand stable even with the slope of 1:1.5.

  20. Volcanic Ash fall Impact on Vegetation, Colima 2005

    NASA Astrophysics Data System (ADS)

    Garcia, M. G.; Martin, A.; Fonseca, R.; Nieto, A.; Radillo, R.; Armienta, M.

    2007-05-01

    An ash sampling network was established arround Colima Volcano in 2005. Ash fall was sampled on the North, Northeast, East, Southeast, South, Southwest and West of the volcano. Samples were analyzed for ash components, geochemistry and leachates. Ash fall ocurred on April (12), May (10, 23), June (2, 6, 9, 10, 12, 14), July (27), September (27), October (23) and November (24). Most of the ash is made of andesitic dome-lithics but shows diferences in crystal, juvenile material and lithic content. In May, some samples contained grey and dark pumice (scoria). Texture varies from phi >4 to phi 0. Leachate concentration were low: SO4 (7.33-54.19) Cl- (2.29-4.97) and F- (0.16-0.37). During 2005, Colima Volcano's ash fall rotted some of the guava and peach fruits and had a drying effect on spearment and epazote plants. Even these small ash amounts could have hindered sugar cane and agave growth.

  1. Water table response to harvesting and simulated emerald ash borer mortality in black ash wetlands in Minnesota, USA

    Treesearch

    Robert A. Slesak; Christian F. Lenhart; Kenneth N. Brooks; Anthony W. D' Amato; Brian J. Palik

    2014-01-01

    Black ash wetlands are seriously threatened because of the invasive emerald ash borer (EAB). Wetland hydrology is likely to be modified following ash mortality, but the magnitude of hydrological impact following loss via EAB and alternative mitigation harvests is not clear. Our objective was to assess the water table response to simulated EAB and harvesting to...

  2. Patterns of Coarse Woody Debris in Hardwood Forests across a Chronosequence of Ash Mortality Due to the Emerald Ash Borer (Agrilus planipennis)

    Treesearch

    Matt Higham; Brian M. Hoven; David L. Gorchov; Kathleen S. Knight

    2017-01-01

    The invasive emerald ash borer (Agrilus planipennis) (EAB) is causing widespread ash (Fraxinus spp.) mortality in 25 U.S. states and two Canadian provinces. We investigated the impact of EAB on coarse woody debris (CWD) volume across 24 sites in western and central Ohio, USA, representing a chronosequence of ash mortality,...

  3. Emerald Ash Borer: Invasion of the Urban Forest and the Threat to North America's Ash Resource

    Treesearch

    Therese M. Poland; Deborah G. McCullough

    2006-01-01

    The emerald ash borer (EAB), a phloem-feeding beetle native to Asia, was discovered killing ash trees in southeastern Michigan and Windsor, Ontario, in 2002. Like several other invasive forest pests, the EAB likely was introduced and became established in a highly urbanized setting, facilitated by international trade and abundant hosts. Up to 15 million ash trees in...

  4. Update on exotic ash collection for hybrid breeding and survey for EAB-resistance in native North American species

    Treesearch

    Mary E. Mason; Daniel A. Herms; David W. Carey; Kathleen S. Knight; Nurul I. Faridi; Jennifer. Koch

    2011-01-01

    Contrary to the high levels of devastation observed on North American ash species infested with emerald ash borer (EAB) (Agrilus planipennis Fairmaire), reports from Asia indicate that EAB-induced destruction of Asian ash species is limited to stressed trees. This indicates that Asian ash species have co-evolved resistance, or at least a high degree...

  5. Ash cap influences on site productivity and fertilizer response in forests of the Inland Northwest

    Treesearch

    Mariann T. Garrison-Johnston; Peter G. Mika; Dan L. Miller; Phil Cannon; Leonard R. Johnson

    2007-01-01

    Data from 139 research sites throughout the Inland Northwest were analyzed for effects of ash cap on site productivity, nutrient availability and fertilization response. Stand productivity and nitrogen (N) fertilizer response were greater on sites with ash cap than on sites without. Where ash was present, depth of ash had no effect on site productivity or N fertilizer...

  6. Seasonal Variations in Ash Content of Some Michigan Forest Floor Fuels

    Treesearch

    Robert M. Loomis

    1982-01-01

    Samples from the forest floor litter layer were collected seasonally from under medium to fully stocked larger sapling to sawtimber stands in Lower Michigan to study seasonal ash content changes. The total ash and silica-free ash content of tree foliage in the upper part of the litter layer differed little from season to season. Differences in ash content due to...

  7. SLAM: A multi-agency pilot project to SL.ow A.sh M.ortality caused by emerald ash borer in outlier sites

    Treesearch

    Therese M. Poland; Deborah G. McCullough

    2010-01-01

    Since its discovery in southeast Michigan in 2002, the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has continued to spread and kill ash (Fraxinus) trees at an alarming rate. As of February 2010, EAB has killed tens of millions of ash trees in Michigan, at least 12 additional U.S. states, and the...

  8. Interspecific comparison of constitutive ash phloem phenolic chemistry reveals compounds unique to Manchurian ash, a species resistant to emerald ash borer

    Treesearch

    Justin G.A. Whitehill; Stephen O. Opiyo; Jennifer L. Koch; Daniel A. Herms; Donald F. Cipollini; Pierluigi Bonello

    2012-01-01

    The emerald ash borer (Agrilus planipennis, EAB) is an invasive wood-borer indigenous to Asia and is responsible for widespread ash (Fraxinus spp.) mortality in the U.S. and Canada. Resistance and susceptibility to EAB varies among Fraxinus spp., which is a result of their co-evolutionary history with the pest....

  9. Volcanic ash aggregation in the lab - can we mimic natural processes?

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Jacob, Michael; Ayris, Paul; Cimarelli, Corrado; Dingwell, Donald B.; Guttzeit, Melanie; Hess, Kai-Uwe; Walter, Ulrich

    2015-04-01

    Explosive volcanic eruptions release large amounts of particles into the atmosphere. Volcanic ash, by definition pyroclasts smaller than 2 mm, can be distributed around the globe by prevailing winds. Ash poses hazards to aviation industry by melting in jet turbines, to human health by entering respiration systems and to society by damaging infrastructure. Under certain circumstances, ash particles can cluster together and build ash aggregates. Aggregates range in size from few mm to few cm and may exhibit complex internal stratigraphy. During growth, weight, density and aerodynamic properties change, leading to a significantly different settling behavior compared to individual ash particles. Although ash aggregation has been frequently observed in the geologic record, the physical and chemical mechanisms generating the aggregates remain poorly understood. During several field campaigns, we collected numerous ash aggregates and analyzed their textural, chemical and mechanical properties. Based on this knowledge, we have designed experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH, Germany. In this device, a continuous fluidized bed can be applied on solid particles and simulate gas-particle flow conditions as they would be expected in volcanic plumes or pyroclastic density currents. The geological record and direct observations have shown that both processes are capable of producing ash aggregates. As starting material we used Na-glass beads as an analogue and volcanic ash from Laacher See Volcano, Eifel Volcanic Field, Germany. We define parameters such as grainsize, specific surface area and concentration of the starting material, degree of turbulence, temperature and moisture in the process chamber and the composition of the liquid phase to influence form, size, stability and production rate of aggregates. We were able to experimentally produce round, unstructured ash pellets up to 5mm in diameter. A detailed textural description highlights the strongly different properties of single ash grains and ash aggregates. These experiments aim at experimentally constraining the boundary conditions required for the generation of strong ash aggregates. A better mechanistic understanding will serve for more adequate ash mass distribution modeling.

  10. A Bayesian method to rank different model forecasts of the same volcanic ash cloud: Chapter 24

    USGS Publications Warehouse

    Denlinger, Roger P.; Webley, P.; Mastin, Larry G.; Schwaiger, Hans F.

    2012-01-01

    Volcanic eruptions often spew fine ash high into the atmosphere, where it is carried downwind, forming long ash clouds that disrupt air traffic and pose a hazard to air travel. To mitigate such hazards, the community studying ash hazards must assess risk of ash ingestion for any flight path and provide robust and accurate forecasts of volcanic ash dispersal. We provide a quantitative and objective method to evaluate the efficacy of ash dispersal estimates from different models, using Bayes theorem to assess the predictions that each model makes about ash dispersal. We incorporate model and measurement uncertainty and produce a posterior probability for model input parameters. The integral of the posterior over all possible combinations of model inputs determines the evidence for each model and is used to compare models. We compare two different types of transport models, an Eulerian model (Ash3d) and a Langrangian model (PUFF), as applied to the 2010 eruptions of Eyjafjallajökull volcano in Iceland. The evidence for each model benefits from common physical characteristics of ash dispersal from an eruption column and provides a measure of how well each model forecasts cloud transport. Given the complexity of the wind fields, we find that the differences between these models depend upon the differences in the way the models disperse ash into the wind from the source plume. With continued observation, the accuracy of the estimates made by each model increases, increasing the efficacy of each model’s ability to simulate ash dispersal.

  11. Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies.

    PubMed

    Saqib, Naeem; Bäckström, Mattias

    2015-10-01

    Impact of waste fuels (virgin/waste wood, mixed biofuel (peat, bark, wood chips) industrial, household, mixed waste fuel) and incineration technologies on partitioning and leaching behavior of trace elements has been investigated. Study included 4 grate fired and 9 fluidized boilers. Results showed that mixed waste incineration mostly caused increased transfer of trace elements to fly ash; particularly Pb/Zn. Waste wood incineration showed higher transfer of Cr, As and Zn to fly ash as compared to virgin wood. The possible reasons could be high input of trace element in waste fuel/change in volatilization behavior due to addition of certain waste fractions. The concentration of Cd and Zn increased in fly ash with incineration temperature. Total concentration in ashes decreased in order of Zn>Cu>Pb>Cr>Sb>As>Mo. The concentration levels of trace elements were mostly higher in fluidized boilers fly ashes as compared to grate boilers (especially for biofuel incineration). It might be attributed to high combustion efficiency due to pre-treatment of waste in fluidized boilers. Leaching results indicated that water soluble forms of elements in ashes were low with few exceptions. Concentration levels in ash and ash matrix properties (association of elements on ash particles) are crucial parameters affecting leaching. Leached amounts of Pb, Zn and Cr in >50% of fly ashes exceeded regulatory limit for disposal. 87% of chlorine in fly ashes washed out with water at the liquid to solid ratio 10 indicating excessive presence of alkali metal chlorides/alkaline earths. Copyright © 2015. Published by Elsevier B.V.

  12. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions.

    PubMed

    Oh, Hyukjin; Annamalai, Kalyan; Sweeten, John M

    2008-04-01

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass [FB]) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash "fouling" were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash-fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out.

  13. Toward quantitative forecasts of volcanic ash dispersal: Using satellite retrievals for optimal estimation of source terms

    NASA Astrophysics Data System (ADS)

    Zidikheri, Meelis J.; Lucas, Christopher; Potts, Rodney J.

    2017-08-01

    Airborne volcanic ash is a hazard to aviation. There is an increasing demand for quantitative forecasts of ash properties such as ash mass load to allow airline operators to better manage the risks of flying through airspace likely to be contaminated by ash. In this paper we show how satellite-derived mass load information at times prior to the issuance of the latest forecast can be used to estimate various model parameters that are not easily obtained by other means such as the distribution of mass of the ash column at the volcano. This in turn leads to better forecasts of ash mass load. We demonstrate the efficacy of this approach using several case studies.

  14. Physical and Chemical Character of Fly Ash of Coal Fired Power Plant in Java

    NASA Astrophysics Data System (ADS)

    Triwulan; Priadana, K. A.; Ekaputri, J. J.; Bayuaji, R.

    2017-11-01

    Quality of fly ash is varying widely in the field, it depends on the combustion process and the quality of the basic ingredients, namely coal. It will affect the physical and mechanical properties of the concrete mixtures used. This study used 12 samples of fly ash. The physical and chemical properties and finesse modulus were analyzed. The fly ash was mixed with OPC (Ordinary Portland Cement) with the proportion of 20% fly ash and 80% OPC. The specimens were form with mortar dimension of 5cm x 5 cm. The test was affected by the correlation of fly ash fineness modulus to compressive strength, correlation density of fly ash to compressive strength, and correlation of carbon content to the compressive strength.

  15. An atlas of volcanic ash

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1974-01-01

    Volcanic ash samples collected from a variety of recent eruptions were studied, using petrography, chemical analyses, and scanning electron microscopy to characterize each ash type and to relate ash morphology to magma composition and eruption type. The ashes are best placed into two broad genetic categories: magnetic and hydrovolcanic (phreatomagmatic). Ashes from magmatic eruptions are formed when expanding gases in the magma form a froth that loses its coherence as it approaches the ground surface. During hydrovolcanic eruptions, the magma is chilled on contact with ground or surface waters, resulting in violent steam eruptions. Within these two genetic categories, ashes from different magma types can be characterized. The pigeon hole classification used here is for convenience; there are eruptions which are driven by both phreatic and magmatic gases.

  16. Can ash clog soil pores?

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands evaluated here. Infiltration reductions and increases in runoff in these systems are more likely caused by the hydrologic effects of the textural interface between ash and soil, or by other fire-induced changes such as vegetation removal, decrease in roughness, and changes in soil water repellency. This is important information for determining the desired focus of post-fire management activities.

  17. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    NASA Astrophysics Data System (ADS)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image velocimetry (PIV). Scanning Electron Microscopy (SEM) of ash particles collected in localized deposition areas is used to correlate the PIV results to particle shape. In addition, controlled wind tunnel experiments are used to determine particle fate and transport in a turbulent boundary layer for a mixed particle population. Collectively, these studies will provide an improved understanding of the effects of particle shape on sedimentation and dispersion, and foundational data for the predictive modeling of the fate and transport of fine ash particles suspended in the atmosphere.

  18. White Fringetree as a Novel Larval Host for Emerald Ash Borer.

    PubMed

    Cipollini, Don

    2015-02-01

    Emerald ash borer is an invasive Asian pest of ash species in North America. All North American species of ash tested so far are susceptible to it, but there are no published reports of this insect developing fully in non-ash hosts in the field in North America. I report here evidence that emerald ash borer can attack and complete development in white fringetree, Chionanthus virginicus L., a species native to the southeastern United States that is also planted ornamentally. Four of 20 mature ornamental white fringetrees examined in the Dayton, Ohio area showed external symptoms of emerald ash borer attack, including the presence of adult exit holes, canopy dieback, and bark splitting and other deformities. Removal of bark from one of these trees yielded evidence of at least three generations of usage by emerald ash borer larvae, several actively feeding live larvae, and a dead adult confirmed as emerald ash borer. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Comparing Two Independent Satellite-Based Algorithms for Detecting and Tracking Ash Clouds by Using SEVIRI Sensor.

    PubMed

    Falconieri, Alfredo; Cooke, Michael C; Filizzola, Carolina; Marchese, Francesco; Pergola, Nicola; Tramutoli, Valerio

    2018-01-27

    The Eyjafjallajökull (Iceland) volcanic eruption of April-May 2010 caused unprecedented air-traffic disruption in Northern Europe, revealing some important weaknesses of current operational ash-monitoring and forecasting systems and encouraging the improvement of methods and procedures for supporting the activities of Volcanic Ash Advisory Centers (VAACs) better. In this work, we compare two established satellite-based algorithms for ash detection, namely RST ASH and the operational London VAAC method, both exploiting sensor data of the spinning enhanced visible and infrared imager (SEVIRI). We analyze similarities and differences in the identification of ash clouds during the different phases of the Eyjafjallajökull eruption. The work reveals, in some cases, a certain complementary behavior of the two techniques, whose combination might improve the identification of ash-affected areas in specific conditions. This is indicated by the quantitative comparison of the merged SEVIRI ash product, achieved integrating outputs of the RST ASH and London VAAC methods, with independent atmospheric infrared sounder (AIRS) DDA (dust-detection algorithm) observations.

  20. Multi-scale analytical investigation of fly ash in concrete

    NASA Astrophysics Data System (ADS)

    Aboustait, Mohammed B.

    Much research has been conducted to find an acceptable concrete ingredient that would act as cement replacement. One promising material is fly ash. Fly ash is a by-product from coal-fired power plants. Throughout this document work on the characterization of fly ash structure and composition will be explored. This effort was conducted through a mixture of cutting edge multi-scale analytical X-ray based techniques that use both bulk experimentation and nano/micro analytical techniques. Furtherly, this examination was coupled by performing Physical/Mechanical ASTM based testing on fly ash-enrolled-concrete to examine the effects of fly ash introduction. The most exotic of the cutting edge characterization techniques endorsed in this work uses the Nano-Computed Tomography and the Nano X-ray Fluorescence at Argonne National Laboratory to investigate single fly ash particles. Additional Work on individual fly ash particles was completed by laboratory-based Micro-Computed Tomography and Scanning Electron Microscopy. By combining the results of individual particles and bulk property tests, a compiled perspective is introduced, and accessed to try and make new insights into the reactivity of fly ash within concrete.

  1. Experimental Study on Durability Improvement of Fly Ash Concrete with Durability Improving Admixture

    PubMed Central

    Quan, Hong-zhu; Kasami, Hideo

    2014-01-01

    In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%–20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized. PMID:25013870

  2. Effect of coal ash on growth and metal uptake by some selected ectomycorrhizal fungi in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, P.; Reddy, U.G.; Lapeyrie, F.

    2005-07-01

    Six isolates of ectomycorrhizal fungi namely, Laccaria fraterna (EM-1083), Pisolithus tinctorius (EM-1081), Pisolithus tinctorius (EM-1290), Pisolithus tinctorius (EM-1293), Scleroderma verucosurn (EM-1283), and Scleroderma cepa (EM-1233), were grown on three variants of coal ash, namely electrostatically precipitated (ESP) ash, pond ash, and bottom ash moistened with Modified Melin-Norkans (MMN) medium in vitro. The colony diameter reflected the growth of the isolates on the coal ash. Metal accumulation in the mycelia was assayed by atomic absorption spectrophotometry. Six metals, namely aluminum, cadmium, chromium, iron, lead, and nickel were selected on the basis of their abundance in coal ash and toxicity potential formore » the present work. Growth of vegetative mycelium on fly ash variants and metal accumulation data indicated that Pisolithus tinctorius (EM-1290) was the most tolerant among the isolates tested for most of the metals. Since this isolate is known to be mycorrhizal with Eucalyptus, it could be used for the reclamation of coal ash over burdened sites.« less

  3. Optimization of soil stabilization with class C fly ash.

    DOT National Transportation Integrated Search

    1987-01-01

    Previous Iowa DOT sponsored research has shown that some Class : C fly ashes are cementitious (because calcium is combined as calcium : aluminates) while other Class C ashes containing similar amounts of : elemental calcium are not (1). Fly ashes fro...

  4. Evaluation of Fly Ash Quality Control Tools

    DOT National Transportation Integrated Search

    2010-06-30

    Many entities currently use fly ash in portland cement concrete (PCC) pavements and structures. Although the body of knowledge is : great concerning the use of fly ash, several projects per year are subject to poor performance where fly ash is named ...

  5. Evaluation of fly ash quality control tools.

    DOT National Transportation Integrated Search

    2010-06-30

    Many entities currently use fly ash in portland cement concrete (PCC) pavements and structures. Although the body of knowledge is : great concerning the use of fly ash, several projects per year are subject to poor performance where fly ash is named ...

  6. Progress and future directions in research on the emerald ash borer

    Treesearch

    Therese M. Poland

    2014-01-01

    When the emerald ash borer (EAB) was discovered near Detroit, Michigan in July 2002, very little was known about it other than the fact that it was killing large numbers of ash trees throughout a widespread area in southeast Michigan (Poland and McCullough 2006). Ash mortality in the area had been noted for a few years, but was attributed to ash decline until damage...

  7. Sap flow of black ash in wetland forests of northern Minnesota, USA: Hydrologic implications of tree mortality due to emerald ash borer

    Treesearch

    Andrew C. Telander; Robert A. Slesak; Anthony W. D' Amato; Brian J. Palik; Kenneth N. Brooks; Christian F. Lenhart

    2015-01-01

    Black ash (Fraxinus nigra) mortality caused by the invasive emerald ash borer (EAB) is of concern to land managers in the upper Great Lakes region, given the large areas of ash-dominated forest and potential alteration of wetland hydrology following loss of this foundation tree species. The importance of changes in evapotranspiration (ET) following...

  8. A regional assessment of emerald ash borer impacts in the Eastern United States: ash mortality and abundance trends in time and space

    Treesearch

    Randall S. Morin; Scott A. Pugh; Andrew M. Liebhold; Susan J. Crocker

    2015-01-01

    The nonnative insect, emerald ash borer (Agrilus plannipennis Fairmaire), has caused extensive mortality of ash tree species (Fraxinus spp.) in the eastern United States. As of 2012, the pest had been detected in about 15 percent of the counties in the 37 states that comprise the natural range of ash in forests of the eastern...

  9. Predicting the ability to produce emerald ash borer: a comparison of riparian and upland ash forests in southern lower Michigan

    Treesearch

    Susan J. Crocker; Deborah G. McCullough; Nathan W. Siegert

    2009-01-01

    Concern for the future of ash trees in the United States has risen since the 2002 discovery of emerald ash borer (EAB) (Agrilus planipennis Fairmaire) in southeastern Michigan. The ability of ash forests in the Southern Lower Peninsula of Michigan to produce EAB was compared by physiographic class and stand size. Results showed that EAB production...

  10. Cellular Mutagenicity and Heavy Metal Concentrations of Leachates Extracted from the Fly and Bottom Ash Derived from Municipal Solid Waste Incineration

    PubMed Central

    Chen, Po-Wen; Liu, Zhen-Shu; Wun, Min-Jie; Kuo, Tai-Chen

    2016-01-01

    Two incinerators in Taiwan have recently attempted to reuse the fly and bottom ash that they produce, but the mutagenicity of these types of ash has not yet been assessed. Therefore, we evaluated the mutagenicity of the ash with the Ames mutagenicity assay using the TA98, TA100, and TA1535 bacterial strains. We obtained three leachates from three leachants of varying pH values using the toxicity characteristic leaching procedure test recommended by the Taiwan Environmental Protection Agency (Taiwan EPA). We then performed the Ames assay on the harvested leachates. To evaluate the possible relationship between the presence of heavy metals and mutagenicity, the concentrations of five heavy metals (Cd, Cr, Cu, Pb, and Zn) in the leachates were also determined. The concentrations of Cd and Cr in the most acidic leachate from the precipitator fly ash and the Cd concentration in the most acidic leachate from the boiler fly ash exceeded the recommended limits. Notably, none of the nine leachates extracted from the boiler, precipitator, or bottom ashes displayed mutagenic activity. This data partially affirms the safety of the fly and bottom ash produced by certain incinerators. Therefore, the biotoxicity of leachates from recycled ash should be routinely monitored before reusing the ash. PMID:27827867

  11. Evaluation of concrete incorporating bottom ash as a natural aggregates replacement.

    PubMed

    Andrade, L B; Rocha, J C; Cheriaf, M

    2007-01-01

    A study on the incorporation of coal bottom ash from thermoelectric power stations as a substitute material for natural sand in the production of concrete is here presented. The normally coarse, fused, glassy texture of bottom ash makes it an ideal substitute for natural aggregates. The use of bottom ash in concrete presents several technical challenges: the physical and mineralogical characteristics of the bottom ash; the effect on water demand and the participation on cements hydratation. In the production of the concrete, substitutions in volume were used. Two different ways to employ bottom ash were used to make up the mix proportions: one considering the natural humidity present in the porous particles and the other not considering it, seeking to maintain the same strength. These considerations are fundamental given that the process of bottom ash extraction is carried out through moisture. Mechanical tests by compressive strength were performed and the elastic modulus was determined. An analysis of the influence of bottom ash in the formation of pores was carried out through tests for the water loss by air drying and water uptake by capillary absorption. The results show that the higher the bottom ash contents in the concrete, the worse the performance regarding moisture transport. However, for one bottom ash concrete type, the mechanical properties were maintained.

  12. Geotechnical properties of ash deposits near Hilo, Hawaii

    USGS Publications Warehouse

    Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.

    1982-01-01

    Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.

  13. Evaluation of sewage sludge incineration ash as a potential land reclamation material.

    PubMed

    Lin, Wenlin Yvonne; Ng, Wei Cheng; Wong, Belinda Shu Ee; Teo, Serena Lay-Ming; Sivananthan, Gayathiri D/O; Baeg, Gyeong Hun; Ok, Yong Sik; Wang, Chi-Hwa

    2018-05-23

    This study evaluated the potential of utilising sewage sludge incineration ash as a land reclamation material. Toxicity assessment of the leachate of the ash was carried out for both terrestrial and marine organisms. Both the fruit fly Drosophila melanogaster and barnacle Amphibalanus amphitrite showed that both bottom and fly ash leached at liquid-to-solid (L/S) ratio 5 did not substantially affect viabilities. The leachate carried out at L/S 10 was compared to the European Waste Acceptance Criteria and the sewage sludge ashes could be classified as non-hazardous waste. The geotechnical properties of the sewage sludge ash were studied and compared to sand, a conventional land reclamation material, for further evaluation of its potential as a land reclamation material. It was found from direct shear test that both bottom and fly ashes displayed similar and comparable shear strength to that of typical compacted sandy soil based on the range of internal friction angle obtained. However, the consolidation profile of bottom ash was significantly different from sand, while that of fly ash was more similar to sand. Our study showed that the sewage sludge ash has the potential to be used as a land reclamation material. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    NASA Astrophysics Data System (ADS)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to investigate the sintering process of volcanic ash. In order to analyze the mineral transformation and microstructure evolution, the qualitative as well as quantitative crystalline phase analysis of volcanic ash samples directly taken from furnace by per 100 oC in the range of between 100 and 1400 oC as well as evaluation of microstructure of volcanic ash taken from from furnace by per 20 oC in the range of between 1000 and 1300 oC has been made by X-ray diffraction (XRD) and observed by scanning electron microscopy (SEM). Finally, we obtain the viscosity temperature curve for volcanic ash during melting process on the basis of the characteristic temperature obtained by HSM.

  15. Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile

    NASA Astrophysics Data System (ADS)

    Wilson, T. M.; Cole, J. W.; Stewart, C.; Cronin, S. J.; Johnston, D. M.

    2011-04-01

    Tephra fall from the August 1991 eruption of Volcán Hudson affected some 100,000 km2 of Patagonia and was almost immediately reworked by strong winds, creating billowing clouds of remobilised ash, or `ash storms'. The immediate impacts on agriculture and rural communities were severe, but were then greatly exacerbated by continuing ash storms. This paper describes the findings of a 3-week study tour of the diverse environments of southern Patagonia affected by ash storms, with an emphasis on determining the impacts of repeated ash storms on agriculture and local practices that were developed in an attempt to mitigate these impacts. Ash storms produce similar effects to initial tephra eruptions, prolonged for considerable periods. These have included the burial of farmland under dune deposits, abrasion of vegetation and contamination of feed supplies with fine ash. These impacts can then cause problems for grazing animals such as starvation, severe tooth abrasion, gastrointestinal problems, corneal abrasion and blindness, and exhaustion if sheep fleeces become laden with ash. In addition, ash storms have led to exacerbated soil erosion, human health impacts, increased cleanup requirements, sedimentation in irrigation canals, and disruption of aviation and land transport. Ash deposits were naturally stabilised most rapidly in areas with high rainfall (>1,500 mm/year) through compaction and enhanced vegetation growth. Stabilisation was slowest in windy, semi-arid regions. Destruction of vegetation and suppression of regrowth by heavy tephra fall (>100 mm) hindered the stabilisation of deposits for years, and reduced the surface friction which increased wind erosivity. Stabilisation of tephra deposits was improved by intensive tillage, use of windbreaks and where there was dense and taller vegetative cover. Long-term drought and the impracticality of mixing ash deposits with soil by tillage on large farms was a barrier to stabilising deposits and, in turn, agricultural recovery. The continuing ash storms motivated the partial evacuation of small rural towns such as Chile Chico (Chile) and Los Antiguos (Argentina) in September-December 1991, after the primary tephra fall in August 1991. Greatly increased municipal cleanup efforts had to be sustained beyond the initial tephra fall to cope with the ongoing impacts of ash storms. Throughout the 1990s, ash storms contributed to continued population migration out of the affected area, leaving hundreds of farms abandoned on the Argentine steppe. The major lesson from our study is the importance of stabilisation of ash deposits as soon as possible after the initial eruption, particularly in windy, arid climates. Suggested mitigation measures include deep cultivation of the ash into the soil and erecting windbreaks.

  16. Ash after forest fires. Effects on soil hydrology and erosion

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.

    2013-04-01

    Hillslopes were though to be most susceptible to enhanced hydro-geomorphological responses immediately following burning, with susceptibility declining during the first months or years depending on the soil and vegetation recovery. However, Cerdà (1998) found some indices in that immediately after the fire, the thin wettable ash layer that typically covers the ground could absorb rainfall and prevent or delay the onset of overland flow and associated erosion. Therefore the time lag while ash remains on the ground become of crucial importance to protect the soil after a wildfire. The effect of this ash layer was rarely been considered in detail because ash has often been reduced or redistributed by wind or water erosion before the onset of monitoring and thus the data collection typically begun some weeks or month after the fire. The first papers focussed only on ash and its hydrological effects were published by Cerdà and Doerr (2008) and by Woods and Balfour (2008). The results showed that the soil covered with ash indeed reduced and delayed surface runoff, reduced soil splash detachment and produced lower sediment yield compared to bare terrain. However, these findings arose more questions, as for instance: Why in other research there were indices that ash reduces infiltration? what is the mechanism by which why ash reduces overland flow? The research went further with Bodí PhD. First of all, it was crucial the agreement on the fact that the material "ash" is very variable depending on the original vegetation and the type and temperature of combustion. Therefore ash properties are different between wildfires even and within a fire. This is the main reason of its different effects and thus ash not always reduces runoff and sediment yield. In this way, depending on the nature of ash, it can increase overland flow if it is crusted (usually it contains a high content of calcium carbonate), it is water repellent (with high contents of organic carbon and specially from certain Eucaliptus and Pinus), or if clog soil pores (depending also on the soil type). If ash is wettable, it can store even 80% of its volume and then it will delay and reduce overland flow proportionally to the thickness of the ash layer. Once ash gets saturated, the flow tends to adjust to an infiltration rate similar to the soil itself, or sometimes higher due to the protection of ash that can reduce soil water repellency and soil sealing (Bodí et al. 2011, 2012). Still, many other aspects on ash remain unknown and ash present us more questions like, what it is its role on the carbon cycle? what is the extent of the ahs effects at basin scale? what is the fate of ash and how long it remains in the ecosystem? are there specific effects of ash depending on the ecosystem and so the type of ash? Acknowledgements This work was supported financially by a research fellowship (AP2007-04602) from the Spanish Ministry of Science and Innovation (M.B. Bodí) and the projects PT2009-0073 and CGL2010-21670-C02-01. References Bodí, M.B., Mataix-Solera, J., Doerr, S.H., Cerdà, A., 2011, The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma 160, 599-607. Bodí, M.B., Doerr, S.H., Cerdà, A., Mataix-Solera, J., 2012, Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma 191, 14-23 Cerdà, A., 1998, Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes 12, 1031-1042. Cerdà, A., Doerr, S.H., 2008, The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 74, 256-263. Woods, S.W., Balfour, V., 2008, The effect of ash on runoff and erosion after a forest wildfire, Montana, U.S.A. International Journal of Wildland Fire 17, 535-548.

  17. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments.

    PubMed

    Mõtlep, Riho; Sild, Terje; Puura, Erik; Kirsimäe, Kalle

    2010-12-15

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Firing system modification to alter ash properties for reduction of deposition and slagging under low NOx firing conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, D.; Lewis, R.; Tobiasz, R.

    1998-12-31

    The composition and properties of ash formed during coal firing have a major impact on boiler performance. Higher ash content in the coal can mean higher costs associated with coal handling, transportation, ash removal and ash disposal along with higher costs due to the increased ash content`s deleterious effects on pulverizing, combustion and heat transfer. ABB C-E Services, Inc. has conducted research for many years on what might be done to minimize the adverse effects of ash on boiler performance. Recently, ABB C-E Services has studied the effects of firing system modifications on ash composition and properties and the effectmore » these firing system modifications have on overall furnace performance. The subject of this paper is the impact of the installation of the CFS Concentric Firing System on the propensity for boiler wall ash deposition. For this study, CFS yaw angles were varied and particle samples were collected at the waterwalls for the different yaw angles tested. These ash samples were analyzed for ash composition. The results showed that with a larger CFS yaw angle (the air stream directed more towards the boiler walls) the base/acid ratio, iron content and sulfur content of the particle samples collected at the waterwall were reduced. This effect is due to several contributing factors: (1) an oxidizing environment produced by injecting more air toward the walls; and (2) an aerodynamic change which impacts the particle combustion time/temperature history.« less

  19. A brief review on fly ash and its use in surface engineering

    NASA Astrophysics Data System (ADS)

    Bhajantri, Vishwanath; Krishna, Prasad; Jambagi, Sudhakar

    2018-04-01

    Fly ash is a by-product obtained from coal power plants. Over the past two decades, handling this industrial waste has been a great challenge for many developing countries. However, this menace can be used in many industrial applications viz., civil, automobile and aerospace applications. In civil industry, the fly ash has been used in concreate to enhance the porosity that increases the curing time of the concrete. The fly ash has been gaining importance these days as a feedstock material for many thermal spray processes. In automobile sector, the fly ash has been used as a thermal barrier coating in IC engines, whereas in aerospace industry, which demands lighter and stronger materials, the fly ash has been used as a reinforcement material. Hence, so far, fly ash has been used as an either single or a composite feed stock material in thermal spray processes. The fly ash with other materials like alumina, titania and red mud have been deposited using thermal spray processes. These coatings have exhibited higher wear, corrosion and erosion resistance as compared to the uncoated specimens. In this paper, a brief review on fly ash and its use, especially its use as a feed stock in thermal spray coating, is presented. Therefore, the use of fly ash has opened a new frontier of research in thermal spray coating area where economically viable coatings can be produced using industrial waste like fly ash.

  20. Hydration kinetics and morphology of cement pastes with pozzolanic volcanic ash studied via synchrotron-based techniques

    DOE PAGES

    Kupwade-Patil, Kunal; Chin, Stephanie; Ilavsky, Jan; ...

    2017-10-13

    Here, this study investigates the early ages of hydration behavior when basaltic volcanic ash was used as a partial substitute to ordinary Portland cement using ultra-small-angle X-ray scattering and wide-angle X-ray scattering (WAXS). The mix design consisted of 10, 30 and 50% substitution of Portland cement with two different-sized volcanic ashes. The data showed that substitution of volcanic ash above 30% results in excess unreacted volcanic ash, rather than additional pozzolanic reactions along longer length scales. WAXS studies revealed that addition of finely ground volcanic ash facilitated calcium-silicate-hydrate related phases, whereas inclusion of coarser volcanic ash caused domination by calcium-aluminum-silicate-hydratemore » and unreacted MgO phases, suggesting some volcanic ash remained unreacted throughout the hydration process. Addition of more than 30% volcanic ash leads to coarser morphology along with decreased surface area and higher intensity of scattering at early-age hydration. This suggests an abrupt dissolution indicated by changes in surface area due to the retarding gel formation that can have implication on early-age setting influencing the mechanical properties of the resulting cementitious matrix. The findings from this work show that the concentration of volcanic ash influences the specific surface area and morphology of hydration products during the early age of hydration. Therefore, natural pozzolanic volcanic ashes can be a viable substitute to Portland cement by providing environmental benefits in terms of lower-carbon footprint along with long-term durability.« less

  1. Differences in gasification behaviors and related properties between entrained gasifier fly ash and coal char

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing Gu; Shiyong Wu; Youqing Wu

    2008-11-15

    In the study, two fly ash samples from Texaco gasifiers were compared to coal char and the physical and chemical properties and reactivity of samples were investigated by scanning electron microscopy (SEM), SEM-energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), N{sub 2} and CO{sub 2} adsorption method, and isothermal thermogravimetric analysis. The main results were obtained. The carbon content of gasified fly ashes exhibited 31-37%, which was less than the carbon content of 58-59% in the feed coal. The fly ashes exhibited higher Brunauer-Emmett-Teller (BET) surface area, richer meso- and micropores, more disordered carbon crystalline structure, and better CO{sub 2} gasification reactivitymore » than coal char. Ashes in fly ashes occurred to agglomerate into larger spherical grains, while those in coal char do not agglomerate. The minerals in fly ashes, especial alkali and alkaline-earth metals, had a catalytic effect on gasification reactivity of fly ash carbon. In the low-temperature range, the gasification process of fly ashes is mainly in chemical control, while in the high-temperature range, it is mainly in gas diffusion control, which was similar to coal char. In addition, the carbon in fly ashes was partially gasified and activated by water vapor and exhibited higher BET surface area and better gasification activity. Consequently, the fact that these carbons in fly ashes from entrained flow gasifiers are reclaimed and reused will be considered to be feasible. 15 refs., 7 figs., 5 tabs.« less

  2. Hydration kinetics and morphology of cement pastes with pozzolanic volcanic ash studied via synchrotron-based techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupwade-Patil, Kunal; Chin, Stephanie; Ilavsky, Jan

    Here, this study investigates the early ages of hydration behavior when basaltic volcanic ash was used as a partial substitute to ordinary Portland cement using ultra-small-angle X-ray scattering and wide-angle X-ray scattering (WAXS). The mix design consisted of 10, 30 and 50% substitution of Portland cement with two different-sized volcanic ashes. The data showed that substitution of volcanic ash above 30% results in excess unreacted volcanic ash, rather than additional pozzolanic reactions along longer length scales. WAXS studies revealed that addition of finely ground volcanic ash facilitated calcium-silicate-hydrate related phases, whereas inclusion of coarser volcanic ash caused domination by calcium-aluminum-silicate-hydratemore » and unreacted MgO phases, suggesting some volcanic ash remained unreacted throughout the hydration process. Addition of more than 30% volcanic ash leads to coarser morphology along with decreased surface area and higher intensity of scattering at early-age hydration. This suggests an abrupt dissolution indicated by changes in surface area due to the retarding gel formation that can have implication on early-age setting influencing the mechanical properties of the resulting cementitious matrix. The findings from this work show that the concentration of volcanic ash influences the specific surface area and morphology of hydration products during the early age of hydration. Therefore, natural pozzolanic volcanic ashes can be a viable substitute to Portland cement by providing environmental benefits in terms of lower-carbon footprint along with long-term durability.« less

  3. State factor relationships of dissolved organic carbon and nitrogen losses from unpolluted temperate forest watersheds

    USGS Publications Warehouse

    Perakis, S.S.; Hedin, L.O.

    2007-01-01

    We sampled 100 unpolluted, old-growth forested watersheds, divided among 13 separate study areas over 5 years in temperate southern Chile and Argentina, to evaluate relationships among dominant soil-forming state factors and dissolved carbon and nitrogen concentrations in watershed streams. These watersheds provide a unique opportunity to examine broad-scale controls over carbon (C) and nitrogen (N) biogeochemistry in the absence of significant human disturbance from chronic N deposition and land use change. Variations in the ratio dissolved organic carbon (DOC) to nitrogen (DON) in watershed streams differed by underlying soil parent material, with average C:N = 29 for watersheds underlain by volcanic ash and basalt versus C:N = 73 for sedimentary and metamorphic parent materials, consistent with stronger adsorption of low C:N hydrophobic materials by amorphous clays commonly associated with volcanic ash and basalt weathering. Mean annual precipitation was related positively to variations in both DOC (range: 0.2-9.7 mg C/L) and DON (range: 0.008-0.135 mg N/L) across study areas, suggesting that variations in water volume and concentration may act synergistically to influence C and N losses across dry to wet gradients in these forest ecosystems. Dominance of vegetation by broadleaf versus coniferous trees had negligible effects on organic C and N concentrations in comparison to abiotic factors. We conclude that precipitation volume and soil parent material are important controls over chemical losses of dissolved organic C and N from unpolluted temperate forest watersheds. Our results raise the possibility that biotic imprints on watershed C and N losses may be less pronounced in naturally N-poor forests than in areas impacted by land use change and chronic N deposition. Copyright 2007 by the American Geophysical Union.

  4. Detection of copper, lead, cadmium and iron in wine using electronic tongue sensor system.

    PubMed

    Simões da Costa, A M; Delgadillo, I; Rudnitskaya, A

    2014-11-01

    An array of 10 potentiometric chemical sensors has been applied to the detection of total Fe, Cu, Pb and Cd content in digested wine. As digestion of organic matter of wine is necessary prior to the trace metal detection using potentiometric sensors, sample preparation procedures have been optimized. Different variants of wet and microwave digestion and dry ashing, 14 conditions in total, have been tested. Decomposition of organic matter was assessed using Fourier transform mid-infrared spectroscopy and total phenolic content. Dry ashing was found to be the most effective method of wine digestion. Measurements with sensors in individual solutions of Fe(III), Cu(II), Pb(II) and Cd(II) prepared on different backgrounds have shown that their detection limits were below typical concentration levels of these metals in wines and, in the case of Cu, Pb and Cd below maximum allowed concentrations. Detection of Fe in digested wine samples was possible using discrete iron-sensitive sensors with chalcogenide glass membranes with RMSEP of 0.05 mmol L(-1) in the concentration range from 0.0786 to 0.472 mmol L(-1). Low concentration levels of Cu, Pb and Cd in wine and cross-sensitivity of respective sensors resulted in the non-linearity of their responses, requiring back-propagation neural network for the calibration. Calibration models have been calculated using measurements in the model mixed solutions containing all three metals and a set of digested wine sample. RMSEP values for Cu, Pb and Cd were 3.9, 39 and 1.2 μmol L(-1) in model solutions and 2, 150 and 1 μmol L(-1) in digested wine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Assessment of polychlorinated dibenzo-p-dioxins and dibenzofurans contribution from different media to surrounding duck farms.

    PubMed

    Lee, Wen-Jhy; Shih, Shun-I; Li, Hsing-Wang; Lin, Long-Full; Yu, Kuei-Min; Lu, Kueiwan; Wang, Lin-Chi; Chang-Chien, Guo-Ping; Fang, Kenneth; Lin, Mark

    2009-04-30

    Since the "Toxic Egg Event" broke out in central Taiwan, the possible sources of the high content of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in eggs have been a serious concern. In this study, the PCDD/F contents in different media (feed, soil and ambient air) were measured. Evaluation of the impact from electric arc furnace dust treatment plant (abbreviated as EAFDT plant), which is site-specific to the "Toxic Egg Event", on the duck total-PCDD/F daily intake was conducted by both Industrial Source Complex Short Term model (ISCST) and dry and wet deposition models. After different scenario simulations, the worst case was at farm A and at 200 g feed and 5 g soil for duck intake, and the highest PCDD/F contributions from the feed, original soil and stack flue gas were 44.92, 47.81, and 6.58%, respectively. Considering different uncertainty factors, such as the flow rate variation of stack flue gas and errors from modelling and measurement, the PCDD/F contribution fraction from the stack flue gas of EAFDT plant may increase up to twice as that for the worst case (6.58%) and become 13.2%, which was still much lower than that from the total contribution fraction (86.8%) of both feed and original soil. Fly ashes contained purposely in duck feed by the farmers was a potential major source for the duck daily intake. While the impact from EAFDT plant has been proven very minor, the PCDD/F content in the feed and soil, which was contaminated by illegal fly ash landfills, requires more attention.

  6. Chemical and functional properties of cassava starch, durum wheat semolina flour, and their blends

    PubMed Central

    Oladunmoye, Olufunmilola O; Aworh, Ogugua C; Maziya-Dixon, Bussie; Erukainure, Ochuko L; Elemo, Gloria N

    2014-01-01

    High-quality cassava starch (HQCS) produced from high-yielding low-cyanide improved cassava variety, TMS 30572, was mixed with durum wheat semolina (DWS) on a replacement basis to produce flour samples containing 0, 20, 30, 50, 70, and 100% cassava starch. They were analyzed for chemical composition (proximate, amylose, free sugars, starch, wet gluten, and cyanide) and functional properties (pasting, swelling power, solubility, water absorption, water binding, starch damage, diastatic and α-amylase activity, dough mixing, and stability). Protein, carbohydrate, fat, and ash of flour samples ranged from 0.75–12.31%, 70.87–87.80%, 0.95–4.41%, and 0.12–0.83%, respectively. Cyanide levels in all the flour samples were less than 0.1 ppm. Amylose content varied between 19.49% for cassava and 28.19% for wheat, correlating significantly with protein (r = 0.95, P = 0.004) and ash contents (r = 0.92, P = 0.01) at 5%. DWS and HQCS had similar pasting temperatures (50.2–53°C), while other pasting properties increased with increasing levels of HQCS. Dough mixing stability of samples decreased with increasing levels of HQCS. All the flour samples had α-amylase activity greater than 200. Both HQCS and DWS compare favorably well in swelling power (7.80–9.01%); but the solubility of wheat starch doubled that of cassava. Starch damage varied between 3.3 and 7.2 AACC for semolina and starch, with the latter having higher absorption rate (97%), and the former, higher absorption speed (67 sec). Results obtained showed positive insight into cassava–wheat blend characteristics. Data thus generated provide additional opportunities of exploiting cassava utilization and hence boost its value–addition potentials for product development. PMID:24804071

  7. Stratigraphy, age and environments of the late Miocene Mpesida Beds, Tugen Hills, Kenya.

    PubMed

    Kingston, John D; Fine Jacobs, Bonnie; Hill, Andrew; Deino, Alan

    2002-01-01

    Interpretations of faunal assemblages from the late Miocene Mpesida Beds in the Tugen Hills of the Central Kenyan Rift Valley have figured prominently in discussions of faunal turnover and establishment of the modern East African communities. These faunal changes have important implications for the divergence of the human lineage from the African apes ca. 8-5 Ma. While fossil material recovered from the Mpesida Beds has traditionally been analyzed collectively, accumulating evidence indicates that Mpesida facies span the 7-6 Ma interval and are scattered more than 25 km along the eastern flanks of the Tugen Hills. Stratigraphic distinctions between Mpesida facies and younger sediments in the sequence, such as the Lukeino Formation, are not yet fully resolved, further complicating temporal assessments and stratigraphic context of Mpesida facies. These issues are discussed with specific reference to exposures of Mpesida facies at Rurmoch, where large fossil tree fragments were swept up in an ancient ash flow. Preserved anatomical features of the fossil wood as well as estimated tree heights suggest a wet, lowland rainforest in this portion of the rift valley. Stable isotopic analyses of fossil enamel and paleosol components indicate the presence of more open habitats locally. Overlying air-fall tuffs and epiclastic debris, possibly associated with the ash flow, have yielded an assemblage of vertebrate fossils including two teeth belonging to one of the earliest colombines of typical body size known from Africa, after the rather small Microcolobus. Single-crystal, laser-fusion,(40)Ar/(39)Ar dates from a capping trachyte flow as well as tuffs just below the lava contact indicate an age of greater than 6.37 Ma for the fossil material. Copyright 2002 Academic Press.

  8. Effects of local vibration on bone loss in -tail-suspended rats.

    PubMed

    Sun, L W; Luan, H Q; Huang, Y F; Wang, Y; Fan, Y B

    2014-06-01

    We investigated the effects of vibration (35 Hz, 45 Hz and 55 Hz) as countermeasure locally applied to unloading hind limbs on bone, muscle and Achilles tendon. 40 female Sprague Dawley rats were divided into 5 groups (n=8, each): tail-suspension (TS), TS plus 35 Hz/0.3 g vibration (TSV35), TS plus 45 Hz/0.3 g vibration (TSV45), TS plus 55 Hz/0.3 g vibration (TSV55) and control (CON). After 21 days, bone mineral density (BMD) and the microstructure of the femur and tibia were evaluated by μCT in vivo. The biomechanical properties of the femur and Achilles tendon were determined by a materials testing system. Ash weight of bone, isotonic contraction and wet weight of soleus were also investigated. 35 Hz and 45 Hz localized vibration were able to significantly ameliorate the decrease in trabecular BMD (expressed as the percentage change from TS, TSV35: 48.11%, TSV45: 31.09%), microstructure and ash weight of the femur and tibia induced by TS. Meanwhile, 35 Hz vibration significantly improved the biomechanical properties of the femur (57.24% bending rigidity and 41.66% Young's modulus vs. TS) and Achilles tendon (45.46% maximum load and 66.67% Young's modulus vs. TS). Additionally, Young's modulus of the femur was highly correlated with microstructural parameters. Localized vibration was useful for counteracting microgravity-induced musculoskeletal loss. In general, the efficacy of 35 Hz was better than 45 Hz or 55 Hz in tail-suspended rats. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Alkali content of fly ash : measuring and testing strategies for compliance.

    DOT National Transportation Integrated Search

    2015-04-01

    Sodium and potassium are the common alkalis present in fly ash. Excessive amounts of fly ash alkalis can cause efflorescence : problems in concrete products and raise concern about the effectiveness of the fly ash to mitigate alkali-silica reaction (...

  10. Twenty million ash trees later: current status of emerald ash borer in Michigan

    Treesearch

    Therese M. Poland

    2007-01-01

    Since its discovery in 2002, the emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), appears to be living up to expectations and predictions about its potential spread and destruction of ash trees, Fraxinus spp., in North America.

  11. Experimental use of fly ash concrete in prefabricated bridge-deck slabs.

    DOT National Transportation Integrated Search

    1987-01-01

    Hydraulic cement concretes with and without fly ash were investigated to assess the suitability of using fly ash in bridge-deck concrete. Eight prefabricated concrete slabs were prepared: four were control and the remaining contained fly ash. They we...

  12. ULTRAFINE ASH AEROSOLS FROM COAL COMBUSTION: CHARACTERIZATION AND HEALTH EFFECTS

    EPA Science Inventory

    Ultrafine coal fly ash particles, defined here as those with diameters less than 0.5 micrometer, typically comprise less than 1% of the total fly ash mass. These particles are formed almost exclusively through ash vaporization, nucleation, and coagulation/condensation mechanisms,...

  13. Dual polarisation C-band weather radar imagery of the 6 August 2012 Te Maari Eruption, Mount Tongariro, New Zealand

    NASA Astrophysics Data System (ADS)

    Crouch, John F.; Pardo, Natalia; Miller, Craig A.

    2014-10-01

    The 6 August 2012 eruption of Mt. Tongariro from Upper Te Maari Crater in the central North Island of New Zealand was the first volcanic eruption observed by an operational weather radar in New Zealand, and is believed to be one of only a small number of eruptions observed by a dual-polarisation radar worldwide. The eruption was also observed by a GeoNet webcam, and detailed ash deposit studies have permitted analysis of the plume characteristics. A combination of radar and webcam imagery show 5 pulses within the first 13 min of the eruption, and also the subsequent ash transport downwind. Comparison with ash samples show the radar was likely detecting ash particles down to about 0.5 mm diameter. The maximum plume height estimated by the radar is 7.8 ± 1.0 km above mean sea level (amsl), although it is possible this may be a slight under estimation if very small ash particles not detected by the radar rose higher and comprised the very top of the plume. The correlation coefficient and differential reflectivity fields that are additionally measured by the dual polarisation radar provide extra information about the structure and composition of the eruption column and ash cloud. The correlation coefficient easily discriminates between the eruption column and the ash plume, and provides some information about the diversity of ash particle size within both the ash plume and the subsequent detached ash cloud drifting downwind. The differential reflectivity shows that the larger ash particles are falling with a horizontal orientation, and indicates that ice nucleation and aggregation of fine ash particles was probably occurring at high altitudes within 20-25 min of the eruption.

  14. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH.

    PubMed

    Komonweeraket, Kanokwan; Cetin, Bora; Benson, Craig H; Aydilek, Ahmet H; Edil, Tuncer B

    2015-04-01

    Leaching behaviors of Arsenic (As), Barium (Ba), Calcium (Ca), Cadmium (Cd), Magnesium (Mg), Selenium (Se), and Strontium (Sr) from soil alone, coal fly ash alone, and soil-coal fly ash mixtures, were studied at a pH range of 2-14 via pH-dependent leaching tests. Seven different types of soils and coal fly ashes were tested. Results of this study indicated that Ca, Cd, Mg, and Sr showed cationic leaching pattern while As and Se generally follows an oxyanionic leaching pattern. On the other hand, leaching of Ba presented amphoteric-like leaching pattern but less pH-dependent. In spite of different types and composition of soil and coal fly ash investigated, the study reveals the similarity in leaching behavior as a function of pH for a given element from soil, coal fly ash, and soil-coal fly ash mixtures. The similarity is most likely due to similar controlling mechanisms (e.g., solubility, sorption, and solid-solution formation) and similar controlling factors (e.g., leachate pH and redox conditions). This offers the opportunity to transfer knowledge of coal fly ash that has been extensively characterized and studied to soil stabilized with coal fly ash. It is speculated that unburned carbon in off-specification coal fly ashes may provide sorption sites for Cd resulting in a reduction in concentration of these elements in leachate from soil-coal fly ash mixture. Class C fly ash provides sufficient CaO to initiate the pozzolanic reaction yielding hydrated cement products that oxyanions, including As and Se, can be incorporated into. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Geohydrologic data from test hole USW UZ-7, Yucca Mountain area, Nye County, Nevada

    USGS Publications Warehouse

    Kume, Jack; Hammermeister, D.P.

    1990-01-01

    This report contains a description of the methods used in drilling and coring of the test-hole USW UZ-7, a description of the methods used in collecting, handling, and testing of test-hole samples; Lithologic information from the test hole; and water-content, water-potential, bulk-density, grain-density, porosity, and tritium data for the test hole. Test-hole USW UZ-7 was drilled and cored to a total depth of 62.94 m. The drilling was done using air as a drilling fluid to minimize disturbance to the water content of cores, drill-bit cuttings, and borehole wall-rock. Beginning at the land surface, the unsaturated-zone rock that was penetrated consisted of alluvium; welded and partially to nonwelded ash-flow tuff; bedded and reworked ash-fall tuff; nonwelded ash-flow tuff; and welded ash-flow tuff. Values of gravimetric water content and water potential of alluvium were intermediate between the extreme values in welded and nonwelded units of tuff. Gravimetric water content was largest in bedded and nonwelded ash-fall tuffs and was smallest in welded ash-flow tuff. Values of water potential were more negative in densely welded ash-flow tuffs and were less negative in bedded and nonwelded ash-fall tuffs. Bulk density was largest in densely welded ash-flow tuffs and smallest in nonwelded and bedded ash-fall tuffs. Grain density was uniform but was slightly larger in nonwelded and bedded ash-fall tuffs than in welded ash-flow tuffs. Porosity trends were opposite to bulk-density trends. Tritium content in alluvium was smallest near the alluvium-bedrock contact, markedly increased in the middle of the deposit, and decreased in the near-surface zone of the deposit. (Author 's abstract)

  16. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyukjin Oh; Kalyan Annamalai; John M. Sweeten

    2008-04-15

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass, FB) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash 'fouling' were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss throughmore » ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out. 16 refs., 12 figs., 6 tabs.« less

  17. Long-term carcinogenicity study in Syrian golden hamster of particulate emissions from coal- and oil-fired power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persson, S.A.; Ahlberg, M.; Berghem, L.

    1988-04-01

    Male Syrian golden hamsters were given 15 weekly intratracheal instillations with suspensions of coal fly ash or oil fly ash. Controls were instilled with saline containing gelatine (0.5 g/100 mL) or to check particle effects with suspensions of hematite (Fe/sub 2/O/sub 3/). The common weekly dose was 4.5 mg/hamster. In addition, one subgroup of hamsters was treated with oil fly ash at a weekly dose of 3.0 mg/hamster and another with coal fly ash at a weekly dose of 6.0 mg/hamster. Other groups of hamsters were treated with suspensions of benzo(a)pyrene (BaP) or with suspensions on coal fly ash, oilmore » fly ash, or Fe/sub 2/O/sub 3/ coated with BaP. The mass median aerodynamic diameters of the coal and oil fly ashes were 4.4 microns and 28 microns, respectively. Hamsters treated with oil fly ash showed a higher frequency of bronchiolar-alveolar hyperplasia than hamsters in the other treatment groups. Squamous dysplasia and squamous metaplasia were most frequent in animals treated with suspensions of BaP or BaP-coated particles. The earliest appearance of a tumor, the highest incidence of tumors, and the highest incidence of malignant tumors were observed in hamsters treated with oil fly ash coated with BaP. Squamous cell carcinoma and adenosquamous carcinoma were the most frequent malignant tumors. No malignant tumors and only few benign tumors were observed in hamsters instilled with suspensions of fly ash not coated with BaP. The present study gives no indication that coal fly ash could create more serious health problems than oil fly ash.« less

  18. Experimental aggregation of volcanic ash: the role of liquid bonding

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Kueppers, U.; Jacob, M.; Ayris, P. M.; Dingwell, D. B.

    2015-12-01

    Explosive volcanic eruptions may release vast quantities of ash. Because of its size, it has the greatest dispersal potential and can be distributed globally. Ash may pose severe risks for 1) air traffic, 2) human and animal health, 3) agriculture and 4) infrastructure. Such ash particles can however cluster and form ash aggregates that range in size from millimeters to centimeters. During their growth, weight and aerodynamic properties change. This leads to significantly changed transport and settling behavior. The physico-chemical processes involved in aggregation are quantitatively poorly constrained. We have performed laboratory ash aggregation experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. Solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (e.g., air flow rate, gas temperature, humidity, liquid composition). In this manner we simulate the variable gas-particle flow conditions expected in eruption plumes and pyroclastic density currents. We have used 1) soda-lime glass beads as an analogue material and 2) natural volcanic ash from Laacher See Volcano (Germany). In order to influence form, size, stability and the production rate of aggregates, a range of experimental conditions (e.g., particle concentration, degree of turbulence, temperature and moisture in the process chamber and the composition of the liquid phase) have been employed. We have successfully reproduced several features of natural ash aggregates, including round, internally structured ash pellets up to 3 mm in diameter. These experimental results help to constrain the boundary conditions required for the generation of spherical, internally-structured ash aggregates that survive deposition and are preserved in the volcanological record. These results should also serve as input parameters for models of ash transport and ash mass distribution.

  19. Recycling of inorganic nutrients for hydroponic crop production following incineration of inedible biomass.

    PubMed

    Bubenheim, D L; Wignarajah, K

    1997-01-01

    The goal of resource recovery in a regenerative life support system is maintenance of product quality to sure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration is all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match the control treatment, and ash only quality formulated with reagent grade chemicals. When nutrient solutions were formulated using only ash following incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in a suppression of crop growth. When the ash is supplemented with reagent grade chemicals to establish the same balance as in the control--growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in similar growth to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production.

  20. Effects of burn temperature on ash nutrient forms and availability from cattail (Typha domingensis) and sawgrass (Cladium jamaicense) in the Florida Everglades.

    PubMed

    Qian, Y; Miao, S L; Gu, B; Li, Y C

    2009-01-01

    Plant ash derived from fire plays an important role in nutrient balance and cycling in ecosystems. Factors that determine the composition and availability of ash nutrients include fire intensity (burn temperature and duration), plant species, habitat nutrient enrichment, and leaf type (live or dead leaf). We used laboratory simulation methods to evaluate temperature effects on nutrient composition and metals in the residual ash of sawgrass (Cladium jamaicense) and cattail (Typha domingensis), particularly on post-fire phosphorus (P) availability in plant ash. Live and dead leaf samples were collected from Water Conservation Area 2A in the northern Everglades along a soil P gradient, where prescribed fire may be used to accelerate recovery of this unique ecosystem. Significant decreases in total carbon and total nitrogen were detected with increasing fire temperature. Organic matter combustion was nearly complete at temperatures > or = 450 degrees C. HCl-extractable P (average, 50% of total P in the ash) and NH(4)Cl-extractable P (average, 33% of total P in the ash) were the predominant P fractions for laboratory-burned ash. Although a low-intensity fire could induce an elevation of P availability, an intense fire generally resulted in decreased water-soluble P. Significant differences in nutrient compositions were observed between species, habitat nutrient status, and leaf types. More labile inorganic P remained in sawgrass ash than in cattail ash; hence, sawgrass ash has a greater potential to release available P than cattail. Fire intensity affected plant ash nutrient composition, particularly P availability, and the effects varied with plant species and leaf type. Therefore, it is important to consider fire intensity and vegetation community when using a prescribed fire for ecosystem management.

  1. Recycling of Sustainable Co-Firing Fly Ashes as an Alkali Activator for GGBS in Blended Cements

    PubMed Central

    Wu, Yann-Hwang; Huang, Ran; Tsai, Chia-Jung; Lin, Wei-Ting

    2015-01-01

    This study investigates the feasibility of co-firing fly ashes from different boilers, circulating fluidized beds (CFB) or stokers as a sustainable material in alkali activators for ground granulated blast-furnace slag (GGBS). The mixture ratio of GGBS and co-firing fly ashes is 1:1 by weight. The results indicate that only CF fly ash of CFB boilers can effectively stimulate the potential characteristics of GGBS and provide strength as an alkali activator. CF fly ash consists of CaO3 (48.5%), SiO2 (21.1%), Al2O3 (13.8%), SO3 (10.06%), Fe2O3 (2.25%) and others (4.29%). SA fly ash consists of Al2O3 (19.7%), SiO2 (36.3%), Fe2O3 (28.4%) and others (15.6%). SB fly ash consists of Al2O3 (15%), SiO2 (25.4%), Zn (20.6%), SO3 (10.9%), Fe2O3 (8.78%) and others (19.32%). The mixtures of SA fly ash and SB fly ash with GGBS, respectively, were damaged in the compressive strength test during seven days of curing. However, the built up strength of the CF fly ash and GGBS mixture can only be maintained for 7–14 days, and the compressive strength achieves 70% of that of a controlled group (cement in hardening cement paste). The strength of blended CF fly ash and GGBS started to decrease after 28 days, and the phenomenon of ettrigite was investigated due to the high levels of sulfur content. The CaO content in sustainable co-firing fly ashes must be higher than a certain percentage in reacting GGBS to ensure the strength of blended cements. PMID:28787970

  2. Artificial cloud test confirms volcanic ash detection using infrared spectral imaging

    PubMed Central

    Prata, A. J.; Dezitter, F.; Davies, I.; Weber, K.; Birnfeld, M.; Moriano, D.; Bernardo, C.; Vogel, A.; Prata, G. S.; Mather, T. A.; Thomas, H. E.; Cammas, J.; Weber, M.

    2016-01-01

    Airborne volcanic ash particles are a known hazard to aviation. Currently, there are no means available to detect ash in flight as the particles are too fine (radii < 30 μm) for on-board radar detection and, even in good visibility, ash clouds are difficult or impossible to detect by eye. The economic cost and societal impact of the April/May 2010 Icelandic eruption of Eyjafjallajökull generated renewed interest in finding ways to identify airborne volcanic ash in order to keep airspace open and avoid aircraft groundings. We have designed and built a bi-spectral, fast-sampling, uncooled infrared camera device (AVOID) to examine its ability to detect volcanic ash from commercial jet aircraft at distances of more than 50 km ahead. Here we report results of an experiment conducted over the Atlantic Ocean, off the coast of France, confirming the ability of the device to detect and quantify volcanic ash in an artificial ash cloud created by dispersal of volcanic ash from a second aircraft. A third aircraft was used to measure the ash in situ using optical particle counters. The cloud was composed of very fine ash (mean radii ~10 μm) collected from Iceland immediately after the Eyjafjallajökull eruption and had a vertical thickness of ~200 m, a width of ~2 km and length of between 2 and 12 km. Concentrations of ~200 μg m−3 were identified by AVOID at distances from ~20 km to ~70 km. For the first time, airborne remote detection of volcanic ash has been successfully demonstrated from a long-range flight test aircraft. PMID:27156701

  3. Artificial cloud test confirms volcanic ash detection using infrared spectral imaging.

    PubMed

    Prata, A J; Dezitter, F; Davies, I; Weber, K; Birnfeld, M; Moriano, D; Bernardo, C; Vogel, A; Prata, G S; Mather, T A; Thomas, H E; Cammas, J; Weber, M

    2016-05-09

    Airborne volcanic ash particles are a known hazard to aviation. Currently, there are no means available to detect ash in flight as the particles are too fine (radii < 30 μm) for on-board radar detection and, even in good visibility, ash clouds are difficult or impossible to detect by eye. The economic cost and societal impact of the April/May 2010 Icelandic eruption of Eyjafjallajökull generated renewed interest in finding ways to identify airborne volcanic ash in order to keep airspace open and avoid aircraft groundings. We have designed and built a bi-spectral, fast-sampling, uncooled infrared camera device (AVOID) to examine its ability to detect volcanic ash from commercial jet aircraft at distances of more than 50 km ahead. Here we report results of an experiment conducted over the Atlantic Ocean, off the coast of France, confirming the ability of the device to detect and quantify volcanic ash in an artificial ash cloud created by dispersal of volcanic ash from a second aircraft. A third aircraft was used to measure the ash in situ using optical particle counters. The cloud was composed of very fine ash (mean radii ~10 μm) collected from Iceland immediately after the Eyjafjallajökull eruption and had a vertical thickness of ~200 m, a width of ~2 km and length of between 2 and 12 km. Concentrations of ~200 μg m(-3) were identified by AVOID at distances from ~20 km to ~70 km. For the first time, airborne remote detection of volcanic ash has been successfully demonstrated from a long-range flight test aircraft.

  4. State of volcanic ash dispersion prediction

    NASA Astrophysics Data System (ADS)

    Eliasson, Jonas; Palsson, Thorgeir; Weber, Konradin

    2017-04-01

    The Eyjafjallajokull 2010 and Grimsvotn 2011 eruptions created great problems for commercial aviation in Western Europe and in the North Atlantic region. Comparison of satellite images of the visible and predicted ash clouds showed the VAAC prediction to be much larger than the actual ash clouds. No official explanation of this discrepancy exists apart from the definition of the ash cloud boundary. Papers on simulation of the Eyjafjallajökull ash cloud in peer reviewed journals, typically attempted to simulate the VAAC predictions rather than focusing on the satellite pictures. Sporadic measurements made in-situ showed much lower ash concentrations over Europe than the predicted values. Two of the weak points in ash cloud prediction have been studied in airborne measurements of volcanic ash by the Universities in Kyoto Japan, Iceland and Düsseldorf Germany of eruptions in Sakurajima, Japan. It turns out that gravitational deformation of the plume and a streak fallout process make estimated ash content of clouds larger than the actual, both features are not included in the simulation model. Tropospheric plumes tend to ride in stable inversions this causes gravitational flattening (pancaking) of the volcanic plume, while diffusion in the mixing layer is insignificant. New rules from ICAO, effective from November 2014, reiterate that jetliners should avoid visible ash, this makes information on visible ash important. A procedure developed by JMÁs Tokyo VAAC uses satellite images of visible ash to correct the prediction. This and the fact that meteorological data necessary to model gravitational dispersion and streak fallout do not exist in the international database available to the VAAĆs. This shows that close monitoring by airborne measurements and satellite and other photographic surveillance is necessary.

  5. Outlook for ash in your forest: results of emerald ash borer research and implications for management

    Treesearch

    Kathleen S. Knight

    2014-01-01

    Since its accidental introduction near Detroit, Michigan, in the mid-1990s, emerald ash borer (EAB) has rapidly spread through much of the U.S. and adjacent Canada, leaving millions of dead ash trees in Midwestern states (4,11). Unfortunately, EAB attacks trees as small as an inch in stem diameter and it attacks all five ash species native to the region - white, green...

  6. Optimizing Use of Girdled Ash Trees for Management of Low-Density Emerald Ash Borer (Coleoptera: Buprestidae) Populations.

    PubMed

    Siegert, Nathan W; McCullough, Deborah G; Poland, Therese M; Heyd, Robert L

    2017-06-01

    Effective survey methods to detect and monitor recently established, low-density infestations of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), remain a high priority because they provide land managers and property owners with time to implement tactics to slow emerald ash borer population growth and the progression of ash mortality. We evaluated options for using girdled ash (Fraxinus spp.) trees for emerald ash borer detection and management in a low-density infestation in a forested area with abundant green ash (F. pennsylvanica). Across replicated 4-ha plots, we compared detection efficiency of 4 versus 16 evenly distributed girdled ash trees and between clusters of 3 versus 12 girdled trees. We also examined within-tree larval distribution in 208 girdled and nongirdled trees and assessed adult emerald ash borer emergence from detection trees felled 11 mo after girdling and left on site. Overall, current-year larvae were present in 85-97% of girdled trees and 57-72% of nongirdled trees, and larval density was 2-5 times greater on girdled than nongirdled trees. Low-density emerald ash borer infestations were readily detected with four girdled trees per 4-ha, and 3-tree clusters were as effective as 12-tree clusters. Larval densities were greatest 0.5 ± 0.4 m below the base of the canopy in girdled trees and 1.3 ± 0.7 m above the canopy base in nongirdled trees. Relatively few adult emerald ash borer emerged from trees felled 11 mo after girdling and left on site through the following summer, suggesting removal or destruction of girdled ash trees may be unnecessary. This could potentially reduce survey costs, particularly in forested areas with poor accessibility. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  7. Relating the physical properties of volcanic rocks to the characteristics of ash generated by experimental abrasion

    NASA Astrophysics Data System (ADS)

    Buckland, Hannah M.; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.

    2018-01-01

    Interactions between clasts in pyroclastic density currents (PDCs) generate volcanic ash that can be dispersed to the atmosphere in co-PDC plumes, and due to its small size, is far-travelled. We designed a series of experiments to determine the effects of pyroclast vesicularity and crystal content on the efficiency and type of ash generated by abrasion. Two different pyroclastic materials were used: (1) basaltic-andesite pyroclasts from Fuego volcano (Guatemala) with 26-46% vesicularity and high groundmass crystallinity and (2) tephri-phonolite Avellino pumice (Vesuvius, Italy) with 55-75% vesicularity and low groundmass crystallinity. When milled, both clast types produced bimodal grain size distributions with fine ash modes between 4 and 5φ (32-63 μm). Although the vesicular Avellino pumice typically generated more ash than the denser Fuego pyroclasts, the ash-generating potential of a single pyroclast was independent of density, and instead governed by heterogeneous crystal and vesicle textures. One consequence of these heterogeneities was to cause the vesicular Avellino clasts to split in addition to abrading, which further enhanced abrasion efficiency. The matrix characteristics also affected ash shape and componentry, which will influence the elutriation and transport properties of ash in the atmosphere. The experimental abrasion successfully replicated some of the characteristics of natural co-PDC ash samples, as shown by similarities in the Adherence Factor, which measures the proportion of attached matrix on phenocrysts, of both the experimentally generated ash and natural co-PDC ash samples. Our results support previous studies, which have shown that abrasion is an effective mechanism for generating fine ash that is similar in size ( 5φ; 30 μm) to that found in co-PDC deposits. We further show that both the abundance and nature (shape, density, components, size distribution) of those ash particles are strongly controlled by the matrix properties of the abraded pyroclasts.

  8. Evaluation of Fly Ash Quality Control Tools : Technical Summary

    DOT National Transportation Integrated Search

    2010-06-01

    Many entities currently use fl y ash in portland cement concrete (PCC) pavements and structures. Although : the body of knowledge is great concerning the use of fl y ash, several projects per year are subject to poor : performance where fl y ash is n...

  9. Activation of fly ash

    DOEpatents

    Corbin, David R.; Velenyi, Louis J.; Pepera, Marc A.; Dolhyj, Serge R.

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  10. Activation of fly ash

    DOEpatents

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  11. Utilization of western coal fly ash in construction of highways in the Midwest

    DOT National Transportation Integrated Search

    2000-03-01

    Coal burning utilities in the Midwest are increasingly using sub-bituminous coal from Wyoming. These utilities typically produce fly ash, which, because of its high calcium oxide content, may be classified as Class C fly ash. These ashes are characte...

  12. Detection of fly ash in Portland cement fly ash concrete : final report.

    DOT National Transportation Integrated Search

    1991-12-01

    The chemical composition, phases present, and textural characteristics of suite of 113 fly ashes were studied. The fly ashes came from Gifford-Hill & Co., Inc. power plants in Cason, TX; Gentry, AR; Westlake, LA; Boyce, LA; Choteau, OK and Oologah, O...

  13. Evaluation of fly ash quality control tools : tech summary.

    DOT National Transportation Integrated Search

    2010-06-01

    Many entities currently use fl y ash in portland cement concrete (PCC) pavements and structures. Although : the body of knowledge is great concerning the use of fl y ash, several projects per year are subject to poor : performance where fl y ash is n...

  14. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOEpatents

    Beaufrere, Albert H.

    1983-10-04

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  15. Analysis of Physical Properties and Mineralogical of Pyrolysis Tires Rubber Ash Compared Natural Sand in Concrete material

    NASA Astrophysics Data System (ADS)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Syazani Leman, Alif; Izzati Raihan Ramzi Hannan, Nurul

    2016-11-01

    Waste tires pose significant health and environmental concerns if not recycled or discarded properly. At the same time, natural sand is becoming scarcer and costlier due to its non-availability. Waste tires as fine aggregate can be an economical and sustainable alternative to the natural sand. Recent years, the interest on recycling waste tires into civil engineering applications by the researchers has increased. In this research, the chemical and physical properties of the tires rubber ash and the natural sand have been analysed. The densities of the rubber ash are lower than the natural sand. Rubber ash had finer particle size compared to the natural sand. Almost all chemical in the natural sand had in rubber ash with the additional sulphur trioxide and zinc oxide in the rubber ash, made the rubber ash better than natural sand. Rubber ash seems to be a suitable material to use in concrete as sand replacement.

  16. Heterogeneous Ice Nucleation by Soufriere Hills Volcanic Ash Immersed in Water Droplets.

    PubMed

    Mangan, T P; Atkinson, J D; Neuberg, J W; O'Sullivan, D; Wilson, T W; Whale, T F; Neve, L; Umo, N S; Malkin, T L; Murray, B J

    2017-01-01

    Fine particles of ash emitted during volcanic eruptions may sporadically influence cloud properties on a regional or global scale as well as influencing the dynamics of volcanic clouds and the subsequent dispersion of volcanic aerosol and gases. It has been shown that volcanic ash can trigger ice nucleation, but ash from relatively few volcanoes has been studied for its ice nucleating ability. In this study we quantify the efficiency with which ash from the Soufriere Hills volcano on Montserrat nucleates ice when immersed in supercooled water droplets. Using an ash sample from the 11th February 2010 eruption, we report ice nucleating efficiencies from 246 to 265 K. This wide range of temperatures was achieved using two separate droplet freezing instruments, one employing nanolitre droplets, the other using microlitre droplets. Soufriere Hills volcanic ash was significantly more efficient than all other ash samples that have been previously examined. At present the reasons for these differences are not understood, but may be related to mineralogy, amorphous content and surface chemistry.

  17. Volcanic ash melting under conditions relevant to ash turbine interactions

    PubMed Central

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-01-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200–2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824

  18. Evaluation of the mechanical properties of class-F fly ash.

    PubMed

    Kim, Bumjoo; Prezzi, Monica

    2008-01-01

    Coal-burning power plants in the United States (US) generate more than 70 million tons of fly ash as a by-product annually. Recycling large volumes of fly ash in geotechnical applications may offer an attractive alternative to the disposal problem as most of it is currently dumped in ponds or landfills. Class-F fly ash, resulting from burning of bituminous or anthracite coals, is the most common type of fly ash in the US. In the present study, the mechanical characteristics (compaction response, compressibility, and shear strength) of class-F fly ash were investigated by performing various laboratory tests (compaction test, one-dimensional compression test, direct shear test and consolidated-drained triaxial compression test) on fly ash samples collected from three power plants in the state of Indiana (US). Test results have shown that despite some morphological differences, class-F fly ash exhibits mechanical properties that are, in general, comparable to those observed in natural sandy soils.

  19. Water holding capacities of fly ashes: Effect of size fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, A.; Rano, R.

    2007-07-01

    Water holding capacities of fly ashes from different thermal power plants in Eastern India have been compared. Moreover, the effect of size fractionation (sieving) on the water holding capacities has also been determined. The desorption rate of water held by the fly ash fractions at ambient temperature (25-30{sup o}C) has been investigated. The effect of mixing various size fractions of fly ash in increasing the water holding capacities of fly ash has been studied. It is observed that the fly ash obtained from a thermal power plant working on stoker-fired combustor has the highest water holding capacity, followed by themore » one that works on pulverized fuel combustor. Fly ash collected from super thermal power plant has the least water holding capacity (40.7%). The coarser size fractions of fly ashes in general have higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained, with the potential use in agriculture.« less

  20. Heterogeneous Ice Nucleation by Soufriere Hills Volcanic Ash Immersed in Water Droplets

    PubMed Central

    Atkinson, J. D.; Neuberg, J. W.; O’Sullivan, D.; Wilson, T. W.; Whale, T. F.; Neve, L.; Umo, N. S.; Malkin, T. L.; Murray, B. J.

    2017-01-01

    Fine particles of ash emitted during volcanic eruptions may sporadically influence cloud properties on a regional or global scale as well as influencing the dynamics of volcanic clouds and the subsequent dispersion of volcanic aerosol and gases. It has been shown that volcanic ash can trigger ice nucleation, but ash from relatively few volcanoes has been studied for its ice nucleating ability. In this study we quantify the efficiency with which ash from the Soufriere Hills volcano on Montserrat nucleates ice when immersed in supercooled water droplets. Using an ash sample from the 11th February 2010 eruption, we report ice nucleating efficiencies from 246 to 265 K. This wide range of temperatures was achieved using two separate droplet freezing instruments, one employing nanolitre droplets, the other using microlitre droplets. Soufriere Hills volcanic ash was significantly more efficient than all other ash samples that have been previously examined. At present the reasons for these differences are not understood, but may be related to mineralogy, amorphous content and surface chemistry. PMID:28056077

Top