Science.gov

Sample records for asistida por robot

  1. Robotics.

    ERIC Educational Resources Information Center

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  2. Robotics.

    ERIC Educational Resources Information Center

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  3. Robotics

    SciTech Connect

    Scheide, A.W.

    1983-11-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS.

  4. Robotics

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.

    2007-01-01

    Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and

  5. Robotics

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.

    2007-01-01

    Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and

  6. Robotics

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2012-01-01

    Earth's upper atmosphere is an extreme environment: dry, cold, and irradiated. It is unknown whether our aerobiosphere is limited to the transport of life, or there exist organisms that grow and reproduce while airborne (aerophiles); the microenvironments of suspended particles may harbor life at otherwise uninhabited altitudes[2]. The existence of aerophiles would significantly expand the range of planets considered candidates for life by, for example, including the cooler clouds of a hot Venus-like planet. The X project is an effort to engineer a robotic exploration and biosampling payload for a comprehensive survey of Earth's aerobiology. While many one-shot samples have been retrieved from above 15 km, their results are primarily qualitative; variations in method confound comparisons, leaving such major gaps in our knowledge of aerobiology as quantification of populations at different strata and relative species counts[1]. These challenges and X's preliminary solutions are explicated below. X's primary balloon payload is undergoing a series of calibrations before beginning flights in Spring 2012. A suborbital launch is currently planned for Summer 2012. A series of ground samples taken in Winter 2011 is being used to establish baseline counts and identify likely background contaminants.

  7. Exploratorium: Robots.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  8. Exploratorium: Robots.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  9. Robotic surgery

    MedlinePlus

    Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... Robotic surgery is similar to laparoscopic surgery. It can be performed through smaller cuts than open surgery. ...

  10. Robot and robot system

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  11. CASSY Robot

    NASA Astrophysics Data System (ADS)

    Pittman, Anna; Wright, Ann; Rice, Aaron; Shyaka, Claude

    2014-03-01

    The CASSY Robot project involved two square robots coded in RobotC. The goal was to code a robot to do a certain set of tasks autonomously. To begin with, our task was to code the robot so that it would roam a certain area, marked off by black tape. When the robot hit the black tape, it knew to back up and turn around. It was able to do this thanks to the light sensor that was attached to the bottom of the robot. Also, whenever the robot hit an obstacle, it knew to stop, back up, and turn around. This was primarily to prevent the robot from hurting itself if it hit an obstacle. This was accomplished by using touch sensors set up as bumpers. Once that was accomplished, we attached sonar sensors and created code so that one robot was able to find and track the other robot in a sort of intruder/police scenario. The overall goal of this project was to code the robot so that we can test it against a robot coded exactly the same, but using Layered Mode Selection Logic. Professor.

  12. Army Robotics

    DTIC Science & Technology

    2009-10-07

    Army Robotics 07 October 2009 Dr. Grant Gerhart, Senior Research Scientist Bernard Theisen, Joint Center for Robotics DISTRIBUTION STATEMENT A... Robots 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Grant Gerhart; Bernard Theisen 5d. PROJECT NUMBER 5e. TASK...CBRNE • IED Defeat Systems • Disarm / Disrupt • Reconnaissance • Investigation • Explosive Sniffer • Common Robotic Kit • EOD • Convoy • Log

  13. Space Robotics

    DTIC Science & Technology

    1982-08-01

    ACCESSION NO 3. RECIPIENTS CATALOG NUIA3.R CMU-RI-TR-82-10 I4 1 (. 4. ;,;-LL (and Sublitle) S. TYPE OF REPORT & PERIOD CovEREO SPACE ROBOTICS Interim... Robotics Institute Pittsburgh, PA. 15213 It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Office of Naval Research -August 1982 Arlington, VA 22217...SXnet.eE . Space Robotics Richard E. Korf Department of Computer Science and The Robotics Institute Carnegie-Mellon University Pittsburgh, Oetusylvania

  14. TARDEC Robotics

    DTIC Science & Technology

    2010-01-12

    unclassified TARDEC Robotics Dr. James L. Overholt Director, Joint Center for Robotics US Army TARDEC Report Documentation Page Form ApprovedOMB No...COVERED - 4. TITLE AND SUBTITLE TARDEC Robotics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) James L. Overholt... Robotics , Network and Control Components with a Focus on Customer Driven Requirements to Provide Full System Solutions to the War Fighter Technology

  15. Industrial Robots.

    ERIC Educational Resources Information Center

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  16. Basic Robotics.

    ERIC Educational Resources Information Center

    Mullen, Frank

    This curriculum outline consists of instructional materials and information concerning resources for use in teaching a course in robotics. Addressed in the individual sections of the outline are the following topics: the nature of an industrial robot; the parts of an industrial robot (the manipulator, the power structure, and the control system);…

  17. (Robotic hands)

    SciTech Connect

    Mann, R.C.

    1988-09-23

    The traveler attended the International Workshop on Robot Hands at the Palace Hotel in Dubrovnik, Yugoslavia. The traveler presented a lecture on An integrated sensor system for the ORNL mobile robot.'' The traveler obtained important information on current R D efforts in multi-fingered robot hands and object recognition using touch sensing.

  18. Basic Robotics.

    ERIC Educational Resources Information Center

    Mullen, Frank

    This curriculum outline consists of instructional materials and information concerning resources for use in teaching a course in robotics. Addressed in the individual sections of the outline are the following topics: the nature of an industrial robot; the parts of an industrial robot (the manipulator, the power structure, and the control system);…

  19. Industrial Robots.

    ERIC Educational Resources Information Center

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  20. Rehabilitation robotics.

    PubMed

    Munih, Marko; Bajd, Tadej

    2011-01-01

    The paper presents the background, main achievements and components of rehabilitation robotics in a simple way, using non-technical terms. The introductory part looks at the development of robotic approaches in the rehabilitation of neurological patients and outlines the principles of robotic device interactions with patients. There follows a section on virtual reality in rehabilitation. Hapticity and interaction between robot and human are presented in order to understand the added value of robotics that cannot be exploited in other devices. The importance of passive exercise and active tasks is then discussed using the results of various clinical trials, followed by the place of upper and lower extremity robotic devices in rehabilitation practice. The closing section refers to the general importance of measurements in this area and stresses quantitative measurements as one of the advantages in using robotic devices.

  1. Robotic surgery.

    PubMed

    Diana, M; Marescaux, J

    2015-01-01

    Proficiency in minimally invasive surgery requires intensive and continuous training, as it is technically challenging for unnatural visual and haptic perceptions. Robotic and computer sciences are producing innovations to augment the surgeon's skills to achieve accuracy and high precision during complex surgery. This article reviews the current use of robotically assisted surgery, focusing on technology as well as main applications in digestive surgery, and future perspectives. The PubMed database was interrogated to retrieve evidence-based data on surgical applications. Internal and external consulting with key opinion leaders, renowned robotics laboratories and robotic platform manufacturers was used to produce state-of-the art business intelligence around robotically assisted surgery. Selected digestive procedures (oesophagectomy, gastric bypass, pancreatic and liver resections, rectal resection for cancer) might benefit from robotic assistance, although the current level of evidence is insufficient to support widespread adoption. The surgical robotic market is growing, and a variety of projects have recently been launched at both academic and corporate levels to develop lightweight, miniaturized surgical robotic prototypes. The magnified view, and improved ergonomics and dexterity offered by robotic platforms, might facilitate the uptake of minimally invasive procedures. Image guidance to complement robotically assisted procedures, through the concepts of augmented reality, could well represent a major revolution to increase safety and deal with difficulties associated with the new minimally invasive approaches. © 2015 BJS Society Ltd. Published by John Wiley & Sons Ltd.

  2. TARDEC Robotics

    DTIC Science & Technology

    2011-03-01

    TARDEC Robotics Dr. Greg Hudas Greg.hudas@us.army.mil UNCLASSIFIED: Dist A. Approved for public release Report Documentation Page Form ApprovedOMB...COVERED - 4. TITLE AND SUBTITLE TARDEC Robotics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Greg Hudas...ANSI Std Z39-18 Excellence in Robotics Outreach & University Shaping Requirements Building Modeling & Simulation Component Development International

  3. ROBOT WRITING,

    DTIC Science & Technology

    Technical writers who are hypnotized by the mechanical metaphor inevitably produce robot writing - a separate language, distantly related to the...prose of Darwin, Huxley, Jeans, and Einstein. Where they were clear, fresh, and graceful, the robot writer is hard, dull, and clumsy. Where they were...merely human, the robot writer is infallible, prefabricated, impersonal, and irresponsible. These four characteristics are interlinked. An example of one usually illustrates the other three.

  4. Robot Programming.

    DTIC Science & Technology

    1982-12-01

    34natural" behavior . They are each suitable to some applications more than others. Robot systems should support a wide repertoire of such motion regimes... behavior at a kinematic singularity. Some applications, such as arc-welding or spray-painting, can require very fine control of the robot’s speed...for specifying the behavior of systems more complex than a single robot. Another example of the need of this kind of coordination is in the

  5. Hopping robot

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Martinez, Michael A.; Kuehl, Michael A.; Feddema, John T.

    2001-01-01

    The present invention provides a hopping robot that includes a misfire tolerant linear actuator suitable for long trips, low energy steering and control, reliable low energy righting, miniature low energy fuel control. The present invention provides a robot with hopping mobility, capable of traversing obstacles significant in size relative to the robot and capable of operation on unpredictable terrain over long range. The present invention further provides a hopping robot with misfire-tolerant combustion actuation, and with combustion actuation suitable for use in oxygen-poor environments.

  6. Robotics research

    SciTech Connect

    Brady, M.; Paul, R.

    1984-01-01

    Organized around a view of robotics as ''the intelligent connection of perception to action,'' the fifty-three contributions collected in this book present leading current research in one of the fastest moving fields of artificial intelligence. Readings Include: Hand-Eye Coordination in Rope Handling; 3-D Balance Using 2-D algorithms. A Model Driven Visual Inspection Module: Stereo Vision: Complexity and Constraints; Interpretation of Contact Geometers from Force Measurement; The Utah MIT Dextrous Hand: Work in Progress; Hierarchical Nonlinear Control for Robots; VAL-11; A Robot Programming Language and Control System; Technological Barriers in Robotics: A Perspective from Industry.

  7. Robotics 101

    ERIC Educational Resources Information Center

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  8. Robotic system

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O. (Inventor)

    2003-01-01

    A robot having a plurality of interconnected sections is disclosed. Each of the sections includes components which are moveable relative to components of an adjacent section. A plurality of electric motors are operably connected to at least two of said relatively moveable components to effect relative movement. A fitted, removable protective covering surrounds the sections to protect the robot.

  9. Robotics 101

    ERIC Educational Resources Information Center

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  10. Robotic Surgery

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Automated Endoscopic System for Optimal Positioning, or AESOP, was developed by Computer Motion, Inc. under a SBIR contract from the Jet Propulsion Lab. AESOP is a robotic endoscopic positioning system used to control the motion of a camera during endoscopic surgery. The camera, which is mounted at the end of a robotic arm, previously had to be held in place by the surgical staff. With AESOP the robotic arm can make more precise and consistent movements. AESOP is also voice controlled by the surgeon. It is hoped that this technology can be used in space repair missions which require precision beyond human dexterity. A new generation of the same technology entitled the ZEUS Robotic Surgical System can make endoscopic procedures even more successful. ZEUS allows the surgeon control various instruments in its robotic arms, allowing for the precision the procedure requires.

  11. Robot Design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Martin Marietta Aero and Naval Systems has advanced the CAD art to a very high level at its Robotics Laboratory. One of the company's major projects is construction of a huge Field Material Handling Robot for the Army's Human Engineering Lab. Design of FMR, intended to move heavy and dangerous material such as ammunition, was a triumph in CAD Engineering. Separate computer problems modeled the robot's kinematics and dynamics, yielding such parameters as the strength of materials required for each component, the length of the arms, their degree of freedom and power of hydraulic system needed. The Robotics Lab went a step further and added data enabling computer simulation and animation of the robot's total operational capability under various loading and unloading conditions. NASA computer program (IAC), integrated Analysis Capability Engineering Database was used. Program contains a series of modules that can stand alone or be integrated with data from sensors or software tools.

  12. Robotic transportation.

    PubMed

    Lob, W S

    1990-09-01

    Mobile robots perform fetch-and-carry tasks autonomously. An intelligent, sensor-equipped mobile robot does not require dedicated pathways or extensive facility modification. In the hospital, mobile robots can be used to carry specimens, pharmaceuticals, meals, etc. between supply centers, patient areas, and laboratories. The HelpMate (Transitions Research Corp.) mobile robot was developed specifically for hospital environments. To reach a desired destination, Help-Mate navigates with an on-board computer that continuously polls a suite of sensors, matches the sensor data against a pre-programmed map of the environment, and issues drive commands and path corrections. A sender operates the robot with a user-friendly menu that prompts for payload insertion and desired destination(s). Upon arrival at its selected destination, the robot prompts the recipient for a security code or physical key and awaits acknowledgement of payload removal. In the future, the integration of HelpMate with robot manipulators, test equipment, and central institutional information systems will open new applications in more localized areas and should help overcome difficulties in filling transport staff positions.

  13. Subsumption Robotics

    DTIC Science & Technology

    1998-01-01

    Subsumption Robotics Christopher K. DeBolt Naval EOD Technology Division 2008 Stump Neck Road Indian Head, MD 20640-5070 phone: (301) 744-6850, Ext...eodmgate.navsea.navy.mil; nguyent.eodtc@eodmgate.navsea.navy.mil Helen Greiner and Polly K. Pook I.S. Robotics phone: (617) 629-0055 e-mail: helen@isr.com , pook...408) 656-3462 e-mail: healey@me.nps.navy.mil LONG-TERM GOALS Through the use of subsumption architectures, low cost, simple robots can be developed

  14. [Robotic surgery].

    PubMed

    Sándor, József; Haidegger, Tamás; Kormos, Katalin; Ferencz, Andrea; Csukás, Domokos; Bráth, Endre; Szabó, Györgyi; Wéber, György

    2013-10-01

    Due to the fast spread of laparoscopic cholecystectomy, surgical procedures have been changed essentially. The new techniques applied for both abdominal and thoracic procedures provided the possibility for minimally invasive access with all its advantages. Robots - originally developed for industrial applications - were retrofitted for laparoscopic procedures. The currently prevailing robot-assisted surgery is ergonomically more advantageous for the surgeon, as well as for the patient through the more precise preparative activity thanks to the regained 3D vision. The gradual decrease of costs of robotic surgical systems and development of new generations of minimally invasive devices may lead to substantial changes in routine surgical procedures.

  15. Robotic thyroidectomy.

    PubMed

    Holsinger, F Christopher; Chung, Woong Youn

    2014-06-01

    Robotic thyroidectomy is ideal for patients with indeterminate, likely benign lesions less than 3 cm, and a body mass index less than 35 kg/mg(2). Proper arm position and padding are important to facilitate exposure and development of the working space from axilla to thyroid bed. The working space is developed using headlight and retractors without robotic assistance, establishing exposure of the thyroid bed from a 5-cm incision in the axilla. Three robotic instruments and a stereoscopic endoscope provide excellent visualization of the associated thyroid neurovasculature anatomy. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Surrogate Robot

    NASA Image and Video Library

    2014-08-21

    The Surrogate robot Surge, built at NASA Jet Propulsion Laboratory in Pasadena, CA., is being developed in order to extend humanity reach into hazardous environments to perform tasks such as using environmental test equipment.

  17. Robotic vehicle

    DOEpatents

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  18. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  19. Robotic arm

    DOEpatents

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  20. Robotic vehicle

    SciTech Connect

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  1. Robotic vehicle

    DOEpatents

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  2. Rolling Robot

    NASA Technical Reports Server (NTRS)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.

    1990-01-01

    Proposed rolling robot routinely traverses rough terrain, clearing rocks as high as 1 m. Climbs steps 1 m high and spans ditches 2.3 m wide. Simple but rugged semiautonomous rover has large wheels and articulated body. With combined yaw, roll, and four-wheel drive, robot crawls slowly to pass over soft or sandy terrain. Senses terrain along corridor, chooses path to avoid insurmountable obstacles, and monitors state of vehicle for unexpected hazards.

  3. Robot Rescue

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Tests with robots and the high-fidelity Hubble Space Telescope mockup astronauts use to train for servicing missions have convinced NASA managers it may be possible to maintain and upgrade the orbiting observatory without sending a space shuttle to do the job. In a formal request last week, the agency gave bidders until July 16 to sub-mit proposals for a robotic mission to the space telescope before the end of 2007. At a minimum, the mission would attach a rocket motor to deorbit the telescope safely when its service life ends. In the best case, it would use state-of-the- art robotics to prolong its life on orbit and install new instruments. With the space shuttle off-limits for the job under strict post-Columbia safety policies set by Administrator Sean O'Keefe, NASA has designed a "straw- man" robotic mission that would use an Atlas V or Delta N to launch a 20,ooO-lb. "Hubble Robotic Vehicle" to service the telescope. There, a robotic arm would grapple it, much as the shuttle does.

  4. Handbook of industrial robotics

    SciTech Connect

    Nof, S.Y.

    1985-01-01

    This book presents papers on the application of artificial intelligence to robots used in industrial plants. Topics considered include vision systems, elements of industrial robot software, robot teaching, the off-line programming of robots, a structured programming robot language, task-level manipulator programming, expert systems, and the role of the computer in robot intelligence.

  5. Tutorial on robotics

    SciTech Connect

    Lee, C.S.G.; Gonzalez, R.C.; Fu, K.S.

    1986-01-01

    Basic fundamentals in robotics are presented in this tutorial. Topics covered are as follows: robot arm kinematics; robot arm dynamics; planning or manipulator trajectories; servo control for manipulators; force sensing and control; robot vision systems; robot programming languages; and machine intelligence and robot planning.

  6. Rehabilitation robotics.

    PubMed

    Krebs, H I; Volpe, B T

    2013-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician's toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual's functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Medical robotics.

    PubMed

    Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra

    2011-01-01

    Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management.

  8. Rehabilitation robotics

    PubMed Central

    KREBS, H.I.; VOLPE, B.T.

    2015-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician’s toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual’s functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We will provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we will then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We will present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. PMID:23312648

  9. Generic robot architecture

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  10. Cooperating mobile robots

    DOEpatents

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  11. Robot Swarms

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    Engineers and interns at this NASA field center are building the prototype of a robotic rover that could go where no wheeled rover has gone before-into the dark cold craters at the lunar poles and across the Moon s rugged highlands-like a walking tetrahedron. With NASA pushing to meet President Bush's new exploration objectives, the robots taking shape here today could be on the Moon in a decade. In the longer term, the concept could lead to shape-shifting robot swarms designed to explore distant planetary surfaces in advance of humans. "If you look at all of NASA s projections of the future, anyone s projections of the space program, they re all rigid-body architecture," says Steven Curtis, principal investigator on the effort. "This is not rigid-body. The whole key here is flexibility and reconfigurability with a capital R."

  12. Robot Manipulators

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Space Shuttle's Remote Manipulator System (Canadarm) is a 50 foot robot arm used to deploy, retrieve or repair satellites in orbit. Initial spinoff version is designed to remove, inspect and replace large components of Ontario Hydro's CANDU nuclear reactors, which supply 50 percent of Ontario Hydro's total power reduction. CANDU robot is the first of SPAR's Remote Manipulator Systems intended for remote materials handling operations in nuclear servicing, chemical processing, smelting and manufacturing. Inco Limited used remote manipulator for remote control mining equipment to enhance safety and productivity of Inco's hardrock mining operations. System not only improves safety in a hazardous operation that costs more than a score of lives annually, it also increases productivity fourfold. Remote Manipulator System Division is also manufacturing a line of industrial robots and developing additional system for nuclear servicing, mining, defense and space operations.

  13. Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A commercially available ANDROS Mark V-A robot was used by Jet Propulsion Laboratory (JPL) as the departure point in the development of the HAZBOT III, a prototype teleoperated mobile robot designed for response to emergencies. Teleoperated robots contribute significantly to reducing human injury levels by performing tasks too hazardous for humans. ANDROS' manufacturer, REMOTEC, Inc., in turn, adopted some of the JPL concepts, particularly the control panel. HAZBOT III has exceptional mobility, employs solid state electronics and brushless DC motors for safer operation, and is designed so combustible gases cannot penetrate areas containing electronics and motors. Other features include the six-degree-of-freedom manipulator, the 30-pound squeeze force parallel jaw gripper and two video cameras, one for general viewing and navigation and the other for manipulation/grasping.

  14. Robot Swarms

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    Engineers and interns at this NASA field center are building the prototype of a robotic rover that could go where no wheeled rover has gone before-into the dark cold craters at the lunar poles and across the Moon s rugged highlands-like a walking tetrahedron. With NASA pushing to meet President Bush's new exploration objectives, the robots taking shape here today could be on the Moon in a decade. In the longer term, the concept could lead to shape-shifting robot swarms designed to explore distant planetary surfaces in advance of humans. "If you look at all of NASA s projections of the future, anyone s projections of the space program, they re all rigid-body architecture," says Steven Curtis, principal investigator on the effort. "This is not rigid-body. The whole key here is flexibility and reconfigurability with a capital R."

  15. Robot Tools

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Mecanotron, now division of Robotics and Automation Corporation, developed a quick-change welding method called the Automatic Robotics Tool-change System (ARTS) under Marshall Space Flight Center and Rockwell International contracts. The ARTS system has six tool positions ranging from coarse sanding disks and abrasive wheels to cloth polishing wheels with motors of various horsepower. The system is used by fabricators of plastic body parts for the auto industry, by Texas Instruments for making radar domes, and for advanced composites at Aerospatiale in France.

  16. Robot Hand

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Robots are limited only by the dexterity of the hand. Dr. Salisbury, in conjunction with Stanford, Caltech and Jet Propulsion Laboratory, developed the Salisbury Hand which has three, three-jointed human-like fingers. The tips are covered with a resilient, high friction material for gripping. The robot hand can manipulate objects by finger motion, and adapts to different aims. Advanced software allows the hand to interpret information from fingertip sensors. Further development is expected. A company has been formed to reproduce the device; copies have been delivered to several laboratories.

  17. Robot gripper

    NASA Technical Reports Server (NTRS)

    Webb, Winston S. (Inventor)

    1987-01-01

    An electronic force-detecting robot gripper for gripping objects and attaching to an external robot arm is disclosed. The gripper comprises motor apparatus, gripper jaws, and electrical circuits for driving the gripper motor and sensing the amount of force applied by the jaws. The force applied by the jaws is proportional to a threshold value of the motor current. When the motor current exceeds the threshold value, the electrical circuits supply a feedback signal to the electrical control circuit which, in turn, stops the gripper motor.

  18. Robotics in Construction.

    DTIC Science & Technology

    1986-01-01

    MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A 0 ROBOTICS IN CONSTRUCTIONt 10 BY MICHAEL R. BROZZO A REPORT PRESENTED TO THE GRADUATE... ROBOTS AND ROBOTICS ---------------------------- 3 2.1 HISTORY ------------------------------------------- 3 CHAPTER THREE - BASIC ROBOT MOVEMENTS...CHAPTER FOUR - BASIC ROBOT COMPONENTS ------------------------ 8 4.1 GENERAL ------------------------------------------- 8 4.1.1 Manipulator

  19. Robotic Surgery

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2007-01-01

    The medical field has many uses for automated and remote-controlled technology. For example, if a tissue sample is only handled in the laboratory by a robotic handling system, then it will never come into contact with a human. Such a system not only helps to automate the medical testing process, but it also helps to reduce the chances of…

  20. Robotic Surgery

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2007-01-01

    The medical field has many uses for automated and remote-controlled technology. For example, if a tissue sample is only handled in the laboratory by a robotic handling system, then it will never come into contact with a human. Such a system not only helps to automate the medical testing process, but it also helps to reduce the chances of…

  1. Beyond Robotics

    ERIC Educational Resources Information Center

    Tally, Beth; Laverdure, Nate

    2006-01-01

    Chantilly High School Academy Robotics Team Number 612 from Chantilly, Virginia, is an award-winning team of high school students actively involved with FIRST (For Inspiration and Recognition of Science and Technology), a multinational nonprofit organization that inspires students to transform culture--making science, math, engineering and…

  2. Beyond Robotics

    ERIC Educational Resources Information Center

    Tally, Beth; Laverdure, Nate

    2006-01-01

    Chantilly High School Academy Robotics Team Number 612 from Chantilly, Virginia, is an award-winning team of high school students actively involved with FIRST (For Inspiration and Recognition of Science and Technology), a multinational nonprofit organization that inspires students to transform culture--making science, math, engineering and…

  3. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  4. Robotics Education and Employment.

    ERIC Educational Resources Information Center

    Linnell, Charles C.

    1993-01-01

    Describes characteristics of robots, provides a glossary of related terms, and discusses available careers in the field of robotics. Includes a list of postsecondary institutions with robotics programs. (JOW)

  5. Climbing robot

    NASA Astrophysics Data System (ADS)

    Kerley, James J.; May, Edward L.; Ecklund, Wayne D.

    1993-11-01

    A mobile robot for traversing any surface consisting of a number of interconnected segments, each interconnected segment having an upper 'U' frame member, a lower 'U' frame member, a compliant joint between the upper 'U' frame member and the lower 'U' frame member, a number of linear actuators between the two frame members acting to provide relative displacement between the frame members, a foot attached to the lower 'U' frame member for adherence of the segment to the surface, an inter-segment attachment attached to the upper 'U' frame member for interconnecting the segments, a power source connected to the linear actuator, and a computer/controller for independently controlling each linear actuator in each interconnected segment such that the mobile robot moves in a caterpillar like fashion.

  6. Robotic System

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A complicated design project, successfully carried out by New York manufacturing consultant with help from NERAC, Inc., resulted in new type robotic system being marketed for industrial use. Consultant Robert Price, operating at E.S.I, Inc. in Albany, NY, sought help from NERAC to develop an automated tool for deburring the inside of 8 inch breech ring assemblies for howitzers produced by Watervliet Arsenal. NERAC conducted a search of the NASA data base and six others. From information supplied, Price designed a system consisting of a standard industrial robot arm, with a specially engineered six-axis deburring tool fitted to it. A microcomputer and computer program direct the tool on its path through the breech ring. E.S.I. markets the system to aerospace and metal cutting industries for deburring, drilling, routing and refining machined parts.

  7. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025030 (26 July 2013) --- From the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, uses a computer as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  8. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025012 (26 July 2013) --- From the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, uses a computer as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  9. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025017 (26 July 2013) --- In the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, speaks in a microphone as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  10. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025034 (26 July 2013) --- From the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, uses a computer as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  11. Robotics in urological surgery: evolution, current status and future perspectives.

    PubMed

    Sivaraman, A; Sanchez-Salas, R; Prapotnich, D; Barret, E; Mombet, A; Cathala, N; Rozet, F; Galiano, M; Cathelineau, X

    2015-09-01

    Robotic surgery is rapidly evolving and has become an essential part of surgical practice in several parts of the world. Robotic technology will expand globally and most of the surgeons around the world will have access to surgical robots in the future. It is essential that we are updated about the outcomes of robot assisted surgeries which will allow everyone to develop an unbiased opinion on the clinical utility of this innovation. In this review we aim to present the evolution, objective evaluation of clinical outcomes and future perspectives of robot assisted urologic surgeries. A systematic literature review of clinical outcomes of robotic urological surgeries was made in the PUBMED. Randomized control trials, cohort studies and review articles were included. Moreover, a detailed search in the web based search engine was made to acquire information on evolution and evolving technologies in robotics. The present evidence suggests that the clinical outcomes of the robot assisted urologic surgeries are comparable to the conventional open surgical and laparoscopic results and are associated with fewer complications. However, long term results are not available for all the common robotic urologic surgeries. There are plenty of novel developments in robotics to be available for clinical use in the future. Robotic urologic surgery will continue to evolve in the future. We should continue to critically analyze whether the advances in technology and the higher cost eventually translates to improved overall surgical performance and outcomes. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Robotics and regional anesthesia.

    PubMed

    Wehbe, Mohamad; Giacalone, Marilu; Hemmerling, Thomas M

    2014-10-01

    Robots in regional anesthesia are used as a tool to automate the performance of regional techniques reducing the anesthesiologist's workload and improving patient care. The purpose of this review is to show the latest findings in robotic regional anesthesia. The literature separates robots in anesthesia into two groups: pharmacological robots and manual robots. Pharmacological robots are mainly closed-loop systems that help in the titration of anesthetic drugs to patients undergoing surgery. Manual robots are mechanical robots that are used to support or replace the manual gestures performed by anesthesiologists. Although in the last decade researchers have focused on the development of decision support systems and closed-loop systems, more recent evidence supports the concept that robots can also be useful in performing regional anesthesia techniques. Robots can improve the performance and safety in regional anesthesia. In this review, we present the developments made in robotic and automated regional anesthesia, and discuss the current state of research in this field.

  13. Robotics Challenge: Cognitive Robot for General Missions

    DTIC Science & Technology

    2015-01-01

    5 Figure 2: Screenshots of the IHC- Controlled ATLAS Robot Walking ...mean time, people at KU assumed that 1) the IHC¹s low-level control is perfect ‹ meaning that the robot can perform basic maneuvers like walking ...side even after the VRC event, IHC successfully controlled the robot to walk on a variety of surfaces. Figure 2 shows a simulated ATLAS robot with

  14. Robot environment expert system

    NASA Technical Reports Server (NTRS)

    Potter, J. L.

    1985-01-01

    The Robot Environment Expert System uses a hexidecimal tree data structure to model a complex robot environment where not only the robot arm moves, but also the robot itself and other objects may move. The hextree model allows dynamic updating, collision avoidance and path planning over time, to avoid moving objects.

  15. Educational Robotics as Mindtools

    ERIC Educational Resources Information Center

    Mikropoulos, Tassos A.; Bellou, Ioanna

    2013-01-01

    Although there are many studies on the constructionist use of educational robotics, they have certain limitations. Some of them refer to robotics education, rather than educational robotics. Others follow a constructionist approach, but give emphasis only to design skills, creativity and collaboration. Some studies use robotics as an educational…

  16. Robotic Hand

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Omni-Hand was developed by Ross-Hime Designs, Inc. for Marshall Space Flight Center (MSFC) under a Small Business Innovation Research (SBIR) contract. The multiple digit hand has an opposable thumb and a flexible wrist. Electric muscles called Minnacs power wrist joints and the interchangeable digits. Two hands have been delivered to NASA for evaluation for potential use on space missions and the unit is commercially available for applications like hazardous materials handling and manufacturing automation. Previous SBIR contracts resulted in the Omni-Wrist and Omni-Wrist II robotic systems, which are commercially available for spray painting, sealing, ultrasonic testing, as well as other uses.

  17. Robotic Stripping

    NASA Technical Reports Server (NTRS)

    2000-01-01

    UltraStrip Systems, Inc.'s M-200 removes paint from the hulls of ships faster than traditional grit-blasting methods. And, it does so without producing toxic airborne particles common to traditional methods. The M-2000 magnetically attaches itself to the hull of the ship. Its water jets generate 40,000 pounds of pressure per square inch, blasting away paint down to the ships steel substrate. The only by product is water and dried paint chips and these are captured by a vacuum system so no toxic residue can escape. It was built out of a partnership between the Jet Propulsion Laboratory and the National Robotics Engineering Consortium.

  18. Robots and manipulators

    NASA Technical Reports Server (NTRS)

    Heer, E.

    1981-01-01

    Robots are defined and described for various applications. The key feature of robots is programmability, which allows teleoperation, repair work in hazardous situations, and unsupervised operation in industrial functions. Two types of robots now exist: special purpose, with equipment for a specific task; and general purpose, which include nonservo-controlled robots, servo-controlled robots, and sensory control robots. Sensory robots are the most sophisticated, and are equipped with both internal control sensors and external sensors such as TV cameras, pressure detectors, laser range finders, etc. Sensory feedback to a central computer enables the robots to make appropriate modifications to the control program to adapt to new situations. Pattern recognition and scans for size are features of the TV sensors, and programs to develop a universal effector (hand) are outlined. Finally, robot programming in terms of manual, walkthrough, and textual methods are described, and the potential uses of robots for space and undersea construction and repair are discussed.

  19. Collaborative Robotics Design Considerations

    DTIC Science & Technology

    2004-05-06

    I~D~·L Paper Number Collaborative Robotics Design Considerations ABSTRACT As research advances individual robot capabilities, a logical...progression is the use of multiple robots to complete a task more effectively. Mission performance can be improved by the ability to allocate robots with...diverse capabilities to perform different parts of a complex task. To paraphrase [[10], there are many advantages to enabling robotic collaborative

  20. Robotic Vision for Welding

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1986-01-01

    Vision system for robotic welder looks at weld along axis of welding electrode. Gives robot view of most of weld area, including yet-unwelded joint, weld pool, and completed weld bead. Protected within welding-torch body, lens and fiber bundle give robot closeup view of weld in progress. Relayed to video camera on robot manipulator frame, weld image provides data for automatic control of robot motion and welding parameters.

  1. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Students from Hagerty High School in Oviedo, Fla., participants in FIRST Robotics, show off their robots' capabilities at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  2. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A miniature humanoid robot known as DARwin-OP, from Virginia Tech Robotics, plays soccer with a red tennis ball for a crowd of students at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  3. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Students gather to watch as a DARwin-OP miniature humanoid robot from Virginia Tech Robotics demonstrates its soccer abilities at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  4. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A child gets an up-close look at Charli, an autonomous walking robot developed by Virginia Tech Robotics, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  5. Robotic vehicle

    DOEpatents

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  6. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  7. Robotic vehicle

    DOEpatents

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  8. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  9. Hexapod Robot

    NASA Technical Reports Server (NTRS)

    Begody, Ericka

    2016-01-01

    The project I am working on at NASA-Johnson Space Center in Houston, TX is a hexapod robot. This project was started by various engineers at the Trick Lab. The goal of this project is to have the hexapod track a yellow ball or possibly another object from left to right and up/down. The purpose is to have it track an object like a real creature. The project will consist of using software and hardware. This project started with a hexapod robot which uses a senor bar to track a yellow ball but with a limited field of vision. The sensor bar acts as the robots "head." Two servos will be added to the hexapod to create flexion and extension of the head. The neck and head servos will have to be programmed to be added to the original memory map of the existing servos. I will be using preexisting code. The main programming language that will be used to add to the preexisting code is C++. The trick modeling and simulation software will also be used in the process to improve its tracking and movement. This project will use a trial and error approach, basically seeing what works and what does not. The first step is to initially understand how the hexapod works. To get a general understanding of how the hexapod maneuvers and plan on how to had a neck and head servo which works with the rest of the body. The second step would be configuring the head and neck servos with the leg servos. During this step, limits will be programmed specifically for the each servo. By doing this, the servo is limited to how far it can rotate both clockwise and counterclockwise and this is to prevent hardware damage. The hexapod will have two modes in which it works in. The first mode will be if the sensor bar does not detect an object. If the object it is programmed to look for is not in its view it will automatically scan from left to right 3 times then up and down once. The second mode will be if the sensor bar does detect the object. In this mode the hexapod will track the object from left to

  10. Robotic intelligence kernel

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  11. Intelligent robots and computer vision

    SciTech Connect

    Casasent, D.P.

    1985-01-01

    This book presents the papers given at a conference which examined artificial intelligence and image processing in relation to robotics. Topics considered at the conference included feature extraction and pattern recognition for computer vision, image processing for intelligent robotics, robot sensors, image understanding and artificial intelligence, optical processing techniques in robotic applications, robot languages and programming, processor architectures for computer vision, mobile robots, multisensor fusion, three-dimensional modeling and recognition, intelligent robots applications, and intelligent robot systems.

  12. Humanoid Robot

    NASA Technical Reports Server (NTRS)

    Linn, Douglas M. (Inventor); Ambrose, Robert O. (Inventor); Diftler, Myron A. (Inventor); Askew, Scott R. (Inventor); Platt, Robert (Inventor); Mehling, Joshua S. (Inventor); Radford, Nicolaus A. (Inventor); Strawser, Phillip A. (Inventor); Bridgwater, Lyndon (Inventor); Wampler, II, Charles W. (Inventor); hide

    2013-01-01

    A humanoid robot includes a torso, a pair of arms, two hands, a neck, and a head. The torso extends along a primary axis and presents a pair of shoulders. The pair of arms movably extend from a respective one of the pair of shoulders. Each of the arms has a plurality of arm joints. The neck movably extends from the torso along the primary axis. The neck has at least one neck joint. The head movably extends from the neck along the primary axis. The head has at least one head joint. The shoulders are canted toward one another at a shrug angle that is defined between each of the shoulders such that a workspace is defined between the shoulders.

  13. Robotics for Human Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Deans, Mathew; Bualat, Maria

    2013-01-01

    Robots can do a variety of work to increase the productivity of human explorers. Robots can perform tasks that are tedious, highly repetitive or long-duration. Robots can perform precursor tasks, such as reconnaissance, which help prepare for future human activity. Robots can work in support of astronauts, assisting or performing tasks in parallel. Robots can also perform "follow-up" work, completing tasks designated or started by humans. In this paper, we summarize the development and testing of robots designed to improve future human exploration of space.

  14. History of robotic surgery.

    PubMed

    Kalan, Satyam; Chauhan, Sanket; Coelho, Rafael F; Orvieto, Marcelo A; Camacho, Ignacio R; Palmer, Kenneth J; Patel, Vipul R

    2010-09-01

    Robotic surgery is one of the most advanced forms of Minimally Invasive Surgery. Although the application of robotic technology to surgical robotics started some 20 years ago, the earliest work in robotics and automation can be traced back to 400 BC. Some of the early pioneers include Archytas of Arentum, Leonardo da Vinci, Gianello Toriano, and Pierre Jaquet-Droz, and we owe to these philosophers and scientists the fact that we can offer the benefit of minimal invasion in surgery. The purpose of this review is to give a brief description of the evolution of robotic surgery from its early history to present-day surgical robotics.

  15. Competencies Identification for Robotics Training.

    ERIC Educational Resources Information Center

    Tang, Le D.

    A study focused on the task of identifying competencies for robotics training. The level of robotics training was limited to that of robot technicians. Study objectives were to obtain a list of occupational competencies; to rank their order of importance; and to compare opinions from robot manufacturers, robot users, and robotics educators…

  16. Robot strings: Long, thin continuum robots

    NASA Astrophysics Data System (ADS)

    Walker, I. D.

    We describe and discuss the development of long, thin, continuous “ string-like” robots aimed at Space exploration missions. These continuous backbone “ continuum” robots are inspired by numerous biological structures, particularly vines, worms, and the tongues of animals such as the anteater. The key novelty is the high length-to-diameter ratio of the robots. This morphology offers penetration into, and exploration of, significantly narrower and deeper environments than accessible using current robot technology. In this paper, we introduce new design alternatives for long thin continuum robots, based on an analysis and extension of three core existing continuum robot design types. The designs are evaluated based on their mechanical feasibility, structural properties, kinematic simplicity, and degrees of freedom.

  17. Soft robotics: a bioinspired evolution in robotics.

    PubMed

    Kim, Sangbae; Laschi, Cecilia; Trimmer, Barry

    2013-05-01

    Animals exploit soft structures to move effectively in complex natural environments. These capabilities have inspired robotic engineers to incorporate soft technologies into their designs. The goal is to endow robots with new, bioinspired capabilities that permit adaptive, flexible interactions with unpredictable environments. Here, we review emerging soft-bodied robotic systems, and in particular recent developments inspired by soft-bodied animals. Incorporating soft technologies can potentially reduce the mechanical and algorithmic complexity involved in robot design. Incorporating soft technologies will also expedite the evolution of robots that can safely interact with humans and natural environments. Finally, soft robotics technology can be combined with tissue engineering to create hybrid systems for medical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Robots and the Economy.

    ERIC Educational Resources Information Center

    Albus, James S.

    1984-01-01

    Spectacular advances in microcomputers are forging new technological frontiers in robotics. For example, many factories will be totally automated. Economic implications of the new technology of robotics for the future are examined. (RM)

  19. Robotic Intelligence Kernel: Communications

    SciTech Connect

    Walton, Mike C.

    2009-09-16

    The INL Robotic Intelligence Kernel-Comms is the communication server that transmits information between one or more robots using the RIK and one or more user interfaces. It supports event handling and multiple hardware communication protocols.

  20. Robotic Lander Development Project

    NASA Image and Video Library

    The Robotic Lander Development Project at the Marshall Center is testing a prototype lander that will aid in the design and development of a new generation of small, smart, versatile robotic lander...

  1. Robotic space colonies

    NASA Technical Reports Server (NTRS)

    Schenker, P.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper reviews recent advances in these technologies, with a particular focus on experimental state-of-the-art robot work crew system demonstrations at JPL, that are being conducted now to begin to realize the futuristic robotic colony vision.

  2. Robotic Lander Prototype

    NASA Image and Video Library

    NASA engineers successfully integrated and completed system testing on a new robotic lander recently at Teledyne Brown Engineering’s facility in Huntsville in support of the Robotic Lunar Lander ...

  3. Robots and the Economy.

    ERIC Educational Resources Information Center

    Albus, James S.

    1984-01-01

    Spectacular advances in microcomputers are forging new technological frontiers in robotics. For example, many factories will be totally automated. Economic implications of the new technology of robotics for the future are examined. (RM)

  4. ROBOTS TO ROCKET CITY

    NASA Image and Video Library

    2016-03-06

    HIGH SCHOOL STUDENTS FROM NORTH ALABAMA GATHER AT THE U.S. SPACE AND ROCKET CENTER'S DAVIDSON CENTER FOR THE "ROBOTS TO ROCKET CITY" EVENT SHOWCASING THEIR INDIVIDUAL ROBOTS PRIOR TO LATER COMPETITIONS.

  5. Robotic Surveying

    SciTech Connect

    Suzy Cantor-McKinney; Michael Kruzic

    2007-03-01

    ZAPATA ENGINEERING challenged our engineers and scientists, which included robotics expertise from Carnegie Mellon University, to design a solution to meet our client's requirements for rapid digital geophysical and radiological data collection of a munitions test range with no down-range personnel. A prime concern of the project was to minimize exposure of personnel to unexploded ordnance and radiation. The field season was limited by extreme heat, cold and snow. Geographical Information System (GIS) tools were used throughout this project to accurately define the limits of mapped areas, build a common mapping platform from various client products, track production progress, allocate resources and relate subsurface geophysical information to geographical features for use in rapidly reacquiring targets for investigation. We were hopeful that our platform could meet the proposed 35 acres per day, towing both a geophysical package and a radiological monitoring trailer. We held our breath and crossed our fingers as the autonomous Speedrower began to crawl across the playa lakebed. We met our proposed production rate, and we averaged just less than 50 acres per 12-hour day using the autonomous platform with a path tracking error of less than +/- 4 inches. Our project team mapped over 1,800 acres in an 8-week (4 days per week) timeframe. The expertise of our partner, Carnegie Mellon University, was recently demonstrated when their two autonomous vehicle entries finished second and third at the 2005 Defense Advanced Research Projects Agency (DARPA) Grand Challenge. 'The Grand Challenge program was established to help foster the development of autonomous vehicle technology that will some day help save the lives of Americans who are protecting our country on the battlefield', said DARPA Grand Challenge Program Manager, Ron Kurjanowicz. Our autonomous remote-controlled vehicle (ARCV) was a modified New Holland 2550 Speedrower retrofitted to allow the machine

  6. Robotics Research for Cybersecurity

    DTIC Science & Technology

    2012-01-24

    Wei-Min Shen 1/24/12 Page 1 of 3 Robotics Research for Cybersecurity Wei-Min Shen Polymorphic Robotics Laboratory USC/ISI, 4676 Admiralty Way...Marina del Rey, CA 90292 Phone: 310-448-8710, Fax: 310-822-0751 Email: shen@isi.edu, Web: http://www.isi.edu/ robots / Executive Summary This...project is to conduct a comprehensive study of robotics research in the context of cybersecurity. Specifically, 1) Create a realistic cybersecurity test

  7. Towards Pervasive Robotics

    DTIC Science & Technology

    2003-01-01

    Towards Pervasive Robotics Artur M. Arsenio Artificial Intelligence Lab - Massachusetts Institute of Technology 545 Technology Square, Room NE43-936...MA 02139 arsenio@ai.mit.edu Abstract Pervasive robotics will require, in a near future, small, light and cheap robots that exhibit complex behaviors...These demands led to the development of the M2-M4 Macaco project - a robotic active vi- sion head. Macaco is a portable system, capable of emulating

  8. Ground Vehicle Robotics

    DTIC Science & Technology

    2013-08-20

    Ground Vehicle Robotics Jim Parker Associate Director, Ground Vehicle Robotics UNCLASSIFIED: Distribution Statement A. Approved for public...DATE 20 AUG 2013 2. REPORT TYPE Briefing Charts 3. DATES COVERED 09-05-2013 to 15-08-2013 4. TITLE AND SUBTITLE Ground Vehicle Robotics 5a...Willing to take Risk on technology -User Evaluated -Contested Environments -Operational Data Applied Robotics for Installation & Base Ops -Low Risk

  9. Telepresence and Intervention Robotics

    DTIC Science & Technology

    2000-11-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO10628 TITLE: Telepresence and Intervention Robotics DISTRIBUTION...comprise the compilation report: ADPO10609 thru ADP010633 UNCLASSIFIED 20-1 TELEPRESENCE AND INTERVENTION ROBOTICS Nathalie Cislo Laboratoire de...Robotique de Paris 10-12, Avenue de 1’Europe 78140 VWlizy-Villacoublay, FRANCE cislo@robot.uvsq.fr ABSTRACT In the field of Mobile Robotics applications

  10. Tool Changer For Robot

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.

    1992-01-01

    Mechanism enables robot to change tools on end of arm. Actuated by motion of robot: requires no additional electrical or pneumatic energy to make or break connection between tool and wrist at end of arm. Includes three basic subassemblies: wrist interface plate attached to robot arm at wrist, tool interface plate attached to tool, and holster. Separate tool interface plate and holster provided for each tool robot uses.

  11. RHOBOT: Radiation hardened robotics

    SciTech Connect

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  12. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A visitor to the Robot Rocket Rally takes an up-close look at RASSOR, a robotic miner developed by NASA Kennedy Space Center's Swamp Works. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  13. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Students observe as Otherlab shows off a life-size, inflatable robot from its "" program. The demonstration was one of several provided during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  14. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Andrew Nick of Kennedy Space Center's Swamp Works shows off RASSOR, a robotic miner, at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  15. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A visitor to the Robot Rocket Rally tries his hand at virtual reality in a demonstration of the Oculus Rift technology, provided by the Open Source Robotics Foundation. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  16. Modular robot

    DOEpatents

    Ferrante, Todd A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  17. Modular robot

    DOEpatents

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  18. Robotic Intelligence Kernel: Visualization

    SciTech Connect

    2009-09-16

    The INL Robotic Intelligence Kernel-Visualization is the software that supports the user interface. It uses the RIK-C software to communicate information to and from the robot. The RIK-V illustrates the data in a 3D display and provides an operating picture wherein the user can task the robot.

  19. Inertially Aided Robotics

    DTIC Science & Technology

    1989-12-31

    0031 dis~bti:,1 is uitsnjt( Deczmllcr 31: 1989 92-05530 2:.-: 3o : T >VE?-A ~ : Inertially Aided Robotics FINAL REPORT for Contract No. DAAHO1 -88-D-0057...1 2 Advantages of Inertially Aided Robotics ...86 iii List of Figures Figure 1 - Robot Manipulator having Joint Sensor Based Control ..................... 2

  20. NASA's Intelligent Robotics Group

    NASA Image and Video Library

    2017-01-06

    Shareable video highlighting the Intelligent Robotics Group's 25 years of experience developing tools to allow humans and robots to work as teammates. Highlights the VERVE software, which allows researchers to see a 3D representation of the robot's world and mentions how Nissan is using a version of VERVE in the autonomous vehicle research.

  1. Robotic hand and fingers

    DOEpatents

    Salisbury, Curt Michael; Dullea, Kevin J.

    2017-06-06

    Technologies pertaining to a robotic hand are described herein. The robotic hand includes one or more fingers releasably attached to a robotic hand frame. The fingers can abduct and adduct as well as flex and tense. The fingers are releasably attached to the frame by magnets that allow for the fingers to detach from the frame when excess force is applied to the fingers.

  2. Total portal robotic pneumonectomy.

    PubMed

    Rodriguez, Jose R

    2013-09-01

    Robotic pulmonary lobectomies have been reported to be technically and oncologically achievable; however, only three robotic pneumonectomy cases have been described. Two of them used a mini thoracotomy. We describe one case of a total portal robotic pneumonectomy without utility incision. We describe the step-by-step process.

  3. Building a Better Robot

    ERIC Educational Resources Information Center

    Navah, Jan

    2012-01-01

    Kids love to build robots, letting their imaginations run wild with thoughts of what they might look like and what they could be programmed to do. Yet when students use cereal boxes and found objects to make robots, often the projects look too similar and tend to fall apart. This alternative allows students to "build" robots in a different way,…

  4. Mobile robot knowledge base

    NASA Astrophysics Data System (ADS)

    Heath Pastore, Tracy; Barnes, Mitchell; Hallman, Rory

    2005-05-01

    Robot technology is developing at a rapid rate for both commercial and Department of Defense (DOD) applications. As a result, the task of managing both technology and experience information is growing. In the not-to-distant past, tracking development efforts of robot platforms, subsystems and components was not too difficult, expensive, or time consuming. To do the same today is a significant undertaking. The Mobile Robot Knowledge Base (MRKB) provides the robotics community with a web-accessible, centralized resource for sharing information, experience, and technology to more efficiently and effectively meet the needs of the robot system user. The resource includes searchable information on robot components, subsystems, mission payloads, platforms, and DOD robotics programs. In addition, the MRKB website provides a forum for technology and information transfer within the DOD robotics community and an interface for the Robotic Systems Pool (RSP). The RSP manages a collection of small teleoperated and semi-autonomous robotic platforms, available for loan to DOD and other qualified entities. The objective is to put robots in the hands of users and use the test data and fielding experience to improve robot systems.

  5. Robotics development programs overview

    SciTech Connect

    Heckendorn, F.M.

    1990-11-01

    This paper discusses the applications of robotics at the Westinghouse Savannah River Site. The Savannah River Laboratory (SRL) continues to provide support to the Savannah River Site (SRS) in many areas of Robotics and Remote Vision. An overview of the current and near term future developments are presented. The driving forces for Robotics and Vision developments at SRS include the classic reasons for industrial robotics installation (i.e. repetitive and undesirable jobs) and those reasons related to radioactive environments. Protection of personnel from both radiation and radioactive contamination benefit greatly from both Robotics and Telerobotics. Additionally, the quality of information available from remote locations benefits greatly from the ability to visually monitor and remotely sense. The systems discussed include a glovebox waste handling and bagout robot, a shielded cells robot for radioactive waste sample transfer, waste handling gantry robots, a two armed master/slave manipulator as an attachment to a gantry robot, navigation robot research/testing, demonstration of the mobile underwater remote cleaning and inspection device, a camera deployment robot to support remote crane operations and for deployment of radiation sensors directly over a hazardous site, and demonstration of a large mobile robot for high radiation environments. Development of specialized and limited life vision/viewing systems for hazardous environments is also discussed.

  6. Networking a mobile robot

    NASA Astrophysics Data System (ADS)

    McKee, Gerard T.

    1994-10-01

    Conventional mobile robotic systems are `stand alone'. Program development involves loading programs into the mobile, via an umbilical. Autonomous operation, in this context, means `isolation': the user cannot interact with the program as the robot is moving around. Recent research in `swarm robotics' has exploited wireless networks as a means of providing inter- robot communication, but the population is still isolated from the human user. In this paper we report on research we are conducting into the provision of mobile robots as resources on a local area computer network, and thus breaking the isolation barrier. We are making use of new multimedia workstation and wireless networking technology to link the robots to the network in order to provide a new type of resource for the user. We model the robot as a set of resources and propose a client-server architecture as the basis for providing user access to the robots. We describe the types of resources each robot can provide and we outline the potential for cooperative robotics, human-robot cooperation, and teleoperation and autonomous robot behavior within this context.

  7. Tooling For Robotic Welder

    NASA Technical Reports Server (NTRS)

    Weeks, Jack L.

    1989-01-01

    Robot obtains welding tool and position reference quickly and automatically. Multiple tools and stands in workspace give robot access to variety of welding torches and reference positions. Feature saves time and makes it unnecessary for operator to enter within outer limit of motion of robot arm.

  8. Robotics of human movements.

    PubMed

    van der Smagt, Patrick; Grebenstein, Markus; Urbanek, Holger; Fligge, Nadine; Strohmayr, Michael; Stillfried, Georg; Parrish, Jonathon; Gustus, Agneta

    2009-01-01

    The construction of robotic systems that can move the way humans do, with respect to agility, stability and precision, is a necessary prerequisite for the successful integration of robotic systems in human environments. We explain human-centered views on robotics, based on the three basic ingredients (1) actuation; (2) sensing; and (3) control, and formulate detailed examples thereof.

  9. Building a Better Robot

    ERIC Educational Resources Information Center

    Navah, Jan

    2012-01-01

    Kids love to build robots, letting their imaginations run wild with thoughts of what they might look like and what they could be programmed to do. Yet when students use cereal boxes and found objects to make robots, often the projects look too similar and tend to fall apart. This alternative allows students to "build" robots in a different way,…

  10. Robotic Follow Algorithm

    SciTech Connect

    2005-03-30

    The Robotic Follow Algorithm enables allows any robotic vehicle to follow a moving target while reactively choosing a route around nearby obstacles. The robotic follow behavior can be used with different camera systems and can be used with thermal or visual tracking as well as other tracking methods such as radio frequency tags.

  11. Intelligent robots and computer vision

    SciTech Connect

    Casasent, D.P.

    1986-01-01

    This book presents the papers given at a conference on artificial intelligence and robot vision. Topics considered at the conference included pattern recognition, image processing for intelligent robotics, three-dimensional vision (depth and motion), vision modeling and shape estimation, spatial reasoning, the symbolic processing visual information, robotic sensors and applications, intelligent control architectures for robot systems, robot languages and programming, human-machine interfaces, robotics applications, and architectures of robotics.

  12. Robotics Technical Note 102.

    DTIC Science & Technology

    1981-06-01

    IAfl-AIBZ 4U2 AIR FORCE BUSINESS RESEARCH MANAGEMENT CENTER WRIGHT-ETC F/6 13/8 I ROBOTICS TECHNIICAL NOTE 102.(U) JUN Al B M BLABIERSALL UNCLASSIFE...CATALOG uME 1T4.T7- Subtitle S. TYPE OF REPOR & PERIOO COVERED Technical Note 102 Robotics 𔄁 FInal r ---- 6. PERFORMING O1G. REPORT NUMBER C 7. A tNORa B...Identify by block number) Robotics Manufacturing Industrial Robots Robot Technology SRobotics Application BQ~.STRACT (Continue on revere* side It

  13. Miniaturized autonomous robot

    NASA Astrophysics Data System (ADS)

    Ishihara, Hidenori; Fukuda, Toshio

    1998-01-01

    Many projects developing the miniaturized autonomous robot have been carried out in the whole world. This paper deals with our challenges developing a miniaturized autonomous robot. The miniaturized autonomous robot is defined as the miniaturized closed-loop system with micro processor, microactuators and microsensors. We have developed the micro autonomous robotic system (MARS) consisting of the microprocessor, microsensors, microactuators, communication units and batteries. The MARS controls itself by the downloaded program supplied through the IR communication system. In this paper, we demonstrate several performance of the MARS, and discuss the properties of the miniaturized autonomous robot.

  14. Robotics for challenging environments

    SciTech Connect

    Demsetz, L.A.

    1996-12-31

    This is the proceedings of the second specialty conference on Robotics for Challenging Environments (RCE-II), held in Albuquerque, NM, June 1-6, 1996. The conference was motivated by the recognition that the use of robotic, automated, and teleoperated equipment in hazardous, unstructured field operations poses challenges different from those faced in more controlled manufacturing environments. Papers were presented in areas including, path planning, operator interfaces, supervisory control, control of robots and manipulators, space applications, standards for space robots, infrastructure applications, robotic excavation, safety in nuclear facilities, mobile systems, and educational applications. Separate abstracts for some papers have been indexed into the energy database.

  15. Robotic technology in urology

    PubMed Central

    Murphy, D; Challacombe, B; Khan, M S; Dasgupta, P

    2006-01-01

    Urology has increasingly become a technology‐driven specialty. The advent of robotic surgical systems in the past 10 years has led to urologists becoming the world leaders in the use of such technology. In this paper, we review the history and current status of robotic technology in urology. From the earliest uses of robots for transurethral resection of the prostate, to robotic devices for manipulating laparoscopes and to the current crop of master–slave devices for robotic‐assisted laparoscopic surgery, the evolution of robotics in the urology operating theatre is presented. Future possibilities, including the prospects for nanotechnology in urology, are awaited. PMID:17099094

  16. [Robotics in pediatric surgery].

    PubMed

    Camps, J I

    2011-10-01

    Despite the extensive use of robotics in the adult population, the use of robotics in pediatrics has not been well accepted. There is still a lack of awareness from pediatric surgeons on how to use the robotic equipment, its advantages and indications. Benefit is still controversial. Dexterity and better visualization of the surgical field are one of the strong values. Conversely, cost and a lack of small instruments prevent the use of robotics in the smaller patients. The aim of this manuscript is to present the controversies about the use of robotics in pediatric surgery.

  17. VI.3. Rehabilitation robotics.

    PubMed

    Munih, Marko; Bajd, Tadej

    2010-01-01

    The paper presents the background, main achievements and components of rehabilitation robotics in a simple way, using non-technical terms. The introductory part looks at the development of robotic approaches in the rehabilitation of neurological patients and outlines the principles of robotic device interactions with patients. There follows a section on virtual reality in rehabilitation. Hapticity and interaction between robot and human are presented in order to understand the added value of robotics that cannot be exploited in other devices. The importance of passive exercise and active tasks is then discussed using the results of various clinical trials, followed by the place of upper and lower extremity robotic devices in rehabilitation practice. The closing section refers to the general importance of measurements in this area and stresses quantitative measurements as one of the advantages in using robotic devices.

  18. Space robotics in Japan

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Lowrie, James W.; Mccain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter

    1994-01-01

    Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.

  19. Space robotics in Japan

    NASA Astrophysics Data System (ADS)

    Whittaker, William; Lowrie, James W.; McCain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter

    1994-03-01

    Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.

  20. Fundamentals of soft robot locomotion

    PubMed Central

    2017-01-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human–robot interaction and locomotion. Although field applications have emerged for soft manipulation and human–robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. PMID:28539483

  1. Robust Method For Robotic Mapping

    NASA Technical Reports Server (NTRS)

    Kuipers, Benjamin J.; Byun, Yung-Tai

    1992-01-01

    Robot constructs map from experience. Topological model consists of nodes and arcs corresponding to distinctive places and local travel edges linking nearby distinctive places. Model created by linking places and edges. Enables accumulation of metrical information with reduced vulnerability to metrical errors. Applications include robotic sentires, robotic delivery trucks, robotic floor cleaners, and robotic lawnmowers.

  2. Marsupial robots for law enforcement

    NASA Astrophysics Data System (ADS)

    Murphy, Robin R.

    2001-02-01

    Marsupial robots are a type of heterogeneous mobile robot team. A mother robot transports, supports, and recovers one or more daughter robots. This paper will cover the marsupial robot concept, the application of law enforcement, and recent results in collaborative teleoperation for the related task of urban search and rescue.

  3. Las características más fascinantes del nuevo Robot

    NASA Image and Video Library

    impresionante es la palabra que describe perfectamente al nuevo robot Curiosity por su tamaño, sus instrumentos científicos y la manera en que la NASA planifica hacerlo aterrizar en Marte de forma ...

  4. Robotic endovascular surgery.

    PubMed

    Au, Stephanie; Ko, Koel; Tsang, Josephine; Chan, Yiu Che

    2014-01-01

    The purpose of this review is to compare conventional endovascular procedures and the robotic endovascular approach in aortic aneurysm repair. Despite advantages over open surgery, conventional endovascular surgery has limitations. To develop an alternative, efforts have been focused on robotic endovascular systems. Two of the 3 studies comparing procedure times demonstrated reduced procedure time in the robotic group, by 6 times (p < 0.05). One study demonstrated that robotic procedures reduced fluoroscopic exposure time by 12 minute (p < 0.001). Three in-vitro studies showed that the number of movements required in robotic surgery was reduced up to 10 times (p < 0.05). One of 2 studies measuring robotic performance score showed a better performance score in the robotic endovascular group (p = 0.007). These results demonstrate that the robotic technique has multiple advantages over the conventional procedure, including improved catheter stability, a shorter learning curve, reduced procedure time, and better performance in cannulating tortuous vessels. However, robotic endovascular technology may be limited by the cost of the system, the size of the catheter, and the setup time required preoperatively. Further comparative studies between conventional and robotic approaches regarding cost-effectiveness, safety, and performance in cases involving complex anatomy and fenestrated stent grafts are essential. Nevertheless, this revolutionary technology is increasingly popular and may be the next milestone in endovascular surgery.

  5. Evolution of robotic arms.

    PubMed

    Moran, Michael E

    2007-01-01

    The foundation of surgical robotics is in the development of the robotic arm. This is a thorough review of the literature on the nature and development of this device with emphasis on surgical applications. We have reviewed the published literature and classified robotic arms by their application: show, industrial application, medical application, etc. There is a definite trend in the manufacture of robotic arms toward more dextrous devices, more degrees-of-freedom, and capabilities beyond the human arm. da Vinci designed the first sophisticated robotic arm in 1495 with four degrees-of-freedom and an analog on-board controller supplying power and programmability. von Kemplen's chess-playing automaton left arm was quite sophisticated. Unimate introduced the first industrial robotic arm in 1961, it has subsequently evolved into the PUMA arm. In 1963 the Rancho arm was designed; Minsky's Tentacle arm appeared in 1968, Scheinman's Stanford arm in 1969, and MIT's Silver arm in 1974. Aird became the first cyborg human with a robotic arm in 1993. In 2000 Miguel Nicolalis redefined possible man-machine capacity in his work on cerebral implantation in owl-monkeys directly interfacing with robotic arms both locally and at a distance. The robotic arm is the end-effector of robotic systems and currently is the hallmark feature of the da Vinci Surgical System making its entrance into surgical application. But, despite the potential advantages of this computer-controlled master-slave system, robotic arms have definite limitations. Ongoing work in robotics has many potential solutions to the drawbacks of current robotic surgical systems.

  6. GRACE and GEORGE: Autonomous Robots for the AAAI Robot Challenge

    DTIC Science & Technology

    2004-01-01

    GRACE and GEORGE: Autonomous Robots for the AAAI Robot Challenge Reid Simmons, Allison Bruce, Dani Goldberg, Adam Goode, Michael Montemerlo, Nicholas...2004 2. REPORT TYPE 3. DATES COVERED - 4. TITLE AND SUBTITLE GRACE and GEORGE: Autonomous Robots for the AAAI Robot Challenge 5a. CONTRACT...Simmons. “A Social Robot that Stands in Line.” Autonomous Robots , 12:3 pp.313-324, May 2002. [Ortony, 1988] A. Ortony, G. L. Clore, and A. Collins

  7. Humanlike Robots - The Upcoming Revolution in Robotics

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2009-01-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  8. Humanlike Robots - The Upcoming Revolution in Robotics

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2009-01-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  9. Humanlike robots: the upcoming revolution in robotics

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2009-08-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  10. INL Multi-Robot Control Interface

    SciTech Connect

    2005-03-30

    The INL Multi-Robot Control Interface controls many robots through a single user interface. The interface includes a robot display window for each robot showing the robot’s condition. More than one window can be used depending on the number of robots. The user interface also includes a robot control window configured to receive commands for sending to the respective robot and a multi-robot common window showing information received from each robot.

  11. ROBOTIC SURGERY: BIOETHICAL ASPECTS

    PubMed Central

    SIQUEIRA-BATISTA, Rodrigo; SOUZA, Camila Ribeiro; MAIA, Polyana Mendes; SIQUEIRA, Sávio Lana

    2016-01-01

    ABSTRACT Introduction: The use of robots in surgery has been increasingly common today, allowing the emergence of numerous bioethical issues in this area. Objective: To present review of the ethical aspects of robot use in surgery. Method: Search in Pubmed, SciELO and Lilacs crossing the headings "bioethics", "surgery", "ethics", "laparoscopy" and "robotic". Results: Of the citations obtained, were selected 17 articles, which were used for the preparation of the article. It contains brief presentation on robotics, its inclusion in health and bioethical aspects, and the use of robots in surgery. Conclusion: Robotic surgery is a reality today in many hospitals, which makes essential bioethical reflection on the relationship between health professionals, automata and patients. PMID:28076489

  12. Survival of falling robots

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  13. Robots in modern industry

    NASA Technical Reports Server (NTRS)

    Heer, E.

    1981-01-01

    A survey is presented of robotic device types and capabilities, and an assessment is made of the relative benefits they confer in present and planned numbers on such industrial countries as Japan, the U.S., and West Germany. Attention is also given to possible social impacts of large-scale implementation, and the need for close consultation between management and labor is stressed. It is reported that, while the hourly cost of robot labor remained at between $4.00 and $4.60 over the period 1960-present, human hourly labor costs (including fringe benefits) have risen from less than $4.00 to nearly $17.00. Among the types of devices described are: (1) remotely controlled manipulator vehicles; (2) undersea robotic craft; (3) servo-controlled robots; and (4) articulated robots. Also covered are robot programming languages derived from such standard languages as ALGOL, FORTRAN, and BASIC.

  14. Multigait soft robot

    PubMed Central

    Shepherd, Robert F.; Ilievski, Filip; Choi, Wonjae; Morin, Stephen A.; Stokes, Adam A.; Mazzeo, Aaron D.; Chen, Xin; Wang, Michael; Whitesides, George M.

    2011-01-01

    This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion. PMID:22123978

  15. Robotic surgical simulation.

    PubMed

    Liss, Michael A; McDougall, Elspeth M

    2013-01-01

    Robotic surgery has undergone exponential growth and has ever developing utilization. The explosion of new technologies and regulation have led to challenges in training surgeons who desire this skill set. We review the current state of robotic simulation and incorporation of simulation into surgical training curricula. In addition to the literature review, results of a questionnaire survey study of 21 expert and novice surgeons attending a Urologic Robotic Oncology conference using 3 different robotic skill simulation devices are discussed. An increasing number of robotic surgery simulators have had some degree of validation study of their use in surgical education curricula and proficiency testing. Although simulators are advantageous, confirmation of construct and predictive validity of robotic simulators and their reliability as a training tool will be necessary before they are integrated into the surgical credentialing process.

  16. Applying robotics to HAZMAT

    NASA Technical Reports Server (NTRS)

    Welch, Richard V.; Edmonds, Gary O.

    1994-01-01

    The use of robotics in situations involving hazardous materials can significantly reduce the risk of human injuries. The Emergency Response Robotics Project, which began in October 1990 at the Jet Propulsion Laboratory, is developing a teleoperated mobile robot allowing HAZMAT (hazardous materials) teams to remotely respond to incidents involving hazardous materials. The current robot, called HAZBOT III, can assist in locating characterizing, identifying, and mitigating hazardous material incidents without risking entry team personnel. The active involvement of the JPL Fire Department HAZMAT team has been vital in developing a robotic system which enables them to perform remote reconnaissance of a HAZMAT incident site. This paper provides a brief review of the history of the project, discusses the current system in detail, and presents other areas in which robotics can be applied removing people from hazardous environments/operations.

  17. Roboter in der Raumfahrt

    NASA Astrophysics Data System (ADS)

    Hirzinger, G.

    (Robots in space)—The paper emphasizes the enormous automation impact in industry caused by microelectronics, a "byproduct" of space-technology. The evolutionary stages of robotic are outlined and it is shown that there are a lot of reasons for more automation, artificial intelligence and robotic in space, too. The telemanipulator concept is compared with the industrial robot concept, both showing up an increasing degree of similarity. The state of the art in sensory systems is discussed. By hand of the typical operations needed in space as rendezvous, assembly and docking the required robot skill is indicated. As a conclusion it is stated that the basic technologies available with industrial robots today could solve a lot of space problems. What remains to do—apart of course from ongoing research—is better integration and adaption of industrial techniques to the need of space technology.

  18. Survival of falling robots

    NASA Astrophysics Data System (ADS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-02-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  19. Survival of falling robots

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  20. NASA Robot Brain Surgeon

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mechanical Engineer Michael Guerrero works on the Robot Brain Surgeon testbed in the NeuroEngineering Group at the Ames Research Center, Moffett Field, California. Principal investigator Dr. Robert W. Mah states that potentially the simple robot will be able to feel brain structures better than any human surgeon, making slow, very precise movements during an operation. The brain surgery robot that may give surgeons finer control of surgical instruments during delicate brain operations is still under development.

  1. A Modular Robotic Architecture

    DTIC Science & Technology

    1990-11-01

    DATES COVERED AD-A232 007 Januar 1991 professional paper5 FUNOING NUMBERS A MODULAR ROBOTIC ARCHITECTURE PR: ZE92 WU: DN300029 PE: 0602936N - S. AUTHOR...mobile robots will help alleviate these problems, and, if made widely available, will promote standardization and compatibility among systems throughout...the industry. The Modular Robotic Architecture (MRA) is a generic control system that meets the above needs by providing developers with a standard set

  2. Ground Vehicle Robotics Presentation

    DTIC Science & Technology

    2012-08-14

    Mr. Jim Parker Associate Director Ground Vehicle Robotics Distribution Statement A. Approved for public release Report Documentation Page...Briefing 3. DATES COVERED 01-07-2012 to 01-08-2012 4. TITLE AND SUBTITLE Ground Vehicle Robotics Presentation 5a. CONTRACT NUMBER 5b. GRANT...ABSTRACT Provide Transition-Ready, Cost-Effective, and Innovative Robotics and Control System Solutions for Manned, Optionally-Manned, and Unmanned

  3. Robotic Security Systems

    DTIC Science & Technology

    2003-12-01

    robotic security platforms that automatically respond in an adaptive fashion to potential disturbances reported by a broad-area field of fixed unattended...sensors represents a powerful new defensive tool for mitigating the terrorist threat. Background The primary purpose of any robotic system is to...mobile robots , the predominant challenge is one of perception, in that the very nature of mobility introduces a never-ending sequence of dynamically

  4. Army Medical Robotics Research

    DTIC Science & Technology

    2007-01-01

    Army Medical Robotics Research Gary Gilbert, Ph.D., U.S. Army TATRC, Ph: (301) 619-4043, Fax: (301) 619-2518 gilbert@tatrc.org, www.tatrc.org...politically sensitive low intensity combat in urban terrain. Research progress has been made in the areas of robotics ; artificial intelligence...institutions have demonstrated intelligent robots that execute functions ranging from performing mechanical repairs to playing soccer. The military has

  5. Robotics Strategy White Paper

    DTIC Science & Technology

    2009-03-19

    VIRGINIA 23651-1087 REPlY TO A1Tl!NTlON OF ATFC-DS 19 MEMORANDUM FOR SEE DISTRIBUTION SUBJECT: Robotics Strategy White Paper 1. The enclosed... Robotics Strategy White Paper is the result of a collaborative effort between the U.S. Anny Training and Doctrine Command (TRADOC) and the Tank-Automotive...Research, Development and Engineering Center (TARDEC). This paper builds on a confederated Anny robotics "strategy" that is described by senior leader

  6. AMAS Robotics Seminar Brief

    DTIC Science & Technology

    2011-07-19

    Unclassified Unclassified 19 July 2011 AMAS ROBOTICS SEMINAR BRIEF Aaron Hart, Product Integrator, RS JPO DISTRIBUTION STATEMENT A. Approved for...19-07-2011 to 19-07-2011 4. TITLE AND SUBTITLE robotics seminar brief 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES AMAS ROBOTICS SEMINAR BRIEF 14

  7. Artificial Intelligence and Robotics.

    DTIC Science & Technology

    1984-02-01

    D-Ai42 488 ARTIFICIAL INEELLIGENCE AND ROBOTICS (U) MASSACHUSETTS i/1 INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB M BRADY FEB 84 AI-M-756...Subtile) S. TYPE OF REPORT A PERIOD COVERED Artificial Intelligence and Robotics 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(*) S. CONTRACT OR GRANT NUMBER...Identify by block niiniber) -. Since Robotics is the field concerned with the connection of perception to action, Artificial Intelligence must have a

  8. Robotic liver surgery

    PubMed Central

    Leung, Universe

    2014-01-01

    Robotic surgery is an evolving technology that has been successfully applied to a number of surgical specialties, but its use in liver surgery has so far been limited. In this review article we discuss the challenges of minimally invasive liver surgery, the pros and cons of robotics, the evolution of medical robots, and the potentials in applying this technology to liver surgery. The current data in the literature are also presented. PMID:25392840

  9. Robotics in neurosurgery.

    PubMed

    McBeth, Paul B; Louw, Deon F; Rizun, Peter R; Sutherland, Garnette R

    2004-10-01

    Technological developments in imaging guidance, intraoperative imaging, and microscopy have pushed neurosurgeons to the limits of their dexterity and stamina. The introduction of robotically assisted surgery has provided surgeons with improved ergonomics and enhanced visualization, dexterity, and haptic capabilities. This article provides a historical perspective on neurosurgical robots, including image-guided stereotactic and microsurgery systems. The future of robot-assisted neurosurgery, including the use of surgical simulation tools and methods to evaluate surgeon performance, is discussed.

  10. Robotics and expert systems

    SciTech Connect

    Not Available

    1986-01-01

    This volume contains papers presented at ROBEXS' 86, the Second Annual Workshop on Robotics and Expert Systems. Many diverse perspectives on automation problems, and on the merging of robotics and expert systems technology with conventional systems, are contained in this book. The contents include: Integrated Expert Systems Applications; Expert Systems Theory and Applications, Robotics, Intelligent Control, CAD/CAE/CAM, AI Tools, Human Factors, and intelligent Interfaces.

  11. Robotics in reproductive medicine.

    PubMed

    Dharia, Sejal P; Falcone, Tommaso

    2005-07-01

    To review the history, development, current applications, and future of robotic technology. The MEDLINE database was reviewed for all publications on robotic technology in medicine, surgery, reproductive endocrinology, its role in surgical education, and telepresence surgery. University medical center. Robotic-assisted surgery is an emerging technology, which provides an alternative to traditional surgical techniques in reproductive medicine and may have a role in surgical education and telepresence surgery.

  12. Compliant Robotic Structures

    DTIC Science & Technology

    1985-08-01

    robotic structure is one or more continuously flexible arms -hat can be controlled to manipulate objects. A typical arm is comprised of ... of ideas for the design of versatile, strong robotic manipulators. In this paper a mathematical model of an elephant trunk lifting a weight is...Results may be used for the design of robotic actuators driven by internal pressure. I,g or 67 I* .,.. INTRODUCTION Improvement in the

  13. Industrial robots: Handbook

    NASA Astrophysics Data System (ADS)

    Kozyrev, Iu. G.

    Topics covered include terms, definitions, and classification; operator-directed manipulators; autooperators as used in automated pressure casting; construction and application of industrial robots; and the operating bases of automated systems. Attention is given to adaptive and interactive robots; gripping mechanisms; applications to foundary production, press-forging plants, heat treatment, welding, and assembly operations. A review of design recommendations includes a determination of fundamental structural and technological indicators for industrial robots and a consideration of drive mechanisms.

  14. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Ron Diftler of NASA's Johnson Space Center in Houston demonstrates the leg movements of Robonaut 2 during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  15. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Bruce Yost of NASA's Ames Research Center discusses a small satellite, known as PhoneSat, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  16. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Two young visitors get an up-close look at an engineering model of Robonaut 2, complete with a set of legs, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  17. Asteroid Redirect Mission: Robotic Segment

    NASA Image and Video Library

    This concept animation illustrates the robotic segment of NASA's Asteroid Redirect Mission. The Asteroid Redirect Vehicle, powered by solar electric propulsion, travels to a large asteroid to robot...

  18. Children's Perception and Interpretation of Robots and Robot Behaviour

    NASA Astrophysics Data System (ADS)

    Bhamjee, Sajida; Griffiths, Frances; Palmer, Julie

    Technology is advancing rapidly; especially in the field of robotics. The purpose of this study was to examine children's perception and interpretation of robots and robot behaviour. The study was divided into two phases: phase one involved 144 children (aged 7-8) from two primary schools drawing a picture of a robot and then writing a story about the robot that they had drawn. In phase two, in small groups, 90 children observed four e-puck robots interacting within an arena. The children were asked three questions during the observation: 'What do you think the robots are doing?', 'Why are they doing these things?' and 'What is going on inside the robot?' The results indicated that children can hold multiple understandings of robots simultaneously. Children tend to attribute animate characteristics to robots. Although this may be explained by their stage of development, it may also influence how their generation integrates robots into society.

  19. Experiments in autonomous robotics

    SciTech Connect

    Hamel, W.R.

    1987-01-01

    The Center for Engineering Systems Advanced Research (CESAR) is performing basic research in autonomous robotics for energy-related applications in hazardous environments. The CESAR research agenda includes a strong experimental component to assure practical evaluation of new concepts and theories. An evolutionary sequence of mobile research robots has been planned to support research in robot navigation, world sensing, and object manipulation. A number of experiments have been performed in studying robot navigation and path planning with planar sonar sensing. Future experiments will address more complex tasks involving three-dimensional sensing, dexterous manipulation, and human-scale operations.

  20. Hopping Robot with Wheels

    NASA Technical Reports Server (NTRS)

    Barlow, Edward; Marzwell, Nevellie; Fuller, Sawyer; Fionni, Paolo; Tretton, Andy; Burdick, Joel; Schell, Steve

    2003-01-01

    A small prototype mobile robot is capable of (1) hopping to move rapidly or avoid obstacles and then (2) moving relatively slowly and precisely on the ground by use of wheels in the manner of previously reported exploratory robots of the "rover" type. This robot is a descendant of a more primitive hopping robot described in "Minimally Actuated Hopping Robot" (NPO- 20911), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 50. There are many potential applications for robots with hopping and wheeled-locomotion (roving) capabilities in diverse fields of endeavor, including agriculture, search-and-rescue operations, general military operations, removal or safe detonation of land mines, inspection, law enforcement, and scientific exploration on Earth and remote planets. The combination of hopping and roving enables this robot to move rapidly over very rugged terrain, to overcome obstacles several times its height, and then to position itself precisely next to a desired target. Before a long hop, the robot aims itself in the desired hopping azimuth and at a desired takeoff angle above horizontal. The robot approaches the target through a series of hops and short driving operations utilizing the steering wheels for precise positioning.

  1. Hazardous Environment Robotics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Jet Propulsion Laboratory (JPL) developed video overlay calibration and demonstration techniques for ground-based telerobotics. Through a technology sharing agreement with JPL, Deneb Robotics added this as an option to its robotics software, TELEGRIP. The software is used for remotely operating robots in nuclear and hazardous environments in industries including automotive and medical. The option allows the operator to utilize video to calibrate 3-D computer models with the actual environment, and thus plan and optimize robot trajectories before the program is automatically generated.

  2. Human-Robot Interaction

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee

    2015-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera

  3. Robotics for welding research

    SciTech Connect

    Braun, G.; Jones, J.

    1984-09-01

    The welding metallurgy research and education program at Colorado School of Mines (CSM) is helping industries make the transition toward automation by training students in robotics. Industry's interest is primarily in pick and place operations, although robotics can increase efficiency in areas other than production. Training students to develop fully automated robotic welding systems will usher in new curriculum requirements in the area of computers and microprocessors. The Puma 560 robot is CSM's newest acquisition for welding research 5 references, 2 figures, 1 table.

  4. [Robotic surgery in gynecology].

    PubMed

    Csorba, Roland

    2012-06-24

    Minimally invasive surgery has revolutionized gynecological interventions over the past 30 years. The introduction of the da Vinci robotic surgery in 2005 has resulted in large changes in surgical management. The robotic platform allows less experienced laparoscopic surgeons to perform more complex procedures. It can be utilized mainly in general gynecology and reproductive gynecology. The robot is being increasingly used for procedures such as hysterectomy, myomectomy, adnexal surgery, and tubal anastomosis. In urogynecology, the robot is being utilized for sacrocolopexy as well. In the field of gynecologic oncology, the robot is being increasingly used for hysterectomy and lymphadenectomy in oncologic diseases. Despite the rapid and widespread adaption of robotic surgery in gynecology, there are no randomized trials comparing its efficacy and safety to other traditional surgical approaches. This article presents the development, technical aspects and indications of robotic surgery in gynecology, based on the previously published reviews. Robotic surgery can be highly advantageous with the right amount of training, along with appropriate patient selection. Patients will have less blood loss, less post-operative pain, faster recovery, and fewer complications compared to open surgery and laparoscopy. However, until larger randomized control trials are completed which report long-term outcomes, robotic surgery cannot be stated to have priority over other surgical methods.

  5. Robotic Thumb Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Goza, S. Michael (Inventor)

    2013-01-01

    An improved robotic thumb for a robotic hand assembly is provided. According to one aspect of the disclosure, improved tendon routing in the robotic thumb provides control of four degrees of freedom with only five tendons. According to another aspect of the disclosure, one of the five degrees of freedom of a human thumb is replaced in the robotic thumb with a permanent twist in the shape of a phalange. According to yet another aspect of the disclosure, a position sensor includes a magnet having two portions shaped as circle segments with different center points. The magnet provides a linearized output from a Hall effect sensor.

  6. Robotics in reproductive medicine.

    PubMed

    Sroga, Julie; Patel, Sejal Dharia; Falcone, Tommaso

    2008-01-01

    In the past decade, robotic technology has been increasingly incorporated into various industries, including surgery and medicine. This chapter will review the history, development, current applications, and future of robotic technology in reproductive medicine. A literature search was performed for all publications regarding robotic technology in medicine, surgery, reproductive endocrinology, and its role in both surgical education and telepresence surgery. As robotic assisted surgery has emerged, this technology provides a feasible option for minimally invasive surgery, impacts surgical education, and plays a role in telepresence surgery.

  7. Advanced robot locomotion.

    SciTech Connect

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  8. [Robots and intellectual property].

    PubMed

    Larrieu, Jacques

    2013-12-01

    This topic is part of the global issue concerning the necessity to adapt intellectual property law to constant changes in technology. The relationship between robots and IP is dual. On one hand, the robots may be regarded as objects of intellectual property. A robot, like any new machine, could qualify for a protection by a patent. A copyright may protect its appearance if it is original. Its memory, like a database, could be covered by a sui generis right. On the other hand, the question of the protection of the outputs of the robot must be raised. The robots, as the physical embodiment of artificial intelligence, are becoming more and more autonomous. Robot-generated works include less and less human inputs. Are these objects created or invented by a robot copyrightable or patentable? To whom the ownership of these IP rights will be allocated? To the person who manufactured the machine ? To the user of the robot? To the robot itself? All these questions are worth discussing.

  9. The robotics review 1

    SciTech Connect

    Khatib, O.; Craig, J.J.; Lozano-Perez, T.

    1989-01-01

    Theoretical and implementation issues in robotics are discussed in reviews of recent investigations. Sections are devoted to programming, planning, and learning; sensing and perception; kinematics, dynamics, and design; and motion and force control. Particular attention is given to a robust layered control system for a mobile robot, camera calibration for three-dimensional machine vision, walking vehicles, design and control of direct-drive vehicles, an efficient parallel algorithm for robot inverse dynamics, stability problems in contact tasks, and kinematics and reaction-moment compensation for satellite-mounted robot manipulators.

  10. Robotic benign esophageal procedures.

    PubMed

    Hanna, Jennifer M; Onaitis, Mark W

    2014-05-01

    Robotic master-slave devices can assist surgeons to perform minimally invasive esophageal operations with approaches that have already been demonstrated using laparoscopy and thoracoscopy. Robotic-assisted surgery for benign esophageal disease is described for the treatment of achalasia, epiphrenic diverticula, refractory reflux, paraesophageal hernias, duplication cysts, and benign esophageal masses, such as leiomyomas. Indications and contraindications for robotic surgery in benign esophageal disease should closely approximate the indications for laparoscopic and thoracoscopic procedures. Given the early application of the technology and paucity of clinical evidence, there are currently no procedures for which robotic esophageal surgery is the clinically proven preferred approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Multi-robot control interface

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Walton, Miles C [Idaho Falls, ID

    2011-12-06

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.

  12. Canadian space robotic activities

    NASA Astrophysics Data System (ADS)

    Sallaberger, Christian; Space Plan Task Force, Canadian Space Agency

    The Canadian Space Agency has chosen space robotics as one of its key niche areas, and is currently preparing to deliver the first flight elements for the main robotic system of the international space station. The Mobile Servicing System (MSS) is the Canadian contribution to the international space station. It consists of three main elements. The Space Station Remote Manipulator System (SSRMS) is a 7-metre, 7-dof, robotic arm. The Special Purpose Dextrous Manipulator (SPDM), a smaller 2-metre, 7-dof, robotic arm can be used independently, or attached to the end of the SSRMS. The Mobile Base System (MBS) will be used as a support platform and will also provide power and data links for both the SSRMS and the SPDM. A Space Vision System (SVS) has been tested on Shuttle flights, and is being further developed to enhance the autonomous capabilities of the MSS. The CSA also has a Strategic Technologies in Automation and Robotics Program which is developing new technologies to fulfill future robotic space mission needs. This program is currently developing in industry technological capabilities in the areas of automation of operations, autonomous robotics, vision systems, trajectory planning and object avoidance, tactile and proximity sensors, and ground control of space robots. Within the CSA, a robotic testbed and several research programs are also advancing technologies such as haptic devices, control via head-mounted displays, predictive and preview displays, and the dynamic characterization of robotic arms. Canada is also now developing its next Long Term Space Plan. In this context, a planetary exploration program is being considered, which would utilize Canadian space robotic technologies in this new arena.

  13. [Robotic prostatectomy: The anesthetist's view for robotic urological surgeries, a prospective study].

    PubMed

    Oksar, Menekse; Akbulut, Ziya; Ocal, Hakan; Balbay, Mevlana Derya; Kanbak, Orhan

    2014-01-01

    Although many features of robotic prostatectomy are similar to those of conventional laparoscopic urological procedures (such as laparoscopic prostatectomy), the procedure is associated with some drawbacks, which include limited intravenous access, relatively long operating time, deep Trendelenburg position, and high intra-abdominal pressure. The primary aim was to describe respiratory and hemodynamic challenges and the complications related to high intra-abdominal pressure and the deep Trendelenburg position in robotic prostatectomy patients. The secondary aim was to reveal safe discharge criteria from the operating room. Fifty-three patients who underwent robotic prostatectomy between December 2009 and January 2011 were prospectively enrolled. Main outcome measures were non-invasive monitoring, invasive monitoring and blood gas analysis performed at supine (T0), Trendelenburg (T1), Trendelenburg + pneumoperitoneum (T2), Trendelenburg-before desufflation (T3), Trendelenburg (after desufflation) (T4), and supine (T5) positions. Fifty-three robotic prostatectomy patients were included in the study. The main clinical challenge in our study group was the choice of ventilation strategy to manage respiratory acidosis, which is detected through end-tidal carbon dioxide pressure and blood gas analysis. Furthermore, the mean arterial pressure remained unchanged, the heart rate decreased significantly and required intervention. The central venous pressure values were also above the normal limits. Respiratory acidosis and "upper airway obstruction-like" clinical symptoms were the main challenges associated with robotic prostatectomy procedures during this study. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  14. Robotics and Industrial Arts.

    ERIC Educational Resources Information Center

    Edmison, Glenn A.; And Others

    Robots are becoming increasingly common in American industry. By l990, they will revolutionize the way industry functions, replacing hundreds of workers and doing hot, dirty jobs better and more quickly than the workers could have done them. Robotics should be taught in high school industrial arts programs as a major curriculum component. The…

  15. Education by Robot!

    ERIC Educational Resources Information Center

    Cobb, Cheryl

    2004-01-01

    This article describes BEST (Boosting Engineering, Science, and Technology), a hands-on robotics program founded by Texas Instruments engineers Ted Mahler and Steve Marum. BEST links educators with industry to provide middle and high school students with a peek into the exciting world of robotics, with the goal of inspiring and interesting…

  16. The Uranus Mobile Robot

    DTIC Science & Technology

    1990-09-01

    Schematics 26 Wi List of Figures 1 Neptune and Pluto .. .. .. .. .. ... .. ... ... ... ... .... 2 2 Uranus...began building our first mobile robot, Pluto (see Figure 1 a). We envisioned Pluto as the ultimate indoor robot within the grasp of current technology...smooth arced trajectory while rotating about its center. This omni-directionality combined with very precise positioning would allow Pluto to easily

  17. INL Generic Robot Architecture

    SciTech Connect

    2005-03-30

    The INL Generic Robot Architecture is a generic, extensible software framework that can be applied across a variety of different robot geometries, sensor suites and low-level proprietary control application programming interfaces (e.g. mobility, aria, aware, player, etc.).

  18. Motivating Students with Robotics

    ERIC Educational Resources Information Center

    Brand, Brenda; Collver, Michael; Kasarda, Mary

    2008-01-01

    In recent years, the need to advance the number of individuals pursuing science, technology, engineering, and mathematics fields has gained much attention. The Montgomery County/Virginia Tech Robotics Collaborative (MCVTRC), a yearlong high school robotics program housed in an educational shop facility in Montgomery County, Virginia, seeks to…

  19. Robotic Intelligence Kernel: Architecture

    SciTech Connect

    2009-09-16

    The INL Robotic Intelligence Kernel Architecture (RIK-A) is a multi-level architecture that supports a dynamic autonomy structure. The RIK-A is used to coalesce hardware for sensing and action as well as software components for perception, communication, behavior and world modeling into a framework that can be used to create behaviors for humans to interact with the robot.

  20. Going Green Robots

    ERIC Educational Resources Information Center

    Nelson, Jacqueline M.

    2011-01-01

    In looking at the interesting shapes and sizes of old computer parts, creating robots quickly came to the author's mind. In this article, she describes how computer parts can be used creatively. Students will surely enjoy creating their very own robots while learning about the importance of recycling in the society. (Contains 1 online resource.)

  1. Robotic ocular surgery.

    PubMed

    Tsirbas, A; Mango, C; Dutson, E

    2007-01-01

    Bimanual, three-dimensional robotic surgery has proved valuable for a variety of surgical procedures. To examine the use of a commercially available surgical robot for ocular microsurgery. Using a da Vinci surgical robot, ocular microsurgery was performed with repair of a corneal laceration in a porcine model. The experiments were performed on harvested porcine eyes placed in an anatomical position using a foam head on a standard operating room table. A video scope and two, 360 degrees -rotating, 8-mm, wrested-end effector instruments were placed over the eye with three robotic arms. The surgeon performed the actual procedures while positioned at a robotic system console that was located across the operating room suite. Each surgeon placed three 10-0 sutures, and this was documented with still and video photography. Ocular microsurgery was successfully performed using the da Vinci surgical robot. The robotic system provided excellent visualisation, as well as controlled and delicate placement of the sutures at the corneal level. Robotic ocular microsurgery is technically feasible in the porcine model and warrants consideration for evaluation in controlled human trials to deploy functioning remote surgical centres in areas without access to state-of-the-art surgical skill and technology.

  2. Robotics in medicine

    NASA Astrophysics Data System (ADS)

    Kuznetsov, D. N.; Syryamkin, V. I.

    2015-11-01

    Modern technologies play a very important role in our lives. It is hard to imagine how people can get along without personal computers, and companies - without powerful computer centers. Nowadays, many devices make modern medicine more effective. Medicine is developing constantly, so introduction of robots in this sector is a very promising activity. Advances in technology have influenced medicine greatly. Robotic surgery is now actively developing worldwide. Scientists have been carrying out research and practical attempts to create robotic surgeons for more than 20 years, since the mid-80s of the last century. Robotic assistants play an important role in modern medicine. This industry is new enough and is at the early stage of development; despite this, some developments already have worldwide application; they function successfully and bring invaluable help to employees of medical institutions. Today, doctors can perform operations that seemed impossible a few years ago. Such progress in medicine is due to many factors. First, modern operating rooms are equipped with up-to-date equipment, allowing doctors to make operations more accurately and with less risk to the patient. Second, technology has enabled to improve the quality of doctors' training. Various types of robots exist now: assistants, military robots, space, household and medical, of course. Further, we should make a detailed analysis of existing types of robots and their application. The purpose of the article is to illustrate the most popular types of robots used in medicine.

  3. Concurrent programming and robotics

    SciTech Connect

    Cox, I.J.; Gehani, N.H.

    1989-04-01

    Many current robot systems exhibit a significant degree of concurrency, doing many activities in parallel. Future sensor-based robots are expected to exhibit even more concurrency. Programs to control such robots are characterized by the need to wait for external events and/or handle interrupts, deal with concurrent activities, synchronize actions with external events, and communicate with other robots and processes. In this paper, the authors focus on the advantages of concurrent programming for robotics and suggest that a general-purpose language with the right facilities is a good vehicle for robot programming. In this context they discuss Concurrent C, an upward-compatible extension of the C language that provides high-level concurrent programming facilities. They give an historical perspective of concurrent programming followed by a brief description of Concurrent C and how Concurrent C programs communicate with robots and devices. They show by examples how Concurrent C simplifies writing robot programs. Of specific interest are the process interaction and related interrupt handling facilities.

  4. Robotics technology discipline

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin D.

    1990-01-01

    Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.

  5. Real World Robotics.

    ERIC Educational Resources Information Center

    Clark, Lisa J.

    2002-01-01

    Introduces a project for elementary school students in which students build a robot by following instructions and then write a computer program to run their robot by using LabView graphical development software. Uses ROBOLAB curriculum which is designed for grade levels K-12. (YDS)

  6. Robot Rodeo 2013

    ScienceCinema

    Deuel, Jake

    2016-07-12

    Sandia National Laboratories hosted the seventh annual Western National Robot Rodeo and Capability Exercise in June 2013. The five-day event is a lively and challenging competition that draws civilian and military bomb squad teams from across the country to see who can most effectively defuse dangerous situations with the help of robots.

  7. Mechanochemically Active Soft Robots.

    PubMed

    Gossweiler, Gregory R; Brown, Cameron L; Hewage, Gihan B; Sapiro-Gheiler, Eitan; Trautman, William J; Welshofer, Garrett W; Craig, Stephen L

    2015-10-14

    The functions of soft robotics are intimately tied to their form-channels and voids defined by an elastomeric superstructure that reversibly stores and releases mechanical energy to change shape, grip objects, and achieve complex motions. Here, we demonstrate that covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation in soft robots into a mechanochromic, covalent chemical response. A bis-alkene functionalized spiropyran (SP) mechanophore is cured into a molded poly(dimethylsiloxane) (PDMS) soft robot walker and gripper. The stresses and strains necessary for SP activation are compatible with soft robot function. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional robotic device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the robot in a way that might be coupled to autonomous feedback loops that allow the robot to regulate its own activity. The demonstration motivates the simultaneous development of new combinations of mechanophores, materials, and soft, active devices for enhanced functionality.

  8. Next generation space robot

    NASA Technical Reports Server (NTRS)

    Iwata, Tsutomu; Oda, Mitsushige; Imai, Ryoichi

    1989-01-01

    The recent research effort on the next generation space robots is presented. The goals of this research are to develop the fundamental technologies and to acquire the design parameters of the next generation space robot. Visual sensing and perception, dexterous manipulation, man machine interface and artificial intelligence techniques such as task planning are identified as the key technologies.

  9. Motivating Students with Robotics

    ERIC Educational Resources Information Center

    Brand, Brenda; Collver, Michael; Kasarda, Mary

    2008-01-01

    In recent years, the need to advance the number of individuals pursuing science, technology, engineering, and mathematics fields has gained much attention. The Montgomery County/Virginia Tech Robotics Collaborative (MCVTRC), a yearlong high school robotics program housed in an educational shop facility in Montgomery County, Virginia, seeks to…

  10. Neurotechnology for Biomimetic Robots

    DTIC Science & Technology

    2007-11-02

    This award funded in part, the travel of three investigators to the international conference on Neurotechnology for Biomimetic Robots. The three...investigators participated in a conference held at Northeastern University May 14-16 on the subject of ’ Neurotechnology for Biomimetic Robots’. Each

  11. Robotics: Generation soft

    NASA Astrophysics Data System (ADS)

    Mazzolai, Barbara; Mattoli, Virgilio

    2016-08-01

    Meet the octobot, the first robot to be made entirely from soft materials. Powered by a chemical reaction and controlled by a fluidic logic circuit, it heralds a generation of soft robots that might surpass conventional machines. See Letter p.451

  12. The 50-Minute Robot.

    ERIC Educational Resources Information Center

    Buckland, Miram R.

    1985-01-01

    Sixth graders built working "robots" (or grasping bars) for remote control use during a unit on simple mechanics. Steps for making a robot are presented, including: cutting the wood, drilling and nailing, assembling the jaws, and making them work. The "jaws," used to pick up objects, illustrate principles of levers. (DH)

  13. Going Green Robots

    ERIC Educational Resources Information Center

    Nelson, Jacqueline M.

    2011-01-01

    In looking at the interesting shapes and sizes of old computer parts, creating robots quickly came to the author's mind. In this article, she describes how computer parts can be used creatively. Students will surely enjoy creating their very own robots while learning about the importance of recycling in the society. (Contains 1 online resource.)

  14. Robotic ocular surgery

    PubMed Central

    Tsirbas, A; Mango, C; Dutson, E

    2007-01-01

    Background Bimanual, three‐dimensional robotic surgery has proved valuable for a variety of surgical procedures. Aims To examine the use of a commercially available surgical robot for ocular microsurgery. Methods Using a da Vinci surgical robot, ocular microsurgery was performed with repair of a corneal laceration in a porcine model. The experiments were performed on harvested porcine eyes placed in an anatomical position using a foam head on a standard operating room table. A video scope and two, 360°‐rotating, 8‐mm, wrested‐end effector instruments were placed over the eye with three robotic arms. The surgeon performed the actual procedures while positioned at a robotic system console that was located across the operating room suite. Each surgeon placed three 10‐0 sutures, and this was documented with still and video photography. Results Ocular microsurgery was successfully performed using the da Vinci surgical robot. The robotic system provided excellent visualisation, as well as controlled and delicate placement of the sutures at the corneal level. Conclusions Robotic ocular microsurgery is technically feasible in the porcine model and warrants consideration for evaluation in controlled human trials to deploy functioning remote surgical centres in areas without access to state‐of‐the‐art surgical skill and technology. PMID:17020903

  15. Robot Vision Library

    NASA Technical Reports Server (NTRS)

    Howard, Andrew B.; Ansar, Adnan I.; Litwin, Todd E.; Goldberg, Steven B.

    2009-01-01

    The JPL Robot Vision Library (JPLV) provides real-time robot vision algorithms for developers who are not vision specialists. The package includes algorithms for stereo ranging, visual odometry and unsurveyed camera calibration, and has unique support for very wideangle lenses

  16. Robotics in endoscopy.

    PubMed

    Klibansky, David; Rothstein, Richard I

    2012-09-01

    The increasing complexity of intralumenal and emerging translumenal endoscopic procedures has created an opportunity to apply robotics in endoscopy. Computer-assisted or direct-drive robotic technology allows the triangulation of flexible tools through telemanipulation. The creation of new flexible operative platforms, along with other emerging technology such as nanobots and steerable capsules, can be transformational for endoscopic procedures. In this review, we cover some background information on the use of robotics in surgery and endoscopy, and review the emerging literature on platforms, capsules, and mini-robotic units. The development of techniques in advanced intralumenal endoscopy (endoscopic mucosal resection and endoscopic submucosal dissection) and translumenal endoscopic procedures (NOTES) has generated a number of novel platforms, flexible tools, and devices that can apply robotic principles to endoscopy. The development of a fully flexible endoscopic surgical toolkit will enable increasingly advanced procedures to be performed through natural orifices. The application of platforms and new flexible tools to the areas of advanced endoscopy and NOTES heralds the opportunity to employ useful robotic technology. Following the examples of the utility of robotics from the field of laparoscopic surgery, we can anticipate the emerging role of robotic technology in endoscopy.

  17. Robot Rodeo 2013

    SciTech Connect

    Deuel, Jake

    2013-08-27

    Sandia National Laboratories hosted the seventh annual Western National Robot Rodeo and Capability Exercise in June 2013. The five-day event is a lively and challenging competition that draws civilian and military bomb squad teams from across the country to see who can most effectively defuse dangerous situations with the help of robots.

  18. 2012 FIRST Robotics

    NASA Image and Video Library

    2012-03-08

    Spectators crew on teams during the 2012 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Bayou Regional Competition March 15-17, 2012, in Kenner, La. Students from 49 high school teams in six states participated in the annual robotics tournament.

  19. [The robotic surgeon training].

    PubMed

    Crestani, Alessandro; Rossanese, Marta; Abbinante, Maria; Calandriello, Mattia; Kungulli, Afrovita; Giannarini, Gianluca; Ficarra, Vincenzo

    2015-10-01

    The widespread robotic surgery in the world highlighted the relevance of the training programs for young urologists and residents. In the last years, urologic societies and some independent robotic surgeons strongly worked to standardize some general and specific training modules. Theoretical and practical sections of robotic training programs have been recently specified. The role of simulators, dry and wet laboratories, bedside assistance, and modular (step-by-step) training at console represent the most relevant elements of robotic surgeon training. Ideally, these didactic tools should be available in modern training centers. The development of structured robotic training programs should be considered as one of the priorities that the urologic community must take into account in the near future.

  20. Evidence for robots.

    PubMed

    Shenoy, Ravikiran; Nathwani, Dinesh

    2017-01-01

    Robots have been successfully used in commercial industry and have enabled humans to perform tasks which are repetitive, dangerous and requiring extreme force. Their role has evolved and now includes many aspects of surgery to improve safety and precision. Orthopaedic surgery is largely performed on bones which are rigid immobile structures which can easily be performed by robots with great precision. Robots have been designed for use in orthopaedic surgery including joint arthroplasty and spine surgery. Experimental studies have been published evaluating the role of robots in arthroscopy and trauma surgery. In this article, we will review the incorporation of robots in orthopaedic surgery looking into the evidence in their use. © The Authors, published by EDP Sciences, 2017.

  1. Dictionary of robotics

    SciTech Connect

    Waldman, H.

    1985-01-01

    The idea of using robots to perform repetitious tasks quickly, cheaply and efficiently has intrigued humans since the Industrial Revolution. Growth has occurred geometrically from the introduction of the first industrial robot in 1955, and continues, unabated, as industry sales are expected to increase 20-fold with applications in both high technology and industry. The Dictionary defines not only those terms standard to robotics but also those used in areas that are just beginning to be involved. The book offers concise, readable descriptions of robot systems, actions, hardware (including applications), communications, computer control, dynamics, cost justification, feedback, kinematics, man-machine interface, sensors and software. There are references to all major robots and manufacturers in the US, Europe and Japan.

  2. Intelligent Articulated Robot

    NASA Astrophysics Data System (ADS)

    Nyein, Aung Kyaw; Thu, Theint Theint

    2008-10-01

    In this paper, an articulated type of industrial used robot is discussed. The robot is mainly intended to be used in pick and place operation. It will sense the object at the specified place and move it to a desired location. A peripheral interface controller (PIC16F84A) is used as the main controller of the robot. Infrared LED and IR receiver unit for object detection and 4-bit bidirectional universal shift registers (74LS194) and high current and high voltage Darlington transistors arrays (ULN2003) for driving the arms' motors are used in this robot. The amount of rotation for each arm is regulated by the limit switches. The operation of the robot is very simple but it has the ability of to overcome resetting position after power failure. It can continue its work from the last position before the power is failed without needing to come back to home position.

  3. Robotics: The next step?

    PubMed

    Broeders, Ivo A M J

    2014-02-01

    Robotic systems were introduced 15 years ago to support complex endoscopic procedures. The technology is increasingly used in gastro-intestinal surgery. In this article, literature on experimental- and clinical research is reviewed and ergonomic issues are discussed. literature review was based on Medline search using a large variety of search terms, including e.g. robot(ic), randomized, rectal, oesophageal, ergonomics. Review articles on relevant topics are discussed with preference. There is abundant evidence of supremacy in performing complex endoscopic surgery tasks when using the robot in an experimental setting. There is little high-level evidence so far on translation of these merits to clinical practice. Robotic systems may appear helpful in complex gastro-intestinal surgery. Moreover, dedicated computer based technology integrated in telepresence systems opens the way to integration of planning, diagnostics and therapy. The first high tech add-ons such as near infrared technology are under clinical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Honda humanoid robots development.

    PubMed

    Hirose, Masato; Ogawa, Kenichi

    2007-01-15

    Honda has been doing research on robotics since 1986 with a focus upon bipedal walking technology. The research started with straight and static walking of the first prototype two-legged robot. Now, the continuous transition from walking in a straight line to making a turn has been achieved with the latest humanoid robot ASIMO. ASIMO is the most advanced robot of Honda so far in the mechanism and the control system. ASIMO's configuration allows it to operate freely in the human living space. It could be of practical help to humans with its ability of five-finger arms as well as its walking function. The target of further development of ASIMO is to develop a robot to improve life in human society. Much development work will be continued both mechanically and electronically, staying true to Honda's 'challenging spirit'.

  5. [Application of robots in stomatology].

    PubMed

    Zhou, Meng-Qi; Zhang, Jin-Ning; Hong, Jin

    2016-10-01

    Recently, the robot technology has been developed rapidly and the medical robot has been used in many clinical areas, especially in the field of stomatology. The application of robot in stomatology will break the traditional mode of treatment and bring a new technological revolution. This paper introduced the advantages, the current situation and the development prospect of applying robot in stomatology.

  6. Expanding Frontiers of Humanoid Robotics

    DTIC Science & Technology

    2000-08-01

    From the IEEE Intelligent Systems Special Issue on Humanoid Robotics , July/August 2000 GUEST EDITORS’ Expanding Frontiers of Humanoid Robotics ...Mark L. Swinson, DARPA David J. Bruemmer, Strategic Analysis Mobile robots pose a unique set of challenges to artificial intelligence researchers...the constraints of logical correctness but also some assortment of crosscutting, physical constraints. Particularly interesting among these robots

  7. Robots in Space -Psychological Aspects

    NASA Technical Reports Server (NTRS)

    Sipes, Walter E.

    2006-01-01

    A viewgraph presentation on the psychological aspects of developing robots to perform routine operations associated with monitoring, inspection, maintenance and repair in space is shown. The topics include: 1) Purpose; 2) Vision; 3) Current Robots in Space; 4) Ground Based Robots; 5) AERCam; 6) Rotating Bladder Robot (ROBLR); 7) DART; 8) Robonaut; 9) Full Immersion Telepresence Testbed; 10) ERA; and 11) Psychological Aspects

  8. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    A judge for the NASA-WPI Sample Return Robot Centennial Challenge follows a robot on the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  9. Laboratory robotics and artificial intelligence.

    PubMed

    Isenhour, T L; Marshall, J C

    1990-09-01

    Intelligent robots, which incorporate artificial intelligence in their controlling software, are the next step in bringing the laboratory robot to its full potential. The areas currently under study in our laboratory are improved user interfaces for laboratory robotics, the integration of object-oriented databases into robot control programs, and strategies to optimize multi-step procedures. The ultimate goal of this work is the Standard Robotics Method. The Standard Robotics Method we envision would allow a robotic method to be transferred from one laboratory to another.

  10. A Survey of Space Robotics

    NASA Technical Reports Server (NTRS)

    Pedersen, L.; Kortenkamp, D.; Wettergreen, D.; Nourbakhsh, I.; Korsmeyer, David (Technical Monitor)

    2003-01-01

    In this paper we summarize a survey conducted by NASA to determine the state-of-the-art in space robotics and to predict future robotic capabilities under either nominal and intensive development effort. The space robotics assessment study examined both in-space operations including assembly, inspection, and maintenance and planetary surface operations like mobility and exploration. Applications of robotic autonomy and human-robot cooperation were considered. The study group devised a decomposition of robotic capabilities and then suggested metrics to specify the technical challenges associated with each. The conclusion of this paper identifies possible areas in which investment in space robotics could lead to significant advances of important technologies.

  11. Robotic Surgery for Thoracic Disease.

    PubMed

    Yamashita, Shin-Ichi; Yoshida, Yasuhiro; Iwasaki, Akinori

    2016-01-01

    Robotic surgeries have developed in the general thoracic field over the past decade, and publications on robotic surgery outcomes have accumulated. However, controversy remains about the application of robotic surgery, with a lack of well-established evidence. Robotic surgery has several advantages such as natural movement of the surgeon's hands when manipulating the robotic arms and instruments controlled by computer-assisted systems. Most studies have reported the feasibility and safety of robotic surgery based on acceptable morbidity and mortality compared to open or video-assisted thoracic surgery (VATS). Furthermore, there are accumulated data to indicate longer operation times and shorter hospital stay in robotic surgery. However, randomized controlled trials between robotic and open or VATS procedures are needed to clarify the advantage of robotic surgery. In this review, we focused the literature about robotic surgery used to treat lung cancer and mediastinal tumor.

  12. Partner Ballroom Dance Robot -PBDR-

    NASA Astrophysics Data System (ADS)

    Kosuge, Kazuhiro; Takeda, Takahiro; Hirata, Yasuhisa; Endo, Mitsuru; Nomura, Minoru; Sakai, Kazuhisa; Koizumi, Mizuo; Oconogi, Tatsuya

    In this research, we have developed a dance partner robot, which has been developed as a platform for realizing the effective human-robot coordination with physical interaction. The robot could estimate the next dance step intended by a human and dance the step with the human. This paper introduce the robot referred to as PBDR (Partner Ballroom Dance Robot), which has performed graceful dancing with the human in EXPO 2005, Aichi, Japan.

  13. Guarded Motion for Mobile Robots

    SciTech Connect

    2005-03-30

    The Idaho National Laboratory (INL) has created codes that ensure that a robot will come to a stop at a precise, specified distance from any obstacle regardless of the robot's initial speed, its physical characteristics, and the responsiveness of the low-level motor control schema. This Guarded Motion for Mobile Robots system iteratively adjusts the robot's action in response to information about the robot's environment.

  14. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-14

    A University of Waterloo Robotics Team member tests their robot on the practice field two days prior to the NASA-WPI Sample Return Robot Centennial Challenge, Thursday, June 14, 2012 at the Worcester Polytechnic Institute in Worcester, Mass. Teams will compete for a $1.5 million NASA prize to build an autonomous robot that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  15. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    University of Waterloo (Canada) Robotics Team members test their robot on the practice field one day prior to the NASA-WPI Sample Return Robot Centennial Challenge, Friday, June 15, 2012 at the Worcester Polytechnic Institute in Worcester, Mass. Teams will compete for a $1.5 million NASA prize to build an autonomous robot that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  16. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Deputy Administrator Lori Garver, left, listens as Worcester Polytechnic Institute (WPI) Robotics Resource Center Director and NASA-WPI Sample Return Robot Centennial Challenge Judge Ken Stafford points out how the robots navigate the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  17. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Deputy Administrator Lori Garver, right, listens as Worcester Polytechnic Institute (WPI) Robotics Resource Center Director and NASA-WPI Sample Return Robot Centennial Challenge Judge Ken Stafford points out how the robots navigate the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  18. Future of robotic surgery.

    PubMed

    Lendvay, Thomas Sean; Hannaford, Blake; Satava, Richard M

    2013-01-01

    In just over a decade, robotic surgery has penetrated almost every surgical subspecialty and has even replaced some of the most commonly performed open oncologic procedures. The initial reports on patient outcomes yielded mixed results, but as more medical centers develop high-volume robotics programs, outcomes appear comparable if not improved for some applications. There are limitations to the current commercially available system, and new robotic platforms, some designed to compete in the current market and some to address niche surgical considerations, are being developed that will change the robotic landscape in the next decade. Adoption of these new systems will be dependent on overcoming barriers to true telesurgery that range from legal to logistical. As additional surgical disciplines embrace robotics and open surgery continues to be replaced by robotic approaches, it will be imperative that adequate education and training keep pace with technology. Methods to enhance surgical performance in robotics through the use of simulation and telementoring promise to accelerate learning curves and perhaps even improve surgical readiness through brief virtual-reality warm-ups and presurgical rehearsal. All these advances will need to be carefully and rigorously validated through not only patient outcomes, but also cost efficiency.

  19. Autonomous mobile robot

    SciTech Connect

    Mattaboni, P.J.

    1987-01-20

    This patent describes a mobile robot of the type having (a) a vision system, (b) memory means for storing data derived from the robot vision system, and (c) a computer for processing data derived from the robot's vision system, the improvement wherein the robot's vision system comprises (i) a first array of ranging transducers for obtaining data on the position and distance of far objects in a volume of space, the transducers of the first array being symmetrically disposed on the mobile robot with respect to an axis of symmetry within the mobile robot. Each transducer of the first array is fixed in position with respect to that axis of symmetry and sees a portion of the volume of space seen by its entire array; (ii) a second array of ranging transducers for obtaining data of the position and distance of near objects in the same or an overlapping volume of space, the transducers of the second array being symmetrically disposed on the mobile robot with respect to the axis of symmetry. Each transducer of the second array is fixed in position with respect to the axis of symmetry and sees a portion of the volume of space seen by its entire array, the angle of view of the transducers of the second array being different from the angle of view of the transducers of the first array with respect to the same object in space; and (iii) means for polling the ranging transducers in sequences determined by the computer.

  20. Robotic comfort zones

    NASA Astrophysics Data System (ADS)

    Likhachev, Maxim; Arkin, Ronald C.

    2000-10-01

    The paper investigates how the psychological notion of comfort can be useful in the design of robotic systems. A review of the existing study of human comfort, especially regarding its presence in infants, is conducted with the goal being to determine the relevant characteristics for mapping it onto the robotics domain. Focus is place on the identification of the salient features in the environment that affect the comfort level. Factors involved include current state familiarity, working conditions, the amount and location of available resources, etc. As part of our newly developed comfort function theory, the notion of an object as a psychological attachment for a robot is also introduced, as espoused in Bowlby's theory of attachment. The output space of the comfort function and its dependency on the comfort level are analyzed. The results of the derivation of this comfort function are then presented in terms of the impact they have on robotic behavior. Justification for the use of the comfort function are then presented in terms of the impact they have on robotic behavior. Justification for the use of the comfort function in the domain of robotics is presented with relevance for real-world operations. Also, a transformation of the theoretical discussion into a mathematical framework suitable for implementation within a behavior-based control system is presented. The paper concludes with results of simulation studies and real robot experiments using the derived comfort function.

  1. Micro autonomous robotic system

    NASA Astrophysics Data System (ADS)

    Ishihara, Hidenori; Fukuda, Toshio

    1995-12-01

    This paper deals with the structural proposal of the micro autonomous robotic system, and shows the design of the prototype. We aim at developing the micro robot, which autonomously acts based on its detection, in order to propose a solution to constitute the micro autonomous robotic system. However, as miniaturizing the size, the number of the sensors gets restricted and the information from them becomes lack. Lack of the information makes it difficult to realize an intelligence of quality. Because of that, the micro robotic system needs to develop the simple algorithm. In this paper, we propose the simply logical algorithms to control the actuator, and show the performance of the micro robot controlled by them, and design the Micro Line Trace Robot, which dimension is about 1 cm cube and which moves along the black line on the white-colored ground, and the programmable micro autonomous robot, which dimension is about 2 cm cube and which performs according to the program optionally.

  2. Toward cognitive robotics

    NASA Astrophysics Data System (ADS)

    Laird, John E.

    2009-05-01

    Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.

  3. Door breaching robotic manipulator

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Erik; Parrington, Lawrence; von Muehlen, Stephan

    2008-04-01

    As unmanned systems become more commonplace in military, police, and other security forces, they are tasked to perform missions that the original hardware was not designed for. Current military robots are built for rough outdoor conditions and have strong inflexible manipulators designed to handle a wide range of operations. However, these manipulators are not well suited for some essential indoor tasks, including opening doors. This is a complicated kinematic task that places prohibitively difficult control challenges on the robot and the operator. Honeybee and iRobot have designed a modular door-breaching manipulator that mechanically simplifies the demands upon operator and robot. The manipulator connects to the existing robotic arm of the iRobot PackBot EOD. The gripper is optimized for grasping a variety of door knobs, levers, and car-door handles. It works in conjunction with a compliant wrist and magnetic lock-out mechanism that allows the wrist to remain rigid until the gripper has a firm grasp of the handle and then bend with its rotation and the swing of the door. Once the door is unlatched, the operator simply drives the robot through the doorway while the wrist compensates for the complex, multiple degree-of-freedom motion of the door. Once in the doorway the operator releases the handle, the wrist pops back into place, and the robot is ready for the next door. The new manipulator dramatically improves a robot's ability to non-destructively breach doors and perform an inspection of a room's content, a capability that was previously out of reach of unmanned systems.

  4. Soft Robotics: New Perspectives for Robot Bodyware and Control.

    PubMed

    Laschi, Cecilia; Cianchetti, Matteo

    2014-01-01

    The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments.

  5. Soft Robotics: New Perspectives for Robot Bodyware and Control

    PubMed Central

    Laschi, Cecilia; Cianchetti, Matteo

    2014-01-01

    The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments. PMID:25022259

  6. Robotics in shoulder rehabilitation

    PubMed Central

    Sicuri, Chiara; Porcellini, Giuseppe; Merolla, Giovanni

    2014-01-01

    Summary In the last few decades, several researches have been conducted in the field of robotic rehabilitation to meet the intensive, repetitive and task-oriented training, with the goal to recover the motor function. Up to now, robotic rehabilitation studies of the upper extremity have generally focused on stroke survivors leaving less explored the field of orthopaedic shoulder rehabilitation. In this review we analyse the present status of robotic technologies, in order to understand which are the current indications and which may be the future perspective for their application in both neurological and orthopaedic shoulder rehabilitation. PMID:25332937

  7. MVACS Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bonitz, R.; Slostad, J.; Bon, B.; Braun, D.; Brill, R.; Buck, C.; Fleischner, R.; Haldeman, A.; Herman, J.; Hertzel, M.; Noon, D.; Pixler, G.; Schenker, P.; Ton, T.; Tucker, C.; Zimmerman, W.

    2000-01-01

    The primary purpose of the Mars Volatiles and Climate Surveyor (MVACS) Robotic Arm is to support to the other MVACS science instruments by digging trenches in the Martian soil; acquiring and dumping soil samples into the thermal evolved gas analyzer (TEGA); positioning the Soil Temperature Probe (STP) in the soil: positioning the Robotic Arm Air Temperature Sensor (RAATS) at various heights above the surface, and positioning the Robotic Arm Camera (RAC) for taking images of the surface, trench, soil samples, magnetic targets and other objects of scientific interest within its workspace.

  8. Agile Walking Robot

    NASA Technical Reports Server (NTRS)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.; Waldron, Kenneth J.

    1990-01-01

    Proposed agile walking robot operates over rocky, sandy, and sloping terrain. Offers stability and climbing ability superior to other conceptual mobile robots. Equipped with six articulated legs like those of insect, continually feels ground under leg before applying weight to it. If leg sensed unexpected object or failed to make contact with ground at expected point, seeks alternative position within radius of 20 cm. Failing that, robot halts, examines area around foot in detail with laser ranging imager, and replans entire cycle of steps for all legs before proceeding.

  9. Modelling robot construction systems

    NASA Technical Reports Server (NTRS)

    Grasso, Chris

    1990-01-01

    TROTER's are small, inexpensive robots that can work together to accomplish sophisticated construction tasks. To understand the issues involved in designing and operating a team of TROTER's, the robots and their components are being modeled. A TROTER system that features standardized component behavior is introduced. An object-oriented model implemented in the Smalltalk programming language is described and the advantages of the object-oriented approach for simulating robot and component interactions are discussed. The presentation includes preliminary results and a discussion of outstanding issues.

  10. Advanced mechanisms for robotics

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1991-01-01

    An overview of applied research and development at the Goddard Space Flight Center (GSFC) on mechanisms and collision avoidance skin for robots is presented. The work on robot end effectors is outlined, followed by a brief discussion of robot-friendly payload latching mechanisms and compliant joints. This is followed by discussions of the collision avoidance/management skin and the GSFC research on magnetorestrictive direct drive motors. A new project, the artificial muscle, is introduced. Each of the devices is described sufficiently to permit a basic understanding of its purpose, capabilities, and operating fundamentals. The implications for commercialization are discussed.

  11. Autonomous mobile robot teams

    NASA Technical Reports Server (NTRS)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  12. Artificial Intelligence and Robotics.

    DTIC Science & Technology

    1982-09-20

    8217’AD-A122 414 ARTIFICIAL INTELLIGENCE AND ROBOTICS (.) ARMY SCIENCE 1/j 13OARD WA SH INGTON Od I C PEDEN ET AL. 20 SEP 82 UNCLASSIFIED F/G 15/3 NL LEE...AND ACQUISITION WASHINGTON, D. C. 20310 A RMY CIENCE BOARD AD HOC SUBGROUP REPORT ON ARTIFICIAL INTELLIGENCE AND ROBOTICS SEPTEMBER 1982 DTIC DEC 1 5...TITLE (aid Subtitle) S TYPE OF REPORT & PERIOD COVERED Army Science Board AHSG Report Final Artificial Intelligence and Robotics S. PERFORMING ORG

  13. Robotics: An introduction

    SciTech Connect

    Mc Cloy, D.; Harris, D.

    1986-01-01

    This book is an account encompassing the entire range of disciplines involved in robotics: mechanical, electrical, electronic, and software design, as well as the related technologies of pick-and-place devices, walking machines, teleoperators, and prosthetics. The book explores the evolution of robotics and major trends in the field, and covers an array of robot configurations and mechanisms. It also looks at fundamentals such as actuation, control, measurement, computers, sensing and interaction with the environment, and pattern recognition. Important economic and financial aspects as well as safety and social implications are detailed.

  14. Overview of robotic thyroidectomy

    PubMed Central

    Kim, Hoon Yub; Koh, Yoon Woo; Chung, Woong Youn

    2017-01-01

    With the advancement and adaptation of technology, there has been a tremendous evolution in the surgical approaches for thyroidectomy. Robotic thyroidectomy has become increasingly popular worldwide attracting both surgeons and patients searching for new and innovative techniques for thyroidectomy with a superior cosmetic result when compared to the conventional open procedures. In this review, we describe the following surgical approaches for robotic thyroidectomy: transaxillary, retroauricular (facelift) and transoral. The advantages and disadvantages as well as limitations of each approach are examined, and future directions of robotic thyroidectomy are discussed. PMID:28713692

  15. Robots in astronomy

    NASA Astrophysics Data System (ADS)

    Baruch, John E. F.

    A development history and a development trends evaluation are presented for the growth of automation and robotics in industry and in observational astronomy, with a view to the distinctive problems of each field of application. Recent concepts concerning the astronomical use of robots as personal assistants are noted, and an effort is made to discern ways in which technology guides both methods and perceptions. Current programs for robotic and automated telescope development are noted, and it is argued that international standards should soon be formulated for this technology.

  16. Robotic devices in surgery.

    PubMed

    Davies

    2003-03-01

    Robotic devices are defined wich can be used as an aid to surgery. A classification system is proposed that reflects the manner of use and the safety of the systems. Typical benefits and problems of using robots are discussed, and a number of applications are reviewed. These cover "autonomous" systems, that involve no intervention from the surgeon; "hands-on" systems, that require the direct involvement of the surgeon; and "Master/Slave" (or Telemanipulator) systems, that are somewhere between these two and involve some degree of indirect surgeon activity. A number of predictions for the future of medical robotics are provided.

  17. Architecture for robot intelligence

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard Alan (Inventor)

    2004-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a DBAM that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  18. MVACS Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bonitz, R.; Slostad, J.; Bon, B.; Braun, D.; Brill, R.; Buck, C.; Fleischner, R.; Haldeman, A.; Herman, J.; Hertzel, M.; hide

    2000-01-01

    The primary purpose of the Mars Volatiles and Climate Surveyor (MVACS) Robotic Arm is to support to the other MVACS science instruments by digging trenches in the Martian soil; acquiring and dumping soil samples into the thermal evolved gas analyzer (TEGA); positioning the Soil Temperature Probe (STP) in the soil: positioning the Robotic Arm Air Temperature Sensor (RAATS) at various heights above the surface, and positioning the Robotic Arm Camera (RAC) for taking images of the surface, trench, soil samples, magnetic targets and other objects of scientific interest within its workspace.

  19. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A torso model of Robonaut 2, identical to R2 already on the International Space Station, is introduced to a crowd of onlookers by Ron Diftler of NASA's Johnson Space Center in Houston. The demonstration was one of several provided during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  20. Software Architecture for Planetary and Lunar Robotics

    NASA Technical Reports Server (NTRS)

    Utz, Hans; Fong, Teny; Nesnas, Iasa A. D.

    2006-01-01

    A viewgraph presentation on the role that software architecture plays in space and lunar robotics is shown. The topics include: 1) The Intelligent Robotics Group; 2) The Lunar Mission; 3) Lunar Robotics; and 4) Software Architecture for Space Robotics.

  1. Miniature in vivo robotics and novel robotic surgical platforms.

    PubMed

    Shah, Bhavin C; Buettner, Shelby L; Lehman, Amy C; Farritor, Shane M; Oleynikov, Dmitry

    2009-05-01

    Robotic surgical systems, such as the da Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, California), have revolutionized laparoscopic surgery but are limited by large size, increased costs, and limitations in imaging. Miniature in vivo robots are being developed that are inserted entirely into the peritoneal cavity for laparoscopic and natural orifice transluminal endoscopic surgical (NOTES) procedures. In the future, miniature camera robots and microrobots should be able to provide a mobile viewing platform. This article discusses the current state of miniature robotics and novel robotic surgical platforms and the development of future robotic technology for general surgery and urology.

  2. Robotic follow system and method

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Anderson, Matthew O [Idaho Falls, ID

    2007-05-01

    Robot platforms, methods, and computer media are disclosed. The robot platform includes perceptors, locomotors, and a system controller, which executes instructions for a robot to follow a target in its environment. The method includes receiving a target bearing and sensing whether the robot is blocked front. If the robot is blocked in front, then the robot's motion is adjusted to avoid the nearest obstacle in front. If the robot is not blocked in front, then the method senses whether the robot is blocked toward the target bearing and if so, sets the rotational direction opposite from the target bearing, and adjusts the rotational velocity and translational velocity. If the robot is not blocked toward the target bearing, then the rotational velocity is adjusted proportional to an angle of the target bearing and the translational velocity is adjusted proportional to a distance to the nearest obstacle in front.

  3. Robotics and remote systems applications

    SciTech Connect

    Rabold, D.E.

    1996-05-01

    This article is a review of numerous remote inspection techniques in use at the Savannah River (and other) facilities. These include: (1) reactor tank inspection robot, (2) californium waste removal robot, (3) fuel rod lubrication robot, (4) cesium source manipulation robot, (5) tank 13 survey and decontamination robots, (6) hot gang valve corridor decontamination and junction box removal robots, (7) lead removal from deionizer vessels robot, (8) HB line cleanup robot, (9) remote operation of a front end loader at WIPP, (10) remote overhead video extendible robot, (11) semi-intelligent mobile observing navigator, (12) remote camera systems in the SRS canyons, (13) cameras and borescope for the DWPF, (14) Hanford waste tank camera system, (15) in-tank precipitation camera system, (16) F-area retention basin pipe crawler, (17) waste tank wall crawler and annulus camera, (18) duct inspection, and (19) deionizer resin sampling.

  4. Fundamentals of soft robot locomotion.

    PubMed

    Calisti, M; Picardi, G; Laschi, C

    2017-05-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human-robot interaction and locomotion. Although field applications have emerged for soft manipulation and human-robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. © 2017 The Author(s).

  5. Continuum limbed robots for locomotion

    NASA Astrophysics Data System (ADS)

    Mutlu, Alper

    This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

  6. Tank-automotive robotics

    NASA Astrophysics Data System (ADS)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  7. Robotics in Colorectal Surgery

    PubMed Central

    Weaver, Allison; Steele, Scott

    2016-01-01

    Over the past few decades, robotic surgery has developed from a futuristic dream to a real, widely used technology. Today, robotic platforms are used for a range of procedures and have added a new facet to the development and implementation of minimally invasive surgeries. The potential advantages are enormous, but the current progress is impeded by high costs and limited technology. However, recent advances in haptic feedback systems and single-port surgical techniques demonstrate a clear role for robotics and are likely to improve surgical outcomes. Although robotic surgeries have become the gold standard for a number of procedures, the research in colorectal surgery is not definitive and more work needs to be done to prove its safety and efficacy to both surgeons and patients. PMID:27746895

  8. K-10 Robots

    NASA Image and Video Library

    Robots, scientists, engineers and flight controllers from NASA's Ames Research Center at Moffett Field, Calif., and NASA's Johnson Space Center in Houston, gathered at NASA Ames to perform a series...

  9. Phoenix Robotic Arm Rasp

    NASA Image and Video Library

    2008-07-15

    This photograph shows the rasp protruding from the back of the scoop on NASA Phoenix Mars Lander Robotic Arm engineering model in the Payload Interoperability Testbed at the University of Arizona, Tucson.

  10. Robotics and neuroscience.

    PubMed

    Floreano, Dario; Ijspeert, Auke Jan; Schaal, Stefan

    2014-09-22

    In the attempt to build adaptive and intelligent machines, roboticists have looked at neuroscience for more than half a century as a source of inspiration for perception and control. More recently, neuroscientists have resorted to robots for testing hypotheses and validating models of biological nervous systems. Here, we give an overview of the work at the intersection of robotics and neuroscience and highlight the most promising approaches and areas where interactions between the two fields have generated significant new insights. We articulate the work in three sections, invertebrate, vertebrate and primate neuroscience. We argue that robots generate valuable insight into the function of nervous systems, which is intimately linked to behaviour and embodiment, and that brain-inspired algorithms and devices give robots life-like capabilities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. FIRST Robotics Kickoff

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA engineers Scott Olive (left) and Bo Clarke answer questions during the 2007 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition regional kickoff event held Saturday, Jan. 6, 2007, at StenniSphere, the visitor center at NASA Stennis Space Center near Bay St. Louis, Miss. The SSC employees and FIRST Robotics volunteer mentors are standing near a mock-up of the playing field for the FIRST Robotics' 2007 `Rack n' Roll' challenge. Roughly 300 students and adult volunteers - representing 29 high schools from four states - attended the kickoff to hear the rules of `Rack n' Roll.' The teams will spend the next six weeks building and programming robots from parts kits they received Saturday, then battle their creations at regional spring competitions in New Orleans, Houston, Atlanta and other cities around the nation. FIRST aims to inspire students in the pursuit of engineering and technology studies and careers.

  12. Robotic aortic surgery.

    PubMed

    Duran, Cassidy; Kashef, Elika; El-Sayed, Hosam F; Bismuth, Jean

    2011-01-01

    Surgical robotics was first utilized to facilitate neurosurgical biopsies in 1985, and it has since found application in orthopedics, urology, gynecology, and cardiothoracic, general, and vascular surgery. Surgical assistance systems provide intelligent, versatile tools that augment the physician's ability to treat patients by eliminating hand tremor and enabling dexterous operation inside the patient's body. Surgical robotics systems have enabled surgeons to treat otherwise untreatable conditions while also reducing morbidity and error rates, shortening operative times, reducing radiation exposure, and improving overall workflow. These capabilities have begun to be realized in two important realms of aortic vascular surgery, namely, flexible robotics for exclusion of complex aortic aneurysms using branched endografts, and robot-assisted laparoscopic aortic surgery for occlusive and aneurysmal disease.

  13. FIRST Robotics Kickoff

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA engineers Scott Olive (left) and Bo Clarke answer questions during the 2007 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition regional kickoff event held Saturday, Jan. 6, 2007, at StenniSphere, the visitor center at NASA Stennis Space Center near Bay St. Louis, Miss. The SSC employees and FIRST Robotics volunteer mentors are standing near a mock-up of the playing field for the FIRST Robotics' 2007 `Rack n' Roll' challenge. Roughly 300 students and adult volunteers - representing 29 high schools from four states - attended the kickoff to hear the rules of `Rack n' Roll.' The teams will spend the next six weeks building and programming robots from parts kits they received Saturday, then battle their creations at regional spring competitions in New Orleans, Houston, Atlanta and other cities around the nation. FIRST aims to inspire students in the pursuit of engineering and technology studies and careers.

  14. Path Following Robot.

    DTIC Science & Technology

    1987-12-01

    ARTICULATED ROBOT MODEL A. INTRODUCION ............................................................... 172 B. COORDINATE TRANSFORMATIONS...and matrix algebra . Scalars are represented by lowercase letters, vectors by -’ lowercase bold letters, and matrices by uppercase bold letters."’ A.1

  15. Rolling friction robot fingers

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1992-01-01

    A low friction, object guidance, and gripping finger device for a robotic end effector on a robotic arm is disclosed, having a pair of robotic fingers each having a finger shaft slideably located on a gripper housing attached to the end effector. Each of the robotic fingers has a roller housing attached to the finger shaft. The roller housing has a ball bearing mounted centering roller located at the center, and a pair of ball bearing mounted clamping rollers located on either side of the centering roller. The object has a recess to engage the centering roller and a number of seating ramps for engaging the clamping rollers. The centering roller acts to position and hold the object symmetrically about the centering roller with respect to the X axis and the clamping rollers act to position and hold the object with respect to the Y and Z axis.

  16. Transoral Robotic Reconstructive Surgery

    PubMed Central

    Selber, Jesse C.; Sarhane, Karim A.; Ibrahim, Amir E.; Holsinger, Floyd C.

    2014-01-01

    Transoral robotic surgery (TORS) has emerged as a technique that allows head and neck surgeons to safely resect large and complex oropharyngeal tumors without dividing the mandible or performing a lip-split incision. These resections provide a reconstructive challenge because the cylinder of the oropharynx remains closed and both physical access and visualization of oropharyngeal anatomy is severely restricted. Transoral robotic reconstruction (TORRS) of such defects allows the reconstructive surgeon to inset free flaps or perform adjacent tissue transfer while seeing what the resecting surgeon sees. Early experience with this technique has proved feasible and effective. Robotic reconstruction has many distinct advantages over conventional surgery, and offers patients a less morbid surgical course. In this review, we discuss the clinical applicability of transoral robotic surgery in head and neck reconstruction, highlighting the benefits and limitations of such an approach, and outlining the guidelines for its utilization. PMID:24872777

  17. DOE Robotics Project

    SciTech Connect

    Not Available

    1991-01-01

    This document provide the bimonthly progress reports on the Department of Energy (DOE) Robotics Project by the University of Michigan. Reports are provided for the time periods of December 90/January 91 through June 91/July 91. (FI)

  18. Robots in operating theatres.

    PubMed Central

    Buckingham, R. A.; Buckingham, R. O.

    1995-01-01

    Robots designed for surgery have three main advantages over humans. They have greater three dimensional spatial accuracy, are more reliable, and can achieve much greater precision. Although few surgical robots are yet in clinical trials one or two have advanced to the stage of seeking approval from the UK's Medical Devices Agency and the US Federal Drug Administration. Safety is a key concern. A robotic device can be designed in an intrinsically safe way by restricting its range of movement to an area where it can do no damage. Furthermore, safety can be increased by making it passive, guided at all times by a surgeon. Nevertheless, some of the most promising developments may come from robots that are active (monitored rather than controlled by the surgeon) and not limited to intrinsically safe motion. Images Fig 1 Fig 3 Fig 4 PMID:8520340

  19. Operator roles in robotics

    SciTech Connect

    Lyman, J.; Madni, A.M.

    1984-01-01

    The authors suggest that operator roles in robotics can be classified under the categories of monitor, manager, and maintainer. With increasingly sophisticated applications of machine intelligence, however, these roles will require explicit and continuing reassessment. 5 references.

  20. Microprocessors, Robotics, and Work.

    ERIC Educational Resources Information Center

    DeVore, Paul W.

    1982-01-01

    The author explores several recent technological developments which will have an impact on future technical education. These developments include the revolution in information services, robotics, job changes and eliminations, changing role of the worker, and quality of life. (CT)

  1. Laser radar in robotics

    SciTech Connect

    Carmer, D.C.; Peterson, L.M.

    1996-02-01

    In this paper the authors describe the basic operating principles of laser radar sensors and the typical algorithms used to process laser radar imagery for robotic applications. The authors review 12 laser radar sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser radar data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser radar technology and suggest trends seen in the application of laser radar sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.

  2. Robotics in Colorectal Surgery.

    PubMed

    Weaver, Allison; Steele, Scott

    2016-01-01

    Over the past few decades, robotic surgery has developed from a futuristic dream to a real, widely used technology. Today, robotic platforms are used for a range of procedures and have added a new facet to the development and implementation of minimally invasive surgeries. The potential advantages are enormous, but the current progress is impeded by high costs and limited technology. However, recent advances in haptic feedback systems and single-port surgical techniques demonstrate a clear role for robotics and are likely to improve surgical outcomes. Although robotic surgeries have become the gold standard for a number of procedures, the research in colorectal surgery is not definitive and more work needs to be done to prove its safety and efficacy to both surgeons and patients.

  3. Robotics in urologic oncology

    PubMed Central

    Jain, Saurabh; Gautam, Gagan

    2015-01-01

    Robotic surgery was initially developed to overcome problems faced during conventional laparoscopic surgeries and to perform telesurgery at distant locations. It has now established itself as the epitome of minimally invasive surgery (MIS). It is one of the most significant advances in MIS in recent years and is considered by many as a revolutionary technology, capable of influencing the future of surgery. After its introduction to urology, robotic surgery has redefined the management of urological malignancies. It promises to make difficult urological surgeries easier, safer and more acceptable to both the surgeon and the patient. Robotic surgery is slowly, but surely establishing itself in India. In this article, we provide an overview of the advantages, disadvantages, current status, and future applications of robotic surgery for urologic cancers in the context of the Indian scenario. PMID:25598598

  4. Robots on the Roof

    NASA Image and Video Library

    The Aerosol Robotic Network (AERONET) is one of the first places that scientists turn when volcanoes, wildfires, pollution plumes, dust storms and many other phenomena—both natural and manmade—...

  5. Microprocessors, Robotics, and Work.

    ERIC Educational Resources Information Center

    DeVore, Paul W.

    1982-01-01

    The author explores several recent technological developments which will have an impact on future technical education. These developments include the revolution in information services, robotics, job changes and eliminations, changing role of the worker, and quality of life. (CT)

  6. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    College team members watch a live display of their mining robots during test runs in the mining arena at NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  7. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    A robotic miner digs in the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  8. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    College team members prepare to enter the robotic mining arena for a test run during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  9. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    The robotic miner from Mississippi State University digs in the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  10. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    Team Raptor members from the University of North Dakota College of Engineering and Mines check their robot, named "Marsbot," in the RoboPit at NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  11. FIRST Robotics Kickoff

    NASA Image and Video Library

    2007-01-06

    NASA engineers Scott Olive (left) and Bo Clarke answer questions during the 2007 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition regional kickoff event held Saturday, Jan. 6, 2007, at StenniSphere, the visitor center at NASA Stennis Space Center near Bay St. Louis, Miss. The SSC employees and FIRST Robotics volunteer mentors are standing near a mock-up of the playing field for the FIRST Robotics' 2007 `Rack n' Roll' challenge. Roughly 300 students and adult volunteers - representing 29 high schools from four states - attended the kickoff to hear the rules of `Rack n' Roll.' The teams will spend the next six weeks building and programming robots from parts kits they received Saturday, then battle their creations at regional spring competitions in New Orleans, Houston, Atlanta and other cities around the nation. FIRST aims to inspire students in the pursuit of engineering and technology studies and careers.

  12. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    Twin mining robots from the University of Iowa dig in a supersized sandbox filled with BP-1, or simulated Martian soil, during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  13. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    Team members from Purdue University prepare their uniquely-designed robot miner in the RoboPit at NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  14. Biological Soft Robotics.

    PubMed

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  15. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    Team members from the New York University Tandon School of Engineering transport their robot to the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  16. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    Team members from West Virginia University prepare their mining robot for a test run in a giant sandbox before their scheduled mining run in the arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  17. Wheeled hopping robot

    DOEpatents

    Fischer, Gary J [Albuquerque, NM

    2010-08-17

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  18. Robotics and general surgery.

    PubMed

    Jacob, Brian P; Gagner, Michel

    2003-12-01

    Robotics are now being used in all surgical fields, including general surgery. By increasing intra-abdominal articulations while operating through small incisions, robotics are increasingly being used for a large number of visceral and solid organ operations, including those for the gallbladder, esophagus, stomach, intestines, colon, and rectum, as well as for the endocrine organs. Robotics and general surgery are blending for the first time in history and as a specialty field should continue to grow for many years to come. We continuously demand solutions to questions and limitations that are experienced in our daily work. Laparoscopy is laden with limitations such as fixed axis points at the trocar insertion sites, two-dimensional video monitors, limited dexterity at the instrument tips, lack of haptic sensation, and in some cases poor ergonomics. The creation of a surgical robot system with 3D visual capacity seems to deal with most of these limitations. Although some in the surgical community continue to test the feasibility of these surgical robots and to question the necessity of such an expensive venture, others are already postulating how to improve the next generation of telemanipulators, and in so doing are looking beyond today's horizon to find simpler solutions. As the robotic era enters the world of the general surgeon, more and more complex procedures will be able to be approached through small incisions. As technology catches up with our imaginations, robotic instruments (as opposed to robots) and 3D monitoring will become routine and continue to improve patient care by providing surgeons with the most precise, least traumatic ways of treating surgical disease.

  19. Robot Grasps Rotating Object

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Tso, Kam S.; Litwin, Todd E.; Hayati, Samad A.; Bon, Bruce B.

    1991-01-01

    Experimental robotic system semiautomatically grasps rotating object, stops rotation, and pulls object to rest in fixture. Based on combination of advanced techniques for sensing and control, constructed to test concepts for robotic recapture of spinning artificial satellites. Potential terrestrial applications for technology developed with help of system includes tracking and grasping of industrial parts on conveyor belts, tracking of vehicles and animals, and soft grasping of moving objects in general.

  20. First Robotics Competition

    NASA Image and Video Library

    2010-03-06

    Robots vie for position during the second day of the First Robotics Competition, Saturday, March 6, 2010, in Washington. The student competition is called "For Inspiration and Recognition of Science and Technology", or FIRST. The program was founded in 1989 by Dean Kamen to inspire an appreciation of science and technology in young people, their schools and communities. Photo Credit: (NASA/Paul E. Alers)

  1. Robotic surgery in gynecology

    PubMed Central

    Sinha, Rooma; Sanjay, Madhumati; Rupa, B.; Kumari, Samita

    2015-01-01

    FDA approved Da Vinci Surgical System in 2005 for gynecological surgery. It has been rapidly adopted and it has already assumed an important position at various centers where this is available. It comprises of three components: A surgeon's console, a patient-side cart with four robotic arms and a high-definition three-dimensional (3D) vision system. In this review we have discussed various robotic-assisted laparoscopic benign gynecological procedures like myomectomy, hysterectomy, endometriosis, tubal anastomosis and sacrocolpopexy. A PubMed search was done and relevant published studies were reviewed. Surgeries that can have future applications are also mentioned. At present most studies do not give significant advantage over conventional laparoscopic surgery in benign gynecological disease. However robotics do give an edge in more complex surgeries. The conversion rate to open surgery is lesser with robotic assistance when compared to laparoscopy. For myomectomy surgery, Endo wrist movement of robotic instrument allows better and precise suturing than conventional straight stick laparoscopy. The robotic platform is a logical step forward to laparoscopy and if cost considerations are addressed may become popular among gynecological surgeons world over. PMID:25598600

  2. Robotic assisted andrological surgery

    PubMed Central

    Parekattil, Sijo J; Gudeloglu, Ahmet

    2013-01-01

    The introduction of the operative microscope for andrological surgery in the 1970s provided enhanced magnification and accuracy, unparalleled to any previous visual loop or magnification techniques. This technology revolutionized techniques for microsurgery in andrology. Today, we may be on the verge of a second such revolution by the incorporation of robotic assisted platforms for microsurgery in andrology. Robotic assisted microsurgery is being utilized to a greater degree in andrology and a number of other microsurgical fields, such as ophthalmology, hand surgery, plastics and reconstructive surgery. The potential advantages of robotic assisted platforms include elimination of tremor, improved stability, surgeon ergonomics, scalability of motion, multi-input visual interphases with up to three simultaneous visual views, enhanced magnification, and the ability to manipulate three surgical instruments and cameras simultaneously. This review paper begins with the historical development of robotic microsurgery. It then provides an in-depth presentation of the technique and outcomes of common robotic microsurgical andrological procedures, such as vasectomy reversal, subinguinal varicocelectomy, targeted spermatic cord denervation (for chronic orchialgia) and robotic assisted microsurgical testicular sperm extraction (microTESE). PMID:23241637

  3. Insect walking and robotics.

    PubMed

    Delcomyn, Fred

    2004-01-01

    With the advent of significant collaborations between researchers who study insect walking and robotics engineers interested in constructing adaptive legged robots, insect walking is once again poised to make a more significant scientific contribution than the numbers of participants in the field might suggest. This review outlines current knowledge of the physiological basis of insect walking with an emphasis on recent new developments in biomechanics and genetic dissection of behavior, and the impact this knowledge is having on robotics. Engineers have begun to team with neurobiologists to build walking robots whose physical design and functional control are based on insect biology. Such an approach may have benefits for engineering, by leading to the construction of better-performing robots, and for biology, by allowing real-time and real-world tests of critical hypotheses about how locomotor control is effected. It is argued that in order for the new field of biorobotics to have significant influence it must adopt criteria for performance and an experimental approach to the development of walking robots.

  4. Robot goniophotometry at PTB

    NASA Astrophysics Data System (ADS)

    Lindemann, M.; Maass, R.; Sauter, G.

    2015-04-01

    The total luminous flux of a light source is the complete integration of its spectral radiance distribution weighted with the photopic observer and taken over all parts of its surface and over the full solid angle of emittance. The spatial distributions are measured with various types of goniophotometers and the PTB robot goniophotometer is a new type with many unique features. It is built as an arrangement of three robots with arms of more than 6 m in length and with 7 degrees of freedom each. The extreme flexibility of the robots allows computer controlled tracks with variable radii and speeds up to 3 m and 1 m s-1, respectively. One robot aligns the light source and the two other robots move photometers and array spectrometers in their hemispheres simultaneously measuring planar illuminance and the related relative spectral distribution. The robot goniophotometer is optimized for the realisation of the luminous flux unit, the lumen and it is completely characterized in this report. The relevant properties and correction factors are explained, as well as the implementation of techniques for synchronisation and stabilisation of spatially resolved or integrated photometric and colorimetric quantities. Finally, all contributions are combined in the model of evaluation for the (total) luminous flux value and the measurement uncertainty associated with that value is evaluated in the presented uncertainty budget. The goniophotometric determination of the values for colorimetric quantities is explained for the total luminous flux and the spatially distributed radiant power.

  5. Robotic colorectal surgery.

    PubMed

    Baik, Seung Hyuk

    2008-12-31

    Robotic colorectal surgery has gradually been performed more with the help of the technological advantages of the da Vinci system. Advanced technological advantages of the da Vinci system compared with standard laparoscopic colorectal surgery have been reported. These are a stable camera platform, three-dimensional imaging, excellent ergonomics, tremor elimination, ambidextrous capability, motion scaling, and instruments with multiple degrees of freedom. However, despite these technological advantages, most studies did not report the clinical advantages of robotic colorectal surgery compared to standard laparoscopic colorectal surgery. Only one study recently implies the real benefits of robotic rectal cancer surgery. The purpose of this review article is to outline the early concerns of robotic colorectal surgery using the da Vinci system, to present early clinical outcomes from the most current series, and to discuss not only the safety and the feasibility but also the real benefits of robotic colorectal surgery. Moreover, this article will comment on the possible future clinical advantages and limitations of the da Vinci system in robotic colorectal surgery.

  6. Modularity in robotic systems

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Butler, Michael S.

    1989-01-01

    Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.

  7. Application of robots in space.

    NASA Technical Reports Server (NTRS)

    Johnsen, E. G.

    1971-01-01

    Robots are defined as electromechanical systems (with local computers) receiving inputs from sensors, and in turn, controlling motors and effectors to do tasks requiring some measure of intelligence and permitting the whole system to interact with the real world. Robot systems for space applications are categorized into three general groups consisting of roving exploration robots, spacecraft robots, and planet development robots. The functions of systems in each category are defined in terms of intended applications, and requirements for operating and decision making are outlined. Further developments which must be achieved in robot technology are summarized.

  8. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Children visiting the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event try to catch basketballs being thrown by a robot from FIRST Robotics at Burncoat High School (Mass.) on Saturday, June 16, 2012 at WPI in Worcester, Mass. The TouchTomorrow event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  9. Robotic hand with modular extensions

    DOEpatents

    Salisbury, Curt Michael; Quigley, Morgan

    2015-01-20

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  10. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Chief Technologist Mason Peck, left, NASA Deputy Administrator Lori Garver, and Worcester Polytechnic Institute (WPI) President Dennis Berkey, third from left, talk with WPI Robotics Resource Center Director and NASA-WPI Sample Return Robot Centennial Challenge Judge Ken Stafford at the edge of the playing field during the robotic challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams in the NASA-WPI Sample Return Robot Centennial Challenge were tasked with building autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  11. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Intrepid Systems Team member Mark Curry, left, talks with NASA Deputy Administrator Lori Garver and NASA Chief Technologist Mason Peck, right, about his robot named "MXR - Mark's Exploration Robot" on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team was one of the final teams participating in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  12. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Intrepid Systems Team member Mark Curry, right, answers questions from 8th grade Sullivan Middle School (Mass.) students about his robot named "MXR - Mark's Exploration Robot" on Friday, June 15, 2012, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  13. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Intrepid Systems robot, foreground, and the University of Waterloo (Canada) robot, take to the practice field on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Robot teams will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  14. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Intrepid Systems robot "MXR - Mark's Exploration Robot" takes to the practice field and tries to capture the white object in the foreground on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Intrepid Systems' robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  15. Robotic Surgery for Thyroid Disease

    PubMed Central

    Lee, Jandee; Chung, Woong Youn

    2013-01-01

    Robotic surgery is an innovation in thyroid surgery that may compensate for the drawbacks of conventional endoscopic surgery. A surgical robot provides strong advantages, including three-dimensional imaging, motion scaling, tremor elimination, and additional degrees of freedom. We review here recent adaptations, experience and applications of robotics in thyroid surgery. Robotic thyroid surgeries include thyroid lobectomy, total thyroidectomy, central compartment neck dissection, and radical neck dissection for benign and malignant thyroid diseases. Most of the current literature consists of case series of robotic thyroidectomies. Recent retrospective and prospective analyses have evaluated the safety and oncologic efficacy of robotic surgery for thyroid cancer. Although robotic thyroid surgery is often associated with longer operation times than conventional open surgery, robotic techniques have shown similar or superior levels of surgical completeness and safety compared with conventional open or endoscopic surgery. Compared to open thyroidectomy, robotic thyroidectomy has been associated with several quality-of-life benefits, including excellent cosmetic results, reduced neck pain and sensory changes, and decreased voice and swallowing discomfort after surgery. For surgeons, robotic surgery has improved ergonomics and has a shorter learning curve than open or endoscopic surgery. The advantages of robotic thyroid surgery over conventional surgery suggest that robotic thyroidectomy with or without neck dissection may become the preferred surgical option for thyroid diseases. Robotic thyroid surgery will likely continue to develop as more endocrine and head-and-neck surgeons are trained and more patients seek this newly developed surgical option. PMID:24783046

  16. A history of robots: from science fiction to surgical robotics.

    PubMed

    Hockstein, N G; Gourin, C G; Faust, R A; Terris, D J

    2007-01-01

    Surgical robotics is an evolving field with great advances having been made over the last decade. The origin of robotics was in the science-fiction literature and from there industrial applications, and more recently commercially available, surgical robotic devices have been realized. In this review, we examine the field of robotics from its roots in literature to its development for clinical surgical use. Surgical mills and telerobotic devices are discussed, as are potential future developments.

  17. An overview of artificial intelligence and robotics. Volume 2: Robotics

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1982-01-01

    This report provides an overview of the rapidly changing field of robotics. The report incorporates definitions of the various types of robots, a summary of the basic concepts, utilized in each of the many technical areas, review of the state of the art and statistics of robot manufacture and usage. Particular attention is paid to the status of robot development, the organizations involved, their activities, and their funding.

  18. Deployer: A Robot-Deploying Robot

    DTIC Science & Technology

    2003-04-01

    6: Bandicoot 11 Figure 7: Deployer mast in a.) retracted, b.) extending, and c.) fully extended positions. 13 Figure 8: Wombat climbing stairs with...mast in a.) retracted, b.)extending, and c.) fully extended positions. 13 Deploy er Outfitting - Wombat The second Urban Robot, Wombat (Fig.8), was...equipped with a single, rear-mounted ISIS transceiver and a Swarm Radio to communicate with all of the Joeys. In addition, Wombat was equipped with

  19. Supersmart Robots: The Next Generation of Robots Has Evolutionary Capabilities

    ERIC Educational Resources Information Center

    Simkins, Michael

    2008-01-01

    Robots that can learn new behaviors. Robots that can reproduce themselves. Science fiction? Not anymore. Roboticists at Cornell's Computational Synthesis Lab have developed just such engineered creatures that offer interesting implications for education. The team, headed by Hod Lipson, was intrigued by the question, "How can you get robots to be…

  20. Socially intelligent robots: dimensions of human-robot interaction.

    PubMed

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.

  1. Supersmart Robots: The Next Generation of Robots Has Evolutionary Capabilities

    ERIC Educational Resources Information Center

    Simkins, Michael

    2008-01-01

    Robots that can learn new behaviors. Robots that can reproduce themselves. Science fiction? Not anymore. Roboticists at Cornell's Computational Synthesis Lab have developed just such engineered creatures that offer interesting implications for education. The team, headed by Hod Lipson, was intrigued by the question, "How can you get robots to be…

  2. Robots for Astrobiology!

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.

    2016-01-01

    The search for life and its study is known as astrobiology. Conducting that search on other planets in our Solar System is a major goal of NASA and other space agencies, and a driving passion of the community of scientists and engineers around the world. We practice for that search in many ways, from exploring and studying extreme environments on Earth, to developing robots to go to other planets and help us look for any possible life that may be there or may have been there in the past. The unique challenges of space exploration make collaborations between robots and humans essential. The products of those collaborations will be novel and driven by the features of wholly new environments. For space and planetary environments that are intolerable for humans or where humans present an unacceptable risk to possible biologically sensitive sites, autonomous robots or telepresence offer excellent choices. The search for life signs on Mars fits within this category, especially in advance of human landed missions there, but also as assistants and tools once humans reach the Red Planet. For planetary destinations where we do not envision humans ever going in person, like bitterly cold icy moons, or ocean worlds with thick ice roofs that essentially make them planetary-sized ice caves, we will rely on robots alone to visit those environments for us and enable us to explore and understand any life that we may find there. Current generation robots are not quite ready for some of the tasks that we need them to do, so there are many opportunities for roboticists of the future to advance novel types of mobility, autonomy, and bio-inspired robotic designs to help us accomplish our astrobiological goals. We see an exciting partnership between robotics and astrobiology continually strengthening as we jointly pursue the quest to find extraterrestrial life.

  3. Pediatric robotic urologic surgery-2014.

    PubMed

    Kearns, James T; Gundeti, Mohan S

    2014-07-01

    We seek to provide a background of the current state of pediatric urologic surgery including a brief history, procedural outcomes, cost considerations, future directions, and the state of robotic surgery in India. Pediatric robotic urology has been shown to be safe and effective in cases ranging from pyeloplasty to bladder augmentation with continent urinary diversion. Complication rates are in line with other methods of performing the same procedures. The cost of robotic surgery continues to decrease, but setting up pediatric robotic urology programs can be costly in terms of both monetary investment and the training of robotic surgeons. The future directions of robot surgery include instrument and system refinements, augmented reality and haptics, and telesurgery. Given the large number of children in India, there is huge potential for growth of pediatric robotic urology in India. Pediatric robotic urologic surgery has been established as safe and effective, and it will be an important tool in the future of pediatric urologic surgery worldwide.

  4. Robots Aboard International Space Station

    NASA Image and Video Library

    Ames Research Center, MIT and Johnson Space Center have two new robotics projects aboard the International Space Station (ISS). Robonaut 2, a two-armed humanoid robot with astronaut-like dexterity,...

  5. Basic Operational Robotics Instructional System

    NASA Technical Reports Server (NTRS)

    Todd, Brian Keith; Fischer, James; Falgout, Jane; Schweers, John

    2013-01-01

    The Basic Operational Robotics Instructional System (BORIS) is a six-degree-of-freedom rotational robotic manipulator system simulation used for training of fundamental robotics concepts, with in-line shoulder, offset elbow, and offset wrist. BORIS is used to provide generic robotics training to aerospace professionals including flight crews, flight controllers, and robotics instructors. It uses forward kinematic and inverse kinematic algorithms to simulate joint and end-effector motion, combined with a multibody dynamics model, moving-object contact model, and X-Windows based graphical user interfaces, coordinated in the Trick Simulation modeling environment. The motivation for development of BORIS was the need for a generic system for basic robotics training. Before BORIS, introductory robotics training was done with either the SRMS (Shuttle Remote Manipulator System) or SSRMS (Space Station Remote Manipulator System) simulations. The unique construction of each of these systems required some specialized training that distracted students from the ideas and goals of the basic robotics instruction.

  6. Industrial Robots on the Line.

    ERIC Educational Resources Information Center

    Ayres, Robert; Miller, Steve

    1982-01-01

    Explores the history of robotics and its effects upon the manufacturing industry. Topics include robots' capabilities and limitations, the factory of the future, displacement of the workforce, and implications for management and labor. (SK)

  7. Pediatric robotic urologic surgery-2014

    PubMed Central

    Kearns, James T.; Gundeti, Mohan S.

    2014-01-01

    We seek to provide a background of the current state of pediatric urologic surgery including a brief history, procedural outcomes, cost considerations, future directions, and the state of robotic surgery in India. Pediatric robotic urology has been shown to be safe and effective in cases ranging from pyeloplasty to bladder augmentation with continent urinary diversion. Complication rates are in line with other methods of performing the same procedures. The cost of robotic surgery continues to decrease, but setting up pediatric robotic urology programs can be costly in terms of both monetary investment and the training of robotic surgeons. The future directions of robot surgery include instrument and system refinements, augmented reality and haptics, and telesurgery. Given the large number of children in India, there is huge potential for growth of pediatric robotic urology in India. Pediatric robotic urologic surgery has been established as safe and effective, and it will be an important tool in the future of pediatric urologic surgery worldwide. PMID:25197187

  8. Robot Avoids Collisions With Obstacles

    NASA Technical Reports Server (NTRS)

    Cheung, Edward; Rosinski, Doug; Wegerif, Dan

    1993-01-01

    Developmental robot equipped with infrared sensors and control system acting in concert to enable manipulator arm to move around obstacles. Robot avoids collisions with other objects, even when moving in unpredictable ways. Control system requires no prior knowledge of environment.

  9. Artificial intelligence: Robots with instincts

    NASA Astrophysics Data System (ADS)

    Adami, Christoph

    2015-05-01

    An evolutionary algorithm has been developed that allows robots to adapt to unforeseen change. The robots learn behaviours quickly and instinctively by mining the memory of their past achievements. See Letter p.503

  10. ISS Update: Robotic Refueling Mission

    NASA Image and Video Library

    NASA Public Affairs Officer Dan Huot interviews Alex Janas, robotics operator from the Goddard Space Flight Center, about the Robotic Refueling Mission that has been taking place on the space stati...

  11. Industrial Robots on the Line.

    ERIC Educational Resources Information Center

    Ayres, Robert; Miller, Steve

    1982-01-01

    Explores the history of robotics and its effects upon the manufacturing industry. Topics include robots' capabilities and limitations, the factory of the future, displacement of the workforce, and implications for management and labor. (SK)

  12. Remote Education Based on Robot Edutainment

    NASA Astrophysics Data System (ADS)

    Yorita, Akihiro; Hashimoto, Takuya; Kobayashi, Hiroshi; Kubota, Naoyuki

    This paper discusses the role of robots in remote education. There are three different aims of robot edutainment, i.e., Learning on Robots, Learning through Robots, and Learning with Robots. The last is to apply human-friendly robots instead of personal computers for computer-assisted instruction. Especially, natural communication capability is required to educational robots in the learning with robots. In this paper, we apply human-friendly robots to remote education and discuss the requirements and specifications of robots for the remote education.

  13. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    "Harry" a Goldendoodle is seen wearing a NASA backpack during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  14. The Impacts of Industrial Robots

    DTIC Science & Technology

    1981-11-01

    being installed in many medium batch size manufacturing plants, servicing two or three computer numerically controlled ( CNC ) machines . There will be a... Machine Tool Utilization in the Metalworking 22 Industries,19?7 Table 7: Motivations for Using Robots 26 Table 8: Prime Operative Tasks for Level I...ROBOTICS 1 What Are Industrial Robots? Industrial robots are machine tools. They are not human-like androids which can stroll around and converse

  15. Investigating the Implementation of Robotics.

    DTIC Science & Technology

    1984-02-01

    igating the Implementation of Robotics j Linda Argote and Paul S. Goodman I CML-RI-TRS84-9I Investigating the Implementation of Robotics #Linda...Argote and Paul S. Goodman CMU-RI-TR-84-9 The Robotics Institute Carnegie-Mellon University Pittsburgh, Pennsylvania 15213 Fecbruary 1984 JUN~jg 4...Copyright ®1984 Carnegie-Mellon UniversityA UA Support for this research was provided by the Graduate School of Industrial Administration, thc Robotics

  16. US Army TARDEC: Robotics Overview

    DTIC Science & Technology

    2010-03-25

    unclassified US ARMY TARDEC Robotics Overview Bernard Theisen, Joint Center for Robotics 25 March 2010 Reference herein to any specific commercial...4. TITLE AND SUBTITLE US ARMY TARDEC Robotics Overview 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Bernard... Robotics Industry Partnerships Academia PartnershipsGovernment Partnerships TRADOC Community Outreach • S&T Support to the RS-JPO • Develops and Fosters

  17. Heterogeneous Multi-Robot Cooperation

    DTIC Science & Technology

    1994-02-01

    Approaches to Multi-Robot Cooperative Control ................ 196 8.2.1 " Swarm " Cooperation ....... ...................... 196 8.2.2 "Intentional...involves the study of emergent cooperation in colonies, or swarms , of robots - an approach comparable to differentiating animal societies. This...using intention- ally cooperating robots to guide the activities of smaller groups of swarm robots in a coordinated way. The research presented in this

  18. Teen Sized Humanoid Robot: Archie

    NASA Astrophysics Data System (ADS)

    Baltes, Jacky; Byagowi, Ahmad; Anderson, John; Kopacek, Peter

    This paper describes our first teen sized humanoid robot Archie. This robot has been developed in conjunction with Prof. Kopacek’s lab from the Technical University of Vienna. Archie uses brushless motors and harmonic gears with a novel approach to position encoding. Based on our previous experience with small humanoid robots, we developed software to create, store, and play back motions as well as control methods which automatically balance the robot using feedback from an internal measurement unit (IMU).

  19. Recent Trends in Robotics Research

    NASA Astrophysics Data System (ADS)

    Ejiri, Masakazu

    My views on recent trends in the strategy and practice of Japan's robotics research are briefly introduced. To meet ever-increasing public expectations, robotics researchers and engineers have to be more seriously concerned about robots' intrinsic weaknesses. Examples of these are power-related and reliability issues. Resolving these issues will increase the feasibility of creating successful new industry, and the likelihood of robotics becoming a key technology for providing a safe and stress-free society in the future.

  20. Cooperative Autonomous Robots for Reconnaissance

    DTIC Science & Technology

    2009-03-06

    REPORT Cooperative Autonomous Robots for Reconnaissance 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Collaborating mobile robots equipped with WiFi ...Cooperative Autonomous Robots for Reconnaissance Report Title ABSTRACT Collaborating mobile robots equipped with WiFi transceivers are configured as a mobile...equipped with WiFi transceivers are configured as a mobile ad-hoc network. Algorithms are developed to take advantage of the distributed processing

  1. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  2. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Posters for the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event are seen posted around the campus on Saturday, June 16, 2012 at WPI in Worcester, Mass. The TouchTomorrow event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  3. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Panoramic of some of the exhibits available on the campus of the Worcester Polytechnic Institute (WPI) during their "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Anthony Shrout)

  4. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Team members of "Survey" drive their robot around the campus on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Survey team was one of the final teams participating in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  5. Biologically inspired intelligent robots

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  6. Robotic microsurgery: corneal transplantation.

    PubMed

    Bourges, J-L; Hubschman, J-P; Burt, B; Culjat, M; Schwartz, S D

    2009-12-01

    Robotic ocular microsurgery including corneal suturing has been proven to be feasible in porcine eyes. To determine whether or not bimanual teleoperated robotic penetrating keratoplasty (PK) can be performed in porcine and human eyes. Three arms of the da Vinci surgical robot were loaded with a dual-channel video and two, 360 degrees -rotating, 8 mm, wrested-end effector instruments and placed over porcine eyes or over a human cadaver head. The surgeon remotely performed mechanical trephination, cardinal sutures, continuous 10.0 nylon sutures and suture adjustments on both eyes. The procedures were documented with still and video photography. Using the da Vinci robot, penetrating keratoplasty procedures were successfully performed on both porcine eyes and human eyes in natural anatomical conditions. The precise placement of continuous sutures was facilitated by the wrested-end forceps. Orbital rims and nose did not limit surgical motions. Teleoperated robotic penetrating keratoplasty is technically feasible in humans. Further studies are pending to implement the procedure with femtosecond laser and other automated steps.

  7. Engineering robust intelligent robots

    NASA Astrophysics Data System (ADS)

    Hall, E. L.; Ali, S. M. Alhaj; Ghaffari, M.; Liao, X.; Cao, M.

    2010-01-01

    The purpose of this paper is to discuss the challenge of engineering robust intelligent robots. Robust intelligent robots may be considered as ones that not only work in one environment but rather in all types of situations and conditions. Our past work has described sensors for intelligent robots that permit adaptation to changes in the environment. We have also described the combination of these sensors with a "creative controller" that permits adaptive critic, neural network learning, and a dynamic database that permits task selection and criteria adjustment. However, the emphasis of this paper is on engineering solutions which are designed for robust operations and worst case situations such as day night cameras or rain and snow solutions. This ideal model may be compared to various approaches that have been implemented on "production vehicles and equipment" using Ethernet, CAN Bus and JAUS architectures and to modern, embedded, mobile computing architectures. Many prototype intelligent robots have been developed and demonstrated in terms of scientific feasibility but few have reached the stage of a robust engineering solution. Continual innovation and improvement are still required. The significance of this comparison is that it provides some insights that may be useful in designing future robots for various manufacturing, medical, and defense applications where robust and reliable performance is essential.

  8. Robotic microsurgery optimization.

    PubMed

    Brahmbhatt, Jamin V; Gudeloglu, Ahmet; Liverneaux, Philippe; Parekattil, Sijo J

    2014-05-01

    The increased application of the da Vinci robotic platform (Intuitive Surgical Inc.) for microsurgery has led to the development of new adjunctive surgical instrumentation. In microsurgery, the robotic platform can provide high definition 12×-15× digital magnification, broader range of motion, fine instrument handling with decreased tremor, reduced surgeon fatigue, and improved surgical productivity. This paper presents novel adjunctive tools that provide enhanced optical magnification, micro-Doppler sensing of vessels down to a 1-mm size, vein mapping capabilities, hydro-dissection, micro-ablation technology (with minimal thermal spread-CO2 laser technology), and confocal microscopy to provide imaging at a cellular level. Microsurgical outcomes from the use of these tools in the management of patients with infertility and chronic groin and testicular pain are reviewed. All these instruments have been adapted for the robotic console and enhance the robot-assisted microsurgery experience. As the popularity of robot-assisted microsurgery grows, so will its breadth of instrumentation.

  9. Quantum robots plus environments.

    SciTech Connect

    Benioff, P.

    1998-07-23

    A quantum robot is a mobile quantum system, including an on board quantum computer and needed ancillary systems, that interacts with an environment of quantum systems. Quantum robots carry out tasks whose goals include making specified changes in the state of the environment or carrying out measurements on the environment. The environments considered so far, oracles, data bases, and quantum registers, are seen to be special cases of environments considered here. It is also seen that a quantum robot should include a quantum computer and cannot be simply a multistate head. A model of quantum robots and their interactions is discussed in which each task, as a sequence of alternating computation and action phases,is described by a unitary single time step operator T {approx} T{sub a} + T{sub c} (discrete space and time are assumed). The overall system dynamics is described as a sum over paths of completed computation (T{sub c}) and action (T{sub a}) phases. A simple example of a task, measuring the distance between the quantum robot and a particle on a 1D lattice with quantum phase path dispersion present, is analyzed. A decision diagram for the task is presented and analyzed.

  10. Robotics, Ethics, and Nanotechnology

    NASA Astrophysics Data System (ADS)

    Ganascia, Jean-Gabriel

    It may seem out of character to find a chapter on robotics in a book about nanotechnology, and even more so a chapter on the application of ethics to robots. Indeed, as we shall see, the questions look quite different in these two fields, i.e., in robotics and nanoscience. In short, in the case of robots, we are dealing with artificial beings endowed with higher cognitive faculties, such as language, reasoning, action, and perception, whereas in the case of nano-objects, we are talking about invisible macromolecules which act, move, and duplicate unseen to us. In one case, we find ourselves confronted by a possibly evil double of ourselves, and in the other, a creeping and intangible nebula assails us from all sides. In one case, we are faced with an alter ego which, although unknown, is clearly perceptible, while in the other, an unspeakable ooze, the notorious grey goo, whose properties are both mysterious and sinister, enters and immerses us. This leads to a shift in the ethical problem situation: the notion of responsibility can no longer be worded in the same terms because, despite its otherness, the robot can always be located somewhere, while in the case of nanotechnologies, myriad nanometric objects permeate everywhere, disseminating uncontrollably.

  11. Robotic Microsurgery Optimization

    PubMed Central

    Brahmbhatt, Jamin V; Gudeloglu, Ahmet; Liverneaux, Philippe

    2014-01-01

    The increased application of the da Vinci robotic platform (Intuitive Surgical Inc.) for microsurgery has led to the development of new adjunctive surgical instrumentation. In microsurgery, the robotic platform can provide high definition 12×-15× digital magnification, broader range of motion, fine instrument handling with decreased tremor, reduced surgeon fatigue, and improved surgical productivity. This paper presents novel adjunctive tools that provide enhanced optical magnification, micro-Doppler sensing of vessels down to a 1-mm size, vein mapping capabilities, hydro-dissection, micro-ablation technology (with minimal thermal spread-CO2 laser technology), and confocal microscopy to provide imaging at a cellular level. Microsurgical outcomes from the use of these tools in the management of patients with infertility and chronic groin and testicular pain are reviewed. All these instruments have been adapted for the robotic console and enhance the robot-assisted microsurgery experience. As the popularity of robot-assisted microsurgery grows, so will its breadth of instrumentation. PMID:24883272

  12. Surgery with cooperative robots.

    PubMed

    Lehman, Amy C; Berg, Kyle A; Dumpert, Jason; Wood, Nathan A; Visty, Abigail Q; Rentschler, Mark E; Platt, Stephen R; Farritor, Shane M; Oleynikov, Dmitry

    2008-03-01

    Advances in endoscopic techniques for abdominal procedures continue to reduce the invasiveness of surgery. Gaining access to the peritoneal cavity through small incisions prompted the first significant shift in general surgery. The complete elimination of external incisions through natural orifice access is potentially the next step in reducing patient trauma. While minimally invasive techniques offer significant patient advantages, the procedures are surgically challenging. Robotic surgical systems are being developed that address the visualization and manipulation limitations, but many of these systems remain constrained by the entry incisions. Alternatively, miniature in vivo robots are being developed that are completely inserted into the peritoneal cavity for laparoscopic and natural orifice procedures. These robots can provide vision and task assistance without the constraints of the entry incision, and can reduce the number of incisions required for laparoscopic procedures. In this study, a series of minimally invasive animal-model surgeries were performed using multiple miniature in vivo robots in cooperation with existing laparoscopy and endoscopy tools as well as the da Vinci Surgical System. These procedures demonstrate that miniature in vivo robots can address the visualization constraints of minimally invasive surgery by providing video feedback and task assistance from arbitrary orientations within the peritoneal cavity.

  13. The problem with multiple robots

    NASA Technical Reports Server (NTRS)

    Huber, Marcus J.; Kenny, Patrick G.

    1994-01-01

    The issues that can arise in research associated with multiple, robotic agents are discussed. Two particular multi-robot projects are presented as examples. This paper was written in the hope that it might ease the transition from single to multiple robot research.

  14. Humans and Robots. Educational Brief.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This brief discusses human movement and robotic human movement simulators. The activity for students in grades 5-12 provides a history of robotic movement and includes making an End Effector for the robotic arms used on the Space Shuttle and the International Space Station (ISS). (MVL)

  15. KC-135 materials handling robotics

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    Robot dynamics and control will become an important issue for implementing productive platforms in space. Robotic operations will become necessary for man-tended stations and for efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to an anticipated increase in acceleration levels due to manipulator motion and for safety concerns. The objective of this study will be to provide baseline data to meet that need. Most texts and papers dealing with the kinematics and dynamics of robots assume that the manipulator is composed of joints separated by rigid links. However, in recent years several groups have begun to study the dynamics of flexible manipulators, primarily for applying robots in space and for improving the efficiency and precision of robotic systems. Robotic systems which are being planned for implementation in space have a number of constraints to overcome. Additional concepts which have to be worked out in any robotic implementation for a space platform include teleoperation and degree of autonomous control. Some significant results in developing a robotic workcell for performing robotics research on the KC-135 aircraft in preperation for space-based robotics applications in the future were generated. In addition, it was shown that TREETOPS can be used to simulate the dynamics of robot manipulators for both space and ground-based applications.

  16. Adaptive Language Games with Robots

    NASA Astrophysics Data System (ADS)

    Steels, Luc

    2010-11-01

    This paper surveys recent research into language evolution using computer simulations and robotic experiments. This field has made tremendous progress in the past decade going from simple simulations of lexicon formation with animallike cybernetic robots to sophisticated grammatical experiments with humanoid robots.

  17. Future perspectives in robotic surgery.

    PubMed

    Wedmid, Alexei; Llukani, Elton; Lee, David I

    2011-09-01

    Robotics of the current day have advanced significantly from early computer-aided design/manufacturing systems to modern master-slave robotic systems that replicate the surgeon's exact movements onto robotic instruments in the patient. • Globally >300,000 robotic procedures were completed in 2010, including ≈98,000 robot-assisted radical prostatectomies. • Broadening applications of robotics for urological procedures are being investigated in both adult and paediatric urology. • The use of the current robotic system continues to be further refined. Increasing experience has optimized port placement reducing arm collisions to allow for more expedient surgery. Improved three-dimensional camera magnification provides improved intraoperative identification of structures. • Robotics has probably improved the learning curve of laparoscopic surgery while still maintaining its patient recovery advantages and outcomes. • The future of robotic surgery will take this current platform forward by improving haptic (touch) feedback, improving vision beyond even the magnified eye, improving robot accessibility with a reduction of entry ports and miniaturizing the slave robot. • Here, we focus on the possible advancements that may change the future landscape of robotic surgery.

  18. Robot Technology: Implications for Education.

    ERIC Educational Resources Information Center

    Post, Paul E.; And Others

    1988-01-01

    Provides an introduction to robotic technology, and describes current robot models. Three ways of using robots in education are discussed--as exemplars of other processes, as objects of instruction, and as prosthetic aids--and selection criteria are outlined. (17 references) (CLB)

  19. Robotic Design for the Classroom

    NASA Technical Reports Server (NTRS)

    Culbert, Chris; Burns, Kaylynn

    2001-01-01

    This slide presentation reviews the use of robotic design to interest students in science and engineering. It describes one program, BEST, and resources that area available to design and create a robot. BEST is a competition for sixth and seventh graders that is designed to engage gifted and talented students. A couple of scenarios involving the use of a robot are outlined.

  20. Automatic Control of Robot Motion.

    DTIC Science & Technology

    1987-12-01

    8217It. I II. FUDMWALRBTC A. INTRODUCTION d The word robotics was invented by the Isaac Asimov , one of the best of the science fiction writers, to describe...8217, Asimov propounded the famous Three Laws of Robotics. 1. A robot must not harm a human being or, through inaction, allow human being to come to harm

  1. Higher Order Languages for Robots,

    DTIC Science & Technology

    1986-10-01

    Bertil Thorvaldsson ASEA Robotics Inc. Dr. Margaret A. Eastwood CIMCORP Dr. Robert L. Haar General Motors Mitchell Ward GM Fanuc Robotics ,% % 1V ’e V...lanager, Product Development 16250 West Glendale Dr. New Berlin, WI 53151 Mr. Mitchell Ward GM Fanuc Robotics Director of Software 5600 New King St

  2. Robot Technology: Implications for Education.

    ERIC Educational Resources Information Center

    Post, Paul E.; And Others

    1988-01-01

    Provides an introduction to robotic technology, and describes current robot models. Three ways of using robots in education are discussed--as exemplars of other processes, as objects of instruction, and as prosthetic aids--and selection criteria are outlined. (17 references) (CLB)

  3. Robotics and Intelligent Systems Program

    SciTech Connect

    Not Available

    1987-06-01

    This report gives brief descriptions of the projects associated with the Robotics and Intelligent Systems Program (RISP). Projects included in the report are (1) Remote Operations Demonstration Facility; (2) M-2 Servomanipulator; (3) The Advanced Servomanipulator; (4) Hostile Environment Robotic Machine Intelligence Experiment Series robots); and (5) Telerobotic Concepts. These devices have application in nuclear industry and space environments. (JDH)

  4. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA-WPI Sample Return Robot Centennial Challenge teams, NASA management, and challenge organizers pose for a group photograph on Saturday, June 16, 2012 at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  5. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Chief Technologist Mason Peck talks at the kick off of the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  6. FIRST robots compete

    NASA Technical Reports Server (NTRS)

    2000-01-01

    FIRST teams and their robots work to go through the right motions at the FIRST competition. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.

  7. Advanced mechanisms for robotics

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1992-01-01

    An overview of applied research and development at NASA-Goddard (GSFC) on mechanisms and the collision avoidance skin for robots is presented. First the work on robot end effectors is outlined, followed by a brief discussion on robot-friendly payload latching mechanisms and compliant joints. This, in turn, is followed by the collision avoidance/management skin and the GSFC research on magnetostrictive direct drive motors. Finally, a new project, the artificial muscle, is introduced. Each of the devices is described in sufficient detail to permit a basic understanding of its purpose, fundamental principles of operation, and capabilities. In addition, the development status of each is reported along with descriptions of breadboards and prototypes and their test results. In each case, the implications of the research for commercialization is discussed. The chronology of the presentation will give a clear idea of both the evolution of the R&D in recent years and its likely direction in the future.

  8. The universal robot

    NASA Technical Reports Server (NTRS)

    Moravec, Hans

    1993-01-01

    Our artifacts are getting smarter, and a loose parallel with the evolution of animal intelligence suggests one future course for them. Computerless industrial machinery exhibits the behavioral flexibility of single-celled organisms. Today's best computer-controlled robots are like the simpler invertebrates. A thousand-fold increase in computer power in the next decade should make possible machines with reptile-like sensory and motor competence. Properly configured, such robots could do in the physical world what personal computers now do in the world of data - act on our behalf as literal-minded slaves. Growing computer power over the next half-century will allow this reptile stage to be surpassed, in stages producing robots that learn like mammals, model their world like primates, and eventually reason like humans. Depending on your point of view, humanity will then have produced a worthy successor, or transcended some of its inherited limitations and so transformed itself into something quite new.

  9. The universal robot

    NASA Astrophysics Data System (ADS)

    Moravec, Hans

    1993-12-01

    Our artifacts are getting smarter, and a loose parallel with the evolution of animal intelligence suggests one future course for them. Computerless industrial machinery exhibits the behavioral flexibility of single-celled organisms. Today's best computer-controlled robots are like the simpler invertebrates. A thousand-fold increase in computer power in the next decade should make possible machines with reptile-like sensory and motor competence. Properly configured, such robots could do in the physical world what personal computers now do in the world of data - act on our behalf as literal-minded slaves. Growing computer power over the next half-century will allow this reptile stage to be surpassed, in stages producing robots that learn like mammals, model their world like primates, and eventually reason like humans. Depending on your point of view, humanity will then have produced a worthy successor, or transcended some of its inherited limitations and so transformed itself into something quite new.

  10. Human-Robot Interaction

    NASA Technical Reports Server (NTRS)

    Rochlis-Zumbado, Jennifer; Sandor, Aniko; Ezer, Neta

    2012-01-01

    Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI) is a new Human Research Program (HRP) risk. HRI is a research area that seeks to understand the complex relationship among variables that affect the way humans and robots work together to accomplish goals. The DRP addresses three major HRI study areas that will provide appropriate information for navigation guidance to a teleoperator of a robot system, and contribute to the closure of currently identified HRP gaps: (1) Overlays -- Use of overlays for teleoperation to augment the information available on the video feed (2) Camera views -- Type and arrangement of camera views for better task performance and awareness of surroundings (3) Command modalities -- Development of gesture and voice command vocabularies

  11. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    Energy levels are high in the RoboPit as teams prepare for NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. arel using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  12. Transoral Robotic Surgery.

    PubMed

    Yee, Shokjean

    2017-01-01

    Transoral robotic surgery (TORS) is a technique used to treat oral, throat, and skull base cancers using a minimally invasive robotic approach through the mouth and throat. The TORS procedure allows deeper access and dissection of suspicious lesions and neoplastic growths in the oral cavity and those that extend from the throat to the base of the skull. Robotic surgery allows the surgeon to operate in tight spaces without a large open incision. This article discusses symptoms and risk factors of oral, throat, and skull base cancers; types of procedures that can be performed using the TORS approach; specialized instrumentation; patient selection; surgical advantages and disadvantages; patient benefits; and the role of the surgical team in preparing to intraoperatively care for the TORS patient.

  13. FIRST robots compete

    NASA Technical Reports Server (NTRS)

    2000-01-01

    FIRST teams and their robots work to go through the right motions at the FIRST competition. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.

  14. The Robotic FLOYDS Spectrographs

    NASA Astrophysics Data System (ADS)

    Sand, D.

    I will discuss the twin FLOYDS robotic spectrographs, operating at the 2m Faulkes Telescopes North and South. The FLOYDS instruments were designed with supernova classification and monitoring in mind, with a very large wavelength coverage (˜320 to 1000 nm) and a resolution (R ˜ 300 - 500, wavelength dependent) well-matched to the broad features of these and other transient and time domain events. Robotic acquisition of spectroscopic targets is the key ingredient for making robotic spectroscopy possible, and FLOYDS uses a slit-viewing camera with a ˜ 4‧ × 6‧ field to either do direct world coordinate system fitting or standard blind offsets to automatically place science targets into the slit. Future work includes an 'all-electronic' target of opportunity mode, which will allow for fast transient spectroscopy with no human necessary, even for inputting information into a phase 2 GUI. Initial science highlights from FLOYDS will also be presented.

  15. ISS Robotic Student Programming

    NASA Technical Reports Server (NTRS)

    Barlow, J.; Benavides, J.; Hanson, R.; Cortez, J.; Le Vasseur, D.; Soloway, D.; Oyadomari, K.

    2016-01-01

    The SPHERES facility is a set of three free-flying satellites launched in 2006. In addition to scientists and engineering, middle- and high-school students program the SPHERES during the annual Zero Robotics programming competition. Zero Robotics conducts virtual competitions via simulator and on SPHERES aboard the ISS, with students doing the programming. A web interface allows teams to submit code, receive results, collaborate, and compete in simulator-based initial rounds and semi-final rounds. The final round of each competition is conducted with SPHERES aboard the ISS. At the end of 2017 a new robotic platform called Astrobee will launch, providing new game elements and new ground support for even more student interaction.

  16. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    NASA Kennedy Space Center Director Bob Cabana welcomes participants to the agency's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  17. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    Derrick Matthews, left, with Kennedy Space Center's Communication and Public Engagement Directorate, and Kurt Leucht, event emcee, provide commentary at the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  18. Robotic surgery: colon and rectum.

    PubMed

    Baek, Seong Kyu; Carmichael, Joseph C; Pigazzi, Alessio

    2013-01-01

    Although robotic technology aims to obviate some of the limitations of conventional laparoscopic surgery, the role of robotics in colorectal surgery is still largely undefined and different with respect to its application in abdominal versus pelvic surgery. This review aims to elucidate current developments in colorectal robotic surgery.In colon surgery, robotic techniques are associated with longer operative times and higher costs compared with laparoscopic surgery. However, robotics provides a stable camera platform and articulated instruments that are not subject to human tremors. Because of these advantages, robotic systems can play a role in complex procedures such as the dissection of lymph nodes around major vessels. In addition robot-assisted hand-sewn intracorporeal anastomoses can be easily performed by the surgeon, without a substantial need for a competent assistant. At present, although the short-term outcomes and oncological adequacy of robotic colon resection have been observed to be acceptable, the long-term outcomes of robotic colon resection remain unknown.In rectal surgery, robotic-assisted surgery for rectal cancer can be carried out safely and in accordance with current oncological principles. However, to date, the impact of robotic rectal surgery on the long-term oncological outcomes of minimally invasive total mesorectal excision remains undetermined. Robotic total mesorectal excision may allow for better preservation of urinary and sexual functions, and robotic surgery may attenuate the learning curve for laparoscopic rectal resection. However, a major drawback to robotic rectal surgery is the high cost involved.Large-scale prospective randomized clinical trials such as the international randomized trial ROLARR are required to establish the benefits of robotic rectal surgery.

  19. Put Your Robot In, Put Your Robot Out: Sequencing through Programming Robots in Early Childhood

    ERIC Educational Resources Information Center

    Kazakoff, Elizabeth R.; Bers, Marina Umaschi

    2014-01-01

    This article examines the impact of programming robots on sequencing ability in early childhood. Thirty-four children (ages 4.5-6.5 years) participated in computer programming activities with a developmentally appropriate tool, CHERP, specifically designed to program a robot's behaviors. The children learned to build and program robots over three…

  20. Put Your Robot In, Put Your Robot Out: Sequencing through Programming Robots in Early Childhood

    ERIC Educational Resources Information Center

    Kazakoff, Elizabeth R.; Bers, Marina Umaschi

    2014-01-01

    This article examines the impact of programming robots on sequencing ability in early childhood. Thirty-four children (ages 4.5-6.5 years) participated in computer programming activities with a developmentally appropriate tool, CHERP, specifically designed to program a robot's behaviors. The children learned to build and program robots over three…

  1. ROBOTIC SURGERY: BIOETHICAL ASPECTS.

    PubMed

    Siqueira-Batista, Rodrigo; Souza, Camila Ribeiro; Maia, Polyana Mendes; Siqueira, Sávio Lana

    2016-01-01

    The use of robots in surgery has been increasingly common today, allowing the emergence of numerous bioethical issues in this area. To present review of the ethical aspects of robot use in surgery. Search in Pubmed, SciELO and Lilacs crossing the headings "bioethics", "surgery", "ethics", "laparoscopy" and "robotic". Of the citations obtained, were selected 17 articles, which were used for the preparation of the article. It contains brief presentation on robotics, its inclusion in health and bioethical aspects, and the use of robots in surgery. Robotic surgery is a reality today in many hospitals, which makes essential bioethical reflection on the relationship between health professionals, automata and patients. A utilização de robôs em procedimentos cirúrgicos tem sido cada vez mais frequente na atualidade, o que permite a emergência de inúmeras questões bioéticas nesse âmbito. Apresentar revisão sobre os aspectos éticos dos usos de robôs em cirurgia. Realizou-se revisão nas bases de dados Pubmed, SciELO e Lilacs cruzando-se os descritores "bioética", "cirurgia", "ética", "laparoscopia" e "robótica". Do total de citações obtidas, selecionou-se 17 artigos, os quais foram utilizados para a elaboração do artigo. Ele contém breve apresentação sobre a robótica, sua inserção na saúde e os aspectos bioéticos da utilização dos robôs em procedimentos cirúrgicos. A cirurgia robótica é uma realidade, hoje, em muitas unidades hospitalares, o que torna essencial a reflexão bioética sobre as relações entre profissionais da saúde, autômatos e pacientes.

  2. SDIO robotics in space applications

    NASA Technical Reports Server (NTRS)

    Iliff, Richard

    1990-01-01

    Robotics in space supporting the Strategic Defense System (SDS) program is discussed. Ongoing initiatives which are intended to establish an initial Robotics in Space capability are addressed. This is specifically being referred to as the Satellite Servicing System (SSS). This system is based on the NASA Orbital Maneuvering Vehicle (OMV) with a Robotic Manipulator(s) based on the NASA Flight Telerobotic Servicer (FTS) and other SSS equipment required to do the satellite servicing work attached to the OMV. Specific Robotics in Space Requirements which have resulted from the completion of the Robotics Requirements Study Contract are addressed.

  3. Coordination of multiple robot arms

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Soloway, D.

    1987-01-01

    Kinematic resolved-rate control from one robot arm is extended to the coordinated control of multiple robot arms in the movement of an object. The structure supports the general movement of one axis system (moving reference frame) with respect to another axis system (control reference frame) by one or more robot arms. The grippers of the robot arms do not have to be parallel or at any pre-disposed positions on the object. For multiarm control, the operator chooses the same moving and control reference frames for each of the robot arms. Consequently, each arm then moves as though it were carrying out the commanded motions by itself.

  4. Joint service EOD robotics program

    NASA Astrophysics Data System (ADS)

    Hacker, Kurt; Brezina, Byron; DeBolt, Chris

    2006-05-01

    Within the military, the Explosive Ordnance Disposal (EOD) community has been an early adopter of robotic capabilities. The Joint Service EOD (JSEOD) Program is in the process of fielding its third generation of robotic systems to the EOD technicians. Robots have been an invaluable asset to the EOD technician, and they have been critical to operations in Iraq as we prosecute the IED problem. This paper provides a brief history of past EOD robotic systems, a description of currently fielded and supported systems, and the future of robotic programs within the Joint Service EOD community.

  5. Embedding knowledge in robot controllers

    SciTech Connect

    Puttre, M.

    1994-06-01

    This article reports that finding the right robot for a task and programming it remain key issues facing the industry. Developers, meanwhile, are striving to embed more applications knowledge in robot controllers using high-level languages and autonomy. Although robot components such as motors, arms, and sensors have become highly advanced, the control software and systems integration necessary to support rapidly configurable factory settings have been slow to emerge. The requirements for industrial robots currently are geared more toward performance than autonomy. However, as agile manufacturing issues gain importance, robot flexibility will also become an important requirement.

  6. Robust Software Architecture for Robots

    NASA Technical Reports Server (NTRS)

    Aghazanian, Hrand; Baumgartner, Eric; Garrett, Michael

    2009-01-01

    Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) is the name of both a software architecture and software that embodies the architecture. The architecture was conceived in the spirit of current practice in designing modular, hard, realtime aerospace systems. The architecture facilitates the integration of new sensory, motor, and control software modules into the software of a given robotic system. R4SA was developed for initial application aboard exploratory mobile robots on Mars, but is adaptable to terrestrial robotic systems, real-time embedded computing systems in general, and robotic toys.

  7. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Wunderkammer Laboratory Team leader Jim Rothrock, left, answers questions from 8th grade Sullivan Middle School (Mass.) students about his robot named "Cerberus" on Friday, June 15, 2012, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Rothrock's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  8. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    SpacePRIDE Team members Chris Williamson, right, and Rob Moore, second from right, answer questions from 8th grade Sullivan Middle School (Mass.) students about their robot on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. SpacePRIDE's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  9. Dextrous robot hands

    NASA Technical Reports Server (NTRS)

    Venkataraman, Subramanian T. (Editor); Iberall, Thea (Editor)

    1990-01-01

    Recent studies of human hand function and their implications for the design of robot hands are discussed in reviews and reports. Topics addressed include human grasp choice and robotic grasp analysis, opposition space and human prehension, coordination in normal and prosthetic reaching, and intelligent exploration by the human hand. Consideration is given to a task-oriented dextrous manipulation architecture, the control architecture for the Belgrade/USC hand, the analysis of multifingered grasping and manipulation, and tactile sensing for shape interpretation. Diagrams, graphs, and photographs are provided.

  10. Robotic Planetary Drill Tests

    NASA Technical Reports Server (NTRS)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  11. Robotic component preparation

    SciTech Connect

    Dokos, J.R.

    1986-04-01

    This report provides information on the preparation of robotic components. Component preparation includes pretinning or solder dipping, preforming, and pretrimming of component leads. Since about 70% of all components are axial-leaded resistor-type components, it was decided to begin with them and then later develop capabilities to handle other types. The first workcell is the first phase of an overall system to pretin, preform, and pretrim all components and to feed them to an automatic insertion system. Before use of the robot, a Unimation PUMA Modal 260, pretinning and preforming was done by first hand with a shield and vented booth.

  12. First Robotics Competition

    NASA Image and Video Library

    2010-03-05

    U.S. Senate Majority Leader Harry Reid, D-Nev., left, stands with Dean Kamen, the founder of First Robotics, as he talks about the importance of Science and Technology education during the First Robotics Competition, Friday March 5, 2010, in Washington. The student competition is called "For Inspiration and Recognition ofScience and Technology," or FIRST. The program was founded in 1989 by Kamen to inspire an appreciation of science and technology in young people, their schools and communities. Photo Credit: (NASA/Paul E. Alers)

  13. Robotic retroauricular thyroid surgery

    PubMed Central

    Alabbas, Haytham; Bu Ali, Daniah

    2016-01-01

    Surgery is the gold standard treatment for patients with thyroid cancer or nodules suspicious for cancer. Open conventional approach is the standard surgical approach. However, a visible neck incision could be a concern for most young female patients, especially for patients with a history of healing with keloid or hypertrophic scars. Robotic remote access approaches have evolved into a safe and feasible approach in selected patients, providing a hidden scar with good patient satisfaction. This review will focus on the performance and safety of robotic retroauricular thyroid surgery. PMID:28149806

  14. Robotic retroauricular thyroid surgery.

    PubMed

    Alabbas, Haytham; Bu Ali, Daniah; Kandil, Emad

    2016-12-01

    Surgery is the gold standard treatment for patients with thyroid cancer or nodules suspicious for cancer. Open conventional approach is the standard surgical approach. However, a visible neck incision could be a concern for most young female patients, especially for patients with a history of healing with keloid or hypertrophic scars. Robotic remote access approaches have evolved into a safe and feasible approach in selected patients, providing a hidden scar with good patient satisfaction. This review will focus on the performance and safety of robotic retroauricular thyroid surgery.

  15. Dextrous robot hands

    NASA Technical Reports Server (NTRS)

    Venkataraman, Subramanian T. (Editor); Iberall, Thea (Editor)

    1990-01-01

    Recent studies of human hand function and their implications for the design of robot hands are discussed in reviews and reports. Topics addressed include human grasp choice and robotic grasp analysis, opposition space and human prehension, coordination in normal and prosthetic reaching, and intelligent exploration by the human hand. Consideration is given to a task-oriented dextrous manipulation architecture, the control architecture for the Belgrade/USC hand, the analysis of multifingered grasping and manipulation, and tactile sensing for shape interpretation. Diagrams, graphs, and photographs are provided.

  16. Transoral robotic thyroid surgery

    PubMed Central

    Clark, James H.; Kim, Hoon Yub

    2015-01-01

    There is currently significant demand for minimally invasive thyroid surgery; however the majority of proposed surgical approaches necessitate a compromise between minimal tissue dissection with a visible cervical scar or extensive tissue dissection with a remote, hidden scar. The development of transoral endoscopic thyroid surgery however provides an approach which is truly minimally invasive, as it conceals the incision within the oral cavity without significantly increasing the amount of required dissection. The transoral endoscopic approach however presents multiple technical challenges, which could be overcome with the incorporation of a robotic operating system. This manuscript summarizes the literature on the feasibility and current clinical experience with transoral robotic thyroid surgery. PMID:26425456

  17. Robot welding process control

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  18. Microwave vision for robots

    NASA Technical Reports Server (NTRS)

    Lewandowski, Leon; Struckman, Keith

    1994-01-01

    Microwave Vision (MV), a concept originally developed in 1985, could play a significant role in the solution to robotic vision problems. Originally our Microwave Vision concept was based on a pattern matching approach employing computer based stored replica correlation processing. Artificial Neural Network (ANN) processor technology offers an attractive alternative to the correlation processing approach, namely the ability to learn and to adapt to changing environments. This paper describes the Microwave Vision concept, some initial ANN-MV experiments, and the design of an ANN-MV system that has led to a second patent disclosure in the robotic vision field.

  19. First Robotics Competition

    NASA Image and Video Library

    2010-03-05

    Students from the Highland School in Warrenton, Va. work on their robot in the "Pit Area" as they prepare to compete in the First Robotics Competition, Friday, March 5, 2010, in Washington. The student competition is called "For Inspiration and Recognition of Science and Technology," or FIRST. The program was founded in 1989 by inventor Dean Kamen to inspire an appreciation of science and technology in young people, their schools and communities. Photo Credit: (NASA/Paul E. Alers) Photo Credit: (NASA/Paul E. Alers)

  20. First Robotics Competition

    NASA Image and Video Library

    2010-03-05

    Students from McKinley Tech High School in Washington, D.C., work on their robot in the "Pit Area" as they prepare to compete in the First Robotics Competition, Friday, March 5, 2010, in Washington. The student competition is called "For Inspiration and Recognition of Science and Technology," or FIRST. The program was founded in 1989 by inventor Dean Kamen to inspire an appreciation of science and technology in young people, their schools and communities. Photo Credit: (NASA/Paul E. Alers)

  1. Mergeable nervous systems for robots.

    PubMed

    Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco

    2017-09-12

    Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

  2. Urologic robots and future directions.

    PubMed

    Mozer, Pierre; Troccaz, Jocelyne; Stoianovici, Dan

    2009-01-01

    Robot-assisted laparoscopic surgery in urology has gained immense popularity with the daVinci system, but a lot of research teams are working on new robots. The purpose of this study is to review current urologic robots and present future development directions. Future systems are expected to advance in two directions: improvements of remote manipulation robots and developments of image-guided robots. The final goal of robots is to allow safer and more homogeneous outcomes with less variability of surgeon performance, as well as new tools to perform tasks on the basis of medical transcutaneous imaging, in a less invasive way, at lower costs. It is expected that improvements for a remote system could be augmented in reality, with haptic feedback, size reduction, and development of new tools for natural orifice translumenal endoscopic surgery. The paradigm of image-guided robots is close to clinical availability and the most advanced robots are presented with end-user technical assessments. It is also notable that the potential of robots lies much further ahead than the accomplishments of the daVinci system. The integration of imaging with robotics holds a substantial promise, because this can accomplish tasks otherwise impossible. Image-guided robots have the potential to offer a paradigm shift.

  3. Robotic technology in cardiovascular medicine.

    PubMed

    Bonatti, Johannes; Vetrovec, George; Riga, Celia; Wazni, Oussama; Stadler, Petr

    2014-05-01

    Robotic technology has been used in cardiovascular medicine since the late 1990s. Interventional cardiology, electrophysiology, endovascular surgery, minimally invasive cardiac surgery, and laparoscopic vascular surgery are all fields of application. Robotic devices enable endoscopic reconstructive surgery in narrow spaces and fast, very precise placement of catheters and devices in catheter-based interventions. In all robotic systems, the operator manipulates the robotic arms from a control station or console. In the field of cardiac surgery, mitral valve repair, CABG surgery, atrial septal defect repair, and myxoma resection can be achieved using robotic technology. Furthermore, vascular surgeons can perform a variety of robotically assisted operations to treat aortic, visceral, and peripheral artery disease. In electrophysiology, ablation procedures for atrial fibrillation can be carried out with robotic support. In the past few years, robotically assisted percutaneous coronary intervention and abdominal aortic endovascular surgery techniques have been developed. The basic feasibility and safety of robotic approaches in cardiovascular medicine has been demonstrated, but learning curves and the high costs associated with this technology have limited its widespread use. Nonetheless, increased procedural speed, accuracy, and reduced exposure to radiation and contrast agent in robotically assisted catheter-based interventions, as well as reduced surgical trauma and shortened patient recovery times after robotic cardiovascular surgery are promising achievements in the field.

  4. Hiding robot inertia using resonance.

    PubMed

    Vallery, Heike; Duschau-Wicke, Alexander; Riener, Robert

    2010-01-01

    To enable compliant training modes with a rehabilitation robot, an important prerequisite is that any undesired human-robot interaction forces caused by robot dynamics must be avoided, either by an appropriate mechanical design or by compensating control strategies. Our recently proposed control scheme of "Generalized Elasticities" employs potential fields to compensate for robot dynamics, including inertia, beyond what can be done using closed-loop force control. In this paper, we give a simple mechanical equivalent using the example of the gait rehabilitation robot Lokomat. The robot consists of an exoskeleton that is attached to a frame around the patient's pelvis. This frame is suspended by a springloaded parallelogram structure. The mechanism allows vertical displacement while providing almost constant robot gravity compensation. However, inertia of the device when the patient's pelvis moves up and down remains a source of large interaction forces, which are reflected in increased ground reaction forces. Here, we investigate an alternative suspension: To hide not only gravity, but also robot inertia during vertical pelvis motion, we suspend the robot frame by a stiff linear spring that allows the robot to oscillate vertically at an eigenfrequency close to the natural gait frequency. This mechanism reduces human-robot interaction forces, which is demonstrated in pilot experimental results.

  5. UROLOGIC ROBOTS AND FUTURE DIRECTIONS

    PubMed Central

    Mozer, Pierre; Troccaz, Jocelyne; Stoianovici, Dan

    2009-01-01

    Purpose of review Robot-assisted laparoscopic surgery in urology has gained immense popularity with the Da Vinci system but a lot of research teams are working on new robots. The purpose of this paper is to review current urologic robots and present future developments directions. Recent findings Future systems are expected to advance in two directions: improvements of remote manipulation robots and developments of image-guided robots. Summary The final goal of robots is to allow safer and more homogeneous outcomes with less variability of surgeon performance, as well as new tools to perform tasks based on medical transcutaneous imaging, in a less invasive way, at lower costs. It is expected that improvements for remote system could be augmented reality, haptic feed back, size reduction and development of new tools for NOTES surgery. The paradigm of image-guided robots is close to a clinical availability and the most advanced robots are presented with end-user technical assessments. It is also notable that the potential of robots lies much further ahead than the accomplishments of the daVinci system. The integration of imaging with robotics holds a substantial promise, because this can accomplish tasks otherwise impossible. Image guided robots have the potential to offer a paradigm shift. PMID:19057227

  6. Developing a successful robotics program.

    PubMed

    Luthringer, Tyler; Aleksic, Ilija; Caire, Arthur; Albala, David M

    2012-01-01

    Advancements in the robotic surgical technology have revolutionized the standard of care for many surgical procedures. The purpose of this review is to evaluate the important considerations in developing a new robotics program at a given healthcare institution. Patients' interest in robotic-assisted surgery has and continues to grow because of improved outcomes and decreased periods of hospitalization. Resulting market forces have created a solid foundation for the implementation of robotic surgery into surgical practice. Given proper surgeon experience and an efficient system, robotic-assisted procedures have been cost comparable to open surgical alternatives. Surgeon training and experience is closely linked to the efficiency of a new robotics program. Formally trained robotic surgeons have better patient outcomes and shorter operative times. Training in robotics has shown no negative impact on patient outcomes or mentor learning curves. Individual economic factors of local healthcare settings must be evaluated when planning for a new robotics program. The high cost of the robotic surgical platform is best offset with a large surgical volume. A mature, experienced surgeon is integral to the success of a new robotics program.

  7. Open Issues in Evolutionary Robotics.

    PubMed

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  8. Reinforcement learning for robot control

    NASA Astrophysics Data System (ADS)

    Smart, William D.; Pack Kaelbling, Leslie

    2002-02-01

    Writing control code for mobile robots can be a very time-consuming process. Even for apparently simple tasks, it is often difficult to specify in detail how the robot should accomplish them. Robot control code is typically full of magic numbers that must be painstakingly set for each environment that the robot must operate in. The idea of having a robot learn how to accomplish a task, rather than being told explicitly is an appealing one. It seems easier and much more intuitive for the programmer to specify what the robot should be doing, and let it learn the fine details of how to do it. In this paper, we describe JAQL, a framework for efficient learning on mobile robots, and present the results of using it to learn control policies for simple tasks.

  9. Robots in industry: an overview.

    PubMed

    Edwards, M

    1984-03-01

    Although the introduction of robots into manufacturing technology is a relatively recent phenomenon, there are indications that a rapid increase in the numbers of robots employed in industry is already taking place. Robots may be found in a wide variety of settings, performing a wide range of functions. These functions may be characterised in terms of whether the robot manipulates a tool or handles a workpiece. The human tasks associated with all robot installations are programming and maintenance. Other tasks vary depending on the particular robot application but are likely to fall into one of four categories. The use of robots has implications for safety and it is apparent that greater emphasis than hitherto must be laid on the design and implementation of procedures to ensure safety.

  10. A bioinspired modular aquatic robot

    NASA Astrophysics Data System (ADS)

    Tallapragada, Phanindra; Pollard, Beau

    2016-11-01

    Several bio inspired swimming robots exist which seek to emulate the morphology of fish and the flapping motion of the tail and fins or other appendages and body of aquatic creatures. The locomotion of such robots and the aquatic animals that they seek to emulate is determined to a large degree by the changes in the shape of the body, which produce periodic changes in the momentum of the body and the creation and interaction of the vorticity field in the fluid with the body. We demonstrate an underactuated robot which swims due to the periodic changes in the angular momentum of the robot effected by the motion of an internal rotor. The robot is modular, unactuated tail like segments can be easily added to the robot. These segments modulate the interaction of the body with the fluid to produce a variety of passive shape changes that can allow the robot to swim in different modes.

  11. Robotic servicing of EOS instruments

    NASA Technical Reports Server (NTRS)

    Razzaghi, Andrea I.; Juberts, Maris

    1990-01-01

    This paper addresses robotic servicing of the Earth Observing Satellite (EOS) instruments. The goals of implementing a robotic servicing system on EOS would be to maintain the instruments throughout the required mission life and minimize life-cycle costs. To address robot servicing, an initial design concept has been developed which will be applied to a representative EOS instrument. This instrument will be used as a model for determining the most practical level of servicing of its parts, and how to design these parts for robot servicing. Using this representative EOS instrument as a model, a generic design scheme will be developed that can be applied to all EOS instruments. The first task is to determine how to identify which parts must be designed for robot servicing. Next, the requirements imposed on the instruments and the servicing robot when designing for robot serviceability must be examined.

  12. Intelligent Robots for Factory Automation

    NASA Astrophysics Data System (ADS)

    Hall, E. L.; Oh, S. J.

    1985-04-01

    Industrial robots are now proven technology in a variety of applications including welding, materials handling, spray painting, machine loading and assembly. However, to fully realize the potential of these universal manipulators , "intelligence" needs to be added to the industrial robot. This involves adding sensory capability and machine intelligence to the controls. The "intelligence" may be added externally or as integral components of the robot. These new "intelligent robots" promise to greatly enhance the versatility of the robot for factory applications. The purpose of this paper is to present a brief review of the techniques and applications of intelligent robots for factory automation and to suggest possible designs for the intelligent robot of the future.

  13. [Robotic surgery in gynecology].

    PubMed

    Hibner, Michał; Marianowski, Piotr; Szymusik, Iwona; Wielgós, Mirosław

    2012-12-01

    Introduction of robotic surgery in the first decade of the 21 century was one of the biggest breakthroughs in surgery since the introduction of anesthesia. For the first time in history the surgeon was placed remotely from the patient and was able to operate with the device that has more degrees of freedom than human hand. Initially developed for the US Military in order to allow surgeons to be removed from the battlefield, surgical robots quickly made a leap to the mainstream medicine. One of the first surgical uses for the robot was cardiac surgery but it is urology and prostate surgery that gave it a widespread popularity Gynecologic surgeons caught on very quickly and it is estimated that 31% of hysterectomies done in the United States in 2012 will be done robotically. With over half a million hysterectomies done each year in the US alone, gynecologic surgery is one of the main driving forces behind the growth of robotic surgery Other applications in gynecology include myomectomy oophorectomy and ovarian cystectomy resection of endometriosis and lymphadenectomy Advantages of the surgical robot are clearly seen in myomectomy The wrist motion allows for better more precise suturing than conventional "straight stick" laparoscopy The strength of the arms allow for better pulling of the suture and the third arm for holding the suture on tension. Other advantage of the robot is scaling of the movements when big movement on the outside translates to very fine movement on the inside. This enables much more precise surgery and may be important in the procedures like tubal anastomosis and implantation of the ureter Three-dimensional vision provides excellent depth of field perception. It is important for surgeons who are switching from open surgeries and preliminary evidence shows that it may allow for better identification of lesions like endometriosis. Another big advantage of robotics is that the surgeon sits comfortably with his/her arms and head supported. This

  14. Visceral and gastrointestinal complications in robotic urologic surgery.

    PubMed

    Velilla, G; Redondo, C; Sánchez-Salas, R; Rozet, F; Cathelineau, X

    2017-05-04

    with the widespread use of minimally invasive techniques, robot-assisted urologic surgery has become widely adopted. Despite their infrequency, visceral and gastrointestinal complications could be life-threatening. To identify the main gastrointestinal injuries that occur in a robot-assisted urologic surgery. To know the overall incidence and how is their management. Search in PubMed of articles related to visceral and gastrointestinal complications in robot-assisted urology surgery, written in English or Spanish. Relevant publications as well literature reviews and chapters from books were reviewed. Along with vascular injuries, visceral and gastrointestinal lesions are among most dangerous complications. A complete preoperative study to individualize each patient characteristics and the correct use of imaging could help us to avoid complications in the first place. To know all the risky steps in the different robotic urologic procedures will let us anticipate the damage. Knowledge of main and most dangerous injuries in the different abdominal and pelvic organs is fully recommended. Early diagnosis and evaluation of lesions will let us an acute management during surgery. Recognition delay could change a repairable injury into a life-threatening situation. Despite the undeniable benefits of robotic approach, there are minor and major gastrointestinal injuries that all urologic surgeons must know. Those related with trocar placement are especially important. Immediate diagnosis and management is mandatory. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Cooperative robotics: bringing autonomy to explosive ordnance disposal robots

    NASA Astrophysics Data System (ADS)

    Del Signore, Michael J.; Czop, Andrew; Hacker, Kurt

    2008-04-01

    An ongoing effort within the US Naval EOD Technology Division (NAVEODTECHDIV) is exploring the integration of autonomous robotic technologies onto current and future Explosive Ordnance Disposal (EOD) robot platforms. The Cooperative Robotics program, though the support of the Joint Ground Robotics Enterprise (JGRE), has identified several autonomous robotic technologies useful to the EOD operator, and with the collaboration of academia and industry is in the process of bringing these technologies to EOD robot operators in the field. Initiated in January 2007, the Cooperative Robotics program includes the demonstration of various autonomous technologies to the EOD user community, and the optimization of these technologies for use on small EOD Unmanned Ground Vehicles (UGVs) in relevant environments. Through close interaction with actual EOD operators, these autonomous behaviors will be designed to work within the bounds of current EOD Tactics, Techniques, and Procedures (TTP). This paper will detail the ongoing and future efforts encompassing the Cooperative Robotics program including: technology demonstrations of autonomous robotic capabilities, development of autonomous capability requirements based on user focus groups, optimization of autonomous UGV behaviors to enable use in relevant environments based on current EOD TTP, and finally the transition of these technologies to current and future EOD robotic systems.

  16. Modelling of industrial robot in LabView Robotics

    NASA Astrophysics Data System (ADS)

    Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.

    2017-08-01

    Currently can find many models of industrial systems including robots. These models differ from each other not only by the accuracy representation parameters, but the representation range. For example, CAD models describe the geometry of the robot and some even designate a mass parameters as mass, center of gravity, moment of inertia, etc. These models are used in the design of robotic lines and sockets. Also systems for off-line programming use these models and many of them can be exported to CAD. It is important to note that models for off-line programming describe not only the geometry but contain the information necessary to create a program for the robot. Exports from CAD to off-line programming system requires additional information. These models are used for static determination of reachability points, and testing collision. It’s enough to generate a program for the robot, and even check the interaction of elements of the production line, or robotic cell. Mathematical models allow robots to study the properties of kinematic and dynamic of robot movement. In these models the geometry is not so important, so are used only selected parameters such as the length of the robot arm, the center of gravity, moment of inertia. These parameters are introduced into the equations of motion of the robot and motion parameters are determined.

  17. New frontiers for psychology and education: robotics.

    PubMed

    Caci, Barbara; D'Amico, Antonella; Cardaci, Maurizio

    2004-06-01

    The paper reviews the first attempts to study the educational and psychological usefulness of robotics: (1) the social and cooperative dimensions involved in the robot-building activities; (2) the reasoning strategies implied in building and programming robots; (3) the influences of robotics on mathematical and scientific achievement; (4) the use of robotics in modification of social skills of autistic children.

  18. Mathematics and "Lego" Robots

    ERIC Educational Resources Information Center

    Hansen, Janus Halkier; Traeholt, Rune

    2007-01-01

    For the last four years, Soenderholm School, near the town of Aalborg, Northjutland, Denmark, has had an optional subject in the seventh grade called First "Lego" League (FLL). FLL is an international contest which aims to advance pupils' scientific interest. The task is for participants to build and program a "Lego" robot able…

  19. Robotic Water Blast Cleaner

    NASA Technical Reports Server (NTRS)

    Sharpe, M. H.; Roberts, M. L.; Hill, W. E.; Jackson, C. H.

    1983-01-01

    Water blasting system under development removes hard, dense, extraneous material from surfaces. High pressure pump forces water at supersonic speed through nozzle manipulated by robot. Impact of water blasts away unwanted material from workpiece rotated on air bearing turntable. Designed for removing thermal-protection material, system is adaptable to such industrial processes as cleaning iron or steel castings.

  20. Information Robots and Manipulators.

    ERIC Educational Resources Information Center

    Katys, G. P.; And Others

    In the modern concept a robot is a complex automatic cybernetics system capable of executing various operations in the sphere of human activity and in various respects combining the imitative capacity of the physical and mental activity of man. They are a class of automatic information systems intended for search, collection, processing, and…

  1. Robots in the Kindergarten.

    ERIC Educational Resources Information Center

    Keller, Joan; Shanahan, Dolores

    1983-01-01

    Describes work with kindergarten children to improve their development of estimation, decision making, divergent thinking, directionality, numerical concepts, and creative problem solving skills through learning to program and control the robot Big Trak, a truck which moves along the floor in response to their commands. (EAO)

  2. Brain controlled robots

    PubMed Central

    Kawato, Mitsuo

    2008-01-01

    In January 2008, Duke University and the Japan Science and Technology Agency (JST) publicized their successful control of a brain-machine interface for a humanoid robot by a monkey brain across the Pacific Ocean. The activities of a few hundred neurons were recorded from a monkey’s motor cortex in Miguel Nicolelis’s lab at Duke University, and the kinematic features of monkey locomotion on a treadmill were decoded from neural firing rates in real time. The decoded information was sent to a humanoid robot, CB-i, in ATR Computational Neuroscience Laboratories located in Kyoto, Japan. This robot was developed by the JST International Collaborative Research Project (ICORP) as the “Computational Brain Project.” CB-i’s locomotion-like movement was video-recorded and projected on a screen in front of the monkey. Although the bidirectional communication used a conventional Internet connection, its delay was suppressed below one over several seconds, partly due to a video-streaming technique, and this encouraged the monkey’s voluntary locomotion and influenced its brain activity. This commentary introduces the background and future directions of the brain-controlled robot. PMID:19404467

  3. Emotions in robot psychology.

    PubMed

    Nitsch, V; Popp, M

    2014-10-01

    In his famous thought experiments on synthetic vehicles, Valentino Braitenberg stipulated that simple stimulus-response reactions in an organism could evoke the appearance of complex behavior, which, to the unsuspecting human observer, may even appear to be driven by emotions such as fear, aggression, and even love (Braitenberg, Vehikel. Experimente mit künstlichen Wesen, Lit Verlag, 2004). In fact, humans appear to have a strong propensity to anthropomorphize, driven by our inherent desire for predictability that will quickly lead us to discern patterns, cause-and-effect relationships, and yes, emotions, in animated entities, be they natural or artificial. But might there be reasons, that we should intentionally "implement" emotions into artificial entities, such as robots? How would we proceed in creating robot emotions? And what, if any, are the ethical implications of creating "emotional" robots? The following article aims to shed some light on these questions with a multi-disciplinary review of recent empirical investigations into the various facets of emotions in robot psychology.

  4. An Inexpensive Robotics Laboratory.

    ERIC Educational Resources Information Center

    Inigo, R. M.; Angulo, J. M.

    1985-01-01

    Describes the design and implementation of a simple robot manipulator. The manipulator has three degrees of freedom and is controlled by a general purpose microcomputer. The basis for the manipulator (which costs under $100) is a simple working model of a crane. (Author/JN)

  5. Robots in the Kindergarten.

    ERIC Educational Resources Information Center

    Keller, Joan; Shanahan, Dolores

    1983-01-01

    Describes work with kindergarten children to improve their development of estimation, decision making, divergent thinking, directionality, numerical concepts, and creative problem solving skills through learning to program and control the robot Big Trak, a truck which moves along the floor in response to their commands. (EAO)

  6. Robotic surgery in gynecology

    PubMed Central

    Alkatout, Ibrahim; Mettler, Liselotte; Maass, Nicolai; Ackermann, Johannes

    2016-01-01

    Robotic surgery is the most dynamic development in the sector of minimally invasive operations currently. It should not be viewed as an alternative to laparoscopy, but as the next step in a process of technological evolution. The advancement of robotic surgery, in terms of the introduction of the Da Vinci Xi, permits the variable use of optical devices in all four trocars. Due to the new geometry of the “patient cart,” an operation can be performed in all spatial directions without re-docking. Longer instruments and the markedly narrower mechanical elements of the “patient cart” provide greater flexibility as well as access similar to those of traditional laparoscopy. Currently, robotic surgery is used for a variety of indications in the treatment of benign gynecological diseases as well as malignant ones. Interdisciplinary cooperation and cooperation over large geographical distances have been rendered possible by telemedicine, and will ensure comprehensive patient care in the future by highly specialized surgery teams. In addition, the second operation console and the operation simulator constitute a new dimension in advanced surgical training. The disadvantages of robotic surgery remain the high costs of acquisition and maintenance as well as the laborious training of medical personnel before they are confident with using the technology. PMID:27990092

  7. Robot Manipulator Control.

    DTIC Science & Technology

    1983-03-07

    This report presents a synthetic approach for calculating the control of robot manipulators. The initial control problem is broken down into linear ... control and modelling problems. The approach allows derivation of numerous schemes (adaptive or not) of control proposed in the literature and suggests

  8. Tour Robot Dance

    SciTech Connect

    Cleary, Geoff

    2014-09-08

    This program exercises the robotic elements in Oracle Storage Tek tape libraries. This is useful for two known cases: 1.) shaking out marginal or new hardware by ensuring hardware robustness under high-duty usage. 2.) ensuring tape libraries are visually interesting during datacenter tours

  9. Robotic and Survey Telescopes

    NASA Astrophysics Data System (ADS)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  10. Savannah River Site Robotics

    ScienceCinema

    None

    2016-07-12

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  11. Robotics in colorectal surgery.

    PubMed

    Kariv, Y; Delaney, C P

    2005-10-01

    A minimally invasive approach has not yet become the gold standard in colorectal procedures, despite its proven advantages in postoperative recovery. This is in part the result of the technical limitations in today's standard laparoscopy, and the advanced surgical skills that are required. Robotic technology overcomes some of these limitations by successfully providing intuitive motion and enhanced precision and accuracy, in an environment that is much more ergonomic. While currently performed in only few designated centers, this technology has already been applied in almost every major procedure performed to treat both benign and malignant conditions of the large bowel. The feasibility of performing these procedures using robotic systems has been reported in several series. Conversion and complication rates are low, and short term results are comparable to conventional laparoscopy. However, no clear advantages to patients have been demonstrated yet. Furthermore, robotic technology is associated with a significant increase in time consumed during surgery and cost of care. Nevertheless, a great potential for patients benefit in the future may exist with this technology. Increasing clinical experience with these systems, further technological developments, and continuous research are required before robotic technology can be routinely incorporated into surgical procedures on the colon and rectum.

  12. [Surgical robotics in neurosurgery].

    PubMed

    Haidegger, Tamás; Benyó, Zoltán

    2009-09-06

    Surgical robotics is one of the most dynamically advancing areas of biomedical engineering. In the past few decades, computer-integrated interventional medicine has gained significance internationally in the field of surgical procedures. More recently, mechatronic devices have been used for nephrectomy, cholecystectomy, as well as in orthopedics and radiosurgery. Estimates show that 70% of the radical prostatectomies were performed with the da Vinci robot in the United States last year. Robot-aided procedures offer remarkable advantages in neurosurgery both for the patient and the surgeon, making microsurgery and Minimally Invasive Surgery a reality, and even complete teleoperation accessible. This paper introduces surgical robotic systems developed primarily for brain and spine applications, besides, it focuses on the different research strategies applied to provide smarter, better and more advanced tools to surgeons. A new system is discussed in details that we have developed together with the Johns Hopkins University in Baltimore. This cooperatively-controlled system can assist with skull base drilling to improve the safety and quality of neurosurgery while reducing the operating time. The paper presents the entire system, the preliminary results of phantom and cadaver tests and our efforts to improve the accuracy of the components. An effective optical tracking based patient motion compensation method has been implemented and tested. The results verify the effectiveness of the system and allow for further research.

  13. Linearization of Robot Manipulators

    NASA Technical Reports Server (NTRS)

    Kreutz, Kenneth

    1987-01-01

    Four nonlinear control schemes equivalent. Report discusses theory of nonlinear feedback control of robot manipulator, emphasis on control schemes making manipulator input and output behave like decoupled linear system. Approach, called "exact external linearization," contributes efforts to control end-effector trajectories, positions, and orientations.

  14. Human-robot teaming

    NASA Astrophysics Data System (ADS)

    Tierney, Terrance M.; Protzman, William J.; Samples, Brian

    2005-05-01

    This presentation will provide program information, goals and objectives of the Technology for Human-Robot Interactions in Soldier-Robot Teaming (HRI) Army Technology Objective (ATO). The intent of this program is to develop and demonstrate an intelligent scaleable interface for mounted and dismounted control of ground and air unmanned systems. Currently in the Army there are unique interfaces developed by engineers for each unmanned system fielded. This saddles the soldier with a training burden to learn specific interface operations prior to controlling the robot. By providing a consistent look and feel across various sized controlling devices, the training burden is reduced as well as the soldier's cognitive workload. Additionally, task analysis will be performed to identify workload barriers and bottlenecks, and intelligent agents will be developed and applied to reduce and/or automate the higher workload tasks. Lastly, this program will develop adaptive automation techniques to intelligently shed or introduce tasks at the appropriate time to the soldier to maintain optimal situational awareness and maximize the performance of the soldier-robot team.

  15. [Radical prostatectomy - pro robotic].

    PubMed

    Gillitzer, R

    2012-05-01

    Anatomical radical prostatectomy was introduced in the early 1980s by Walsh and Donker. Elucidation of key anatomical structures led to a significant reduction in the morbidity of this procedure. The strive to achieve similar oncological and functional results to this gold standard open procedure but with further reduction of morbidity through a minimally invasive access led to the establishment of laparoscopic prostatectomy. However, this procedure is complex and difficult and is associated with a long learning curve. The technical advantages of robotically assisted surgery coupled with the intuitive handling of the device led to increased precision and shortening of the learning curve. These main advantages, together with a massive internet presence and aggressive marketing, have resulted in a rapid dissemination of robotic radical prostatectomy and an increasing patient demand. However, superiority of robotic radical prostatectomy in comparison to the other surgical therapeutic options has not yet been proven on a scientific basis. Currently robotic-assisted surgery is an established technique and future technical improvements will certainly further define its role in urological surgery. In the end this technical innovation will have to be balanced against the very high purchase and running costs, which remain the main limitation of this technology.

  16. Space robot simulator vehicle

    NASA Technical Reports Server (NTRS)

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  17. Robot Serviced Space Facility

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R. (Inventor)

    1992-01-01

    A robot serviced space facility includes multiple modules which are identical in physical structure, but selectively differing in function. and purpose. Each module includes multiple like attachment points which are identically placed on each module so as to permit interconnection with immediately adjacent modules. Connection is made through like outwardly extending flange assemblies having identical male and female configurations for interconnecting to and locking to a complementary side of another flange. Multiple rows of interconnected modules permit force, fluid, data and power transfer to be accomplished by redundant circuit paths. Redundant modules of critical subsystems are included. Redundancy of modules and of interconnections results in a space complex with any module being removable upon demand, either for module replacement or facility reconfiguration. without eliminating any vital functions of the complex. Module replacement and facility assembly or reconfiguration are accomplished by a computer controlled articulated walker type robotic manipulator arm assembly having two identical end-effectors in the form of male configurations which are identical to those on module flanges and which interconnect to female configurations on other flanges. The robotic arm assembly moves along a connected set or modules by successively disconnecting, moving and reconnecting alternate ends of itself to a succession of flanges in a walking type maneuver. To transport a module, the robot keeps the transported module attached to one of its end-effectors and uses another flange male configuration of the attached module as a substitute end-effector during walking.

  18. Industrial robot's vision systems

    NASA Astrophysics Data System (ADS)

    Iureva, Radda A.; Raskin, Evgeni O.; Komarov, Igor I.; Maltseva, Nadezhda K.; Fedosovsky, Michael E.

    2016-03-01

    Due to the improved economic situation in the high technology sectors, work on the creation of industrial robots and special mobile robotic systems are resumed. Despite this, the robotic control systems mostly remained unchanged. Hence one can see all advantages and disadvantages of these systems. This is due to lack of funds, which could greatly facilitate the work of the operator, and in some cases, completely replace it. The paper is concerned with the complex machine vision of robotic system for monitoring of underground pipelines, which collects and analyzes up to 90% of the necessary information. Vision Systems are used to identify obstacles to the process of movement on a trajectory to determine their origin, dimensions and character. The object is illuminated in a structured light, TV camera records projected structure. Distortions of the structure uniquely determine the shape of the object in view of the camera. The reference illumination is synchronized with the camera. The main parameters of the system are the basic distance between the generator and the lights and the camera parallax angle (the angle between the optical axes of the projection unit and camera).

  19. MRV - Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  20. Artificial intelligence and robotics

    SciTech Connect

    Peden, I.C.; Braddock, J.V.; Brown, W.; Langendorf, R.M.

    1982-09-01

    This report examines the state-of-the-art in artificial intelligence and robotics technologies and their potential in terms of Army needs. Assessment includes battlefield technology, research and technology insertions, management considerations and recommendations related to research and development personnel, and recommendations regarding the Army's involvement in the automated plant.

  1. Information Robots and Manipulators.

    ERIC Educational Resources Information Center

    Katys, G. P.; And Others

    In the modern concept a robot is a complex automatic cybernetics system capable of executing various operations in the sphere of human activity and in various respects combining the imitative capacity of the physical and mental activity of man. They are a class of automatic information systems intended for search, collection, processing, and…

  2. Brain controlled robots.

    PubMed

    Kawato, Mitsuo

    2008-06-01

    In January 2008, Duke University and the Japan Science and Technology Agency (JST) publicized their successful control of a brain-machine interface for a humanoid robot by a monkey brain across the Pacific Ocean. The activities of a few hundred neurons were recorded from a monkey's motor cortex in Miguel Nicolelis's lab at Duke University, and the kinematic features of monkey locomotion on a treadmill were decoded from neural firing rates in real time. The decoded information was sent to a humanoid robot, CB-i, in ATR Computational Neuroscience Laboratories located in Kyoto, Japan. This robot was developed by the JST International Collaborative Research Project (ICORP) as the "Computational Brain Project." CB-i's locomotion-like movement was video-recorded and projected on a screen in front of the monkey. Although the bidirectional communication used a conventional Internet connection, its delay was suppressed below one over several seconds, partly due to a video-streaming technique, and this encouraged the monkey's voluntary locomotion and influenced its brain activity. This commentary introduces the background and future directions of the brain-controlled robot.

  3. Mathematics and "Lego" Robots

    ERIC Educational Resources Information Center

    Hansen, Janus Halkier; Traeholt, Rune

    2007-01-01

    For the last four years, Soenderholm School, near the town of Aalborg, Northjutland, Denmark, has had an optional subject in the seventh grade called First "Lego" League (FLL). FLL is an international contest which aims to advance pupils' scientific interest. The task is for participants to build and program a "Lego" robot able…

  4. Robotic surgery in gynecology.

    PubMed

    Alkatout, Ibrahim; Mettler, Liselotte; Maass, Nicolai; Ackermann, Johannes

    2016-01-01

    Robotic surgery is the most dynamic development in the sector of minimally invasive operations currently. It should not be viewed as an alternative to laparoscopy, but as the next step in a process of technological evolution. The advancement of robotic surgery, in terms of the introduction of the Da Vinci Xi, permits the variable use of optical devices in all four trocars. Due to the new geometry of the "patient cart," an operation can be performed in all spatial directions without re-docking. Longer instruments and the markedly narrower mechanical elements of the "patient cart" provide greater flexibility as well as access similar to those of traditional laparoscopy. Currently, robotic surgery is used for a variety of indications in the treatment of benign gynecological diseases as well as malignant ones. Interdisciplinary cooperation and cooperation over large geographical distances have been rendered possible by telemedicine, and will ensure comprehensive patient care in the future by highly specialized surgery teams. In addition, the second operation console and the operation simulator constitute a new dimension in advanced surgical training. The disadvantages of robotic surgery remain the high costs of acquisition and maintenance as well as the laborious training of medical personnel before they are confident with using the technology.

  5. Robonaut 2 Humanoid Robot

    NASA Image and Video Library

    2012-03-13

    ISS030-E-135148 (13 March 2012) --- A fisheye lens attached to an electronic still camera was used to capture this image of Robonaut 2 humanoid robot during another system checkout in the Destiny laboratory of the International Space Station. Teams on the ground commanded Robonaut through a series of dexterity tests as it spelled out ?Hello world? in sign language.

  6. Robonaut 2 Humanoid Robot

    NASA Image and Video Library

    2012-03-13

    ISS030-E-135163 (13 March 2012) --- A fisheye lens attached to an electronic still camera was used to capture this image of Robonaut 2 humanoid robot during another system checkout in the Destiny laboratory of the International Space Station. Teams on the ground commanded Robonaut through a series of dexterity tests as it spelled out ?Hello world? in sign language.

  7. Robonaut 2 Humanoid Robot

    NASA Image and Video Library

    2012-03-13

    ISS030-E-135157 (13 March 2012) --- A fisheye lens attached to an electronic still camera was used to capture this image of Robonaut 2 humanoid robot during another system checkout in the Destiny laboratory of the International Space Station. Teams on the ground commanded Robonaut through a series of dexterity tests as it spelled out ?Hello world? in sign language.

  8. Robonaut 2 Humanoid Robot

    NASA Image and Video Library

    2012-03-13

    ISS030-E-135187 (13 March 2012) --- A fisheye lens attached to an electronic still camera was used to capture this image of Robonaut 2 humanoid robot during another system checkout in the Destiny laboratory of the International Space Station. Teams on the ground commanded Robonaut through a series of dexterity tests as it spelled out ?Hello world? in sign language.

  9. Robonaut 2 Humanoid Robot

    NASA Image and Video Library

    2012-03-13

    ISS030-E-135185 (13 March 2012) --- A fisheye lens attached to an electronic still camera was used to capture this image of Robonaut 2 humanoid robot during another system checkout in the Destiny laboratory of the International Space Station. Teams on the ground commanded Robonaut through a series of dexterity tests as it spelled out ?Hello world? in sign language.

  10. Robonaut 2 Humanoid Robot

    NASA Image and Video Library

    2012-03-13

    ISS030-E-135140 (13 March 2012) --- A fisheye lens attached to an electronic still camera was used to capture this image of Robonaut 2 humanoid robot during another system checkout in the Destiny laboratory of the International Space Station. Teams on the ground commanded Robonaut through a series of dexterity tests as it spelled out ?Hello world? in sign language.

  11. Robonaut 2 Humanoid Robot

    NASA Image and Video Library

    2012-03-13

    ISS030-E-135135 (13 March 2012) --- A fisheye lens attached to an electronic still camera was used to capture this image of Robonaut 2 humanoid robot during another system checkout in the Destiny laboratory of the International Space Station. Teams on the ground commanded Robonaut through a series of dexterity tests as it spelled out ?Hello world? in sign language.

  12. Enabling Soldiers with Robots

    DTIC Science & Technology

    2012-04-17

    Military Operational Environments,” 244-245. 45 Ibid., 245-246. 46 P.W. Singer, “Military Robots and the Laws of War,” The New Atlantis , no. 23...Winter 2009): 26. 47 Victor Davis Hanson, “Military Technology and American Culture,” The New Atlantis , no. 1 (Spring 2003): 34. 22

  13. Robotic Water Blast Cleaner

    NASA Technical Reports Server (NTRS)

    Sharpe, M. H.; Roberts, M. L.; Hill, W. E.; Jackson, C. H.

    1983-01-01

    Water blasting system under development removes hard, dense, extraneous material from surfaces. High pressure pump forces water at supersonic speed through nozzle manipulated by robot. Impact of water blasts away unwanted material from workpiece rotated on air bearing turntable. Designed for removing thermal-protection material, system is adaptable to such industrial processes as cleaning iron or steel castings.

  14. Robotic Firefighting Technologies

    DTIC Science & Technology

    2010-12-01

    designed to strap to the firefighter’s waist line; the ergonomic fit provides comfort to the operator during use of the Fire Defender UFV. Robotic...5 3.2. Technical Design Approach .................................................................................................7...3.2.1. System Design Modification................................................................................................7 3.3. System

  15. Savannah River Site Robotics

    SciTech Connect

    2010-01-01

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  16. 2011 FIRST Robotics Championship

    NASA Image and Video Library

    2011-01-07

    Chris Collins (l to r), Andy Zhou and Rachel Holladay from Northshore High School in Slidell place FIRST logo pieces during a Jan. 7, 2011 kickoff event for the 2011 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition season. Thirty teams from four states attended the kickoff event at Stennis Space Center.

  17. Robotic Rock Classification

    NASA Technical Reports Server (NTRS)

    Hebert, Martial

    1999-01-01

    This report describes a three-month research program undertook jointly by the Robotics Institute at Carnegie Mellon University and Ames Research Center as part of the Ames' Joint Research Initiative (JRI.) The work was conducted at the Ames Research Center by Mr. Liam Pedersen, a graduate student in the CMU Ph.D. program in Robotics under the supervision Dr. Ted Roush at the Space Science Division of the Ames Research Center from May 15 1999 to August 15, 1999. Dr. Martial Hebert is Mr. Pedersen's research adviser at CMU and is Principal Investigator of this Grant. The goal of this project is to investigate and implement methods suitable for a robotic rover to autonomously identify rocks and minerals in its vicinity, and to statistically characterize the local geological environment. Although primary sensors for these tasks are a reflection spectrometer and color camera, the goal is to create a framework under which data from multiple sensors, and multiple readings on the same object, can be combined in a principled manner. Furthermore, it is envisioned that knowledge of the local area, either a priori or gathered by the robot, will be used to improve classification accuracy. The key results obtained during this project are: The continuation of the development of a rock classifier; development of theoretical statistical methods; development of methods for evaluating and selecting sensors; and experimentation with data mining techniques on the Ames spectral library. The results of this work are being applied at CMU, in particular in the context of the Winter 99 Antarctica expedition in which the classification techniques will be used on the Nomad robot. Conversely, the software developed based on those techniques will continue to be made available to NASA Ames and the data collected from the Nomad experiments will also be made available.

  18. Robot mother ship design

    NASA Astrophysics Data System (ADS)

    Budulas, Peter P.; Young, Stuart H.; Emmerman, Philip J.

    2000-07-01

    Small physical agents will be ubiquitous on the battlefield of the 21st century, principally to lower the exposure to harm of our ground forces. Teams of small collaborating physical agents conducting tasks such as Reconnaissance, Surveillance, and Target Acquisition (RSTA); chemical and biological agent detection, logistics, sentry; and communications relay will have advanced sensor and mobility characteristics. The mother ship much effectively deliver/retrieve, service, and control these robots as well as fuse the information gathered by these highly mobile robot teams. The mother ship concept presented in this paper includes the case where the mother ship is itself a robot or a manned system. The mother ship must have long-range mobility to deploy the small, highly maneuverable agents that will operate in urban environments and more localized areas, and act as a logistics base for the robot teams. The mother ship must also establish a robust communications network between the agents and is an up-link point for disseminating the intelligence gathered by the smaller agents; and, because of its global knowledge, provides the high-level information fusion, control and planning for the collaborative physical agents. Additionally, the mother ship incorporates battlefield visualization, information fusion, and multi-resolution analysis, and intelligent software agent technology, to support mission planning and execution. This paper discusses on going research at the U.S. Army Research Laboratory that supports the development of a robot mother ship. This research includes docking, battlefield visualization, intelligent software agents, adaptive communications, information fusion, and multi- modal human computer interaction.

  19. Soldier universal robot controller

    NASA Astrophysics Data System (ADS)

    Hyams, Jeffrey; Batavia, Parag; Liao, Elizabeth; Somerville, Andrew

    2008-04-01

    The Soldier Universal Robot Controller (SURC) is a modular OCU designed for simultaneous control of heterogeneous unmanned vehicles. It has a well defined, published API., defined using XML schemas, that allows other potential users of the system to develop their own modules for rapid integration with SURC. The SURC architecture is broken down into three layers: User Interface, Core Functions, and Transport. The User Interface layer is the front end module which provides the human computer interface for user control of robots. The Core layer is further divided into the following modules: Capabilities, Tactical, Mobility, and World Model. The Capabilities module keeps track of the known robots and provides a list of specifications and services. The Mobility module provides path planning via D*, while the Tactical module provides higher level mission planning (multi-agent/multi-mission) capabilities for collaborative operations. The World Model module is a relational database which stores world model objects. Finally, a Transport module provides translation from the SURC architecture to the robot specific messaging protocols (such as JAUS). This allows fast integration of new robot protocols into an existing SURC implementation to enable a new system to rapidly leverage existing SURC capabilities. The communication between different modules within the SURC architecture is done via XML. This gives developers and users the flexibility to extend existing messages without breaking backwards compatibility. The modularity of SURC offers users and developers alike the capability to create custom modules and plug them into place, as long as they follow the pre defined messaging API for that module.

  20. Robot-laser system

    SciTech Connect

    Akeel, H.A.

    1987-03-17

    A robot-laser system is described for providing a laser beam at a desired location, the system comprising: a laser beam source for generating a laser beam; a robot having at least three degrees of freedom and including a base and a robot arm supported on the base, the robot arm having first and second elongated arm parts, the second arm part projecting from the first arm part. The robot arm has a wrist mechanism located at the distal end of the second arm part, the arm parts and the wrist mechanism being hollow and fluidly interconnected to define a laser beam path therewithin extending through the first arm part, along the entire projecting length of the second arm part and through the wrist mechanism. The arm parts and wrist mechanism are adapted to direct the laser beam therewithin; and at least one mirror for reflecting the laser beam, a single mirror being mounted to and supported by the arm therewithin at a position of fluid interconnection between the arm parts to move therewith and reflect the laser beam. A first one of the degrees of freedom comprises a linear movement of the first arm part along an axis coincident with the laser beam path. A second one of the degrees of freedom comprises a linear movement of the second arm part along a second axis coincident with the laser beam path through the second arm part and a third one of the degrees of freedom comprises a rotary movement of one of the arm parts about the laser beam path.

  1. 30 Years of Robotic Surgery.

    PubMed

    Leal Ghezzi, Tiago; Campos Corleta, Oly

    2016-10-01

    The idea of reproducing himself with the use of a mechanical robot structure has been in man's imagination in the last 3000 years. However, the use of robots in medicine has only 30 years of history. The application of robots in surgery originates from the need of modern man to achieve two goals: the telepresence and the performance of repetitive and accurate tasks. The first "robot surgeon" used on a human patient was the PUMA 200 in 1985. In the 1990s, scientists developed the concept of "master-slave" robot, which consisted of a robot with remote manipulators controlled by a surgeon at a surgical workstation. Despite the lack of force and tactile feedback, technical advantages of robotic surgery, such as 3D vision, stable and magnified image, EndoWrist instruments, physiologic tremor filtering, and motion scaling, have been considered fundamental to overcome many of the limitations of the laparoscopic surgery. Since the approval of the da Vinci(®) robot by international agencies, American, European, and Asian surgeons have proved its factibility and safety for the performance of many different robot-assisted surgeries. Comparative studies of robotic and laparoscopic surgical procedures in general surgery have shown similar results with regard to perioperative, oncological, and functional outcomes. However, higher costs and lack of haptic feedback represent the major limitations of current robotic technology to become the standard technique of minimally invasive surgery worldwide. Therefore, the future of robotic surgery involves cost reduction, development of new platforms and technologies, creation and validation of curriculum and virtual simulators, and conduction of randomized clinical trials to determine the best applications of robotics.

  2. Robots hooked on drugs. Robotic automation expands pharmacy services.

    PubMed

    Marietti, C

    1997-11-01

    Hospitals are not known for automating labor-intensive tasks but robots are just beginning to make inroads in health-care. The first--and still only--robot grew from a class assignment to use an established technology in a new growth industry. The established technology was bar coding; the industry health-care; and the result a robotic device for the hospital pharmacy.

  3. Coordinated Control Of Mobile Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1995-01-01

    Computationally efficient scheme developed for on-line coordinated control of both manipulation and mobility of robots that include manipulator arms mounted on mobile bases. Applicable to variety of mobile robotic manipulators, including robots that move along tracks (typically, painting and welding robots), robots mounted on gantries and capable of moving in all three dimensions, wheeled robots, and compound robots (consisting of robots mounted on other robots). Theoretical basis discussed in several prior articles in NASA Tech Briefs, including "Increasing the Dexterity of Redundant Robots" (NPO-17801), "Redundant Robot Can Avoid Obstacles" (NPO-17852), "Configuration-Control Scheme Copes With Singularities" (NPO-18556), "More Uses for Configuration Control of Robots" (NPO-18607/NPO-18608).

  4. Molecular Robots Obeying Asimov's Three Laws of Robotics.

    PubMed

    Kaminka, Gal A; Spokoini-Stern, Rachel; Amir, Yaniv; Agmon, Noa; Bachelet, Ido

    2017-01-01

    Asimov's three laws of robotics, which were shaped in the literary work of Isaac Asimov (1920-1992) and others, define a crucial code of behavior that fictional autonomous robots must obey as a condition for their integration into human society. While, general implementation of these laws in robots is widely considered impractical, limited-scope versions have been demonstrated and have proven useful in spurring scientific debate on aspects of safety and autonomy in robots and intelligent systems. In this work, we use Asimov's laws to examine these notions in molecular robots fabricated from DNA origami. We successfully programmed these robots to obey, by means of interactions between individual robots in a large population, an appropriately scoped variant of Asimov's laws, and even emulate the key scenario from Asimov's story "Runaround," in which a fictional robot gets into trouble despite adhering to the laws. Our findings show that abstract, complex notions can be encoded and implemented at the molecular scale, when we understand robots on this scale on the basis of their interactions.

  5. Robotic Surgery in Gynecologic Oncology

    PubMed Central

    DeBernardo, Robert; Starks, David; Barker, Nichole; Armstrong, Amy; Kunos, Charles A.

    2011-01-01

    Robotic surgery for the management of gynecologic cancers allows for minimally invasive surgical removal of cancer-bearing organs and tissues using sophisticated surgeon-manipulated, robotic surgical instrumentation. Early on, gynecologic oncologists recognized that minimally invasive surgery was associated with less surgical morbidity and that it shortened postoperative recovery. Now, robotic surgery represents an effective alternative to conventional laparotomy. Since its widespread adoption, minimally invasive surgery has become an option not only for the morbidly obese but for women with gynecologic malignancy where conventional laparotomy has been associated with significant morbidity. As such, this paper considers indications for robotic surgery, reflects on outcomes from initial robotic surgical outcomes data, reviews cost efficacy and implications in surgical training, and discusses new roles for robotic surgery in gynecologic cancer management. PMID:22190946

  6. Virtual robotics laboratory for research

    NASA Astrophysics Data System (ADS)

    McKee, Gerard T.

    1995-09-01

    We report on work currently underway to put a robotics laboratory onto the Internet in support of teaching and research in robotics and artificial intelligence in higher education institutions in the UK. The project is called Netrolab. The robotics laboratory comprises a set of robotics resources including a manipulator, a mobile robot with an on-board monocular active vision head and a set of sonar sensing modules, and a set of laboratory cameras to allow the user to see into the laboratory. The paper will report on key aspect of the project aimed at using multimedia tools and object-oriented techniques to network the robotics resources and to allow them to be configured into complex teaching and experimental modules. The paper will outline both the current developments of Netrolab and provide a perspective on the future development of networked virtual laboratories for research.

  7. Survey of robot lawn mowers

    NASA Astrophysics Data System (ADS)

    Hicks, Rob W., II; Hall, Ernest L.

    2000-10-01

    Lawn mowing is considered by many to be one of the most boring and tiring routine household tasks. It is also one of the most promising personal robot applications. Several devices have not been invented and some manufactured products are available for lawn mowing. The purpose of this paper is to survey the state of the art in robotic lawn mowers to highlight the requirements and capabilities of current devices. A brief survey of available robot products, typical patents and some test bed prototypes are presented. Some enabling technologies which could make the devices more capable are also suggested. Some predictions indicate that the robot lawn mower will be the breakthrough device in robotics. The significance of this research lies in the presentation of an overview of a potential major market for personal robots.

  8. What makes a robot 'social'?

    PubMed

    Jones, Raya A

    2017-08-01

    Rhetorical moves that construct humanoid robots as social agents disclose tensions at the intersection of science and technology studies (STS) and social robotics. The discourse of robotics often constructs robots that are like us (and therefore unlike dumb artefacts). In the discourse of STS, descriptions of how people assimilate robots into their activities are presented directly or indirectly against the backdrop of actor-network theory, which prompts attributing agency to mundane artefacts. In contradistinction to both social robotics and STS, it is suggested here that to view a capacity to partake in dialogical action (to have a 'voice') is necessary for regarding an artefact as authentically social. The theme is explored partly through a critical reinterpretation of an episode that Morana Alač reported and analysed towards demonstrating her bodies-in-interaction concept. This paper turns to 'body' with particular reference to Gibsonian affordances theory so as to identify the level of analysis at which dialogicality enters social interactions.

  9. Interactive autonomy and robotic skills

    NASA Technical Reports Server (NTRS)

    Kellner, A.; Maediger, B.

    1994-01-01

    Current concepts of robot-supported operations for space laboratories (payload servicing, inspection, repair, and ORU exchange) are mainly based on the concept of 'interactive autonomy' which implies autonomous behavior of the robot according to predefined timelines, predefined sequences of elementary robot operations and within predefined world models supplying geometrical and other information for parameter instantiation on the one hand, and the ability to override and change the predefined course of activities by human intervention on the other hand. Although in principle a very powerful and useful concept, in practice the confinement of the robot to the abstract world models and predefined activities appears to reduce the robot's stability within real world uncertainties and its applicability to non-predefined parts of the world, calling for frequent corrective interaction by the operator, which in itself may be tedious and time-consuming. Methods are presented to improve this situation by incorporating 'robotic skills' into the concept of interactive autonomy.

  10. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Merriam, E. W.; Becker, J. D.

    1973-01-01

    A robot computer problem solving system which represents a robot exploration vehicle in a simulated Mars environment is described. The model exhibits changes and improvements made on a previously designed robot in a city environment. The Martian environment is modeled in Cartesian coordinates; objects are scattered about a plane; arbitrary restrictions on the robot's vision have been removed; and the robot's path contains arbitrary curves. New environmental features, particularly the visual occlusion of objects by other objects, were added to the model. Two different algorithms were developed for computing occlusion. Movement and vision capabilities of the robot were established in the Mars environment, using LISP/FORTRAN interface for computational efficiency. The graphical display program was redesigned to reflect the change to the Mars-like environment.

  11. Study Tour of Industrial Robots in Japan.

    DTIC Science & Technology

    1979-08-01

    robots in Japanese manufacturing industry. Visits to fourteen organizations are described of which some seven were engaged in the design and manufacture of... robots as well as in their application. The majority of robots seen were engaged in spot-welding and arc-welding applications, although it was...these appear to be classified as robots when statistics are presented in Japan. No intelligent robots were seen, and very few programmable numerically controlled robot controllers were in evidence. (Author)

  12. 2013 Robotics Science & Systems Conference Travel Support

    DTIC Science & Technology

    2015-01-21

    SECURITY CLASSIFICATION OF: The 2013 Robotics : Science and Systems Conference will bring together researchers working on algorithmic or mathematical...foundations of robotics , robotics applications, and analysis of robotic systems. High quality, original papers are solicited in all areas of robotics ...conference will be single track to allow attendees an opportunity to experience the best research in all areas of robotics . The program will include

  13. Space Station robotics planning tools

    NASA Technical Reports Server (NTRS)

    Testa, Bridget Mintz

    1992-01-01

    The concepts are described for the set of advanced Space Station Freedom (SSF) robotics planning tools for use in the Space Station Control Center (SSCC). It is also shown how planning for SSF robotics operations is an international process, and baseline concepts are indicated for that process. Current SRMS methods provide the backdrop for this SSF theater of multiple robots, long operating time-space, advanced tools, and international cooperation.

  14. Joint Center for Robotics (JCR)

    DTIC Science & Technology

    2008-04-15

    Unclassified 1 Joint Center for Robotics (JCR) Dr. Jim Overholt 15 April 2008 DISTRIBUTION STATEMENT A. Approved for public release; distribution is...REPORT DATE APR 2008 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Joint Center for Robotics (JCR) 5a. CONTRACT NUMBER 5b. GRANT...ANSI Std Z39-18 Unclassified 2 TARDEC JCR Robotics CAST Projects & Cells “White Hat” Organization - Understand the needs of the user and create

  15. Military Robotics and Collateral Damage

    DTIC Science & Technology

    2004-06-01

    Applications and Operations Military Robotics and Collateral Damage Robert Douglass (Primary POC) SET Associates 3811 N. Fairfax...2004 4. TITLE AND SUBTITLE Military Robotics and Collateral Damage 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Abstract We explore a concept of a combined force of air and ground combat robots

  16. Task-Level Robot Learning

    DTIC Science & Technology

    1988-08-01

    Number) We are investigating how to program robots so that they learn from experience. Our goal is to develop principled methods of learning that can...juggling. We have developed one method of learning, task-level learning, that successfully improves a robot’s performance of both a ball-throwing and a...dramatically improves. Task-level learning is a general method of improving a robot’s performance of complex dynamic tasks. Task-level learning serves

  17. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Worcester Polytechnic Institute (WPI) President Dennis Berkey, left, walks with NASA Deputy Administrator Lori Garver to the competition field for the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  18. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Worcester Polytechnic Institute (WPI) President Dennis Berkey talks to NASA Deputy Administrator Lori Garver prior to the kick off of the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 at WPI in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  19. Autonomous Realtime Threat-Hunting Robot (ARTHR

    SciTech Connect

    INL

    2008-05-29

    Idaho National Laboratory researchers developed an intelligent plug-and-play robot payload that transforms commercial robots into effective first responders for deadly chemical, radiological and explosive threats.

  20. Autonomous Realtime Threat-Hunting Robot (ARTHR

    ScienceCinema

    INL

    2016-07-12

    Idaho National Laboratory researchers developed an intelligent plug-and-play robot payload that transforms commercial robots into effective first responders for deadly chemical, radiological and explosive threats.

  1. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Visitors, some with their dogs, line up to make their photo inside a space suit exhibit during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  2. Robotic technology evolution and transfer

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.

    1992-01-01

    A report concerning technology transfer in the area of robotics is presented in vugraph form. The following topics are discussed: definition of technology innovation and tech-transfer; concepts relevant for understanding tech-transfer; models advanced to portray tech-transfer process; factors identified as promoting tech-transfer; factors identified as impeding tech-transfer; what important roles do individuals fulfill in tech-transfer; federal infrastructure for promoting tech-transfer; federal infrastructure for promoting tech-transfer; robotic technology evolution; robotic technology transferred; and recommendations for successful robotics tech-transfer.

  3. Affective robot for elderly assistance.

    PubMed

    Carelli, Laura; Gaggioli, Andrea; Pioggia, Giovanni; De Rossi, Federico; Riva, Giuseppe

    2009-01-01

    Recently, several robotic solutions for the elderly have been proposed. However, to date, the diffusion of these devices has been limited: available robots are too cumbersome, awkward, and expensive to become widely adopted. Another key issue which reduces the appeal of assistive robots is the lack of socio-emotional interaction: affective interchanges represent key requirements to create sustainable relationships between elderly and robots. In this paper, we propose a new approach to enhance the acceptability of robotic systems, based on the introduction of affective dimensions in human-robot interaction. This strategy is aimed at designing a new generation of relational and cognitive robots fusing information from embodied unobtrusive sensory interfaces. The final objective is to develop embodied interfaces, which are able to learn and adapt their affective responses to the user's behavior. User and robot will engage in natural interactions, involving verbal and non-verbal communication, improving empathic exchange of moods and feelings. Relevant independent living and quality of life related issues will be addressed: on-going monitoring of health parameters, assistance in everyday's activities, social support and cognitive/physical exercises. We expect that the proposed strategy will enhance the user's acceptance and adoption of the assistive robotic system.

  4. Robotic surgery: a current perspective.

    PubMed

    Lanfranco, Anthony R; Castellanos, Andres E; Desai, Jaydev P; Meyers, William C

    2004-01-01

    To review the history, development, and current applications of robotics in surgery. Surgical robotics is a new technology that holds significant promise. Robotic surgery is often heralded as the new revolution, and it is one of the most talked about subjects in surgery today. Up to this point in time, however, the drive to develop and obtain robotic devices has been largely driven by the market. There is no doubt that they will become an important tool in the surgical armamentarium, but the extent of their use is still evolving. A review of the literature was undertaken using Medline. Articles describing the history and development of surgical robots were identified as were articles reporting data on applications. Several centers are currently using surgical robots and publishing data. Most of these early studies report that robotic surgery is feasible. There is, however, a paucity of data regarding costs and benefits of robotics versus conventional techniques. Robotic surgery is still in its infancy and its niche has not yet been well defined. Its current practical uses are mostly confined to smaller surgical procedures.

  5. Utility robotic planning: case studies

    SciTech Connect

    Roman, H.T.; Travato, S.A.; Irving, T.L.; Patnaude, L.G.

    1986-03-01

    Currently, the utility use of robotic devices is most appropriate in nuclear power plants. Four utilities are currently approaching the task of robotic applications. The planning program of each of the utilities is discussed. The following similarities of approach are noted: Plant operating personnel are surveyed for application ideas, and a company task force is established involving these personnel to determine specific application needs and cost-benefit. The state-of-the-art of various robotic devices is evaluated and selected equipment is tested in existing plants. The robotic experience gained from nuclear plant applications is extended to other non-nuclear areas. 2 figures, 1 table.

  6. Robotic systems in spine surgery.

    PubMed

    Onen, Mehmet Resid; Naderi, Sait

    2014-01-01

    Surgical robotic systems have been available for almost twenty years. The first surgical robotic systems were designed as supportive systems for laparoscopic approaches in general surgery (the first procedure was a cholecystectomy in 1987). The da Vinci Robotic System is the most common system used for robotic surgery today. This system is widely used in urology, gynecology and other surgical disciplines, and recently there have been initial reports of its use in spine surgery, for transoral access and anterior approaches for lumbar inter-body fusion interventions. SpineAssist, which is widely used in spine surgery, and Renaissance Robotic Systems, which are considered the next generation of robotic systems, are now FDA approved. These robotic systems are designed for use as guidance systems in spine instrumentation, cement augmentations and biopsies. The aim is to increase surgical accuracy while reducing the intra-operative exposure to harmful radiation to the patient and operating team personnel during the intervention. We offer a review of the published literature related to the use of robotic systems in spine surgery and provide information on using robotic systems.

  7. Robot Would Reconfigure Modular Equipment

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R.

    1993-01-01

    Special-purpose sets of equipment, packaged in identical modules with identical interconnecting mechanisms, attached to or detached from each other by specially designed robot, according to proposal. Two-arm walking robot connects and disconnects modules, operating either autonomously or under remote supervision. Robot walks along row of connected modules by grasping successive attachment subassemblies in hand-over-hand motion. Intended application for facility or station in outer space; robot reconfiguration scheme makes it unnecessary for astronauts to venture outside spacecraft or space station. Concept proves useful on Earth in assembly, disassembly, or reconfiguration of equipment in such hostile environments as underwater, near active volcanoes, or in industrial process streams.

  8. ARIES NDA Robot operators` manual

    SciTech Connect

    Scheer, N.L.; Nelson, D.C.

    1998-05-01

    The ARIES NDA Robot is an automation device for servicing the material movements for a suite of Non-destructive assay (NDA) instruments. This suite of instruments includes a calorimeter, a gamma isotopic system, a segmented gamma scanner (SGS), and a neutron coincidence counter (NCC). Objects moved by the robot include sample cans, standard cans, and instrument plugs. The robot computer has an RS-232 connection with the NDA Host computer, which coordinates robot movements and instrument measurements. The instruments are expected to perform measurements under the direction of the Host without operator intervention. This user`s manual describes system startup, using the main menu, manual operation, and error recovery.

  9. Robotic Booking Of Coolant Tubes

    NASA Technical Reports Server (NTRS)

    Wagner, Garret E.; Gutow, David A.; Gilbert, Jeffrey L.; Deily, David C.

    1994-01-01

    Robotic tube-booking subsystem proposed for use in automated manufacturing cell described in "Robotic Processing of Rocket-Engine Nozzles" (MFS-29927). Includes electric or pneumatic end effector that inspects gaps under guidance of control processor connected to robotic vision subsystem. After inspecting each gap, end effector books tubes in vicinity, then reinspects to ensure attainment of desired gap. Makes entire tube-gap area brazeable, without damage to tubes, with consistent results. In addition, robotic booking takes less time and costs less than manual booking.

  10. Students Learn About Station Robotics

    NASA Image and Video Library

    From NASA's International Space Station Mission Control Center, Robotics Systems Flight Controller Jason Dyer participates in a Digital Learning Network (DLN) event with students at East Stroudsber...

  11. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    A visitor to the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event helps demonstrate how a NASA rover design enables the rover to climb over obstacles higher than it's own body on Saturday, June 16, 2012 at WPI in Worcester, Mass. The event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  12. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Deputy Administrator Lori Garver and NASA Chief Technologist Mason Peck stop to look at the bronze statue of the goat mascot for Worcester Polytechnic Institute (WPI) named "Gompei" that is wearing a staff t-shirt for the "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  13. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Program Manager for Centennial Challenges Sam Ortega help show a young visitor how to drive a rover as part of the interactive NASA Mars rover exhibit during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  14. Sensory Interactive Teleoperator Robotic Grasping

    NASA Technical Reports Server (NTRS)

    Alark, Keli; Lumia, Ron

    1997-01-01

    As the technological world strives for efficiency, the need for economical equipment that increases operator proficiency in minimal time is fundamental. This system links a CCD camera, a controller and a robotic arm to a computer vision system to provide an alternative method of image analysis. The machine vision system which was employed possesses software tools for acquiring and analyzing images which are received through a CCD camera. After feature extraction on the object in the image was performed, information about the object's location, orientation and distance from the robotic gripper is sent to the robot controller so that the robot can manipulate the object.

  15. NASA Robotics for Space Exploration

    NASA Technical Reports Server (NTRS)

    Fischer, RIchard T.

    2007-01-01

    This presentation focuses on NASA's use of robotics in support of space exploration. The content was taken from public available websites in an effort to minimize any ITAR or EAR issues. The agenda starts with an introduction to NASA and the "Vision for Space Exploration" followed by NASA's major areas of robotic use: Robotic Explorers, Astronaut Assistants, Space Vehicle, Processing, and In-Space Workhorse (space infrastructure). Pictorials and movies of NASA robots in use by the major NASA programs: Space Shuttle, International Space Station, current Solar Systems Exploration and Mars Exploration, and future Lunar Exploration are throughout the presentation.

  16. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    The bronze statue of the goat mascot for Worcester Polytechnic Institute (WPI) named "Gompei" is seen wearing a staff t-shirt for the "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  17. Robotic facelift thyroid surgery

    PubMed Central

    Bomeli, Steven R.; Duke, William S.

    2015-01-01

    Techniques for thyroid surgery have advanced dramatically over the past two decades, driven by a better understanding of thyroid physiology, anatomy, and perioperative management strategies. Improvements in surgical technology have permitted surgeons to perform minimally invasive surgery associated with less dissection, decreased pain, smaller anterior cervical incisions, and most importantly a faster recovery. The advent of robotic surgical technology has allowed the development of remote access thyroidectomy for select patients who wish to avoid a visible cervical incision completely. The robotic facelift thyroidectomy (RFT) approach also offers the advantage of outpatient surgery without the need for postoperative drainage. A growing body of evidence supports the safety and efficacy of the approach, and as a result the technique is now being performed at several centers around the world. PMID:26425453

  18. 3D light robotics

    NASA Astrophysics Data System (ADS)

    Glückstad, Jesper; Palima, Darwin; Villangca, Mark; Banas, Andrew

    2016-04-01

    As celebrated by the Nobel Prize 2014 in Chemistry light-based technologies can now overcome the diffraction barrier for imaging with nanoscopic resolution by so-called super-resolution microscopy1. However, interactive investigations coupled with advanced imaging modalities at these small scale domains gradually demand the development of a new generation of disruptive tools, not only for passively observing at nanoscopic scales, but also for actively reaching into and effectively handling constituents in this size domain. This intriguing mindset has recently led to the emergence of a novel research discipline that could potentially be able to offer the full packet needed for true "active nanoscopy" by use of so-called light-driven micro-robotics or Light Robotics in short.

  19. Robot arm apparatus

    DOEpatents

    Nachbar, Henry D.

    1992-12-01

    A robot arm apparatus is provided for inspecting and/or maintaining an interior of a steam generator which has an outside wall and a port for accessing the interior of the steam generator. The robot arm apparatus includes a flexible movable conduit for conveying inspection and/or maintenance apparatus from outside the steam generator to the interior of the steam generator. The flexible conduit has a terminal working end which is translated into and around the interior of the steam generator. Three motors located outside the steam generator are employed for moving the terminal working end inside the steam generator in "x", "y", and "z" directions, respectively. Commonly conducted inspection and maintenance operations include visual inspection for damaged areas, water jet lancing for cleaning sludge deposits, core boring for obtaining sludge deposits, and scrubbing of internal parts.

  20. Robot arm apparatus

    DOEpatents

    Nachbar, Henry D.

    1992-01-01

    A robot arm apparatus is provided for inspecting and/or maintaining an interior of a steam generator which has an outside wall and a port for accessing the interior of the steam generator. The robot arm apparatus includes a flexible movable conduit for conveying inspection and/or maintenance apparatus from outside the steam generator to the interior of the steam generator. The flexible conduit has a terminal working end which is translated into and around the interior of the steam generator. Three motors located outside the steam generator are employed for moving the terminal working end inside the steam generator in "x", "y", and "z" directions, respectively. Commonly conducted inspection and maintenance operations include visual inspection for damaged areas, water jet lancing for cleaning sludge deposits, core boring for obtaining sludge deposits, and scrubbing of internal parts.