Science.gov

Sample records for asme wind energy

  1. Overview of the new ASME Performance Test Code for wind turbines

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1986-01-01

    The principal technical features of the ASME Performance Test Code for wind turbines are presented and such issues as what sizes and types of wind turbines should be included, what the principal measure of performance should be, and how wind speed should be measured are discussed. It is concluded that the present test code is applicable to wind turbine systems of all sizes. The principal measure of performance as defined by this code is net energy output and the primary performance parameter is the 'test energy ratio' which is based on a comparison between the measured and predicted energy output for the test period.

  2. Wind Energy

    SciTech Connect

    Ganley, Jason; Zhang, Jie; Hodge, Bri-Mathias

    2016-03-15

    Wind energy is a variable and uncertain renewable resource that has long been used to produce mechanical work, and has developed into a large producer of global electricity needs. As renewable sources of energy and feedstocks become more important globally to produce sustainable products, many different processes have started adopting wind power as an energy source. Many times this is through a conversion to hydrogen through electrolysis that allows for a more continuous process input. Other important pathways include methanol and ammonia. As the demand for sustainable products and production pathways increases, and wind power capital costs decrease, the role of wind power in chemical and energy production seems poised to increase significantly.

  3. Wind energy.

    PubMed

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented.

  4. Wind energy systems

    NASA Technical Reports Server (NTRS)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  5. Wind energy bibliography

    SciTech Connect

    1995-05-01

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  6. Careers in Wind Energy

    ERIC Educational Resources Information Center

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  7. Wind energy planning considerations

    NASA Astrophysics Data System (ADS)

    Vansetten, A.; Voogd, H.

    1980-04-01

    Windpowered utilization in the Netherlands and the search for wind rich areas is discussed. It is suggested that large water areas, like the North Sea and Market Lake, are the preferred areas for wind powered energy production. Storage of wind energy in large water basins is suggested. Government wind energy production programs like the installation of wind parks, and difficulties because of opposing local interests are discussed. Windmill exploration by small private industry, rather than by government administered programs, are outlined.

  8. Wind energy information guide

    SciTech Connect

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  9. Wind Energy: Offshore Permitting

    DTIC Science & Technology

    2008-05-01

    Technological advancements and tax incentives have driven a global expansion in the development of renewable energy resources. Wind energy , in...particular, is now often cited as the fastest growing commercial energy source in the world. Currently, all U.S. wind energy facilities are based on land...authority to permit and regulate offshore wind energy development within the zones of the oceans under its jurisdiction. The federal government and coastal

  10. Kansas Wind Energy Consortium

    SciTech Connect

    Gruenbacher, Don

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  11. Utilization of Wind Energy

    SciTech Connect

    Archer, J. D.

    1984-01-31

    A wind energy device comprising a first airfoil having a leading edge, a trailing edge and a tip, means supporting the airfoil above a surface, the airfoil being adapted, when traversed by a prevailing wind, to generate a vortex at its tip, an air deflector associated with the airfoil and arranged so as to deflect prevailing wind traversing the deflector into the vortex to augment the energy of the vortex, means to vary the orientation of the airfoil relative to the prevailing wind, and a rotary device located in the path of the vortex and adapted to be driven by the wind in the vortex.

  12. Wind energy conversion system

    DOEpatents

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  13. SERI Wind Energy Program

    SciTech Connect

    Noun, R. J.

    1983-06-01

    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  14. Wind energy applications guide

    SciTech Connect

    anon.

    2001-01-01

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  15. Insuring wind energy production

    NASA Astrophysics Data System (ADS)

    D'Amico, Guglielmo; Petroni, Filippo; Prattico, Flavio

    2017-02-01

    This paper presents an insurance contract that the supplier of wind energy may subscribe in order to immunize the production of electricity against the volatility of the wind speed process. The other party of the contract may be any dispatchable energy producer, like gas turbine or hydroelectric generator, which can supply the required energy in case of little or no wind. The adoption of a stochastic wind speed model allows the computation of the fair premium that the wind power supplier has to pay in order to hedge the risk of inadequate output of electricity at any time. Recursive type equations are obtained for the prospective mathematical reserves of the insurance contract and for their higher order moments. The model and the validity of the results are illustrated through a numerical example.

  16. Wind Energy Systems.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    During the 1920s and 1930s, millions of wind energy systems were used on farms and other locations far from utility lines. However, with passage of the Rural Electrification Act in 1939, cheap electricity was brought to rural areas. After that, the use of wind machines dramatically declined. Recently, the rapid rise in fuel prices has led to a…

  17. Offshore Wind Energy

    SciTech Connect

    Strach-Sonsalla, Mareike; Stammler, Matthias; Wenske, Jan; Jonkman, Jason; Vorpahl, Fabian

    2016-07-27

    In 1991, the Vindeby Offshore Wind Farm, the first offshore wind farm in the world, started feeding electricity to the grid off the coast of Lolland, Denmark. Since then, offshore wind energy has developed from this early experiment to a multibillion dollar market and an important pillar of worldwide renewable energy production. Unit sizes grew from 450 kW at Vindeby to the 7.5 MW-class offshore wind turbines (OWT ) that are currently (by October 2014) in the prototyping phase. This chapter gives an overview of the state of the art in offshore wind turbine (OWT) technology and introduces the principles of modeling and simulating an OWT. The OWT components -- including the rotor, nacelle, support structure, control system, and power electronics -- are introduced, and current technological challenges are presented. The OWT system dynamics and the environment (wind and ocean waves) are described from the perspective of OWT modelers and designers. Finally, an outlook on future technology is provided. The descriptions in this chapter are focused on a single OWT -- more precisely, a horizontal-axis wind turbine -- as a dynamic system. Offshore wind farms and wind farm effects are not described in detail in this chapter, but an introduction and further references are given.

  18. Wind Energy Teachers Guide

    SciTech Connect

    anon.

    2003-01-01

    This guide, created by the American Wind Association, with support from the U.S. Department of Energy, is a learning tool about wind energy targeted toward grades K-12. The guide provides teacher information, ideas for sparking children's and students' interest, suggestions for activities to undertake in and outside the classroom, and research tools for both teachers and students. Also included is an additional resources section.

  19. EDITORIAL: Wind energy

    NASA Astrophysics Data System (ADS)

    Mann, Jakob; Nørkær Sørensen, Jens; Morthorst, Poul-Erik

    2008-01-01

    Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33 GW up from 2 GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1 GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also

  20. Wind energy and Turkey.

    PubMed

    Coskun, Aynur Aydin; Türker, Yavuz Özhan

    2012-03-01

    The global energy requirement for sustaining economic activities, meeting social needs and social development is increasing daily. Environmentally friendly, renewable energy resources are an alternative to the primary non-renewable energy resources, which devastate ecosystems in order to meet increasing demand. Among renewable energy sources such as hydropower, biopower, geothermal power and solar power, wind power offers distinct advantages to Turkey. There is an increasing tendency toward wind globally and the European Union adjusted its legal regulations in this regard. As a potential EU Member state, Turkey is going through a similar process. The number of institutional and legal regulations concerning wind power has increased in recent years; technical infrastructure studies were completed, and some important steps were taken in this regard. This study examines the way in which Turkey has developed support for wind power, presents a SWOT analysis of the wind power sector in Turkey and a projection was made for the concrete success expected to be accomplished in the future.

  1. Wind Energy Workforce Development & Jobs

    SciTech Connect

    Tegen, Suzanne

    2016-11-08

    The United States needs a skilled and qualified wind energy workforce to produce domestic clean power. To assist with wind energy workforce development, the U.S. Department of Energy (DOE) and National Renewable Energy Laboratory are engaged with several efforts.This presentation by Suzanne Tegen describes these efforts, including a wind industry survey, DOE's Wind Career Map, the DOE Wind Vision report, and an in-depth discussion of the Jobs & Economic Development Impacts Model.

  2. Wind/water energy converter

    NASA Technical Reports Server (NTRS)

    Paulkovich, J.

    1979-01-01

    Device will convert wind, water, tidal or wave energy into electrical or mechanical energy. Is comprised of windmill-like paddles or blades synchronously geared to orient themselves to wind direction for optimum energy extraction.

  3. Wind/water energy converter

    NASA Technical Reports Server (NTRS)

    Paulkovich, J.

    1979-01-01

    Device will convert wind, water, tidal or wave energy into electrical or mechanical energy. Is comprised of windmill-like paddles or blades synchronously geared to orient themselves to wind direction for optimum energy extraction.

  4. Wind-energy storage

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1980-01-01

    Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.

  5. Wind energy utilization: A bibliography

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Bibliography cites documents published to and including 1974 with abstracts and references, and is indexed by topic, author, organization, title, and keywords. Topics include: Wind Energy Potential and Economic Feasibility, Utilization, Wind Power Plants and Generators, Wind Machines, Wind Data and Properties, Energy Storage, and related topics.

  6. Wind speed forecasting for wind energy applications

    NASA Astrophysics Data System (ADS)

    Liu, Hong

    With more wind energy being integrated into our grid systems, forecasting wind energy has become a necessity for all market participants. Recognizing the market demands, a physical approach to site-specific hub-height wind speed forecasting system has been developed. This system is driven by the outputs from the Canadian Global Environmental Multiscale (GEM) model. A simple interpolation approach benchmarks the forecasting accuracy inherited from GEM. Local, site specific winds are affected on a local scale by a variety of factors including representation of the land surface and local boundary-layer process over heterogeneous terrain which have been a continuing challenge in NWP models like GEM with typical horizontal resolution of order 15-km. In order to resolve these small scale effects, a wind energy industry standard model, WAsP, is coupled with GEM to improve the forecast. Coupling the WAsP model with GEM improves the overall forecasts, but remains unsatisfactory for forecasting winds with abrupt surface condition changes. Subsequently in this study, a new coupler that uses a 2-D RANS model of boundary-layer flow over surface condition changes with improved physics has been developed to further improve the forecasts when winds coming from a water surface to land experience abrupt changes in surface conditions. It has been demonstrated that using vertically averaged wind speeds to represent geostrophic winds for input into the micro-scale models could reduce forecast errors. The hub-height wind speed forecasts could be further improved using a linear MOS approach. The forecasting system has been evaluated, using a wind energy standard evaluation matrix, against data from an 80-m mast located near the north shore of Lake Erie. Coupling with GEM-LAM and a power conversion model using a theoretical power curve have also been investigated. For hub-height wind speeds GEM appears to perform better with a 15-Ian grid than the high resolution GEM-2.5Ian version at the

  7. Advanced Performance Hydraulic Wind Energy

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  8. Advanced Performance Hydraulic Wind Energy

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  9. Wind Energy Information Guide 2004

    SciTech Connect

    anon.

    2004-01-01

    The guide provides a list of contact information and Web site addresses for resources that provide a range of general and technical information about wind energy, including general information, wind and renewable energy, university programs and research institutes, international wind energy associations and others.

  10. Distributed Wind Energy in Idaho

    SciTech Connect

    Gardner, John; Johnson, Kathryn; Haynes, Todd; Seifert, Gary

    2009-01-31

    This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho.

  11. Wind energy: An engineering survey

    SciTech Connect

    Nahas, M.N.; Mohamad, A.S.; Akyurt, M.; El-Kalay, A.K.

    1987-01-01

    This paper presents an extensive survey of literature about wind energy and wind machines, their design and their applications. The paper intends to provide those who plan for energy policy with thorough information about this renewable type of energy and the available machines that convert wind energy into useful mechanical or electrical work. The machines which are available at present range from the simple Savonius rotor to the powerful multi-blade windmills. The advantages and shortcomings of all types are discussed here.

  12. Environmental impact of wind energy

    NASA Astrophysics Data System (ADS)

    Mann, J.; Teilmann, J.

    2013-09-01

    One purpose of wind turbines is to provide pollution-free electric power at a reasonable price in an environmentally sound way. In this focus issue the latest research on the environmental impact of wind farms is presented. Offshore wind farms affect the marine fauna in both positive and negative ways. For example, some farms are safe havens for porpoises while other farms show fewer harbor porpoises even after ten years. Atmospheric computer experiments are carried out to investigate the possible impact and resource of future massive installations of wind turbines. The following questions are treated. What is the global capacity for energy production by the wind? Will the added turbulence and reduced wind speeds generated by massive wind farms cool or heat the surface? Can wind farms affect precipitation? It is also shown through life-cycle analysis how wind energy can reduce the atmospheric emission of eight air pollutants. Finally, noise generation and its impact on humans are studied.

  13. Wind energy: Program overview, FY 1992

    SciTech Connect

    Not Available

    1993-06-01

    The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

  14. Introduction to wind energy systems

    NASA Astrophysics Data System (ADS)

    Wagner, H.-J.

    2017-07-01

    This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.

  15. Introduction to wind energy systems

    NASA Astrophysics Data System (ADS)

    Wagner, H.-J.

    2015-08-01

    This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.

  16. Introduction to wind energy systems

    NASA Astrophysics Data System (ADS)

    Wagner, H.-J.

    2013-06-01

    This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.

  17. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  18. Wind turbulence characterization for wind energy development

    NASA Astrophysics Data System (ADS)

    Wendell, L. L.; Gower, G. L.; Morris, V. R.; Tomich, S. D.

    1991-09-01

    As part of its support of the U.S. Department of Energy's (DOE's) Federal Wind Energy Program, the Pacific Northwest Laboratory (PNL) has initiated an effort to work jointly with the wind energy community to characterize wind turbulence in a variety of complex terrains at existing or potential sites of wind turbine installation. Five turbulence characterization systems were assembled and installed at four sites in the Tehachapi Pass in California, and one in the Green Mountains near Manchester, Vermont. Data processing and analyses techniques were developed to allow observational analyses of the turbulent structure; this analysis complements the more traditional statistical and spectral analyses. Preliminary results of the observational analyses, in the rotating framework or a wind turbine blade, show that the turbulence at a site can have two major components: (1) engulfing eddies larger than the rotor, and (2) fluctuating shear due to eddies smaller than the rotor disk. Comparison of the time series depicting these quantities at two sites showed that the turbulence intensity (the commonly used descriptor of turbulence) did not adequately characterize the turbulence at these sites.

  19. Wind turbulence characterization for wind energy development

    SciTech Connect

    Wendell, L.L.; Gower, G.L.; Morris, V.R.; Tomich, S.D.

    1991-09-01

    As part of its support of the US Department of Energy's (DOE's) Federal Wind Energy Program, the Pacific Northwest Laboratory (PNL) has initiated an effort to work jointly with the wind energy community to characterize wind turbulence in a variety of complex terrains at existing or potential sites of wind turbine installation. Five turbulence characterization systems were assembled and installed at four sites in the Tehachapi Pass in California, and one in the Green Mountains near Manchester, Vermont. Data processing and analyses techniques were developed to allow observational analyses of the turbulent structure; this analysis complements the more traditional statistical and spectral analyses. Preliminary results of the observational analyses, in the rotating framework or a wind turbine blade, show that the turbulence at a site can have two major components: (1) engulfing eddies larger than the rotor, and (2) fluctuating shear due to eddies smaller than the rotor disk. Comparison of the time series depicting these quantities at two sites showed that the turbulence intensity (the commonly used descriptor of turbulence) did not adequately characterize the turbulence at these sites. 9 refs., 10 figs.,

  20. Wind Energy Program: Top 10 Program Accomplishments

    SciTech Connect

    2009-01-18

    Brochure on the top accomplishments of the Wind Energy Program, including the development of large wind machines, small machines for the residential market, wind tunnel testing, computer codes for modeling wind systems, high definition wind maps, and successful collaborations.

  1. Wind energy: A renewable energy option

    NASA Technical Reports Server (NTRS)

    Zimmerman, J. S.

    1977-01-01

    Wind turbine generator research programs administered by the Energy Research and Development Administration are examined. The design and operation of turbine demonstration models are described. Wind assessments were made to determine the feasibility of using wind generated power for various parts of the country.

  2. Energy from the Wind

    ERIC Educational Resources Information Center

    Pelka, David G.; And Others

    1978-01-01

    The large-scale generation of electrical power by wind turbine fields is discussed. It is shown that the maximum power that can be extracted by a wind turbine is 16/27 of the power available in the wind. (BB)

  3. Energy from the Wind

    ERIC Educational Resources Information Center

    Pelka, David G.; And Others

    1978-01-01

    The large-scale generation of electrical power by wind turbine fields is discussed. It is shown that the maximum power that can be extracted by a wind turbine is 16/27 of the power available in the wind. (BB)

  4. Wind Energy Ordinance Fact Sheet

    SciTech Connect

    F. Oteri

    2010-09-01

    Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues such as zoning, traffic, consumer protection, and building codes. Wind energy ordinances reflect local needs and wants regarding wind turbines within county or city lines and aid the development of safe facilities that will be embraced by the community. Since 2008 when the National Renewable Energy Laboratory released a report on existing wind energy ordinances, many more ordinances have been established throughout the United States, and this trend is likely to continue in the near future as the wind energy industry grows. This fact sheet provides an overview of elements found in typical wind energy ordinances to educate state and local government officials, as well as policy makers.

  5. Wind Energy Ordinances (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues such as zoning, traffic, consumer protection, and building codes. Wind energy ordinances reflect local needs and wants regarding wind turbines within county or city lines and aid the development of safe facilities that will be embraced by the community. Since 2008 when the National Renewable Energy Laboratory released a report on existing wind energy ordinances, many more ordinances have been established throughout the United States, and this trend is likely to continue in the near future as the wind energy industry grows. This fact sheet provides an overview of elements found in typical wind energy ordinances to educate state and local government officials, as well as policy makers.

  6. An Experiment on Wind Energy

    ERIC Educational Resources Information Center

    Lombardo, Vincenzo; Fiordilino, Emilio; Gallitto, Aurelio Agliolo; Aglieco, Pasquale

    2012-01-01

    We discuss an experiment on wind energy performed with home-made apparatus. The experiment reproduces a laboratory windmill, which can pump water from a lower level to a higher one. By measuring the gain of the gravitational potential energy of the pumped water, one can determine the power extracted from the wind. The activity was carried out with…

  7. An Experiment on Wind Energy

    ERIC Educational Resources Information Center

    Lombardo, Vincenzo; Fiordilino, Emilio; Gallitto, Aurelio Agliolo; Aglieco, Pasquale

    2012-01-01

    We discuss an experiment on wind energy performed with home-made apparatus. The experiment reproduces a laboratory windmill, which can pump water from a lower level to a higher one. By measuring the gain of the gravitational potential energy of the pumped water, one can determine the power extracted from the wind. The activity was carried out with…

  8. Alternative energy: Plenty of wind

    NASA Astrophysics Data System (ADS)

    Kirk-Davidoff, Daniel

    2013-02-01

    By exerting a drag on the atmosphere, wind turbines convert a fraction of the atmosphere's kinetic energy to electrical energy. To find the point of diminishing returns, a new study adds so much drag to a simulated atmosphere that the winds slow to a crawl.

  9. Energy 101: Wind Turbines - 2014 Update

    ScienceCinema

    None

    2016-07-12

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  10. Energy 101: Wind Turbines - 2014 Update

    SciTech Connect

    2014-05-06

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  11. Science Activities in Energy: Wind Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 12 activities related to wind energy for elementary students. Each activity is outlined on a single card and is introduced by a question. Topics include: (1) At what time of day is there enough wind to make electricity where you live?; (2) Where is the windiest spot on your schoolground?; and…

  12. Science Activities in Energy: Wind Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 12 activities related to wind energy for elementary students. Each activity is outlined on a single card and is introduced by a question. Topics include: (1) At what time of day is there enough wind to make electricity where you live?; (2) Where is the windiest spot on your schoolground?; and…

  13. Wind energy technology program summary

    NASA Astrophysics Data System (ADS)

    1984-10-01

    The purpose of the Federal Wind Energy Technology Program is to perform research that will enable the private sector to develop and utilize safe, reliable, and efficient wind energy systems. Generic research will provide the technology base and scientific understanding necessary to allow industry to develop wind energy systems competitive with conventional energy sources. The goal of the DOE wind program is to improve the basic understanding of aerodynamics and structural dynamics in order to more accurately predict wind turbine aerodynamic performance, natural resonance frequencies, and structural loads. Areas included in the research plan being developed for the next five years include: advanced fluid dynamics, aerodynamics research, structural dynamics research, and advanced components and systems research, including multimegawatt (MOD-5) development.

  14. Wind energy: Developing energy, wealth, and change

    NASA Astrophysics Data System (ADS)

    Hopkins, Matt

    Wind energy has emerged as one of the fastest growing energy sources in the United States over the course of the last decade. It is the renewable energy type most readily defining clean economy leadership. An uncertain policy context, public conflicts over the impacts of turbine installations, and unsorted connections to a national green development strategy raise questions about the continued viability of wind power in the U.S. This thesis attempts to document and question some of the issues raised by wind energy expansion in the U.S. generally, but in Maine in particular, in order to explain how environmental, social, and economic benefits accrue to places hosting wind projects. The available information combined with a targeted inquiry produce insights into how the state of Maine can improve its wind development policies and outcomes.

  15. Wind energy conversion system

    SciTech Connect

    Mohan, N.; Riaz, M.

    1980-12-30

    A wind turbine drives the squirrel-cage rotor of a capacitively excited induction generator. The amount of excitation is controlled in accordance with the output voltage of the stator and hence the speed of the wind turbine. The generating system is capable of operating at high efficiency over a wide speed range, since the electrical output frequency is allowed to vary with the rotor speed. The electrical power supplied by the induction generator is used for heating purposes within a nearby building.

  16. Energy from Offshore Wind: Preprint

    SciTech Connect

    Musial, W.; Butterfield, S.; Ram, B.

    2006-02-01

    This paper provides an overview of the nascent offshore wind energy industry including a status of the commercial offshore industry and the technologies that will be needed for full market development.

  17. Wind energy systems: program summary

    SciTech Connect

    1980-05-01

    The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

  18. Integrated roof wind energy system

    NASA Astrophysics Data System (ADS)

    Suma, A. B.; Ferraro, R. M.; Dano, B.; Moonen, S. P. G.

    2012-10-01

    Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  19. Wind Energy Guide.

    ERIC Educational Resources Information Center

    Harrison, David

    The booklet, intended for students and other visitors to the Lathrop E. Smith Environmental Education Center (Rockville, Maryland), explains how windmills work and their economic and environmental advantages. The history of windmills in Europe and Asia is briefly described, as well as the history of windmills and wind generators (for electricity)…

  20. Turbulent Character of Wind Energy

    NASA Astrophysics Data System (ADS)

    Milan, Patrick; Wächter, Matthias; Peinke, Joachim

    2013-03-01

    Wind turbines generate electricity from turbulent wind. Large fluctuations, and, more importantly, frequent wind gusts cause a highly fluctuating electrical power feed into the grid. Such effects are the hallmark of high-frequency turbulence. Here we show evidence that it is the complex structure of turbulence that dominates the power output for one single wind turbine as well as for an entire wind farm. We illustrate the highly intermittent, peaked nature of wind power fed into the grid. Multifractal scaling is observed, as described initially by Kolmogorov’s 1962 theory of turbulence. In parallel, we propose a stochastic model that converts wind speed signals into power output signals with appropriate multifractal statistics. As more and more wind turbines become integrated into our electric grids, a proper understanding of this intermittent power source must be worked out to ensure grid stability in future networks. Thus, our results stress the need for a profound understanding of the physics of turbulence and its impact on wind energy.

  1. Turbulent character of wind energy.

    PubMed

    Milan, Patrick; Wächter, Matthias; Peinke, Joachim

    2013-03-29

    Wind turbines generate electricity from turbulent wind. Large fluctuations, and, more importantly, frequent wind gusts cause a highly fluctuating electrical power feed into the grid. Such effects are the hallmark of high-frequency turbulence. Here we show evidence that it is the complex structure of turbulence that dominates the power output for one single wind turbine as well as for an entire wind farm. We illustrate the highly intermittent, peaked nature of wind power fed into the grid. Multifractal scaling is observed, as described initially by Kolmogorov's 1962 theory of turbulence. In parallel, we propose a stochastic model that converts wind speed signals into power output signals with appropriate multifractal statistics. As more and more wind turbines become integrated into our electric grids, a proper understanding of this intermittent power source must be worked out to ensure grid stability in future networks. Thus, our results stress the need for a profound understanding of the physics of turbulence and its impact on wind energy.

  2. Station for collecting wind energy

    SciTech Connect

    Rougemont, R.

    1983-12-20

    Station for collecting wind energy comprised of a hollow column (1) including from top to bottom: a collecting housing (9) provided with inlet flaps (10), a transfer housing (12) including the driving elements (6) which drive through shafts (7) and (20) the operating members (8), an evacuation housing (16) provided with outer flaps (11). The arrows indicate the direction of circulation of airflow inside the station. The inner flaps (10) exposed to the wind open under the action of the latter which maintains the other flaps closed. The outer flaps (11) positioned out of the wind open under the action of the residual pressure remaining after acting on the driving members (6), whereas the other flaps are kept closed under the wind pressure. Safety valves (3) are provided for preventing any prejudicial overpressure. The station includes starting means for the driving elements under light wind and means for regulating the airflow.

  3. Dynamics Analysis of Wind Energy Production Development

    NASA Astrophysics Data System (ADS)

    Berg, V. I.; Zakirzakov, A. G.; Gordievskaya, E. F.

    2017-01-01

    The paper presents the analysis of the introduction experience and dynamics development of the world wind energy production. Calculated the amount of wind energy sources investments and the production capacity growth dynamics of the wind turbines. The studies have shown that the introduction dynamics of new wind energy sources is higher than any other energy source.

  4. Wind Energy Status and Future Wind Engineering Challenges: Preprint

    SciTech Connect

    Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

    2008-08-01

    This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

  5. Philippines Wind Energy Resource Atlas Development

    SciTech Connect

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  6. Wind Energy Career Development Program

    SciTech Connect

    Gwen Andersen

    2012-03-29

    Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

  7. Federal Wind Energy Research Program

    SciTech Connect

    Not Available

    1991-10-01

    The Office of Program Analysis (OPA) undertook an assessment of 55 research projects sponsored by the Federal Wind Energy Research Program. This report summarizes the results of that review. In accordance with statue and policy guidance, the program's research has targeted the sciences of wind turbine dynamics and the development of advanced components and systems. Wind turbine research has focused on atmospheric fluid dynamics, aerodynamics, and structural dynamics. Rating factors including project scientific and technical merit, appropriateness and level of innovation of the technical approach, quality of the project team, productivity, and probable impact on the program's mission. Each project was also given an overall evaluation supported with written comments. 1 fig.

  8. SMES for wind energy systems

    NASA Astrophysics Data System (ADS)

    Paul Antony, Anish

    Renewable energy sources are ubiquitous, wind energy in particular is one of the fastest growing forms of renewable energy, yet the stochastic nature of wind creates fluctuations that threaten the stability of the electrical grid. In addition to stability with increased wind energy, the need for additional load following capability is a major concern hindering increased wind energy penetration. Improvements in power electronics are required to increase wind energy penetration, but these improvements are hindered by a number of limitations. Changes in physical weather conditions, insufficient capacity of the transmission line and inaccurate wind forecasting greatly stymie their effect and ultimately lead to equipment damage. With this background, the overall goal of this research effort is to pitch a case for superconducting magnetic energy storage (SMES) by (1) optimally designing the SMES to be coupled with wind turbines thus reducing wind integration challenges and (2) to help influence decision makers in either increasing superconducting wire length/fill factor or improving superconducting splice technology thereby increasing the storage capacity of the SMES. Chapter 1 outlines the scope of this thesis by answering the following questions (1) why focus on wind energy? (2) What are the problems associated with increasing wind energy on the electric grid? (3) What are the current solutions related to wind integration challenges and (4) why SMES? Chapter 2, presents a detailed report on the study performed on categorizing the challenges associated with integrating wind energy into the electric grid. The conditions under which wind energy affected the electric grid are identified both in terms of voltage stability and excess wind generation. Chapter 3, details a comprehensive literature review on the different superconducting wires. A technology assessment of the five selected superconductors: [Niobium Titanium (NbTi), Niobium Tin (Nb3Sn), Bismuth strontium calcium

  9. Hydraulic wind energy conversion system

    SciTech Connect

    Not Available

    1981-07-01

    The purpose of this research was to design, build and test a hydraulic wind energy system. This design used a three bladed turbine, which drove a hydraulic pump. The energy is transmitted from the pump through a long hose and into a hydraulic motor, where the energy is used. This wind system was built and tested during the winter of 1980-1981. The power train included a five meter, three bladed wind turbine, a 9.8:1 ratio gearbox, a 1.44 cubic inch displacement pump with a small supercharge gear pump attached. The hydraulic fluid was pumped through a 70', 3/4'' I-D-high pressure flexhose, then through a volume control valve and into a 1.44 cubic inch displacement motor. The fluid was returned through a 70', 1'' I-D-flexhose.

  10. Hydraulic wind energy conversion system

    NASA Astrophysics Data System (ADS)

    1981-07-01

    The purpose of this reseach was to design, build and test a hydraulic wind energy system. This design used a three bladed turbine, which drove a hydraulic pump. The energy is transmitted from the pump through a long hose and into a hydraulic motor, where the energy is used. This wind system was built and tested during the winter of 1980-1981. The power train included a five meter, three bladed wind turbine, a 9.8:1 ratio gearbox, a 1.44 cubic inch displacement pump with a small supercharge gear pump attached. The hydraulic fluid was pumped through a 70 ft, 3/4 in. I-D-high pressure flexhose, then through a volume control valve and into a 1.44 cubic inch displacement motor. The fluid was returned through a 7 ft, 1 in. I-D-flexhose.

  11. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema

    None

    2016-07-12

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  12. Wind Energy - How Reliable.

    DTIC Science & Technology

    1980-01-01

    respective demand rate. i.e. as a fraction of the accumulated energ \\ coitsiillptoll O\\C 1 I00 days. When three-hour sampling of wind speed data is used...truilr ki.e or0 thle it)-tha\\ storage capaCI t\\ t eshalistiuti tdid riot ocCHIr. t’ \\ Ill rrI\\ I.0orr’.rdcr .r 1Ii_ ru Iurirhert ot \\%intl energ ,\\ s"’.tenr...srrrd ’.peed rirlr’.irrd at 9 a.mi. is \\ers I, si~ii 10t tire M La riuiprobbihilit\\ s istrihut on rli sNird ’pcdk rve1ran rd mr tall houls ’ of tire kl

  13. NASA presentation. [wind energy conversion systems planning

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.

    1973-01-01

    The development of a wind energy system is outlined that supplies reliable energy at a cost competitive with other energy systems. A government directed industry program with strong university support is recommended that includes meteorological studies to estimate wind energy potentials and determines favorable regions and sites for wind power installations. Key phases of the overall program are wind energy conversion systems, meteorological wind studies, energy storage systems, and environmental impact studies. Performance testing with a prototype wind energy conversion and storage system is projected for Fiscal 1977.

  14. Rosebud Sioux Wind Energy Project

    SciTech Connect

    Tony Rogers

    2008-04-30

    In 1998, through the vision of the late Alex “Little Soldier” Lunderman (1928-2000) and through the efforts of the Rosebud Sioux Tribal Utilities Commission, and with assistance from Intertribal Council on Utility Policy (COUP), and Distributed Generation, Inc (DISGEN). The Rosebud Sioux Tribe applied and was awarded in 1999 a DOE Cooperative Grant to build a commercial 750 Kw wind turbine, along with a 50/50 funding grant from the Department of Energy and a low interest loan from the Rural Utilities Service, United States Department of Agriculture, the Rosebud Sioux Tribe commissioned a single 750 kilowatt NEG Micon wind turbine in March of 2003 near the Rosebud Casino. The Rosebud Sioux Wind Energy Project (Little Soldier “Akicita Cikala”) Turbine stands as a testament to the vision of a man and the Sicangu Oyate.

  15. Wind Energy Resource Atlas of the Philippines

    SciTech Connect

    Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; McCarthy, E.

    2001-03-06

    This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

  16. Manzanita Wind Energy Feasibility Study

    SciTech Connect

    Trisha Frank

    2004-09-30

    The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit. Manzanita has explored the wind resource potential on tribal land and developed a business plan by means of this wind energy feasibility project, which enables Manzanita to make informed decisions when considering the benefits and risks of encouraging large-scale wind power development on their lands. Technical consultant to the project has been SeaWest Consulting, LLC, an established wind power consulting company. The technical scope of the project covered the full range of feasibility assessment activities from site selection through completion of a business plan for implementation. The primary objectives of this feasibility study were to: (1) document the quality and suitability of the Manzanita Reservation as a site for installation and long-term operation of a commercially viable utility-scale wind power project; and, (2) develop a comprehensive and financeable business plan.

  17. Wind Energy Resource Assessment for Airborne Wind Turbines

    NASA Astrophysics Data System (ADS)

    Woodrow, A.

    2015-12-01

    Google, through its Makani project, is developing a new type of wind energy conversion device called an energy kite. Using a tethered airfoil flying in vertical loops, energy kites access stronger, more consistent wind resources at altitudes between 100-500m AGL. By eliminating mass and cost of the tower, nacelle, and gearbox of a conventional wind turbine, and by increasing the capacity factor of energy generation, energy kites promise to significantly reduce the levelized cost of wind energy. The focus of this presentation will be on the approach Makani has taken to characterize the wind resource at 100-500m, where far less study has taken place compared to the atmosphere accessed by conventional wind turbines.

  18. Status of wind-energy conversion

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Savino, J. M.

    1973-01-01

    The utilization of wind energy is technically feasible as evidenced by the many past demonstrations of wind generators. The cost of energy from the wind has been high compared to fossil fuel systems; a sustained development effort is needed to obtain economical systems. The variability of the wind makes it an unreliable source on a short term basis. However, the effects of this variability can be reduced by storage systems or connecting wind generators to: (1) fossil fuel systems; (2) hydroelectric systems; or (3) dispersing them throughout a large grid network. Wind energy appears to have the potential to meet a significant amount of our energy needs.

  19. Wind energy systems information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

  20. Sources of Information on Wind Energy (Brochure)

    SciTech Connect

    Not Available

    2001-12-01

    As wind technology continues to mature and the wind industry becomes an increasingly respected member of the energy producing community, a growing number of people require more information about wind energy. Whether you are a business manager, utility engineer, scientific researcher, or an interested energy user, this brochure provides helpful information sources.

  1. Wind Energy Education and Outreach Project

    SciTech Connect

    Loomis, David G.

    2013-01-09

    The purpose of Illinois State University's wind project was to further the education and outreach of the university concerning wind energy. This project had three major components: to initiate and coordinate a Wind Working Group for the State of Illinois, to launch a Renewable Energy undergraduate program, and to develop the Center for Renewable Energy that will sustain the Illinois Wind Working Group and the undergraduate program.

  2. Status of wind-energy conversion

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Savino, J. M.

    1973-01-01

    The utilization of wind energy is technically feasible as evidenced by the many past demonstrations of wind generators. The cost of energy from the wind has been high compared to fossil fuel systems. A sustained development effort is needed to obtain economical systems. The variability of the wind makes it an unreliable source on a short-term basis. However, the effects of this variability can be reduced by storage systems or connecting wind generators to fossil fuel systems, hydroelectric systems, or dispersing them throughout a large grid network. The NSF and NASA-Lewis Research Center have sponsored programs for the utilization of wind energy.

  3. Status of wind-energy conversion

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Savino, J. M.

    1973-01-01

    The utilization of wind energy is technically feasible as evidenced by the many past demonstrations of wind generators. The cost of energy from the wind has been high compared to fossil fuel systems. A sustained development effort is needed to obtain economical systems. The variability of the wind makes it an unreliable source on a short-term basis. However, the effects of this variability can be reduced by storage systems or connecting wind generators to fossil fuel systems, hydroelectric systems, or dispersing them throughout a large grid network. The NSF and NASA-Lewis Research Center have sponsored programs for the utilization of wind energy.

  4. Wind energy in China: Estimating the potential

    NASA Astrophysics Data System (ADS)

    Yuan, Jiahai

    2016-07-01

    Persistent and significant curtailment has cast concern over the prospects of wind power in China. A comprehensive assessment of the production of energy from wind has identified grid-integrated wind generation potential at 11.9-14% of China's projected energy demand by 2030.

  5. Energy by the Numbers: Collegiate Wind Competition

    SciTech Connect

    2016-05-19

    The U.S. Department of Energy Collegiate Wind Competition prepares students from multiple disciplines to enter tomorrow’s wind energy workforce. As part of the competition, undergraduate students build and test a wind turbine, establish a deployment strategy, and develop and deliver a business plan.

  6. Regional Wind Energy Assessment Program, appendix

    NASA Astrophysics Data System (ADS)

    Wade, J. E.; Baker, R. W.; Redmond, K.; Wittrup, R. J.; Buckley, J.

    1986-07-01

    This report summarizes the wind statistics gathered at 65 sites in the BPA wind network over the period June 1984 through May 1985. The analysis of these data completes the BPA Regional Wind Energy Assessment Program (WIND REAP) that has been ongoing since 1981. A climatological analysis of 12 selected sites distributed throughout the entire BPA service area indicated that fall winds were stronger than normal, spring winds were about normal and winter winds were significantly weaker than normal. There was considerable variation throughout the region in the wind's difference from normal during the summer months. Temperature, pressure and precipitation data were also analyzed for several National Weather Service sites. The trends in precipitation and to a lesser extent temperature followed those of wind speeds. In the fall, stronger than normal winds were related to greater than normal precipitation. During the winter, colder and drier conditions were associated with below normal winds.

  7. Wind Energy Workforce Development: A Roadmap to a Wind Energy Educational Infrastructure (Presentation)

    SciTech Connect

    Baring-Gould, I.

    2011-05-01

    Wind Powering America national technical director Ian Baring-Gould made this presentation about workforce development in the wind energy industry to an audience at the American Wind Energy Association's annual WINDPOWER conference in Anaheim. The presentation outlines job projections from the 20% Wind Energy by 2030 report and steps to take at all levels of educational institutions to meet those projections.

  8. Wind Energy Resource Atlas of Mongolia

    SciTech Connect

    Elliott, D; Schwartz, M; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2001-08-27

    The United States Department of Energy (DOE) and the United States Agency for International Development (USAID) sponsored a project to help accelerate the large-scale use of wind energy technologies in Mongolia through the development of a wind energy resource atlas of Mongolia. DOE's National Renewable Energy Laboratory (NREL) administered and conducted this project in collaboration with USAID and Mongolia. The Mongolian organizations participating in this project were the Scientific, Production, and Trade Corporation for Renewable Energy (REC) and the Institute of Meteorology and Hydrology (IMH). The primary goals of the project were to develop detailed wind resource maps for all regions of Mongolia for a comprehensive wind resource atlas, and to establish a wind-monitoring program to identify prospective sites for wind energy projects and help validate some of the wind resource estimates.

  9. Wind Energy: A Maturing Power Supply Possibility.

    ERIC Educational Resources Information Center

    Petersen, Erik Lundtang; And Others

    1987-01-01

    Suggests that wind energy for electrification will prove to be an appropriate technology with very positive socioeconomic benefits, especially in developing countries. Provides examples of projects conducted by a Danish wind research laboratory. (TW)

  10. Wind Energy: A Maturing Power Supply Possibility.

    ERIC Educational Resources Information Center

    Petersen, Erik Lundtang; And Others

    1987-01-01

    Suggests that wind energy for electrification will prove to be an appropriate technology with very positive socioeconomic benefits, especially in developing countries. Provides examples of projects conducted by a Danish wind research laboratory. (TW)

  11. 2010 Cost of Wind Energy Review

    SciTech Connect

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  12. 2010 Cost of Wind Energy Review

    SciTech Connect

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions, and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  13. 76 FR 22719 - Cape Wind Energy Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... Bureau of Ocean Energy Management, Regulation and Enforcement Cape Wind Energy Project AGENCY: Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE), Interior. ACTION: Notice of the... Construction and Operations Plan (COP) for the Cape Wind Energy Project located on the Outer Continental...

  14. Lessons learned from Ontario wind energy disputes

    NASA Astrophysics Data System (ADS)

    Fast, Stewart; Mabee, Warren; Baxter, Jamie; Christidis, Tanya; Driver, Liz; Hill, Stephen; McMurtry, J. J.; Tomkow, Melody

    2016-02-01

    Issues concerning the social acceptance of wind energy are major challenges for policy-makers, communities and wind developers. They also impact the legitimacy of societal decisions to pursue wind energy. Here we set out to identify and assess the factors that lead to wind energy disputes in Ontario, Canada, a region of the world that has experienced a rapid increase in the development of wind energy. Based on our expertise as a group comprising social scientists, a community representative and a wind industry advocate engaged in the Ontario wind energy situation, we explore and suggest recommendations based on four key factors: socially mediated health concerns, the distribution of financial benefits, lack of meaningful engagement and failure to treat landscape concerns seriously. Ontario's recent change from a feed-in-tariff-based renewable electricity procurement process to a competitive bid process, albeit with more attention to community engagement, will only partially address these concerns.

  15. Cost effective seasonal storage of wind energy

    SciTech Connect

    Cavallo, A.J.; Keck, M.B.

    1995-09-01

    Seasonal variation of the wind electric potential on the Great Plains could be a significant obstacle to the large scale utilization of wind generated electricity. Wind power densities usually are greatest during the spring, and decrease by at least 30 percent relative to the annual average in many areas during the summer months, when demand is highest. This problem can be overcome by using an oversized wind farm and a compressed air energy storage system (a baseload wind energy system). A minimum volume storage reservoir is needed to transform intermittent wind energy to baseload power, while a larger reservoir can be used to store excess power produced during the spring for either peak power or baseload output during the summer. The yearly average cost of energy increases by about 3 percent for the largest storage reservoir, indicating the seasonal storage of wind energy is economically as well as technically feasible.

  16. Locating solar and wind energy sources

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Renewable energy sources such as solar and wind power hold out the promise of providing energy that does not produce greenhouse gases. One obstacle to realizing production of energy from the Sun and from wind, however, has been determining where these energy sources can best be tapped.A new project called the Solar and Wind Energy Survey Assessment (SWERA) plans to map the solar and wind resources of 13 developing countries, and link these findings with a Geographical Information System so that potential developers can find sites online.

  17. Mid-Atlantic Regional Wind Energy Institute

    SciTech Connect

    Courtney Lane

    2011-12-20

    As the Department of Energy stated in its 20% Wind Energy by 2030 report, there will need to be enhanced outreach efforts on a national, state, regional, and local level to communicate wind development opportunities, benefits and challenges to a diverse set of stakeholders. To help address this need, PennFuture was awarded funding to create the Mid-Atlantic Regional Wind Energy Institute to provide general education and outreach on wind energy development across Maryland, Virginia, Delaware, Pennsylvania and West Virginia. Over the course of the two-year grant period, PennFuture used its expertise on wind energy policy and development in Pennsylvania and expanded it to other states in the Mid-Atlantic region. PennFuture accomplished this through reaching out and establishing connections with policy makers, local environmental groups, health and economic development organizations, and educational institutions and wind energy developers throughout the Mid-Atlantic region. PennFuture conducted two regional wind educational forums that brought together wind industry representatives and public interest organizations from across the region to discuss and address wind development in the Mid-Atlantic region. PennFuture developed the agenda and speakers in collaboration with experts on the ground in each state to help determine the critical issue to wind energy in each location. The sessions focused on topics ranging from the basics of wind development; model ordinance and tax issues; anti-wind arguments and counter points; wildlife issues and coalition building. In addition to in-person events, PennFuture held three webinars on (1) Generating Jobs with Wind Energy; (2) Reviving American Manufacturing with Wind Power; and (3) Wind and Transmission. PennFuture also created a web page for the institute (http://www.midatlanticwind.org) that contains an online database of fact sheets, research reports, sample advocacy letters, top anti-wind claims and information on how to

  18. The utilization of wind-energy resources

    NASA Astrophysics Data System (ADS)

    Sidorov, V. I.; Sidorov, V. V.; Kuznetsov, V. M.

    1980-06-01

    A review of developments in wind-energy in the Soviet Union, U.S., and West Europe is presented. The resources of the USSR are evaluated in three zones with the highest wind-energy potential, and designs of a 5 MW wind generator are analyzed along with a multirotor unit of 40 MW which will serve as the basis of an experimental 1000 MW system. The latter will be used as the first stage of utilization of wind-energy resources for electrical power generation. The wind-energy programs in the U.S., West Germany, Denmark, and Sweden are described which plan to produce 2 to 10% of electrical energy from wind energy by the year 2000.

  19. Large wind energy converter: Growian 3 MW

    NASA Technical Reports Server (NTRS)

    Koerber, F.; Thiele, H. A.

    1979-01-01

    The main features of the Growian wind energy converter are presented. Energy yield, environmental impact, and construction of the energy converter are discussed. Reliability of the windpowered system is assessed.

  20. Wind Energy Developments: Incentives In Selected Countries

    EIA Publications

    1999-01-01

    This paper discusses developments in wind energy for the countries with significant wind capacity. After a brief overview of world capacity, it examines development trends, beginning with the United States - the number one country in wind electric generation capacity until 1997.

  1. ASME Code Efforts Supporting HTGRs

    SciTech Connect

    D.K. Morton

    2011-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  2. ASME Code Efforts Supporting HTGRs

    SciTech Connect

    D.K. Morton

    2010-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  3. ASME Code Efforts Supporting HTGRs

    SciTech Connect

    D.K. Morton

    2012-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  4. Establishing a Comprehensive Wind Energy Program

    SciTech Connect

    Fleeter, Sanford

    2012-09-30

    This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

  5. Europe takes wind energy lead

    SciTech Connect

    Gipe, P.

    1997-06-01

    California, once the undisputed leader in windpower capacity, has finally slipped from its top spot. America`s longtime lead in wind energy development is expected to fall to Europe by mid-1997. Germany`s installed windpower capacity has now surpassed California`s. According to data compiled by the Deutches Windenergie Institut in Wilhelmshaven, Germany, total installed wind-generating capacity reached 1,546 MW in Germany at the end of 1996. Despite the slowdown in German development in 1996, an astonishing 428 MW were installed. For comparison, 400 MW were installed during peak California windpower development in 1985. German companies installed nearly 500 MW of windpower capacity in 1995. Analysts estimate there are 1,497 MW operating in California, nearly 50 MW less than what is now installed in Germany. The German market alone represents $500,000 in turbine sales. Revenues from electricity sales approached $250 million last year. Installed windpower capacity in Germany at the start of 1997 was only 50 MW shy of total installed capacity in the entire United States, a nation with 22 times the land area and four times the population as Germany. At the present growth rate, Germany was expected to surpass the United States during the first quarter of 1997. By the end of the year, installed capacity in Germany will approach 2,000 MW, exceeding North America`s 1,614 MW.

  6. Downscaling of Airborne Wind Energy Systems

    NASA Astrophysics Data System (ADS)

    Fechner, Uwe; Schmehl, Roland

    2016-09-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that cannot be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor and much lower total mass. This paper investigates the scaling effects of airborne wind energy systems. The energy yield of airborne wind energy systems, that work in pumping mode of operation is at least ten times higher than the energy yield of conventional solar systems. For airborne wind energy systems the yield is defined per square meter wing area. In this paper the dependency of the energy yield on the nominal generator power for systems in the range of 1 kW to 1 MW is investigated. For the onshore location Cabauw, The Netherlands, it is shown, that a generator of just 1.4 kW nominal power and a total system mass of less than 30 kg has the theoretical potential to harvest energy at only twice the price per kWh of large scale airborne wind energy systems. This would make airborne wind energy systems a very attractive choice for small scale remote and mobile applications as soon as the remaining challenges for commercialization are solved.

  7. The Wind Energy Potential of Iceland

    NASA Astrophysics Data System (ADS)

    Nawri, Nikolai; Nína Petersen, Guðrún; Bjornsson, Halldór; Hahmann, Andrea N.; Jónasson, Kristján; Bay Hasager, Charlotte; Clausen, Niels-Erik

    2014-05-01

    While Iceland has an abundant wind energy resource, its use for electrical power production has so far been limited. Electricity in Iceland is generated primarily from hydro- and geothermal sources, and adding wind energy has so far not been considered practical or even necessary. However, wind energy is becoming a more viable option, as opportunities for new hydro- or geothermal power installations become limited. In order to obtain an estimate of the wind energy potential of Iceland, a wind atlas has been developed as part of the joint Nordic project 'Improved Forecast of Wind, Waves and Icing' (IceWind). Downscaling simulations performed with the Weather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3.6, with the lowest values indicative of near-exponential distributions at sheltered locations, and the highest values indicative of normal distributions at exposed locations in winter. Compared with summer, average power density in winter is increased throughout Iceland by a factor of 2.0 - 5.5. In any season, there are also considerable spatial differences in average wind power density. Relative to the average value within 10 km of the coast, power density across Iceland varies between 50 - 250%, excluding glaciers, or between 300 - 1500 W m-2 at 50 m above ground level in winter. At intermediate elevations of 500 - 1000 m above mean sea level, power density is independent of the distance to the coast. In addition to seasonal and spatial variability, differences in average wind speed and power density also exist for different wind directions. Along the coast in winter, power density of onshore winds is higher by 100 - 700 W m-2 than that of offshore winds. The regions with the highest average wind speeds are impractical for wind farms, due to the distances from road

  8. Improved diagnostic model for estimating wind energy

    SciTech Connect

    Endlich, R.M.; Lee, J.D.

    1983-03-01

    Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

  9. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Greg; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  10. Wind Energy Education and Training Programs (Postcard)

    SciTech Connect

    Not Available

    2012-07-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce to support it. The Wind Powering America website features a map of wind energy education and training program locations at community colleges, universities, and other institutions in the United States. The map includes links to contacts and program details. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for wind energy education and training programs episodes.

  11. IEA Wind Energy Annual Report 2000

    SciTech Connect

    Not Available

    2001-05-01

    The twenty-third IEA Wind Energy Annual Report reviews the progress during 2000 of the activities in the Implementing Agreement for Co-operation in the Research and Development on Wind Turbine Systems under the auspices of the International Energy Agency (IEA). The agreement and its program, which is known as IEA R&D Wind, is a collaborative venture among 19 contracting parties from 17 IEA member countries and the European Commission.

  12. Improving Regional Air Quality with Wind Energy

    SciTech Connect

    Not Available

    2005-05-01

    This model documentation is designed to assist State and local governments in pursuing wind energy purchases as a control measure under regional air quality plans. It is intended to support efforts to draft State Implementation Plans (SIPs), including wind energy purchases, to ensure compliance with the standard for ground-level ozone established under the Clean Air Act.

  13. Magnetic energy flow in the solar wind.

    NASA Technical Reports Server (NTRS)

    Modisette, J. L.

    1972-01-01

    Discussion of the effect of rotation (tangential flow) of the solar wind on the conclusions of Whang (1971) suggesting an increase in the solar wind velocity due to the conversion of magnetic energy to kinetic energy. It is shown that the effect of the rotation of the sun on the magnetic energy flow results in most of the magnetic energy being transported by magnetic shear stress near the sun.

  14. The Wind Energy Potential of Kurdistan, Iran.

    PubMed

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000-2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997-2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms.

  15. The Wind Energy Potential of Kurdistan, Iran

    PubMed Central

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000–2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997–2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042

  16. Storing wind energy into electrical accumulators

    NASA Astrophysics Data System (ADS)

    Dordescu, M.; Petrescu, D. I.; Erdodi, G. M.

    2016-12-01

    Shall be determined, in this work, the energy stored in the accumulators electrical, AE, at a wind system operating at wind speeds time-varying. mechanical energy caught in the turbine from the wind, (TV), is transformed into electrical energy by the generator synchronous with the permanent magnets, GSMP. The Generator synchronous with the permanent magnets saws, via a rectifier, energy in a battery AE, finished in a choice of two: variant 1-unregulated rectifier and variant of the 2-controlled rectifier and task adapted. Through simulation determine the differences between the two versions

  17. Great Plains Wind Energy Transmission Development Project

    SciTech Connect

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the

  18. Avian study protocols and wind energy development

    SciTech Connect

    Fisher, K.

    1995-12-01

    This paper identifies the need to develop and use standardized avian study protocols to determine avian impacts at new and existing wind energy facilities. This will allow data collected from various sites to be correlated for better understanding wind energy related avian impacts. Factors contributing to an increased interest in wind energy facilities by electric utilities include: (1) Increased demand for electricity;(2) increased constraints on traditional electrical generating facilities (i.e. hydroelectric and nuclear power plants);(3) improved wind turbine technology. During the 1980`s generous tax credits spawned the development of wind energy facilities, known as wind farms, in California. Commercial scale wind farm proposals are being actively considered in states across the country - Washington, Oregon, Wyoming, Wisconsin, Texas, and Vermont to name a few. From the wind farms in California the unexpected issue of avian impacts, especially to birds-of-prey, or raptor, surfaced and continues to plague the wind industry. However, most of the avian studies did not followed a standardized protocol or methodology and, therefore, data is unavailable to analyze and compare impacts at different sites or with differing technologies and configurations. Effective mitigation can not be designed and applied until these differences are understood. The Bonneville Power Administration is using comparable avian study protocols to collect data for two environmental impact statements being prepared for two separate wind farm proposals. Similar protocol will be required for any other avian impact analysis performed by the agency on proposed or existing wind farms. The knowledge gained from these studies should contribute to a better understanding of avian interactions with wind energy facilities and the identification of effective mitigation measures.

  19. Possibilities and limitations of wind energy utilisation

    NASA Astrophysics Data System (ADS)

    Feustel, J.

    1981-10-01

    The existing wind resource, the most favorable locations, applications, and designs of windpowered generators are reviewed, along with descriptions of current and historic wind turbines and lines of research. Coastal regions, plains, hill summits, and mountains with funneling regions are noted to have the highest annual wind averages, with energy densities exceeding the annual solar insolation at average wind speeds of 5-7.9 m/sec. Applications for utility-grade power production, for irrigation, for mechanical heat production, and for pumped storage in water towers or reservoirs are mentioned, as well as electrical power production in remote areas and for hydrogen production by electrolysis. Power coefficients are discussed, with attention given to the German Growian 3 MW machine. It is shown that the least economically sound wind turbines, the machines with outputs below 100 kW, can vie with diesel plant economics in a good wind regime if the wind turbine operates for 15 yr.

  20. Offshore Wind Energy Systems Engineering Curriculum Development

    SciTech Connect

    McGowan, Jon G.; Manwell, James F.; Lackner, Matthew A.

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This course was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.

  1. Wind energy can power a strong recovery.

    PubMed

    Bode, Denise

    2009-01-01

    The U.S. wind industry is a dynamic one that pumps billions of dollars into our economy each year. Wind has gone mainstream and today is the most affordable near-term carbon-free energy source. The U.S. industry experienced a nearly 70 percent increase in total jobs last year-well-paying, family-supporting jobs. But new wind farms now find it hard to secure financing. Thus, the economic stimulus package moving through Congress is critical.

  2. Solar energy system with wind vane

    DOEpatents

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  3. VOITH: Wind energy converter WEC 520

    NASA Astrophysics Data System (ADS)

    Spittler, W.

    1984-02-01

    The VOITH WEC 520 wind energy converter conceived as a self-supporting electric generator for mains and island operation was tested. A microcomputer was installed for process control. The rotor blades of the two-blade rotor is equipped with a separate measuring system to determine their oscillation behavior. Wind velocity, wind direction, rotor blade angle, rotor speed, rotor power, control oil pump pressure, and control pressure for rotor blade change are permanently measured.

  4. Saturation wind power potential and its implications for wind energy

    PubMed Central

    Jacobson, Mark Z.; Archer, Cristina L.

    2012-01-01

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world’s all-purpose power from wind in a 2030 clean-energy economy. PMID:23019353

  5. Saturation wind power potential and its implications for wind energy.

    PubMed

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy.

  6. 2011 Cost of Wind Energy Review

    SciTech Connect

    Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

    2013-03-01

    This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

  7. Modeling Innovations Advance Wind Energy Industry

    NASA Technical Reports Server (NTRS)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  8. Wind Energy Resource Atlas of Sri Lanka and the Maldives

    SciTech Connect

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The Wind Energy Resource Atlas of Sri Lanka and the Maldives, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group identifies the wind characteristics and distribution of the wind resource in Sri Lanka and the Maldives. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  9. Wind Energy Guide for County Commissioners

    SciTech Connect

    Costanti, M.

    2006-10-01

    One of the key stakeholders associated with economic development are local government officials, who are often required to evaluate and vote on commercial wind energy project permits, as well as to determine and articulate what wind energy benefits accrue to their counties. Often these local officials lack experience with large-scale wind energy and need to make important decisions concerning what may be a complicated and controversial issue. These decisions can be confounded with diverse perspectives from various stakeholders. This project is designed to provide county commissioners, planners, and other local county government officials with a practical overview of information required to successfully implement commercial wind energy projects in their county. The guidebook provides readers with information on the following 13 topics: Brief Wind Energy Overview; Environmental Benefits; Wind Energy Myths and Facts; Economic Development Benefits; Wind Economics; The Development Process; Public Outreach; Siting Issues; Property Tax Incentives; Power System Impacts; Permitting, Zoning, and Siting Processes; Case Studies; and Further Information. For each of the above topics, the guidebook provides an introduction that identifies the topic, why local government should care, a topic snapshot, how the topic will arise, and a list of resources that define and assess the topic.

  10. Wind energy curriculum development at GWU

    SciTech Connect

    Hsu, Stephen M

    2013-06-08

    A wind energy curriculum has been developed at the George Washington University, School of Engineering and Applied Science. Surveys of student interest and potential employers expectations were conducted. Wind industry desires a combination of mechanical engineering training with electrical engineering training. The curriculum topics and syllabus were tested in several graduate/undergraduate elective courses. The developed curriculum was then submitted for consideration.

  11. Wind-driven pyroelectric energy harvesting device

    NASA Astrophysics Data System (ADS)

    Xie, Mengying; Zabek, Daniel; Bowen, Chris; Abdelmageed, Mostafa; Arafa, Mustafa

    2016-12-01

    Pyroelectric materials have recently received attention for harvesting waste heat owing to their potential to convert temperature fluctuations into useful electrical energy. One of the main challenges in designing pyroelectric energy harvesters is to provide a means to induce a temporal heat variation in a pyroelectric material autonomously from a steady heat source. To address this issue, we propose a new form of wind-driven pyroelectric energy harvester, in which a propeller is set in rotational motion by an incoming wind stream. The speed of the propeller’s shaft is reduced by a gearbox to drive a slider-crank mechanism, in which a pyroelectric material is placed on the slider. Thermal cycling is obtained as the reciprocating slider moves the pyroelectric material across alternative hot and cold zones created by a stationary heat lamp and ambient temperature, respectively. The open-circuit voltage and closed-circuit current are investigated in the time domain at various wind speeds. The device was experimentally tested under wind speeds ranging from 1.1 to 1.6 m s-1 and charged an external 100 nF capacitor through a signal conditioning circuit to demonstrate its effectiveness for energy harvesting. Unlike conventional wind turbines, the energy harvested by the pyroelectric material is decoupled from the wind flow and no mechanical power is drawn from the transmission; hence the system can operate at low wind speeds (<2 m s-1).

  12. Wind Energy Guide for County Commissioners

    EPA Pesticide Factsheets

    This report provides county commissioners, planners, and other local county government officials with a practical overview of information required to successfully implement commercial wind energy projects in their county.

  13. Overview of Existing Wind Energy Ordinances

    SciTech Connect

    Oteri, F.

    2008-12-01

    Due to increased energy demand in the United States, rural communities with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to ensure that ordinances will be established to aid the development of safe facilities that will be embraced by the community. The purpose of this report is to educate and engage state and local governments, as well as policymakers, about existing large wind energy ordinances. These groups will have a collection of examples to utilize when they attempt to draft a new large wind energy ordinance in a town or county without existing ordinances.

  14. Wind energy conversion over Ligurian Apennines

    NASA Astrophysics Data System (ADS)

    Flocchini, G.; Pasquale, V.; Sciarrone, V.

    1983-06-01

    A detailed analysis of wind energy availability at Mount Capellino (Genoa, Italy), based on wind data for a twenty year period, shows that wind energy is a promising renewable natural energy source in this part of the Ligurian Apennines. The instantaneous power output of a real aerogenerator has been integrated over the time to determine the energy output per unit area swept by the rotor over a year and a month respectively. Using a realistic capacity of 0.4 kW/m2 for the ideal machine, the annual power density output is 645 kWh/m2 at 30 m above ground level. It is estimated that five medium size wind-powered generators of 20 m in rotor diameter can produce approximately 1 GWh per year.

  15. Aleutian Pribilof Islands Wind Energy Feasibility Study

    SciTech Connect

    Bruce A. Wright

    2012-03-27

    Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski and

  16. Wind Energy Program overview, Fiscal year 1993

    SciTech Connect

    Not Available

    1994-05-01

    Wind energy research has two goals: (1) to gain a fundamental understanding of the interactions between wind and wind turbines; and (2) to develop the basic design tools required to develop advanced technologies. A primary objective of applied research activities is to develop sophisticated computer codes and integrate them into the design, testing, and evaluation of advanced components and systems, Computer models have become a necessary and integral part of developing new high-tech wind energy systems. A computer-based design strategy allows designers to model different configurations and explore new designs before building expensive hardware. DOE works closely with utilities and the wind industry in setting its applied research agenda. As soon as research findings become available, the national laboratories transfer the information to industry through workshops, conferences, and publications.

  17. Wind Energy Program overview, fiscal year 1993

    NASA Astrophysics Data System (ADS)

    1994-05-01

    Wind energy research has two goals: (1) to gain a fundamental understanding of the interactions between wind and wind turbines; and (2) to develop the basic design tools required to develop advanced technologies. A primary objective of applied research activities is to develop sophisticated computer codes and integrate them into the design, testing, and evaluation of advanced components and systems. Computer models have become a necessary and integral part of developing new high-tech wind energy systems. A computer-based design strategy allows designers to model different configurations and explore new designs before building expensive hardware. DOE works closely with utilities and the wind industry in setting its applied research agenda. As soon as research findings become available, the national laboratories transfer the information to industry through workshops, conferences, and publications.

  18. Economics of wind energy for utilities

    NASA Technical Reports Server (NTRS)

    Mccabe, T. F.; Goldenblatt, M. K.

    1982-01-01

    Utility acceptance of this technology will be contingent upon the establishment of both its technical and economic feasibility. This paper presents preliminary results from a study currently underway to establish the economic value of central station wind energy to certain utility systems. The results for the various utilities are compared specifically in terms of three parameters which have a major influence on the economic value: (1) wind resource, (2) mix of conventional generation sources, and (3) specific utility financial parameters including projected fuel costs. The wind energy is derived from modeling either MOD-2 or MOD-0A wind turbines in wind resources determined by a year of data obtained from the DOE supported meteorological towers with a two-minute sampling frequency. In this paper, preliminary results for six of the utilities studied are presented and compared.

  19. Heating with wind energy, part B

    NASA Astrophysics Data System (ADS)

    Kaier, U.; Czink, F.

    1983-06-01

    Wind energy resources for heating are surveyed. Ten locations in the countryside and three locations along the coast of West Germany were investigated. Wind velocities between 3 and 15 m/sec were found to be suitable. An international marketing analysis on wind energy convertering systems up to 20 kW is summarized. Over 200 manufacturers in 22 countries were contacted and 52 delivery offers were obtained, 4 of which were chosen according to the following criteria: power output on the order of 10 kW for 10 m/sec wind velocity, type description, dimensions, speed rise, security devices and price. Insufficient matching between wind converters and generators is pointed out, but it is concluded that the four systems chosen represent a good starting point solution.

  20. Wind energy conversion in the MW range

    NASA Astrophysics Data System (ADS)

    Lois, L.

    The purpose of this paper is threefold: (1) to show that certain wind patterns above the continental United States are particularly suited for wind energy conversion utilizing wind powered stations in the MWe range, (2) to describe a system specifically designed for such stations, and (3) to present calculations which show that such a system is within the range of existing technology. The proposed system is based on the existence of a wind pattern called the low level jet in which (a) the average wind speed is 2.0 to 3.0 times higher than at the 300 ft level, and (b) the diurnal and seasonal variations are smaller than at 300 ft. The higher specific power and utilization factor which result from the characteristics of the low level jet contribute to higher power level per installation and power cost per unit energy produced.

  1. Quantifying uncertainties in wind energy assessment

    NASA Astrophysics Data System (ADS)

    Patlakas, Platon; Galanis, George; Kallos, George

    2015-04-01

    The constant rise of wind energy production and the subsequent penetration in global energy markets during the last decades resulted in new sites selection with various types of problems. Such problems arise due to the variability and the uncertainty of wind speed. The study of the wind speed distribution lower and upper tail may support the quantification of these uncertainties. Such approaches focused on extreme wind conditions or periods below the energy production threshold are necessary for a better management of operations. Towards this direction, different methodologies are presented for the credible evaluation of potential non-frequent/extreme values for these environmental conditions. The approaches used, take into consideration the structural design of the wind turbines according to their lifespan, the turbine failures, the time needed for repairing as well as the energy production distribution. In this work, a multi-parametric approach for studying extreme wind speed values will be discussed based on tools of Extreme Value Theory. In particular, the study is focused on extreme wind speed return periods and the persistence of no energy production based on a weather modeling system/hind cast/10-year dataset. More specifically, two methods (Annual Maxima and Peaks Over Threshold) were used for the estimation of extreme wind speeds and their recurrence intervals. Additionally, two different methodologies (intensity given duration and duration given intensity, both based on Annual Maxima method) were implied to calculate the extreme events duration, combined with their intensity as well as the event frequency. The obtained results prove that the proposed approaches converge, at least on the main findings, for each case. It is also remarkable that, despite the moderate wind speed climate of the area, several consequent days of no energy production are observed.

  2. Wind Energy Workforce Development: Engineering, Science, & Technology

    SciTech Connect

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  3. Dominican Republic Wind Energy Resource Atlas Development

    SciTech Connect

    Elliott, D.

    1999-09-09

    A wind resource analysis and mapping study was conducted for the Dominican Republic. The purpose of this study was to identify most favorable wind resource areas and quantify the value of that resource within those areas. This was a major study and the first of its kind undertaken for the Dominican Republic. The key to the successful completion of the study was an automated wind resource mapping program recently developed at the National Renewable Energy Laboratory (NREL), a US Department of Energy (DOE) national laboratory.

  4. 2014 Cost of Wind Energy Review

    SciTech Connect

    Mone, Christopher; Stehly, Tyler; Maples, Ben; Settle, Edward

    2015-10-01

    This report uses representative commercial projects to estimate the levelized cost of energy (LCOE) for both land-based and offshore wind plants in the United States for 2014. Scheduled to be published on an annual basis, the analysis relies on both market and modeled data to maintain an up-to-date understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed by the National Renewable Energy Laboratory (NREL) are used in this analysis to inform wind technology cost projections, goals, and improvement opportunities.

  5. Coastal zone wind energy. Part I. Synoptic and mesoscale controls and distributions of coastal wind energy

    SciTech Connect

    Garstang, M.; Nnaji, S.; Pielke, R.A.; Gusdorf, J.; Lindsey, C.; Snow, J.W.

    1980-03-01

    This report describes a method of determining coastal wind energy resources. Climatological data and a mesoscale numerical model are used to delineate the available wind energy along the Atlantic and Gulf coasts of the United States. It is found that the spatial distribution of this energy is dependent on the locations of the observing sites in relation to the major synoptic weather features as well as the particular orientation of the coastline with respect to the large-scale wind.

  6. Simple Activity Demonstrates Wind Energy Principles

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    Wind energy is an exciting and clean energy option often described as the fastest-growing energy system on the planet. With some simple materials, teachers can easily demonstrate its key principles in their classroom. (Contains 1 figure and 2 tables.)

  7. Inspiring Educators to Teach Wind Energy

    ERIC Educational Resources Information Center

    Perez, Gustavo

    2013-01-01

    The need to teach students about alternative energy will continue to gain importance given the increasing growth and demands of the renewable energy industry. This article describes an activity focused on wind energy that the author introduced at the Annual STEM Symposium sponsored by Texas's Region One Education Service Center that can be…

  8. Inspiring Educators to Teach Wind Energy

    ERIC Educational Resources Information Center

    Perez, Gustavo

    2013-01-01

    The need to teach students about alternative energy will continue to gain importance given the increasing growth and demands of the renewable energy industry. This article describes an activity focused on wind energy that the author introduced at the Annual STEM Symposium sponsored by Texas's Region One Education Service Center that can be…

  9. Simple Activity Demonstrates Wind Energy Principles

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    Wind energy is an exciting and clean energy option often described as the fastest-growing energy system on the planet. With some simple materials, teachers can easily demonstrate its key principles in their classroom. (Contains 1 figure and 2 tables.)

  10. Wind energy - A utility perspective

    NASA Astrophysics Data System (ADS)

    Fung, K. T.; Scheffler, R. L.; Stolpe, J.

    1981-03-01

    Broad consideration is given to the siting, demand, capital and operating cost and wind turbine design factors involved in a utility company's incorporation of wind powered electrical generation into existing grids. With the requirements of the Southern California Edison service region in mind, it is concluded that although the economic and legal climate for major investments in windpower are favorable, the continued development of large only wind turbine machines (on the scale of NASA's 2.5 MW Mod-2 design) is imperative in order to reduce manpower and maintenance costs. Stress is also put on the use of demonstration projects for both vertical and horizontal axis devices, in order to build up operational experience and confidence.

  11. A new wind energy conversion system

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.

    1975-01-01

    It is presupposed that vertical axis wind energy machines will be superior to horizontal axis machines on a power output/cost basis and the design of a new wind energy machine is presented. The design employs conical cones with sharp lips and smooth surfaces to promote maximum drag and minimize skin friction. The cones are mounted on a vertical axis in such a way as to assist torque development. Storing wind energy as compressed air is thought to be optimal and reasons are: (1) the efficiency of compression is fairly high compared to the conversion of mechanical energy to electrical energy in storage batteries; (2) the release of stored energy through an air motor has high efficiency; and (3) design, construction, and maintenance of an all-mechanical system is usually simpler than for a mechanical to electrical conversion system.

  12. Assessment of wind energy potential in Poland

    NASA Astrophysics Data System (ADS)

    Starosta, Katarzyna; Linkowska, Joanna; Mazur, Andrzej

    2014-05-01

    The aim of the presentation is to show the suitability of using numerical model wind speed forecasts for the wind power industry applications in Poland. In accordance with the guidelines of the European Union, the consumption of wind energy in Poland is rapidly increasing. According to the report of Energy Regulatory Office from 30 March 2013, the installed capacity of wind power in Poland was 2807MW from 765 wind power stations. Wind energy is strongly dependent on the meteorological conditions. Based on the climatological wind speed data, potential energy zones within the area of Poland have been developed (H. Lorenc). They are the first criterion for assessing the location of the wind farm. However, for exact monitoring of a given wind farm location the prognostic data from numerical model forecasts are necessary. For the practical interpretation and further post-processing, the verification of the model data is very important. Polish Institute Meteorology and Water Management - National Research Institute (IMWM-NRI) runs an operational model COSMO (Consortium for Small-scale Modelling, version 4.8) using two nested domains at horizontal resolutions of 7 km and 2.8 km. The model produces 36 hour and 78 hour forecasts from 00 UTC, for 2.8 km and 7 km domain resolutions respectively. Numerical forecasts were compared with the observation of 60 SYNOP and 3 TEMP stations in Poland, using VERSUS2 (Unified System Verification Survey 2) and R package. For every zone the set of statistical indices (ME, MAE, RMSE) was calculated. Forecast errors for aerological profiles are shown for Polish TEMP stations at Wrocław, Legionowo and Łeba. The current studies are connected with a topic of the COST ES1002 WIRE-Weather Intelligence for Renewable Energies.

  13. A Wind Forecasting System for Energy Application

    NASA Astrophysics Data System (ADS)

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2010-05-01

    Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated

  14. Feasibility of utilizing wind energy in Thailand

    SciTech Connect

    Jamkrajang, M.

    1984-01-01

    The purpose of this study was to ascertain the feasibility of utilizing wind energy to meet part of the energy demands related to pumping water and to generating electricity for the rural households in Thailand. The data for this study were divided into three different areas: (1) wind speed data, (2) the wind machine performance data, and (3) the rural energy demand data. The wind machine were divided into two categories of water-pumping windmills and electricity-generating wind machines. Three types of water pumping windmills and one type of electricity-generating wind machine were matched with the wind condition in Thailand. They were the multi-blade rotor, the sailwing rotor model (WE 002), the slow-speed sailwing rotor, and the Aerowatt model (1100 FP5G) respectively. It was concluded that, in Thailand: (1) the multiblade rotor and the sail-wing rotor (WE 002) windmill is suitable for pumping water for domestic use at 43 specified locations; (2) the slow-speed sailwing rotor windmill is suitable for pumping water for small irrigation at 32 specified locations; and (3) the Aerowatt model (1100 GP5G) is suitable for generating electricity for household use at 29 specified locations.

  15. In Brief: Impacts of wind energy assessed

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-05-01

    By 2020, greater use of wind energy could reduce carbon dioxide emissions by the U.S. energy sector by about 4.5%. However, greater effort is needed to address potentially negative impacts of this growing energy source, according to a new report from a committee of the U.S. National Research Council. Potential impacts of wind energy projects include deaths of birds and bats, reduced value of property located near a turbine, and habitat loss and fragmentation. However, because these are generally local projects, there is little information available to determine the cumulative effects of wind turbines over a whole region. The report makes several recommendations on how to improve regulation at the local, state, and federal levels. The report also sets out a guide for evaluating wind-energy projects, which includes questions about potential environmental, economic, cultural, and aesthetic impacts. The report, ``Environmental Impacts of Wind-Energy Projects,'' is available at http://books.nap.edu/catalog.php?record_id=11935

  16. Domestic Wind Energy Workforce; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Tegen, Suzanne

    2015-07-30

    A robust workforce is essential to growing domestic wind manufacturing capabilities. NREL researchers conducted research to better understand today's domestic wind workforce, projected needs for the future, and how existing and new education and training programs can meet future needs. This presentation provides an overview of this research and the accompanying industry survey, as well as the Energy Department's Career Maps, Jobs & Economic Development Impacts models, and the Wind for Schools project.

  17. ASME Material Challenges for Advanced Reactor Concepts

    SciTech Connect

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  18. Utility scale baseload wind energy plants

    SciTech Connect

    Cavallo, A.J.

    1997-09-01

    Wind generated electricity can be transformed from an intermittent to a baseload power supply cost-effectively by taking advantage of the fundamental properties of wind and by the efficient utilization of compressed air energy storage (CAES) systems. A utility scale wind-CAES-transmission system can have a 95% capacity factor at a cost of delivered electricity that is about 15% greater than a conventional wind energy system with a 34% capacity factor. This approach has several compelling advantages. It is based on existing technology and makes best use of costly transmission lines. It produces electricity that is the technical equivalent of that from fossil fuel or nuclear power stations. It minimizes greenhouse gas and other fossil fuel pollution, and is an industrial scale system. And in many cases, the increased value of the plant output will more than compensate for the added cost of the storage system.

  19. Advanced Offshore Wind Energy - Atlantic Consortium

    SciTech Connect

    Kempton, Willett

    2015-11-04

    This project developed relationships among the lead institution, U of Delaware, wind industry participants from 11 companies, and two other universities in the region. The participating regional universities were University of Maryland and Old Dominion University. Research was carried out in six major areas: Analysis and documentation of extreme oceanic wind events & their impact on design parameters, calibration of corrosivity estimates measured on a coastal turbine, measurment and modeling of tower structures, measurement and modeling of the tribology of major drive components, and gearbox conditioning monitoring using acoustic sensors. The project also had several educational goals, including establishing a course in wind energy and training graduate students. Going beyond these goals, three new courses were developed, a graduate certificate program in wind power was developed and approved, and an exchange program in wind energy was established with Danish Technical University. Related to the installation of a Gamesa G90 turbine on campus and a Gamesa-UD research program established in part due to this award, several additional research projects have been carried out based on mutual industry-university interests, and funded by turbine revenues. This award and the Gamesa partnership have jointly led to seven graduate students receiving full safety and climb training, to become “research climbers” as part of their wind power training, and contributing to on-turbine research. As a result of the educational program, already six graduate students have taken jobs in the US wind industry.

  20. Synchronous generator wind energy conversion control system

    SciTech Connect

    Medeiros, A.L.R.; Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J.

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  1. Predicting Near-surface Winds with WindNinja for Wind Energy Applications

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, N. S.; Forthofer, J.; Shannon, K.; Butler, B.

    2016-12-01

    WindNinja is a high-resolution diagnostic wind model widely used by operational wildland fire managers to predict how near-surface winds may influence fire behavior. Many of the features which have made WindNinja successful for wildland fire are also important for wind energy applications. Some of these features include flexible runtime options which allow the user to initialize the model with coarser scale weather model forecasts, sparse weather station observations, or a simple domain-average wind for what-if scenarios; built-in data fetchers for required model inputs, including gridded terrain and vegetation data and operational weather model forecasts; relatively fast runtimes on simple hardware; an extremely user-friendly interface; and a number of output format options, including KMZ files for viewing in Google Earth and GeoPDFs which can be viewed in a GIS. The recent addition of a conservation of mass and momentum solver based on OpenFOAM libraries further increases the utility of WindNinja to modelers in the wind energy sector interested not just in mean wind predictions, but also in turbulence metrics. Here we provide an evaluation of WindNinja forecasts based on (1) operational weather model forecasts and (2) weather station observations provided by the MesoWest API. We also compare the high-resolution WindNinja forecasts to the coarser operational weather model forecasts. For this work we will use the High Resolution Rapid Refresh (HRRR) model and the North American Mesoscale (NAM) model. Forecasts will be evaluated with data collected in the Birch Creek valley of eastern Idaho, USA between June-October 2013. Near-surface wind, turbulence data, and vertical wind and temperature profiles were collected at very high spatial resolution during this field campaign specifically for use in evaluating high-resolution wind models like WindNinja. This work demonstrates the ability of WindNinja to generate very high-resolution wind forecasts for wind energy

  2. 2013 Cost of Wind Energy Review

    SciTech Connect

    Mone, C.; Smith, A.; Maples, B.; Hand, M.

    2015-02-01

    This report uses representative project types to estimate the levelized cost of wind energy (LCOE) in the United States for 2013. Scheduled to be published on an annual basis, it relies on both market and modeled data to maintain a current understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed from this analysis are used to inform wind technology cost projections, goals, and improvement opportunities.

  3. Breezy Power: From Wind to Energy

    ERIC Educational Resources Information Center

    Claymier, Bob

    2009-01-01

    This lesson combines the science concepts of renewable energy and producing electricity with the technology concepts of design, constraints, and technology's impact on the environment. Over five class periods, sixth-grade students "work" for a fictitious power company as they research wind as an alternative energy source and design and test a…

  4. Energy Primer: Solar, Water, Wind, and Biofuels.

    ERIC Educational Resources Information Center

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  5. Breezy Power: From Wind to Energy

    ERIC Educational Resources Information Center

    Claymier, Bob

    2009-01-01

    This lesson combines the science concepts of renewable energy and producing electricity with the technology concepts of design, constraints, and technology's impact on the environment. Over five class periods, sixth-grade students "work" for a fictitious power company as they research wind as an alternative energy source and design and test a…

  6. Energy Primer: Solar, Water, Wind, and Biofuels.

    ERIC Educational Resources Information Center

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  7. New perspectives in offshore wind energy.

    PubMed

    Failla, Giuseppe; Arena, Felice

    2015-02-28

    The design of offshore wind turbines is one of the most fascinating challenges in renewable energy. Meeting the objective of increasing power production with reduced installation and maintenance costs requires a multi-disciplinary approach, bringing together expertise in different fields of engineering. The purpose of this theme issue is to offer a broad perspective on some crucial aspects of offshore wind turbines design, discussing the state of the art and presenting recent theoretical and experimental studies.

  8. New perspectives in offshore wind energy

    PubMed Central

    Failla, Giuseppe; Arena, Felice

    2015-01-01

    The design of offshore wind turbines is one of the most fascinating challenges in renewable energy. Meeting the objective of increasing power production with reduced installation and maintenance costs requires a multi-disciplinary approach, bringing together expertise in different fields of engineering. The purpose of this theme issue is to offer a broad perspective on some crucial aspects of offshore wind turbines design, discussing the state of the art and presenting recent theoretical and experimental studies. PMID:25583869

  9. Wind offering in energy and reserve markets

    NASA Astrophysics Data System (ADS)

    Soares, T.; Pinson, P.; Morais, H.

    2016-09-01

    The increasing penetration of wind generation in power systems to fulfil the ambitious European targets will make wind power producers to play an even more important role in the future power system. Wind power producers are being incentivized to participate in reserve markets to increase their revenue, since currently wind turbine/farm technologies allow them to provide ancillary services. Thus, wind power producers are to develop offering strategies for participation in both energy and reserve markets, accounting for market rules, while ensuring optimal revenue. We consider a proportional offering strategy to optimally decide upon participation in both markets by maximizing expected revenue from day-ahead decisions while accounting for estimated regulation costs for failing to provide the services. An evaluation of considering the same proportional splitting of energy and reserve in both day- ahead and balancing market is performed. A set of numerical examples illustrate the behavior of such strategy. An important conclusion is that the optimal split of the available wind power between energy and reserve strongly depends upon prices and penalties on both market trading floors.

  10. New England Wind Energy Education Project (NEWEEP)

    SciTech Connect

    Grace, Robert C.; Craddock, Kathryn A.; von Allmen, Daniel R.

    2012-04-25

    Project objective is to develop and disseminate accurate, objective information on critical wind energy issues impacting market acceptance of hundreds of land-based projects and vast off-shore wind developments proposed in the 6-state New England region, thereby accelerating the pace of wind installation from today's 140 MW towards the region's 20% by 2030 goals of 12,500 MW. Methodology: This objective will be accomplished by accumulating, developing, assembling timely, accurate, objective and detailed information representing the 'state of the knowledge' on critical wind energy issues impacting market acceptance, and widely disseminating such information. The target audience includes state agencies and local governments; utilities and grid operators; wind developers; agricultural and environmental groups and other NGOs; research organizations; host communities and the general public, particularly those in communities with planned or operating wind projects. Information will be disseminated through: (a) a series of topic-specific web conference briefings; (b) a one-day NEWEEP conference, back-to-back with a Utility Wind Interest Group one-day regional conference organized for this project; (c) posting briefing and conference materials on the New England Wind Forum (NEWF) web site and featuring the content on NEWF electronic newsletters distributed to an opt-in list of currently over 5000 individuals; (d) through interaction with and participation in Wind Powering America (WPA) state Wind Working Group meetings and WPA's annual All-States Summit, and (e) through the networks of project collaborators. Sustainable Energy Advantage, LLC (lead) and the National Renewable Energy Laboratory will staff the project, directed by an independent Steering Committee composed of a collaborative regional and national network of organizations. Major Participants - the Steering Committee: In addition to the applicants, the initial collaborators committing to form a Steering

  11. Global sensitivity analysis in wind energy assessment

    NASA Astrophysics Data System (ADS)

    Tsvetkova, O.; Ouarda, T. B.

    2012-12-01

    Wind energy is one of the most promising renewable energy sources. Nevertheless, it is not yet a common source of energy, although there is enough wind potential to supply world's energy demand. One of the most prominent obstacles on the way of employing wind energy is the uncertainty associated with wind energy assessment. Global sensitivity analysis (SA) studies how the variation of input parameters in an abstract model effects the variation of the variable of interest or the output variable. It also provides ways to calculate explicit measures of importance of input variables (first order and total effect sensitivity indices) in regard to influence on the variation of the output variable. Two methods of determining the above mentioned indices were applied and compared: the brute force method and the best practice estimation procedure In this study a methodology for conducting global SA of wind energy assessment at a planning stage is proposed. Three sampling strategies which are a part of SA procedure were compared: sampling based on Sobol' sequences (SBSS), Latin hypercube sampling (LHS) and pseudo-random sampling (PRS). A case study of Masdar City, a showcase of sustainable living in the UAE, is used to exemplify application of the proposed methodology. Sources of uncertainty in wind energy assessment are very diverse. In the case study the following were identified as uncertain input parameters: the Weibull shape parameter, the Weibull scale parameter, availability of a wind turbine, lifetime of a turbine, air density, electrical losses, blade losses, ineffective time losses. Ineffective time losses are defined as losses during the time when the actual wind speed is lower than the cut-in speed or higher than the cut-out speed. The output variable in the case study is the lifetime energy production. Most influential factors for lifetime energy production are identified with the ranking of the total effect sensitivity indices. The results of the present

  12. Wind energy developments in the 20th century

    NASA Technical Reports Server (NTRS)

    Vargo, D. J.

    1974-01-01

    Wind turbine systems of the past are reviewed and wind energy is reexamined as a future source of power. Various phases and objectives of the Wind Energy Program are discussed. Conclusions indicate that wind generated energy must be considered economically competitive with other power production methods.

  13. Wind Energy Stakeholder Outreach and Education

    SciTech Connect

    Bob Lawrence; Craig Cox; Jodi Hamrick; DOE Contact - Keith Bennett

    2006-07-27

    Since August of 2001, Bob Lawrence and Associates, Inc. (BL&A) has applied its outreach and support services to lead a highly effective work effort on behalf of Wind Powering America (WPA). In recent years, the company has generated informative brochures and posters, researched and created case studies, and provided technical support to key wind program managers. BL&A has also analyzed Lamar, Colorado’s 162MW wind project and developed a highly regarded 'wind supply chain' report and outreach presentation. BL&A’s efforts were then replicated to characterize similar supply chain presentations in New Mexico and Illinois. Note that during the period of this contract, the recipient met with members of the DOE Wind Program a number of times to obtain specific guidance on tasks that needed to be pursued on behalf of this grant. Thus, as the project developed over the course of 5 years, the recipient varied the tasks and emphasis on tasks to comply with the on-going and continuously developing requirements of the Wind Powering America Program. This report provides only a brief summary of activities to illustrate the recipient's work for advancing wind energy education and outreach from 2001 through the end of the contract period in 2006. It provides examples of how the recipient and DOE leveraged the available funding to provide educational and outreach work to a wide range of stakeholder communities.

  14. Energy optimization for a wind DFIG with flywheel energy storage

    SciTech Connect

    Hamzaoui, Ihssen; Bouchafaa, Farid

    2016-07-25

    The type of distributed generation unit that is the subject of this paper relates to renewable energy sources, especially wind power. The wind generator used is based on a double fed induction Generator (DFIG). The stator of the DFIG is connected directly to the network and the rotor is connected to the network through the power converter with three levels. The objective of this work is to study the association a Flywheel Energy Storage System (FESS) in wind generator. This system is used to improve the quality of electricity provided by wind generator. It is composed of a flywheel; an induction machine (IM) and a power electronic converter. A maximum power tracking technique « Maximum Power Point Tracking » (MPPT) and a strategy for controlling the pitch angle is presented. The model of the complete system is developed in Matlab/Simulink environment / to analyze the results from simulation the integration of wind chain to networks.

  15. Energy optimization for a wind DFIG with flywheel energy storage

    NASA Astrophysics Data System (ADS)

    Hamzaoui, Ihssen; Bouchafaa, Farid

    2016-07-01

    The type of distributed generation unit that is the subject of this paper relates to renewable energy sources, especially wind power. The wind generator used is based on a double fed induction Generator (DFIG). The stator of the DFIG is connected directly to the network and the rotor is connected to the network through the power converter with three levels. The objective of this work is to study the association a Flywheel Energy Storage System (FESS) in wind generator. This system is used to improve the quality of electricity provided by wind generator. It is composed of a flywheel; an induction machine (IM) and a power electronic converter. A maximum power tracking technique « Maximum Power Point Tracking » (MPPT) and a strategy for controlling the pitch angle is presented. The model of the complete system is developed in Matlab/Simulink environment / to analyze the results from simulation the integration of wind chain to networks.

  16. Coupled dynamics analysis of wind energy systems

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.

    1977-01-01

    A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.

  17. Wind energy in 1996: Looking forward, looking back

    SciTech Connect

    Swisher, R.

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. A brief review of progress in wind energy is given. The impact of world market forces and restructuring of the electric industry in the U.S. on the wind energy market are discussed. An outline of the American Wind Energy Association`s Renewables Portfolio Standard is presented. Legislative activities in wind energy are also reviewed.

  18. Wind for Schools: Fostering the Human Talent Supply Chain for a 20% Wind Energy Future (Poster)

    SciTech Connect

    Baring-Gould, I.

    2011-03-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: 1) Developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses. 2) Installing small wind turbines at community "host" schools. 3) Implementing teacher training with interactive curricula at each host school.

  19. Combined Solar and Wind Energy Systems

    NASA Astrophysics Data System (ADS)

    Tripanagnostopoulos, Y.; Souliotis, M.; Makris, Th.

    2010-01-01

    In this paper we present the new concept of combined solar and wind energy systems for buildings applications. Photovoltaics (PV) and small wind turbines (WTs) can be install on buildings, in case of sufficient wind potential, providing the building with electricity. PVs can be combined with thermal collectors to form the hybrid photovoltaic/thermal (PV/T) systems. The PVs (or the PV/Ts) and WT subsystems can supplement each other to cover building electrical load. In case of using PV/T collectors, the surplus of electricity, if not used or stored in batteries, can increase the temperature of the thermal storage tank of the solar thermal unit. The description of the experimental set-up of the suggested PV/T/WT system and experimental results are presented. In PV/T/WT systems the output from the solar part depends on the sunshine time and the output of the wind turbine part depends on the wind speed and is obtained any time of day or night. The use of the three subsystems can cover a great part of building energy load, contributing to conventional energy saving and environment protection. The PV/T/WT systems are considered suitable in rural and remote areas with electricity supply from stand-alone units or mini-grid connection. PV/T/WT systems can also be used in typical grid connected applications.

  20. Strengthening America's Energy Security with Offshore Wind (Fact Sheet)

    SciTech Connect

    Not Available

    2012-02-01

    This fact sheet describes the current state of the offshore wind industry in the United States and the offshore wind research and development activities conducted the U.S. Department of Energy Wind and Water Power Program.

  1. Wind Energy Resource Atlas of the Dominican Republic

    SciTech Connect

    Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; Kline, J.

    2001-10-01

    The Wind Energy Resource Atlas of the Dominican Republic identifies the wind characteristics and the distribution of the wind resource in this country. This major project is the first of its kind undertaken for the Dominican Republic. The information contained in the atlas is necessary to facilitate the use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications. A computerized wind mapping system developed by NREL generated detailed wind resource maps for the entire country. This technique uses Geographic Information Systems (GIS) to produce high-resolution (1-square kilometer) annual average wind resource maps.

  2. ENERGY DISSIPATION PROCESSES IN SOLAR WIND TURBULENCE

    SciTech Connect

    Wang, Y.; Wei, F. S.; Feng, X. S.; Sun, T. R.; Zuo, P. B.; Xu, X. J.; Zhang, J.

    2015-12-15

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.

  3. Overview of Federal wind energy program

    NASA Technical Reports Server (NTRS)

    Ancona, D. F.

    1979-01-01

    The objectives and strategies of the Federal wind energy program are described. Changes in the program structure and some of the additions to the program are included. Upcoming organizational changes and some budget items are discussed, with particular emphasis on recent significant events regarding new approvals.

  4. The economic value of wind energy

    SciTech Connect

    Pavlak, Alex

    2008-10-15

    Today's wholesale electricity market passes intermittency costs to the ratepayer in the form of increased overall system cost, a hidden subsidy. Market managers need a competition that correctly allocates cost and provides consumers with the lowest price. One solution is for buyers to contract wind farms to provide energy on demand. (author)

  5. Cooperative Extension Service & Wind Powering America Collaborate to Provide Wind Energy Information to Rural Stakeholders (Poster)

    SciTech Connect

    Jimenez, A.; Flower, L.; Hamlen, S.

    2009-05-01

    Cooperative Extension's presence blankets much of the United States and has been a trusted information source to rural Americans. By working together, Cooperative Extension, Wind Powering America, and the wind industry can better educate the public and rural stakeholders about wind energy and maximize the benefits of wind energy to local communities. This poster provides an overview of Cooperative Extension, wind energy issues addressed by the organization, and related activities.

  6. Regional Wind Energy Assessment Program. Appendix: Wind statistics summaries

    NASA Astrophysics Data System (ADS)

    Baker, R. W.; Wade, J. E.; Wittrup, R. J.

    1985-02-01

    The wind statistics given include summarized spectrum analyzer data, speed frequency distributions, and occurrences of winds of 50 mph or greater. Also mapped is the wind power prospecting flight path, with site locations numbered.

  7. A wind chart to characterize potential offshore wind energy sites

    NASA Astrophysics Data System (ADS)

    del Jesus, F.; Menéndez, M.; Guanche, R.; Losada, I. J.

    2014-10-01

    Offshore wind industry needs to improve wind assessment in order to decrease the uncertainty associated to wind resource and its influence on financial requirements. Here, several features related to offshore wind resource assessment are discussed, such as input wind data, estimation of long-term and extreme wind statistics, the wind profile and climate variations. This work proposes an analytical method to characterize wind resource. Final product is a wind chart containing useful wind information that can be applied to any offshore sites. Using long-term time series of meteorological variables (e.g. wind speed and direction at different heights), the methodology is applied to five pilot sites in different countries along European Atlantic corridor and it is used to describe and compare offshore wind behavior.

  8. Wind Energy Deployment Process and Siting Tools (Presentation)

    SciTech Connect

    Tegen, S.

    2015-02-01

    Regardless of cost and performance, some wind projects cannot proceed to completion as a result of competing multiple uses or siting considerations. Wind energy siting issues must be better understood and quantified. DOE tasked NREL researchers with depicting the wind energy deployment process and researching development considerations. This presentation provides an overview of these findings and wind siting tools.

  9. International Collaboration on Offshore Wind Energy Under IEA Annex XXIII

    SciTech Connect

    Musial, W.; Butterfield, S.; Lemming, J.

    2005-11-01

    This paper defines the purpose of IEA Annex XXIII, the International Collaboration on Offshore Wind Energy. This international collaboration through the International Energy Agency (IEA) is an efficient forum from which to advance the technical and environmental experiences collected from existing offshore wind energy projects, as well as the research necessary to advance future technology for deep-water wind energy technology.

  10. Investigations of the tornado wind energy system

    SciTech Connect

    Yen, J.T.

    1982-06-01

    Current test results are presented on the Tornado Wind Energy System (TWES). The objective of the study was to determine the performance and potential of TWES systems using wind tunnel models. Experimental results on system performance with a simple bladed turbine in both the Grumman Research Tunnel and Langley V/STOL Tunnel are presented, followed by descriptions of a larger, 15-ft model and data from tests of a 30-in turbine, as well as results from a cost analysis. It is concluded that TWES has a good commercial potential.

  11. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area

    SciTech Connect

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-06-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

  12. Wind energy development in the United States: Can state-level policies promote efficient development of wind energy capacity?

    NASA Astrophysics Data System (ADS)

    Goldstein, Blair S.

    In the absence of strong U.S. federal renewable energy policies, state governments have taken the lead in passing legislation to promote wind energy. Studies have shown that many of these policies, including Renewable Portfolio Standards (RPS), have aided in the development of wind energy capacity nationwide. This paper seeks to analyze whether these state-level policies have led to an efficient development of U.S. wind energy. For the purposes of this paper, wind energy development is considered efficient if competitive markets enable wind capacity to be built in the most cost effective manner, allowing states to trade wind energy between high wind potential states and low wind potential states. This concept is operationalized by analyzing how state policies that incentivize the in-state development of wind energy impact where wind capacity is developed. A multivariate regression model examining wind capacity in the 48 contiguous United States that had some wind capacity between 1999 and 2008 found these in-state policies are associated with increased wind capacity, controlling for states' wind potential. The results suggest that state-level policies are distorting where wind is developed. These findings support the enactment of a more comprehensive federal energy policy, such as a national RPS, a cap-and-trade program, or a targeted federal transmission policy. These federal policies could spur national markets that would result in the more efficient development of U.S. wind energy.

  13. Wind energy resource atlas. Volume 10. Alaska region

    SciTech Connect

    Wise, J.L.; Wentink, T. Jr.; Becker, R. Jr.; Comiskey, A.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-12-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each subregion of Alaska. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a state scale is given. The results of the wind energy assessments for each subregion are assembled into an overview and summary of the various features of the Alaska wind energy resource. An outline to the descriptions of the wind resource given for each subregion is included. Assessments for individual subregions are presented as separate chapters. The subregion wind energy resources are described in greater detail than is the Alaska wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the subregion chapters.

  14. Wind energy resource atlas. Volume 9. The Southwest Region

    SciTech Connect

    Simon, R.L.; Norman, G.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-11-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in Nevada and California. Background on how the wind resource is assessed and on how the results of the assessment should be interpreted is presented. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. An introduction and outline to the descriptions of the wind resource given for each state are given. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed.

  15. Wind energy resource atlas. Volume 4. The Northeast region

    SciTech Connect

    Pickering, K.E.; Vilardo, J.M.; Schakenbach, J.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-09-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each state of the region. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled in this chapter into an overview and summary of the various features of the regional wind energy resource. An introduction and outline are provided for in the descriptions of the wind resource given for each state. Assessments for individual states are presented. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the state chapters.

  16. Wind-To-Hydrogen Energy Pilot Project

    SciTech Connect

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the feasibility

  17. Wind energy research at the Solar Energy Research Institute

    NASA Astrophysics Data System (ADS)

    Noun, R. J.; Dodge, D. M.

    1988-09-01

    As world interest in wind energy research and development (RandD) emerged in the mid-1970s, the path to the commercialization of wind power seemed clear, straightforward, and relatively short. In the United States, a fledgling industry foresaw small, 10-kW wind machines spinning in suburban and rural backyards, providing a fully dispersed new power source that would provide low-cost electricity to thousands of Americans. The U.S. government envisioned an equal number of large, utility-owned, multimegawatt wind turbines turning majestically in far-spaced rows across the Great American Plains to supplement existing coal-fired, oil, hydroelectric, and nuclear plants. Typically, both of these visions have proven to be inaccurate, at least so far; what we have in the United States are closely spaced rows of privately owned, intermediate-sized wind turbines (numbering more than 17,000), primarily on the coastal hills and inland plains of California. From two separate programs addressing different concerns, the SERI wind research program has emerged as the primary horizontal-axis wind turbine research center in the United States. In SERI's view, the flexible high-performance wind turbines developed by U.S. manufacturers offer great potential for the U.S. and world markets. This includes the potential for scaleup to the larger sizes (250 kW to 1 MW). Our principal research challenge in the next few years is to acquire the data, develop the analytical design tools, and explore the advanced component and systems concepts that will help improve the performance and reliability of these systems and help usher in a new era of wind technology to meet world energy needs.

  18. RESIDUAL ENERGY SPECTRUM OF SOLAR WIND TURBULENCE

    SciTech Connect

    Chen, C. H. K.; Bale, S. D.; Salem, C. S.; Maruca, B. A.

    2013-06-20

    It has long been known that the energy in velocity and magnetic field fluctuations in the solar wind is not in equipartition. In this paper, we present an analysis of 5 yr of Wind data at 1 AU to investigate the reason for this. The residual energy (difference between energy in velocity and magnetic field fluctuations) was calculated using both the standard magnetohydrodynamic (MHD) normalization for the magnetic field and a kinetic version, which includes temperature anisotropies and drifts between particle species. It was found that with the kinetic normalization, the fluctuations are closer to equipartition, with a mean normalized residual energy of {sigma}{sub r} = -0.19 and mean Alfven ratio of r{sub A} = 0.71. The spectrum of residual energy, in the kinetic normalization, was found to be steeper than both the velocity and magnetic field spectra, consistent with some recent MHD turbulence predictions and numerical simulations, having a spectral index close to -1.9. The local properties of residual energy and cross helicity were also investigated, showing that globally balanced intervals with small residual energy contain local patches of larger imbalance and larger residual energy at all scales, as expected for nonlinear turbulent interactions.

  19. National Offshore Wind Energy Grid Interconnection Study Full Report

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  20. Ecological and sociological considerations of wind energy: A multidisciplinary study

    NASA Astrophysics Data System (ADS)

    Bicknell, Lucas John

    Wind energy is quickly becoming a critical technology for providing Americans with renewable energy, and rapid construction of wind facilities may have impacts on both wildlife and human communities. Understanding both the social and ecological issues related to wind energy development could provide a framework for effectively meeting human energy needs while conserving species biodiversity. In this research I looked at two aspects of wind energy development: public attitudes toward wind energy development and wind facility impacts on local bat populations. These papers present aspects of wind energy development that have been the subject of increasing study. This preliminary research is intended to demonstrate the responsibility we have to making well-informed decisions as we continue to expand wind energy development. Additionally, I hope to generate interest in interdisciplinary study as a means to broaden the scope of research by making use of the diverse tools available within different disciplines.

  1. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  2. Emissions and energy efficiency assessment of baseload wind energy systems.

    PubMed

    Denholm, Paul; Kulcinski, Gerald L; Holloway, Tracey

    2005-03-15

    The combination of wind energy generation and energy storage can produce a source of electricity that is functionally equivalent to a baseload coal or nuclear power plant. A model was developed to assess the technical and environmental performance of baseload wind energy systems using compressed air energy storage. The analysis examined several systems that could be operated in the midwestern United States under a variety of operating conditions. The systems can produce substantially more energy than is required from fossil or other primary sources to construct and operate them. By operation at a capacity factor of 80%, each evaluated system achieves an effective primary energy efficiency of at least five times greater than the most efficient fossil combustion technology, with greenhouse gas emission rates less than 20% of the least emitting fossil technology currently available. Life-cycle emission rates of NOx and SO2 are also significantly lower than fossil-based systems.

  3. A Vision for Systems Engineering Applied to Wind Energy (Presentation)

    SciTech Connect

    Felker, F.; Dykes, K.

    2015-01-01

    This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

  4. 2016 Offshore Wind Energy Resource Assessment for the United States

    SciTech Connect

    Musial, Walt; Heimiller, Donna; Beiter, Philipp; Scott, George; Draxl, Caroline

    2016-09-01

    This report, the 2016 Offshore Wind Energy Resource Assessment for the United States, was developed by the National Renewable Energy Laboratory, and updates a previous national resource assessment study, and refines and reaffirms that the available wind resource is sufficient for offshore wind to be a large-scale contributor to the nation's electric energy supply.

  5. 76 FR 76333 - Notification for Airborne Wind Energy Systems (AWES)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... Federal Aviation Administration 14 CFR Part 77 Notification for Airborne Wind Energy Systems (AWES) AGENCY...,'' to airborne wind energy systems (AWES). In addition, this notice requests information from airborne wind energy system developers and the public related to these systems so that the FAA...

  6. Energy analysis of convectively induced wind perturbations

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.; Buechler, Dennis E.

    1989-01-01

    Budgets of divergent and rotational components of kinetic energy (KD and KR) are examined for four upper level wind speed maxima that develop during the fourth Atmospheric Variability Experiment (AVE IV) and the first AVE-Severe Environmental Storms and Mesoscale Experiment (AVE-SESAME I). A similar budget analysis is performed for a low-level jet stream during AVE-SESAME I. The energetics of the four upper level speed maxima is found to have several similarities. The dominant source of KD is cross-contour flow by the divergent wind, and KD provides a major source of KR via a conversion process. Conversion from available potential energy provides an additional source of KR in three of the cases. Horizontal maps reveal that the conversions involving KD are maximized in regions poleward of the convection. Low-level jet development during AVE-SESAME I appears to be assisted by convective activity to the west.

  7. Wind energy resource atlas. Volume 5: the East Central Region

    SciTech Connect

    Brode, R.; Stoner, R.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-01-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each state of the region. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the state chapters. States include Delaware, Maryland, Kentucky, North Carolina, Tennessee, Virginia, and West Virginia.

  8. Plans for wind energy system simulation

    NASA Technical Reports Server (NTRS)

    Dreier, M. E.

    1978-01-01

    A digital computer code and a special purpose hybrid computer, were introduced. The digital computer program, the Root Perturbation Method or RPM, is an implementation of the classic floquet procedure which circumvents numerical problems associated with the extraction of Floquet roots. The hybrid computer, the Wind Energy System Time domain simulator (WEST), yields real time loads and deformation information essential to design and system stability investigations.

  9. Variables Affecting Economic Development of Wind Energy

    SciTech Connect

    Lantz, E.; Tegen, S.

    2008-07-01

    NREL's JEDI Wind model performed an analysis of wind-power-related economic development drivers. Economic development benefits for wind and coal were estimated using NREL's JEDI Wind and JEDI Coal models.

  10. Investigation on wind energy-compressed air power system.

    PubMed

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  11. Energy storage for wind-generator application

    NASA Astrophysics Data System (ADS)

    Russel, F. M.

    1982-09-01

    A low-cost method was developed for storing energy and stiffening power supplied by wind generators. It involved inflatable, fabric-reinforced elastic liners buried underground and containing a fluid, probably water, at an intermediate pressure. The ground would be subject to elastic deformation and the method could be applicable to unstable ground such as deep sand, heterogeneous sedimentary or other unconsolidated deposits in remote locations or hostile environments. While the density of energy storage was considered low, compared with pumped-hydro systems, the technology could be attractive for developing countries.

  12. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Sholes, T.; Sholes, J. E.

    1975-01-01

    The preliminary results of two projects in the development phase of reliable wind turbines designed to supply cost-competitive electrical energy were discussed. An experimental 100 kW wind turbine design and its status are first reviewed. The results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs are also discussed. These studies predict wind energy costs of 1.5 to 7 cents per kW-h for wind turbines produced in quantities of 100 to 1000 per year and located at sites having average winds of 12 to 18 mph.

  13. Technology assessment of wind energy conversion systems

    SciTech Connect

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  14. Wind Energy Resource Assessment of the Caribbean and Central America

    SciTech Connect

    DL Elliott; CI Aspliden; GL Gower; CG Holladay, MN Schwartz

    1987-04-01

    A wind energy resource assessment of the Caribbean and Central America has identified many areas with good to outstanding wind resource potential for wind turbine applications. Annual average wind resource maps and summary tables have been developed for 35 island/country areas throughout the Caribbean and Central America region. The wind resource maps highlight the locations of major resource areas and provide estimates of the wind energy resource potential for typical well-exposed sites in these areas. The average energy in the wind flowing in the layer near the ground is expressed as a wind power class: the greater the average wind energy, the higher the wind power class. The summary tables that are included with each of the 35 island/country wind energy maps provide information on the frequency distribution of the wind speeds (expressed as estimates of the Weibull shape factor, k) and seasonal variations in the wind resource for the major wind resource areas identified on the maps. A new wind power class legend has been developed for relating the wind power classes to values of mean wind power density, mean wind speed, and Weibull k. Guidelines are presented on how to adjust these values to various heights above ground for different roughness and terrain characteristics. Information evaluated in preparing the assessment included existing meteorological data from airports and other weather stations, and from ships and buoys in offshore and coastal areas. In addition, new data from recent measurement sites established for wind energy siting studies were obtained for a few areas of the Caribbean. Other types of information evaluated in the assessment were climatological data and maps on winds aloft, surface pressure, air flow, and topography. The various data were screened and evaluated for their usefulness in preparing the wind resource assessment. Much of the surface data from airports and other land-based weather stations were determined to be from sheltered

  15. Wind for Schools: Developing Education Programs to Train the Next Generation of the Wind Energy Workforce

    SciTech Connect

    Baring-Gould, I.; Flowers, L.; Kelly, M.; Barnett, L.; Miles, J.

    2009-08-01

    This paper provides an overview of the Wind for Schools project elements, including a description of host and collegiate school curricula developed for wind energy and the status of the current projects. The paper also provides focused information on how schools, regions, or countries can become involved or implement similar projects to expand the social acceptance and understanding of wind energy.

  16. Near real time wind energy forecasting incorporating wind tunnel modeling

    NASA Astrophysics Data System (ADS)

    Lubitz, William David

    A series of experiments and investigations were carried out to inform the development of a day-ahead wind power forecasting system. An experimental near-real time wind power forecasting system was designed and constructed that operates on a desktop PC and forecasts 12--48 hours in advance. The system uses model output of the Eta regional scale forecast (RSF) to forecast the power production of a wind farm in the Altamont Pass, California, USA from 12 to 48 hours in advance. It is of modular construction and designed to also allow diagnostic forecasting using archived RSF data, thereby allowing different methods of completing each forecasting step to be tested and compared using the same input data. Wind-tunnel investigations of the effect of wind direction and hill geometry on wind speed-up above a hill were conducted. Field data from an Altamont Pass, California site was used to evaluate several speed-up prediction algorithms, both with and without wind direction adjustment. These algorithms were found to be of limited usefulness for the complex terrain case evaluated. Wind-tunnel and numerical simulation-based methods were developed for determining a wind farm power curve (the relation between meteorological conditions at a point in the wind farm and the power production of the wind farm). Both methods, as well as two methods based on fits to historical data, ultimately showed similar levels of accuracy: mean absolute errors predicting power production of 5 to 7 percent of the wind farm power capacity. The downscaling of RSF forecast data to the wind farm was found to be complicated by the presence of complex terrain. Poor results using the geostrophic drag law and regression methods motivated the development of a database search method that is capable of forecasting not only wind speeds but also power production with accuracy better than persistence.

  17. Electron energy flux in the solar wind.

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Scudder, J. D.; Sugiura, M.

    1971-01-01

    Description of studies of electrons between 10 eV and 9.9 keV in the solar wind. The transport of energy in the rest frame of the plasma is evaluated and shown to be parallel to the interplanetary magnetic field. The presence of electrons from solar events causes this energy-flux density to exceed the heat flow due to thermal electrons. In one such event, the observations are shown to be consistent with the solar-electron observations made at higher energies. When observations are made at a point connected to the earth's bow shock by an interplanetary-field line, a comparatively large energy flux along the field toward the sun is observed, but the heat flow remains outwardly directed during this time interval. In either situation the heat flow is found to be consistent with measurements made on Vela satellites by a different method. These values, less than .01 ergs/sq cm/sec, are sufficiently low to require modifications to the Spitzer-Harm conductivity formula for use in solar-wind theories.

  18. Wind Integration Datasets from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer

    The Wind Integration Datasets provide time-series wind data for 2004, 2005, and 2006. They are intended to be used by energy professionals such as transmission planners, utility planners, project developers, and university researchers, helping them to perform comparisons of sites and estimate power production from hypothetical wind plants. NREL cautions that the information from modeled data may not match wind resource information shown on NREL;s state wind maps as they were created for different purposes and using different methodologies.

  19. Wind for Schools: Developing Educational Programs to Train the Next Generation of Wind Energy Experts (Poster)

    SciTech Connect

    Baring-Gould, I.; Flowers, L.; Kelly, M.; Miles, J.

    2009-05-01

    As the world moves toward a vision of expanded wind energy, the industry is faced with the challenges of obtaining a skilled workforce and addressing local wind development concerns. Wind Powering America's Wind for Schools Program works to address these issues. The program installs small wind turbines at community "host" schools while developing wind application centers at higher education institutions. Teacher training with interactive and interschool curricula is implemented at each host school, while students at the universities assist in implementing the host school systems while participating in other wind course work. This poster provides an overview of the program's objectives, goals, approach, and results.

  20. Ponnequin Wind Energy Project Weld County, Colorado

    SciTech Connect

    1997-08-01

    The purpose of this environmental assessment (EA) is to provide the U.S. Department of Energy (DOE) and the public with information on potential environmental impacts associated with the development of the Ponnequin Wind Energy Project in Colorado. This EA and public comments received on it will be used in DOE`s deliberations on whether to release funding for the project. This document provides a detailed description of the proposed project and an assessment of potential impacts associated with its construction and operations. Resources and conditions considered in the analysis include streams; wetlands; floodplains; water quality; soils; vegetation; air quality; socioeconomic conditions; energy resources; noise; transportation; cultural resources; visual and land use resources; public health and safety; wildlife; threatened, endangered, and candidate species; and cumulative impacts. The analysis found that the project would have minimal impacts on these resources and conditions, and would not create impacts that exceed the significance criteria defined in this document. 90 refs., 5 figs.

  1. The Geography of Wind Energy: Problem Solving Activities.

    ERIC Educational Resources Information Center

    Lahart, David E.; Allen, Rodney F.

    1985-01-01

    Today there are many attempts to use wind machines to confront the increasing costs of electricity. Described are activities to help secondary students understand wind energy, its distribution, applications, and limitations. (RM)

  2. The Geography of Wind Energy: Problem Solving Activities.

    ERIC Educational Resources Information Center

    Lahart, David E.; Allen, Rodney F.

    1985-01-01

    Today there are many attempts to use wind machines to confront the increasing costs of electricity. Described are activities to help secondary students understand wind energy, its distribution, applications, and limitations. (RM)

  3. Future for Offshore Wind Energy in the United States: Preprint

    SciTech Connect

    Musial, W.; Butterfield, S.

    2004-06-01

    Until recently, the offshore wind energy potential in the United States was ignored because vast onshore wind resources have the potential to fulfill the electrical energy needs for the entire country. However, the challenge of transmitting the electricity to the large load centers may limit wind grid penetration for land-based turbines. Offshore wind turbines can generate power much closer to higher value coastal load centers. Reduced transmission constraints, steadier and more energetic winds, and recent European success, have made offshore wind energy more attractive for the United States. However, U.S. waters are generally deeper than those on the European coast, and will require new technology. This paper presents an overview of U.S. coastal resources, explores promising deepwater wind technology, and predicts long-term cost-of-energy (COE) trends. COE estimates are based on generic 5-MW wind turbines in a hypothetical 500-MW wind power plant. Technology improvements and volume production are expected to lower costs to meet the U.S. Department of Energy target range of $0.06/kWh for deployment of deepwater offshore wind turbines by 2015, and $0.05/kWh by 2012 for shallow water. Offshore wind systems can diversify the U.S. electric energy supply and provide a new market for wind energy that is complementary to onshore development.

  4. Improving Lidar Turbulence Estimates for Wind Energy

    DOE PAGES

    Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; ...

    2016-10-03

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.« less

  5. Improving Lidar Turbulence Estimates for Wind Energy

    SciTech Connect

    Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; Klein, Petra

    2016-10-03

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.

  6. Improving lidar turbulence estimates for wind energy

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Clifton, A.; Churchfield, M. J.; Klein, P.

    2016-09-01

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.

  7. Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area

    SciTech Connect

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-10-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development and evaluation of the delineations for the New Jersey (NJ) WEA. The overarching objective of this study is to develop a logical process by which the New Jersey WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL identified a selection of leasing areas and proposed delineation boundaries within the established NJ WEA. The primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  8. Emerging Wind Energy Opportunities in the Federal Sector

    SciTech Connect

    Robichaud, Robi

    2016-08-08

    Robi Robichaud made this presentation as part of an Energy Technology session at the Energy Exchange event, which is sponsored by the U.S. Department of Energy. The presentation discusses a wind energy industry update, technology trends, financing options at federal facilities, and creative approaches for developing wind projects at federal facilities.

  9. Wind energy: A review of technical and market issues

    SciTech Connect

    Garrad, A.D.

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. The paper is divided into three sections: the market, the technology, and general conclusions. The market section compares European and US wind energy growth and contributing factors and barriers to growth. A technology overview discusses wind turbine concepts, mass reduction, blade structural flexibility, and growth in machine size. Political decisions, economic aspects, public acceptance, and technology limitations are assessed for their influence on the growth of wind energy. 11 figs.

  10. Doubly Fed Induction Machine Control For Wind Energy Conversion System

    DTIC Science & Technology

    2009-06-01

    Induction Generator (DFIG), Voltage Source Inverter (VSI), Space Vector Modulation (SVM), Wind Turbine, Field Programmable Gate Array ( FPGA ), Wind...basics of using a doubly-fed induction generator (DFIG) to convert the mechanical energy of the wind into useful electrical power that can be used to...thesis covers the basics of using a doubly-fed induction generator (DFIG) to convert the mechanical energy of the wind into useful electrical power

  11. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect

    Rodney Frehlich

    2012-10-30

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  12. Status report of wind energy programs in the Philippines

    SciTech Connect

    Benavidez, P.J.

    1996-12-31

    This paper discusses the wind resource assessment activities being undertaken by the National Power Corporation at the extreme northern part of Luzon island. Preliminary results from the 10-month wind data are presented. This will give prospective wind developers all idea oil tile vast resources of wind energy available in the northern part of the country. This paper will also discuss briefly the stand-alone 10 kW wind turbine system that was commissioned early this year and the guidelines being drafted for the entry of new and renewable energy sources in the country`s energy generation mix. 4 figs., 1 tab.

  13. Studying Wind Energy/Bird Interactions: A Guidance Document

    SciTech Connect

    Anderson, R.; Morrison, M.; Sinclair, K.

    1999-12-01

    This guidance document is a product of the Avian Subcommittee of the National Wind Coordinating Committee (NWCC). The NWCC was formed to better understand and promote responsible, credible, and comparable avian/wind energy interaction studies. Bird mortality is a concern and wind power is a potential clean and green source of electricity, making study of wind energy/bird interactions essential. This document provides an overview for regulators and stakeholders concerned with wind energy/bird interactions, as well as a more technical discussion of the basic concepts and tools for studying such interactions.

  14. Wind energy potential analysis in Al-Fattaih-Darnah

    SciTech Connect

    Tjahjana, Dominicus Danardono Dwi Prija Salem, Abdelkarim Ali Himawanto, Dwi Aries

    2016-03-29

    In this paper the wind energy potential in Al-Fattaih-Darnah, Libya, had been studied. Wind energy is very attractive because it can provide a clean and renewable energy. Due mostly to the uncertainty caused by the chaotic characteristics of wind near the earth’s surface, wind energy characteristic need to be investigated carefully in order to get consistent power generation. This investigation was based on one year wind data measured in 2003. As a result of the analysis, wind speed profile and wind energy potential have been developed. The wind energy potential of the location is looked very promising to generate electricity. The annual wind speed of the site is 8.21 m/s and the wind speed carrying maximum energy is 7.97 m/s. The annual power density of the site is classified into class 3. The Polaris P50-500 wind turbine can produce 768.39 M Wh/year and has capacity factor of 17.54%.

  15. Wind energy potential analysis in Al-Fattaih-Darnah

    NASA Astrophysics Data System (ADS)

    Tjahjana, Dominicus Danardono Dwi Prija; Salem, Abdelkarim Ali; Himawanto, Dwi Aries

    2016-03-01

    In this paper the wind energy potential in Al-Fattaih-Darnah, Libya, had been studied. Wind energy is very attractive because it can provide a clean and renewable energy. Due mostly to the uncertainty caused by the chaotic characteristics of wind near the earth's surface, wind energy characteristic need to be investigated carefully in order to get consistent power generation. This investigation was based on one year wind data measured in 2003. As a result of the analysis, wind speed profile and wind energy potential have been developed. The wind energy potential of the location is looked very promising to generate electricity. The annual wind speed of the site is 8.21 m/s and the wind speed carrying maximum energy is 7.97 m/s. The annual power density of the site is classified into class 3. The Polaris P50-500 wind turbine can produce 768.39 M Wh/year and has capacity factor of 17.54%.

  16. Assistance to States on Policies Related to Wind Energy Issues

    SciTech Connect

    Brown, Matthew, H; Decesaro, Jennifer; DOE Project Officer - Keith Bennett

    2005-07-15

    This final report summarizes work carried out under agreement with the US Department of Energy, related to wind energy policy issues. This project has involved a combination of outreach and publications on wind energy, with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of wind energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of meetings designed specifically for state legislators and legislative staff, responses to information requests on wind energy, and publications. The publications addressed: renewable energy portfolio standards, wind energy transmission, wind energy siting, case studies of wind energy policy, avian issues, economic development, and other related issues. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about wind information for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to wind energy in the states.

  17. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Sholes, J. E.

    1975-01-01

    A major phase of the wind energy program is the development of reliable wind turbines for supplying cost-competitive electrical energy. This paper discusses the preliminary results of two projects in this phase of the program. First an experimental 100 kW wind turbine design and its status are reviewed. Also discussed are the results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs. These studies show wind energy costs of 7 to 1.5 c/kWH for wind turbines produced in quantities of 100 to 1000 a year and located at sites having average winds of 12 to 18 mph.

  18. The Wind ENergy Data and Information (WENDI) Gateway: New Information and Analysis Tools for Wind Energy Stakeholders

    NASA Astrophysics Data System (ADS)

    Kaiser, D.; Palanisamy, G.; Santhana Vannan, S.; Wei, Y.; Smith, T.; Starke, M.; Wibking, M.; Pan, Y.; Devarakonda, Ranjeet; Wilson, B. E.; Wind Energy Data; Information (WENDI) Gateway Team

    2010-12-01

    In support of the U.S. Department of Energy’s (DOE) Energy Efficiency and Renewable Energy (EERE) Office, DOE's Oak Ridge National Laboratory (ORNL) has launched the Wind ENergy Data & Information (WENDI) Gateway. The WENDI Gateway is intended to serve a broad range of wind-energy stakeholders by providing easy access to a large amount of wind energy-related data and information through its two main interfaces: the Wind Energy Metadata Clearinghouse and the Wind Energy Geographic Information System (WindGIS). The Metadata Clearinghouse is a powerful, customized search tool for discovering, accessing, and sharing wind energy-related data and information. Its database of metadata records points users to a diverse array of wind energy-related resources: from technical and scientific journal articles to mass media news stories; from annual government and industry reports to downloadable datasets, and much more. Through the WindGIS, users can simultaneously visualize a wide spectrum of United States wind energy-related spatial data, including wind energy power plant locations; wind resource maps; state-level installed wind capacity, generation, and renewable portfolio standards; electric transmission lines; transportation infrastructure; interconnection standards; land ownership, designation, and usage; and various ecological data layers. In addition, WindGIS allows users to download much of the data behind the layers. References: [1] Devarakonda R., et al. Mercury: reusable metadata management, data discovery and access system. Earth Science Informatics (2010), 3(1): 87-94. [2] Wilson, Bruce E., et al. "Mercury Toolset for Spatiotemporal Metadata." (2010).

  19. New developments in the Danish Wind Energy Policy

    SciTech Connect

    Lemming, J.

    1996-12-31

    Wind energy resources in Denmark are among the best in Europe. In recent years there has been a rapid growth in number of wind turbines connected to the grid in Denmark. By the end of 1995 more than 3800 wind turbines were installed on-shore with a capacity of over 600 MW. The total production of electricity from these turbines in 1995 was more than 1200 GWh, corresponding to approximately 3.6 % of the Danish electricity consumption. For several years Denmark has pursued an energy policy with an increasing weight on environmental aspects and new and renewable energy sources like wind energy. Therefore wind energy already plays an important part as supplement to the traditional sources of fuel in the electricity production, and the share of wind energy and other renewables is expected to increase significantly in the years to come. 1 ref., 9 figs.

  20. Impact of wind farms with energy storage on transient stability

    NASA Astrophysics Data System (ADS)

    Bowman, Douglas Allen

    Today's energy infrastructure will need to rapidly expand in terms of reliability and flexibility due to aging infrastructure, changing energy market conditions, projected load increases, and system reliability requirements. Over the few decades, several states in the U.S. are now requiring an increase in wind penetration. These requirements will have impacts on grid reliability given the inherent intermittency of wind generation and much research has been completed on the impact of wind on grid reliability. Energy storage has been proposed as a tool to provide greater levels of reliability; however, little research has occurred in the area of wind with storage and its impact on stability given different possible scenarios. This thesis addresses the impact of wind farm penetration on transient stability when energy storage is added. The results show that battery energy storage located at the wind energy site can improve the stability response of the system.

  1. Summary of atmospheric wind design criteria for wind energy conversion system development

    NASA Technical Reports Server (NTRS)

    Frost, W.; Turner, R. E.

    1979-01-01

    Basic design values are presented of significant wind criteria, in graphical format, for use in the design and development of wind turbine generators for energy research. It is a condensed version of portions of the Engineering Handbook on the Atmospheric Environmental Guidelines for Use in Wind Turbine Generator Development.

  2. Three-Dimensional Wind Profiling of Offshore Wind Energy Areas With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-micrometer wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  3. Three-Dimensional Wind Profiling of Offshore Wind Energy Areas With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-micrometer wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  4. Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar

    NASA Astrophysics Data System (ADS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-μm wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  5. IEA Task 32: Wind Lidar Systems for Wind Energy Deployment (LIDAR)

    SciTech Connect

    Kuhn, Martin; Trabucchi, Davide; Clifton, Andrew; Courtney, Mike; Rettenmeier, Andreas

    2016-05-09

    Under the International Energy Agency Wind Implementing Agreement (IEA Wind) Task 11, researchers started examining novel applications for remote sensing and the issues around them during the 51st topical expert meeting about remote sensing in January 2007. The 59th topical expert meeting organized by Task 11 in October 2009 was also dedicated to remote sensing, and the first draft of the Task's recommended practices on remote sensing was published in January 2013. The results of the Task 11 topical expert meetings provided solid groundwork for a new IEA Wind Task 32 on wind lidar technologies. Members of the wind community identified the need to consolidate the knowledge about wind lidar systems to facilitate their use, and to investigate how to exploit the advantages offered by this technology. This was the motivation that led to the start of IEA Wind Task 32 'Lidar Application for Wind Energy Deployment' in November 2011. The kick-off was meeting was held in May 2012.

  6. High resolution wind measurements for offshore wind energy development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son Van (Inventor); Neumann, Gregory (Inventor)

    2013-01-01

    A method, apparatus, system, article of manufacture, and computer readable storage medium provide the ability to measure wind. Data at a first resolution (i.e., low resolution data) is collected by a satellite scatterometer. Thin slices of the data are determined. A collocation of the data slices are determined at each grid cell center to obtain ensembles of collocated data slices. Each ensemble of collocated data slices is decomposed into a mean part and a fluctuating part. The data is reconstructed at a second resolution from the mean part and a residue of the fluctuating part. A wind measurement is determined from the data at the second resolution using a wind model function. A description of the wind measurement is output.

  7. Composite rotor blades for large wind energy installations

    NASA Technical Reports Server (NTRS)

    Kussmann, A.; Molly, J.; Muser, D.

    1980-01-01

    The design of large wind power systems in Germany is reviewed with attention given to elaboration of the total wind energy system, aerodynamic design of the rotor blade, and wind loading effects. Particular consideration is given to the development of composite glass fiber/plastic or carbon fiber/plastic rotor blades for such installations.

  8. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    SciTech Connect

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

  9. CWEX (Crop/Wind-Energy Experiment): Measurements of the interaction between crop agriculture and wind power

    NASA Astrophysics Data System (ADS)

    Rajewski, Daniel Andrew

    The current expansion of wind farms in the U.S. Midwest promotes an alternative renewable energy portfolio to conventional energy sources derived from fossil fuels. The construction of wind turbines and large wind farms within several millions of cropland acres creates a unique interaction between two unlike energy sources: electric generation by wind and bio-fuel production derived from crop grain and plant tissues. Wind turbines produce power by extracting mean wind speed and converting a portion of the flow to turbulence downstream of each rotor. Turbine-scale turbulence modifies fluxes of momentum, heat, moisture, and other gaseous constituents (e.g. carbon dioxide) between the crop canopy and the atmospheric boundary layer. Conversely, crop surfaces and tillage elements produce drag on the hub-height wind resource, and the release of sensible and latent heat flux from the canopy or soil influences the wind speed profile. The Crop-Wind Energy Experiment (CWEX) measured momentum, energy, and CO2 fluxes at several locations within the leading line of turbines in a large operational wind farm, and overall turbines promote canopy mixing of wind speed, temperature, moisture, and carbon dioxide in both the day and night. Turbine-generated perturbations of these fluxes are dependent on several factors influencing the turbine operation (e.g. wind speed, wind direction, stability, orientation of surrounding turbines within a wind park) and the cropland surface (e.g. crop type and cultivar, planting density, chemical application, and soil composition and drainage qualities). Additional strategies are proposed for optimizing the synergy between crop and wind power.

  10. DOE/NREL supported wind energy activities in Alaska

    SciTech Connect

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy projects implemented in Alaska. The first, a sustainable technology energy partnerships (STEP) wind energy deployment project in Kotzebue will install 6 AOC 15/50 wind turbines and connect to the existing village diesel grid, consisting of approximately 1 MW average load. It seeks to develop solutions to the problems of arctic wind energy installations (transport, foundations, erection, operation, and maintenance), to establish a wind turbine test site, and to establish the Kotzebue Electric Association as a training and deployment center for wind/diesel technology in rural Alaska. The second project, a large village medium-penetration wind/diesel system, also in Kotzebue, will install a 1-2 MW windfarm, which will supplement the AOC turbines of the STEP project. The program will investigate the impact of medium penetration wind energy on power quality and system stability. The third project, the Alaska high-penetration wind/diesel village power pilot project in Wales will install a high penetration (80-100%) wind/diesel system in a remote Alaskan village. The system will include about 180 kW installed wind capacity, meeting an average village load of about 60 kW. This program will provide a model for high penetration wind retrofits to village diesel power systems and build the capability in Alaska to operate, maintain, and replicate wind/diesel technology. The program will also address problems of: effective use of excess wind energy; reliable diesel-off operation; and the role of energy storage.

  11. ASM Conference on Prokaryotic Development

    SciTech Connect

    Kaplan, H. B.

    2005-07-13

    Support was provided by DOE for the 2nd ASM Conference on Prokaryotic Development. The final conference program and abstracts book is attached. The conference presentations are organized around topics that are central to the current research areas in prokaryotic development. The program starts with topics that involve relatively simple models systems and ends with systems that are more complex. The topics are: i) the cell cycle, ii) the cytoskeleton, iii) morphogenesis, iv) developmental transcription, v) signaling, vi) multicellularity, and vii) developmental diversity and symbiosis. The best-studied prokaryotic development model systems will be highlighted at the conference through research presentations by leaders in the field. Many of these systems are also model systems of relevance to the DOE mission including carbon sequestration (Bradyrizobium, Synechococcus), energy production (Anabaena, Rhodobacter) and bioremediation (Caulobacter, Mesorhizobium). In addition, many of the highlighted organisms have important practical applications; the actinomycetes and myxobacteria produce antimicrobials that are of commercial interest. It is certain that the cutting-edge science presented at the conference will be applicable to the large group of bacteria relevant to the DOE mission.

  12. 76 FR 78641 - Cedar Creek Wind Energy, LLC, Milford Wind Corridor Phase I, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Cedar Creek Wind Energy, LLC, Milford Wind Corridor Phase I, LLC; Notice of...'s (Commission) June 16, 2011 Order.\\1\\ \\1\\ Cedar Creek Wind Energy, LLC and Milford Wind...

  13. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  14. Wind energy in electric power production, preliminary study

    NASA Astrophysics Data System (ADS)

    Lento, R.; Peltola, E.

    1984-01-01

    The wind speed conditions in Finland have been studied with the aid of the existing statistics of the Finnish Meteorological Institute. With the aid of the statistics estimates on the available wind energy were also made. Eight hundred wind power plants, 1.5 MW each, on the windiest west coast would produce about 2 TWh energy per year. Far more information on the temporal, geographical and vertical distribution of the wind speed than the present statistics included is needed when the available wind energy is estimated, when wind power plants are dimensioned optimally, and when suitable locations are chosen for them. The investment costs of a wind power plant increase when the height of the tower or the diameter of the rotor is increased, but the energy production increases, too. Thus, overdimensioning the wind power plant in view of energy needs or the wind conditions caused extra costs. The cost of energy produced by wind power can not yet compete with conventional energy, but the situation changes to the advantage of wind energy, if the real price of the plants decreases (among other things due to large series production and increasing experience), or if the real price of fuels rises. The inconvinience on the environment caused by the wind power plants is considered insignificant. The noise caused by the plant attenuates rapidly with distance. No harmful effects to birds and other animals caused by the wind power plants have been observed in the studies made abroad. Parts of the plant getting loose during an accident, or ice forming on the blades are estimated to fly even from a large plant only a few hundred meters.

  15. A Large Eddy Simulation Study for upstream wind energy conditioning

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Calaf, M.; Parlange, M. B.

    2013-12-01

    The wind energy industry is increasingly focusing on optimal power extraction strategies based on layout design of wind farms and yaw alignment algorithms. Recent field studies by Mikkelsen et al. (Wind Energy, 2013) have explored the possibility of using wind lidar technology installed at hub height to anticipate incoming wind direction and strength for optimizing yaw alignment. In this work we study the benefits of using remote sensing technology for predicting the incoming flow by using large eddy simulations of a wind farm. The wind turbines are modeled using the classic actuator disk concept with rotation, together with a new algorithm that permits the turbines to adapt to varying flow directions. This allows for simulations of a more realistic atmospheric boundary layer driven by a time-varying geostrophic wind. Various simulations are performed to investigate possible improvement in power generation by utilizing upstream data. Specifically, yaw-correction of the wind-turbine is based on spatio-temporally averaged wind values at selected upstream locations. Velocity and turbulence intensity are also considered at those locations. A base case scenario with the yaw alignment varying according to wind data measured at the wind turbine's hub is also used for comparison. This reproduces the present state of the art where wind vanes and cup anemometers installed behind the rotor blades are used for alignment control.

  16. Maximum wind energy extraction strategies using power electronic converters

    NASA Astrophysics Data System (ADS)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through

  17. Updated wind energy resource assessment of the US

    NASA Astrophysics Data System (ADS)

    Elliott, D. L.

    1986-08-01

    An updated assessment of the wind energy resource throughout the United States and its territories was recently completed by the Pacific Northwest Laboratory. The results of this assessment are described in a comprehensive document, Wind Energy Resource Atlas of the United States (Elliott et al., 1986), published by the Solar Energy Research Institute. The atlas includes over 100 maps (30 in color) and lists wind resource statistics for over 1000 locations. The distribution of the wind energy resource is depicted both on a national scale and in greater detail for each state or territory. This atlas should be especially useful to wind energy developers and potential wind energy users because it provides the most up-to-date assessment of the national wind energy resource available. The updated assessment synthesizes the results of twelve regional assessments completed in 1980 and incorporates information from hundreds of new measurement sites installed in the late 1970s and early 1980s. Most of the data used in the earlier assessments were from conventional locations, such as airports and military bases; most of the new site data were from well-exposed locations more representative of potential wind turbine sites. After these new site data were analyzed, the annual and seasonal average wind energy resource estimates, the uncertainty ratings (degree of confidence credited to the resource estimates), and areal distributions (percent land area having a specified wind resource) were revised over many areas of the United States. This paper describes the results of the updated wind energy assessment and highlights some of the major wind resource areas in the contiguous United States.

  18. Global Onshore Wind Energy Potential and Its Uncertainties

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Clarke, L.; Luckow, P.; Smith, S.

    2011-12-01

    Wind power, a clean and renewable energy resource, can play an important role in providing energy and reducing greenhouse gas emissions. Yet there are substantial and important uncertainties about the potential costs and supplies of wind that influence our ability to understand today the strategic role of wind power in the future. A detailed global assessment of onshore wind energy potential and its uncertainties will help decision-makers develop policies and strategies to meet energy and environmental goals. In this study, we assess the technical and economic potential of onshore wind energy and its spatial distribution using reanalysis wind speed data from the National Centers for Environmental Modeling (Figure 1). The study focuses in particular in exploring a range of uncertainties that impact the economic potential of wind power by constructing quantitative scenarios for eight key physical and economic parameters. We present quantification of the impact of uncertainties in these parameters, focusing on areas relevant to geoscience research (Figure 2). The amount of economic potential of wind energy depends strongly on several uncertain parameters such as wind speed, turbine cost, and land-suitability. The distribution of wind speed at fine temporal and spatial scales is a key parameter, but is not well quantified in many regions of the world. Reanalysis datasets with more accurate wind fields are a first step, along with computationally tractable downscaling methodologies. Another key assumption is land-suitability, which is the fraction of a particular land-cover type assumed to be available for wind farm development. There is currently little scientific basis for land-suitability assumptions. While some of the data needed for progress in these areas is readily available, such as high-resolution land-cover and terrain data, further advances are likely to require new methodologies and inter-disciplinary collaboration. We outline a number of areas where further

  19. Permitting of Wind Energy Facilities: A Handbook

    SciTech Connect

    NWCC Siting Work Group

    2002-08-01

    This handbook has been written for individuals and groups involved in evaluating wind projects: decision-makers and agency staff at all levels of government, wind developers, interested parties and the public. Its purpose is to help stakeholders make permitting wind facility decisions in a manner which assures necessary environmental protection and responds to public needs.

  20. SERI Advanced and Innovative Wind-Energy-Concepts Program

    SciTech Connect

    Mitchell, R.L.; Jacobs, E.W.

    1983-06-01

    In 1978 the Solar Energy Research Institute (SERI) was given the responsibility of managing the Advanced and Innovative Wind Energy Concepts (AIWEC) Task by the US Department of Energy (DOE). The objective of this program has been to determine the technical and economic potential of advanced wind energy concepts. Assessment and R and D efforts in the AIWEC program have included theoretical performance analyses, wind tunnel testing, and/or costing studies. Concepts demonstrating sufficient potential undergo prototype testing in a Proof-of-Concept research phase. Several concepts, such as the Dynamic Inducer, the Diffuser Augmented wind Turbine, the Electrofluid Dynamic Wind-Driven Generator, the Passive Cyclic Pitch concept, and higher performance airfoil configurations for vertical axis wind turbines, have recently made significant progress. The latter has currently reached the Proof-of-Concept phase. The present paper provides an overview of the technical progress and current status of these concepts.

  1. Value analysis of wind energy systems to electric utilities

    SciTech Connect

    Percival, D.; Harper, J.

    1981-01-01

    A method has been developed for determining the value of utility-operated wind energy systems to electric utilities. The analysis is performed by a package of computer models that interface with most conventional utility planning models. Weather data are converted to wind turbine output powers, which are used to modify the utility load representation. Execution of the utility planning models with both the original and modified load representation yields the gross and marginal value ($/rated kW/) of the added wind energy systems. This value is then compared with cost estimates to determine if for economic reasons the wind energy system should be included in future generation plans.

  2. Windpower `96 - Proceedings of the American Wind Energy Association

    SciTech Connect

    1996-12-31

    This document consists of eighty individual papers submitted to this conference. Wind power is discussed from many perspectives ranging from non-technical to technical. The include: energy policy; the world wide market to include Europe, Asia, the Americas, marketing strategies to promote wind power, economics, turbine development, electrical systems, testing, advanced components, utility issues, resource assessment, aerodynamics studies, wind-diesel systems, and dynamic modeling. Individual papers are indexed separately on the Energy Data Base.

  3. Blowing in the wind: evaluating wind energy projects on the national forests

    Treesearch

    Kerry Schlichting; Evan Mercer

    2011-01-01

    The 650 million ac of federal lands are facing increased scrutiny for wind energy development. As a result, the US Forest Service has been directed to develop policies and procedures for siting wind energy projects. We incorporate geospatial site suitability analysis with applicable policy and management principles to illustrate the use of a Spatial Decision Support...

  4. Offshore Wind Energy Market Overview (Presentation)

    SciTech Connect

    Baring-Gould, I.

    2013-07-01

    This presentation describes the current international market conditions regarding offshore wind, including the breakdown of installation costs, how to reduce costs, and the physical siting considerations considered when planning offshore wind construction. The presentation offers several examples of international existing and planned offshore wind farm sites and compares existing international offshore resources with U.S. resources. The presentation covers future offshore wind trends and cites some challenges that the United States must overcome before it will be able to fully develop offshore wind sites.

  5. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Massachusetts Wind Energy Area

    SciTech Connect

    Musial, W.; Parker, Z.; Fields, M.; Scott, G.; Elliott, D.; Draxl, C.

    2013-12-01

    The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development of three delineated leasing area options for the Massachusetts (MA) WEA and the technical evaluation of these leasing areas. The overarching objective of this study is to develop a logical process by which the MA WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL worked with BOEM to identify an appropriate number of leasing areas and proposed three delineation alternatives within the MA WEA based on the boundaries announced in May 2012. A primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  6. Wind energy developments in the 20th century

    NASA Technical Reports Server (NTRS)

    Vargo, D. J.

    1974-01-01

    Wind turbine systems for generating electrical power have been tested in many countries. Representative examples of turbines which have produced from 100 to 1250 kW are described. The advantages of wind energy consist of its being a nondepleting, nonpolluting, and free fuel source. Its disadvantages relate to the variability of wind and the high installation cost per kilowatt of capacity of wind turbines when compared to other methods of electric-power generation. High fuel costs and potential resource scarcity have led to a five-year joint NASA-NSF program to study wind energy. The program will study wind energy conversion and storage systems with respect to cost effectiveness, and will attempt to estimate national wind-energy potential and develop techniques for generator site selection. The studies concern a small-systems (50-250 kW) project, a megawatt-systems (500-3000 kW) project, supporting research and technology, and energy storage. Preliminary economic analyses indicate that wind-energy conversion can be competitive in high-average-wind areas.

  7. Final Report on California Regional Wind Energy Forecasting Project:Application of NARAC Wind Prediction System

    SciTech Connect

    Chin, H S

    2005-07-26

    Wind power is the fastest growing renewable energy technology and electric power source (AWEA, 2004a). This renewable energy has demonstrated its readiness to become a more significant contributor to the electricity supply in the western U.S. and help ease the power shortage (AWEA, 2000). The practical exercise of this alternative energy supply also showed its function in stabilizing electricity prices and reducing the emissions of pollution and greenhouse gases from other natural gas-fired power plants. According to the U.S. Department of Energy (DOE), the world's winds could theoretically supply the equivalent of 5800 quadrillion BTUs of energy each year, which is 15 times current world energy demand (AWEA, 2004b). Archer and Jacobson (2005) also reported an estimation of the global wind energy potential with the magnitude near half of DOE's quote. Wind energy has been widely used in Europe; it currently supplies 20% and 6% of Denmark's and Germany's electric power, respectively, while less than 1% of U.S. electricity is generated from wind (AWEA, 2004a). The production of wind energy in California ({approx}1.2% of total power) is slightly higher than the national average (CEC & EPRI, 2003). With the recently enacted Renewable Portfolio Standards calling for 20% of renewables in California's power generation mix by 2010, the growth of wind energy would become an important resource on the electricity network. Based on recent wind energy research (Roulston et al., 2003), accurate weather forecasting has been recognized as an important factor to further improve the wind energy forecast for effective power management. To this end, UC-Davis (UCD) and LLNL proposed a joint effort through the use of UCD's wind tunnel facility and LLNL's real-time weather forecasting capability to develop an improved regional wind energy forecasting system. The current effort of UC-Davis is aimed at developing a database of wind turbine power curves as a function of wind speed and

  8. Wind Energy Conversion Systems. A Unit of Instruction.

    ERIC Educational Resources Information Center

    Greenwald, Martin

    The number of secondary schools, colleges, and universities offering courses in wind energy machine construction, repair, and installation, continues to increase. It is the purpose of this unit to include the study of wind energy conversion systems (WECS) as an integral part of related vocational and technical curriculum materials. The unit's…

  9. Wind energy. M.A.N. systems and their efficiency

    NASA Astrophysics Data System (ADS)

    Siemer, J.

    The utilization of wind energy systems is discussed. Political and economic factors are analyzed. The Aeroman and WKA 100 (Growiar) systems are presented. In the Federal Republic of Germany, 2% to 20% of annual electricity consumption could be produced by wind energy, but production costs must be reduced.

  10. Wind Spires as an Alternative Energy Source

    SciTech Connect

    Majid Rashidi, Ph.D., P.E.

    2012-10-30

    This report discloses the design and development of an innovative wind tower system having an axisymmetric wind deflecting structure with a plurality of symmetrically mounted rooftop size wind turbines near the axisymmetric structure. The purpose of the wind deflecting structure is to increase the ambient wind speed that in turn results in an overall increase in the power capacity of the wind turbines. Two working prototypes were constructed and installed in the summer of 2009 and 2012 respectively. The system installed in the Summer of 2009 has a cylindrical wind deflecting structure, while the tower installed in 2012 has a spiral-shape wind deflecting structure. Each tower has 4 turbines, each rated at 1.65 KW Name-Plate-Rating. Before fabricating the full-size prototypes, computational fluid dynamic (CFD) analyses and scaled-down table-top models were used to predict the performance of the full-scale models. The performance results obtained from the full-size prototypes validated the results obtained from the computational models and those of the scaled-down models. The second prototype (spiral configuration) showed at a wind speed of 11 miles per hour (4.9 m/s) the power output of the system could reach 1,288 watt, when a typical turbine installation, with no wind deflecting structure, could produce only 200 watt by the same turbines at the same wind speed. At a wind speed of 18 miles per hour (8 m/sec), the spiral prototype produces 6,143 watt, while the power generated by the same turbines would be 1,412 watt in the absence of a wind deflecting structure under the same wind speed. Four US patents were allowed, and are in print, as the results of this project (US 7,540,706, US 7,679,209, US 7,845,904, and US 8,002,516).

  11. Wind Vision: Updating the DOE 20% Wind Energy by 2030 Report (Poster)

    SciTech Connect

    Baring-Gould, E. I.

    2014-04-01

    The 20% Wind Energy by 2030 report was developed as part of the Advanced Energy Initiative. Published in 2008, the report was largely based on information collected and analyzed in 2006. Much has changed since then, including shifts in technology, markets, and policy. The industry needs a new, clear, vision for wind power that is shared among stakeholders from the U.S. government, industry, academia, and NGO communities. At WINDPOWER 2013, the U.S. Department of Energy, in partnership with the American Wind Energy Association and the Wind Energy Foundation, launched a project to update the 20% report with new objectives. This conference poster outlines the elements of the new Wind Vision.

  12. Improving Lidar Turbulence Estimates for Wind Energy

    SciTech Connect

    Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; Klein, Petra

    2016-10-06

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. This presentation primarily focuses on the physics-based corrections, which include corrections for instrument noise, volume averaging, and variance contamination. As different factors affect TI under different stability conditions, the combination of physical corrections applied in L-TERRA changes depending on the atmospheric stability during each 10-minute time period. This stability-dependent version of L-TERRA performed well at both sites, reducing TI error and bringing lidar TI estimates closer to estimates from instruments on towers. However, there is still scatter evident in the lidar TI estimates, indicating that there are physics that are not being captured in the current version of L-TERRA. Two options are discussed for modeling the remainder of the TI error physics in L-TERRA: machine learning and lidar simulations. Lidar simulations appear to be a better approach, as they can help improve understanding of atmospheric effects on TI error and do not require a large training data set.

  13. Final Report - Wind and Hydro Energy Feasibility Study - June 2011

    SciTech Connect

    Jim Zoellick; Richard Engel; Rubin Garcia; Colin Sheppard

    2011-06-17

    This feasibility examined two of the Yurok Tribe's most promising renewable energy resources, wind and hydro, to provide the Tribe detailed, site specific information that will result in a comprehensive business plan sufficient to implement a favorable renewable energy project.

  14. GIS Assessment of Wind Energy Potential in California and Florida

    NASA Astrophysics Data System (ADS)

    Snow, R. K.; Snow, M. M.

    2008-05-01

    Energy efficiency coupled with renewable energy technologies can provide most of the U.S. carbon emissions reductions needed to contain atmospheric carbon concentrations at 450-500 parts per million, considered by many to be a tipping point in mitigating climate change. Among the leaders in the alternative energy sector is wind power, which is now one of the largest sources of new power generation in the U.S. creating jobs and revenue for rural communities while powering our economy with an emissions-free source of energy. In 2006, wind turbines capable of generating more than 2,400 megawatts of electricity were installed in the U.S. and by 2007 this number had risen to 3,000 megawatts. The U.S. generated 31 billion kilowatt-hours of wind power in 2007, which is enough electricity to power the equivalent of nearly 3 million average homes. It is estimated that generating the same amount of electricity would require burning 16 million tons of coal or 50 million barrels of oil. This study examines the wind power potential of sites near populated areas in Florida and California to determine the practicability of installing wind turbines at these locations. A GIS was developed in order to conduct a spatial analysis of these sites based on mean annual wind speed measured in meters per second and wind power density ratings measured in watts per square meter. The analysis indicates that coastal areas of Cocoa Beach, Key West, Hollywood, and West Palm Beach, respectively, possess the greatest potential for wind energy in Florida with mean annual wind speeds of 4.9 m/s and average wind power density ratings of 171 w/m2 peaking at Cocoa Beach followed by wind speeds of 4.64 m/s and wind power ratings of 115 w/m2 at Key West. California wind energy potential is even greater than that of Florida with Fairfield exhibiting mean annual wind speeds of 5.9 m/s and average wind power density ratings of 327 w/m2 followed by the Mojave and Palmdale areas with mean annual wind speeds of

  15. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  16. WINS. Market Simulation Tool for Facilitating Wind Energy Integration

    SciTech Connect

    Shahidehpour, Mohammad

    2012-10-30

    Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practices can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision

  17. High-Resolution Wind Measurements for Offshore Wind Energy Development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  18. Improving Maryland's Offshore Wind Energy Resource Estimate Using Doppler Wind Lidar Technology to Assess Microtmeteorology Controls

    NASA Astrophysics Data System (ADS)

    St. Pé, Alexandra; Wesloh, Daniel; Antoszewski, Graham; Daham, Farrah; Goudarzi, Navid; Rabenhorst, Scott; Delgado, Ruben

    2016-06-01

    There is enormous potential to harness the kinetic energy of offshore wind and produce power. However significant uncertainties are introduced in the offshore wind resource assessment process, due in part to limited observational networks and a poor understanding of the marine atmosphere's complexity. Given the cubic relationship between a turbine's power output and wind speed, a relatively small error in the wind speed estimate translates to a significant error in expected power production. The University of Maryland Baltimore County (UMBC) collected in-situ measurements offshore, within Maryland's Wind Energy Area (WEA) from July-August 2013. This research demonstrates the ability of Doppler wind lidar technology to reduce uncertainty in estimating an offshore wind resource, compared to traditional resource assessment techniques, by providing a more accurate representation of the wind profile and associated hub-height wind speed variability. The second objective of this research is to elucidate the impact of offshore micrometeorology controls (stability, wind shear, turbulence) on a turbine's ability to produce power. Compared to lidar measurements, power law extrapolation estimates and operational National Weather Service models underestimated hub-height wind speeds in the WEA. In addition, lidar observations suggest the frequent development of a low-level wind maximum (LLWM), with high turbinelayer wind shear and low turbulence intensity within a turbine's rotor layer (40m-160m). Results elucidate the advantages of using Doppler wind lidar technology to improve offshore wind resource estimates and its ability to monitor under-sampled offshore meteorological controls impact on a potential turbine's ability to produce power.

  19. High Voltage Power Transmission for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  20. DOE/NREL supported wind energy activities in Indonesia

    SciTech Connect

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy related projects which are underway in Indonesia. The first is a USAID/Winrock Wind for Island and Nongovernmental Development (WIND) project. The objectives of this project are to train local nongovernmental organizations (NGOs) in the siting, installation, operation, and maintenance of small wind turbines. Then to install up to 20 wind systems to provide electric power for productive end uses while creating micro-enterprises which will generate enough revenue to sustain the wind energy systems. The second project is a joint Community Power Corporation/PLN (Indonesian National Electric Utility) case study of hybrid power systems in village settings. The objective is to evaluate the economic viability of various hybrid power options for several different situations involving wind/photovoltaics/batteries/diesel. The third project is a World Bank/PLN preliminary market assessment for wind/diesel hybrid systems. The objective is to estimate the size of the total potential market for wind/diesel hybrid power systems in Indonesia. The study will examine both wind retrofits to existing diesel mini-grids and new wind-diesel plants in currently unelectrified villages.

  1. Evaluation of global onshore wind energy potential and generation costs.

    PubMed

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  2. Siting and land-use considerations in wind energy development

    NASA Astrophysics Data System (ADS)

    Noun, R. J.

    1981-12-01

    Public and private issues affecting land-use requirements for the development of wind energy farms in the 30 kW to 3 MW range are discussed. Private concerns comprise agreements between owners of adjacent property, while public issues concentrate on legislative acts to protect wind energy access; minimizing land development restrictions in areas next to wind farms is the primary focus. Existing (one, 600 kW - 20 turbines), under construction, and planned wind farms are described, noting that a small difference in wind speeds can have a large effect on the economics of wind farms. Windpower is divided into quantity (the effect of turbulence on windspeed), and quality (the effect of turbulence on the lifetime of the wind turbine structure); the factors have a large impact on the physical array design of a wind farm and the life expectancy of a wind turbine. Measurement on a 200 kW Mod OA indicated wake turbulence clearance at 5 rotor diameters, although 20% velocity deficits were observed at 7 diameters. State legislative action to protect wind easement is reviewed, with private agreements providing specific binding clauses for airspace and wind rights between two landowners viewed as the best method.

  3. Galactic cluster winds in presence of a dark energy

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Merafina, M.

    2013-10-01

    We obtain a solution for the hydrodynamic outflow of the polytropic gas from the gravitating centre, in the presence of the uniform dark energy (DE). The antigravity of DE is enlightening the outflow and makes the outflow possible at smaller initial temperature, at the same density. The main property of the wind in the presence of DE is its unlimited acceleration after passing the critical point. In application of this solution to the winds from galaxy clusters, we suggest that collision of the strongly accelerated wind with another galaxy cluster, or with another galactic cluster wind, could lead to the formation of a highest energy cosmic rays.

  4. Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)

    SciTech Connect

    Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

    2012-10-01

    No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

  5. Practical method for estimating wind characteristics at potential wind-energy-conversion sites

    SciTech Connect

    Endlich, R. M.; Ludwig, F. L.; Bhumralkar, C. M.; Estoque, M. A.

    1980-08-01

    Terrain features and variations in the depth of the atmospheric boundary layer produce local variations in wind, and these variations are not depicted well by standard weather reports. A method is developed to compute local winds for use in estimating the wind energy available at any potential site for a wind turbine. The method uses the terrain heights for an area surrounding the site and a series of wind and pressure reports from the nearest four or five national Weather Service stations. An initial estimate of the winds in the atmospheric boundary layer is made, then these winds are adjusted to satisfy the continuity equation. In this manner the flow is made to reflect the influences of the terrain and the shape of the boundary-layer top. This report describes in detail the methodology and results, and provides descriptions of the computer programs, instructions for using them, and complete program listings.

  6. Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area

    SciTech Connect

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

    2013-04-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

  7. 76 FR 41510 - Draft Environmental Impact Statement and Habitat Conservation Plan for Commercial Wind Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... Renewable Energy Company, LLC; EnXco; Duke Wind Energy; Horizon Wind Energy; Iberdrola Renewables; Infinity; MAP Royalty; NextEra Energy Resources; Renewable Energy Systems Americas; Terra-Gen; Trade Wind Energy... of clean and sustainable energy from wind resources. If successful, the HCP and subsequent ITP would...

  8. Department of Energy Awards $43 Million to Spur Offshore Wind Energy, Wind Program Newsletter, September 2011 Edition (Brochure)

    SciTech Connect

    Not Available

    2011-09-01

    EERE Wind Program Quarterly Newsletter - September 2011. In September, the U.S. Department of Energy announced that it will award $43 million over the next five years to 41 projects across 20 states to speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy systems. The projects will advance wind turbine design tools and hardware, improve information about U.S. offshore wind resources, and accelerate the deployment of offshore wind by reducing market barriers such as supply chain development, transmission and infrastructure. The projects announced in September focus on approaches to advancing offshore technology and removing market barriers to responsible offshore wind energy deployment. Funding is subject to Congressional appropriations.

  9. Wind energy potential assessment of Cameroon's coastal regions for the installation of an onshore wind farm.

    PubMed

    Arreyndip, Nkongho Ayuketang; Joseph, Ebobenow; David, Afungchui

    2016-11-01

    For the future installation of a wind farm in Cameroon, the wind energy potentials of three of Cameroon's coastal cities (Kribi, Douala and Limbe) are assessed using NASA average monthly wind data for 31 years (1983-2013) and compared through Weibull statistics. The Weibull parameters are estimated by the method of maximum likelihood, the mean power densities, the maximum energy carrying wind speeds and the most probable wind speeds are also calculated and compared over these three cities. Finally, the cumulative wind speed distributions over the wet and dry seasons are also analyzed. The results show that the shape and scale parameters for Kribi, Douala and Limbe are 2.9 and 2.8, 3.9 and 1.8 and 3.08 and 2.58, respectively. The mean power densities through Weibull analysis for Kribi, Douala and Limbe are 33.7 W/m2, 8.0 W/m2 and 25.42 W/m2, respectively. Kribi's most probable wind speed and maximum energy carrying wind speed was found to be 2.42 m/s and 3.35 m/s, 2.27 m/s and 3.03 m/s for Limbe and 1.67 m/s and 2.0 m/s for Douala, respectively. Analysis of the wind speed and hence power distribution over the wet and dry seasons shows that in the wet season, August is the windiest month for Douala and Limbe while September is the windiest month for Kribi while in the dry season, March is the windiest month for Douala and Limbe while February is the windiest month for Kribi. In terms of mean power density, most probable wind speed and wind speed carrying maximum energy, Kribi shows to be the best site for the installation of a wind farm. Generally, the wind speeds at all three locations seem quite low, average wind speeds of all the three studied locations fall below 4.0m/s which is far below the cut-in wind speed of many modern wind turbines. However we recommend the use of low cut-in speed wind turbines like the Savonius for stand alone low energy needs.

  10. Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.

    2013-12-01

    Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of

  11. Wind for Schools: Developing Educational Programs to Train a New Workforce and the Next Generation of Wind Energy Experts (Poster)

    SciTech Connect

    Flowers, L.; Baring-Gould, I.

    2010-04-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: Developing Wind Application Centers (WACs) at universities; installing small wind turbines at community "host" schools; and implementing teacher training with interactive curricula at each host school.

  12. SimWIND: A Geospatial Infrastructure Model for Wind Energy Production and Transmission

    NASA Astrophysics Data System (ADS)

    Middleton, R. S.; Phillips, B. R.; Bielicki, J. M.

    2009-12-01

    Wind is a clean, enduring energy resource with a capacity to satisfy 20% or more of the electricity needs in the United States. A chief obstacle to realizing this potential is the general paucity of electrical transmission lines between promising wind resources and primary load centers. Successful exploitation of this resource will therefore require carefully planned enhancements to the electric grid. To this end, we present the model SimWIND for self-consistent optimization of the geospatial arrangement and cost of wind energy production and transmission infrastructure. Given a set of wind farm sites that satisfy meteorological viability and stakeholder interest, our model simultaneously determines where and how much electricity to produce, where to build new transmission infrastructure and with what capacity, and where to use existing infrastructure in order to minimize the cost for delivering a given amount of electricity to key markets. Costs and routing of transmission line construction take into account geographic and social factors, as well as connection and delivery expenses (transformers, substations, etc.). We apply our model to Texas and consider how findings complement the 2008 Electric Reliability Council of Texas (ERCOT) Competitive Renewable Energy Zones (CREZ) Transmission Optimization Study. Results suggest that integrated optimization of wind energy infrastructure and cost using SimWIND could play a critical role in wind energy planning efforts.

  13. Sault Tribe Wind Energy Feasibility Study

    SciTech Connect

    Toni Osterhout; Global Energy Concepts

    2005-07-31

    The Sault Tribe conducted a feasibility study on tribal lands in the Upper Peninsula of Michigan to determine the technical and economic feasibility of both small and large-scale wind power development on tribal lands. The study included a wind resource assessment, transmission system analysis, engineering and regulatory analyzes and assessments.

  14. Small Wind Energy Systems for the Homeowner

    SciTech Connect

    1997-01-01

    If you live in a rural or remote location, this publication will help you decide whether a wind system is practical for you. It explains the benefits, helps you assess your wind resource and possible sites, discusses legal and environmental obstacles, and analyzes economic considerations such as pricing.

  15. Growing a Wind Workforce: The National Wind Energy Skills Assessment Report (Poster)

    SciTech Connect

    Tegen, S.

    2014-05-01

    This poster summarizes results from the first published investigation into the detailed makeup of the wind energy workforce as well as a glance at the educational infrastructure and training needs of the wind industry. Insights from this research into the domestic wind workforce allow the private sector, educational institutions, and federal and state governments to make better informed workforce-related decisions based on the current data and future projections.

  16. Application and verification of ECMWF seasonal forecast for wind energy

    NASA Astrophysics Data System (ADS)

    Žagar, Mark; Marić, Tomislav; Qvist, Martin; Gulstad, Line

    2015-04-01

    A good understanding of long-term annual energy production (AEP) is crucial when assessing the business case of investing in green energy like wind power. The art of wind-resource assessment has emerged into a scientific discipline on its own, which has advanced at high pace over the last decade. This has resulted in continuous improvement of the AEP accuracy and, therefore, increase in business case certainty. Harvesting the full potential output of a wind farm or a portfolio of wind farms depends heavily on optimizing operation and management strategy. The necessary information for short-term planning (up to 14 days) is provided by standard weather and power forecasting services, and the long-term plans are based on climatology. However, the wind-power industry is lacking quality information on intermediate scales of the expected variability in seasonal and intra-annual variations and their geographical distribution. The seasonal power forecast presented here is designed to bridge this gap. The seasonal power production forecast is based on the ECMWF seasonal weather forecast and the Vestas' high-resolution, mesoscale weather library. The seasonal weather forecast is enriched through a layer of statistical post-processing added to relate large-scale wind speed anomalies to mesoscale climatology. The resulting predicted energy production anomalies, thus, include mesoscale effects not captured by the global forecasting systems. The turbine power output is non-linearly related to the wind speed, which has important implications for the wind power forecast. In theory, the wind power is proportional to the cube of wind speed. However, due to the nature of turbine design, this exponent is close to 3 only at low wind speeds, becomes smaller as the wind speed increases, and above 11-13 m/s the power output remains constant, called the rated power. The non-linear relationship between wind speed and the power output generally increases sensitivity of the forecasted power

  17. Review and Application of ASME NOG-1 and ASME NUM-1-2000

    NASA Technical Reports Server (NTRS)

    Lytle, Bradford P.; Delgado, H. (Technical Monitor)

    2002-01-01

    The intent of the workshop is to review the application of the ASME Nuclear Crane Standards ASME NOG-1 and ASME NUM-1-2000. The ASME Nuclear Crane standards provide a basis for purchasing overhead handling equipment with enhanced safety features, based upon accepted engineering principles, and including performance and environmental parameters specific to nuclear facilities.

  18. Wind energy for direct water heating. Final report

    SciTech Connect

    Gunkel, W.W.; Lacey, D.R.; Neyeloff, So.; Porter, T.G.

    1981-05-01

    Results of the research project Wind Energy Substitution at Dairy Milking Centers are presented. Described in detail is the development of an energy conversion unit for direct conversion of shaft power to heat. Design procedures are presented to aid in design of a fluid agitator type energy conversion system that will be matched to the power output characteristics of any specific wind turbine. A prototype wind driven heating system was assembled including a commercial wind turbine - the Pinson Cycloturbine - and monitored continuously for twelve months. The excellent compatibility of the wind turbine and the fluid agitator was verified through field testing. The turbine operated near its maximum power coefficient with no speed control other than the loading of the agitator unit through winds of up to 25 m/s (52 mph). Results of this one year field test are presented including: (1) wind speed spectrum and power density at the site; (2) daily record of system energy output; and (3) operating time. Mechanical repair and maintenance experience are included, providing a complete record of operation of the prototype wind energy heating system.

  19. Radial evolution of the energy density of solar wind fluctuations

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Matthaeus, W. H.; Smith, C. W.

    1995-01-01

    On the basis of transport theories appropriate to a radially expanding solar wind, we describe new results for the radial evolution of the energy density in solar wind fluctuations at MHD scales. These models include the effects of 'mixing' and driving as well as the possibility of non-isotropic MHD turbulence. Implications of these results for solar wind heating, cosmic ray diffusion and interstellar pick-up ions will also be addressed.

  20. Radial evolution of the energy density of solar wind fluctuations

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Matthaeus, W. H.; Smith, C. W.

    1995-01-01

    On the basis of transport theories appropriate to a radially expanding solar wind, we describe new results for the radial evolution of the energy density in solar wind fluctuations at MHD scales. These models include the effects of 'mixing' and driving as well as the possibility of non-isotropic MHD turbulence. Implications of these results for solar wind heating, cosmic ray diffusion and interstellar pick-up ions will also be addressed.

  1. Wind Vision: A New Era for Wind Power in the United States (Highlights); U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-03-01

    This is a four-part Wind Vision project, consisting of Wind Vision Highlights, Executive Summary, a Full Report, and Appendix. The U.S. Department of Energy (DOE) Wind Program, in close cooperation with the wind industry, led a comprehensive analysis to evaluate future pathways for the wind industry. The Wind Vision report updates and expands upon the DOE's 2008 report, 20% Wind Energy by 2030, and defines the societal, environmental, and economic benefits of wind power in a scenario with wind energy supplying 10% of national end-use electricity demand by 2020, 20% by 2030, and 35% by 2050.

  2. A new approach to wind energy: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Dabiri, John O.; Greer, Julia R.; Koseff, Jeffrey R.; Moin, Parviz; Peng, Jifeng

    2015-03-01

    Despite common characterizations of modern wind energy technology as mature, there remains a persistent disconnect between the vast global wind energy resource—which is 20 times greater than total global power consumption—and the limited penetration of existing wind energy technologies as a means for electricity generation worldwide. We describe an approach to wind energy harvesting that has the potential to resolve this disconnect by geographically distributing wind power generators in a manner that more closely mirrors the physical resource itself. To this end, technology development is focused on large arrays of small wind turbines that can harvest wind energy at low altitudes by using new concepts of biology-inspired engineering. This approach dramatically extends the reach of wind energy, as smaller wind turbines can be installed in many places that larger systems cannot, especially in built environments. Moreover, they have lower visual, acoustic, and radar signatures, and they may pose significantly less risk to birds and bats. These features can be leveraged to attain cultural acceptance and rapid adoption of this new technology, thereby enabling significantly faster achievement of state and national renewable energy targets than with existing technology alone. Favorable economics stem from an orders-of-magnitude reduction in the number of components in a new generation of simple, mass-manufacturable (even 3D-printable), vertical-axis wind turbines. However, this vision can only be achieved by overcoming significant scientific challenges that have limited progress over the past three decades. The following essay summarizes our approach as well as the opportunities and challenges associated with it, with the aim of motivating a concerted effort in basic and applied research in this area.

  3. Description of the Columbia Basin Wind Energy Study (CBWES)

    SciTech Connect

    Berg, Larry K.; Pekour, Mikhail S.; Nelson, Danny A.

    2012-10-01

    The purpose of this Technical Report is to provide background information about the Columbia Basin Wind Energy Study (CBWES). This study, which was supported by the U.S. Department of Energy’s Wind and Water Power Program, was conducted from 16 November 2010 through 21 March 2012 at a field site in northeastern Oregon. The primary goal of the study was to provide profiles of wind speed and wind direction over the depth of the boundary layer in an operating wind farm located in an area of complex terrain. Measurements from propeller and vane anemometers mounted on a 62 m tall tower, Doppler Sodar, and Radar Wind Profiler were combined into a single data product to provide the best estimate of the winds above the site during the first part of CBWES. An additional goal of the study was to provide measurements of Turbulence Kinetic Energy (TKE) near the surface. To address this specific goal, sonic anemometers were mounted at two heights on the 62 m tower on 23 April 2011. Prior to the deployment of the sonic anemometers on the tall tower, a single sonic anemometer was deployed on a short tower 3.1 m tall that was located just to the south of the radar wind profiler. Data from the radar wind profiler, as well as the wind profile data product are available from the Atmospheric Radiation Measurements (ARM) Data Archive (http://www.arm.gov/data/campaigns). Data from the sonic anemometers are available from the authors.

  4. Wind energy program summary. Volume 1, Overview: Fiscal year 1988

    NASA Astrophysics Data System (ADS)

    1989-02-01

    The goal of the Federal Wind Energy Program is to establish, by supporting appropriate research, an advanced technology base that will assist industry in designing and producing wind turbines that can serve as an alternative energy supply. The Federal effort complements efforts in the private sector to develop wind systems that are safe, reliable, and cost effective. The wind program undertakes research in two general areas: the basic science of wind turbine dynamics, and research on advanced components and systems. Research on wind turbine dynamics includes atmospheric fluid dynamics, aerodynamics, and structural dynamics. The overall goal of these activities is to improve the understanding of the basic physical processes created by the wind turbine's interaction with the incoming wind, with particular emphasis on processes that affect energy capture and structural loading. Research in the advanced components and system areas includes improvements for rotors, such as advanced airfoils, and for generators, such as variable speed operation. The goal of these activities is to develop the technology base necessary for industry to achieve major improvements in wind turbine performance, lifetime, and capital cost.

  5. Toward Robust and Efficient Climate Downscaling for Wind Energy

    NASA Astrophysics Data System (ADS)

    Vanvyve, E.; Rife, D.; Pinto, J. O.; Monaghan, A. J.; Davis, C. A.

    2011-12-01

    This presentation describes a more accurate and economical (less time, money and effort) wind resource assessment technique for the renewable energy industry, that incorporates innovative statistical techniques and new global mesoscale reanalyzes. The technique judiciously selects a collection of "case days" that accurately represent the full range of wind conditions observed at a given site over a 10-year period, in order to estimate the long-term energy yield. We will demonstrate that this new technique provides a very accurate and statistically reliable estimate of the 10-year record of the wind resource by intelligently choosing a sample of ±120 case days. This means that the expense of downscaling to quantify the wind resource at a prospective wind farm can be cut by two thirds from the current industry practice of downscaling a randomly chosen 365-day sample to represent winds over a "typical" year. This new estimate of the long-term energy yield at a prospective wind farm also has far less statistical uncertainty than the current industry standard approach. This key finding has the potential to reduce significantly market barriers to both onshore and offshore wind farm development, since insurers and financiers charge prohibitive premiums on investments that are deemed to be high risk. Lower uncertainty directly translates to lower perceived risk, and therefore far more attractive financing terms could be offered to wind farm developers who employ this new technique.

  6. Wind Energy Workforce Development: A Roadmap to a Sustainable Wind Industry (Poster)

    SciTech Connect

    Baring-Gould, I.; Kelly, M.

    2010-05-01

    As the United States moves toward a vision of greatly expanded wind energy use as outlined in the U.S. Department of Energy's 20% Wind Energy by 2030 report, the need for skilled workers at all levels in the industry is repeatedly identified as a critical issue. This presentation is an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry through a discussion of the activities identified that must be put in place to train workers. The paper will also provide a framework to address issues raised from each of the education and industry sectors, identifying a roadmap for developing an educational infrastructure to support wind technology. The presentation will also provide an understanding of the available resources, materials, and programs available across the industry. This presentation provides an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry as part of a collaborative effort to develop a wind workforce roadmap. This presentation will provide 1) A review of needed programs to train workers for the wind industry; 2) An overview of the importance education will play if the nation is to expand wind energy (both in development and deployment terms) and a review of ongoing activities with a focus on federal efforts; 3) A review of the materials and resources available across the industry and a framework to address issues raised from each of the education and industry sectors.

  7. Development of large wind energy power generation system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The background and development of an experimental 100 kW wind-energy generation system are described, and the results of current field tests are presented. The experimental wind turbine is a two-bladed down-wind horizontal axis propeller type with a 29.4 m diameter rotor and a tower 28 m in height. The plant was completed in March, 1983, and has been undergoing trouble-free tests since then. The present program calls for field tests during two years from fiscal 1983 to 1984. The development of technologies relating to the linkage and operation of wind-energy power generation system networks is planned along with the acquisition of basic data for the development of a large-scale wind energy power generation system.

  8. Wind energy evaluation and solution for home applications

    NASA Astrophysics Data System (ADS)

    Ceuca, E.; Tulbure, A.; Ileana, I.; Brezeanu, Gh.; Covaciu, C.

    2010-11-01

    The objectives of this study are to survey the literature regarding energy evaluation and find optimal solution based on models and experimental set-up's for small and medium home in Alba area. Wind resource evaluation is a critical element in projecting turbine performance at a given site. The energy available in a wind stream is proportional to the cube of its speed, which means that doubling the wind speed increases the available energy by a factor of eight. Furthermore, the wind resource itself is seldom a steady, consistent flow. It varies with the time of day, season, height above ground, and type of terrain. Proper siting in windy locations, away from large obstructions, enhances a wind turbine's performance. We used our measured data in 2 locations around our town and with this data inserted in some Matlab models we intend to build optimal experimental solution for produced home's generator's, around Alba town, up to 5 kW.

  9. Prediction of Wind Energy Resources (PoWER) Users Guide

    DTIC Science & Technology

    2016-01-01

    ARL-TR-7573● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER) User’s Guide by David P Sauter...not return it to the originator. ARL-TR-7573 ● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER...2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 09/2015–11/2015 4. TITLE AND SUBTITLE Prediction of Wind Energy Resources (PoWER) User’s

  10. SIMWEST - A simulation model for wind energy storage systems

    NASA Technical Reports Server (NTRS)

    Edsinger, R. W.; Warren, A. W.; Gordon, L. H.; Chang, G. C.

    1978-01-01

    This paper describes a comprehensive and efficient computer program for the modeling of wind energy systems with storage. The level of detail of SIMWEST (SImulation Model for Wind Energy STorage) is consistent with evaluating the economic feasibility as well as the general performance of wind energy systems with energy storage options. The software package consists of two basic programs and a library of system, environmental, and control components. The first program is a precompiler which allows the library components to be put together in building block form. The second program performs the technoeconomic system analysis with the required input/output, and the integration of system dynamics. An example of the application of the SIMWEST program to a current 100 kW wind energy storage system is given.

  11. Wind Plant Cost of Energy: Past and Future (Presentation)

    SciTech Connect

    Hand, M.

    2013-03-01

    This presentation examines trends in wind plant cost of energy over the last several decades and discusses methods and examples of projections for future cost trends. First, the presentation explores cost trends for wind energy from the 1980s, where there had been an overall downward trend in wind plant energy costs. Underlying factors that influenced these trends, including turbine technology innovation for lower wind speed sites, are explored. Next, the presentation looks at projections for the future development of wind energy costs and discusses a variety of methods for establishing these projections including the use of learning curves, qualitative assessment using expert elicitation, and engineering-based analysis. A comparison of the methods is provided to explore their relative merits. Finally, a brief introduction is provided for the U.S. Department of Energy program-wide shift towards an integrative use of qualitative and quantitative methods for assessing the potential impacts of wind plant technology innovations on reducing the wind plant cost of energy.

  12. Collecting of new data on existing wind energy converters

    NASA Astrophysics Data System (ADS)

    Jensen, S. A.; Bjerregaard, E. T. D.; Paulsen, U. S.

    Measurements on a 55 kW VESTAS wind turbine were carried out during a period of approximately 2 months. The wind turbine is erected at a farm, and the produced energy is used for central heating and in cooling and drying systems at the farm. The energy production of the wind turbine is calculated as a function of the annual mean wind speed, and it is assumed that the wind speed frequency distribution is a Rayleigh distribution. The energy production during a period of 46 days from January the 20th to March the 7th 1983 was 20,665 kWh, and the total energy consumption by the owner in the same period was 12,983 kWh. The mean wind speed at hub height during the same period was 7.6 m/s. Approximately 8975 kWh or 69 per cent of the consumption was delivered directly from the wind turbine, and 11,690 kWh produced by the wind turbine was sold to the power supply company.

  13. Wind Powering America: Clean Energy for the 21st Century (Revised)

    SciTech Connect

    Not Available

    2004-09-01

    Wind Powering America: Clean Energy for the 21st Century continues to be one of the most popular publications produced by the Wind Powering America team. This latest revision incorporates new wind facts from the American Wind Energy Association, as well as wind FAQs for consumers, updated wind resource maps, and a list of WPA publications.

  14. Energy Storage System Scheduling in Wind-Diesel Microgrids

    NASA Astrophysics Data System (ADS)

    Ross, Michael

    This thesis proposes a knowledge based expert system tool that can be used as an online controller for the charging/discharging of an energy storage system in a wind-diesel microgrid. The wind-diesel microgrid is modelled, and a typical energy storage system is implemented to test the functionality of the controller using hourly-discrete power values. The results are compared against an offline optimization that was provided 24-hour lookahead wind values, as well as a controller that was implemented using artificial neural networks. The knowledge based expert system is then used to analyze the cost of energy, by means of a parametric analysis, consisting of varying the wind penetration, energy storage system power rating and energy rating to determine for which wind penetration values a storage system implementation would be technically and economically viable. Different storage technologies are tested in a one-year time frame to determine which would be best suited for this particular application. The energy storage systems are implemented as single-layer and dual-layer, in which the knowledge based expert system is modified for the latter analysis, in order to determine whether or not there are advantages to having a dual-layer storage system. Throughout these analyses, the flexibility of the knowledge based expert system controller to various energy storage systems and microgrid models is verified. It also demonstrates that, in a context of high base generation costs, energy storage can be a viable solution to managing wind power variations.

  15. A review of UK wind energy activities

    NASA Astrophysics Data System (ADS)

    Musgrove, P. J.

    1982-01-01

    Wind power activities in Great Britain are reviewed, including a brief summary of historical windmill usage and details of developmental efforts in large and small wind turbines. An annual average resource of 5 m/sec at 10 m has been extrapolated to predict an 8-10 m/sec resource at the hub heights of large wind turbines. Initial estimates indicate that at least half of Great Britain's annual electricity consumption can be produced from windpowered generators. The potential of offshore large WECS siting is being examined, although the wind-derived electricity from those regions are projected to cost three times that of land-based operation. Recorded wind patterns with 12-48 hr. duration have indicated that at least 20% penetration into the national grid is acceptable. A test 250 kW machine is being built as a model for a 3.7 MW machine, both intended for installation at Orkney, Scotland. Additionally, construction has begun on a 25-m diameter, vertical axis, variable geometry Musgrove wind turbine. The straight-bladed machine will produce a maximum of 130 kW, and is a prototype of multi-MW offshore units.

  16. Gone with the wind: Where is the missing stellar wind energy from massive star clusters?

    NASA Astrophysics Data System (ADS)

    Rosen, Anna L.; Lopez, Laura A.; Krumholz, Mark R.; Ramirez-Ruiz, Enrico

    2014-08-01

    Star clusters larger than ˜103 M⊙ contain multiple hot stars that launch fast stellar winds. The integrated kinetic energy carried by these winds is comparable to that delivered by supernova explosions, suggesting that at early times winds could be an important form of feedback on the surrounding cold material from which the star cluster formed. However, the interaction of these winds with the surrounding clumpy, turbulent, cold gas is complex and poorly understood. Here, we investigate this problem via an accounting exercise: we use empirically determined properties of four well-studied massive star clusters to determine where the energy injected by stellar winds ultimately ends up. We consider a range of kinetic energy loss channels, including radiative cooling, mechanical work on the cold interstellar medium, thermal conduction, heating of dust via collisions by the hot gas, and bulk advection of thermal energy by the hot gas. We show that, for at least some of the clusters, none of these channels can account for more than a small fraction of the injected energy. We suggest that turbulent mixing at the hot-cold interface or physical leakage of the hot gas from the H II region can efficiently remove the kinetic energy injected by the massive stars in young star clusters. Even for the clusters where we are able to account for all the injected kinetic energy, we show that our accounting sets strong constraints on the importance of stellar winds as a mechanism for feedback on the cold interstellar medium.

  17. Evaluation Of Meteorological Data For Wind Energy Analysis

    NASA Astrophysics Data System (ADS)

    Leboyer, J.; Reinemann, D.; Holloway, T.; Nemet, G.

    2008-12-01

    This study was undertaken to compare wind turbine energy estimates from different meteorological models and to evaluate the strengths and weaknesses in using these models to predict wind patterns and model wind power production. The specific data sources included the Penn State/UCAR Mesoscale Model version 5 (MM5), National Center for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) and ground-based airport weather data. MM5 is a widely used weather and climate prediction model which employed a 4 km x 4 km resolution over Minnesota and North and South Dakota for the years 2004, 2005, 2006 in the Minnesota Wind Integration Study (MWIS). The NARR dataset is only available at a 32 km x 32 km resolution, but can be retrieved over a long temporal scale, from 1979 to present, and covers the entire North American region. NARR data have previously not been used to investigate wind power potential. The ground-based airport weather data has been used to predict for wind power but wind speeds need to be extrapolated to a wind turbine hub height and data is only available on a limited basis throughout North America. We compared predictions of wind farm capacity of the MWIS MM5 data with the corresponding locations using NARR data. At 1000 millibars of pressure, representing the lowest boundary layer of the earth's troposphere, the NARR wind speed data provided capacity factors that most strongly correlated with the MWIS data and had the lowest average error. Wind energy estimates produced from the NARR database were also used to analyze spatial, diurnal, seasonal and interannual variability. As distance becomes greater between wind turbine locations, the NARR data has shown decreased correlation of wind speeds; this suggests that by having an interconnected wind farm network, challenges of intermittency will be reduced. Seasonal and interannual variation can be observed using the NARR data, suggesting that long term planning is necessary in building

  18. Compressed air energy storage system reservoir size for a wind energy baseload power plant

    SciTech Connect

    Cavallo, A.J.

    1996-12-31

    Wind generated electricity can be transformed from an intermittent to a baseload resource using an oversized wind farm in conjunction with a compressed air energy storage (CAES) system. The size of the storage reservoir for the CAES system (solution mined salt cavern or porous media) as a function of the wind speed autocorrelation time (C) has been examined using a Monte Carlo simulation for a wind class 4 (wind power density 450 W m{sup -2} at 50 m hub height) wind regime with a Weibull k factor of 2.5. For values of C typically found for winds over the US Great Plains, the storage reservoir must have a 60 to 80 hour capacity. Since underground reservoirs account for only a small fraction of total system cost, this larger storage reservoir has a negligible effect on the cost of energy from the wind energy baseload system. 7 refs., 2 figs., 1 tab.

  19. Recovery Act Incentives for Wind Energy Equipment Manufacturing

    SciTech Connect

    2009-10-01

    This document lists some of the federal incentives available to manufacturers of wind energy equipment. These incentives were authorized by or expanded under the American Recovery and Reinvestment Act of 2009.

  20. Using Economics to Determine the Efficient Curtailment of Wind Energy

    SciTech Connect

    Ela, E.

    2009-02-01

    This paper discusses the potential societal benefits to the energy market by allowing the dispatch of wind generation in times when it may enhance reliability and be economically advantageous to do so.

  1. Wind Plant Preconstruction Energy Estimates. Current Practice and Opportunities

    SciTech Connect

    Clifton, Andrew; Smith, Aaron; Fields, Michael

    2016-04-19

    Understanding the amount of energy that will be harvested by a wind power plant each year and the variability of that energy is essential to assessing and potentially improving the financial viability of that power plant. The preconstruction energy estimate process predicts the amount of energy--with uncertainty estimates--that a wind power plant will deliver to the point of revenue. This report describes the preconstruction energy estimate process from a technical perspective and seeks to provide insight into the financial implications associated with each step.

  2. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply; Executive Summary (Revised)

    SciTech Connect

    Not Available

    2008-12-01

    This document is a 21-page summary of the 200+ page analysis that explores one clearly defined scenario for providing 20% of our nation's electricity demand with wind energy by 2030 and contrasts it to a scenario of no new U.S. wind power capacity.

  3. Renewable energy and sustainable communities: Alaska's wind generator experience†

    PubMed Central

    Konkel, R. Steven

    2013-01-01

    Background In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. Method This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Results Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers:changing environmental conditions in remote Alaska villages,impacts associated

  4. Renewable energy and sustainable communities: Alaska's wind generator experience.

    PubMed

    Konkel, R Steven

    2013-01-01

    In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. This article reviews data and conclusions presented in "Alaska's Wind Energy Systems; Inventory and Economic Assessment" (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards--$202,000,000 to date for 227 REF projects in the first 5 cycles of funding--along with numerous energy conservation programs--are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: changing environmental conditions in remote Alaska villages, impacts associated with climate change on human health, progress in

  5. 78 FR 15737 - Incidental Take Permit Amendment and Supplemental Environmental Assessment for Wind Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... for Wind Energy Development, Guayanilla, Puerto Rico AGENCY: Fish and Wildlife Service, Interior... documents for wind energy development by San Francisco Wind Farm LLC (formerly WindMar R.E.) (Permittee... previously authorized wind energy development activities in Guayanilla, Puerto Rico, so that this...

  6. The USDA agricultural wind energy research program

    NASA Astrophysics Data System (ADS)

    Clark, R. N.

    Applications of wind power in agriculture were investigated. Building heating projects were conducted using a 15-kW electrical machine to power resistant heaters, and a 4-kW cycloturbine powered a water churn to heat water. The two projects in product storage and processing provided refrigeration for short and long term storage systems. Milk was cooled at a dairy and exhaust heat from the compressor was used to preheat the hot water. In the other project, apples were cooled and stored for six months. The apple storage system incorporated an ice bank for storage during nonwind periods. The two irrigation experiments involved pumping water from a surface reuse system using a vertical axis wind turbine directly coupled to a turbine pump and wind assist pumping from a deep well by combining a wind turbine with a diesel engine. The wind assist concept saved 40% of fuel normally used in pumping the well. Economic analyses of these applications show that most individual loads on a farm are usually too short in duration to make the unit profitable.

  7. Wind cannot be Directed but Sails can be Adjusted for Malaysian Renewable Energy Progress

    NASA Astrophysics Data System (ADS)

    Palanichamy, C.; Nasir, Meseret; Veeramani, S.

    2015-04-01

    Wind energy has been the promising energy technology since 1980s in terms of percentage of yearly growth of installed capacity. However the progress of wind energy has not been evenly distributed around the world. Particularly, in South East Asian countries like Malaysia and Singapore, though the Governments are keen on promoting wind energy technology, it is not well practiced due to the low wind speeds. Owing to the recent advancements in wind turbine designs, even Malaysia is well suited for wind energy by proper choice of wind turbines. As evidence, this paper presents successful wind turbines with simulated study outcomes to encourage wind power developments in Malaysia.

  8. Wind Energy's New Role in Supplying the World's Energy: What Role Will Structural Health Monitoring Play?

    SciTech Connect

    Butterfield, S.; Sheng, S.; Oyague, F.

    2009-12-01

    Wind energy installations are leading all other forms of new energy installations in the United States and Europe. In Europe, large wind plants are supplying as much as 25% of Denmark's energy needs and 8% of the electric needs for Germany and Spain, who have more ambitious goals on the horizon. Although wind energy only produces about 2% of the current electricity demand in the United States, the U.S. Department of Energy, in collaboration with wind industry experts, has drafted a plan that would bring the U.S. installed wind capacity up to 20% of the nation's total electrical supply. To meet these expectations, wind energy must be extremely reliable. Structural health monitoring will play a critical role in making this goal successful.

  9. Quantifying the Benefits of Combining Offshore Wind and Wave Energy

    NASA Astrophysics Data System (ADS)

    Stoutenburg, E.; Jacobson, M. Z.

    2009-12-01

    For many locations the offshore wind resource and the wave energy resource are collocated, which suggests a natural synergy if both technologies are combined into one offshore marine renewable energy plant. Initial meteorological assessments of the western coast of the United States suggest only a weak correlation in power levels of wind and wave energy at any given hour associated with the large ocean basin wave dynamics and storm systems of the North Pacific. This finding indicates that combining the two power sources could reduce the variability in electric power output from a combined wind and wave offshore plant. A combined plant is modeled with offshore wind turbines and Pelamis wave energy converters with wind and wave data from meteorological buoys operated by the US National Buoy Data Center off the coast of California, Oregon, and Washington. This study will present results of quantifying the benefits of combining wind and wave energy for the electrical power system to facilitate increased renewable energy penetration to support reductions in greenhouse gas emissions, and air and water pollution associated with conventional fossil fuel power plants.

  10. A hybrid reconfigurable solar and wind energy system

    NASA Astrophysics Data System (ADS)

    Gadkari, Sagar A.

    We study the feasibility of a novel hybrid solar-wind hybrid system that shares most of its infrastructure and components. During periods of clear sunny days the system will generate electricity from the sun using a parabolic concentrator. The concentrator is formed by individual mirror elements and focuses the light onto high intensity vertical multi-junction (VMJ) cells. During periods of high wind speeds and at night, the same concentrator setup will be reconfigured to channel the wind into a wind turbine which will be used to harness wind energy. In this study we report on the feasibility of this type of solar/wind hybrid energy system. The key mechanisms; optics, cooling mechanism of VMJ cells and air flow through the system were investigated using simulation tools. The results from these simulations, along with a simple economic analysis giving the levelized cost of energy for such a system are presented. An iterative method of design refinement based on the simulation results was used to work towards a prototype design. The levelized cost of the system achieved in the economic analysis shows the system to be a good alternative for a grid isolated site and could be used as a standalone system in regions of lower demand. The new approach to solar wind hybrid system reported herein will pave way for newer generation of hybrid systems that share common infrastructure in addition to the storage and distribution of energy.

  11. Control policies for wind-energy conversion systems

    NASA Astrophysics Data System (ADS)

    Buehring, I. K.; Freris, L. L.

    1981-09-01

    Wind energy is usually converted into electrical energy through a wind rotor driving a generator. It is well known that maximum conversion efficiency occurs when the wind rotor is loaded in such a way that its rotational speed is allowed to fluctuate in sympathy with wind-speed variations. In the paper, the wind-rotor/generator dynamics are investigated for a number of control policies, and it is shown that the system response is a function of wind speed. Owing to this relationship, control strategies based on static optimum matching premises are unlikely to be optimal under continuously changing conditions. To prove this hypothesis, the aerogenerator dynamics were simulated on an analogue computer, and, for a given recorded windspeed sample, the energy delivered was measured for a number of control strategies. The results indicate that, for the wind sample used and aerogenerator simulated, sophisticated control policies do not necessarily result in maximum energy yield. An attempt is made to interpret this paradox in terms of the system dynamics.

  12. AIS ASM Operational Integration Plan

    DTIC Science & Technology

    2013-08-01

    River , WA; and the future Vessel Traffic Service systems being developed under PAWSS. Interfacing the AIS Transmit architecture with agencies that...provides accurate real-time information such as water levels, currents, and other oceanographic and meteorological data. The USACE provide river lock...information and river level and current data on the Inland Waterways. AIS ASM Operational Integration Plan viii UNCLAS//Public | CG-926 R&DC

  13. Long term variability of wind energy resources in Hungary

    NASA Astrophysics Data System (ADS)

    Peline Nemeth, Csilla; Bartholy, Judit; Pongracz, Rita

    2016-04-01

    Hungary is targeting to double green its energy capacity by 2020. Currently, the total capacity of 172 wind turbines in Hungary is 329 MW, which is less than 1.5% of total energy consumption of the country. Different scenarios suggest that the capacity for the wind energy will increase to around 1000 MW by 2030, which highlights the importance of projecting the potential changes of the available wind energy. For this purpose, simulated wind climate variability is evaluated for the future periods of 2021-2050 and 2071-2100 relative to the 1961-1990 reference period. The research is using the following main steps. (1) Since projected wind speed is highly overestimated by the simulation of the regional climate model RegCM for the reference period (1961-1990), a bias correction is necessary to apply to the raw simulated wind data using CARPATCLIM as a reference database. The bias correction method is based on fitting the empirical cumulative density functions of simulated daily time series to the observations for each gridcell using monthly multiplicative correction factors. (2) Thus, for the evaluation of the projected climate change, bias-corrected RegCM outputs are used. Projected monthly wind speed changes in the median and the 90th percentile are relatively small (below 0.4 m/s and 0.6 m/s, respectively) for both future periods (2021-2050 and 2071-2100), however, estimated monthly changes of the 99th percentile may reach 2 m/s in several regions in the country. Differences of the medians do not exceed 0.4 m/s. (3) In order to estimate the available wind energy in the country, changes of the third power of daily wind speed at 100 meter averaged for northwestern gridcells (where most of the wind parks are installed) are calculated for the future periods of 2021-2050 and 2071-2100 relative to the 1961-1990 reference period. Based on the RegCM regional climate model simulations for the Hungary, as a consequence of warming climatic conditions, the available wind energy

  14. Conversion of magnetic field energy into kinetic energy in the solar wind

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1972-01-01

    The outflow of the solar magnetic field energy (the radial component of the Poynting vector) per steradian is inversely proportional to the solar wind velocity. It is a decreasing function of the heliocentric distance. When the magnetic field effect is included in the one-fluid model of the solar wind, the transformation of magnetic field energy into kinetic energy during the expansion process increases the solar wind velocity at 1 AU by 17 percent.

  15. A Climate-friendly Energy Future: Prospects for Wind

    NASA Astrophysics Data System (ADS)

    Huang, Junling

    The objective of this thesis is to evaluate the potential for wind as an alternative energy source to replace fossil fuels and reduce global CO 2 emissions. From 1995 to 2007, fossil fuels as the major energy source accounted for an addition of 89.3 Gt of carbon to the atmosphere over this period, 29 % of which was transferred to the ocean, 15 % to the global biosphere, with the balance (57 %) retained in the atmosphere. Building a low-carbon and climate-friendly energy system is becoming increasingly urgent to combat the threat of global warming. Onshore wind resources in the contiguous US could readily accommodate present and anticipated future US demand for electricity. The problem with the output from a single wind farm located in any particular region is that it is variable on time scales ranging from minutes to days posing difficulties to incorporate relevant outputs into an integrated power system. The issue of interconnection of wind farms is studied with specific attention to the physical factors that determine the temporal variability of winds in the near surface region of the atmosphere. From a global perspective, generation of electricity from wind is determined ultimately by the balance between the production and dissipation of kinetic energy in the atmosphere. The origin of wind energy from 1979 to 2010 is investigated. The atmosphere acts as a thermal engine to produce wind energy, absorbing heat at higher temperatures (approximately 256 K), releasing heat at lower temperatures (approximately 253 K), as a consequence producing wind energy at a rate of 2.45 W/m2, with a thermodynamic efficiency of 1.03 %. The continuous blowing of wind is maintained by the thermodynamic instability of the atmospheric system. A framework is constructed to probe the relationship between the energy and entropy of the atmosphere, and to quantify two variables, the maximum work and the maximum increase in entropy which represent the thermodynamic instability. A large value

  16. Wind Energy Program: Information Dissemination and Outreach Final Report

    SciTech Connect

    Bradley G. Stevens, P.E.; Troy K. Simonsen

    2003-07-15

    OAK B188 This project was funded by the U.S. Department of Energy (DOE) under the Office of Energy Efficiency and Renewable Energy's Fiscal Year 2000 Broad-Based Solicitation on Information Dissemination and Outreach--Program Area of Interest 1A. The project was initiated with a kickoff meeting on August 30, 2000, at the National Renewal Energy Laboratory (NREL) facility in Golden, Colorado. Energy and Environmental Research Center (EERC) personnel met with DOE and NREL representatives to review project objectives and participant goals. As proposed, the goal of the DOE-funded program was to develop a center of excellence for wind energy focused on the central and northern Great Plains region, which later became known as the Plains Organization for Wind Energy Resources (POWER). The POWER focus area was originally defined as North Dakota, Minnesota, South Dakota, and Iowa, but soon expanded to also include Kansas, Montana, Nebraska, and Oklahoma. Although this definition of the POWER region is not rigid, it does represent most of the primary wind resource states. All of these, except for Iowa and Minnesota, have had lesser wind energy development than other parts of the country. Under this Cooperative Agreement, the POWER Program established a regional wind energy center, providing objective educational, technical, and partnership-building resources for developing the vast wind resources in the central and northern Great Plains region. POWER activities were performed under the following task structure: Task 1--Internet Web Site/Database Development Task 2--Resource Assessment Task 3--Education and Workshops Task 4--Training Task 5--Development and Demonstration of Wind Technologies

  17. Wind and solar energy curtailment: A review of international experience

    SciTech Connect

    Bird, Lori; Lew, Debra; Milligan, Michael; Carlini, E. Maria; Estanqueiro, Ana; Flynn, Damian; Gomez-Lazaro, Emilio; Holttinen, Hannele; Menemenlis, Nickie; Orths, Antje; Eriksen, Peter Børre; Smith, J. Charles; Soder, Lennart; Sorensen, Poul; Altiparmakis, Argyrios; Yasuda, Yoh; Miller, John

    2016-11-01

    Greater penetrations of variable renewable generation on some electric grids have resulted in increased levels of curtailment in recent years. Studies of renewable energy grid integration have found that curtailment levels may grow as the penetration of wind and solar energy generation increases. This paper reviews international experience with curtailment of wind and solar energy on bulk power systems in recent years, with a focus on eleven countries in Europe, North America, and Asia. It examines levels of curtailment, the causes of curtailment, curtailment methods and use of market-based dispatch, as well as operational, institutional, and other changes that are being made to reduce renewable energy curtailment.

  18. Energy Policy Case Study - Texas: Wind, Markets, and Grid Modernization

    SciTech Connect

    Orrell, Alice C.; Homer, Juliet S.; Bender, Sadie R.; Weimar, Mark R.

    2016-09-19

    This document presents a case study of energy policies in Texas related to power system transformation, renewable energy and distributed energy resources (DERs). Texas has experienced a dramatic increase in installed wind capacity, from 116 MW in 2000 to over 15,000 MW in 2015. This achievement was enabled by the designation of Competitive Renewable Energy Zones (CREZs) and new transmission lines that transmit wind to load centers. This report highlights nascent efforts to include DERs in the ERCOT market. As costs decline and adoption rates increase, ERCOT expects distributed generation to have an increasing effect on grid operations, while bringing potentially valuable new resources to the wholesale markets.

  19. 20% Wind Energy - Diversifying Our Energy Portfolio and Addressing Climate Change (Brochure)

    SciTech Connect

    Not Available

    2008-05-01

    This brochure describes the R&D efforts needed for wind energy to meet 20% of the U.S. electrical demand by 2030. In May 2008, DOE published its report, 20% Wind Energy by 2030, which presents an in-depth analysis of the potential for wind energy in the United States and outlines a potential scenario to boost wind electric generation from its current production of 16.8 gigawatts (GW) to 304 GW by 2030. According to the report, achieving 20% wind energy by 2030 could help address climate change by reducing electric sector carbon dioxide (CO2) emissions by 825 million metric tons (20% of the electric utility sector CO2 emissions if no new wind is installed by 2030), and it will enhance our nation's energy security by diversifying our electricity portfolio as wind energy is an indigenous energy source with stable prices not subject to fuel volatility. According to the report, increasing our nation's wind generation could also boost local rural economies and contribute to significant growth in manufacturing and the industry supply chain. Rural economies will benefit from a substantial increase in land use payments, tax benefits and the number of well-paying jobs created by the wind energy manufacturing, construction, and maintenance industries. Although the initial capital costs of implementing the 20% wind scenario would be higher than other generation sources, according to the report, wind energy offers lower ongoing energy costs than conventional generation power plants for operations, maintenance, and fuel. The 20% scenario could require an incremental investment of as little as $43 billion (net present value) more than a base-case no new wind scenario. This would represent less than 0.06 cent (6 one-hundredths of 1 cent) per kilowatt-hour of total generation by 2030, or roughly 50 cents per month per household. The report concludes that while achieving the 20% wind scenario is technically achievable, it will require enhanced transmission infrastructure

  20. Offshore Wind Turbines - Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine: Environmental Effects of Offshore Wind Energy Development

    SciTech Connect

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2010-11-23

    Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.

  1. Large Wind Energy Converter: Growian 3 MW

    NASA Technical Reports Server (NTRS)

    Feustel, J. E.; Helm, S.; Koerber, F.

    1980-01-01

    The final report on the projected application of larger-scale wind turbine on the northern German coast is summarized. The designs of the tower, machinery housing, rotor, and rotor blades are described accompanied various construction materials are examined. Rotor blade adjustment devices auxiliary and accessory equipment are examined.

  2. Aeroelastic analysis of wind energy conversion systems

    NASA Technical Reports Server (NTRS)

    Dugundji, J.

    1978-01-01

    An aeroelastic investigation of horizontal axis wind turbines is described. The study is divided into two simpler areas; (1) the aeroelastic stability of a single blade on a rigid tower; and (2) the mechanical vibrations of the rotor system on a flexible tower. Some resulting instabilities and forced vibration behavior are described.

  3. Wind Energy Technology: Training a Sustainable Workforce

    ERIC Educational Resources Information Center

    Krull, Kimberly W.; Graham, Bruce; Underbakke, Richard

    2009-01-01

    Through innovative teaching and technology, industry and educational institution partnerships, Cloud County Community College is preparing a qualified workforce for the emerging wind industry estimated to create 80,000 jobs by 2020. The curriculum blends on-campus, on-line and distance learning, land-lab, and field training opportunities for…

  4. Wind Energy Technology: Training a Sustainable Workforce

    ERIC Educational Resources Information Center

    Krull, Kimberly W.; Graham, Bruce; Underbakke, Richard

    2009-01-01

    Through innovative teaching and technology, industry and educational institution partnerships, Cloud County Community College is preparing a qualified workforce for the emerging wind industry estimated to create 80,000 jobs by 2020. The curriculum blends on-campus, on-line and distance learning, land-lab, and field training opportunities for…

  5. Clear and Present Atmospheric Science Foci for Wind Energy (Invited)

    NASA Astrophysics Data System (ADS)

    Poulos, G. S.

    2010-12-01

    The energy capacity of installed wind farms, with the exception of 2010, has grown at approximately 40% per year in the United States. Simultaneously, wind turbines have grown in height, rotor diameter and technological sophistication altering the time and space scales relevant to their operation. The meteorological phenomena and micrometeorological climatic conditions at turbine vertical scales, in the regions of the U. S. that have been developed, are different than those from which current wind turbine standards are derived. Some spectacular technological and performance failures have resulted, whose roots can be traced in part to a lack of knowledge transfer from atmospheric science to wind energy engineering and in part to knowledge gaps in atmospheric science. The result is that a wide variety of significant and meaningful basic and applied atmospheric science research topics are available to be addressed in the near term. To consolidate the discussion we will focus on two main areas: 1. Micrometeorological climatology for wind resource assessment, site suitability and wind turbine engineering standards, and, 2. Operational wind energy-focused numerical forecasting, forensics and efficiency.

  6. ENSO's Effects on the Wind Energy Production of South Dakota

    NASA Astrophysics Data System (ADS)

    Harper, B. R.

    2005-12-01

    An aging infrastructure, environmental concerns, and growing demand threaten to undermine the reliability and long-term sustainability of the current fossil fuel electricity supply and transmission system. It is widely agreed that renewable energy sources will become increasingly important in the evolution to a next generation electric grid. In this study we investigated the use and value of climate information in determining the location and performance of wind power turbines in the Northern Great Plains of the United States. Fifty years of hourly wind speed data were used to evaluate the possible influence of seasonal and interannual climate variability on wind power production at four location in South Dakota. The El Nino Southern Oscillation is a documented source of climate variability in the Northern Great Plains. Our results documented a dominant El Nino influence on the probability of a lull in wind speed, with a stronger influence in the eastern half of the state. Information on wind speed lulls in important to the wind energy industry because these are periods when no energy is being produced. All of the locaitons also showed a slight decrease in power production potential during El Nino events. Our preliminary results confirmed that information on climate variability and change can be of significant use and value to future wind power planning, siting, and performance.

  7. Energy coupling between the solar wind and the magnetosphere

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1981-01-01

    A description is given of the path leading to the first approximation expression for the solar wind-magnetosphere energy coupling function (epsilon), which correlates well with the total energy consumption rate (U sub T) of the magnetosphere. It is shown that epsilon is the primary factor controlling the time development of magnetospheric substorms and storms. The finding of this particular expression epsilon indicates how the solar wind couples its energy to the magnetosphere; the solar wind and the magnetosphere make up a dynamo. In fact, the power generated by the dynamo can be identified as epsilon through the use of a dimensional analysis. In addition, the finding of epsilon suggests that the magnetosphere is closer to a directly driven system than to an unloading system which stores the generated energy before converting it to substorm and storm energies. The finding of epsilon and its implications is considered to have significantly advanced and improved the understanding of magnetospheric processes.

  8. Technology Performance Report: Duke Energy Notrees Wind Storage Demonstration Project

    SciTech Connect

    Wehner, Jeff; Mohler, David; Gibson, Stuart; Clanin, Jason; Faris, Don; Hooker, Kevin; Rowand, Michael

    2015-11-01

    Duke Energy Renewables owns and operates the Notrees Wind Farm in west Texas’s Ector and Winkler counties. The wind farm, which was commissioned in April 2009, has a total capacity of 152.6 MW generated by 55 Vestas V82 turbines, one Vestas 1-V90 experimental turbine, and 40 GE 1.5-MW turbines. The Vestas V82 turbines have a generating capacity of 1.65 MW each, the Vestas V90 turbine has a generating capacity of 1.86 MW, and the GE turbines have a generating capacity of 1.5 MW each. The objective of the Notrees Wind Storage Demonstration Project is to validate that energy storage increases the value and practical application of intermittent wind generation and is commercially viable at utility scale. The project incorporates both new and existing technologies and techniques to evaluate the performance and potential of wind energy storage. In addition, it could serve as a model for others to adopt and replicate. Wind power resources are expected to play a significant part in reducing greenhouse gas emissions from electric power generation by 2030. However, the large variability and intermittent nature of wind presents a barrier to integrating it within electric markets, particularly when competing against conventional generation that is more reliable. In addition, wind power production often peaks at night or other times when demand and electricity prices are lowest. Energy storage systems can overcome those barriers and enable wind to become a valuable asset and equal competitor to conventional fossil fuel generation.

  9. Bats and wind energy: a literature synthesis and annotated bibliography

    USGS Publications Warehouse

    Ellison, Laura E.

    2012-01-01

    Turbines have been used to harness energy from wind for hundreds of years. However, with growing concerns about climate change, wind energy has only recently entered the mainstream of global electricity production. Since early on in the development of wind-energy production, concerns have arisen about the potential impacts of turbines to wildlife; these concerns have especially focused on the mortality of birds. Despite recent improvements to turbines that have resulted in reduced mortality of birds, there is clear evidence that bat mortality at wind turbines is of far greater conservation concern. Bats of certain species are dying by the thousands at turbines across North America, and the species consistently affected tend to be those that rely on trees as roosts and most migrate long distances. Turbine-related bat mortalities are now affecting nearly a quarter of all bat species occurring in the United States and Canada. Most documented bat mortality at wind-energy facilities has occurred in late summer and early fall and has involved tree bats, with hoary bats (Lasiurus cinereus) being the most prevalent among fatalities. This literature synthesis and annotated bibliography focuses on refereed journal publications and theses about bats and wind-energy development in North America (United States and Canada). Thirty-six publications and eight theses were found, and their key findings were summarized. These publications date from 1996 through 2011, with the bulk of publications appearing from 2007 to present, reflecting the relatively recent conservation concerns about bats and wind energy. The idea for this Open-File Report formed while organizing a joint U.S. Fish and Wildlife Service/U.S. Geological Survey "Bats and Wind Energy Workshop," on January 25-26, 2012. The purposes of the workshop were to develop a list of research priorities to support decision making concerning bats with respect to siting and operations of wind-energy facilities across the United

  10. Local and Regional Impacts of Large Scale Wind Energy Deployment

    NASA Astrophysics Data System (ADS)

    Michalakes, J.; Hammond, S.; Lundquist, J. K.; Moriarty, P.; Robinson, M.

    2010-12-01

    The U.S. is currently on a path to produce 20% of its electricity from wind energy by 2030, almost a 10-fold increase over present levels of electricity generated from wind. Such high-penetration wind energy deployment will entail extracting elevated energy levels from the planetary boundary layer and preliminary studies indicate that this will have significant but uncertain impacts on the local and regional environment. State and federal regulators have raised serious concerns regarding potential agricultural impacts from large farms deployed throughout the Midwest where agriculture is the basis of the local economy. The effects of large wind farms have been proposed to be both beneficial (drying crops to reduce occurrences of fungal diseases, avoiding late spring freezes, enhancing pollen viability, reducing dew duration) and detrimental (accelerating moisture loss during drought) with no conclusive investigations thus far. As both wind and solar technologies are deployed at scales required to replace conventional technologies, there must be reasonable certainty that the potential environmental impacts at the micro, macro, regional and global scale do not exceed those anticipated from carbon emissions. Largely because of computational limits, the role of large wind farms in affecting regional-scale weather patterns has only been investigated in coarse simulations and modeling tools do not yet exist which are capable of assessing the downwind affects of large wind farms may have on microclimatology. In this presentation, we will outline the vision for and discuss technical and scientific challenges in developing a multi-model high-performance simulation capability covering the range of mesoscale to sub-millimeter scales appropriate for assessing local, regional, and ultimately global environmental impacts and quantifying uncertainties of large scale wind energy deployment scenarios. Such a system will allow continuous downscaling of atmospheric processes on wind

  11. Wind, Wave, and Tidal Energy Without Power Conditioning

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2013-01-01

    Most present wind, wave, and tidal energy systems require expensive power conditioning systems that reduce overall efficiency. This new design eliminates power conditioning all, or nearly all, of the time. Wind, wave, and tidal energy systems can transmit their energy to pumps that send high-pressure fluid to a central power production area. The central power production area can consist of a series of hydraulic generators. The hydraulic generators can be variable displacement generators such that the RPM, and thus the voltage, remains constant, eliminating the need for further power conditioning. A series of wind blades is attached to a series of radial piston pumps, which pump fluid to a series of axial piston motors attached to generators. As the wind is reduced, the amount of energy is reduced, and the number of active hydraulic generators can be reduced to maintain a nearly constant RPM. If the axial piston motors have variable displacement, an exact RPM can be maintained for all, or nearly all, wind speeds. Analyses have been performed that show over 20% performance improvements with this technique over conventional wind turbines

  12. A wind energy powered wireless temperature sensor node.

    PubMed

    Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang

    2015-02-27

    A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.

  13. A Wind Energy Powered Wireless Temperature Sensor Node

    PubMed Central

    Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang

    2015-01-01

    A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally. PMID:25734649

  14. Wind Power: An Emerging Energy Resource

    ERIC Educational Resources Information Center

    Deal, Walter F.

    2010-01-01

    One may ask the question, What is energy? Typically the first answers that come to mind are oil, coal, and natural gas or nuclear energy. Most human activities require some form of energy consumption. This may be the energy produced by the food that one eats or the gasoline that is used in cars, trucks, buses, and other vehicles. One cannot ignore…

  15. Wind Power: An Emerging Energy Resource

    ERIC Educational Resources Information Center

    Deal, Walter F.

    2010-01-01

    One may ask the question, What is energy? Typically the first answers that come to mind are oil, coal, and natural gas or nuclear energy. Most human activities require some form of energy consumption. This may be the energy produced by the food that one eats or the gasoline that is used in cars, trucks, buses, and other vehicles. One cannot ignore…

  16. 78 FR 28842 - Searchlight Wind Energy Project Record of Decision (DOE/EIS-0413)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... Area Power Administration Searchlight Wind Energy Project Record of Decision (DOE/EIS-0413) AGENCY... Searchlight Wind Energy, LLC (Searchlight) to interconnect its proposed Searchlight Wind Energy Project... Availability of the Final Environmental Impact Statement ] (EIS) for Searchlight Wind Energy Project...

  17. On the properties of energy transfer in solar wind turbulence.

    NASA Astrophysics Data System (ADS)

    Sorriso-Valvo, Luca; Marino, Raffaele; Chen, Christopher H. K.; Wicks, Robert; Nigro, Giuseppina

    2017-04-01

    Spacecraft observations have shown that the solar wind plasma is heated during its expansion in the heliosphere. The necessary energy is made available at small scales by a turbulent cascade, although the nature of the heating processes is still debated. Because of the intermittent nature of turbulence, the small-scale energy is inhomogeneously distributed in space, resulting for example in the formation of highly localized current sheets and eddies. In order to understand the small-scale plasma processes occurring in the solar wind, the global and local properties of such energy distribution must be known. Here we study such properties using a proxy derived from the Von Karman-Howart relation for magnetohydrodynamics. The statistical properties of the energy transfer rate in the fluid range of scales are studied in detail using WIND spacecraft plasma and magnetic field measurements and discussed in the framework of the multifractal turbulent cascade. Dependence of the energy dissipation proxy on the solar wind conditions (speed, type, solar activity...) is analysed, and its evolution during solar wind expansion in the heliosphere is described using Helios II and Ulysses measurements. A comparison with other proxies, such as the PVI, is performed. Finally, the local singularity properties of the energy dissipation proxy are conditionally compared to the corresponding particle velocity distributions. This allows the identification of specific plasma features occurring near turbulent dissipation events, and could be used as enhanced mode trigger in future space missions.

  18. The Link Between Mineral Dust and Wind Speed: Implications for Wind Energy in the Maghreb

    NASA Astrophysics Data System (ADS)

    McGraw, Z.; Storelvmo, T.

    2014-12-01

    Airborne dust is capable of degrading wind turbine performance. This will be a particularly salient consideration for future schemes to utilize wind energy in the Maghreb, a region of Africa marked by the presence of the Sahara desert, the world's largest source of mineral dust. In this study we analyzed the correlation between wind speed and the existence of dust in measurements pertaining to the region. Wind speed data was acquired from meteorological masts along with reanalysis output. Comparisons were made to the presence of polluted and desert dust as identified by CALIOP, a satellite-based lidar instrument, and to coarse-mode Aerosol Optical Depth (AOD) measurements from the AERONET network of sun photometers. It was anticipated that results would evidence the existence of a critical wind speed that is required for the emission of noticeable desert dust. The proximity of this threshold to the ideal range of wind speeds for turbine efficiency can potentially influence the feasibility of harvesting wind energy in the region.

  19. Status of wind energy in Germany

    SciTech Connect

    Gerdes, G.; Molly, J.P.; Rehfeldt, K.

    1996-12-31

    By the end of 1995 in total 3655 wind turbines (WT`s) were installed in Germany with a total capacity of 1,136 MW. In the year 1995 alone the WT installations grew by 1,070 units with 505 MW. About 40% of the 1995 installations were sold to inland states of Germany with their lower wind speed potential. This fast development occurred in parallel to continuously reduced local state and federal subsidies. The further development is based mainly on the guaranteed reimbursement due to the Electricity Feed Law. But since some time the electricity utilities fight back on all legal and political levels to get cancelled the unloved Electricity Feed Law and since two years the building construction law with the foreseen privilege for WT`s is discussed without any result. All these difficulties affect investors and credit giving banks in such a negative way, that the further annual increase in wind power installation for 1996 could be 10 to 20% less than in 1995. Many of the new commercial Megawatt WT`s have pitch control and variable rotor speed which cause better electrical power quality and lower life time loads. From statistical evaluations on technical data of WT`s a good overview of the further development is derived. 8 refs., 10 figs.

  20. Mighty Wind: Integrating Wind Energy into the Electric Power System Is Already Generating Excitement

    SciTech Connect

    Smith, J. C.; Thresher, R.; Zavadil, R.; DeMeo, E.; Piwko, R.; Ernst, B.; Ackermann, T.

    2009-03-01

    Developments in the world of wind continue to happen at record speed. The world as a whole is in the midst of grappling with an epochal transition from a system dominated by fossil and nuclear fuel to one that relies much more heavily on renewable energy. No technology breakthroughs are required for the United States to achieve the scenario of 20% of electricity from wind by 2030. Instead, many evolutionary steps executed with technical skill, which can cumulatively result in a 30-40% improvement in the cost effectiveness of wind technology over the next few decades, are expected to occur.

  1. Wind Integration National Dataset (WIND) Toolkit; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Draxl, Caroline; Hodge, Bri-Mathias

    2015-07-14

    A webinar about the Wind Integration National Dataset (WIND) Toolkit was presented by Bri-Mathias Hodge and Caroline Draxl on July 14, 2015. It was hosted by the Southern Alliance for Clean Energy. The toolkit is a grid integration data set that contains meteorological and power data at a 5-minute resolution across the continental United States for 7 years and hourly power forecasts.

  2. The Wind Forecast Improvement Project (WFIP). A Public-Private Partnership Addressing Wind Energy Forecast Needs

    SciTech Connect

    Wilczak, James M.; Finley, Cathy; Freedman, Jeff; Cline, Joel; Bianco, L.; Olson, J.; Djalaova, I.; Sheridan, L.; Ahlstrom, M.; Manobianco, J.; Zack, J.; Carley, J.; Benjamin, S.; Coulter, R. L.; Berg, Larry K.; Mirocha, Jeff D.; Clawson, K.; Natenberg, E.; Marquis, M.

    2015-10-30

    The Wind Forecast Improvement Project (WFIP) is a public-private research program, the goals of which are to improve the accuracy of short-term (0-6 hr) wind power forecasts for the wind energy industry and then to quantify the economic savings that accrue from more efficient integration of wind energy into the electrical grid. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that include the National Oceanic and Atmospheric Administration (NOAA), private forecasting companies (WindLogics and AWS Truepower), DOE national laboratories, grid operators, and universities. WFIP employed two avenues for improving wind power forecasts: first, through the collection of special observations to be assimilated into forecast models to improve model initial conditions; and second, by upgrading NWP forecast models and ensembles. The new observations were collected during concurrent year-long field campaigns in two high wind energy resource areas of the U.S. (the upper Great Plains, and Texas), and included 12 wind profiling radars, 12 sodars, 184 instrumented tall towers and over 400 nacelle anemometers (provided by private industry), lidar, and several surface flux stations. Results demonstrate that a substantial improvement of up to 14% relative reduction in power root mean square error (RMSE) was achieved from the combination of improved NOAA numerical weather prediction (NWP) models and assimilation of the new observations. Data denial experiments run over select periods of time demonstrate that up to a 6% relative improvement came from the new observations. The use of ensemble forecasts produced even larger forecast improvements. Based on the success of WFIP, DOE is planning follow-on field programs.

  3. Coastal Wind Energy Assessment in the East China Sea with SAR Imagery

    NASA Astrophysics Data System (ADS)

    Lou, Xiulin; Chang, Junfang; Shi, Aiqin

    2013-01-01

    The development of offshore wind farm needs accurate assessment of coastal wind energy. With the development of satellite remote sensing technology, synthetic aperture radar (SAR) provides new methods for coastal wind energy resources assessment. In this study, coastal wind energy remote sensing technology based on space-borne SAR is researched. A long time sequence of sea surface wind speed data in the Zhejiang Coastal Waters (ZCW) of the East China Sea were retrieved from ENVISAT ASAR imagery. Based on the wind speed data, the wind energy resources in ZCW were assessed accurately. The spatial and temporal distribution characteristics of the wind energy resources in ZCW were also investigated and analyzed.

  4. ERDA-NASA wind energy project ready to involve users

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1976-01-01

    The NASA contribution to the Wind Energy Project is discussed. NASA is responsible for the following: (1) identification of cost-effective configurations and sizes of wind-conversion systems, (2) the development of technology needed to produce these systems, (3) the design of wind-conversion systems that are compatible with user requirements, particularly utility networks, and (4) technology transfer obtained from the program to stimulate rapid commercial application of wind systems. Various elements of the NASA program are outlined, including industry-built user operation, the evaluation phase, the proposed plan and schedule for site selection and user involvement, supporting research and technology (e.g., energy storage), and component and subsystem technology development.

  5. Transforming intermittent wind energy to a baseload power supply economically

    SciTech Connect

    Cavallo, A.J.

    1996-12-31

    Wind generated electricity can be transformed from an intermittent to a baseload power supply cost-effectively by taking advantage of the fundamental properties of wind and by the efficient utilization of compressed air energy storage (CAES) systems. A utility scale wind-CAES-transmission system can have a 95 percent capacity factor at a cost of delivered electricity that is about 15 percent greater than a conventional wind energy system with a 34 percent capacity factor. This approach has several compelling advantages. It is based on existing technology and makes best use of costly transmission lines. It produces electricity that is the technical equivalent of that from fossil fuel or nuclear power stations. It minimizes greenhouse gas and other fossil fuel pollution, and is an industrial scale system that could cover a significant fraction of total electrical demand in regions such as the US, Mexico, China or Europe.

  6. Assessment of Global Wind Energy Resource Utilization Potential

    NASA Astrophysics Data System (ADS)

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  7. Wind Energy and Air Emission Reduction Benefits: A Primer

    SciTech Connect

    Jacobson, D.; High, C.

    2008-02-01

    This document provides a summary of the impact of wind energy development on various air pollutants for a general audience. The core document addresses the key facts relating to the analysis of emission reductions from wind energy development. It is intended for use by a wide variety of parties with an interest in this issue, ranging from state environmental officials to renewable energy stakeholders. The appendices provide basic background information for the general reader, as well as detailed information for those seeking a more in-depth discussion of various topics.

  8. Low cost composite materials for wind energy conversion systems

    NASA Technical Reports Server (NTRS)

    Weingart, O.

    1980-01-01

    A winding process utilizing a low-cost E-glass fabric called transverse-filament tape for low-cost production of wind turbine generators (WTG) is described. The process can be carried out continuously at high speed to produce large one-piece parts with tapered wall thicknesses on a tapered mandrel. It is being used to manufacture blades for the NASA/DOE 200-ft-diameter MOD-1 WTG and Rockwell/DOE 40-kW small wind energy conversion system (SWECS).

  9. Polymer Piezoelectric Energy Harvesters for Low Wind Speed

    DOE PAGES

    Li, Dong Jun; Hong, Seungbum; Gu, Shiyuan; ...

    2014-01-06

    We fabricated polymer piezoelectric energy harvesters (PEHs) that can generate electric power at wind speed of less than 4.7 m/s due to their high sensitivity to wind. In order to optimize their operating conditions, we evaluated three distinct PEH operation modes under the boundary conditions of single-side clamping. We found that a PEH connected to an external load of 120 kΩ shows the largest output power of 0.98 μW at 3.9m/s, with wind incident on its side (mode I). We attribute this result to large bending and torsion involved in this operation mode.

  10. Integrating energy storage with wind power in weak electricity grids

    NASA Astrophysics Data System (ADS)

    McDowall, Jim

    Energy storage is required to match wind generation to consumption. This time shifting can be accomplished with several hours of storage, but studies have shown that the economic value of such storage systems is unlikely to support their widespread use. This does not mean that the outlook is uniformly bleak for storage with wind power. This paper discusses storage systems ranging from a few seconds of run time to several hours, and provides a rationale for the use of systems with several minutes of run time to support a high penetration of wind power into weak electricity grids.

  11. Low cost composite materials for wind energy conversion systems

    NASA Astrophysics Data System (ADS)

    Weingart, O.

    1980-06-01

    A winding process utilizing a low-cost E-glass fabric called transverse-filament tape for low-cost production of wind turbine generators (WTG) is described. The process can be carried out continuously at high speed to produce large one-piece parts with tapered wall thicknesses on a tapered mandrel. It is being used to manufacture blades for the NASA/DOE 200-ft-diameter MOD-1 WTG and Rockwell/DOE 40-kW small wind energy conversion system (SWECS).

  12. Wind Measurements with High Energy 2 Micron Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce W.; Koch, Grady J.; Petros, Mulugeta; Beyon, Jeffrey Y.; Amzajerdian, Farzin; Yu, Ji-Rong; Kavaya, Michael J.; Singh, Upendra N.

    2004-01-01

    A coherent Doppler lidar based on an injection seeded Ho:Tm:YLF pulsed laser was developed for wind measurements. A transmitted pulse energy over 75 mJ at 5 Hz repetition rate has been demonstrated. Designs are presented on the laser, injection seeding, receiver, and signal processing subsystems. Sample data of atmospheric measurements are presented including a wind profile extending from the atmospheric boundary layer (ABL) to the free troposphere.

  13. Scaling Characteristics of Mesoscale Wind Fields in the Lower Atmospheric Boundary Layer: Implications for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kiliyanpilakkil, Velayudhan Praju

    Atmospheric motions take place in spatial scales of sub-millimeters to few thousands of kilometers with temporal changes in the atmospheric variables occur in fractions of seconds to several years. Consequently, the variations in atmospheric kinetic energy associated with these atmospheric motions span over a broad spectrum of space and time. The mesoscale region acts as an energy transferring regime between the energy generating synoptic scale and the energy dissipating microscale. Therefore, the scaling characterizations of mesoscale wind fields are significant in the accurate estimation of the atmospheric energy budget. Moreover, the precise knowledge of the scaling characteristics of atmospheric mesoscale wind fields is important for the validation of the numerical models those focus on wind forecasting, dispersion, diffusion, horizontal transport, and optical turbulence. For these reasons, extensive studies have been conducted in the past to characterize the mesoscale wind fields. Nevertheless, the majority of these studies focused on near-surface and upper atmosphere mesoscale regimes. The present study attempt to identify the existence and to quantify the scaling of mesoscale wind fields in the lower atmospheric boundary layer (ABL; in the wind turbine layer) using wind observations from various research-grade instruments (e.g., sodars, anemometers). The scaling characteristics of the mesoscale wind speeds over diverse homogeneous flat terrains, conducted using structure function based analysis, revealed an altitudinal dependence of the scaling exponents. This altitudinal dependence of the wind speed scaling may be attributed to the buoyancy forcing. Subsequently, we use the framework of extended self-similarity (ESS) to characterize the observed scaling behavior. In the ESS framework, the relative scaling exponents of the mesoscale atmospheric boundary layer wind speed exhibit quasi-universal behavior; even far beyond the inertial range of turbulence (Delta

  14. Decadal predictability of regional scale wind speed and wind energy potentials over Central Europe

    NASA Astrophysics Data System (ADS)

    Moemken, Julia; Reyers, Mark; Buldmann, Benjamin; Pinto, Joaquim G.

    2016-04-01

    Regional climate predictions on timescales from one year to one decade are gaining importance since this time frame falls within the planning horizon of politics, economy, and society. In this context, decadal predictions are of particular interest for the development of renewable energies such as wind energy. The present study examines the decadal predictability of regional scale wind speed and wind energy potentials in the framework of the MiKlip consortium ("Mittelfristige Klimaprognosen"; www.fona-miklip.de). This consortium aims to develop a model system based on the Max-Planck-Institute Earth System Model (MPI-ESM) that can provide skilful decadal predictions on regional and global scales. Three generations of the decadal prediction system, which differ primarily in their ocean initialisation, are analysed here. Ensembles of uninitialised historical and yearly initialised hindcast experiments are used to assess different skill scores for 10m wind speeds and wind energy output (Eout) over Central Europe, with special focus given to Germany. With this aim, a statistical-dynamical downscaling (SDD) approach is used for the regionalisation of the global datasets. Its added value is evaluated by comparison of skill scores for MPI-ESM large-scale wind speeds and SDD simulated regional wind speeds. All three MPI-ESM ensemble generations show some forecast skill for annual mean wind speed and Eout over Central Europe on yearly and multi-yearly time scales. The forecast skill is mostly limited to the first years after initialisation. Differences between the three ensemble generations are generally small. The regionalisation preserves and sometimes increases the forecast skill of the global runs but results depend on lead time and ensemble generation. Moreover, regionalisation often improves the ensemble spread. Seasonal Eout skills are generally lower than for annual means. Skill scores are lowest during summer, and persist longest in autumn. A large-scale westerly

  15. Bioinspired turbine blades offer new perspectives for wind energy

    NASA Astrophysics Data System (ADS)

    Cognet, V.; Courrech du Pont, S.; Dobrev, I.; Massouh, F.; Thiria, B.

    2017-02-01

    Wind energy is becoming a significant alternative solution for future energy production. Modern turbines now benefit from engineering expertise, and a large variety of different models exists, depending on the context and needs. However, classical wind turbines are designed to operate within a narrow zone centred around their optimal working point. This limitation prevents the use of sites with variable wind to harvest energy, involving significant energetic and economic losses. Here, we present a new type of bioinspired wind turbine using elastic blades, which passively deform through the air loading and centrifugal effects. This work is inspired from recent studies on insect flight and plant reconfiguration, which show the ability of elastic wings or leaves to adapt to the wind conditions and thereby to optimize performance. We show that in the context of energy production, the reconfiguration of the elastic blades significantly extends the range of operating regimes using only passive, non-consuming mechanisms. The versatility of the new turbine model leads to a large increase of the converted energy rate, up to 35%. The fluid/elasticity mechanisms involved for the reconfiguration capability of the new blades are analysed in detail, using experimental observations and modelling.

  16. Harnessing Wind and Sun: Using Energy Wisely

    ERIC Educational Resources Information Center

    Primary Science Review, 2007

    2007-01-01

    Cassop Primary School and Eastchurch Church of England Primary School were winners of the 2006 Ashden Awards for Sustainable Energy. This article describes how these schools have proved that the promotion of sustainable energy and the responsible use of energy is a central part of their practice and culture. Over the last eight years, a dedicated…

  17. Harnessing Wind and Sun: Using Energy Wisely

    ERIC Educational Resources Information Center

    Primary Science Review, 2007

    2007-01-01

    Cassop Primary School and Eastchurch Church of England Primary School were winners of the 2006 Ashden Awards for Sustainable Energy. This article describes how these schools have proved that the promotion of sustainable energy and the responsible use of energy is a central part of their practice and culture. Over the last eight years, a dedicated…

  18. High resolution reanalysis of wind speeds over the British Isles for wind energy integration

    NASA Astrophysics Data System (ADS)

    Hawkins, Samuel Lennon

    The UK has highly ambitious targets for wind development, particularly offshore, where over 30GW of capacity is proposed for development. Integrating such a large amount of variable generation presents enormous challenges. Answering key questions depends on a detailed understanding of the wind resource and its temporal and spatial variability. However, sources of wind speed data, particularly offshore, are relatively sparse: satellite data has low temporal resolution; weather buoys and met stations have low spatial resolution; while the observations from ships and platforms are affected by the structures themselves. This work uses a state-of-the art mesoscale atmospheric model to produce a new high-resolution wind speed dataset over the British Isles and surrounding waters. This covers the whole region at a resolution of 3km for a period of eleven consecutive years, from 2000 to 2010 inclusive, and is thought to be the first high resolution re-analysis to represent a true historic time series, rather than a statistically averaged climatology. The results are validated against observations from met stations, weather buoys, offshore platforms and satellite-derived wind speeds, and model bias is reduced offshore using satellite derived wind speeds. The ability of the dataset to predict power outputs from current wind farms is demonstrated, and the expected patterns of power outputs from future onshore and offshore wind farms are predicted. Patterns of wind production are compared to patterns of electricity demand to provide the first conclusive combined assessment of the ability of future onshore and offshore wind generation meet electricity demand and contribute to secure energy supplies..

  19. Wind energy for irrigation: wind-assisted pumping from wells. Final report

    SciTech Connect

    Clark, R.N.; Schneider, A.D.; Nelson, V.; Gilmore, E.; Barieau, R.E.

    1981-01-01

    Work is reported on a project whose objectives were: to assemble a complete wind-powered pumping system for irrigation wells in the Southern Great Plains; to adapt or modify existing pumping equipment so that it could effectively be powered by a vertical-axis wind turbine; to develop a data collection system for collecting, recording and processing on-site wind data and mechanical, electrical and hydraulic systems data; to combine data from all systems in an overall analysis that will permit an engineering evaluation of the complete system; to develop a dynamic mathematical model of the pumping system which includes the most appropriate model of the vertical-axis wind turbine; and to make an economic analysis of the wind-powered pumping system and construct a model for predicting the economics of such systems in general. The pumping system uses both a vertical-axis, or Darrieus, wind turbine designed to produce 40 kW in a 15 m/s wind and an electric motor to power a conventional vertical-turbine irrigation pump. The wind turbine furnishes power to the pump only when the windspeed exceeds 6 m/s and is used to reduce the load on the electric motor rather than to replace the motor. The wind-assisted pumping system and its operation are described, as is the data collection system, and the results of the performance data analysis for the wind turbine and the pumping system are discussed. The system's annual energy output is predicted, and the economics are analyzed. (LEW)

  20. Operation of a Wind Turbine-Flywheel Energy Storage System under Conditions of Stochastic Change of Wind Energy

    PubMed Central

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level. PMID:25215326

  1. Operation of a wind turbine-flywheel energy storage system under conditions of stochastic change of wind energy.

    PubMed

    Tomczewski, Andrzej

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.

  2. Fluid Dynamic Aspects of Wind Energy Conversion

    DTIC Science & Technology

    1979-07-01

    An objection to the tip vortex concept is that boundary layer material is sucked into the vortex core , which decreases the total pressure in the...taken equal to 1. An optimally operating turbine has a CD su 8 /9, but when the tower drag is included, CD = I seems a good average value. U’(h): wind...reproduced directly from material supplied by AGARI) or the author. Published July 1979 Copyright © AGARD 1979 All Rights Reserved ISBN 92-835-1326-6

  3. Plans and status of the NASA-Lewis Research Center wind energy project

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1975-01-01

    Wind energy is investigated as a source of energy. The wind energy program that is managed by the NASA-Lewis Research Center is described. The Lewis Research Center's Wind Power Office, its organization, plans, and status are discussed. Major elements of the wind power project included are: an experimental 100 kW wind-turbine generator; first generation industry-built and user-operated wind turbine generators; and supporting research and technology tasks.

  4. Evaluation of the national wind energy development program NOW-2, phase 1

    NASA Astrophysics Data System (ADS)

    1985-09-01

    The situation in the field of wind energy in the Netherlands is depicted for the years 1980 and 1985. Central wind energy production projects (horizontal-axis turbines, offshore applications, multiple wind turbines, system studies), decentralized wind energy production projects (testing projects, test facilities, development of small and medium turbines, autonomous wind-diesel system, feasibility studies, cost-effective wind turbine), and the investigation of the effects of tip vanes on turbines are presented. Opinions of representatives from involved sectors are given.

  5. Terminology Guideline for Classifying Offshore Wind Energy Resources

    SciTech Connect

    Beiter, Philipp; Musial, Walt

    2016-09-01

    The purpose of this guideline is to establish a clear and consistent vocabulary for conveying offshore wind resource potential and to interpret this vocabulary in terms that are familiar to the oil and gas (O&G) industry. This involves clarifying and refining existing definitions of offshore wind energy resource classes. The terminology developed in this guideline represents one of several possible sets of vocabulary that may differ with respect to their purpose, data availability, and comprehensiveness. It was customized to correspond with established offshore wind practices and existing renewable energy industry terminology (e.g. DOE 2013, Brown et al. 2015) while conforming to established fossil resource classification as best as possible. The developers of the guideline recognize the fundamental differences that exist between fossil and renewable energy resources with respect to availability, accessibility, lifetime, and quality. Any quantitative comparison between fossil and renewable energy resources, including offshore wind, is therefore limited. For instance, O&G resources are finite and there may be significant uncertainty associated with the amount of the resource. In contrast, aboveground renewable resources, such as offshore wind, do not generally deplete over time but can vary significantly subhourly, daily, seasonally, and annually. The intent of this guideline is to make these differences transparent and develop an offshore wind resource classification that conforms to established fossil resource classifications where possible. This guideline also provides methods to quantitatively compare certain offshore wind energy resources to O&G resource classes for specific applications. Finally, this guideline identifies areas where analogies to established O&G terminology may be inappropriate or subject to misinterpretation.

  6. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system.

    PubMed

    Yang, Ya; Zhu, Guang; Zhang, Hulin; Chen, Jun; Zhong, Xiandai; Lin, Zong-Hong; Su, Yuanjie; Bai, Peng; Wen, Xiaonan; Wang, Zhong Lin

    2013-10-22

    We report a triboelectric nanogenerator (TENG) that plays dual roles as a sustainable power source by harvesting wind energy and as a self-powered wind vector sensor system for wind speed and direction detection. By utilizing the wind-induced resonance vibration of a fluorinated ethylene-propylene film between two aluminum foils, the integrated TENGs with dimensions of 2.5 cm × 2.5 cm × 22 cm deliver an output voltage up to 100 V, an output current of 1.6 μA, and a corresponding output power of 0.16 mW under an external load of 100 MΩ, which can be used to directly light up tens of commercial light-emitting diodes. Furthermore, a self-powered wind vector sensor system has been developed based on the rationally designed TENGs, which is capable of detecting the wind direction and speed with a sensitivity of 0.09 μA/(m/s). This work greatly expands the applicability of TENGs as power sources for self-sustained electronics and also self-powered sensor systems for ambient wind detection.

  7. Environmental assessment, expanded Ponnequin wind energy project, Weld County, Colorado

    SciTech Connect

    1999-02-01

    The US Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCo) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE`s deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.

  8. Understanding Community Wind Energy Development in Oregon: An Integrated Analysis

    NASA Astrophysics Data System (ADS)

    Yin, Yao

    This research intends to provide insights into community wind energy development in Oregon using an integrated analysis approach, which incorporates GIS Suitability Analysis, Socio-Political Analysis, and Empirical Case Studies. In the GIS analysis, we developed a model through a series of steps (including data acquisition, preprocessing, data management, manipulation and analysis, and output generation) to measure how suitable a location is for developing wind energy in Oregon. The socio-political analysis adopts the Socio-Political Evaluation of Energy Deployment (SPEED) framework and categorized policies and incentives that are applicable to community wind projects into three classes: strategic, tactical, and operational. The empirical case studies, focused on seven projects in Oregon, are analyzed using the actor-network theoretical framework, and their opportunities and barriers are explored as well.

  9. Energy Storage Systems as a Compliment to Wind Power

    NASA Astrophysics Data System (ADS)

    Sieling, Jared D.; Niederriter, C. F.; Berg, D. A.

    2006-12-01

    As Gustavus Adolphus College prepares to install two wind turbines on campus, we are faced with the question of what to do with the excess electricity that is generated. Since the College pays a substantial demand charge, it would seem fiscally responsible to store the energy and use it for peak shaving, instead of selling it to the power company at their avoided cost. We analyzed six currently available systems: hydrogen energy storage, flywheels, pumped hydroelectric storage, battery storage, compressed air storage, and superconducting magnetic energy storage, for energy and financial suitability. Potential wind turbine production is compared to consumption to determine the energy deficit or excess, which is fed into a model for each of the storage systems. We will discuss the advantages and disadvantages of each of the storage systems and their suitability for energy storage and peak shaving in this situation.

  10. Department of Energy WindSentinel Loan Program Description

    SciTech Connect

    Shaw, William J.; Sturges, Mark H.

    2016-12-01

    The U.S. Department of Energy (DOE) currently owns two AXYS WindSentinel buoys that collect a comprehensive set of meteorological and oceanographic data to support resource characterization for wind energy offshore. The two buoys were delivered to DOE’s Pacific Northwest National Laboratory (PNNL) in September, 2014. After acceptance testing and initial performance testing and evaluation at PNNL’s Marine Sciences Laboratory in Sequim, Washington, the buoys have been deployed off the U.S. East Coast. One buoy was deployed approximately 42 km east of Virginia Beach, Virginia from December, 2014 through June, 2016. The second buoy was deployed approximately 5 km off Atlantic City, New Jersey in November, 2015. Data from the buoys are available to the public. Interested parties can create an account and log in to http://offshoreweb.pnnl.gov. In response to a number of inquiries and unsolicited proposals, DOE’s Wind Energy Technologies Office is implementing a program, to be managed by PNNL, to lend the buoys to qualified parties for the purpose of acquiring wind resource characterization data in areas of interest for offshore wind energy development. This document describes the buoys, the scope of the loans, the process of how borrowers will be selected, and the schedule for implementation of this program, including completing current deployments.

  11. Integration of Wind Turbines with Compressed Air Energy Storage

    NASA Astrophysics Data System (ADS)

    Arsie, I.; Marano, V.; Rizzo, G.; Moran, M.

    2009-08-01

    Some of the major limitations of renewable energy sources are represented by their low power density and intermittent nature, largely depending upon local site and unpredictable weather conditions. These problems concur to increase the unit costs of wind power, so limiting their diffusion. By coupling storage systems with a wind farm, some of the major limitations of wind power, such as a low power density and an unpredictable nature, can be overcome. After an overview on storage systems, the Compressed Air Energy Storage (CAES) is analyzed, and the state of art on such systems is discussed. A Matlab/Simulink model of a hybrid power plant consisting of a wind farm coupled with CAES is then presented. The model has been successfully validated starting from the operating data of the McIntosh CAES Plant in Alabama. Time-series neural network-based wind speed forecasting are employed to determine the optimal daily operation strategy for the storage system. A detailed economic analysis has been carried out: investment and maintenance costs are estimated based on literature data, while operational costs and revenues are calculated according to energy market prices. As shown in the paper, the knowledge of the expected available energy is a key factor to optimize the management strategies of the proposed hybrid power plant, allowing to obtain environmental and economic benefits.

  12. The Etesian wind system and wind energy potential over the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Dafka, Stella; Xoplaki, Elena; Garcia-Bustamante, Elena; Toreti, Andrea; Zanis, Prodromos; Luterbacher, Juerg

    2013-04-01

    The Mediterranean region lies in an area of great climatic interest since it is influenced by some of the most relevant mechanisms of the global climate system. In the frame of the three Europe 2020 priorities for a smart, sustainable and inclusive economy delivering high levels of employment, productivity and social cohesion, the Mediterranean energy plan is of paramount importance at the European level, being an area with a significant potential for renewable energy from natural sources that could play an important role in responding to climate change effects over the region. We present preliminary results on a study of the Etesian winds in the past, present and future time. We investigate the variability and predictability of the wind field over the Aegean. Statistical downscaling based on several methodologies will be applied (e.g. canonical correlation analysis and multiple linear regression). Instrumental time series, Era-Interim and the 20CR reanalyses will be used. Large-scale climate drivers as well as the influence of local/regional factors and their interaction with the Etesian wind field will be addressed. Finally, the Etesian wind resources on the present and future climate will be assessed in order to identify the potential areas suitable for the establishment of wind farms and the production of wind power in the Aegean Sea.

  13. The UTRC wind energy conversion system performance analysis for horizontal axis wind turbines (WECSPER)

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1981-01-01

    The theory for the UTRC Energy Conversion System Performance Analysis (WECSPER) for the prediction of horizontal axis wind turbine performance is presented. Major features of the analysis are the ability to: (1) treat the wind turbine blades as lifting lines with a prescribed wake model; (2) solve for the wake-induced inflow and blade circulation using real nonlinear airfoil data; and (3) iterate internally to obtain a compatible wake transport velocity and blade loading solution. This analysis also provides an approximate treatment of wake distortions due to tower shadow or wind shear profiles. Finally, selected results of internal UTRC application of the analysis to existing wind turbines and correlation with limited test data are described.

  14. The Role of Atmospheric Instability and Importance of Wind Shear Exponent on Wind and Solar Energy Potential

    NASA Astrophysics Data System (ADS)

    Pamuk, Onur; Akyol, Altan; Aslan, Zafer

    2013-04-01

    Spatial and temporal distributions of wind and solar energy potential are function of atmospheric stability, wind shear exponent, aerosol contents, heat fluxes etc. Richardson number is one of the indicators of the evolution of atmospheric instability. It is a function of the static stability and wind shear exponent. The logarithmic wind profile is commonly used for wind energy evaluation processes in the atmospheric surface layer. Definition of the vertical variation of horizontal wind speeds above the ground by logarithmic profile is limited by 100 meters. The main objective of this study is to take into account atmospheric instability and wind shear exponent in wind power assessment. In the first part of this paper, stability parameters and wind shear exponent have been calculated by using radiosonde data and the wind measuring system for the local area of Istanbul; northwestern part of Turkey between 2011 and 2012. These data were analyzed to define hourly, daily, monthly and seasonal variations of the Richardson number and wind shear exponent. Analyses of early morning soundings produced negative skewwness and afternoon soundings produced a positive skewwness for Ri numbers. The larger negative values of Ri numbers (extremely unstable conditions) have been observed in early morning in winter at the lower levels of atmosphere. The second part of this study covers temporal variations of wind speed and daily total radiation in Istanbul. By using time series and wavelet techniques, small, meso and large scale factors and their roles on wind speed and total daily solar radiation variations have been analyzed. The second part of the paper underlines the role of atmospheric stability and importance of wind shear exponent on variations of wind and solar energy potential. The results of this study would be applicable in the field of wind and solar combined energy systems. Keywords: Wind shear exponent, total daily radiation, wavelet wind and solar energy. Corresponding

  15. Risk based ASME Code requirements

    SciTech Connect

    Gore, B.F.; Vo, T.V.; Balkey, K.R.

    1992-09-01

    The objective of this ASME Research Task Force is to develop and to apply a methodology for incorporating quantitative risk analysis techniques into the definition of in-service inspection (ISI) programs for a wide range of industrial applications. An additional objective, directed towards the field of nuclear power generation, is ultimately to develop a recommendation for comprehensive revisions to the ISI requirements of Section XI of the ASME Boiler and Pressure Vessel Code. This will require development of a firm technical basis for such requirements, which does not presently exist. Several years of additional research will be required before this can be accomplished. A general methodology suitable for application to any industry has been defined and published. It has recently been refined and further developed during application to the field of nuclear power generation. In the nuclear application probabilistic risk assessment (PRA) techniques and information have been incorporated. With additional analysis, PRA information is used to determine the consequence of a component rupture (increased reactor core damage probability). A procedure has also been recommended for using the resulting quantified risk estimates to determine target component rupture probability values to be maintained by inspection activities. Structural risk and reliability analysis (SRRA) calculations are then used to determine characteristics which an inspection strategy must posess in order to maintain component rupture probabilities below target values. The methodology, results of example applications, and plans for future work are discussed.

  16. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    SciTech Connect

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01

    The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability. The downside is costs are

  17. High energy neutrinos from pulsar wind nebulae

    NASA Astrophysics Data System (ADS)

    Di Palma, Irene

    2017-09-01

    Several Pulsar Wind Nebulae have been detected in the TeV band in the last decade.The TeV emission is typically interpreted in a purely leptonic scenario, but this usually requires that the magnetic field in the Nebula be much lower than the equipartition value and the assumption of an enhanced target radiation at IR frequencies. In this work we consider the possibility that, in addition to the relativistic electrons, also relativistic hadrons are present in these nebulae. Assuming that part of the emitted TeV photons are of hadronic origin, we compute the associated flux of ∼ 1 ‑ 100 TeV neutrinos. We use the IceCube non detection to put constraints on the fraction of TeV photons that might be contributed by hadrons and estimate the number of neutrino events that can be expected from these sources in IceCube, ANTARES and in KM3Net.

  18. Ambient wind energy harvesting using cross-flow fluttering

    NASA Astrophysics Data System (ADS)

    Li, Shuguang; Yuan, Jianping; Lipson, Hod

    2011-01-01

    In this experimental study, we propose and test a bioinspired piezo-leaf architecture which converts wind energy into electrical energy by wind-induced fluttering motion. While conventional fluttering devices are arranged in parallel with the flow direction, here we explore a dangling cross-flow stalk arrangement. This architecture amplifies the vibration by an order of magnitude, making it appropriate for low-cost organic piezomaterials. We fabricated prototypes using flexible piezoelectric materials as stalks and polymer film as leaves. A series of experiments demonstrated a peak output power of approximately 600 μ W and maximum power density of approximately 2 mW/cm3 from a single leaf.

  19. Problems in Assessment of Wind Energy Potential and Acoustic Noise Distribution when Designing Wind Power Plants

    NASA Astrophysics Data System (ADS)

    Bezrukovs, Valerijs; Bezrukovs, Vladislavs; Levins, Nikolajs

    2011-01-01

    Interest in the use of renewable energy in Latvia is increasing every year. Government support and availability of large unpopulated areas on the coast makes the use of these lands for the placement of large wind power plants (WPP) attractive. The key factors that determine the choice of the location of WPP are reliable information about distribution of the resource of wind energy in this area and the influence of wind turbines on the environment. The paper presents the results of years-long observations on the density fluctuations of wind energy at heights of 10 to 60 m in the area in the Baltic Sea coast in Ventspils and Ainaži. The velocity observations since 2007 have been gathered by measurements complex of the LOGGER 9200 Symphonie type. The results are presented in the form of tables, bar charts and graphs. Extrapolation results of wind velocity and density mean values on heights up to 150 m for the two areas with different terrain types were shown. The distribution of acoustic noise in the vicinity of the WPP was studied and an assessment of its impact on the environment in accordance with the Latvian government requirements was conducted.

  20. Evaluation of wind energy cost and site selection for a wind-farm in the south of Algeria

    NASA Astrophysics Data System (ADS)

    Benmemdejahed, M.; Mouhadjer, S.

    2016-07-01

    The aim of this paper is to evaluate the wind resource on five sites situated in Algerian Sahara, namely Adrar, Ain Salah, Bordj Badji Mokhtar, Hassi R'Mel and Tindouf. The hourly data used in this study span a period of last five years. The parameters considered are the wind speed. After the evaluation of wind energy, the economic evaluation was conducted for wind farm (18 MW). We select the best site from the five sites and an appropriate wind turbine from nine wind turbine, according to the lowest possible unity cost of energy. Hassi R'Mel is favorable site for installed wind frame In order to reach the rated power 18 MW of the wind farm; our choice is focused on one row of twelve wind turbines (wgt1.5MW) from East South East (ESE) to West North West (WNW), 320 m of distance between each two turbines.

  1. Environmental Assessment Expanded Ponnequin Wind Energy Project Weld County, Colorado

    SciTech Connect

    N /A

    1999-03-02

    The U.S.Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCO) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. DOE completed an environmental assessment of the original proposed project in August 1997. Since then, the geographic scope and the design of the project changed, necessitating additional review of the project under the National Environmental Policy Act. The project now calls for the possible construction of up to 48 wind turbines on State and private lands. PSCo and its partners have initiated construction of the project on private land in Weld County, Colorado. A substation, access road and some wind turbines have been installed. However, to date, DOE has not provided any funding for these activities. DOE, through its Commercialization Ventures Program, has solicited applications for financial assistance from state energy offices, in a teaming arrangement with private-sector organizations, for projects that will accelerate the commercialization of emerging renewable energy technologies. The Commercialization Ventures Program was established by the Renewable Energy and Energy Efficiency Technology Competitiveness Act of 1989 (P.L. 101-218) as amended by the Energy Policy Act of 1992 (P.L. 102-486). The Program seeks to assist entry into the marketplace of newly emerging renewable energy technologies, or of innovative applications of existing technologies. In short, an emerging renewable energy technology is one which has already proven viable but which has had little or no operational experience. The Program is managed by the Department of Energy, Office of Energy Efficiency and Renewable Energy. The

  2. 75 FR 68780 - Cedar Creek Wind Energy, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ...] Cedar Creek Wind Energy, LLC; Notice of Filing November 2, 2010. Take notice that on October 27, 2010, Cedar Creek Wind Energy, LLC (Cedar Creek) filed an appeal with the Federal Energy Regulatory...

  3. Impact of novel energy sources: OTEC, wind, goethermal, biomass

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.

    1978-01-01

    Alternate energy conversion methods such as ocean thermal energy conversion (OTEC), wind power, geothermal wells and biomass conversion are being explored, and re-examined in some cases, for commercial viability. At a time when United States fossil fuel and uranium resources are found to be insufficient to supply national needs into the twenty-first century, it is essential to broaden the base of feasible energy conversion technologies. The motivations for development of these four alternative energy forms are established. Primary technical aspects of OTEC, wind, geothermal and biomass energy conversion systems are described along with a discussion of relative advantages and disadvantages of the concepts. Finally, the sentiment is voiced that each of the four systems should be developed to the prototype stage and employed in the region of the country and in the sector of economy which is complimentary to the form of system output.

  4. Trends in wind climates over the contiguous US: Implications for the wind energy resource

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Barthelmie, R. J.; Takle, G. S.

    2008-12-01

    Understanding how evolution of the global climate system has been manifest as changes in near-surface wind regimes in the past and how near-surface flow regimes might alter in the future is of great relevance to; the insurance industry, the construction and maritime industries, surface energy balance estimation, the community charged with mitigating coastal erosion, the agricultural industry, forest and infrastructure protection communities, and the burgeoning wind energy industry. A comprehensive analysis of wind speed trends over the contiguous USA during the end of the twentieth century and early twenty-first century is presented using output from 2 observational data sets, 4 reanalysis products and 2 regional climate models. The analysis indicates substantial differences between trends derived from observational wind speed data, reanalysis products and RCMs, and indeed between wind speeds from different reanalysis data sets and RCMs. The two observational data sets both exhibit an overwhelming dominance of declining trends in both the 50th and 90th percentile wind speeds, which is also the case for simulations conducted using MM5 with NCEP-2 boundary conditions. However, converse trends are seen in NARR, other global reanalyses and the RSM. Trends in percentile of the wind speed distribution are regionally consistent within each data source but exhibit large discrepancies between data sources particularly over the Midwest. In order to address questions regarding whether changes in the annual mean wind speed are associated with increased inter- annual variability, output from the data sets were used to compute the annual mean at each station or grid cell and one metric of variability (the variance of seven year windows of annual mean wind speed). Each metric was then subject to trend analysis. Results indicate stations or grid cells that exhibit a statistically significant trend in mean wind speed also tend to exhibit a statistically significant change in the

  5. Wind energy potential assessment to estimate performance of selected wind turbine in northern coastal region of Semarang-Indonesia

    NASA Astrophysics Data System (ADS)

    Premono, B. S.; Tjahjana, D. D. D. P.; Hadi, S.

    2017-01-01

    The aims of this paper are to investigate the characteristic of the wind speed and wind energy potential in the northern coastal region of Semarang, Central Java, Indonesia. The wind data was gained from Meteorological Station of Semarang, with ten-min average time series wind data for one year period, at the height of 10 m. Weibull distribution has been used to determine the wind power density and wind energy density of the site. It was shown that the value of the two parameters, shape parameter k, and scale parameter c, were 3.37 and 5.61 m/s, respectively. The annual mean wind speed and wind speed carrying the maximum energy were 5.32 m/s and 6.45 m/s, respectively. Further, the annual energy density at the site was found at a value of 103.87 W/m2, and based on Pacific North-west Laboratory (PNL) wind power classification, at the height of 10 m, the value of annual energy density is classified into class 2. The commercial wind turbine is chosen to simulate the wind energy potential of the site. The POLARIS P25-100 is most suitable to the site. It has the capacity factor 29.79% and can produce energy 261 MWh/year.

  6. Study of a wind energy conversion system in New Hampshire

    NASA Astrophysics Data System (ADS)

    Lockwood, J.; Kraft, G.; Pregent, G.; Smukler, L.

    1981-08-01

    Concern over conventional energy costs and supplies is currently strong, particularly in New England region where eighty percent of the total energy is oil based; furthermore, forty percent of this region's total energy is OPEC oil. These figures contrast with national averages of forty-seven and thirteen percent, respectively (1). The quest to develop alternative and renewable energy sources indigenous to New England is understandable in light of these figures. The wind is one such source. The study of wind energy can be divided into three basic areas; these are technical, legal-institutional, and financial. The technical area encompasses collection and analysis of wind data, selection and installation of wind turbines and peripheral equipment, and operation and maintenance. The legal-institutional area encompasses the resolution of such issues as land use policies, power contracts, and state and federal regulations. The financial area encompasses the examination of investment opportunities made available by various site-machine combinations and the selling of such opportunities to the investment community.

  7. Enabling Technologies for High Penetration of Wind and Solar Energy

    SciTech Connect

    Denholm, P.

    2011-01-01

    High penetration of variable wind and solar electricity generation will require modifications to the electric power system. This work examines the impacts of variable generation, including uncertainty, ramp rate, ramp range, and potentially excess generation. Time-series simulations were performed in the Texas (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power provide up to 80% of the electric demand. Different enabling technologies were examined, including conventional generator flexibility, demand response, load shifting, and energy storage. A variety of combinations of these technologies enabled low levels of surplus or curtailed wind and solar generation depending on the desired penetration of renewable sources. At lower levels of penetration (up to about 30% on an energy basis) increasing flexible generation, combined with demand response may be sufficient to accommodate variability and uncertainty. Introduction of load-shifting through real-time pricing or other market mechanisms further increases the penetration of variable generation. The limited time coincidence of wind and solar generation presents increasing challenges as these sources provide greater than 50% of total demand. System flexibility must be increased to the point of virtually eliminating must-run baseload generators during periods of high wind and solar generation. Energy storage also becomes increasingly important as lower cost flexibility options are exhausted. The study examines three classes of energy storage - electricity storage, including batteries and pumped hydro, hybrid storage (compressed-air energy storage), and thermal energy storage. Ignoring long-distance transmission options, a combination of load shifting and storage equal to about 12 hours of average demand may keep renewable energy curtailment below 10% in the simulated system.

  8. On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece

    NASA Astrophysics Data System (ADS)

    Caralis, George; Perivolaris, Yiannis; Rados, Konstantinos; Zervos, Arthouros

    2008-01-01

    Wind energy is now a mature technology and can be considered as a significant contributor in reducing CO2 emissions and protecting the environment. To meet the wind energy national targets, effective implementation of massive wind power installed capacity in the power supply system is required. Additionally, capacity credit is an important issue for an unstable power supply system as in Greece. To achieve high and reliable wind energy penetration levels into the system, the effect of spatial dispersion of wind energy installations within a very wide area (e.g. national level) on the power capacity credit should be accounted for. In the present paper, a methodology for estimating the effect of spatial dispersion of wind farm installations on the capacity credit is presented and applied for the power supply system of Greece. The method is based on probability theory and makes use of wind forecasting models to represent the wind energy potential over any candidate area for future wind farm installations in the country. Representative wind power development scenarios are studied and evaluated. Results show that the spatial dispersion of wind power plants contributes beneficially to the wind capacity credit.

  9. Wind versus Biofuels for Addressing Climate, Health, and Energy

    SciTech Connect

    Jacobson, Mark Z.

    2007-01-29

    The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

  10. Wind vs. Biofuels: Addressing Climate, Health and Energy

    SciTech Connect

    Professor Mark Jacobson

    2007-01-29

    The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

  11. Role of third party power producer in wind energy

    SciTech Connect

    Van Dyck, W.K.

    1982-06-01

    Windfarm's recent experiences as a ''third party'' entrepeneur in the development of large scale wind energy projects is reviewed. Two large scale wind turbine generators--the MOD 2 and the MOD 5A--have been demonstrated. As a third party developer Windfarms packages the technology in a way that eliminates risk for the utility and puts that risk on outside institutional and venture capital investors. First, windfarm sites must be identified. An 80,000 kilowatt project has begun at Kahuku Point, Oahu, and another 4,000Kw site on Hawaii. A 350,000 kilowatt windfarm 30 miles northeast of San Francisco has been contracted. Government cuts in the 1982 R and D wind power budget, and a threat of the withdrawal of alternative energy tax credits, have been a major challenge. Windfarms is currently developing ideas to fund additional R and D, in lieu of a $ million DOE cutback.

  12. How important is getting the land surface energy exchange correct in WRF for wind energy forecasting?

    NASA Astrophysics Data System (ADS)

    Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.

    2013-12-01

    Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in

  13. Mesoscale Simulations of a Wind Ramping Event for Wind Energy Prediction

    SciTech Connect

    Rhodes, M; Lundquist, J K

    2011-09-21

    Ramping events, or rapid changes of wind speed and wind direction over a short period of time, present challenges to power grid operators in regions with significant penetrations of wind energy in the power grid portfolio. Improved predictions of wind power availability require adequate predictions of the timing of ramping events. For the ramping event investigated here, the Weather Research and Forecasting (WRF) model was run at three horizontal resolutions in 'mesoscale' mode: 8100m, 2700m, and 900m. Two Planetary Boundary Layer (PBL) schemes, the Yonsei University (YSU) and Mellor-Yamada-Janjic (MYJ) schemes, were run at each resolution as well. Simulations were not 'tuned' with nuanced choices of vertical resolution or tuning parameters so that these simulations may be considered 'out-of-the-box' tests of a numerical weather prediction code. Simulations are compared with sodar observations during a wind ramping event at a 'West Coast North America' wind farm. Despite differences in the boundary-layer schemes, no significant differences were observed in the abilities of the schemes to capture the timing of the ramping event. As collaborators have identified, the boundary conditions of these simulations probably dominate the physics of the simulations. They suggest that future investigations into characterization of ramping events employ ensembles of simulations, and that the ensembles include variations of boundary conditions. Furthermore, the failure of these simulations to capture not only the timing of the ramping event but the shape of the wind profile during the ramping event (regardless of its timing) indicates that the set-up and execution of such simulations for wind power forecasting requires skill and tuning of the simulations for a specific site.

  14. High-Energy Emission from Colliding Winds in Massive Binaries

    NASA Astrophysics Data System (ADS)

    Corcoran, Michael; Gull, Theodore; Pollock, Andy; Moffat, Anthony; Hamaguchi, Kenji; Pittard, Julian; Russell, Christopher

    Strong shocks produced by colliding winds in massive binaries was originally understood as a mechanism by which massive stellar systems could generate observable X-ray emission. The first X-ray observations of massive stars showed that most massive stars (binary or not) were X-ray sources, and also indicated that massive binaries were only slightly brighter in X-rays than their single cousins. Over the past three and a half decades, observations at X-ray and higher energy have confirmed the presence of variable, hard emission associated with colliding wind shocks in a number of important system. In this talk I'll review the status of our understanding of the production of X-rays from wind-wind shocks, and review some key observational X-ray spectral and temporal properties for some important colliding wind systems. I'll also discuss how the study of the X-ray emission generated along the colliding wind bow shock provides important information about the mass-loss process in massive binaries.

  15. Proceedings: panel on information dissemination for wind energy

    SciTech Connect

    Weis, P.

    1980-04-01

    This meeting was called as part of a multi-year planning effort. Groups involved in the production and/or dissemination of information on wind energy were invited to describe their current activities and their perceptions of the needs of the 80's in this area. Participants exchanged copies of materials they distribute regularly and discussed frequently asked questions.

  16. Occupational contact dermatitis in the wind energy industry.

    PubMed

    Lárraga-Piñones, G; Heras-Mendaza, F; Conde-Salazar, L

    2012-12-01

    In 2010, wind energy coverage in Spain increased by 16%, making the country the world's fourth largest producer in a fast-developing industry that is also a source of employment. Occupational skin diseases in this field have received little attention. The present study aims to describe the main characteristics of skin diseases affecting workers in the wind energy industry and the allergens involved. We performed a descriptive, observational study of workers from the wind energy industry with suspected contact dermatitis who were referred to the occupational dermatology clinic of the National School of Occupational Medicine (Escuela Nacional de Medicina del Trabajo) between 2009 and 2011. We took both a clinical history and an occupational history, and patients underwent a physical examination and patch testing with the materials used in their work. We studied 10 workers (8 men, 2 women), with a mean age of 33.7 years. The main finding was dermatitis, which affected the face, eyelids, forearms, and hands. Sensitization to epoxy resins was detected in 4 workers, 1 of whom was also sensitized to epoxy curing agents. One worker was sensitized to bisphenol F resin but had a negative result with epoxy resin from the standard series. In the 5 remaining cases, the final diagnosis was irritant contact dermatitis due to fiberglass. Occupational skin diseases are increasingly common in the wind energy industry. The main allergens are epoxy resins. Fiberglass tends to produce irritation. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  17. Marine Hydrokinetic Energy Regulators Workshop: Lessons from Wind

    SciTech Connect

    Baring-Gould, E. Ian

    2015-09-03

    Ian Baring-Gould presented these lessons learned from wind energy to an audience of marine hydrokinetic regulators. Lessons learned spanned the areas of technology advances, using collaborative approaches to involve key stakeholders; using baseline studies to measure and prioritize wildlife impacts, and look at avoidance and mitigation options early in the process.

  18. High-Energy 2-Micrometers Doppler Lidar for Wind Measurements

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Barnes, Bruce W.; Petros, Mulugeta; Yu, Jirong; Amzajerdian, Farzin; Kavaya, Michael J.; Singh, Upendra N.

    2006-01-01

    High-energy 2-micrometer wavelength lasers have been incorporated in a prototype coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Calibration tests and sample atmospheric data are presented on wind and aerosol profiling.

  19. Development of a wind converter and investigation of its operational function. Part 1: Technical description of the wind energy converter

    NASA Astrophysics Data System (ADS)

    Molly, J. P.; Steinheber, R.

    1982-11-01

    A 10 kW wind energy converter was developed by using as far possible standard serial production parts. The design criteria and the description of the essential machinery components of the MODA 10 wind energy converter are discussed. For some special load cases the safety calculation of the important components is shown. The blade control system which qualified for small wind energy converters, is explained. Weight and cost of the MODA 10 are considered.

  20. Wind energy development in California, USA

    USGS Publications Warehouse

    Wilshire, H.; Prose, D.

    1987-01-01

    Windfarms have been developed rapidly in California in the last few years. The impetus has been a legislated goal to generate 10% of California's electricity by windpower by the year 2000, and generous state and federal tax incentives. Windpower is promoted as environmentally benign, which it is in traditional uses. The California program, however, is not traditional: it calls for centralized development of a magnitude sufficient to offset significant amounts of fossil fuels now used to generate electricity. Centralized windfarm development, as exemplified by the Altamont Pass, Tehachapi Mountains, and San Gorgonio Pass developments, involves major road building projects in erosion-sensitive terrain, effective closure of public lands, and other detrimental effects. A windfarm consisting of 200 turbines with 17-m rotors located in steep terrain 16 km from an existing corridor might occupy 235 ha and physically disturb 86 ha. With average annual wind speeds of 22.5 km/h, the farm would generate about 10??106 kWh/year at present levels of capacity. This annual production would offset 1% of one day's consumption of oil in California. To supply 10% of the state's electricity (at 1984 production rates) would require about 600,000 turbines of the type in common use today and would occupy more than 685,000 ha. It is likely that indirect effects would be felt in much larger areas and would include increased air and water pollution resulting from accelerated erosion, degradation of habitat of domestic and wild animals, damage to archaeological sites, and reduction of scenic quality of now-remote areas of the state. ?? 1987 Springer-Verlag New York Inc.

  1. Expert elicitation survey on future wind energy costs

    SciTech Connect

    Wiser, Ryan; Jenni, Karen; Seel, Joachim; Baker, Erin; Hand, Maureen; Lantz, Eric; Smith, Aaron

    2016-09-12

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends -- in part -- on the future costs of both onshore and offshore wind. Here, we summarize the results of an expert elicitation survey of 163 of the world's foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24-30% reductions by 2030 and 35-41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R&D and industry strategy.

  2. Expert elicitation survey on future wind energy costs

    NASA Astrophysics Data System (ADS)

    Wiser, Ryan; Jenni, Karen; Seel, Joachim; Baker, Erin; Hand, Maureen; Lantz, Eric; Smith, Aaron

    2016-10-01

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends—in part—on the future costs of both onshore and offshore wind. Here, we summarize the results of an expert elicitation survey of 163 of the world’s foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24-30% reductions by 2030 and 35-41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R&D and industry strategy.

  3. Electron energy transport in the solar wind: Ulysses observations

    NASA Technical Reports Server (NTRS)

    Scime, Earl; Gary, S. Peter; Phillips, J. L.; Corniileau-Wehrlin, N.; Solomon, J.

    1995-01-01

    The electron heat flux in the solar wind has been measured by the Ulysses solar wind plasma experiment in the ecliptic from 1 to 5 AU and out of the ecliptic during the recently completed pass over the solar south pole and the ongoing pass over the solar north pole. Although the electron heat flux contains only a fraction of the kinetic energy of the solar wind. the available energy is sufficient to account for the non-adiabatic expansion of the solar wind electrons. The Ulysses measurements indicate that the electron heat flux is actively dissipated in the solar wind. The exact mechanism or mechanisms is unknown. but a model based on the whistler heat flux instability predicts radial gradients for the electron heat flux in good agreement with the data. We will present measurements of the correlation between wave activity measured by the unified radio and plasma experiment (URAP) and the electron heat flux throughout the Ulysses mission. The goal is to determine if whistler waves are a good candidate for the observed electron heat flux dissipation. The latitudinal gradients of the electron heat flux. wave activity. and electron pressure will be discussed in light of the changes in the magnetic field geometry from equator to poles.

  4. Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska

    SciTech Connect

    Hiester, T.R.

    1980-06-01

    This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

  5. Effect of wind and temperature gradients on received acoustic energy

    NASA Technical Reports Server (NTRS)

    Brienzo, Richard K.

    1990-01-01

    The effect of refraction due to wind and temperature gradients on energy received from low flying aircraft is examined. A series of helicopter and jet flyby's were recorded with a microphone array on two separate days, each with distinctly different meteorological conditions. Energy in the 100 to 200 Hertz band is shown as a function of aircraft range from the array, and compared with the output of the Fast Field Program.

  6. Wind-energy Science, Technology and Research (WindSTAR) Consortium: Curriculum, Workforce Development, and Education Plan Final Report

    SciTech Connect

    Manwell, James

    2013-03-19

    The purpose of the project is to modify and expand the current wind energy curriculum at the University of Massachusetts Amherst and to develop plans to expand the graduate program to a national scale. The expansion plans include the foundational steps to establish the American Academy of Wind Energy (AAWE). The AAWE is intended to be a cooperative organization of wind energy research, development, and deployment institutes and universities across North America, whose mission will be to develop and execute joint RD&D projects and to organize high-level science and education in wind energy

  7. Economic Development Benefits from Wind Energy in Nebraska: A Report for the Nebraska Energy Office (Revised)

    SciTech Connect

    Lantz, E.

    2009-06-01

    This report focuses on the economic development impacts estimated from building and operating 7,800 MW of new wind power in Nebraska. This level of development is on the scale envisioned in the Department of Energy (DOE) report 20% Wind Energy by 2030. A practical first step to building 7,800 of wind is completing 1,000 MW. We also include the estimated economic impacts to Nebraska from building 1,000 MW of wind power. Our primary analysis indicates that the development and construction of approximately 7,800 MW of wind energy in Nebraska by 2030 will support 20,600 to 36,500 annual full-time equivalents (AFTE). In addition, operating the full 7,800 MW of wind energy could support roughly 2,000 to 4,000 full-time workers throughout the operating life of the wind facilities (LFTE). Nebraska's economy is estimated to see an average annual boost in economic activity ranging from $140 million to $260 million solely from construction and development related activities between 2011 and 2030. An additional boost of $250 - $442 million annually is estimated from operating 7,800 MW of wind capacity.

  8. Simulation of the Atmospheric Boundary Layer for Wind Energy Applications

    NASA Astrophysics Data System (ADS)

    Marjanovic, Nikola

    Energy production from wind is an increasingly important component of overall global power generation, and will likely continue to gain an even greater share of electricity production as world governments attempt to mitigate climate change and wind energy production costs decrease. Wind energy generation depends on wind speed, which is greatly influenced by local and synoptic environmental forcings. Synoptic forcing, such as a cold frontal passage, exists on a large spatial scale while local forcing manifests itself on a much smaller scale and could result from topographic effects or land-surface heat fluxes. Synoptic forcing, if strong enough, may suppress the effects of generally weaker local forcing. At the even smaller scale of a wind farm, upstream turbines generate wakes that decrease the wind speed and increase the atmospheric turbulence at the downwind turbines, thereby reducing power production and increasing fatigue loading that may damage turbine components, respectively. Simulation of atmospheric processes that span a considerable range of spatial and temporal scales is essential to improve wind energy forecasting, wind turbine siting, turbine maintenance scheduling, and wind turbine design. Mesoscale atmospheric models predict atmospheric conditions using observed data, for a wide range of meteorological applications across scales from thousands of kilometers to hundreds of meters. Mesoscale models include parameterizations for the major atmospheric physical processes that modulate wind speed and turbulence dynamics, such as cloud evolution and surface-atmosphere interactions. The Weather Research and Forecasting (WRF) model is used in this dissertation to investigate the effects of model parameters on wind energy forecasting. WRF is used for case study simulations at two West Coast North American wind farms, one with simple and one with complex terrain, during both synoptically and locally-driven weather events. The model's performance with different

  9. Airflow energy harvesting with high wind velocities for industrial applications

    NASA Astrophysics Data System (ADS)

    Chew, Z. J.; Tuddenham, S. B.; Zhu, M.

    2016-11-01

    An airflow energy harvester capable of harvesting energy from vortices at high speed is presented in this paper. The airflow energy harvester is implemented using a modified helical Savonius turbine and an electromagnetic generator. A power management module with maximum power point finding capability is used to manage the harvested energy and convert the low voltage magnitude from the generator to a usable level for wireless sensors. The airflow energy harvester is characterized using vortex generated by air hitting a plate in a wind tunnel. By using an aircraft environment with wind speed of 17 m/s as case study, the output power of the airflow energy harvester is measured to be 126 mW. The overall efficiency of the power management module is 45.76 to 61.2%, with maximum power point tracking efficiency of 94.21 to 99.72% for wind speed of 10 to 18 m/s, and has a quiescent current of 790 nA for the maximum power point tracking circuit.

  10. Onshore wind energy potential over Iberia: present and future projections

    NASA Astrophysics Data System (ADS)

    Rochinha, Carlos A.; Santos, João A.; Liberato, Margarida L. R.; Pinto, Joaquim G.

    2014-05-01

    Onshore grid-connected wind power generation has been explored for more than three decades in the Iberian Peninsula. Further, increasing attention has been devoted to renewable energy sources in a climate change context. While advantages of wind energy are widely recognized, its distribution is not spatially homogeneous and not uniform throughout the year. Hence, understanding these spatial-temporal distributions is critical in power system planning. The present study aims at assessing the potential power output estimated from 10 m wind components simulated by a regional climate model (CCLM), driven by ERA40 reanalysis. Datasets are available on a grid with a high spatial resolution (approximately 20 km) and over a 40-yr period (1961-2000). Furthermore, several target sites, located in areas with high installed wind generation capacity, are selected for local-to-regional scale assessments. The results show that potential wind power is higher over northern Iberia, mostly in Cantabria and Galicia, while Andalucía and Cataluña record the lowest values. With respect to the intra-annual variability, summer is by far the season with the lowest potential energy outputs. Furthermore, the inter-annual variability reveals an overall downward long-term trend over the 40-yr period, particularly in the winter time series. A CCLM transient experiment, forced by the SRES A1B emission scenario, is also discussed for a future period (2041-2070), after a model validation/calibration process (bias corrections). Significant changes in the wind power potential are projected for the future throughout Iberia, but their magnitude largely depends on the locations. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).

  11. Proceedings of the fourth biennial conference and workshop on wind energy conversion systems

    SciTech Connect

    Kottler, Jr., R. J.

    1980-06-01

    Separate abstracts are included for papers presented concerning research and development requirements and utility interface and institutional issues for small-scale systems; design requirements and research and development requirements for large-scale systems; economic and operational requirements of large-scale wind systems; wind characteristics and wind energy siting; international activities; wind energy applications in agriculture; federal commercialization and decentralization plans; and wind energy innovative systems.

  12. 75 FR 6020 - Electrical Interconnection of the Lower Snake River Wind Energy Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... Bonneville Power Administration Electrical Interconnection of the Lower Snake River Wind Energy Project... their proposed Lower Snake River Wind Energy Project (Wind Project) in Garfield and Columbia counties, Washington. To interconnect the Wind Project, BPA will construct a new substation (Central Ferry Substation...

  13. An Integrated Risk Framework for Gigawatt-scale Deployments of Renewable Energy: The U.S. Wind Energy Case

    SciTech Connect

    Ram, B.

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable wind energy requires a new way of evaluating potential environmental and human impacts. This paper explores an integrated risk framework for renewable wind energy siting decisionmaking.

  14. Potential contribution of wind energy to climate change mitigation

    NASA Astrophysics Data System (ADS)

    Barthelmie, R. J.; Pryor, S. C.

    2014-08-01

    It is still possible to limit greenhouse gas emissions to avoid the 2 °C warming threshold for dangerous climate change. Here we explore the potential role of expanded wind energy deployment in climate change mitigation efforts. At present, most turbines are located in extra-tropical Asia, Europe and North America, where climate projections indicate continuity of the abundant wind resource during this century. Scenarios from international agencies indicate that this virtually carbon-free source could supply 10-31% of electricity worldwide by 2050 (refs , ). Using these projections within Intergovernmental Panel on Climate Change Representative Concentration Pathway (RCP) climate forcing scenarios, we show that dependent on the precise RCP followed, pursuing a moderate wind energy deployment plan by 2050 delays crossing the 2 °C warming threshold by 1-6 years. Using more aggressive wind turbine deployment strategies delays 2 °C warming by 3-10 years, or in the case of RCP4.5 avoids passing this threshold altogether. To maximize these climate benefits, deployment of non-fossil electricity generation must be coupled with reduced energy use.

  15. Statistical and Spectral Analysis of Wind Characteristics Relevant to Wind Energy Assessment Using Tower Measurements in Complex Terrain

    DOE PAGES

    Belu, Radian; Koracin, Darko

    2013-01-01

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  16. From dust devil to sustainable swirling wind energy.

    PubMed

    Zhang, Mingxu; Luo, Xilian; Li, Tianyu; Zhang, Liyuan; Meng, Xiangzhao; Kase, Kiwamu; Wada, Satoshi; Yu, Chuck Wah; Gu, Zhaolin

    2015-02-09

    Dust devils are common but meteorologically unique phenomena on Earth and on Mars. The phenomenon produces a vertical vortex motion in the atmosphere boundary layer and often occurs in hot desert regions, especially in the afternoons from late spring to early summer. Dust devils usually contain abundant wind energy, for example, a maximum swirling wind velocity of up to 25 m/s, with a 15 m/s maximum vertical velocity and 5 m/s maximum near-surface horizontal velocity can be formed. The occurrences of dust devils cannot be used for energy generation because these are generally random and short-lived. Here, a concept of sustained dust-devil-like whirlwind is proposed for the energy generation. A prototype of a circular shed with pre-rotation vanes has been devised to generate the whirlwind flow by heating the air inflow into the circular shed. The pre-rotation vanes can provide the air inflow with angular momentum. The results of numerical simulations and experiment illustrate a promising potential of the circular shed for generating swirling wind energy via the collection of low-temperature solar energy.

  17. From Dust Devil to Sustainable Swirling Wind Energy

    PubMed Central

    Zhang, Mingxu; Luo, Xilian; Li, Tianyu; Zhang, Liyuan; Meng, Xiangzhao; Kase, Kiwamu; Wada, Satoshi; Yu, Chuck Wah; Gu, Zhaolin

    2015-01-01

    Dust devils are common but meteorologically unique phenomena on Earth and on Mars. The phenomenon produces a vertical vortex motion in the atmosphere boundary layer and often occurs in hot desert regions, especially in the afternoons from late spring to early summer. Dust devils usually contain abundant wind energy, for example, a maximum swirling wind velocity of up to 25 m/s, with a 15 m/s maximum vertical velocity and 5 m/s maximum near-surface horizontal velocity can be formed. The occurrences of dust devils cannot be used for energy generation because these are generally random and short-lived. Here, a concept of sustained dust-devil-like whirlwind is proposed for the energy generation. A prototype of a circular shed with pre-rotation vanes has been devised to generate the whirlwind flow by heating the air inflow into the circular shed. The pre-rotation vanes can provide the air inflow with angular momentum. The results of numerical simulations and experiment illustrate a promising potential of the circular shed for generating swirling wind energy via the collection of low-temperature solar energy. PMID:25662574

  18. Economics of wind energy use for irrigation in India.

    PubMed

    Tewari, S K

    1978-11-03

    The production of energy from windmills designed specifically to operate in the low wind velocities that usually prevail in India during the main irrigation season is estimated to be reasonably economical for irrigating small farms from open wells. The economics would improve if irrigation was practiced all year round, even in the hot summer season. The calculations made here are expected to be valid for the windier 10 percent of the locations identified from available wind speed records. Other, windier locations are expected to be identified when more wind speed data are collected in the future. Governmental policies along lines similar to those for rural electrification may be needed to support research and development efforts to optimize the designs of windmills and to promote their use in rural areas.

  19. Simulating and validating coastal gradients in wind energy resources

    NASA Astrophysics Data System (ADS)

    Hahmann, Andrea; Floors, Rogier; Karagali, Ioanna; Vasiljevic, Nikola; Lea, Guillaume; Simon, Elliot; Courtney, Michael; Badger, Merete; Peña, Alfredo; Hasager, Charlotte

    2016-04-01

    The experimental campaign of the RUNE (Reducing Uncertainty of Near-shore wind resource Estimates) project took place on the western coast of Denmark during the winter 2015-2016. The campaign used onshore scanning lidar technology combined with ocean and satellite information and produced a unique dataset to study the transition in boundary layer dynamics across the coastal zone. The RUNE project aims at reducing the uncertainty of near-shore wind resource estimates produced by mesoscale modeling. With this in mind, simulations using the Weather Research and Forecasting (WRF) model were performed to identify the sensitivity in the coastal gradients of wind energy resources to various model parameters and model inputs. Among these: model horizontal grid spacing and the planetary boundary layer and surface-layer scheme. We report on the differences amongst these simulations and preliminary results on the comparison of the model simulations with the RUNE observations of lidar and satellite measurements and near coastal tall mast.

  20. Prediction of the far field noise from wind energy farms

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.; Hubbard, H. H.

    1986-01-01

    The basic physical factors involved in making predictions of wind turbine noise and an approach which allows for differences in the machines, the wind energy farm configurations and propagation conditions are reviewed. Example calculations to illustrate the sensitivity of the radiated noise to such variables as machine size, spacing and numbers, and such atmosphere variables as absorption and wind direction are presented. It is found that calculated far field distances to particular sound level contours are greater for lower values of atmospheric absorption, for a larger total number of machines, for additional rows of machines and for more powerful machines. At short and intermediate distances, higher sound pressure levels are calculated for closer machine spacings, for more powerful machines, for longer row lengths and for closer row spacings.

  1. A desalination plant with solar and wind energy

    NASA Astrophysics Data System (ADS)

    Chen, H.; Ye, Z.; Gao, W.

    2013-12-01

    The shortage of freshwater resources has become a worldwide problem. China has a water shortage, although the total amount of water resources is the sixth in the world, the per capita water capacity is the 121th (a quarter of the world's per capita water capacity), and the United Nations considers China one of the poorest 13 countries in the world in terms of water. In order to increase the supply of fresh water, a realistic way is to make full use of China's long and narrow coastline for seawater desalination. This paper discusses a sea water desalination device, the device adopts distillation, uses the greenhouse effect principle and wind power heating principle, and the two-type start is used to solve the problem of vertical axis wind turbine self-starting. Thrust bearings are used to ensure the stability of the device, and to ensure absorbtion of wind energy and solar energy, and to collect evaporation of water to achieve desalination. The device can absorb solar and wind energy instead of input energy, so it can be used in ship, island and many kinds of environment. Due to the comprehensive utilization of wind power and solar power, the efficiency of the device is more than other passive sea water desalting plants, the initial investment and maintenance cost is lower than active sea water desalting plant. The main part of the device cannot only be used in offshore work, but can also be used in deep sea floating work, so the device can utilise deep sea energy. In order to prove the practicability of the device, the author has carried out theory of water production calculations. According to the principle of conservation of energy, the device ais bsorbing solar and wind power, except loose lost part which is used for water temperature rise and phase transition. Assume the inflow water temperature is 20 °C, outflow water temperature is 70 °C, the energy utilization is 60%, we can know that the water production quantity is 8 kg/ m2 per hour. Comparing with the

  2. Effects of wind-energy facilities on grassland bird distributions

    USGS Publications Warehouse

    Shaffer, Jill A.; Buhl, Deb

    2016-01-01

    The contribution of renewable energy to meet worldwide demand continues to grow. Wind energy is one of the fastest growing renewable sectors, but new wind facilities are often placed in prime wildlife habitat. Long-term studies that incorporate a rigorous statistical design to evaluate the effects of wind facilities on wildlife are rare. We conducted a before-after-control-impact (BACI) assessment to determine if wind facilities placed in native mixed-grass prairies displaced breeding grassland birds. During 2003–2012, we monitored changes in bird density in 3 study areas in North Dakota and South Dakota (U.S.A.). We examined whether displacement or attraction occurred 1 year after construction (immediate effect) and the average displacement or attraction 2–5 years after construction (delayed effect). We tested for these effects overall and within distance bands of 100, 200, 300, and >300 m from turbines. We observed displacement for 7 of 9 species. One species was unaffected by wind facilities and one species exhibited attraction. Displacement and attraction generally occurred within 100 m and often extended up to 300 m. In a few instances, displacement extended beyond 300 m. Displacement and attraction occurred 1 year after construction and persisted at least 5 years. Our research provides a framework for applying a BACI design to displacement studies and highlights the erroneous conclusions that can be made without the benefit of adopting such a design. More broadly, species-specific behaviors can be used to inform management decisions about turbine placement and the potential impact to individual species. Additionally, the avoidance distance metrics we estimated can facilitate future development of models evaluating impacts of wind facilities under differing land-use scenarios.

  3. Evaluating the risk-reduction benefits of wind energy

    SciTech Connect

    Brower, M.C.; Bell, K.; Bernow, S.; Duckworth, M.; Spinney P.

    1996-12-31

    This paper presents preliminary results of a study to evaluate the risk-reduction benefits of wind power for a case study utility system using decision analysis techniques. The costs and risks of two alternative decisions-whether to build a 400 MW gas-fired combined cycle plant or a 1600 MW wind plant in 2003-were compared through computer simulations as fuel prices, environmental regulatory costs, wind and conventional power plant availability, and load growth were allowed to vary. Three different market scenarios were examined: traditional regulation, a short-term power pool, and fixed-price contracts of varying duration. The study concludes that, from the perspective of ratepayers, wind energy provides a net levelized risk-reduction benefit of $3.4 to $7.8/MWh under traditional regulation, and less in the other scenarios. From the perspective of the utility plant owners, wind provides a significant risk benefit in the unregulated market scenarios but none in a regulated market. The methodology and findings should help inform utility resource planning and industry restructuring efforts. 2 figs., 3 tabs.

  4. Wind speed and wind energy potentials in EURO-CORDEX ensemble simulations: evaluation, bias-correction and future changes

    NASA Astrophysics Data System (ADS)

    Moemken, Julia; Reyers, Mark; Feldmann, Hendrik; Pinto, Joaquim G.

    2017-04-01

    The EURO-CORDEX initiative aims at dynamically downscaling the CMIP5 global climate projections to provide an ensemble of high-resolution regional climate change scenarios for Europe. We analyse a multi-model ensemble of recent EURO-CORDEX simulations at 12km resolution focussing on wind speed and wind energy potentials. The analysis is based on 3-hourly 10m wind speeds from 9 different GCM-RCM-chains. For validation, the historical 10m wind speeds are compared to ERA-Interim driven evaluation runs for the same RCMs. This comparison uncovered some substantial biases for wind speeds, which result both from the choice of GCM and RCM. Since these biases may influence the climate change signal, the 10m wind speeds from the historical and the scenario runs are bias corrected. With this aim, a probability mapping is carried out to adjust the simulated wind speeds to the evaluation runs. In a next step, the corrected 10m wind speeds are extrapolated to the average hub height of a wind turbine (here 100m). For this purpose, different approximations for the power law exponent and their influence on the wind speed distribution in 100m were investigated. Finally, gridded wind energy output (Eout) is calculated for two operational wind turbines by taking the specific characteristics of the turbines into account. With this methodology, future changes of wind characteristics relevant for the wind energy production are estimated, including mean changes in annual and seasonal wind energy production, changes in variability and extreme events like long-lasting calm periods.

  5. Wind energy conversion system analysis model (WECSAM) computer program documentation

    SciTech Connect

    Downey, W T; Hendrick, P L

    1982-07-01

    Described is a computer-based wind energy conversion system analysis model (WECSAM) developed to predict the technical and economic performance of wind energy conversion systems (WECS). The model is written in CDC FORTRAN V. The version described accesses a data base containing wind resource data, application loads, WECS performance characteristics, utility rates, state taxes, and state subsidies for a six state region (Minnesota, Michigan, Wisconsin, Illinois, Ohio, and Indiana). The model is designed for analysis at the county level. The computer model includes a technical performance module and an economic evaluation module. The modules can be run separately or together. The model can be run for any single user-selected county within the region or looped automatically through all counties within the region. In addition, the model has a restart capability that allows the user to modify any data-base value written to a scratch file prior to the technical or economic evaluation. Thus, any user-supplied data for WECS performance, application load, utility rates, or wind resource may be entered into the scratch file to override the default data-base value. After the model and the inputs required from the user and derived from the data base are described, the model output and the various output options that can be exercised by the user are detailed. The general operation is set forth and suggestions are made for efficient modes of operation. Sample listings of various input, output, and data-base files are appended. (LEW)

  6. NWTC Aerodynamics Studies Improve Energy Capture and Lower Costs of Wind-Generated Electricity

    SciTech Connect

    2015-08-01

    Researchers at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) have expanded wind turbine aerodynamic research from blade and rotor aerodynamics to wind plant and atmospheric inflow effects. The energy capture from wind plants is dependent on all of these aerodynamic interactions. Research at the NWTC is crucial to understanding how wind turbines function in large, multiple-row wind plants. These conditions impact the cumulative fatigue damage of turbine structural components that ultimately effect the useful lifetime of wind turbines. This work also is essential for understanding and maximizing turbine and wind plant energy production. Both turbine lifetime and wind plant energy production are key determinants of the cost of wind-generated electricity.

  7. A method of harvesting energy from wind using a flapping wing

    NASA Astrophysics Data System (ADS)

    Frunzulica, Florin; Dumitrache, Alexandru; Stoia-Desjka, Marius

    2017-01-01

    In the last decades, the wind energy became more attractive to Romania. Hence many resources are being allocated to develop energetic systems based on wind energy. In this work, using CFD (ANSYS Fluent), we investigate the possibility of harvesting wind energy with a controlled pitch-plunge wing system. For large amplitude of the periodic motions we develop a computational methodology, which uses the moving grid option offered by the ANSYS Fluent code, to evaluate the amount of energy extracted from the wind.

  8. An optimal sizing method for energy storage system in wind farms based on the analysis of wind power forecast error

    NASA Astrophysics Data System (ADS)

    Ye, R. L.; Guo, Z. Z.; Liu, R. Y.; Liu, J. N.

    2016-11-01

    Energy storage system (ESS) in a wind farm can effectively compensate the fluctuations of wind power. How to determine the size of ESS in wind farms is an urgent problem to be solved. A novel method is proposed for designing the optimal size of ESS considering wind power uncertainty. This approach uses non-parametric estimation method to analysis the wind power forecast error (WPFE) and the cumulative wind power deviation (CWPD) within the scheduling period. Then a cost-benefit analysis model is established to obtain the optimal size of ESS based on the analysis of WPFE and CWPD. A series of wind farm data in California are used as numerical cases, which presents that the algorithm presented in this paper has good feasibility and performance in optimal ESS sizing in wind farms.

  9. Smoothing of wind farm output power using prediction based flywheel energy storage system

    NASA Astrophysics Data System (ADS)

    Islam, Farzana

    Being socially beneficial, economically competitive and environment friendly, wind energy is now considered to be the world's fastest growing renewable energy source. However, the stochastic nature of wind imposes a considerable challenge in the optimal management and operation of wind power system. Wind speed prediction is critical for wind energy conversion system since it greatly influences the issues related to effective energy management, dynamic control of wind turbine, and improvement of the overall efficiency of the power generation system. This thesis focuses on integration of energy storage system with wind farm, considering wind speed prediction in the control scheme to overcome the problems associated with wind power fluctuations. In this thesis, flywheel energy storage system (FESS) with adjustable speed rotary machine has been considered for smoothing of output power in a wind farm composed of a fixed speed wind turbine generator (FSWTG). Since FESS has both active and reactive power compensation ability, it enhances the stability of the system effectively. An efficient energy management system combined with supervisory control unit (SCU) for FESS and wind speed prediction has been developed to improve the smoothing of the wind farm output effectively. Wind speed prediction model is developed by artificial neural network (ANN) which has advantages over the conventional prediction scheme including data error tolerance and ease in adaptability. The model for prediction with ANN is developed in MATLAB/Simulink and interfaced with PSCAD/EMTDC. Effectiveness of the proposed control system is illustrated using real wind speed data in various operating conditions.

  10. Simulation study on concentrated wind energy based on dSPACE

    NASA Astrophysics Data System (ADS)

    Song, Haihui; De, Tian

    2011-12-01

    The concentrated wind energy turbine is a new type of wind energy electric generator set which utilizes the rare wind energy after having concentrated it. In order to handle the problem in control system of the concentrated wind energy turbine, this article introduces a set of wind power testing platform based on dSPACE hardware-in-the-loop-simulation, and the control principle about wind power is researched and analyzed based on this testing plat form. This experiment result shows that our testing platform can test not only the whole running process, but also the fault protection function.

  11. 75 FR 10500 - Environmental Assessment Prepared for Proposed Cape Wind Energy Project in Nantucket Sound, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... Minerals Management Service Environmental Assessment Prepared for Proposed Cape Wind Energy Project in... review and comment of an EA and Draft FONNSI prepared by MMS for the Cape Wind Energy Project proposed... Environmental Impact Statement (FEIS) for the Cape Wind Energy Project. The FEIS assessed the...

  12. Community investment in wind farms: funding structure effects in wind energy infrastructure development.

    PubMed

    Beery, Joshua A; Day, Jennifer E

    2015-03-03

    Wind energy development is an increasingly popular form of renewable energy infrastructure in rural areas. Communities generally perceive socioeconomic benefits accrue and that community funding structures are preferable to corporate structures, yet lack supporting quantitative data to inform energy policy. This study uses the Everpower wind development, to be located in Midwestern Ohio, as a hypothetical modeling environment to identify and examine socioeconomic impact trends arising from corporate, community and diversified funding structures. Analysis of five National Renewable Energy Laboratory Jobs and Economic Development Impact models incorporating local economic data and review of relevant literature were conducted. The findings suggest that community and diversified funding structures exhibit 40-100% higher socioeconomic impact levels than corporate structures. Prioritization of funding sources and retention of federal tax incentives were identified as key elements. The incorporation of local shares was found to mitigate the negative effects of foreign private equity, local debt financing increased economic output and opportunities for private equity investment were identified. The results provide the groundwork for energy policies focused to maximize socioeconomic impacts while creating opportunities for inclusive economic participation and improved social acceptance levels fundamental to the deployment of renewable energy technology.

  13. Coherent Doppler Lidar for Boundary Layer Studies and Wind Energy

    NASA Astrophysics Data System (ADS)

    Choukulkar, Aditya

    and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.

  14. Occupational Contact Dermatitis in the Wind Energy Industry.

    PubMed

    Lárraga-Piñones, G; Heras-Mendaza, F; Conde-Salazar, L

    2012-12-01

    BACKGROUND AND OBJECTIVES: In 2010, wind energy coverage in Spain increased by 16%, making the country the world's fourth largest producer in a fast-developing industry that is also a source of employment. Occupational skin diseases in this field have received little attention. The present study aims to describe the main characteristics of skin diseases affecting workers in the wind energy industry and the allergens involved. MATERIAL AND METHODS: We performed a descriptive, observational study of workers from the wind energy industry with suspected contact dermatitis who were referred to the occupational dermatology clinic of the National School of Occupational Medicine (Escuela Nacional de Medicina del Trabajo) between 2009 and 2011. We took both a clinical history and an occupational history, and patients underwent a physical examination and patch testing with the materials used in their work. RESULTS: We studied 10 workers (8 men, 2 women), with a mean age of 33.7 years. The main finding was dermatitis, which affected the face, eyelids, forearms, and hands. Sensitization to epoxy resins was detected in 4 workers, 1 of whom was also sensitized to epoxy curing agents. One worker was sensitized to bisphenol F resin but had a negative result with epoxy resin from the standard series. In the 5 remaining cases, the final diagnosis was irritant contact dermatitis due to fiberglass. CONCLUSIONS: Occupational skin diseases are increasingly common in the wind energy industry. The main allergens are epoxy resins. Fiberglass tends to produce irritation. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  15. Strain energy minimization in SSC (Superconducting Super Collider) magnet winding

    SciTech Connect

    Cook, J.M.

    1990-09-24

    Differential geometry provides a natural family of coordinate systems, the Frenet frame, in which to specify the geometric properties of magnet winding. By a modification of the Euler-Bernoulli thin rod model, the strain energy is defined with respect to this frame. Then it is minimized by a direct method from the calculus of variations. The mathematics, its implementation in a computer program, and some analysis of an SSC dipole by the program will be described. 16 refs.

  16. The International Energy Agency`s role in world-wide wind energy development

    SciTech Connect

    Rangi, R.; Ancona, D.

    1997-12-31

    Wind energy is now being deployed world-wide at a rapidly increasing rate and the International Energy Agency (IEA) has a changing role in its growth. IEA was founded in 1974 within the framework of the Organization for Economic Cooperation and Development (OECD) to collaborate on comprehensive international energy programs. IEA membership consists of eighteen parties from sixteen countries and the European Commission. Recently there has been increasing interest in IEA participation from both OECD and non-OECD countries. Non-OECD countries participating in various IEA Agreements include: China, India, Israel, Korea, and Russia. Because of its diverse international makeup, the IEA is viewed as a source of reliable technical and economic information. The World Bank has approached the Executive Committee for Wind Energy R & D, through the IEA Renewable Energy Working Party, to assist in the expansion of wind deployment. In addition, IEA is moving from R & D programs to include tracking of implementation incentives offered by its members.

  17. WIND MEASUREMENTS WITH HIGH-ENERGY DOPPLER LIDAR

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Kavaya, Michael J.; Barnes, Bruce W.; Beyon, Jeffrey Y.; Petros, Mulugeta; Jirong, Yu; Amzajerdian, Farzin; Slingh, Upendra N.

    2006-01-01

    Coherent lidars at 2-micron wavelengths from holmium or thulium solid-state lasers have been in use to measure wind for applications in meteorology, aircraft wake vortex tracking, and turbulence detection [1,2,3] These field-deployed lidars, however, have generally been of a pulse energy of a few millijoules, limiting their range capability or restricting operation to regions of high aerosol concentration such as the atmospheric boundary layer. Technology improvements in the form of high-energy pulsed lasers, low noise detectors, and high optical quality telescopes are being evaluated to make wind measurements to long ranges or low aerosol concentrations. This research is aimed at developing lidar technology for satellite-based observation of wind on a global scale. The VALIDAR project was initiated to demonstrate a high pulse energy coherent Doppler lidar. VALIDAR gets its name from the concept of validation lidar, in that it can serve as a calibration and validation source for future airborne and spaceborne lidar missions. VALIDAR is housed within a mobile trailer for field measurements.

  18. Globalization of ASME Nuclear Codes and Standards

    SciTech Connect

    Swayne, Rick; Erler, Bryan A.

    2006-07-01

    With the globalization of the nuclear industry, it is clear that the reactor suppliers are based in many countries around the world (such as United States, France, Japan, Canada, South Korea, South Africa) and they will be marketing their reactors to many countries around the world (such as US, China, South Korea, France, Canada, Finland, Taiwan). They will also be fabricating their components in many different countries around the world. With this situation, it is clear that the requirements of ASME Nuclear Codes and Standards need to be adjusted to accommodate the regulations, fabricating processes, and technology of various countries around the world. It is also very important for the American Society of Mechanical Engineers (ASME) to be able to assure that products meeting the applicable ASME Code requirements will provide the same level of safety and quality assurance as those products currently fabricated under the ASME accreditation process. To do this, many countries are in the process of establishing or changing their regulations, and it is important for ASME to interface with the appropriate organizations in those countries, in order to ensure there is effective use of ASME Codes and standards around the world. (authors)

  19. Portable triboelectric based wind energy harvester for low power applications

    NASA Astrophysics Data System (ADS)

    Azad, Puneet; Vaish, Rahul

    2017-06-01

    This article presents conversion of rotational motion into electrical energy using triboelectricity. For this purpose, aluminium and fluorinated ethylene propylene (FEP) films are selected for generating charges during rotational motion. Energy density and power are computed by optimizing various resistors and capacitors. The maximum energy density is found to be 2560 μJ/cm3 across 33 μF. The maximum power is found to be 6.5 μW across 1 MΩ resistor after 400 s. With the availability of such commercially available materials, it is possible to generate a lot of energy, which depends on the size of the system and type of materials. Such portable systems can be used for harvesting wind energy for low power electronic devices.

  20. 77 FR 3073 - American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ...-AI35 American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases... addenda to the ASME Boiler and Pressure Vessel (B&PV) Code, and the ASME Code for Operation and Maintenance of Nuclear Power Plants (OM Code). The final rule also incorporated by reference (with...

  1. Wind energy utilization: A bibliography with abstracts - Cumulative volume 1944/1974

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Bibliography, up to 1974 inclusive, of articles and books on utilization of wind power in energy generation. Worldwide literature is surveyed, and short abstracts are provided in many cases. The citations are grouped by subject: (1) general; (2) utilization; (3) wind power plants; (4) wind power generators (rural, synchronous, remote station); (5) wind machines (motors, pumps, turbines, windmills, home-built); (6) wind data and properties; (7) energy storage; and (8) related topics (control and regulation devices, wind measuring devices, blade design and rotors, wind tunnel simulation, aerodynamics). Gross-referencing is aided by indexes of authors, corporate sources, titles, and keywords.

  2. An advanced data-acquisition system for wind energy projects

    SciTech Connect

    Simms, D.A. ); Cousineau, K.L. )

    1992-10-01

    NREL has subcontracted with Zond Systems, Inc. to develop an advanced data-acquisition system (ADAS) for wind energy projects. The ADAS can be used to simplify the process of making accurate measurements and analyzing. The system utilizes state-of-the-art electronics and telemetry to provide distributed multi-source, multi-channel data acquisition. Local stand-alone microprocessor-based data acquisition modules (DAMs) can be located near sources of measurement. These allow analog data values to be digitized close to the measurement source, thus eliminating the need for long data runs and slip rings. Signals from digital sensors and transducers can also be directly input to the local DAMS. A PC-based ground station is used to coordinate data transmission to and from all remote DAMS, display real-time values, archive data sets, and process and analyze results. The system is capable of acquiring synchronized time-series data from sensors and transducers under a variety of test configurations in an operational wind-park environment. Data acquisition needs of the wind industry differ significantly from those of most other technologies. Most conventional system designs do not handle data coming from multiple distributed sources, nor do they provide telemetry or the ability to mesh multiple incoming digital data streams. This paper describes the capabilities of the ADAS, and how its design and cost objectives are geared to meet anticipated US wind industry needs.

  3. A high resolution WRF model for wind energy forecasting

    NASA Astrophysics Data System (ADS)

    Vincent, Claire Louise; Liu, Yubao

    2010-05-01

    The increasing penetration of wind energy into national electricity markets has increased the demand for accurate surface layer wind forecasts. There has recently been a focus on forecasting the wind at wind farm sites using both statistical models and numerical weather prediction (NWP) models. Recent advances in computing capacity and non-hydrostatic NWP models means that it is possible to nest mesoscale models down to Large Eddy Simulation (LES) scales over the spatial area of a typical wind farm. For example, the WRF model (Skamarock 2008) has been run at a resolution of 123 m over a wind farm site in complex terrain in Colorado (Liu et al. 2009). Although these modelling attempts indicate a great hope for applying such models for detailed wind forecasts over wind farms, one of the obvious challenges of running the model at this resolution is that while some boundary layer structures are expected to be modelled explicitly, boundary layer eddies into the inertial sub-range can only be partly captured. Therefore, the amount and nature of sub-grid-scale mixing that is required is uncertain. Analysis of Liu et al. (2009) modelling results in comparison to wind farm observations indicates that unrealistic wind speed fluctuations with a period of around 1 hour occasionally occurred during the two day modelling period. The problem was addressed by re-running the same modelling system with a) a modified diffusion constant and b) two-way nesting between the high resolution model and its parent domain. The model, which was run with horizontal grid spacing of 370 m, had dimensions of 505 grid points in the east-west direction and 490 points in the north-south direction. It received boundary conditions from a mesoscale model of resolution 1111 m. Both models had 37 levels in the vertical. The mesoscale model was run with a non-local-mixing planetary boundary layer scheme, while the 370 m model was run with no planetary boundary layer scheme. It was found that increasing the

  4. Impact of active and break wind spells on the demand-supply balance in wind energy in India

    NASA Astrophysics Data System (ADS)

    Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal

    2017-01-01

    With an installed capacity of over 19,000 MW, the wind power currently accounts for almost 70% of the total installed capacity among the renewable energy sector in India. The extraction of wind power mainly depends on prevailing meteorology which is strongly influenced by monsoon variability. The monsoon season is characterized by significant fluctuations in between periods of wet and dry spells. During the dry spells, the demand for power from agriculture and cooling equipment increases, whereas during the wet periods, such demand reduces, although, at the same time, the power supply increases because of strong westerly winds contributing to an enhanced production of wind energy. At this backdrop, we aim to assess the impact of intra-seasonal wind variability on the balance of energy supply and demand during monsoon seasons in India. Further, we explore the probable cause of wind variability by relating it to El Nino events. It is observed that the active and break phases in wind significantly impact the overall wind potential output. Although the dry spells are generally found to reduce the overall wind potential, their impact on the potential seems to have declined after the year 2000. The impact of meteorological changes on variations in wind power studied in this work should find applications typically in taking investment decisions on conventional generation facilities, like thermal, which are currently used to maintain the balance of power supply and demand.

  5. Potential Offshore Wind Energy Applications for Enhanced Resolution Scatterometer Products (Invited)

    NASA Astrophysics Data System (ADS)

    Plagge, A. M.; Epps, B.

    2013-12-01

    The multi-decadal record of ocean surface vector winds provided by scatterometer measurements is a valuable resource that has been underutilized by the wind energy sector. Previously, these data were not considered applicable for offshore wind energy analysis; chiefly, the sensors' low resolution limited their desirability. Now, however, enhanced products provide high quality wind vectors at resolutions between 3 and 5km. Potential energy applications currently under investigation include (1) validation of existing commercial wind resource assessment models, (2) investigations of interactions between large existing wind farms and the atmospheric boundary layer including attempts to identify wakes, and (3) an extension of previous studies comparing SAR and scatterometer wind fields with regard to specific wind energy concerns, including wind spectra and Weibull parameters.

  6. Wind Energy Conversion by Plant-Inspired Designs

    PubMed Central

    Mosher, Curtis L.; Henderson, Eric R.

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a “vertical flapping stalk”—the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°–90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced << daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts << daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept. PMID:28085933

  7. Energy map of southwestern Wyoming, Part A - Coal and wind

    USGS Publications Warehouse

    Biewick, Laura R.H.; Jones, Nicholas R.

    2012-01-01

    To further advance the objectives of the Wyoming Landscape Conservation Initiative (WLCI) the U.S. Geological Survey (USGS) and the Wyoming State Geological Survey (WSGS) have compiled Part A of the Energy Map of Southwestern Wyoming. Focusing primarily on electrical power sources, Part A of the energy map is a compilation of both published and previously unpublished coal (including coalbed gas) and wind energy resources data, presented in a Geographic Information System (GIS) data package. Energy maps, data, documentation and spatial data processing capabilities are available in a geodatabase, published map file (pmf), ArcMap document (mxd), Adobe Acrobat PDF map (plate 1) and other digital formats that can be downloaded at the USGS website. Accompanying the map (plate 1) and the geospatial data are four additional plates that describe the geology, energy resources, and related infrastructure. These tabular plates include coal mine (plate 2), coal field (plate 3), coalbed gas assessment unit (plate 4), and wind farm (plate 5) information with hyperlinks to source publications and data on the internet. The plates can be printed and examined in hardcopy, or accessed digitally. The data represent decades of research by the USGS, WSGS, BLM and others, and can facilitate landscape-level science assessments, and resource management decisionmaking.

  8. Value of storage technologies for wind and solar energy

    NASA Astrophysics Data System (ADS)

    Braff, William A.; Mueller, Joshua M.; Trancik, Jessika E.

    2016-10-01

    Wind and solar industries have grown rapidly in recent years but they still supply only a small fraction of global electricity. The continued growth of these industries to levels that significantly contribute to climate change mitigation will depend on whether they can compete against alternatives that provide high-value energy on demand. Energy storage can transform intermittent renewables for this purpose but cost improvement is needed. Evaluating diverse storage technologies on a common scale has proved a major challenge, however, owing to their widely varying performance along the two dimensions of energy and power costs. Here we devise a method to compare storage technologies, and set cost improvement targets. Some storage technologies today are shown to add value to solar and wind energy, but cost reduction is needed to reach widespread profitability. The optimal cost improvement trajectories, balancing energy and power costs to maximize value, are found to be relatively location invariant, and thus can inform broad industry and government technology development strategies.

  9. Wind Energy Conversion by Plant-Inspired Designs.

    PubMed

    McCloskey, Michael A; Mosher, Curtis L; Henderson, Eric R

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a "vertical flapping stalk"-the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°-90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced < daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts < daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept.

  10. Airfoil-based electromagnetic wind energy harvester (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Kevin; Wang, Ya S.

    2017-04-01

    Vibration energy is one of the most common sources of energy that can be harvested from. Two vibration-to-energy conversion mechanisms are piezoelectric and electromagnetic [1,3]. The vibration of a cantilever beam is a popular method to harvest energy from piezoelectric and electromagnetics. When a cantilever beam vibrates from an external force the beam deflects back and forth. A piezoelectric material produces energy from the strain the beam is under. An electromagnetic array produces energy as a coil that is attached to the beam moves across the magnetic field of the array. More energy can be produced when a coil moves through a larger and more concentrated magnetic field. We propose a two degree of freedom aeroelastic energy harvester that uses a Halbach electromagnetic array and microfiber composite (MFC) piezoelectric patches, shown in Fig. 1. A Halbach array is a specific arrangement of magnets that focuses the magnetic field onto one side of the array while negating the field on the other side [2] whereas a normal alternating array has its magnetic field even distributed both sides of the array. The microfiber composite (MFC) patch is primarily for increasing the stiffness while negligibly increasing the mass of the cantilever beam. Wind tunnel test results are presented to characterize power output and the flutter speed of the energy harvester at different wind speeds. The harvester reaches the flutter speed at 3.5 m/s and operates up to 5 m/s and produces a power of 300 mW. The harvester is compact and fits inside an 8in square duct.

  11. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    SciTech Connect

    David Wenzhong Gao

    2012-09-30

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An

  12. Cloud County Community College Wind Energy Technology Project and Renewable Energy Center of Excellence

    SciTech Connect

    Graham, Bruce

    2016-02-26

    Cloud County Community College's (CCCC) Wind Energy Technology (WET) program is a leader in the renewable energy movement across Kansas and the USA. The field of renewable energy is a growing industry which continues to experience high demand for career opportunities. This CCCC/DOE project entailed two phases: 1) the installation of two Northwind 100 wind turbines, and 2) the continued development of the WET program curriculum, including enhancement of the CCCC Blade Repair Certificate program. This report provides a technical account of the total work performed, and is a comprehensive description of the results achieved.

  13. Flutter-driven triboelectrification for harvesting wind energy.

    PubMed

    Bae, Jihyun; Lee, Jeongsu; Kim, SeongMin; Ha, Jaewook; Lee, Byoung-Sun; Park, YoungJun; Choong, Chweelin; Kim, Jin-Baek; Wang, Zhong Lin; Kim, Ho-Young; Park, Jong-Jin; Chung, U-In

    2014-09-23

    Technologies to harvest electrical energy from wind have vast potentials because wind is one of the cleanest and most sustainable energy sources that nature provides. Here we propose a flutter-driven triboelectric generator that uses contact electrification caused by the self-sustained oscillation of flags. We study the coupled interaction between a fluttering flexible flag and a rigid plate. In doing so, we find three distinct contact modes: single, double and chaotic. The flutter-driven triboelectric generator having small dimensions of 7.5 × 5 cm at wind speed of 15 ms(-1) exhibits high-electrical performances: an instantaneous output voltage of 200 V and a current of 60 μA with a high frequency of 158 Hz, giving an average power density of approximately 0.86 mW. The flutter-driven triboelectric generation is a promising technology to drive electric devices in the outdoor environments in a sustainable manner.

  14. High-energy flux evolution of Pulsar Wind Nebulae

    SciTech Connect

    Mattana, F.; Falanga, M.; Goetz, D.

    2008-12-24

    The very high energy {gamma}-ray spectra of Pulsar Wind Nebulae are interpreted as due to inverse Compton scattering of ultrarelativistic electrons on the ambient photons, whereas their X-ray spectra are due to synchrotron emission. We investigate the relation between the {gamma}- and X-ray emission and the pulsars' spin-down luminosity and characteristic age. We find that the {gamma}-to X-ray flux ratio of the nebulae is inversely proportional to the spin-down luminosity ({proportional_to}E{sup -1.9}) and to the characteristic age ({proportional_to}{tau}{sub c}{sup 2.2}) of the parent pulsar. We interpret these results as due to the evolution of the electron energy distribution and the nebular dynamics, supporting the idea of so-called relic pulsar wind nebulae. These empirical relations provide a new tool to classify unidentified diffuse {gamma}-ray sources and to estimate the spin-down luminosity and characteristic age for four rotation powered pulsars with no detected pulsation from the X- and {gamma}--ray properties of the associated pulsar wind nebulae.

  15. Energy harvesting to power sensing hardware onboard wind turbine blade

    SciTech Connect

    Carlson, Clinton P; Schichting, Alexander D; Quellette, Scott; Farinholt, Kevin M; Park, Gyuhae

    2009-10-05

    Wind turbines are becoming a larger source of renewable energy in the United States. However, most of the designs are geared toward the weather conditions seen in Europe. Also, in the United States, manufacturers have been increasing the length of the turbine blades, often made of composite materials, to maximize power output. As a result of the more severe loading conditions in the United States and the material level flaws in composite structures, blade failure has been a more common occurrence in the U.S. than in Europe. Therefore, it is imperative that a structural health monitoring system be incorporated into the design of the wind turbines in order to monitor flaws before they lead to a catastrophic failure. Due to the rotation of the turbine and issues related to lightning strikes, the best way to implement a structural health monitoring system would be to use a network of wireless sensor nodes. In order to provide power to these sensor nodes, piezoelectric, thermoelectric and photovoltaic energy harvesting techniques are examined on a cross section of a CX-100 wind turbine blade in order to determine the feasibility of powering individual nodes that would compose the sensor network.

  16. Primer: The DOE Wind Energy Program's Approach to Calculating Cost of Energy: July 9, 2005 - July 8, 2006

    SciTech Connect

    George, K.; Schweizer, T.

    2008-01-01

    This report details the methodology used by DOE to calculate levelized cost of wind energy and demonstrates the variation in COE estimates due to different financing assumptions independent of wind generation technology.

  17. Distribution of mean kinetic energy around an isolated wind turbine and a characteristic wind turbine of a very large wind farm

    NASA Astrophysics Data System (ADS)

    Cortina, Gerard; Calaf, Marc; Cal, Raúl Bayoán

    2016-11-01

    An isolated wind turbine and a very large wind farm are introduced into large-eddy simulations of an atmospheric boundary layer. The atmospheric flow is forced with a constant geostrophic wind and a time-varying surface temperature extracted from a selected period of the CASES-99 field experiment. A control volume approach is used to directly compare the transfer of mean kinetic energy around a characteristic wind turbine throughout a diurnal cycle considering both scenarios. For the very large wind farm case, results illustrate that the recovery of mean kinetic energy around a wind turbine is dominated by the vertical flux, regardless of atmospheric stratification. Contrarily, for an isolated wind turbine, the recovery is dependent on the background atmospheric stratification and it is produced by a combination of advection, vertical flux, and pressure redistribution. The analysis also illustrates that during the unstable stratification periods vertical entrainment of mean kinetic energy dominates, whereas during the stable regime horizontal entrainment is predominant. Finally, it is observed that in both scenarios, the single wind turbine and the large wind farm cases, turbulent mixing is driven by the background convective stratification during the unstable period and by the effect of the wind turbine during the stable regime.

  18. Lidar-based Research and Innovation at DTU Wind Energy - a Review

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T.

    2014-06-01

    As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site "Østerild" for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 μ coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast scanning continuous-wave based wind lidars

  19. Farm silo application of the ''TARP'' wind energy conversion system

    SciTech Connect

    Duffy, R.E.; Butler, L.; Weisbrich, A.

    1983-08-01

    In this study, previously developed methods of determining wind turbine performance are adapted to the prediction of the performance of the silo application of the Toroidal Augmentor Rotor Platform (TARP). The system studied had three bladed turbines with untwisted, constant chord blades with a NACA 0015 airfoil section. Power coefficients of over one were predicted for two TARP configurations. The effects of varying blade chord, blade angle, and turbine angular velocity were evaluated. The economic feasibility of the silo application of the TARP was analyzed. It was found that this system could be economical in areas of high average wind velocity or where the cost of the energy available from other sources is high.

  20. Farm silo application of the 'TARP' wind energy conversion system

    NASA Astrophysics Data System (ADS)

    Duffy, R. E.; Butler, L.; Weisbrich, A.

    In this study, previously developed methods of determining wind turbine performance are adapted to the prediction of the performance of the silo application of the Toroidal Augmentor Rotor Platform (TARP). The system studied had three bladed turbines with untwisted, constant chord blades with a NACA 0015 airfoil section. Power coefficients of over one were predicted for two TARP configurations. The effects of varying blade chord, blade angle, and turbine angular velocity were evaluated. The economic feasibility of the silo application of the TARP was analyzed. It was found that this system could be economical in areas of high average wind velocity or where the cost of the energy available from other sources is high.

  1. Parametric study of tornado-type wind-energy systems

    SciTech Connect

    Ayad, S.S.

    1981-10-01

    The tornado-type wind energy system uses the pressure drop created by an intense vortex. The vortex is generated in a tower mounted at the turbine exit. The tower serves as a low pressure exhaust for the turbine. In a previous work, the author provided a numerical solution, using the two-equation (k-epsilon) turbulence model, of the tower flow with a uniform wind flow. Results compared favorably with measured values of pressure and showed a turbine diameter of approx. 0.4 times that of the tower to be optimum. In the present work, the author provides results to show the effects of embedding the tower in an atmospheric boundary layer, varying the tower height to diameter ratio, and varying tower diameter using the same system geometry and approach flow conditions. The results indicate a reduction of approx. 28% in power output

  2. Efficient operation of anisotropic synchronous machines for wind energy systems

    NASA Astrophysics Data System (ADS)

    Eldeeb, Hisham; Hackf, Christoph M.; Kullick, Julian

    2016-09-01

    This paper presents an analytical solution for the Maximum-Torque-per-Ampere (MTPA) operation of synchronous machines (SM) with anisotropy and magnetic cross-coupling for the application in wind turbine systems and airborne wind energy systems. For a given reference torque, the analytical MTPA solution provides the optimal stator current references which produce the desired torque while minimizing the stator copper losses. From an implementation point of view, the proposed analytical method is appealing in terms of its fast online computation (compared to classical numerical methods) and its efficiency enhancement of the electrical drive system. The efficiency of the analytical MTPA operation, with and without consideration of cross-coupling, is compared to the conventional method with zero direct current.

  3. Cost analysis of DAWT innovative wind energy systems

    NASA Astrophysics Data System (ADS)

    Foreman, K. M.

    The results of a diffuser augmented wind turbine (DAWT) preliminary design study of three constructional material approaches and cost analysis of DAWT electrical energy generation are presented. Costs are estimated assuming a limited production run (100 to 500 units) of factory-built subassemblies and on-site final assembly and erection within 200 miles of regional production centers. It is concluded that with the DAWT the (busbar) cost of electricity (COE) can range between 2.0 and 3.5 cents/kW-hr for farm and REA cooperative end users, for sites with annual average wind speeds of 16 and 12 mph respectively, and 150 kW rated units. No tax credit incentives are included in these figures. For commercial end users of the same units and site characteristics, the COE ranges between 4.0 and 6.5 cents/kW-hr.

  4. Atlas de Recursos Eólicos del Estado de Oaxaca (The Spanish version of Wind Energy Resource Atlas of Oaxaca)

    SciTech Connect

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2004-04-01

    The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  5. Avian collision risk models for wind energy impact assessments

    SciTech Connect

    Masden, E.A.; Cook, A.S.C.P.

    2016-01-15

    With the increasing global development of wind energy, collision risk models (CRMs) are routinely used to assess the potential impacts of wind turbines on birds. We reviewed and compared the avian collision risk models currently available in the scientific literature, exploring aspects such as the calculation of a collision probability, inclusion of stationary components e.g. the tower, angle of approach and uncertainty. 10 models were cited in the literature and of these, all included a probability of collision of a single bird colliding with a wind turbine during passage through the rotor swept area, and the majority included a measure of the number of birds at risk. 7 out of the 10 models calculated the probability of birds colliding, whilst the remainder used a constant. We identified four approaches to calculate the probability of collision and these were used by others. 6 of the 10 models were deterministic and included the most frequently used models in the UK, with only 4 including variation or uncertainty in some way, the most recent using Bayesian methods. Despite their appeal, CRMs have their limitations and can be ‘data hungry’ as well as assuming much about bird movement and behaviour. As data become available, these assumptions should be tested to ensure that CRMs are functioning to adequately answer the questions posed by the wind energy sector. - Highlights: • We highlighted ten models available to assess avian collision risk. • Only 4 of the models included variability or uncertainty. • Collision risk models have limitations and can be ‘data hungry’. • It is vital that the most appropriate model is used for a given task.

  6. Nanotechnologies for efficient solar and wind energy harvesting and storage

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2010-08-01

    We describe nanotechnologies used to improve the efficient harvest of energy from the Sun and the wind, and the efficient storage of energy in secondary batteries and ultracapacitors, for use in a variety of applications including smart grids, electric vehicles, and portable electronics. We demonstrate high-quality nanostructured copper indium gallium selenide (CIGS) thin films for photovoltaic (PV) applications. The self-assembly of nanoscale p-n junction networks creates n-type networks that act as preferential electron pathways, and p-type networks that act as preferential hole pathways, allowing positive and negative charges to travel to the contacts in physically separated paths, reducing charge recombination. We also describe PV nanotechnologies used to enhance light trapping, photon absorption, charge generation, charge transport, and current collection. Furthermore, we describe nanotechnologies used to improve the efficiency of power-generating wind turbines. These technologies include nanoparticle-containing lubricants that reduce the friction generated from the rotation of the turbines, nanocoatings for de-icing and self-cleaning technologies, and advanced nanocomposites that provide lighter and stronger wind blades. Finally, we describe nanotechnologies used in advanced secondary batteries and ultracapacitors. Nanostructured powder-based and carbon-nanotube-based cathodes and anodes with ultra-high surface areas boost the energy and power densities in secondary batteries, including lithium-ion and sodium-sulfur batteries. Nanostructured carbon materials are also controlled on a molecular level to offer large surface areas for the electrodes of ultracapacitors, allowing to store and supply large bursts of energy needed in some applications.

  7. Model Validation at the 204 MW New Mexico Wind Energy Center: Preprint

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

    2006-06-01

    In this paper, we describe methods to derive and validate equivalent models for a large wind farm. FPL Energy's 204-MW New Mexico Wind Energy Center, which is interconnected to the Public Service Company of New Mexico (PNM) transmission system, was used as a case study. The methods described are applicable to any large wind power plant.

  8. 77 FR 19683 - Proposed Information Collection; Land-Based Wind Energy Guidelines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... with wind turbines and associated infrastructure; loss and degradation of habitat from turbines and... Fish and Wildlife Service Proposed Information Collection; Land-Based Wind Energy Guidelines AGENCY..., on an emergency basis, our request to collect information associated with the Land- Based Wind Energy...

  9. 76 FR 43682 - Shetek Wind Inc. Jeffers South, LLC Allco Renewable Energy Limited v. Midwest Independent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Shetek Wind Inc. Jeffers South, LLC Allco Renewable Energy Limited v... Renewable Energy Limited (collectively Complainants) filed a formal complaint against the Midwest...

  10. Long-Term Modeling of Wind Energy in the United States

    SciTech Connect

    Kyle, G. Page; Smith, Steven J.; Wise, Marshall A.; Lurz, Joshua P.; Barrie, Daniel

    2007-09-30

    An improved representation of wind energy has been developed for the ObjECTS MiniCAM integrated assessment modeling framework. The first version of this wind model was used for the CCTP scenarios, where wind accounts for between 9% and 17% of U.S. electricity generation by 2095. Climate forcing stabilization policies tend to increase projected deployment. Accelerated technological development in wind electric generation can both increase output and reduce the costs of wind energy. In all scenarios, wind generation is constrained by its costs relative to alternate electricity sources, particularly as less favorable wind farm sites are utilized. These first scenarios were based on exogenous resource estimates that do not allow evaluation of resource availability assumptions. A more detailed representation of wind energy is under development that uses spatially explicit resource information and explicit wind turbine technology characteristics.

  11. Structural and functional analysis of the ASM p.Ala359Asp mutant that causes acid sphingomyelinase deficiency.

    PubMed

    Acuña, Mariana; Castro-Fernández, Víctor; Latorre, Mauricio; Castro, Juan; Schuchman, Edward H; Guixé, Victoria; González, Mauricio; Zanlungo, Silvana

    2016-10-21

    Niemann-Pick disease (NPD) type A and B are recessive hereditary disorders caused by deficiency in acid sphingomyelinase (ASM). The p.Ala359Asp mutation has been described in several patients but its functional and structural effects in the protein are unknown. In order to characterize this mutation, we modeled the three-dimensional ASM structure using the recent available crystal of the mammalian ASM as a template. We found that the p.Ala359Asp mutation is localized in the hydrophobic core and far from the sphingomyelin binding site. However, energy function calculations using statistical potentials indicate that the mutation causes a decrease in ASM stability. Therefore, we investigated the functional effect of the p.Ala359Asp mutation in ASM expression, secretion, localization and activity in human fibroblasts. We found a 3.8% residual ASM activity compared to the wild-type enzyme, without changes in the other parameters evaluated. These results support the hypothesis that the p.Ala359Asp mutation causes structural alterations in the hydrophobic environment where ASM is located, decreasing its enzymatic activity. A similar effect was observed in other previously described NPDB mutations located outside the active site of the enzyme. This work shows the first full size ASM mutant model describe at date, providing a complete analysis of the structural and functional effects of the p.Ala359Asp mutation over the stability and activity of the enzyme. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A proposed national wind power R and D program. [offshore wind power system for electric energy supplies

    NASA Technical Reports Server (NTRS)

    Heronemus, W.

    1973-01-01

    An offshore wind power system is described that consists of wind driven electrical dc generators mounted on floating towers in offshore waters. The output from the generators supplies underwater electrolyzer stations in which water is converted into hydrogen and oxygen. The hydrogen is piped to shore for conversion to electricity in fuel cell stations. It is estimated that this system can produce 159 x 10 to the ninth power kilowatt-hours per year. It is concluded that solar energy - and that includes wind energy - is the only way out of the US energy dilemma in the not too distant future.

  13. Analysis of energy-saving dispatch based on energy efficiency for power system with large scale wind power integration

    NASA Astrophysics Data System (ADS)

    Zou, Lanqing; Zhou, Peng; Li, Shitong; Lin, Li

    2017-01-01

    With the increasing of wind generators and the scale of wind farm, the utilization rate of wind power decreases continually, it is essential to develop an energy-saving dispatching model for the purpose of energy conservation and emission reduction. Firstly, considering some main factors, such as generator operating costs, start-up unit costs, shutdown unit costs, oil consumption and pollutant emission, establish an energy efficiency model. Then, based on the principle of energy-saving dispatch, a model is established which objective is maximizing the energy efficiency. Moreover, in order to realize the priority dispatching of wind power, another model is established which objective is minimizing the wind power shedding. Finally, under the conditions of different installed wind power capacities being integrated into a real region grid, two models are compared and analyzed from perspectives of the society, thermal power enterprise and wind power enterprise.

  14. Wind Power Siting: Public Acceptance and Land Use; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Tegen, Suzanne

    2015-06-17

    Suzanne Tegen presented this information as part of the June 17, 2015 WINDExchange webinar: Overcoming Wind Siting Challenges III: Public Acceptance and Land Use. This presentation provides an overview of current NREL research related to wind energy deployment considerations, the DOE Wind Vision as it relates to public acceptance and land use, why public acceptance of wind power matters, where the U.S. wind resource is best, and how those rich resource areas overlay with population centers.

  15. A 20-KW Wind Energy Conversion System (WECS) at the Marine Corps Air Station, Kaneohe, Hawaii.

    DTIC Science & Technology

    1983-01-01

    NATIONAL BURLAU OF STANDARDS I963 A TN NO: N-1655 A 20-KW WIND ENERGY CONVERSION SYSTEM TITLE: (WECS) AT THE MARINE CORPS AI& STATION, KANEOHE, HAWAII...4 TITLE (o, S,,bIII1. S TYPE OF kEPORT II PERIOD COvERED A 20-KW WIND ENERGY CONVERSION SYSTEM Not final;Sep 78- Dec81 (WECS) AT THE MARINE CORPS AIR...from RepO) 18 SUPPLEMENTARY NOTES • -1 19 KEY WORDS eComf-Ur o, ,e . s d. it ,e f , &1d Ide-,fs by bd, umb,) Wind energy conversion systems, wind energy , wind

  16. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    PubMed Central

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C. F.; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally. PMID:26274964

  17. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    PubMed

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-08-12

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.

  18. Evaluation of Dynamical Downscaling Resolution Effect on Wind Energy Forecast Value for a Wind Farm in Central Sweden

    NASA Astrophysics Data System (ADS)

    Rosgaard, Martin; Hahmann, Andrea; Skov Nielsen, Torben; Giebel, Gregor; Ejnar Sørensen, Poul; Madsen, Henrik

    2014-05-01

    For any energy system relying on wind power, accurate forecasts of wind fluctuations are essential for efficient integration into the power grid. Increased forecast precision allows end-users to plan day-ahead operation with reduced risk of penalties which in turn supports the feasibility of wind energy. This study aims to quantify value added to wind energy forecasts in the 12-48 hour leadtime by downscaling global numerical weather prediction (NWP) data using a limited-area NWP model. The accuracy of statistical wind power forecasting tools depends strongly on this NWP input. Typical performance metrics are mean absolute error or root mean square error for predicted- against observed wind power production, and these metrics are closely related to wind speed forecast bias and correlation with observations. Wind speed bias can be handled in the statistical wind power forecasting model, though it is entirely up to it's NWP input to describe the wind speed correlation correctly. The basis of comparison for forecasts is data from the Stor-Rotliden wind farm in central Sweden. The surrounding forest adds to the forecasting challenge, thus motivating the downscaling experiment as the potential for wind power forecast improvement is higher in complex terrain. The 40 Vestas V90 turbines were erected in 2009 and correspond to 78MWe installed electrical capacity. Forecasts from global and limited-area NWP models, together covering five different horizontal computational grid spacings of ~50km down to ~1km, are studied for a yearlong, continuous time period. The preliminary results shown quantify forecast strengths and weaknesses for each NWP model resolution.

  19. A triboelectric wind turbine for small-scale energy harvesting

    NASA Astrophysics Data System (ADS)

    Perez, Matthias; Boisseau, Sebastien; Geisler, Matthias; Despesse, Ghislain; Reboud, Jean Luc

    2016-11-01

    This paper deals with a rotational energy harvester including a Horizontal Axis Wind Turbine (HAWT), a cylindrical stator covered by several electrodes, and thin Teflon dielectric membranes hung on the rotor. The sliding contact of the Teflon membranes on the stator provides simultaneously large capacitance variations and a polarization source for the electrostatic converter by exploiting triboelectric phenomena. 1μW has been harvested at 4m/s; 130μW at 10m/s and 550μW at 20m/s with a 40mmØ device. In order to validate the energy harvesting chain, the airflow energy harvester has been connected to a power management circuit implementing Synchronous Electric Charge Extraction (SECE) to supply a wireless sensor node with temperature and acceleration measurements, transmitted to a computer at 868MHz.

  20. Larger Turbines and the Future Cost of Wind Energy (Poster)

    SciTech Connect

    Lantz, E.; Hand, M.

    2011-03-01

    The move to larger turbines has been observed in the United States and around the world. Turbine scaling increases energy capture while reducing general project infrastructure costs and landscape impacts, each of which of can reduce the cost of wind energy. However, scaling in the absence of innovation, can increase turbine costs. The ability of turbine designers and manufacturers to continue to scale turbines, while simultaneously reducing costs, is an important factor in long-term viability of the industry. This research seeks to better understand how technology innovation can allow the continued development of larger turbines on taller towers while also achieving lower cost of energy. Modeling incremental technology improvements identified over the past decade demonstrates that cost reductions on the order of 10%, and capacity factor improvements on the order of 5% (for sites with annual mean wind speed of 7.25 m/s at 50m), are achievable for turbines up to 3.5 MW. However, to achieve a 10% cost reduction and a 10% capacity factor improvement for turbines up to 5 MW, additional technology innovations must be developed and implemented.