Science.gov

Sample records for aspartate mediates dopamine

  1. Autocrine activation of neuronal NMDA receptors by aspartate mediates dopamine- and cAMP-induced CREB-dependent gene transcription

    PubMed Central

    Almeida, Luis E. F.; Murray, Peter D.; Zielke, H. Ronald; Roby, Clinton D.; Kingsbury, Tami J.; Krueger, Bruce K.

    2009-01-01

    Cyclic AMP can stimulate the transcription of many activity-dependent genes via activation of the transcription factor, CREB. However, in mouse cortical neuron cultures, prior to synaptogenesis, neither cAMP nor dopamine, which acts via cAMP, stimulated CREB-dependent gene transcription when NR2B-containing NMDA receptors (NMDARs) were blocked. Stimulation of transcription by cAMP was potentiated by inhibitors of excitatory amino acid uptake, suggesting a role for extracellular glutamate or aspartate in cAMP-induced transcription. Aspartate was identified as the extracellular messenger: enzymatic scavenging of L-aspartate, but not glutamate, blocked stimulation of CREB-dependent gene transcription by cAMP; moreover, cAMP induced aspartate but not glutamate release. Taken together, these results suggest that cAMP acts via an autocrine or paracrine pathway to release aspartate, which activates NR2B-containing NMDARs, leading to Ca2+ entry and activation of transcription. This cAMP/aspartate/NMDAR signaling pathway may mediate the effects of transmitters such as dopamine on axon growth and synaptogenesis in developing neurons or on synaptic plasticity in mature neural networks. PMID:19812345

  2. Single exposure to cocaine impairs aspartate uptake in the pre-frontal cortex via dopamine D1-receptor dependent mechanisms.

    PubMed

    Sathler, Matheus Figueiredo; Stutz, Bernardo; Martins, Robertta Silva; Dos Santos Pereira, Maurício; Pecinalli, Ney Roner; Santos, Luis E; Taveira-da-Silva, Rosilane; Lowe, Jennifer; de Freitas, Isis Grigorio; de Melo Reis, Ricardo Augusto; Manhães, Alex C; Kubrusly, Regina C C

    2016-08-04

    Dopamine and glutamate play critical roles in the reinforcing effects of cocaine. We demonstrated that a single intraperitoneal administration of cocaine induces a significant decrease in [(3)H]-d-aspartate uptake in the pre-frontal cortex (PFC). This decrease is associated with elevated dopamine levels, and requires dopamine D1-receptor signaling (D1R) and adenylyl cyclase activation. The effect was observed within 10min of cocaine administration and lasted for up to 30min. This rapid response is related to D1R-mediated cAMP-mediated activation of PKA and phosphorylation of the excitatory amino acid transporters EAAT1, EAAT2 and EAAT3. We also demonstrated that cocaine exposure increases extracellular d-aspartate, l-glutamate and d-serine in the PFC. Our data suggest that cocaine activates dopamine D1 receptor signaling and PKA pathway to regulate EAATs function and extracellular EAA level in the PFC.

  3. Immunomodulatory Effects Mediated by Dopamine.

    PubMed

    Arreola, Rodrigo; Alvarez-Herrera, Samantha; Pérez-Sánchez, Gilberto; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Flores-Gutierrez, Enrique Octavio; Garcés-Alvarez, María Eugenia; de la Cruz-Aguilera, Dora Luz; Medina-Rivero, Emilio; Hurtado-Alvarado, Gabriela; Quintero-Fabián, Saray; Pavón, Lenin

    2016-01-01

    Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers.

  4. Immunomodulatory Effects Mediated by Dopamine

    PubMed Central

    Alvarez-Herrera, Samantha; Pérez-Sánchez, Gilberto; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Flores-Gutierrez, Enrique Octavio; Quintero-Fabián, Saray

    2016-01-01

    Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers. PMID:27795960

  5. Direct inhibition of the N-methyl-D-aspartate receptor channel by dopamine and (+)-SKF38393.

    PubMed

    Castro, N G; de Mello, M C; de Mello, F G; Aracava, Y

    1999-04-01

    1. Dopamine is known to modulate glutamatergic synaptic transmission in the retina and in several brain regions by activating specific G-protein-coupled receptors. We have examined the possibility of a different type of mechanism for this modulation, one involving direct interaction of dopamine with ionotropic glutamate receptors. 2. Ionic currents induced by fast application of N-methyl-D-aspartate (NMDA) were recorded under whole-cell patch-clamp in cultured striatal, thalamic and hippocampal neurons of the rat and in retinal neurons of the chick. Dopamine at concentrations above 100 microM inhibited the NMDA response in all four neuron types, exhibiting an IC50 of 1.2 mM in hippocampal neurons. The time course of this inhibition was fast, developing in less than 100 ms. 3. The D1 receptor agonist (+)-SKF38393 mimicked the effect of dopamine, with an IC50 of 58.9 microM on the NMDA response, while the enantiomer (-)-SKF38393 was ineffective at 50 microM. However, the D1 antagonist R(+)-SCH23390 did not prevent the inhibitory effect of (+)-SKF38393. 4. The degree of inhibition by dopamine and (+)-SKF38393 depended on transmembrane voltage, increasing 2.7 times with a hyperpolarization of about 80 mV. The voltage-dependent block by dopamine was also observed in the presence of MgCl2 1 mM. 5. Single-channel recordings showed that the open times of NMDA-gated channels were shortened by (+)-SKF38393. 6. These data suggested that the site to which the drugs bound to produce the inhibitory effect was distinct from the classical D1-type dopamine receptor sites, possibly being located inside the NMDA channel pore. It is concluded that dopamine and (+)-SKF38393 are NMDA channel ligands.

  6. Direct inhibition of the N-methyl-D-aspartate receptor channel by dopamine and (+)-SKF38393

    PubMed Central

    Castro, Newton G; de Mello, Maria Christina F; de Mello, Fernando G; Aracava, Yasco

    1999-01-01

    Dopamine is known to modulate glutamatergic synaptic transmission in the retina and in several brain regions by activating specific G-protein-coupled receptors. We have examined the possibility of a different type of mechanism for this modulation, one involving direct interaction of dopamine with ionotropic glutamate receptors.Ionic currents induced by fast application of N-methyl-D-aspartate (NMDA) were recorded under whole-cell patch-clamp in cultured striatal, thalamic and hippocampal neurons of the rat and in retinal neurons of the chick. Dopamine at concentrations above 100 μM inhibited the NMDA response in all four neuron types, exhibiting an IC50 of 1.2 mM in hippocampal neurons. The time course of this inhibition was fast, developing in less than 100 ms.The D1 receptor agonist (+)-SKF38393 mimicked the effect of dopamine, with an IC50 of 58.9 μM on the NMDA response, while the enantiomer (−)-SKF38393 was ineffective at 50 μM. However, the D1 antagonist R(+)-SCH23390 did not prevent the inhibitory effect of (+)-SKF38393.The degree of inhibition by dopamine and (+)-SKF38393 depended on transmembrane voltage, increasing 2.7 times with a hyperpolarization of about 80 mV. The voltage-dependent block by dopamine was also observed in the presence of MgCl2 1 mM.Single-channel recordings showed that the open times of NMDA-gated channels were shortened by (+)-SKF38393.These data suggested that the site to which the drugs bound to produce the inhibitory effect was distinct from the classical D1-type dopamine receptor sites, possibly being located inside the NMDA channel pore. It is concluded that dopamine and (+)-SKF38393 are NMDA channel ligands. PMID:10372829

  7. N-Methyl-d-aspartate Modulation of Nucleus Accumbens Dopamine Release by Metabotropic Glutamate Receptors: Fast Cyclic Voltammetry Studies in Rat Brain Slices in Vitro.

    PubMed

    Yavas, Ersin; Young, Andrew M J

    2017-02-15

    The N-methyl-d-aspartate (NMDA) receptor antagonist, phencyclidine, induces behavioral changes in rodents mimicking symptoms of schizophrenia, possibly mediated through dysregulation of glutamatergic control of mesolimbic dopamine release. We tested the hypothesis that NMDA receptor activation modulates accumbens dopamine release, and that phencyclidine pretreatment altered this modulation. NMDA caused a receptor-specific, dose-dependent decrease in electrically stimulated dopamine release in nucleus accumbens brain slices. This decrease was unaffected by picrotoxin, making it unlikely to be mediated through GABAergic neurones, but was decreased by the metabotropic glutamate receptor antagonist, (RS)-α-methyl-4-sulfonophenylglycine, indicating that NMDA activates mechanisms controlled by these receptors to decrease stimulated dopamine release. The effect of NMDA was unchanged by in vivo pretreatment with phencyclidine (twice daily for 5 days), with a washout period of at least 7 days before experimentation, which supports the hypothesis that there is no enduring direct effect of PCP at NMDA receptors after this pretreatment procedure. We propose that NMDA depression of accumbal dopamine release is mediated by metabotropic glutamate receptors located pre- or perisynaptically, and suggest that NMDA evoked increased extrasynaptic spillover of glutamate is sufficient to activate these receptors that, in turn, inhibit dopamine release. Furthermore, we suggest that enduring functional changes brought about by subchronic phencyclidine pretreatment, modeling deficits in schizophrenia, are downstream effects consequent on chronic blockade of NMDA receptors, rather than direct effects on NMDA receptors themselves.

  8. Suppression of Dopamine Neurons Mediates Reward

    PubMed Central

    Yamagata, Nobuhiro; Abe, Ayako; Tanimoto, Hiromu

    2016-01-01

    Massive activation of dopamine neurons is critical for natural reward and drug abuse. In contrast, the significance of their spontaneous activity remains elusive. In Drosophila melanogaster, depolarization of the protocerebral anterior medial (PAM) cluster dopamine neurons en masse signals reward to the mushroom body (MB) and drives appetitive memory. Focusing on the functional heterogeneity of PAM cluster neurons, we identified that a single class of PAM neurons, PAM-γ3, mediates sugar reward by suppressing their own activity. PAM-γ3 is selectively required for appetitive olfactory learning, while activation of these neurons in turn induces aversive memory. Ongoing activity of PAM-γ3 gets suppressed upon sugar ingestion. Strikingly, transient inactivation of basal PAM-γ3 activity can substitute for reward and induces appetitive memory. Furthermore, we identified the satiety-signaling neuropeptide Allatostatin A (AstA) as a key mediator that conveys inhibitory input onto PAM-γ3. Our results suggest the significance of basal dopamine release in reward signaling and reveal a circuit mechanism for negative regulation. PMID:27997541

  9. Redox potentials of dopamine and its supramolecular complex with aspartic acid

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Han, Ling-Li; Du, Chun-Mei; Yu, Zhang-Yu

    2014-07-01

    Dopamine (DA) can be oxidized to dopamine quinone (DAquinone) through a one-step, two-electron redox reaction. The electron transfer property of DA and its supramolecular complex with aspartic acid (Asp) has been investigated by the theoretical calculations. We calculated the standard redox potentials ( E o) of DA/DAquinone at the MP2/6-31G( d,p)//B3LYP/6-31G( d,p), MP2/6-31+G( d,p)//B3LYP/6-31+G( d,p), MP2/6-31G( d,p)//B3LYP/6-311G( d,p), and MP2/6-311+G( d,p)//B3LYP/6-311+G( d,p) levels. Comparing the experimental value, the redox potentials of DA/DAquinone obtained at MP2//B3LYP/6-311G( d,p) and MP2//B3LYP/6-311+G( d,p) levels can be considered as the upper and lower estimates. DA can form supramolecular complex (DA-Asp) with Asp through hydrogen bond (H-bond). Therefore, the values of 0.631 and 0.628 V obtained at MP2//B3LYP/6-311G( d,p) and MP2//B3LYP/6-311+G( d,p) levels for DA-Asp/DAquinone-Asp can be proposed as the upper and lower estimates of a probable (about 0.630 V) value of the corresponding redox potential. The calculated E o values of DA-Asp/DAquinone-Asp at the four theoretical levels are upper than those of DA/DAquinone, which indicates that the formation of H-bonds weaken the electron-donating ability of DA.

  10. Changes in the striatal extracellular levels of dopamine and dihydroxyphenylacetic acid evoked by ammonia and N-methyl-D-aspartate: modulation by taurine.

    PubMed

    Anderzhanova, Elmira; Oja, Simo S; Saransaari, Pirjo; Albrecht, Jan

    2003-07-11

    Acute hyperammonemia is associated with motor disturbances that are thought to involve striatal dopaminergic dysfunction. Discharge of striatal dopaminergic neurons is controlled by N-methyl-D-aspartate (NMDA) receptors, the excessive activation of which contributes to ammonia neurotoxicity. Here we show that ammonium chloride ("ammonia", extracellular concentration 5 mM) or NMDA (1 mM), when directly administered to the rat striatum via a microdialysis probe, evoke a prompt accumulation of dopamine (DA) in the microdialysates. However, while ammonia increases, NMDA decreases, the extracellular dihydroxyphenylacetate (DOPAC) level. The results point to the NMDA receptor-mediated enhancement of DA release and increased DA metabolism as two independent ways by which ammonia affects the striatal dopaminergic system. Taurine (extracellular concentration 10 mM) attenuated the NMDA- and ammonia-evoked DA release and ammonia-induced accumulation of DOPAC, reflecting two different neuroprotective mechanisms of this amino acid.

  11. Injectable dopamine-modified poly(α,β-aspartic acid) nanocomposite hydrogel as bioadhesive drug delivery system.

    PubMed

    Gong, Chu; Lu, Caicai; Li, Bingqiang; Shan, Meng; Wu, Guolin

    2017-04-01

    Hydrogel systems based on cross-linked polymeric materials with adhesive properties in wet environments have been considered as promising candidates for tissue adhesives. The 3,4-dihydroxyphenylalanine (DOPA) is believed to be responsible for the water-resistant adhesive characteristics of mussel adhesive proteins. Under the inspiration of DOPA containing adhesive proteins, a dopamine-modified poly(α,β-aspartic acid) derivative (PDAEA) was successfully synthesized by successive ring-opening reactions of polysuccinimide (PSI) with dopamine and ethanolamine, and an injectable bioadhesive hydrogel was prepared via simply mixing PDAEA and FeCl3 solutions. The formation mechanism of the hydrogel was investigated by ultraviolet-visible (UV-vis) spectroscopic, Fourier transformation infrared (FT-IR) spectroscopic, visual colorimetric measurements and EDTA immersion methods. The study demonstrated that the PDAEA-Fe(3+) hydrogel is a dual cross-linking system composed of covalent and coordination crosslinks. The PDAEA-Fe(3+) hydrogel is suitable to serve as a bioadhesive agent according to the rheological behaviors and the observed significant shear adhesive strength. The slow and sustained release of the model drug curcumin from the hydrogel in vitro demonstrated the hydrogel could also be potentially used for drug delivery. Moreover, the cytotoxicity tests in vitro suggested the prepared polymer and hydrogel possessed excellent cytocompatibility. All the results indicated that the dopamine modified poly(α,β-aspartic acid) derivative based hydrogel was a promising candidate for bioadhesive drug delivery system. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1000-1008, 2017.

  12. Effects of S-citalopram, citalopram, and R-citalopram on the firing patterns of dopamine neurons in the ventral tegmental area, N-methyl-D-aspartate receptor-mediated transmission in the medial prefrontal cortex and cognitive function in the rat.

    PubMed

    Schilström, Björn; Konradsson-Geuken, Asa; Ivanov, Vladimir; Gertow, Jens; Feltmann, Kristin; Marcus, Monica M; Jardemark, Kent; Svensson, Torgny H

    2011-05-01

    Escitalopram, the S-enantiomer of citalopram, possesses superior efficacy compared to other selective serotonin reuptake inhibitors (SSRIs) in the treatment of major depression. Escitalopram binds to an allosteric site on the serotonin transporter, which further enhances the blockade of serotonin reuptake, whereas R-citalopram antagonizes this positive allosteric modulation. Escitalopram's effects on neurotransmitters other than serotonin, for example, dopamine and glutamate, are not well studied. Therefore, we here studied the effects of escitalopram, citalopram, and R-citalopram on dopamine cell firing in the ventral tegmental area, using single-cell recording in vivo and on NMDA receptor-mediated currents in pyramidal neurons in the medial prefrontal cortex using in vitro electrophysiology in rats. The cognitive effects of escitalopram and citalopram were also compared using the novel object recognition test. Escitalopram (40-640 μg/kg i.v.) increased both firing rate and burst firing of dopaminergic neurons, whereas citalopram (80-1280 μg/kg) had no effect on firing rate and only increased burst firing at high dosage. R-citalopram (40-640 μg/kg) had no significant effects. R-citalopram (320 μg/kg) antagonized the effects of escitalopram (320 μg/kg). A very low concentration of escitalopram (5 nM), but not citalopram (10 nM) or R-citalopram (5 nM), potentiated NMDA-induced currents in pyramidal neurons. Escitalopram's effect was antagonized by R-citalopram and blocked by the dopamine D(1) receptor antagonist SCH23390. Escitalopram, but not citalopram, improved recognition memory. Our data suggest that the excitatory effect of escitalopram on dopaminergic and NMDA receptor-mediated neurotransmission may have bearing on its cognitive-enhancing effect and superior efficacy compared to other SSRIs in major depression.

  13. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    PubMed

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  14. Corticosterone enhances N-methyl-D-aspartate receptor signaling to promote isolated ventral tegmental area activity in a reconstituted mesolimbic dopamine pathway

    PubMed Central

    Berry, Jennifer N.; Saunders, Meredith A.; Sharrett-Field, Lynda J.; Reynolds, Anna R.; Bardo, Michael T.; Pauly, James R.; Prendergast, Mark A.

    2015-01-01

    Elevations in circulating corticosteroids during periods of stress may influence activity of the mesolimbic dopamine reward pathway by increasing glutamatergic N-methyl-D-aspartate (NMDA) receptor expression and/or function in a glucocorticoid receptor-dependent manner. The current study employed organotypic co-cultures of the ventral tegmental area (VTA) and nucleus accumbens (NAcc) to examine the effects of corticosterone exposure on NMDA receptor-mediated neuronal viability. Co-cultures were pre-exposed to vehicle or corticosterone (CORT; 1 μM) for 5 days prior to a 24 hour co-exposure to NMDA (200 μM). Co-cultures pre-exposed to a non-toxic concentration of corticosterone and subsequently NMDA showed significant neurotoxicity in the VTA only. This was evidenced by increases in propidium iodide uptake as well as decreases in immunoreactivity of the neuronal nuclear protein (NeuN). Co-exposure to the NMDA receptor antagonist 2-amino-7-phosphonovaleric acid (APV; 50 μM) or the glucocorticoid receptor (GR) antagonist mifepristone (10 μM) attenuated neurotoxicity. In contrast, the combination of corticosterone and NMDA did not produce any significant effects on either measure within the NAcc. Cultures of the VTA and NAcc maintained without synaptic contact showed no response to CORT or NMDA. These results demonstrate the ability to functionally reconstitute key regions of the mesolimbic reward pathway ex vivo and to reveal a GR-dependent enhancement of NMDA receptor-dependent signaling in the VTA. PMID:26631585

  15. Facilitatory effect of dopamine on neuromuscular transmission mediated via dopamine D1-like receptors and prospective interaction with nicotine.

    PubMed

    AlQot, H E; Elnozahi, N A; Mohy El-Din, M M; Bistawroos, A E; Abou Zeit-Har, M S

    2015-10-15

    The objective of this study is to probe the effects of dopamine and potential interactions with nicotine at the motor end plate. To accomplish this, we measured the amplitude of nerve-evoked muscle twitches of the isolated rat phrenic hemi-diaphragm preparation. Dopamine potentiated indirect muscle twitches in normal and gallamine-presensitized preparations amounting to a maximum of 31.14±0.71% and 69.23±1.96%, respectively. The dopamine-induced facilitation was well maintained in presence of 10 µM propranolol but greatly reduced in presence of 6 µM SCH 23390 or 3 µM dantrolene. In addition, SKF 81297 attained a plateau at 16 µM as opposed to 64 µM dopamine, with a percentage potentiation of 69.47±1.76. The facilitatory effect of dopamine was potentiated in nicotine treated rats. This study revealed for the first time that the facilitatory effect exerted by dopamine on neuromuscular transmission is mediated via the dopamine D1-like receptors. In addition, it highlighted the possible dependency of dopamine effects on intracellular calcium and signified potential interaction among dopamine and nicotine. Clinically, the findings generated by this study reveal potential targets for approaching motor deficit syndromes.

  16. Development of dopamine and N-methyl-D-aspartate systems in rat brain: the effect of prenatal phencyclidine exposure.

    PubMed

    Ali, S F; Holson, R R; Newport, G D; Slikker, W; Bowyer, J F

    1993-05-21

    Phencyclidine (PCP) inhibits the uptake of the neurotransmitter dopamine (DA), and blocks N-methyl-D-aspartate (NMDA) receptor-regulated ion channels. PCP also binds to sigma receptors in vivo and in vitro in rat brain. Prolonged exposure to PCP in adults has been observed to reduce the number of PCP binding sites in brain. We designed these experiments to evaluate whether prolonged prenatal exposure to PCP produces alterations in the development of DA and NMDA systems in brain. To do so, we characterized the normal course of development of basal and stimulated DA release in striatal slices, the ontogeny of striatal DA concentrations, and the development of NMDA receptor channels and associated glutamate binding sites in frontal cortex. We compared these developmental profiles to those in rats exposed to prenatal PCP, in an attempt to characterize the effect of prenatal PCP exposure on the pattern of brain development. Pregnant CD rats were injected s.c. with either 0, 10 or 20 mg/kg PCP daily on gestational days 8 through 20. On postnatal days (PND) 8, 21, 45, or 100, rats were sacrificed and brain tissues isolated for in vitro assessment. In vitro [3H]DA release from striatal slices evoked by either 40 microM glutamate or 15 mM K+ increased over 250% from PND 8 to PND 45, and glutamate-stimulated release was still significantly below adult levels at PND 45. In contrast, D-methamphetamine (D-METH)-evoked [3H]DA release, frontal cortical glutamate binding sites and NMDA channels developed early, reaching adult levels on or before PND 21.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Reboxetine enhances the olanzapine-induced antipsychotic-like effect, cortical dopamine outflow and NMDA receptor-mediated transmission.

    PubMed

    Marcus, Monica M; Jardemark, Kent; Malmerfelt, Anna; Björkholm, Carl; Svensson, Torgny H

    2010-08-01

    Preclinical data have shown that addition of the selective norepinephrine transporter (NET) inhibitor reboxetine increases the antipsychotic-like effect of the D(2/3) antagonist raclopride and, in parallel, enhances cortical dopamine output. Subsequent clinical results suggested that adding reboxetine to stable treatments with various antipsychotic drugs (APDs) may improve positive, negative and depressive symptoms in schizophrenia. In this study, we investigated in rats the effects of adding reboxetine to the second-generation APD olanzapine on: (i) antipsychotic efficacy, using the conditioned avoidance response (CAR) test, (ii) extrapyramidal side effect (EPS) liability, using a catalepsy test, (iii) dopamine efflux in the medial prefrontal cortex and the nucleus accumbens, using in vivo microdialysis in freely moving animals and (iv) cortical N-methyl-D-aspartate (NMDA) receptor-mediated transmission, using intracellular electrophysiological recording in vitro. Reboxetine (6 mg/kg) enhanced the suppression of CAR induced by a suboptimal dose (1.25 mg/kg), but not an optimal (2.5 mg/kg) dose of olanzapine without any concomitant catalepsy. Addition of reboxetine to the low dose of olanzapine also markedly increased cortical dopamine outflow and facilitated prefrontal NMDA receptor-mediated transmission. Our data suggest that adjunctive treatment with a NET inhibitor may enhance the therapeutic effect of low-dose olanzapine in schizophrenia without increasing EPS liability and add an antidepressant action, thus in principle allowing for a dose reduction of olanzapine with a concomitant reduction of dose-related side effects, such as EPS and weight gain.

  18. Failure of MK-801 to suppress D1 receptor-mediated induction of locomotor activity and striatal preprotachykinin mRNA expression in the dopamine-depleted rat.

    PubMed

    Campbell, B M; Kreipke, C W; Walker, P D

    2006-01-01

    N-methyl-D-aspartate receptor antagonism exerts suppressive influences over dopamine D1 receptor-mediated striatal gene expression and locomotor behavior in the intact rat. The present study examined the effects of the N-methyl-D-aspartate receptor antagonist MK-801 on locomotor activity and striatal preprotachykinin mRNA expression stimulated by the D1 agonist (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide in rats with bilateral dopamine lesions. Two months after neonatal dopamine lesions with 6-hydroxydopamine, rats were challenged with (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (1.0 mg/kg) 15 min after administration of the N-methyl-D-aspartate receptor antagonist MK-801 (0.1 mg/kg). In the intact rat, MK-801 prevented the induction of striatal preprotachykinin mRNA by D1 agonism. Similarly, direct infusion of (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (3.0 microg) into the intact striatum produced an increase in locomotor activity that was suppressed by MK-801 (1.0 microg) co-infusion. In the dopamine-depleted rat, MK-801 (0.1 mg/kg) administered prior to (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (1.0 mg/kg) increased, rather than suppressed, striatal preprotachykinin mRNA levels. Intrastriatal infusion of MK-801 (1.0 microg) failed to inhibit D1-mediated induction of motor activity in dopamine-depleted animals. Together, these data provide further support that N-methyl-D-aspartate receptor antagonists lose their ability to block D1-mediated behavioral activation following dopamine depletion. The activation, rather than suppression, of tachykinin neurons of the direct striatonigral pathway may play a facilitatory role in this mechanism.

  19. Nicotinic and opioid receptor regulation of striatal dopamine D2-receptor mediated transmission

    PubMed Central

    Mamaligas, Aphroditi A.; Cai, Yuan; Ford, Christopher P.

    2016-01-01

    In addition to dopamine neuron firing, cholinergic interneurons (ChIs) regulate dopamine release in the striatum via presynaptic nicotinic receptors (nAChRs) on dopamine axon terminals. Synchronous activity of ChIs is necessary to evoke dopamine release through this pathway. The frequency-dependence of disynaptic nicotinic modulation has led to the hypothesis that nAChRs act as a high-pass filter in the dopaminergic microcircuit. Here, we used optogenetics to selectively stimulate either ChIs or dopamine terminals directly in the striatum. To measure the functional consequence of dopamine release, D2-receptor synaptic activity was assessed via virally overexpressed potassium channels (GIRK2) in medium spiny neurons (MSNs). We found that nicotinic-mediated dopamine release was blunted at higher frequencies because nAChRs exhibit prolonged desensitization after a single pulse of synchronous ChI activity. However, when dopamine neurons alone were stimulated, nAChRs had no effect at any frequency. We further assessed how opioid receptors modulate these two mechanisms of release. Bath application of the κ opioid receptor agonist U69593 decreased D2-receptor activation through both pathways, whereas the μ opioid receptor agonist DAMGO decreased D2-receptor activity only as a result of cholinergic-mediated dopamine release. Thus the release of dopamine can be independently modulated when driven by either dopamine neurons or cholinergic interneurons. PMID:27886263

  20. NMDA receptors in the midbrain play a critical role in dopamine-mediated hippocampal synaptic potentiation caused by morphine.

    PubMed

    Hu, Ling; Jing, Xiang-Hong; Cui, Cai-Lian; Xing, Guo-Gang; Zhu, Bing

    2014-05-01

    A single exposure to drugs of abuse produces an NMDAR (N-methyl-D-aspartate receptor)-dependent synaptic potentiation at excitatory synapses of dopamine (DA) neurons in the ventral tegmental area (VTA) of the midbrain. All addictive drugs can increase DA concentrations in projection areas of the midbrain, including the hippocampus. Hippocampal DA release subsequently modulates hippocampal plasticity and drug-associated memories. Using in vivo electrophysiological recording techniques in anesthetized rats, we show that systemic injection of morphine induced hippocampal synaptic potentiation in a dose-dependent manner. Intra-VTA but not intra-hippocampus injection of morphine evoked this potentiation. Local hippocampal dopamine D1 receptors (D1R) are required in the morphine-induced synaptic potentiation and conditioned place preference (CPP). Moreover, both NMDAR activation in the VTA and VTA/hippocampus dopaminergic connections are essential for the morphine-evoked potentiation and CPP. These findings suggest that NMDAR signalings in the midbrain play a key role in regulating dopamine-mediated hippocampal synaptic plasticity underlying drug-induced associative memory.

  1. Amphetamine activates calcium channels through dopamine transporter-mediated depolarization.

    PubMed

    Cameron, Krasnodara N; Solis, Ernesto; Ruchala, Iwona; De Felice, Louis J; Eltit, Jose M

    2015-11-01

    Amphetamine (AMPH) and its more potent enantiomer S(+)AMPH are psychostimulants used therapeutically to treat attention deficit hyperactivity disorder and have significant abuse liability. AMPH is a dopamine transporter (DAT) substrate that inhibits dopamine (DA) uptake and is implicated in DA release. Furthermore, AMPH activates ionic currents through DAT that modify cell excitability presumably by modulating voltage-gated channel activity. Indeed, several studies suggest that monoamine transporter-induced depolarization opens voltage-gated Ca(2+) channels (CaV), which would constitute an additional AMPH mechanism of action. In this study we co-express human DAT (hDAT) with Ca(2+) channels that have decreasing sensitivity to membrane depolarization (CaV1.3, CaV1.2 or CaV2.2). Although S(+)AMPH is more potent than DA in transport-competition assays and inward-current generation, at saturating concentrations both substrates indirectly activate voltage-gated L-type Ca(2+) channels (CaV1.3 and CaV1.2) but not the N-type Ca(2+) channel (CaV2.2). Furthermore, the potency to achieve hDAT-CaV electrical coupling is dominated by the substrate affinity on hDAT, with negligible influence of L-type channel voltage sensitivity. In contrast, the maximal coupling-strength (defined as Ca(2+) signal change per unit hDAT current) is influenced by CaV voltage sensitivity, which is greater in CaV1.3- than in CaV1.2-expressing cells. Moreover, relative to DA, S(+)AMPH showed greater coupling-strength at concentrations that induced relatively small hDAT-mediated currents. Therefore S(+)AMPH is not only more potent than DA at inducing hDAT-mediated L-type Ca(2+) channel currents but is a better depolarizing agent since it produces tighter electrical coupling between hDAT-mediated depolarization and L-type Ca(2+) channel activation.

  2. D2-like dopamine receptors mediate the response to amphetamine in a mouse model of ADHD

    PubMed Central

    Fan, Xueliang; Hess, Ellen J.

    2007-01-01

    The mechanisms underlying the effects of psychostimulants in attention deficit hyperactivity disorder (ADHD) are not well understood, but indirect evidence implicates D2 dopamine receptors. Here we dissect the components of dopaminergic neurotransmission in the hyperactive mouse mutant coloboma to identify pre- and postsynaptic elements essential for the effects of amphetamine in these mice. Amphetamine treatment reduced locomotor activity in coloboma mice, but induced a robust increase in dopamine overflow suggesting that abnormal regulation of dopamine efflux does not account for the behavioral effect. However, the D2-like dopamine receptor antagonists haloperidol and raclopride, but not the D1-like dopamine receptor antagonist SCH23390, blocked the amphetamine-induced reduction in locomotor activity in coloboma mice, providing direct evidence that D2-like dopamine receptors mediate the effect of amphetamine in these mice. With the precedent established that it is possible to directly antagonize this response, this strategy should prove useful for identifying novel therapeutics in ADHD. PMID:17291774

  3. Reboxetine Enhances the Olanzapine-Induced Antipsychotic-Like Effect, Cortical Dopamine Outflow and NMDA Receptor-Mediated Transmission

    PubMed Central

    Marcus, Monica M; Jardemark, Kent; Malmerfelt, Anna; Björkholm, Carl; Svensson, Torgny H

    2010-01-01

    Preclinical data have shown that addition of the selective norepinephrine transporter (NET) inhibitor reboxetine increases the antipsychotic-like effect of the D2/3 antagonist raclopride and, in parallel, enhances cortical dopamine output. Subsequent clinical results suggested that adding reboxetine to stable treatments with various antipsychotic drugs (APDs) may improve positive, negative and depressive symptoms in schizophrenia. In this study, we investigated in rats the effects of adding reboxetine to the second-generation APD olanzapine on: (i) antipsychotic efficacy, using the conditioned avoidance response (CAR) test, (ii) extrapyramidal side effect (EPS) liability, using a catalepsy test, (iii) dopamine efflux in the medial prefrontal cortex and the nucleus accumbens, using in vivo microdialysis in freely moving animals and (iv) cortical N-methyl--aspartate (NMDA) receptor-mediated transmission, using intracellular electrophysiological recording in vitro. Reboxetine (6 mg/kg) enhanced the suppression of CAR induced by a suboptimal dose (1.25 mg/kg), but not an optimal (2.5 mg/kg) dose of olanzapine without any concomitant catalepsy. Addition of reboxetine to the low dose of olanzapine also markedly increased cortical dopamine outflow and facilitated prefrontal NMDA receptor-mediated transmission. Our data suggest that adjunctive treatment with a NET inhibitor may enhance the therapeutic effect of low-dose olanzapine in schizophrenia without increasing EPS liability and add an antidepressant action, thus in principle allowing for a dose reduction of olanzapine with a concomitant reduction of dose-related side effects, such as EPS and weight gain. PMID:20463659

  4. N-Linked Glycosyl Auxiliary-Mediated Native Chemical Ligation on Aspartic Acid: Application towards N-Glycopeptide Synthesis.

    PubMed

    Chai, Hua; Le Mai Hoang, Kim; Vu, Minh Duy; Pasunooti, Kalyan; Liu, Chuan-Fa; Liu, Xue-Wei

    2016-08-22

    A practical approach towards N-glycopeptide synthesis using an auxiliary-mediated dual native chemical ligation (NCL) has been developed. The first NCL connects an N-linked glycosyl auxiliary to the thioester side chain of an N-terminal aspartate oligopeptide. This intermediate undergoes a second NCL with a C-terminal thioester oligopeptide. Mild cleavage provides the desired N-glycopeptide.

  5. Dopamine in the medial amygdala network mediates human bonding

    PubMed Central

    Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M.; Dickerson, Bradford C.; Catana, Ciprian; Barrett, Lisa Feldman

    2017-01-01

    Research in humans and nonhuman animals indicates that social affiliation, and particularly maternal bonding, depends on reward circuitry. Although numerous mechanistic studies in rodents demonstrated that maternal bonding depends on striatal dopamine transmission, the neurochemistry supporting maternal behavior in humans has not been described so far. In this study, we tested the role of central dopamine in human bonding. We applied a combined functional MRI-PET scanner to simultaneously probe mothers’ dopamine responses to their infants and the connectivity between the nucleus accumbens (NAcc), the amygdala, and the medial prefrontal cortex (mPFC), which form an intrinsic network (referred to as the “medial amygdala network”) that supports social functioning. We also measured the mothers’ behavioral synchrony with their infants and plasma oxytocin. The results of this study suggest that synchronous maternal behavior is associated with increased dopamine responses to the mother’s infant and stronger intrinsic connectivity within the medial amygdala network. Moreover, stronger network connectivity is associated with increased dopamine responses within the network and decreased plasma oxytocin. Together, these data indicate that dopamine is involved in human bonding. Compared with other mammals, humans have an unusually complex social life. The complexity of human bonding cannot be fully captured in nonhuman animal models, particularly in pathological bonding, such as that in autistic spectrum disorder or postpartum depression. Thus, investigations of the neurochemistry of social bonding in humans, for which this study provides initial evidence, are warranted. PMID:28193868

  6. Slowly developing depression of N-methyl-D-aspartate receptor mediated responses in young rat hippocampi

    PubMed Central

    Dozmorov, Mikhail; Li, Rui; Xu, Hui-Ping; Jilderos, Barbro; Wigström, Holger

    2004-01-01

    Background Activation of N-methyl-D-aspartate (NMDA) type glutamate receptors is essential in triggering various forms of synaptic plasticity. A critical issue is to what extent such plasticity involves persistent changes of glutamate receptor subtypes and many prior studies have suggested a main role for alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors in mediating the effect. Our previous work in hippocampal slices revealed that, under pharmacological unblocking of NMDA receptors, both AMPA and NMDA receptor mediated responses undergo a slowly developing depression. In the present study we have further adressed this phenomenon, focusing on the contribution via NMDA receptors. Pharmacologically isolated NMDA receptor mediated excitatory postsynaptic potentials (EPSPs) were recorded for two independent synaptic pathways in CA1 area using perfusion with low Mg2+ (0.1 mM) to unblock NMDA receptors. Results Following unblocking of NMDA receptors, there was a gradual decline of NMDA receptor mediated EPSPs for 2–3 hours towards a stable level of ca. 60–70 % of the maximal size. If such an experimental session was repeated twice in the same pathway with a period of NMDA receptor blockade in between, the depression attained in the first session was still evident in the second one and no further decay occurred. The persistency of the depression was also validated by comparison between pathways. It was found that the responses of a control pathway, unstimulated in the first session of receptor unblocking, behaved as novel responses when tested in association with the depressed pathway under the second session. In similar experiments, but with AP5 present during the first session, there was no subsequent difference between NMDA EPSPs. Conclusions Our findings show that merely evoking NMDA receptor mediated responses results in a depression which is input specific, induced via NMDA receptor activation, and is maintained for several hours through

  7. Mechanisms underlying dopamine-mediated reward bias in compulsive behaviors.

    PubMed

    Voon, Valerie; Pessiglione, Mathias; Brezing, Christina; Gallea, Cecile; Fernandez, Hubert H; Dolan, Raymond J; Hallett, Mark

    2010-01-14

    Pathological behaviors such as problem gambling or shopping are characterized by compulsive choice despite alternative options and negative costs. Reinforcement learning algorithms allow a computation of prediction error, a comparison of actual and expected outcomes, which updates our predictions and influences our subsequent choices. Using a reinforcement learning model, we show data consistent with the idea that dopamine agonists in susceptible individuals with Parkinson's disease increase the rate of learning from gain outcomes. Dopamine agonists also increase striatal prediction error activity, thus signifying a "better than expected" outcome. Thus, our findings are consistent with a model whereby a distorted estimation of the gain cue underpins a choice bias toward gains.

  8. Orchestration of salivary secretion mediated by two different dopamine receptors in the blacklegged tick Ixodes scapularis

    PubMed Central

    Kim, Donghun; Šimo, Ladislav; Park, Yoonseong

    2014-01-01

    Salivary secretion is crucial for successful tick feeding, and it is the mediator of pathogen transmission. Salivation functions to inhibit various components of the host immune system and remove excess water and ions during the ingestion of large blood meals. Control of salivary glands involves autocrine/paracrine dopamine, which is the most potent inducer of tick salivation. Previously, we reported the presence of two dopamine receptors in the salivary glands of the blacklegged tick (Ixodes scapularis): dopamine receptor (D1) and invertebrate specific D1-like dopamine receptor (InvD1L). Here, we investigated the different physiological roles of the dopamine receptors in tick salivary glands by using pharmacological tools that discriminate between the two distinct receptors. Heterologous expressions followed by reporter assays of the dopamine receptors identified receptor-specific antagonists and agonists. These pharmacological tools were further used to discriminate the physiological role of each receptor by using in vitro assays: measuring salivary secretions of isolated salivary glands and monitoring dynamic changes in the size of individual salivary gland acini. We propose that the D1 receptor acts on salivary gland acini epithelial cells for inward fluid transport. InvD1L controls (or modulates) each acinus for expelling saliva from the acini to the salivary ducts, presumably through the actions of myoepithelial cells and valves for pumping/gating. We conclude that dopamine acts on the D1 and the InvD1L receptors and leads different physiological actions to orchestrate tick salivary secretion. PMID:25320269

  9. Dual role of dopamine D(2)-like receptors in the mediation of conditioned and unconditioned fear.

    PubMed

    Brandão, Marcus Lira; de Oliveira, Amanda Ribeiro; Muthuraju, Sangu; Colombo, Ana Caroline; Saito, Viviane Mitsuko; Talbot, Teddy

    2015-11-14

    A reduction of dopamine release or D2 receptor blockade in the terminal fields of the mesolimbic system, particularly the amygdala, clearly reduces conditioned fear. Similar D2 receptor antagonism in the neural substrates of fear in the midbrain tectum attenuates the processing of unconditioned aversive information. However, the implications of the interplay between opposing actions of dopamine in the rostral and caudal segments of the dopaminergic system are still unclear. Previous studies from this laboratory have reported the effects of dopaminergic drugs on behavior in rats in the elevated plus maze, auditory-evoked potentials (AEPs) recorded from the midbrain tectum, fear-potentiated startle, and conditioned freezing. These findings led to an interesting framework on the functional roles of dopamine in both anxiety and fear states. Dopamine D2 receptor inhibition in the terminal fields of the mesolimbic dopamine system generally causes anxiolytic-like effects, whereas the activity of midbrain substrates of unconditioned fear are enhanced by D2 receptor antagonists, suggesting that D2 receptor-mediated mechanisms play opposing roles in fear/anxiety processes, depending on the brain region under study. Dopamine appears to mediate conditioned fear by acting at rostral levels of the brain and regulate unconditioned fear at the midbrain level, likely by reducing the sensorimotor gating of aversive events.

  10. Pharmacological and biochemical characterization of the D-1 dopamine receptor mediating acetylcholine release in rabbit retina

    SciTech Connect

    Hensler, J.G.; Cotterell, D.J.; Dubocovich, M.L.

    1987-12-01

    Superfusion with dopamine (0.1 microM-10 mM) evokes calcium-dependent (/sup 3/H)acetylcholine release from rabbit retina labeled in vitro with (/sup 3/H)choline. This effect is antagonized by the D-1 dopamine receptor antagonist SCH 23390. Activation or blockade of D-2 dopamine, alpha-2 or beta receptors did not stimulate or attenuate the release of (/sup 3/H)acetylcholine from rabbit retina. Dopamine receptor agonists evoke the release of (/sup 3/H)acetylcholine with the following order of potency: apomorphine less than or equal to SKF(R)82526 < SKF 85174 < SKF(R)38393 less than or equal to pergolide less than or equal to dopamine (EC50 = 4.5 microM) < SKF(S)82526 less than or equal to SKF(S)38393. Dopamine receptor antagonists inhibited the dopamine-evoked release of (/sup 3/H)acetylcholine: SCH 23390 (IC50 = 1 nM) < (+)-butaclamol less than or equal to cis-flupenthixol < fluphenazine < perphenazine < trans-flupenthixol < R-sulpiride. The potencies of dopamine receptor agonists and antagonists at the dopamine receptor mediating (/sup 3/H)acetylcholine release is characteristic of the D-1 dopamine receptor. These potencies were correlated with the potencies of dopamine receptor agonists and antagonists at the D-1 dopamine receptor in rabbit retina as labeled by (/sup 3/H)SCH 23390, or as determined by adenylate cyclase activity. (/sup 3/H)SCH 23390 binding in rabbit retinal membranes was stable, saturable and reversible. Scatchard analysis of (/sup 3/H)SCH 23390 saturation data revealed a single high affinity binding site (Kd = 0.175 +/- 0.002 nM) with a maximum binding of 482 +/- 12 fmol/mg of protein. The potencies of dopamine receptor agonists to stimulate (/sup 3/H)acetylcholine release were correlated with their potencies to stimulate adenylate cyclase (r = 0.784, P less than .05, n = 7) and with their affinities at (/sup 3/H)SCH 23390 binding sites (r = 0.755, P < .05, n = 8).

  11. Dopamine-sensitive signaling mediators modulate psychostimulant-induced ultrasonic vocalization behavior in rats.

    PubMed

    Williams, Stacey N; Undieh, Ashiwel S

    2016-01-01

    The mesolimbic dopamine system plays a major role in psychostimulant-induced ultrasonic vocalization (USV) behavior in rodents. Within this system, psychostimulants elevate synaptic concentrations of dopamine thereby leading to exaggerated activation of postsynaptic dopamine receptors within the D1-like and D2-like subfamilies. Dopamine receptor stimulation activate several transmembrane signaling systems and cognate intracellular mediators; downstream activation of transcription factors then conveys the information from receptor activation to appropriate modulation of cellular and physiologic functions. We previously showed that cocaine-induced USV behavior was associated with enhanced expression of the neurotrophin BDNF. Like cocaine, amphetamine also increases synaptic dopamine levels, albeit primarily through facilitating dopamine release. Therefore, in the present study we investigated whether amphetamine and cocaine similarly activate dopamine-linked signaling cascades to regulate intracellular mediators leading to induction of USV behavior. The results show that amphetamine increased the emission of 50 kHz USVs and this effect was blocked by SCH23390, a D1 receptor antagonist. Similar to cocaine, amphetamine increased BDNF protein expression in discrete brain regions, while pretreatment with K252a, a trkB neurotrophin receptor inhibitor, significantly reduced amphetamine-induced USV behavior. Inhibition of cyclic-AMP/PKA signaling with H89 or inhibition of PLC signaling with U73122 significantly blocked both the acute and subchronic amphetamine-induced USV behavior. In contrast, pharmacologic inhibition of either pathway enhanced cocaine-induced USV behavior. Although cocaine and amphetamine similarly modulate neurotrophin expression and USV, the molecular mechanisms by which these psychostimulants differentially activate dopamine receptor subtypes or other monoaminergic systems may be responsible for the distinct aspects of behavioral responses.

  12. N-Methyl-D-Aspartate Receptor-Mediated Axonal Injury in Adult Rat Corpus Callosum

    PubMed Central

    Zhang, Jingdong; Liu, Jianuo; Fox, Howard S.; Xiong, Huangui

    2013-01-01

    Damage to white matter such as corpus callosum (CC) is a pathological characteristic in many brain disorders. Glutamate (Glut) excitotoxicity through AMPA receptors on oligodendrocyte (OL) was previously considered as a mechanism for white matter damage. Recent studies have shown that N-methyl-D-aspartate receptors (NMDARs) are expressed on myelin sheath of neonatal rat OL processes and that activation of these receptors mediated demyelization. Whether NMDARs are expressed in the adult CC and are involved in excitotoxic axonal injury remains to be determined. In this study, we demonstrate the presence of NMDARs in the adult rat CC and their distributions in myelinated nerve fibers and OL somata by means of immunocytochemical staining and Western blot. Incubation of the CC slices with Glut or NMDA induced axonal injury as revealed by analyzing amplitude of CC fiber compound action potentials (CAPs) and input–output response. Both Glut and NMDA decreased the CAP amplitude and input–output responses, suggesting an involvement of NMDARs in Glut- and NMDA-induced axonal injury. The involvement of NMDAR in Glut-induced axonal injury was further assayed by detection of β-amyloid precursor protein (β-APP) in the CC axonal fibers. Treatment of the CC slices with Glut resulted in β-APP accumulation in the CC fibers as detected by Western blot, reflecting an impairment of axonal transport function. This injurious effect of Glut on CC axonal transport was significantly blocked by MK801. Taken together, these results show that NMDARs are expressed in the adult CC and are involved in excitotoxic activity in adult CC slices in vitro. PMID:23161705

  13. Stress-induced impairments in prefrontal-mediated behaviors and the role of the N-methyl-D-aspartate receptor

    PubMed Central

    Graybeal, Carolyn; Kiselycznyk, Carly; Holmes, Andrew

    2012-01-01

    The prefrontal cortex (PFC) mediates higher-order cognitive and executive functions that subserve various complex, adaptable behaviors such as cognitive flexibility, attention and working memory. Deficits in these functions typify multiple neuropsychiatric disorders that are caused or exacerbated by exposure to psychological stress. Here we review recent evidence examining the effects of stress on executive and cognitive functions in rodents, and discuss an emerging body of evidence that implicates the N-methyl-D-aspartate receptor (NMDAR) as a potentially critical molecular mechanism mediating these effects. Future work in this area could open up new avenues for developing pharmacotherapies for ameliorating cognitive dysfunction in neuropsychiatric disease. PMID:22414923

  14. PCBs Alter Dopamine Mediated Function in Aging Workers

    DTIC Science & Technology

    2009-01-01

    performance and the number of dopamine (DA) terminals in the basal ganglia determined by ß-CIT SPECT imaging . Data collection is complete (a...comprehensive questionnaire, examinations and SPECT imaging ). PCBs and thyroid hormones have been measured in serum and bone lead has been determined. Results...obtained using ß-CIT SPECT imaging demonstrate a significant negative relationship between current serum PCB concentrations and decreases in the

  15. PCBs Alter Dopamine Mediated Function in Aging Workers

    DTIC Science & Technology

    2008-01-01

    performance and the number of dopamine (DA) terminals in the basal ganglia determined by β-CIT SPECT imaging . At the conclusion of data collection 241...control for exposure to lead--a potential confounder. 89 subjects have undergone brain imaging at the Institute for Neurodegenerative Disorders in New...SPECT imaging to determine whether prior occupational exposure to PCBs reduces the number of basal ganglia DA terminals. Imaging took place at the

  16. Resilience to chronic stress is mediated by noradrenergic regulation of dopamine neurons.

    PubMed

    Isingrini, Elsa; Perret, Léa; Rainer, Quentin; Amilhon, Bénédicte; Guma, Elisa; Tanti, Arnaud; Martin, Garance; Robinson, Jennifer; Moquin, Luc; Marti, Fabio; Mechawar, Naguib; Williams, Sylvain; Gratton, Alain; Giros, Bruno

    2016-04-01

    Dopamine (DA) neurons in the ventral tegmental area (VTA) help mediate stress susceptibility and resilience. However, upstream mechanisms controlling these neurons remain unknown. Noradrenergic (NE) neurons in the locus coeruleus, implicated in the pathophysiology of depression, have direct connections within the VTA. Here we demonstrate that NE neurons regulate vulnerability to social defeat through inhibitory control of VTA DA neurons.

  17. Viral-mediated temporally controlled dopamine production in a rat model of Parkinson disease.

    PubMed

    Li, Xiao-Gang; Okada, Takashi; Kodera, Mika; Nara, Yuko; Takino, Naomi; Muramatsu, Chieko; Ikeguchi, Kunihiko; Urano, Fumi; Ichinose, Hiroshi; Metzger, Daniel; Chambon, Pierre; Nakano, Imaharu; Ozawa, Keiya; Muramatsu, Shin-Ichi

    2006-01-01

    Regulation of gene expression is necessary to avoid possible adverse effects of gene therapy due to excess synthesis of transgene products. To reduce transgene expression, we developed a viral vector-mediated somatic regulation system using inducible Cre recombinase. A recombinant adeno-associated virus (AAV) vector expressing Cre recombinase fused to a mutated ligand-binding domain of the estrogen receptor alpha (CreER(T2)) was delivered along with AAV vectors expressing dopamine-synthesizing enzymes to rats of a Parkinson disease model. Treatment with 4-hydroxytamoxifen, a synthetic estrogen receptor modulator, activated Cre recombinase within the transduced neurons and induced selective excision of the tyrosine hydroxylase (TH) coding sequence flanked by loxP sites, leading to a reduction in transgene-mediated dopamine synthesis. Using this strategy, aromatic L-amino acid decarboxylase (AADC) activity was retained so that l-3,4-dihydroxyphenylalanine (L-dopa), a substrate for AADC, could be converted to dopamine in the striatum and the therapeutic effects of L-dopa preserved, even after reduction of TH expression in the case of dopamine overproduction. Our data demonstrate that viral vector-mediated inducible Cre recombinase can serve as an in vivo molecular switch, allowing spatial and temporal control of transgene expression, thereby potentially increasing the safety of gene therapy.

  18. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine

    PubMed Central

    Wheeler, David S.; Underhill, Suzanne M.; Stolz, Donna B.; Murdoch, Geoffrey H.; Thiels, Edda; Romero, Guillermo; Amara, Susan G.

    2015-01-01

    Acute amphetamine (AMPH) exposure elevates extracellular dopamine through a variety of mechanisms that include inhibition of dopamine reuptake, depletion of vesicular stores, and facilitation of dopamine efflux across the plasma membrane. Recent work has shown that the DAT substrate AMPH, unlike cocaine and other nontransported blockers, can also stimulate endocytosis of the plasma membrane dopamine transporter (DAT). Here, we show that when AMPH enters the cytoplasm it rapidly stimulates DAT internalization through a dynamin-dependent, clathrin-independent process. This effect, which can be observed in transfected cells, cultured dopamine neurons, and midbrain slices, is mediated by activation of the small GTPase RhoA. Inhibition of RhoA activity with C3 exotoxin or a dominant-negative RhoA blocks AMPH-induced DAT internalization. These actions depend on AMPH entry into the cell and are blocked by the DAT inhibitor cocaine. AMPH also stimulates cAMP accumulation and PKA-dependent inactivation of RhoA, thus providing a mechanism whereby PKA- and RhoA-dependent signaling pathways can interact to regulate the timing and robustness of AMPH’s effects on DAT internalization. Consistent with this model, the activation of D1/D5 receptors that couple to PKA in dopamine neurons antagonizes RhoA activation, DAT internalization, and hyperlocomotion observed in mice after AMPH treatment. These observations support the existence of an unanticipated intracellular target that mediates the effects of AMPH on RhoA and cAMP signaling and suggest new pathways to target to disrupt AMPH action. PMID:26553986

  19. Sleep Facilitates Memory by Blocking Dopamine Neuron-Mediated Forgetting.

    PubMed

    Berry, Jacob A; Cervantes-Sandoval, Isaac; Chakraborty, Molee; Davis, Ronald L

    2015-06-18

    Early studies from psychology suggest that sleep facilitates memory retention by stopping ongoing retroactive interference caused by mental activity or external sensory stimuli. Neuroscience research with animal models, on the other hand, suggests that sleep facilitates retention by enhancing memory consolidation. Recently, in Drosophila, the ongoing activity of specific dopamine neurons was shown to regulate the forgetting of olfactory memories. Here, we show this ongoing dopaminergic activity is modulated with behavioral state, increasing robustly with locomotor activity and decreasing with rest. Increasing sleep-drive, with either the sleep-promoting agent Gaboxadol or by genetic stimulation of the neural circuit for sleep, decreases ongoing dopaminergic activity, while enhancing memory retention. Conversely, increasing arousal stimulates ongoing dopaminergic activity and accelerates dopaminergic-based forgetting. Therefore, forgetting is regulated by the behavioral state modulation of dopaminergic-based plasticity. Our findings integrate psychological and neuroscience research on sleep and forgetting.

  20. Effect of Reactor Turbulence on the Binding-Protein-Mediated Aspartate Transport System in Thin Wastewater Biofilms

    PubMed Central

    Eighmy, T. Taylor; Bishop, P. L.

    1985-01-01

    This research documents an effect of reactor turbulence on the ability of gram-negative wastewater biofilm bacteria to actively transport l-aspartate via a binding-protein-mediated transport system. Biofilms which were not preadapted to turbulence and which possessed two separate and distinct aspartate transport systems (systems 1 and 2) were subjected to a turbulent flow condition in a hydrodynamically defined closed-loop reactor system. A shear stress treatment of 3.1 N · m−2 for 10 min at a turbulent Reynolds number (Re = 11,297) inactivated the low-affinity, high-capacity binding-protein-mediated transport system (system 2) and resolved the high-affinity, low-capacity membrane-bound proton symport system (system 1). The Kt and Vmax values for the resolved system were statistically similar to Kt and Vmax values for system 1 when system 2 was inactivated either by osmotic shock or arsenate, two treatments which are known to inactivate binding-protein-mediated transport systems. We hypothesize that shear stress disrupts system 2 by deforming the outer membranes of the firmly adhered gram-negative bacteria. PMID:16346830

  1. Dopamine mediates striatal malonate toxicity via dopamine transporter-dependent generation of reactive oxygen species and D2 but not D1 receptor activation.

    PubMed

    Xia, X G; Schmidt, N; Teismann, P; Ferger, B; Schulz, J B

    2001-10-01

    Intrastriatal injection of the reversible succinate dehydrogenase inhibitor malonate results in both chemically induced hypoxia and striatal lesions that are similar to those seen in Huntington's disease and cerebral ischaemia. The mechanisms leading to neuronal death involve secondary excitotoxicity, the release of dopamine from nigrostriatal fibres and the generation of reactive oxygen species (ROS) including nitric oxide (NO) and hydroxyl radicals. Here, we further investigated the contribution and mechanism of dopamine on malonate-induced striatal lesions. Prior lesions of the nigrostriatal pathway with 6-OHDA or the depletion of striatal dopamine stores by pretreatment with reserpine, an inhibitor or the vesicular monoamine transporter type-2 (VMAT2), in combination with alpha-methyl-p-tyrosine resulted in a significant reduction of malonate-induced striatal lesion volumes. This was paralleled by block or reduction of the malonate-induced generation of ROS, as measured by the conversions of salicylate to 2,3-dihydroxybenzoic acid (2,3-DHBA) using microdialysis. Systemic or intrastriatal application of L-DOPA or dopamine, respectively, reconstituted malonate toxicity and the generation of ROS in 6-OHDA-lesioned rats. Block of the dopamine transporter by GBR12909 did not result in a reduction of malonate-induced dopamine release, but significantly reduced the generation of hydroxyl radicals. The D2 receptor agonist lisuride and the mixed D1 and D2 receptor agonist apomorphine, but not the D1 receptor agonist SKF38393, partially restored malonate toxicity in 6-OHDA-lesioned rats without increasing the generation of ROS. In line with these results sulpiride, an inhibitor of D2 receptors, reduced the malonate-induced lesion volume, whereas SCH23390, an inhbitor of D1 receptors, was ineffective. Our data suggest that malonate-induced dopamine toxicity to energetically impaired neurons is mediated by two independent pathways: (i) dopamine transporter uptake

  2. Different receptors mediate the electrophysiological and growth cone responses of an identified neuron to applied dopamine.

    PubMed

    Dobson, K S; Dmetrichuk, J M; Spencer, G E

    2006-09-15

    Neurotransmitters are among the many cues that may guide developing axons toward appropriate targets in the developing nervous system. We have previously shown in the mollusk Lymnaea stagnalis that dopamine, released from an identified pre-synaptic cell, differentially affects growth cone behavior of its target and non-target cells in vitro. Here, we describe a group of non-target cells that also produce an inhibitory electrophysiological response to applied dopamine. We first determined, using pharmacological blockers, which receptors mediate this physiological response. We demonstrated that the dopaminergic electrophysiological responses of non-target cells were sensitive to a D2 receptor antagonist, as are known target cell responses. However, the non-target cell receptors were linked to different G-proteins and intracellular signaling pathways than the target cell receptors. Despite the presence of a D2-like receptor at the soma, the growth cone collapse of these non-target cells was mediated by D1-like receptors. This study shows that different dopamine receptor sub-types mediated the inhibitory physiological and growth cone responses of an identified cell type. We therefore not only provide further evidence that D2- and D1-like receptors can be present on the same neuron in invertebrates, but also show that these receptors are likely involved in very different cellular functions.

  3. Methamphetamine Self-Administration in Mice Decreases GIRK Channel-Mediated Currents in Midbrain Dopamine Neurons

    PubMed Central

    Sharpe, Amanda L.; Varela, Erika; Bettinger, Lynne

    2015-01-01

    Background: Methamphetamine is a psychomotor stimulant with abuse liability and a substrate for catecholamine uptake transporters. Acute methamphetamine elevates extracellular dopamine, which in the midbrain can activate D2 autoreceptors to increase a G-protein gated inwardly rectifying potassium (GIRK) conductance that inhibits dopamine neuron firing. These studies examined the neurophysiological consequences of methamphetamine self-administration on GIRK channel-mediated currents in dopaminergic neurons in the substantia nigra and ventral tegmental area. Methods: Male DBA/2J mice were trained to self-administer intravenous methamphetamine. A dose response was conducted as well as extinction and cue-induced reinstatement. In a second study, after at least 2 weeks of stable self-administration of methamphetamine, electrophysiological brain slice recordings were conducted on dopamine neurons from self-administering and control mice. Results: In the first experiment, ad libitum-fed, nonfood-trained mice exhibited a significant increase in intake and locomotion following self-administration as the concentration of methamphetamine per infusion was increased (0.0015–0.15mg/kg/infusion). Mice exhibited extinction in responding and cue-induced reinstatement. In the second experiment, dopamine cells in both the substantia nigra and ventral tegmental area from adult mice with a history of methamphetamine self-administration exhibited significantly smaller D2 and GABAB receptor-mediated currents compared with control mice, regardless of whether their daily self-administration sessions had been 1 or 4 hours. Interestingly, the effects of methamphetamine self-administration were not present when intracellular calcium was chelated by including BAPTA in the recording pipette. Conclusions: Our results suggest that methamphetamine self-administration decreases GIRK channel-mediated currents in dopaminergic neurons and that this effect may be calcium dependent. PMID:25522412

  4. Centrally administered N-methyl-d-aspartate evokes the adrenal secretion of noradrenaline and adrenaline by brain thromboxane A2-mediated mechanisms in rats.

    PubMed

    Okada, Shoshiro; Yamaguchi-Shima, Naoko; Shimizu, Takahiro; Arai, Junichi; Yorimitsu, Mieko; Yokotani, Kunihiko

    2008-05-31

    Plasma adrenaline mainly originated from adrenaline-containing cells in the adrenal medulla, while plasma noradrenaline reflects the release from sympathetic nerves in addition to the secretion from noradrenaline-containing cells in the adrenal medulla. The present study was undertaken to characterize the source of plasma catecholamines induced by centrally administered N-methyl-d-aspartate with regard to the brain prostanoid, using urethane-anesthetized rats. Intracerebroventricularly (i.c.v.) administered N-methyl-d-aspartate (1.0, 5.0, 10.0 nmol/animal) dose-dependently elevated plasma levels of noradrenaline and adrenaline. The N-methyl-d-aspartate (5.0 nmol/animal, i.c.v.)-induced elevation of both catecholamines was reduced by dizocilpine maleate (5 nmol/animal, i.c.v.), a non-competitive N-methyl-d-aspartate receptor antagonist. Indomethacin (0.6 and 1.2 micromol/animal, i.c.v.), an inhibitor of cyclooxygenase, dose-dependently reduced the N-methyl-d-aspartate (5.0 nmol/animal, i.c.v.)-induced elevation of both catecholamines. The N-methyl-d-aspartate-induced response was dose-dependently attenuated by furegrelate (0.9 and 1.8 micromol/animal, i.c.v.), an inhibitor of thromboxane A2 synthase. Furthermore, the acute bilateral adrenalectomy abolished the N-methyl-d-aspartate-induced responses, indicating that the source of increase in plasma noradrenaline evoked by N-methyl-d-aspartate is due to secretion from the adrenal gland and not due to release from sympathetic nerve terminals. These results suggest that centrally administered N-methyl-d-aspartate induces the secretion of noradrenaline and adrenaline from adrenal medulla by the brain thromboxane A2-mediated mechanisms in rats.

  5. Dopamine-stimulated dephosphorylation of connexin 36 mediates AII amacrine cell uncoupling

    PubMed Central

    Kothmann, W. Wade; Massey, Stephen C.; O’Brien, John

    2010-01-01

    Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the central nervous system and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D1-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell type-specific responses dependent on the identity of the signaling complexes assembled. PMID:19940186

  6. Molecular and cellular mechanisms of dopamine-mediated behavioral plasticity in the striatum.

    PubMed

    Cerovic, Milica; d'Isa, Raffaele; Tonini, Raffaella; Brambilla, Riccardo

    2013-10-01

    The striatum is the input structure of the basal ganglia system. By integrating glutamatergic signals from cortical and subcortical regions and dopaminergic signals from mesolimbic nuclei the striatum functions as an important neural substrate for procedural and motor learning as well as for reward-guided behaviors. In addition, striatal activity is significantly altered in pathological conditions in which either a loss of dopamine innervation (Parkinson's disease) or aberrant dopamine-mediated signaling (drug addiction and L-DOPA induced dyskinesia) occurs. Here we discuss cellular mechanisms of striatal synaptic plasticity and aspects of cell signaling underlying striatum-dependent behavior, with a major focus on the neuromodulatory action of the endocannabinoid system and on the role of the Ras-ERK cascade.

  7. Aspartic acid

    MedlinePlus

    ... also called asparaginic acid. Aspartic acid helps every cell in the body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as ...

  8. Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens.

    PubMed

    Steinberg, Elizabeth E; Boivin, Josiah R; Saunders, Benjamin T; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2014-01-01

    The neural basis of positive reinforcement is often studied in the laboratory using intracranial self-stimulation (ICSS), a simple behavioral model in which subjects perform an action in order to obtain exogenous stimulation of a specific brain area. Recently we showed that activation of ventral tegmental area (VTA) dopamine neurons supports ICSS behavior, consistent with proposed roles of this neural population in reinforcement learning. However, VTA dopamine neurons make connections with diverse brain regions, and the specific efferent target(s) that mediate the ability of dopamine neuron activation to support ICSS have not been definitively demonstrated. Here, we examine in transgenic rats whether dopamine neuron-specific ICSS relies on the connection between the VTA and the nucleus accumbens (NAc), a brain region also implicated in positive reinforcement. We find that optogenetic activation of dopaminergic terminals innervating the NAc is sufficient to drive ICSS, and that ICSS driven by optical activation of dopamine neuron somata in the VTA is significantly attenuated by intra-NAc injections of D1 or D2 receptor antagonists. These data demonstrate that the NAc is a critical efferent target sustaining dopamine neuron-specific ICSS, identify receptor subtypes through which dopamine acts to promote this behavior, and ultimately help to refine our understanding of the neural circuitry mediating positive reinforcement.

  9. Dopamine modulates an intrinsic mGluR5-mediated depolarization underlying prefrontal persistent activity

    PubMed Central

    Sidiropoulou, Kyriaki; Lu, Fang-Min; Fowler, Melissa A.; Xiao, Rui; Phillips, Christopher; Ozkan, Emin D.; Zhu, Michael X.; White, Francis J.; Cooper, Donald C.

    2009-01-01

    Intrinsic properties of neurons that enable them to maintain depolarized, persistently activated states in the absence of sustained input are poorly understood. In short-term memory tasks, individual prefrontal cortical (PFC) neurons are capable of maintaining persistent action potential output during delay periods between informative cues and behavioral responses. Dopamine and drugs of abuse alter PFC function and working memory possibly by modulating intrinsic neuronal properties. Here we use patch-clamp recording of layer 5 PFC pyramidal neurons to identify an action potential burst-evoked intrinsic mGluR5-mediated postsynaptic depolarization that initiates an activated state. Depolarization occurs in the absence of recurrent synaptic activity and is reduced by a postsynaptic dopamine D1/5 receptor pathway. The depolarization is substantially diminished following behavioral sensitization to cocaine; moreover the D1/5 receptor modulation is lost. We propose the burst-evoked intrinsic depolarization to be a novel form of short-term cellular memory that is modulated by dopamine and cocaine experience. PMID:19169252

  10. Dopamine Mediates Testosterone-Induced Social Reward in Male Syrian Hamsters

    PubMed Central

    Sisk, Cheryl L.

    2013-01-01

    Adolescent maturation of responses to social stimuli is essential for adult-typical sociosexual behavior. Naturally occurring developmental changes in male Syrian hamster responses to a salient social cue, female hamster vaginal secretions (VS), provide a good model system for investigating neuroendocrine mechanisms of adolescent change in social reward. Sexually naïve adult, but not juvenile, males show a conditioned place preference (CPP) to VS, indicating that VS is not rewarding before puberty. In this series of experiments, the authors examined the roles of testosterone and dopamine receptor activation in mediating the adolescent gain in positive valence of VS. Experiment 1 showed that testosterone replacement is necessary for gonadectomized adult hamsters to form a CPP to VS. Experiment 2 showed that testosterone treatment is sufficient for juvenile hamsters to form a CPP to VS, and that the dopamine receptor antagonist haloperidol blocks formation of a CPP to VS in these animals. Experiments 3 and 4 demonstrated that the disruption of VS CPP with low doses of haloperidol is the result of a reduction in the attractive properties of VS and not attributable to aversive properties of haloperidol. Together, these studies demonstrate that the unconditioned rewarding properties of a social cue necessary for successful adult sociosexual interactions come about as the result of the pubertal increase in circulating testosterone in male hamsters. Furthermore, this social reward can be prevented by dopamine receptor antagonism, indicating that hypothalamic and/or mesocorticolimbic dopaminergic circuits are targets for hormonal activation of social reward. PMID:23372017

  11. Endoplasmic Reticulum Stress as a Mediator of Neurotoxin-Induced Dopamine Neuron Death

    DTIC Science & Technology

    2007-07-01

    are those of the author( s ) and should not be construed as an official Department of the Army position, policy or decision unless so designated by...Stress as a Mediator of Neurotoxin-Induced Dopamine Neuron Death 5b. GRANT NUMBER DAMD17-03-1-0492 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d...PROJECT NUMBER Robert E. Burke, M.D 5e. TASK NUMBER E-Mail: rb43@columbia.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND

  12. Dopamine synapse is a neuroligin-2-mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures.

    PubMed

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-04-12

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets.

  13. Src, a Molecular Switch Governing Gain Control of Synaptic Transmission Mediated by N-methyl-D-Aspartate Receptors

    NASA Astrophysics Data System (ADS)

    Yu, Xian-Min; Salter, Michael W.

    1999-07-01

    The N-methyl-D-aspartate (NMDA) receptor is a principal subtype of glutamate receptor mediating fast excitatory transmission at synapses in the dorsal horn of the spinal cord and other regions of the central nervous system. NMDA receptors are crucial for the lasting enhancement of synaptic transmission that occurs both physiologically and in pathological conditions such as chronic pain. Over the past several years, evidence has accumulated indicating that the activity of NMDA receptors is regulated by the protein tyrosine kinase, Src. Recently it has been discovered that, by means of up-regulating NMDA receptor function, activation of Src mediates the induction of the lasting enhancement of excitatory transmission known as long-term potentiation in the CA1 region of the hippocampus. Also, Src has been found to amplify the up-regulation of NMDA receptor function that is produced by raising the intracellular concentration of sodium. Sodium concentration increases in neuronal dendrites during high levels of firing activity, which is precisely when Src becomes activated. Therefore, we propose that the boost in NMDA receptor function produced by the coincidence of activating Src and raising intracellular sodium may be important in physiological and pathophysiological enhancement of excitatory transmission in the dorsal horn of the spinal cord and elsewhere in the central nervous system.

  14. D2-like dopamine receptor-mediated modulation of activity-dependent plasticity at GABAergic synapses in the subthalamic nucleus

    PubMed Central

    Baufreton, Jérôme; Bevan, Mark D

    2008-01-01

    Reciprocally connected glutamatergic subthalamic nucleus (STN) and GABAergic external globus pallidus (GP) neurons normally exhibit weakly correlated, irregular activity but following the depletion of dopamine in Parkinson's disease they express more highly correlated, rhythmic bursting activity. Patch clamp recording was used to test the hypothesis that dopaminergic modulation reduces the capability of GABAergic inputs to pattern ‘pathological’ activity in STN neurons. Electrically evoked GABAA receptor-mediated IPSCs exhibited activity-dependent plasticity in STN neurons, i.e. IPSCs evoked at frequencies between 1 and 50 Hz exhibited depression that increased with the frequency of activity. Dopamine, the D2-like dopamine receptor agonist quinpirole and external media containing a low [Ca2+] reduced both the magnitude of IPSCs evoked at 1–50 Hz and synaptic depression at 10–50 Hz. Dopamine/quinpirole also reduced the frequency but not the amplitude of miniature IPSCs recorded in the presence of tetrodotoxin. D1-like and D4 agonists were ineffective and D2/3 but not D4 receptor antagonists reversed the effects of dopamine or quinpirole. Together these data suggest that presynaptic D2/3 dopamine receptors modulate the short-term dynamics of GABAergic transmission in the STN by lowering the initial probability of transmitter release. Simulated GABAA receptor-mediated synaptic conductances representative of control or modulated transmission were then generated in STN neurons using the dynamic clamp technique. Dopamine-modulated transmission was less effective at resetting autonomous activity or generating rebound burst firing than control transmission. The data therefore support the conclusion that dopamine acting at presynaptic D2-like receptors reduces the propensity for GABAergic transmission to generate correlated, bursting activity in STN neurons. PMID:18292127

  15. The endocytic receptor protein LRP also mediates neuronal calcium signaling via N-methyl-d-aspartate receptors

    PubMed Central

    Bacskai, B. J.; Xia, M. Q.; Strickland, D. K.; Rebeck, G. W.; Hyman, B. T.

    2000-01-01

    The low density lipoprotein receptor-related protein (LRP) is an endocytic receptor that is a member of the low density lipoprotein receptor family. We report that the LRP ligand, activated α2-macroglobulin (α2M*), induces robust calcium influx in cultured primary neurons, but not in nonneuronal LRP-containing cells in the same culture. The calcium influx is mediated through N-methyl-d-aspartate receptor channels, which explains the neuron specificity of the response. Microapplication of α2M* leads to a localized response at the site of application that dissipates rapidly, suggesting that the calcium signal is temporally and spatially discrete. Calcium influx to α2M* is blocked by the physiological LRP inhibitor, receptor-associated protein. Bivalent antibodies to the extracellular domain of LRP, but not Fab fragments of the same antibody, cause calcium influx, indicating that the response is specific to LRP and may require dimerization of the receptor. Thus, LRP is an endocytic receptor with a novel signaling role. PMID:11016955

  16. Transient Willis-Ekbom's disease (restless legs syndrome) during pregnancy may be caused by estradiol-mediated dopamine overmodulation.

    PubMed

    Pereira, José Carlos; Rocha e Silva, Ingrid Ramos; Pradella-Hallinan, Márcia

    2013-02-01

    Willis-Ekbom's disease (WED), formerly called restless legs syndrome, is more common in pregnant than in non-pregnant women, implying that the physiological and biochemical changes during pregnancy influence its development. During pregnancy, many hormone levels undergo significant changes, and some hormones significantly increase in activity and can interfere with other hormones. For example, the steroid hormone estradiol interferes with the neuroendocrine hormone dopamine. During pregnancy, the activity of the thyroid axis is enhanced to meet the increased demand for thyroid hormones during this state. Dopamine is a neuroendocrine hormone that diminishes the levels of thyrotropin and consequently of thyroxine, and one of the roles of the dopaminergic system is to counteract the activity of thyroid hormones. When the activity of dopamine is not sufficient to modulate thyroid hormones, WED may occur. Robust evidence in the medical literature suggests that an imbalance between thyroid hormones and the dopaminergic system underpins WED pathophysiology. In this article, we present evidence that this imbalance may also mediate transient WED during pregnancy. It is possible that the main hormonal alteration responsible for transient WED of pregnancy is the excessive modulation of dopamine release in the pituitary stalk by estradiol. The reduced quantities of dopamine then cause decreased modulation of thyrotropin, leading to enhanced thyroid axis activity and subsequent WED symptoms. Iron deficiency may also be a predisposing factor for WED during pregnancy, as it can both diminish dopamine and increase thyroid hormone.

  17. Dopamine Mediates the Vagal Modulation of the Immune System by Electroacupuncture

    PubMed Central

    Torres-Rosas, Rafael; Yehia, Ghassan; Peña, Geber; Mishra, Priya; del Rocio Thompson-Bonilla, Maria; Moreno-Eutimio, Mario Adán; Arriaga-Pizano, Lourdes Andrea; Isibasi, Armando; Ulloa, Luis

    2014-01-01

    Previous anti-inflammatory strategies against sepsis, a leading cause of death in hospitals, had limited efficacy in clinical trials, in part because they targeted single cytokines and the experimental models failed to mimic clinical settings1-3. Neuronal networks represent physiological mechanisms selected by evolution to control inflammation that can be exploited for the treatment of inflammatory and infectious disorders3. Here, we report that sciatic nerve activation with electroacupuncture controls systemic inflammation and rescues mice from polymicrobial peritonitis. Electroacupuncture at the sciatic nerve controls systemic inflammation by inducing a vagal activation of DOPA decarboxylase leading to the production of dopamine in the adrenal medulla. Experimental models with adrenolectomized animals mimic clinical adrenal insufficiency4, increase the susceptibility to sepsis, and prevent the anti-inflammatory potential of electroacupuncture. Dopamine inhibits cytokine production via dopaminergic type-1 receptors. Dopaminergic D1-agonists suppress systemic inflammation and rescue mice from polymicrobial peritonitis in animals with adrenal insufficiency. Our results suggest a novel anti-inflammatory mechanism mediated by the sciatic and the vagus nerves modulating the production of catecholamines in the adrenal glands. From a pharmacological perspective, selective dopaminergic agonists mimic the anti-inflammatory potential of electroacupuncture and can provide therapeutic advantages to control inflammation in infectious and inflammatory disorders. PMID:24562381

  18. Dopamine mediated iron release from ferritin is enhanced at higher temperatures: Possible implications for fever-induced Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Babincová, Melánia; Babinec, Peter

    2005-05-01

    A new molecular mechanism is proposed to explain the pathogenesis of fever-induced Parkinson's disease. This proposal is based on dopamine and 6-hydroxydopamine-mediated free iron release from ferritin magnetic nanoparticles, which is enhanced at higher temperatures, and which may lead to substantial peroxidation and injury of lipid biomembranes of the substantia nigra in the brain.

  19. Dopamine agonist suppression of rapid-eye-movement sleep is secondary to sleep suppression mediated via limbic structures

    SciTech Connect

    Miletich, R.S.

    1985-01-01

    The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and /sup 3/H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by ..cap alpha..-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period, phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S/sub 2/ episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. /sup 3/H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system.

  20. Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies.

    PubMed

    Awata, Hiroko; Wakuda, Ryo; Ishimaru, Yoshiyasu; Matsuoka, Yuji; Terao, Kanta; Katata, Satomi; Matsumoto, Yukihisa; Hamanaka, Yoshitaka; Noji, Sumihare; Mito, Taro; Mizunami, Makoto

    2016-07-14

    Revealing reinforcing mechanisms in associative learning is important for elucidation of brain mechanisms of behavior. In mammals, dopamine neurons are thought to mediate both appetitive and aversive reinforcement signals. Studies using transgenic fruit-flies suggested that dopamine neurons mediate both appetitive and aversive reinforcements, through the Dop1 dopamine receptor, but our studies using octopamine and dopamine receptor antagonists and using Dop1 knockout crickets suggested that octopamine neurons mediate appetitive reinforcement and dopamine neurons mediate aversive reinforcement in associative learning in crickets. To fully resolve this issue, we examined the effects of silencing of expression of genes that code the OA1 octopamine receptor and Dop1 and Dop2 dopamine receptors by RNAi in crickets. OA1-silenced crickets exhibited impairment in appetitive learning with water but not in aversive learning with sodium chloride solution, while Dop1-silenced crickets exhibited impairment in aversive learning but not in appetitive learning. Dop2-silenced crickets showed normal scores in both appetitive learning and aversive learning. The results indicate that octopamine neurons mediate appetitive reinforcement via OA1 and that dopamine neurons mediate aversive reinforcement via Dop1 in crickets, providing decisive evidence that neurotransmitters and receptors that mediate appetitive reinforcement indeed differ among different species of insects.

  1. Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies

    PubMed Central

    Awata, Hiroko; Wakuda, Ryo; Ishimaru, Yoshiyasu; Matsuoka, Yuji; Terao, Kanta; Katata, Satomi; Matsumoto, Yukihisa; Hamanaka, Yoshitaka; Noji, Sumihare; Mito, Taro; Mizunami, Makoto

    2016-01-01

    Revealing reinforcing mechanisms in associative learning is important for elucidation of brain mechanisms of behavior. In mammals, dopamine neurons are thought to mediate both appetitive and aversive reinforcement signals. Studies using transgenic fruit-flies suggested that dopamine neurons mediate both appetitive and aversive reinforcements, through the Dop1 dopamine receptor, but our studies using octopamine and dopamine receptor antagonists and using Dop1 knockout crickets suggested that octopamine neurons mediate appetitive reinforcement and dopamine neurons mediate aversive reinforcement in associative learning in crickets. To fully resolve this issue, we examined the effects of silencing of expression of genes that code the OA1 octopamine receptor and Dop1 and Dop2 dopamine receptors by RNAi in crickets. OA1-silenced crickets exhibited impairment in appetitive learning with water but not in aversive learning with sodium chloride solution, while Dop1-silenced crickets exhibited impairment in aversive learning but not in appetitive learning. Dop2-silenced crickets showed normal scores in both appetitive learning and aversive learning. The results indicate that octopamine neurons mediate appetitive reinforcement via OA1 and that dopamine neurons mediate aversive reinforcement via Dop1 in crickets, providing decisive evidence that neurotransmitters and receptors that mediate appetitive reinforcement indeed differ among different species of insects. PMID:27412401

  2. The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast.

    PubMed

    Easlon, Erin; Tsang, Felicia; Skinner, Craig; Wang, Chen; Lin, Su-Ju

    2008-04-01

    Recent studies suggest that increased mitochondrial metabolism and the concomitant decrease in NADH levels mediate calorie restriction (CR)-induced life span extension. The mitochondrial inner membrane is impermeable to NAD (nicotinamide adenine dinucleotide, oxidized form) and NADH, and it is unclear how CR relays increased mitochondrial metabolism to multiple cellular pathways that reside in spatially distinct compartments. Here we show that the mitochondrial components of the malate-aspartate NADH shuttle (Mdh1 [malate dehydrogenase] and Aat1 [aspartate amino transferase]) and the glycerol-3-phosphate shuttle (Gut2, glycerol-3-phosphate dehydrogenase) are novel longevity factors in the CR pathway in yeast. Overexpressing Mdh1, Aat1, and Gut2 extend life span and do not synergize with CR. Mdh1 and Aat1 overexpressions require both respiration and the Sir2 family to extend life span. The mdh1Deltaaat1Delta double mutation blocks CR-mediated life span extension and also prevents the characteristic decrease in the NADH levels in the cytosolic/nuclear pool, suggesting that the malate-aspartate shuttle plays a major role in the activation of the downstream targets of CR such as Sir2. Overexpression of the NADH shuttles may also extend life span by increasing the metabolic fitness of the cells. Together, these data suggest that CR may extend life span and ameliorate age-associated metabolic diseases by activating components of the NADH shuttles.

  3. Novel neuroprotective mechanisms of pramipexole, an anti-Parkinson drug, against endogenous dopamine-mediated excitotoxicity.

    PubMed

    Izumi, Yasuhiko; Sawada, Hideyuki; Yamamoto, Noriyuki; Kume, Toshiaki; Katsuki, Hiroshi; Shimohama, Shun; Akaike, Akinori

    2007-02-28

    Parkinson disease is characterized by selective degeneration of mesencephalic dopaminergic neurons, and endogenous dopamine may play a pivotal role in the degenerative processes. Using primary cultured mesencephalic neurons, we found that glutamate, an excitotoxin, caused selective dopaminergic neuronal death depending on endogenous dopamine content. Pramipexole, a dopamine D2/D3 receptor agonist used clinically in the treatment of Parkinson disease, did not affect glutamate-induced calcium influx but blocked dopaminergic neuronal death induced by glutamate. Pramipexole reduced dopamine content but did not change the levels of total or phosphorylated tyrosine hydroxylase, a rate-limiting enzyme in dopamine synthesis. The neuroprotective effect of pramipexole was independent of dopamine receptor stimulation because it was not abrogated by domperidone, a dopamine D2-type receptor antagonist. Moreover, both active S(-)- and inactive R(+)-enantiomers of pramipexole as a dopamine D2-like receptor agonist equally suppressed dopaminergic neuronal death. These results suggest that pramipexole protects dopaminergic neurons from glutamate neurotoxicity by the reduction of intracellular dopamine content, independently of dopamine D2-like receptor activation.

  4. Effects of cysteamine on dopamine-mediated behaviors: evidence for dopamine-somatostatin interactions in the striatum

    SciTech Connect

    Martin-Iverson, M.T.; Radke, J.M.; Vincent, S.R.

    1986-06-01

    The effects of prior treatment with cysteamine, a drug which appears to deplete selectively the neuropeptide somatostatin, on apomorphine-induced stereotypy and amphetamine-induced locomotor activity and conditioned place preferences were investigated. Twelve hours following systemic cysteamine injections apomorphine-induced stereotypy was attenuated and striatal somatostatin levels were reduced by half. Systemic cysteamine also decreased the motor stimulant effects of amphetamine, without influencing the rewarding properties as determined by the conditioned place preference procedure. Direct injections of cysteamine into the nucleus accumbens also decreased the locomotor response to amphetamine, and produced a local reduction in somatostatin levels in the accumbens. Cysteamine did not appear to alter monoamine turnover in the striatum after either systemic or intra-accumbens injections. These results suggest that somatostatin in the nucleus accumbens and caudate-putamen modulates the motor, but not the reinforcing properties of dopaminergic drugs, possibly via an action postsynaptic to dopamine-releasing terminals. Furthermore, it is evident from these results that cysteamine is an important tool with which to study the central actions of somatostatin.

  5. Anti-N-Methyl-D-Aspartate Receptor Antibody Mediated Neurologic Relapse Post Herpes Simplex Encephalitis: A Case Series.

    PubMed

    Geoghegan, Sarah; Walsh, Aoibhinn; King, Mary D; Lynch, Bryan; Webb, David; Twomey, Eilish; Ronan Leahy, T; Butler, Karina; Gavin, Patrick

    2016-08-01

    Despite the advent of antiviral therapy, herpes simplex encephalitis (HSE) remains a devastating condition with significant morbidity and mortality. Neurologic relapse after initial improvement is generally attributed to herpes simplex virus reactivation. In 2013, inflammation caused by anti-N-methyl-D-aspartate receptor antibodies was reported in association with cases of neurologic relapse after herpes simplex encephalitis. We present 3 such cases and discuss diagnostic and management dilemmas.

  6. BK Channels Mediate Dopamine Inhibition of Firing in a Subpopulation of Core Nucleus Accumbens Medium Spiny Neurons

    PubMed Central

    Ji, Xincai; Martin, Gilles E.

    2014-01-01

    Dopamine, a key neurotransmitter mediating the rewarding properties of drugs of abuse, is widely believed to exert some of its effects by modulating neuronal activity of nucleus accumbens (NAcc) medium spiny neurons (MSNs). Although its effects on synaptic transmission have been well documented, its regulation of intrinsic neuronal excitability is less understood. In this study, we examined the cellular mechanisms of acute dopamine effects on core accumbens MSNs evoked firing. We found that 0.5 μM A-77636 and 10 μM quinpirole, dopamine D1 (DR1s) and D2 receptor (D2Rs) agonists, respectively, markedly inhibited MSN evoked action potentials. This effect, observed only in about 25% of all neurons, was associated with spike-timing-dependent (STDP) long-term potentiation (tLTP), but not long-term depression (tLTD). Dopamine inhibited evoked firing by compromising subthreshold depolarization, not by altering action potentials themselves. Recordings in voltage-clamp mode revealed that all MSNs expressed fast (IA), slowly inactivating delayed rectifier (Idr), and large conductance voltage- and calcium-activated potassium (BKs) channels . Although A-77636 and quinpirole enhanced IA, its selective blockade by 0.5 μM phrixotoxin-1 had no effect on evoked firing. In contrast, exposing tissue to low TEA concentrations and to 10 μM paxilline, a selective BK channel blocker, prevented D1R agonist from inhibiting MSN firing. This result indicates that dopamine inhibits MSN firing through BK channels in a subpopulation of core accumbens MSNs exclusively associated with spike-timing-dependent long-term potentiation. PMID:25219484

  7. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets.

    PubMed

    Awata, Hiroko; Watanabe, Takahito; Hamanaka, Yoshitaka; Mito, Taro; Noji, Sumihare; Mizunami, Makoto

    2015-11-02

    Elucidation of reinforcement mechanisms in associative learning is an important subject in neuroscience. In mammals, dopamine neurons are thought to play critical roles in mediating both appetitive and aversive reinforcement. Our pharmacological studies suggested that octopamine and dopamine neurons mediate reward and punishment, respectively, in crickets, but recent studies in fruit-flies concluded that dopamine neurons mediates both reward and punishment, via the type 1 dopamine receptor Dop1. To resolve the discrepancy between studies in different insect species, we produced Dop1 knockout crickets using the CRISPR/Cas9 system and found that they are defective in aversive learning with sodium chloride punishment but not appetitive learning with water or sucrose reward. The results suggest that dopamine and octopamine neurons mediate aversive and appetitive reinforcement, respectively, in crickets. We suggest unexpected diversity in neurotransmitters mediating appetitive reinforcement between crickets and fruit-flies, although the neurotransmitter mediating aversive reinforcement is conserved. This study demonstrates usefulness of the CRISPR/Cas9 system for producing knockout animals for the study of learning and memory.

  8. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets

    PubMed Central

    Awata, Hiroko; Watanabe, Takahito; Hamanaka, Yoshitaka; Mito, Taro; Noji, Sumihare; Mizunami, Makoto

    2015-01-01

    Elucidation of reinforcement mechanisms in associative learning is an important subject in neuroscience. In mammals, dopamine neurons are thought to play critical roles in mediating both appetitive and aversive reinforcement. Our pharmacological studies suggested that octopamine and dopamine neurons mediate reward and punishment, respectively, in crickets, but recent studies in fruit-flies concluded that dopamine neurons mediates both reward and punishment, via the type 1 dopamine receptor Dop1. To resolve the discrepancy between studies in different insect species, we produced Dop1 knockout crickets using the CRISPR/Cas9 system and found that they are defective in aversive learning with sodium chloride punishment but not appetitive learning with water or sucrose reward. The results suggest that dopamine and octopamine neurons mediate aversive and appetitive reinforcement, respectively, in crickets. We suggest unexpected diversity in neurotransmitters mediating appetitive reinforcement between crickets and fruit-flies, although the neurotransmitter mediating aversive reinforcement is conserved. This study demonstrates usefulness of the CRISPR/Cas9 system for producing knockout animals for the study of learning and memory. PMID:26521965

  9. Signaling Pathways that Mediate Neurotoxin-Induced Death of Dopamine Neurons

    DTIC Science & Technology

    2008-11-01

    instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information...from E15 embryonic rats to investigate our hypothesis. The data obtained should lead to the identification of promising therapeutic strategies to slow...dopamine neurons in culture. This allowed us to study dopamine neurons (GFP-positive cells) using live-cell imaging techniques. Most of the data

  10. Dopamine receptor agonists mediate neuroprotection in malonate-induced striatal lesion in the rat.

    PubMed

    Armentero, Marie-Thérèse; Fancellu, Roberto; Nappi, Giuseppe; Blandini, Fabio

    2002-12-01

    Mitochondrial bioenergetic defects are involved in neurological disorders associated with neuronal damage in the striatum, such as Huntington's disease and cerebral ischemia. The striatal release of neurotransmitters, in particular dopamine, may contribute to the development of the neuronal damage. Recent studies have shown that dopamine agonists may exert neuroprotective effects via multiple mechanisms, including modulation of dopamine release from nigrostriatal dopaminergic terminals. In rats, intrastriatal injection of malonate, a reversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, induces a lesion similar to that observed following focal ischemia or in Huntington's disease. In this study, we used the malonate model to explore the neuroprotective potential of dopamine agonists. Sprague-Dawley rats were injected systemically with increasing concentrations of D(1), D(2), or mixed D(1)/D(2) dopamine agonists prior to malonate intrastriatal insult. Administration of increasing doses of the D(2)-specific agonist quinpirole resulted in increased protection against malonate toxicity. Conversely, the D(1)-specific agonist SKF-38393, as well as the mixed D(1)/D(2) agonist apomorphine, conferred higher neuroprotection at lower than at higher concentrations. Our data suggest that malonate-induced striatal toxicity can be attenuated by systemic administration of dopamine agonists, with D(1) and D(2) agonists showing different profiles of efficacy.

  11. Toluene exposure during brain growth spurt and adolescence produces differential effects on N-methyl-D-aspartate receptor-mediated currents in rat hippocampus.

    PubMed

    Chen, Hwei-Hsien; Lin, Yi-Ruu; Chan, Ming-Huan

    2011-09-10

    Toluene, an industrial organic solvent, is voluntarily inhaled as drug of abuse. Because inhibition of N-methyl-d-aspartate (NMDA) receptors is one of the possible mechanisms underlying developmental neurotoxicity of toluene, the purpose of the present study was to examine the effects of toluene exposure during two major neurodevelopmental stages, brain growth spurt and adolescence, on NMDA receptor-mediated current. Rats were administered with toluene (500 mg/kg, i.p.) or corn oil daily over postnatal days (PN) 4-9 (brain growth spurt) or PN 21-26 (early adolescence). Intracellular electrophysiological recordings employing in CA1 pyramidal neurons in the hippocampal slices were performed during PN 30-38. Toluene exposure during brain growth spurt enhanced NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) by electrical stimulation, but impaired the paired-pulse facilitation and NMDA response by exogenous application of NMDA. Toluene exposure during adolescence resulted in an increase in NMDA receptor-mediated EPSCs and a decrease in exogenous NMDA-induced currents, while lack of any effect on paired-pulse facilitation. These findings suggest that toluene exposure during brain growth spurt and adolescence might result in an increase in synaptic NMDA receptor responsiveness and a decrease in extrasynaptic NMDA receptor responsiveness, while only toluene exposure during brain growth spurt can produce presynaptic modulation in CA1 pyramidal neurons. The functional changes in NMDA receptor-mediated transmission underlying developmental toluene exposure may lead to the neurobehavioral disturbances.

  12. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures

    PubMed Central

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-01-01

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  13. A preliminary study of dopamine-mediated prolactin inhibition in generalised social phobia.

    PubMed

    Condren, Rita M; Sharifi, Neda; Thakore, Jogin H

    2002-08-05

    The biology of social phobia has been little studied, but a possible role for dopamine has been implicated in this disorder. The aim of this study was to examine central dopaminergic function in patients with generalised social phobia using the prolactin response to quinagolide, a dopamine D2 receptor agonist, and to compare responses with those of normal controls. The study included 14 patients with moderate or severe generalised social phobia and 14 healthy age- and gender-matched comparison subjects. Quinagolide (0.5 mg) was administered orally and prolactin responses were measured over 4 h. There was no significant difference between prolactin responses in patients and healthy controls, nor was there a correlation between prolactin response and age, sex, or severity of illness. This would suggest that tuberoinfundibular dopamine D2 receptor sensitivity is normal in this disorder.

  14. Neuroprotective effects mediated by dopamine receptor agonists against malonate-induced lesion in the rat striatum.

    PubMed

    Fancellu, R; Armentero, M-T; Nappi, G; Blandini, F

    2003-10-01

    In rats, intrastriatal injection of malonate, a reversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, induces a lesion similar to that observed following focal ischemia or in Huntington's disease. In this study we used the malonate model to explore the neuroprotective potential of dopamine agonists. Rats were injected intraperitoneally with increasing concentrations of D1, D2, or mixed D1/D2 dopamine agonists prior to intrastriatal injection of malonate. Administration of increasing doses of the D2-specific agonist quinpirole resulted in increased protection against malonate toxicity. Conversely, the D1-specific agonist SKF-38393, as well as the mixed D1/D2 agonist apomorphine, conferred higher neuroprotection at lower than at higher drug concentrations. Our data suggest that malonate- induced striatal toxicity can be attenuated by systemic administration of dopamine agonists, with D1 and D2 agonists showing different profiles of efficacy.

  15. Histamine H3 receptor activation prevents dopamine D1 receptor-mediated inhibition of dopamine release in the rat striatum: a microdialysis study.

    PubMed

    Alfaro-Rodriguez, Alfonso; Alonso-Spilsbury, María; Arch-Tirado, Emilio; Gonzalez-Pina, Rigoberto; Arias-Montaño, José-Antonio; Bueno-Nava, Antonio

    2013-09-27

    Histamine H3 receptors (H3Rs) co-localize with dopamine (DA) D1 receptors (D1Rs) on striatal medium spiny neurons and functionally antagonize D1R-mediated responses. The intra-striatal administration of D1R agonists reduces DA release whereas D1R antagonists have the opposite effect. In this work, a microdialysis method was used to study the effect of co-activating D1 and H3 receptors on the release of DA from the rat dorsal striatum. Infusion of the D1R agonist SKF-38393 (0.5 and 1 μM) significantly reduced DA release (26-58%), and this effect was prevented by co-administration of the H3R agonist immepip (10 μM). In turn, the effect of immepip was blocked by the H3R antagonist thioperamide (10 μM). Our results indicate that co-stimulation of post-synaptic D1 and H3 receptors may indirectly regulate basal DA release in the rat striatum and provide in vivo evidence for a functional interaction between D1 and H3 receptors in the basal ganglia.

  16. (−)-Stepholidine is a potent pan-dopamine receptor antagonist of both G protein- and β-arrestin-mediated signaling

    PubMed Central

    Meade, Julie A.; Free, R. Benjamin; Miller, Nicole R.; Chun, Lani S.; Doyle, Trevor B.; Moritz, Amy E.; Conroy, Jennie L.; Watts, Val J.

    2017-01-01

    Rationale (−)-Stepholidine is a tetrahydroberberine alkaloid that is known to interact with dopamine receptors and has also been proposed as a novel antipsychotic agent. Its suggested novelty lies in the fact that it has been proposed to have D1-like receptor agonist and D2-like receptor antagonist properties. Thus, it might be effective in treating both positive and negative (cognition) symptoms of schizophrenia. However, its activity on specific dopamine receptor subtypes has not been clarified, especially with respect to its ability to activate D1-like receptors. Objectives We wished to examine the affinity and functional activity of (−)-stepholidine at each of the human dopamine receptor subtypes expressed in a defined cellular environment. Methods D1–D5 dopamine receptors were stably expressed in cell lines and their interactions with (−)-stepholidine were examined using radioligand binding and various functional signaling assays. Radioligand binding assays were also performed using bovine striatal membranes. Results (−)-Stepholidine exhibited high (nM) affinity for D1 and D5 receptors, somewhat lower (two- to four-fold) affinity for D2 and D3 receptors, and low micromolar affinity for D4 receptors. Functionally, (−)-stepholidine was ineffective in activating G protein-mediated signaling of D1-like and D2 receptors and was also ineffective in stimulating β-arrestin recruitment to any dopamine receptor subtype. It did, however, antagonize all of these responses. It also antagonized D1–D2 heteromer-mediated Ca2+ mobilization. Radioligand binding assays of D1-like receptors in brain membranes also indicated that (−)-stepholidine binds to the D1 receptor with antagonist-like properties. Conclusions (−)-Stepholidine is a pan-dopamine receptor antagonist and its in vivo effects are largely mediated through dopamine receptor blockade with potential cross-talk to other receptors or signaling proteins. PMID:25231919

  17. Dopamine-Induced Apoptosis of Lactotropes Is Mediated by the Short Isoform of D2 Receptor

    PubMed Central

    Radl, Daniela Betiana; Ferraris, Jimena; Boti, Valeria; Seilicovich, Adriana; Sarkar, Dipak Kumar; Pisera, Daniel

    2011-01-01

    Dopamine, through D2 receptor (D2R), is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L) and short (D2S), are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850). SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process. PMID:21464994

  18. Electrical release of dopamine and levodopa mediated by amphiphilic β-cyclodextrins immobilized on polycrystalline gold

    NASA Astrophysics Data System (ADS)

    Foschi, Giulia; Leonardi, Francesca; Scala, Angela; Biscarini, Fabio; Kovtun, Alessandro; Liscio, Andrea; Mazzaglia, Antonino; Casalini, Stefano

    2015-11-01

    Vesicles of cationic amphiphilic β-cyclodextrins have been immobilized on polycrystalline gold by exploiting the chemical affinity between their amino groups and Au atoms. The presence of cyclodextrins has been widely investigated by means of AFM, XPS, kelvin probe and electrochemical measurements. This multi-functional coating confers distinct electrochemical features such as pH-dependent behavior and partial/total blocking properties towards electro-active species. The host-guest properties of β-cyclodextrins have been successfully exploited in order to trap drugs, like dopamine and levodopa. The further release of these drugs was successfully achieved by providing specific electrical stimuli. This proof-of-concept led us to fabricate an electronic device (i.e. an organic transistor) capable of dispensing both dopamine and levodopa in aqueous solution.Vesicles of cationic amphiphilic β-cyclodextrins have been immobilized on polycrystalline gold by exploiting the chemical affinity between their amino groups and Au atoms. The presence of cyclodextrins has been widely investigated by means of AFM, XPS, kelvin probe and electrochemical measurements. This multi-functional coating confers distinct electrochemical features such as pH-dependent behavior and partial/total blocking properties towards electro-active species. The host-guest properties of β-cyclodextrins have been successfully exploited in order to trap drugs, like dopamine and levodopa. The further release of these drugs was successfully achieved by providing specific electrical stimuli. This proof-of-concept led us to fabricate an electronic device (i.e. an organic transistor) capable of dispensing both dopamine and levodopa in aqueous solution. Electronic supplementary information (ESI) available: Kelvin probe, AFM and electrochemical data are reported. Furthermore, the chemical backbone of both types of cyclodextrins are shown. See DOI: 10.1039/c5nr05405b

  19. Enhancement of N-methyl- D-aspartate receptor-mediated excitatory postsynaptic potentials in the neostriatum after methamphetamine sensitization. An in vitro slice study.

    PubMed

    Moriguchi, Shigeki; Watanabe, Shigenori; Kita, Hitoshi; Nakanishi, Hiroshi

    2002-05-01

    It has been suggested that behavioral methamphetamine sensitization involves changes in cortical excitatory synaptic inputs to neostriatal (Str) projection neurons. To test this, we performed blind whole-cell recording of medium spiny neurons in Str slice preparations. In Str neurons of naive rats, the amplitude of the subcortical white matter stimulation-induced N-methyl- D-aspartate receptor-mediated excitatory postsynaptic potentials (NMDA-EPSPs) was decreased upon hyperpolarization, owing to the voltage-dependent Mg(2+) blockade of NMDA receptor channels. In contrast, the amplitude of the NMDA-EPSPs in Str neurons of rats undergoing methamphetamine withdrawal (MW) did not show the Mg(2+) blockade and was nearly voltage independent over the membrane potential range of -70 to -110 mV. Application of the specific protein kinase C (PKC) activator, phorbol 12, 13- DL-acetate, blocked the voltage-dependent Mg(2+) blockade of NMDA receptor channels in Str neurons of naive rats. Application of the specific activator of cAMP-dependent protein kinase A (PKA), Sp-cAMPS-triethylamine salt, increased the amplitude of the NMDA receptor-mediated EPSPs at the rest but not at hyperpolarized potentials. Coapplication of the PKC and PKA activators yielded NMDA-EPSPs similar to those seen in Str neurons of MW rats. In Str slices of naive rats, tetanic subcortical white matter stimulation induced long-term depression of field potentials. In Str slices treated with the PKC and/or PKA, the same stimulation induced long-term potentiation of field potentials similar to those observed in slices obtained from MW rats. These results suggest that the enhancement of the NMDA receptor-mediated corticostriatal synaptic transmission plays an important role in behavioral methamphetamine sensitization. This enhancement is probably associated with phosphorylation of NMDA receptors mediated by the simultaneous activation of PKC and PKA.

  20. SCH 23390 may alter dopamine-mediated motor behaviour via striatal D-1 receptors.

    PubMed

    Boyce, S; Kelly, E; Davis, A; Fleminger, S; Jenner, P; Marsden, C D

    1985-05-15

    SCH 23390 potently displaced the specific binding of 3H-piflutixol to D-1 sites in striatal membranes but haloperidol was only weakly effective. SCH 23390 weakly displaced specific 3H-spiperone binding to D-2 sites, but haloperidol was potent. SCH 23390 was more effective than haloperidol in inhibiting dopamine stimulated striatal adenylate cyclase activity. These results confirm the D-1 selectivity of SCH 23390. However, SCH 23390 inhibited apomorphine-induced stereotypy and climbing behaviour in rats with equal potency to haloperidol. Haloperidol dose-dependently increased striatal HVA and DOPAC concentrations without altering dopamine content. Low doses of SCH 23390 elevated striatal DOPAC concentrations but higher doses were without effect; striatal dopamine and HVA overall was unaffected by administration of SCH 23390. Haloperidol did not affect basal 3H-acetylcholine release from striatal slices but reversed the apomorphine-induced inhibition of 3H-acetylcholine release. SCH 23390 did not affect basal 3H-acetylcholine release nor did it reverse the apomorphine-induced inhibition of 3H-acetylcholine release. The ability of SCH 23390 to inhibit motor behaviour in the rat may be due to its action on D-1 receptors since the drug does not cause typical changes in parameters of striatal D-2 receptor function.

  1. Striatal Dopamine Mediates the Interface between Motivational and Cognitive Control in Humans: Evidence from Genetic Imaging

    PubMed Central

    Aarts, Esther; Roelofs, Ardi; Franke, Barbara; Rijpkema, Mark; Fernández, Guillén; Helmich, Rick C; Cools, Roshan

    2010-01-01

    Dopamine has been hypothesized to provide the basis for the interaction between motivational and cognitive control. However, there is no evidence for this hypothesis in humans. We fill this gap by using fMRI, a novel behavioral paradigm and a common polymorphism in the DAT1 gene (SLC6A3). Carriers of the 9-repeat (9R) allele of a 40 base pair repeat polymorphism in the 3′ untranslated region of DAT1, associated with high striatal dopamine, showed greater activity in the ventromedial striatum during reward anticipation than homozygotes for the 10-repeat allele, replicating previous genetic imaging studies. The crucial novel finding is that 9R carriers also exhibited a greater influence of anticipated reward on switch costs, as well as greater activity in the dorsomedial striatum during task switching in anticipation of high reward relative to low reward. These data establish a crucial role for human striatal dopamine in the modulation of cognitive flexibility by reward anticipation, thus, elucidating the neurochemical mechanism of the interaction between motivation and cognitive control. PMID:20463658

  2. Striatal dopamine mediates the interface between motivational and cognitive control in humans: evidence from genetic imaging.

    PubMed

    Aarts, Esther; Roelofs, Ardi; Franke, Barbara; Rijpkema, Mark; Fernández, Guillén; Helmich, Rick C; Cools, Roshan

    2010-08-01

    Dopamine has been hypothesized to provide the basis for the interaction between motivational and cognitive control. However, there is no evidence for this hypothesis in humans. We fill this gap by using fMRI, a novel behavioral paradigm and a common polymorphism in the DAT1 gene (SLC6A3). Carriers of the 9-repeat (9R) allele of a 40 base pair repeat polymorphism in the 3' untranslated region of DAT1, associated with high striatal dopamine, showed greater activity in the ventromedial striatum during reward anticipation than homozygotes for the 10-repeat allele, replicating previous genetic imaging studies. The crucial novel finding is that 9R carriers also exhibited a greater influence of anticipated reward on switch costs, as well as greater activity in the dorsomedial striatum during task switching in anticipation of high reward relative to low reward. These data establish a crucial role for human striatal dopamine in the modulation of cognitive flexibility by reward anticipation, thus, elucidating the neurochemical mechanism of the interaction between motivation and cognitive control.

  3. A model for modulation of neuronal synchronization by D4 dopamine receptor-mediated phospholipid methylation.

    PubMed

    Kuznetsova, Anna Y; Deth, Richard C

    2008-06-01

    We describe a new molecular mechanism of dopamine-induced membrane protein modulation that can tune neuronal oscillation frequency to attention-related gamma rhythm. This mechanism is based on the unique ability of D4 dopamine receptors (D4R) to carry out phospholipid methylation (PLM) that may affect the kinetics of ion channels. We show that by deceasing the inertia of the delayed rectifier potassium channel, a transition to 40 Hz oscillations can be achieved. Decreased potassium channel inertia shortens spike duration and decreases the interspike interval via its influence on the calcium-dependent potassium current. This mechanism leads to a transition to attention-related gamma oscillations in a pyramidal cell-interneuron network. The higher frequency and better synchronization is observed with PLM affecting pyramidal neurons only, and recurrent excitation between pyramidal neurons is important for synchronization. Thus dopamine-stimulated methylation of membrane phospholipids may be an important mechanism for modulating firing activity, while impaired methylation can contribute to disorders of attention.

  4. Dopamine promotes NMDA receptor hypofunction in the retina through D1 receptor-mediated Csk activation, Src inhibition and decrease of GluN2B phosphorylation

    PubMed Central

    Socodato, Renato; Santiago, Felipe N.; Portugal, Camila C.; Domith, Ivan; Encarnação, Thaísa G.; Loiola, Erick C.; Ventura, Ana L. M.; Cossenza, Marcelo; Relvas, João B.; Castro, Newton G.; Paes-de-Carvalho, Roberto

    2017-01-01

    Dopamine and glutamate are critical neurotransmitters involved in light-induced synaptic activity in the retina. In brain neurons, dopamine D1 receptors (D1Rs) and the cytosolic protein tyrosine kinase Src can, independently, modulate the behavior of NMDA-type glutamate receptors (NMDARs). Here we studied the interplay between D1Rs, Src and NMDARs in retinal neurons. We reveal that dopamine-mediated D1R stimulation provoked NMDAR hypofunction in retinal neurons by attenuating NMDA-gated currents, by preventing NMDA-elicited calcium mobilization and by decreasing the phosphorylation of NMDAR subunit GluN2B. This dopamine effect was dependent on upregulation of the canonical D1R/adenylyl cyclase/cAMP/PKA pathway, of PKA-induced activation of C-terminal Src kinase (Csk) and of Src inhibition. Accordingly, knocking down Csk or overexpressing a Csk phosphoresistant Src mutant abrogated the dopamine-induced NMDAR hypofunction. Overall, the interplay between dopamine and NMDAR hypofunction, through the D1R/Csk/Src/GluN2B pathway, might impact on light-regulated synaptic activity in retinal neurons. PMID:28098256

  5. N-methyl-D-aspartate receptor antibody-mediated neurological disease: results of a UK-based surveillance study in children

    PubMed Central

    Wright, Sukhvir; Hacohen, Yael; Jacobson, Leslie; Agrawal, Shakti; Gupta, Rajat; Philip, Sunny; Smith, Martin; Lim, Ming; Wassmer, Evangeline; Vincent, Angela

    2015-01-01

    Objective N-methyl-D-aspartate receptor antibody (NMDAR-Ab) encephalitis is a well-recognised clinico-immunological syndrome that presents with neuropsychiatric symptoms cognitive decline, movement disorder and seizures. This study reports the clinical features, management and neurological outcomes of paediatric NMDAR-Ab-mediated neurological disease in the UK. Design A prospective surveillance study. Children with NMDAR-Ab-mediated neurological diseases were voluntarily reported to the British Neurological Surveillance Unit (BPNSU) from November 2010 to December 2011. Initial and follow-up questionnaires were sent out to physicians. Results Thirty-one children fulfilled the criteria for the study. Eight presented during the study period giving an incidence of 0.85 per million children per year (95% CI 0.64 to 1.06); 23 cases were historical. Behavioural change and neuropsychiatric features were present in 90% of patients, and seizures and movement disorders both in 67%. Typical NMDAR-Ab encephalitis was reported in 24 children and partial phenotype without encephalopathy in seven, including predominantly psychiatric (four) and movement disorder (three). All patients received steroids, 22 (71%) received intravenous immunoglobulin, 9 (29%) received plasma exchange,and 10 (32%) received second-line immunotherapy. Of the 23 patients who were diagnosed early, 18 (78%) made a full recovery compared with only 1 of 8 (13%) of the late diagnosed patients (p=0.002, Fisher's exact test). Seven patients relapsed, with four needing additional second-line immunotherapy. Conclusions Paediatric NMDAR-Ab-mediated neurological disease appears to be similar to adult NMDAR-Ab encephalitis, but some presented with a partial phenotype. Early treatment was associated with a quick and often full recovery. PMID:25637141

  6. Centrally mediated ejaculatory response via sympathetic outflow in rats: role of N-methyl-D-aspartic acid receptors in paraventricular nucleus.

    PubMed

    Xia, J-D; Chen, J; Sun, H-J; Zhou, L-H; Zhu, G-Q; Chen, Y; Dai, Y-T

    2017-01-01

    Ejaculation is mediated by a spinal generator, which integrates inputs related to the sexual activity and coordinates sympathetic, parasympathetic, and motor outflow. Previous clinical studies indicate that primary premature ejaculation is related to the hyperactivity of the sympathetic nervous system. In this study, we explored the roles of N-methyl-D-aspartic acid (NMDA) receptors in paraventricular nucleus of the hypothalamus (PVN) on ejaculatory responses and its potential mechanism in the rats. We found that microinjection of 0.20 nmol NMDA into the PVN reduced the latency of intromission and facilitated ejaculation during copulation. Moreover, delayed ejaculation and intromission were observed after the rats were microinjected with NMDA receptor antagonist D (-)-2-Amino-5-phosphonopentanoic acid (AP-5). However, we discovered that microinjection of NMDA into PVN significantly increased baseline lumbar splanchnic nerve activity (LSNA), and the NMDA dose was positively correlated with the increased LSNA (r = 0.875, p = 0.04). Meanwhile, the plasma norepinephrine level in rats injected with NMDA was much higher than that in rats injected with saline (1453.4 ± 136.4 pg/mL vs. 492.3 ± 36.8 pg/mL, p < 0.01). Additionally, AP-5 reduced the baseline LSNA and abrogated the enhancing activity of NMDA in LSNA. Thus, we propose that NMDA receptors in PVN may facilitate ejaculation through enhancing the activity of sympathetic system.

  7. Neuroprotection Mediated through GluN2C-Containing N-methyl-D-aspartate (NMDA) Receptors Following Ischemia

    PubMed Central

    Chung, Connie; Marson, John D.; Zhang, Quan-Guang; Kim, Jimok; Wu, Wei-Hua; Brann, Darrell W.; Chen, Bo-Shiun

    2016-01-01

    Post-ischemic activation of NMDA receptors (NMDARs) has been linked to NMDAR subunit-specific signaling that mediates pro-survival or pro-death activity. Although extensive studies have been performed to characterize the role of GluN2A and GluN2B following ischemia, there is less understanding regarding the regulation of GluN2C. Here, we show that GluN2C expression is increased in acute hippocampal slices in response to ischemia. Strikingly, GluN2C knockout mice, following global cerebral ischemia, exhibit greater neuronal death in the CA1 area of the hippocampus and reduced spatial working memory compared to wild-type mice. Moreover, we find that GluN2C-expressing hippocampal neurons show marked resistance to NMDA-induced toxicity and reduced calcium influx. Using both in vivo and in vitro experimental models of ischemia, we demonstrate a neuroprotective role of GluN2C, suggesting a mechanism by which GluN2C is upregulated to promote neuronal survival following ischemia. These results may provide insights into development of NMDAR subunit-specific therapeutic strategies to protect neurons from excitotoxicity. PMID:27845401

  8. Dopamine D3 Receptor Mediates Preadolescent Stress-Induced Adult Psychiatric Disorders

    PubMed Central

    Seo, Joon H.; Kuzhikandathil, Eldo V.

    2015-01-01

    Several studies have shown that repeated stressful experiences during childhood increases the likelihood of developing depression- and anxiety-related disorders in adulthood; however, the underlying mechanisms are not well understood. We subjected drd3-EGFP and drd3-null mice to daily, two hour restraint stress episodes over a five day period during preadolescence (postnatal day 35 to 39), followed by social isolation. When these mice reached adulthood (post-natal day > 90), we assessed locomotor behavior in a novel environment, and assessed depression-related behavior in the Porsolt Forced Swim test. We also measured the expression and function of dopamine D3 receptor in limbic brain areas such as hippocampus, nucleus accumbens and amygdala in control and stressed drd3-EGFP mice in adulthood. Adult male mice subjected to restraint stress during preadolescence exhibited both anxiety- and depression-related behaviors; however, adult female mice subjected to preadolescent restraint stress exhibited only depression-related behaviors. The development of preadolescent stress-derived psychiatric disorders was blocked by D3 receptor selective antagonist, SB 277011-A, and absent in D3 receptor null mice. Adult male mice that experienced stress during preadolescence exhibited a loss of D3 receptor expression and function in the amygdala but not in hippocampus or nucleus accumbens. In contrast, adult female mice that experienced preadolescent stress exhibited increased D3 receptor expression in the nucleus accumbens but not in amygdala or hippocampus. Our results suggest that the dopamine D3 receptor is centrally involved in the etiology of adult anxiety- and depression-related behaviors that arise from repeated stressful experiences during childhood. PMID:26619275

  9. Dual actions of (-)-stepholidine on the dopamine receptor-mediated adenylate cyclase activity in rat corpus striatum.

    PubMed

    Dong, Z J; Guo, X; Chen, L J; Han, Y F; Jin, G Z

    1997-01-01

    (-)-Stepholidine (SPD) is an antagonist of normosensitive dopamine (DA) receptors, but it exhibits D1 agonistic action on rotational behaviour in rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNC). In the present study, agonistic and antagonistic effects of SPD on the DA receptor-mediated synaptosomal adenylate cyclase (AC) activity in rat striatum were investigated. After blockade of D2 receptors, SPD augmented AC activity dose-dependently. The EC50 value was 41.1 +/- 8.6 micromol/L. At the concentration of 10 micromol/L, SPD increased cAMP formation from a basal level (50.8 +/- 10.3 pmol/mg protein/min) to 133.7 +/- 31.8 pmol/mg protein/min. The SPD-induced stimulation of AC activity was almost completely reversed by 10 micromol/L Sch23390. These results indicate that SPD possesses an agonistic action on the D1 receptor. Forskolin-stimulated adenylate cyclase (FSAC) activity was used as a model to elucidate the effect of SPD on D2 receptors. The results indicate that DA inhibited FSAC activity dose-dependently, while SPD partially restored FSAC activity. Taken together, these results support the conclusion that SPD has dual actions on DA receptors that mediate AC activity, i.e., an agonistic action on D1 receptors and an antagonistic action on D2 receptors.

  10. Dopamine D1 Receptor-Mediated Transmission Maintains Information Flow Through the Cortico-Striato-Entopeduncular Direct Pathway to Release Movements.

    PubMed

    Chiken, Satomi; Sato, Asako; Ohta, Chikara; Kurokawa, Makoto; Arai, Satoshi; Maeshima, Jun; Sunayama-Morita, Tomoko; Sasaoka, Toshikuni; Nambu, Atsushi

    2015-12-01

    In the basal ganglia (BG), dopamine plays a pivotal role in motor control, and dopamine deficiency results in severe motor dysfunctions as seen in Parkinson's disease. According to the well-accepted model of the BG, dopamine activates striatal direct pathway neurons that directly project to the output nuclei of the BG through D1 receptors (D1Rs), whereas dopamine inhibits striatal indirect pathway neurons that project to the external pallidum (GPe) through D2 receptors. To clarify the exact role of dopaminergic transmission via D1Rs in vivo, we developed novel D1R knockdown mice in which D1Rs can be conditionally and reversibly regulated. Suppression of D1R expression by doxycycline treatment decreased spontaneous motor activity and impaired motor ability in the mice. Neuronal activity in the entopeduncular nucleus (EPN), one of the output nuclei of the rodent BG, was recorded in awake conditions to examine the mechanism of motor deficits. Cortically evoked inhibition in the EPN mediated by the cortico-striato-EPN direct pathway was mostly lost during suppression of D1R expression, whereas spontaneous firing rates and patterns remained unchanged. On the other hand, GPe activity changed little. These results suggest that D1R-mediated dopaminergic transmission maintains the information flow through the direct pathway to appropriately release motor actions.

  11. Binding of Dopamine to Alpha-Synuclein is Mediated by Specific Conformational States

    NASA Astrophysics Data System (ADS)

    Illes-Toth, Eva; Dalton, Caroline F.; Smith, David P.

    2013-09-01

    Parkinson's disease is the second most common neurodegenerative disorder, in which both alpha-synuclein (α-syn) and dopamine (DA) have a critical role. α-Syn is known to be natively unstructured in equilibrium with subpopulations of more compact structures. It is these compact structures that are thought to be linked to amyloid formation. In the presence of DA, α-syn yields a diverse range of SDS-resistant, non-amyloid oligomers, however the precursor state conformation has not been established. Here, three DA molecules have been observed to bind per α-syn monomer by electrospray-ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS). Each of these DA molecules binds exclusively to the extended conformation of α-syn, and binding is not observed in the compact state of the protein. Measurements of collisional cross sectional areas show that the incremental uptake of DA pushes the protein towards a highly extended population, becoming fully populated upon the binding of three DA ligands. Tyrosine (Tyr) as a closely related structural analog, exhibited limited binding to the protein as compared with DA, with a maximum of two ligands being observed. Those Tyr ligands that do bind were observed as adducts to the extended conformation akin to DA. These findings suggest DA is able to modulate α-syn self-assembly by inducing the population of a highly extended state.

  12. Beer Flavor Provokes Striatal Dopamine Release in Male Drinkers: Mediation by Family History of Alcoholism

    PubMed Central

    Oberlin, Brandon G; Dzemidzic, Mario; Tran, Stella M; Soeurt, Christina M; Albrecht, Daniel S; Yoder, Karmen K; Kareken, David A

    2013-01-01

    Striatal dopamine (DA) is increased by virtually all drugs of abuse, including alcohol. However, drug-associated cues are also known to provoke striatal DA transmission- a phenomenon linked to the motivated behaviors associated with addiction. To our knowledge, no one has tested if alcohol's classically conditioned flavor cues, in the absence of a significant pharmacologic effect, are capable of eliciting striatal DA release in humans. Employing positron emission tomography (PET), we hypothesized that beer's flavor alone can reduce the binding potential (BP) of [11C]raclopride (RAC; a reflection of striatal DA release) in the ventral striatum, relative to an appetitive flavor control. Forty-nine men, ranging from social to heavy drinking, mean age 25, with a varied family history of alcoholism underwent two [11C]RAC PET scans: one while tasting beer, and one while tasting Gatorade. Relative to the control flavor of Gatorade, beer flavor significantly increased self-reported desire to drink, and reduced [11C]RAC BP, indicating that the alcohol-associated flavor cues induced DA release. BP reductions were strongest in subjects with first-degree alcoholic relatives. These results demonstrate that alcohol-conditioned flavor cues can provoke ventral striatal DA release, absent significant pharmacologic effects, and that the response is strongest in subjects with a greater genetic risk for alcoholism. Striatal DA responses to salient alcohol cues may thus be an inherited risk factor for alcoholism. PMID:23588036

  13. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement.

    PubMed

    Witten, Ilana B; Steinberg, Elizabeth E; Lee, Soo Yeun; Davidson, Thomas J; Zalocusky, Kelly A; Brodsky, Matthew; Yizhar, Ofer; Cho, Saemi L; Gong, Shiaoching; Ramakrishnan, Charu; Stuber, Garret D; Tye, Kay M; Janak, Patricia H; Deisseroth, Karl

    2011-12-08

    Currently there is no general approach for achieving specific optogenetic control of genetically defined cell types in rats, which provide a powerful experimental system for numerous established neurophysiological and behavioral paradigms. To overcome this challenge we have generated genetically restricted recombinase-driver rat lines suitable for driving gene expression in specific cell types, expressing Cre recombinase under the control of large genomic regulatory regions (200-300 kb). Multiple tyrosine hydroxylase (Th)::Cre and choline acetyltransferase (Chat)::Cre lines were produced that exhibited specific opsin expression in targeted cell types. We additionally developed methods for utilizing optogenetic tools in freely moving rats and leveraged these technologies to clarify the causal relationship between dopamine (DA) neuron firing and positive reinforcement, observing that optical stimulation of DA neurons in the ventral tegmental area (VTA) of Th::Cre rats is sufficient to support vigorous intracranial self-stimulation (ICSS). These studies complement existing targeting approaches by extending the generalizability of optogenetics to traditionally non-genetically-tractable but vital animal models.

  14. Corticotropin-releasing hormone (CRH) depresses n-methyl-D-aspartate receptor-mediated current in cultured rat hippocampal neurons via CRH receptor type 1.

    PubMed

    Sheng, Hui; Zhang, Yanmin; Sun, Jihu; Gao, Lu; Ma, Bei; Lu, Jianqiang; Ni, Xin

    2008-03-01

    CRH, the primary regulator of the neuroendocrine responses to stress, has been shown to modulate synaptic efficacy and the process of learning and memory in hippocampus. However, effects of CRH on N-methyl-d-aspartate (NMDA) receptor, the key receptor for synaptic plasticity, remain unclear. In primary cultured hippocampal neurons, using the technique of whole-cell patch-clamp recordings, we found that CRH (1 pmol/liter to 10 nmol/liter) inhibited NMDA-induced currents in a dose-dependent manner. This effect was reversed by the CRH receptor type 1 (CRHR1) antagonist antalarmin but not by the CRHR2 antagonist astressin-2B, suggesting that CRHR1 mediated the inhibitory effect of CRH. Investigations on the signaling pathways of CRH showed that CRH dose-dependently induced phosphorylated phospholipase C (PLC)-beta3 expression and increased intracellular cAMP content in these cells. Blocking PLC activity with U73122 prevented CRH-induced depression of NMDA current, whereas blocking protein kinase A (H89) and adenylate cyclase (SQ22536) failed to affect the CRH-induced depression of NMDA current. Application of inositol-1,4,5-triphosphate receptor (IP(3)R) antagonist, Ca(2+) chelators or protein kinase C (PKC) inhibitors also mainly blocked CRH-induced depression of NMDA currents, suggesting involvement of PLC/IP(3)R/Ca(2+)and PLC/PKC signaling pathways in CRH down-regulation of NMDA receptors. Our results suggest that CRH may exert neuromodulatory actions on hippocampus through regulating NMDA receptor function.

  15. Role of Dopamine Type 1 Receptors and Dopamine- and cAMP-Regulated Phosphoprotein Mr 32 kDa in Δ9-Tetrahydrocannabinol–Mediated Induction of ΔFosB in the Mouse Forebrain

    PubMed Central

    Lazenka, Matthew F.; Tomarchio, Aaron J.; Lichtman, Aron H.; Greengard, Paul; Flajolet, Marc; Selley, Dana E.

    2015-01-01

    Δ9-Tetrahydrocannabinol (THC), the main psychoactive component of marijuana, produces motor and motivational effects via interactions with the dopaminergic system in the caudate-putamen and nucleus accumbens. However, the molecular events that underlie these interactions after THC treatment are not well understood. Our study shows that pretreatment with dopamine D1 receptor (D1R) antagonists before repeated administration of THC attenuated induction of Δ FBJ murine osteosarcoma viral oncogene homolog B (ΔFosB) in the nucleus accumbens, caudate-putamen, amygdala, and prefrontal cortex. Anatomical studies showed that repeated THC administration induced ΔFosB in D1R-containing striatal neurons. Dopamine signaling in the striatum involves phosphorylation-specific effects of the dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa (DARPP-32), which regulates protein kinase A signaling. Genetic deletion of DARPP-32 attenuated ΔFosB expression measured after acute, but not repeated, THC administration in both the caudate-putamen and nucleus accumbens. THC was then acutely or repeatedly administered to wild-type (WT) and DARPP-32 knockout (KO) mice, and in vivo responses were measured. DARPP-32 KO mice exhibited enhanced acute THC-mediated hypolocomotion and developed greater tolerance to this response relative to the WT mice. Agonist-stimulated guanosine 5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding showed that cannabinoid-stimulated G-protein activity did not differ between DARPP-32 KO and WT mice treated with vehicle or repeated THC. These results indicate that D1Rs play a major role in THC-mediated ΔFosB induction in the forebrain, whereas the role of DARPP-32 in THC-mediated ΔFosB induction and modulation of motor activity appears to be more complex. PMID:26099530

  16. The metal transporter SMF-3/DMT-1 mediates aluminum-induced dopamine neuron degeneration.

    PubMed

    VanDuyn, Natalia; Settivari, Raja; LeVora, Jennifer; Zhou, Shaoyu; Unrine, Jason; Nass, Richard

    2013-01-01

    Aluminum (Al(3+)) is the most prevalent metal in the earth's crust and is a known human neurotoxicant. Al(3+) has been shown to accumulate in the substantia nigra of patients with Parkinson's disease (PD), and epidemiological studies suggest correlations between Al(3+) exposure and the propensity to develop both PD and the amyloid plaque-associated disorder Alzheimer's disease (AD). Although Al(3+) exposures have been associated with the development of the most common neurodegenerative disorders, the molecular mechanism involved in Al(3+) transport in neurons and subsequent cellular death has remained elusive. In this study, we show that a brief exposure to Al(3+) decreases mitochondrial membrane potential and cellular ATP levels, and confers dopamine (DA) neuron degeneration in the genetically tractable nematode Caenorhabditis elegans (C. elegans). Al(3+) exposure also exacerbates DA neuronal death conferred by the human PD-associated protein α-synuclein. DA neurodegeneration is dependent on SMF-3, a homologue to the human divalent metal transporter (DMT-1), as a functional null mutation partially inhibits the cell death. We also show that SMF-3 is expressed in DA neurons, Al(3+) exposure results in a significant decrease in protein levels, and the neurodegeneration is partially dependent on the PD-associated transcription factor Nrf2/SKN-1 and caspase Apaf1/CED-4. Furthermore, we provide evidence that the deletion of SMF-3 confers Al(3+) resistance due to sequestration of Al(3+) into an intracellular compartment. This study describes a novel model for Al(3+)-induced DA neurodegeneration and provides the first molecular evidence of an animal Al(3+) transporter.

  17. The N-Terminal Residues 43 to 60 Form the Interface for Dopamine Mediated α-Synuclein Dimerisation

    PubMed Central

    Leong, Su Ling; Hinds, Mark G.; Connor, Andrea R.; Smith, David P.; Illes-Toth, Eva; Pham, Chi L. L.; Barnham, Kevin J.; Cappai, Roberto

    2015-01-01

    α-synuclein (α-syn) is a major component of the intracellular inclusions called Lewy bodies, which are a key pathological feature in the brains of Parkinson’s disease patients. The neurotransmitter dopamine (DA) inhibits the fibrillisation of α-syn into amyloid, and promotes α-syn aggregation into SDS-stable soluble oligomers. While this inhibition of amyloid formation requires the oxidation of both DA and the methionines in α-syn, the molecular basis for these processes is still unclear. This study sought to define the protein sequences required for the generation of oligomers. We tested N- (α-syn residues 43–140) and C-terminally (1–95) truncated α-syn, and found that similar to full-length protein both truncated species formed soluble DA:α-syn oligomers, albeit 1–95 had a different profile. Using nuclear magnetic resonance (NMR), and the N-terminally truncated α-syn 43–140 protein, we analysed the structural characteristics of the DA:α-syn 43–140 dimer and α-syn 43–140 monomer and found the dimerisation interface encompassed residues 43 to 60. Narrowing the interface to this small region will help define the mechanism by which DA mediates the formation of SDS-stable soluble DA:α-syn oligomers. PMID:25679387

  18. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity.

    PubMed

    Contreras, Francisco; Prado, Carolina; González, Hugo; Franz, Dafne; Osorio-Barrios, Francisco; Osorio, Fabiola; Ugalde, Valentina; Lopez, Ernesto; Elgueta, Daniela; Figueroa, Alicia; Lladser, Alvaro; Pacheco, Rodrigo

    2016-05-15

    Dopamine receptor D3 (DRD3) expressed on CD4(+) T cells is required to promote neuroinflammation in a murine model of Parkinson's disease. However, how DRD3 signaling affects T cell-mediated immunity remains unknown. In this study, we report that TCR stimulation on mouse CD4(+) T cells induces DRD3 expression, regardless of the lineage specification. Importantly, functional analyses performed in vivo using adoptive transfer of OVA-specific OT-II cells into wild-type recipients show that DRD3 deficiency in CD4(+) T cells results in attenuated differentiation of naive CD4(+) T cells toward the Th1 phenotype, exacerbated generation of Th2 cells, and unaltered Th17 differentiation. The reciprocal regulatory effect of DRD3 signaling in CD4(+) T cells favoring Th1 generation and impairing the acquisition of Th2 phenotype was also reproduced using in vitro approaches. Mechanistic analysis indicates that DRD3 signaling evokes suppressor of cytokine signaling 5 expression, a negative regulator of Th2 development, which indirectly favors acquisition of Th1 phenotype. Accordingly, DRD3 deficiency results in exacerbated eosinophil infiltration into the airways of mice undergoing house dust mite-induced allergic response. Interestingly, our results show that, upon chronic inflammatory colitis induced by transfer of naive CD4(+) T cells into lymphopenic recipients, DRD3 deficiency not only affects Th1 response, but also the frequency of Th17 cells, suggesting that DRD3 signaling also contributes to Th17 expansion under chronic inflammatory conditions. In conclusion, our findings indicate that DRD3-mediated signaling in CD4(+) T cells plays a crucial role in the balance of effector lineages, favoring the inflammatory potential of CD4(+) T cells.

  19. Dopamine inhibition of anterior pituitary adenylate cyclase is mediated through the high-affinity state of the D/sub 2/ receptor

    SciTech Connect

    Borgundvaag, B.; George, S.R.

    1985-07-29

    The diterpinoid forskolin stimulated adenylate cyclase activity (measured by conversion of (/sup 3/H)-ATP to (/sup 3/H)-cAMP) in anterior pituitary from male and female rats. Inhibition of stimulated adenylate cyclase activity by potent dopaminergic agonists was demonstrable only in female anterior pituitary. The inhibition of adenylate cyclase activity displayed a typically dopaminergic rank order of agonist potencies and could be completely reversed by a specific dopamine receptor antagonist. The IC/sub 50/ values of dopamine agonist inhibition of adenylate cyclase activity correlated with equal molarity with the dissociation constant of the high-affinity dopamine agonist-detected receptor binding site and with the IC/sub 50/ values for inhibition of prolactin secretion. These findings support the hypothesis that it is the high-affinity form of the D/sub 2/ dopamine receptor in anterior pituitary which is responsible for mediating the dopaminergic function of attenuating adenylate cyclase activity. 12 references, 4 figures, 1 table.

  20. Cardiac specific deletion of N-methyl-d-aspartate receptor 1 ameliorates mtMMP-9 mediated autophagy/mitophagy in hyperhomocysteinemia.

    PubMed

    Tyagi, Neetu; Vacek, Jonathan C; Givvimani, Srikanth; Sen, Utpal; Tyagi, Suresh C

    2010-04-01

    Autophagy is an important process in the pathogenesis of cardiovascular diseases; however, the proximal triggers for mitochondrial autophagy were unknown. The N-methyl-d-aspartate receptor 1 (NMDA-R1) is a receptor for homocysteine (Hcy) and plays a key role in cardiac dysfunction. Cardiac-specific deletion of NMDA-R1 has been shown to ameliorate Hcy-induced myocyte contractility. Hcy activates mitochondrial matrix metalloproteinase-9 (mtMMP-9) and induces translocation of connexin-43 (Cxn-43) to the mitochondria (mtCxn-43). We sought to show cardiac-specific deletion of NMDA-R1 mitigates Hcy-induced mtCxn-43 translocation, mtMMP-9-mediated mtCxn-43 degradation, leading to mitophagy, in part, by decreasing mitochondrial permeability (MPT). Cardiac-specific knockout (KO) of NAMDA-R1 was generated using the cre/lox approach. The myocyte mitochondria were isolated from wild type (WT), WT + Hcy (1.8 g of DL-Hcy/L in the drinking water for 6 weeks), NMDA-R1 KO + Hcy, and NR1(fl/fl)/Cre (NR1(fl/fl)) genetic control mice. Mitochondrial respiratory capacity and MPT were measured by fluorescence-dye methods. The mitochondrial superoxide and peroxinitrite levels were detected by confocal microscopy using Mito-SOX and dihydrorhodamine-123. The mtMMP-9 activity and expression were detected by zymography and RT-PCR analyses. The mtCxn-43 translocation was detected by confocal microscopy. The degradation of mtCxn-43 and LC3-I/II (a marker of autophagy) were detected by Western blot. These results suggested that Hcy enhanced intramitochondrial nitrosative stress in myocytes. There was a robust increase in mtMMP-9 activity. An increase in translocation and degradation of mtCxn-43 was also noted. These increases led to mitophagy. The effects were ameliorated by cardiac-specific deletion of NMDA-R1. We concluded that HHcy increased mitochondrial nitrosative stress, thereby activating mtMMP-9 and inciting the degradation of mtCxn-43. This led to mitophagy, in part, by activating NMDA

  1. Reduced insulin-receptor mediated modulation of striatal dopamine release by basal insulin as a possible contributing factor to hyperdopaminergia in schizophrenia

    PubMed Central

    Caravaggio, Fernando; Hahn, Margaret; Nakajima, Shinichiro; Gerretsen, Philip; Remington, Gary; Graff-Guerrero, Ariel

    2017-01-01

    Schizophrenia is a severe and chronic neuropsychiatric disorder which affects 1% of the world population. Using the brain imaging technique positron emission tomography (PET) it has been demonstrated that persons with schizophrenia have greater dopamine transmission in the striatum compared to healthy controls. However, little progress has been made as to elucidating other biological mechanisms which may account for this hyperdopaminergic state in this disease. Studies in animals have demonstrated that insulin receptors are expressed on midbrain dopamine neurons, and that insulin from the periphery acts on these receptors to modify dopamine transmission in the striatum. This is pertinent given that several lines of evidence suggest that insulin receptor functioning may be abnormal in the brains of persons with schizophrenia. Post-mortem studies have shown that persons with schizophrenia have less than half the number of cortical insulin receptors compared to healthy persons. Moreover, these post-mortem findings are unlikely due to the effects of antipsychotic treatment; studies in cell lines and animals suggest antipsychotics enhance insulin receptor functioning. Further, hyperinsulinemia – even prior to antipsychotic use – seems to be related to less psychotic symptoms in patients with schizophrenia. Collectively, these data suggest that midbrain insulin receptor functioning may be abnormal in persons with schizophrenia, resulting in reduced insulin-mediated regulation of dopamine transmission in the striatum. Such a deficit may account for the hyperdopaminergic state observed in these patients and would help guide the development of novel treatment strategies. We hypothesize that, (i) insulin receptor expression and/or function is reduced in midbrain dopamine neurons in persons with schizophrenia, (ii) basal insulin should reduce dopaminergic transmission in the striatum via these receptors, and (iii) this modulation of dopaminergic transmission by basal

  2. Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex

    PubMed Central

    Glovaci, Iulia; Chapman, C. Andrew

    2015-01-01

    The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The present study assessed the contribution of phosphatidylinositol (PI)-linked D1 receptors to the dopaminergic facilitation of transmission in layer II of the rat entorhinal cortex, and the involvement of phospholipase C activity and release of calcium from internal stores. Whole-cell patch-clamp recordings of glutamate-mediated evoked excitatory postsynaptic currents were obtained from pyramidal and fan cells. Activation of D1-like receptors using SKF38393, SKF83959, or 1 µM dopamine induced a reversible facilitation of EPSCs which was abolished by loading cells with either the phospholipase C inhibitor U-73122 or the Ca2+ chelator BAPTA. Neither the L-type voltage-gated Ca2+ channel blocker nifedipine, nor the L/N-type channel blocker cilnidipine, blocked the facilitation of synaptic currents. However, the facilitation was blocked by blocking Ca2+ release from internal stores via inositol 1,4,5-trisphosphate (InsP3) receptors or ryanodine receptors. Follow-up studies demonstrated that inhibiting CaMKII activity with KN-93 failed to block the facilitation, but that application of the protein kinase C inhibitor PKC(19-36) completely blocked the dopamine-induced facilitation. Overall, in addition to our previous report indicating a role for the cAMP-PKA pathway in dopamine-induced facilitation of synaptic transmission, we demonstrate here that the dopaminergic facilitation of synaptic responses in layer II entorhinal neurons also relies on a signaling cascade dependent on PI-linked D1 receptors, PLC, release of Ca2+ from internal stores, and PKC activation which is likely dependent

  3. Inhibition of human catechol-O-methyltransferase-mediated dopamine O-methylation by daphnetin and its Phase II metabolites.

    PubMed

    Liang, Si-Cheng; Ge, Guang-Bo; Xia, Yang-Liu; Pei-Pei, Dong; Ping, Wang; Qi, Xiao-Yi; Cai-Xia, Tu; Ling, Yang

    2016-07-20

    1. Finding and developing inhibitors of catechol-O-methyltransferase (COMT) from natural products is highly recommended. Daphnetin, a naturally occurring catechol from the family thymelaeaceae, has a chemical structure similar to several potent COMT inhibitors reported previously. Here the potential of daphnetin and its Phase II metabolites as inhibitors of COMT was investigated with human liver cytosol (HLC). 2. Daphnetin and its methylated metabolite (8-O-methyldaphnetin) were found to inhibit COMT-mediated dopamine O-methylation in a dose-dependent manner. The IC50 values for daphnetin (0.51∼0.53 μM) and 8-O-methyldaphnetin (22.5∼24.3 μM) were little affected by changes in HLC concentrations. Further kinetic analysis showed the differences in inhibition type and parameters (Ki) between daphnetin (competitive, 0.37 μM) and 8-O-methyldaphnetin (noncompetitive, 25.7 μM). Other metabolites, including glucuronidated and sulfated species, showed negligible inhibition against COMT. By using in vitro-in vivo extrapolation (IV-IVE), a 24.3-fold increase in the exposure of the COMT substrates was predicted when they are co-administrated with daphnetin. 3. With high COMT-inhibiting activity, daphnetin could serve as a lead compound for the design and development of new COMT inhibitors. Also, much attention should be paid to the clinical impact of combination of daphnetin and herbal preparations containing daphnetin with the drugs primarily cleared by COMT.

  4. Sex mediates dopamine and adrenergic receptor expression in adult rats exposed prenatally to cocaine

    PubMed Central

    Ferris, Mark J.; Mactutus, Charles F.; Silvers, Janelle M.; Hasselrot, Ulla; Strupp, Barbara J.; Booze, Rosemarie M.

    2010-01-01

    The extent of catecholaminergic receptor and respective behavioral alterations associated with prenatal cocaine exposure varies according to exogenous factors such as the amount, frequency, and route of maternal exposure, as well as endogenous factors such as specific brain regions under consideration and sex of the species. The goal of the current study was to use autoradiography to delineate possible moderators of dopaminergic and adrenergic receptor expression in adult rat offspring exposed to cocaine in utero. The current study demonstrated sex-dependent D1 receptor, α2, and noradrenergic transporter binding alterations in prelimbic, hippocampus, and anterior cingulate regions of adult rat brains exposed to cocaine during gestational days 8–21. Of further interest was the lack of alterations in the nucleus accumbens for nearly all receptors/transporters investigated, as well as the lack of alterations in D3 receptor binding in nearly all of the regions investigated (nucleus accumbens, prelimbic region, hippocampus, and cingulate gyrus). Thus, the current investigation demonstrated persistent receptor and transporter alterations that extend well into adulthood as a result of cocaine exposure in utero. Furthermore, the demonstration that sex played a mediating role in prenatal cocaine-induced, aberrant receptor/transporter expression is of primary importance for future studies that seek to control for sex in either design or analysis. PMID:17933484

  5. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms.

    PubMed

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-10-05

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs.

  6. Succinate increases neuronal post-synaptic excitatory potentials in vitro and induces convulsive behavior through N-methyl-d-aspartate-mediated mechanisms.

    PubMed

    Roehrs, C; Garrido-Sanabria, E R; Da Silva, A C; Faria, L C; Sinhorin, V D G; Marques, R H; Priel, M R; Rubin, M A; Cavalheiro, E A; Mello, C F

    2004-01-01

    Succinate is a dicarboxylic acid that accumulates due to succinate dehydrogenase inhibition by malonate and methylmalonate exposure. These neurotoxins cause increased excitability and excitotoxic damage, which can be prevented by administering high amounts of succinate. In the present study we investigated whether succinate alters hippocampal field excitatory post-synaptic potentials. Bath application of succinate at intermediate concentrations (0.3-1 mM) increased the slope of field excitatory post-synaptic potentials in hippocampal slices, and at high concentrations (above 1 mM) did not alter or decrease field excitatory post-synaptic potentials slope. Succinate-induced enhancement of field excitatory post-synaptic potentials slope was abolished by the addition of d-2-amino-5-phosphonovaleric acid (50 microM) to the perfusate, supporting the involvement of N-methyl-d-aspartate receptors in the excitatory effect of this organic acid. Accordingly, succinate (0.8-7.5 micromol) i.c.v. administration caused dose-dependent convulsive behavior in mice. The i.c.v. co-administration of MK-801 (7 nmol) fully prevented succinate-induced convulsions, further suggesting the involvement of N-methyl-d-aspartate receptors in the convulsant action of succinate. Our data indicate that accumulation of moderate amounts of succinate may contribute to the excitotoxicity induced by succinate dehydrogenase inhibitors, through the activation of N-methyl-d-aspartate receptors.

  7. Visual Attention in Flies—Dopamine in the Mushroom Bodies Mediates the After-Effect of Cueing

    PubMed Central

    Koenig, Sebastian; Wolf, Reinhard; Heisenberg, Martin

    2016-01-01

    Visual environments may simultaneously comprise stimuli of different significance. Often such stimuli require incompatible responses. Selective visual attention allows an animal to respond exclusively to the stimuli at a certain location in the visual field. In the process of establishing its focus of attention the animal can be influenced by external cues. Here we characterize the behavioral properties and neural mechanism of cueing in the fly Drosophila melanogaster. A cue can be attractive, repulsive or ineffective depending upon (e.g.) its visual properties and location in the visual field. Dopamine signaling in the brain is required to maintain the effect of cueing once the cue has disappeared. Raising or lowering dopamine at the synapse abolishes this after-effect. Specifically, dopamine is necessary and sufficient in the αβ-lobes of the mushroom bodies. Evidence is provided for an involvement of the αβposterior Kenyon cells. PMID:27571359

  8. AAV Vector-Mediated Gene Delivery to Substantia Nigra Dopamine Neurons: Implications for Gene Therapy and Disease Models.

    PubMed

    Albert, Katrina; Voutilainen, Merja H; Domanskyi, Andrii; Airavaara, Mikko

    2017-02-08

    Gene delivery using adeno-associated virus (AAV) vectors is a widely used method to transduce neurons in the brain, especially due to its safety, efficacy, and long-lasting expression. In addition, by varying AAV serotype, promotor, and titer, it is possible to affect the cell specificity of expression or the expression levels of the protein of interest. Dopamine neurons in the substantia nigra projecting to the striatum, comprising the nigrostriatal pathway, are involved in movement control and degenerate in Parkinson's disease. AAV-based gene targeting to the projection area of these neurons in the striatum has been studied extensively to induce the production of neurotrophic factors for disease-modifying therapies for Parkinson's disease. Much less emphasis has been put on AAV-based gene therapy targeting dopamine neurons in substantia nigra. We will review the literature related to targeting striatum and/or substantia nigra dopamine neurons using AAVs in order to express neuroprotective and neurorestorative molecules, as well as produce animal disease models of Parkinson's disease. We discuss difficulties in targeting substantia nigra dopamine neurons and their vulnerability to stress in general. Therefore, choosing a proper control for experimental work is not trivial. Since the axons along the nigrostriatal tract are the first to degenerate in Parkinson's disease, the location to deliver the therapy must be carefully considered. We also review studies using AAV-a-synuclein (a-syn) to target substantia nigra dopamine neurons to produce an α-syn overexpression disease model in rats. Though these studies are able to produce mild dopamine system degeneration in the striatum and substantia nigra and some behavioural effects, there are studies pointing to the toxicity of AAV-carrying green fluorescent protein (GFP), which is often used as a control. Therefore, we discuss the potential difficulties in overexpressing proteins in general in the substantia nigra.

  9. AAV Vector-Mediated Gene Delivery to Substantia Nigra Dopamine Neurons: Implications for Gene Therapy and Disease Models

    PubMed Central

    Albert, Katrina; Voutilainen, Merja H.; Domanskyi, Andrii; Airavaara, Mikko

    2017-01-01

    Gene delivery using adeno-associated virus (AAV) vectors is a widely used method to transduce neurons in the brain, especially due to its safety, efficacy, and long-lasting expression. In addition, by varying AAV serotype, promotor, and titer, it is possible to affect the cell specificity of expression or the expression levels of the protein of interest. Dopamine neurons in the substantia nigra projecting to the striatum, comprising the nigrostriatal pathway, are involved in movement control and degenerate in Parkinson’s disease. AAV-based gene targeting to the projection area of these neurons in the striatum has been studied extensively to induce the production of neurotrophic factors for disease-modifying therapies for Parkinson’s disease. Much less emphasis has been put on AAV-based gene therapy targeting dopamine neurons in substantia nigra. We will review the literature related to targeting striatum and/or substantia nigra dopamine neurons using AAVs in order to express neuroprotective and neurorestorative molecules, as well as produce animal disease models of Parkinson’s disease. We discuss difficulties in targeting substantia nigra dopamine neurons and their vulnerability to stress in general. Therefore, choosing a proper control for experimental work is not trivial. Since the axons along the nigrostriatal tract are the first to degenerate in Parkinson’s disease, the location to deliver the therapy must be carefully considered. We also review studies using AAV-α-synuclein (α-syn) to target substantia nigra dopamine neurons to produce an α-syn overexpression disease model in rats. Though these studies are able to produce mild dopamine system degeneration in the striatum and substantia nigra and some behavioural effects, there are studies pointing to the toxicity of AAV-carrying green fluorescent protein (GFP), which is often used as a control. Therefore, we discuss the potential difficulties in overexpressing proteins in general in the substantia

  10. Dopamine controls neurogenesis in the adult salamander midbrain in homeostasis and during regeneration of dopamine neurons.

    PubMed

    Berg, Daniel A; Kirkham, Matthew; Wang, Heng; Frisén, Jonas; Simon, András

    2011-04-08

    Appropriate termination of regenerative processes is critical for producing the correct number of cells in tissues. Here we provide evidence for an end-product inhibition of dopamine neuron regeneration that is mediated by dopamine. Ablation of midbrain dopamine neurons leads to complete regeneration in salamanders. Regeneration involves extensive neurogenesis and requires activation of quiescent ependymoglia cells, which express dopamine receptors. Pharmacological compensation for dopamine loss by L-dopa inhibits ependymoglia proliferation and regeneration in a dopamine receptor-signaling-dependent manner, specifically after ablation of dopamine neurons. Systemic administration of the dopamine receptor antagonist haloperidol alone causes ependymoglia proliferation and the appearance of excessive number of neurons. Our data show that stem cell quiescence is under dopamine control and provide a model for termination once normal homeostasis is restored. The findings establish a role for dopamine in the reversible suppression of neurogenesis in the midbrain and have implications for regenerative strategies in Parkinson's disease.

  11. Systems biology of synaptic plasticity: a review on N-methyl-D-aspartate receptor mediated biochemical pathways and related mathematical models.

    PubMed

    He, Y; Kulasiri, D; Samarasinghe, S

    2014-08-01

    Synaptic plasticity, an emergent property of synaptic networks, has shown strong correlation to one of the essential functions of the brain, memory formation. Through understanding synaptic plasticity, we hope to discover the modulators and mechanisms that trigger memory formation. In this paper, we first review the well understood modulators and mechanisms underlying N-methyl-D-aspartate receptor dependent synaptic plasticity, a major form of synaptic plasticity in hippocampus, and then comment on the key mathematical modelling approaches available in the literature to understand synaptic plasticity as the integration of the established functionalities of synaptic components.

  12. Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices.

    PubMed

    Jocham, Gerhard; Klein, Tilmann A; Ullsperger, Markus

    2011-02-02

    A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and negative outcomes to guide value-based choices. We combined administration of the dopamine D(2) receptor antagonist amisulpride with functional magnetic resonance imaging in healthy human volunteers. Amisulpride did not affect initial reinforcement learning. However, in a later transfer phase that involved novel choice situations requiring decisions between two symbols based on their previously learned values, amisulpride improved participants' ability to select the better of two highly rewarding options, while it had no effect on choices between two very poor options. During the learning phase, activity in the striatum encoded a reward prediction error. In the transfer phase, in the absence of any outcome, ventromedial prefrontal cortex (vmPFC) continually tracked the learned value of the available options on each trial. Both striatal prediction error coding and tracking of learned value in the vmPFC were predictive of subjects' choice performance in the transfer phase, and both were enhanced under amisulpride. These findings show that dopamine-dependent mechanisms enhance reinforcement learning signals in the striatum and sharpen representations of associative values in prefrontal cortex that are used to guide reinforcement-based decisions.

  13. Presynaptic inhibition of gamma-aminobutyric acidB-mediated synaptic current by adenosine recorded in vitro in midbrain dopamine neurons.

    PubMed

    Wu, Y N; Mercuri, N B; Johnson, S W

    1995-05-01

    Adenosine receptor antagonists such as caffeine cause dopamine-dependent behavioral arousal and hyperlocomotion in rodents. In the present study, we used the whole-cell recording technique in the rat brain slice to investigate effects of adenosine on dopamine neurons and their synaptic inputs in the substantia nigra zona compacta and ventral tegmental area. Adenosine was most potent for inhibiting the amplitude of the inhibitory postsynaptic current (IPSC) mediated by gamma-aminobutyric acid (GABA)B receptors (EC50 = 47 +/- 3 microM) compared with inhibition of the GABAA-mediated IPSC (117 +/- 51 microM) and the excitatory amino acid-mediated excitatory postsynaptic current (119 +/- 36 microM). Adenosine failed to inhibit current evoked by exogenous GABA or baclofen, suggesting that adenosine acted presynaptically to reduce GABA release from nerve terminals. Adenosine inhibited the GABAB-mediated IPSC by acting at the adenosine A1 receptor, because its effect was blocked by the selective adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (100 nM), as well as by the methylxanthines caffeine (1 mM) and theophylline (300 microM). The rank-order of potency of adenosine agonists [N6-cyclohexyladenosine > R-(-)-N6-(2-phenylisopropyl)-adenosine = N6- cyclohexyladenosine > 5'-N-ethylcarboxamidoadenosine > 2-chloroadenosine] also was consistent with activation of the adenosine A1 receptor, whereas the selective adenosine A2A agonist CGS 21680 [2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamido adenosine] had no effect on the GABAB IPSC. None of the adenosine agonists or antagonists affected holding current or membrane conductance.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Lysergic acid diethylamide (LSD) is a partial agonist of D2 dopaminergic receptors and it potentiates dopamine-mediated prolactin secretion in lactotrophs in vitro.

    PubMed

    Giacomelli, S; Palmery, M; Romanelli, L; Cheng, C Y; Silvestrini, B

    1998-01-01

    The hallucinogenic effects of lysergic acid diethylamide (LSD) have mainly been attributed to the interaction of this drug with the serotoninergic system, but it seems more likely that they are the result of the complex interactions of the drug with both the serotoninergic and dopaminergic systems. The aim of the present study was to investigate the functional actions of LSD at dopaminergic receptors using prolactin secretion by primary cultures of rat pituitary cells as a model. LSD produced a dose-dependent inhibition of prolactin secretion in vitro with an IC50 at 1.7x10(-9) M. This action was antagonized by spiperone but not by SKF83566 or cyproheptadine, which indicates that LSD has a specific effect on D2 dopaminergic receptors. The maximum inhibition of prolactin secretion achieved by LSD was lower than that by dopamine (60% versus 80%). Moreover, the fact that LSD at 10(-8)-10(-6) M antagonized the inhibitory effect of dopamine (10(-7) M) and bromocriptine (10(-11) M) suggests that LSD acts as a partial agonist at D2 receptors on lactotrophs in vitro. Interestingly, LSD at 10(-13)-10(-10) M, the concentrations which are 10-1000-fold lower than those required to induce direct inhibition on pituitary prolactin secretion, potentiated the dopamine (10(-10)-2.5x10(-9) M)-mediated prolactin secretion by pituitary cells in vitro. These results suggest that LSD not only interacts with dopaminergic receptors but also has a unique capacity for modulating dopaminergic transmission. These findings may offer new insights into the hallucinogenic effect of LSD.

  15. Ring Substituents on Substituted Benzamide Ligands Indirectly Mediate Interactions with Position 7.39 of Transmembrane Helix 7 of the D4 Dopamine Receptor

    PubMed Central

    Ericksen, Spencer S.; Cummings, David F.; Teer, Michael E.; Amdani, Shahnawaz

    2012-01-01

    In an effort to delineate how specific molecular interactions of dopamine receptor ligand classes vary between D2-like dopamine receptor subtypes, a conserved threonine in transmembrane (TM) helix 7 (Thr7.39), implicated as a key ligand interaction site with biogenic amine G protein-coupled receptors, was substituted with alanine in D2 and D4 receptors. Interrogation of different ligand chemotypes for sensitivity to this substitution revealed enhanced affinity in the D4, but not the D2 receptor, specifically for substituted benzamides (SBAs) having polar 4- (para) and/or 5- (meta) benzamide ring substituents. D4-T7.39A was fully functional, and the mutation did not alter the sodium-mediated positive and negative allostery observed with SBAs and agonists, respectively. With the exception of the non-SBA ligand (+)-butaclamol, which, in contrast to certain SBAs, had decreased affinity for the D4-T7.39A mutant, the interactions of numerous other ligands were unaffected by this mutation. SBAs were docked into D4 models in the same mode as observed for eticlopride in the D3 crystal structure. In this mode, interactions with TM5 and TM6 residues constrain the SBA ring position that produces distal steric crowding between pyrrolidinyl/diethylamine moieties and D4-Thr7.39. Ligand-residue interaction energy profiles suggest this crowding is mitigated by substitution with a smaller alanine. The profiles indicate sites that contribute to the SBA binding interaction and site-specific energy changes imparted by the D4-T7.39A mutation. Substantial interaction energy changes are observed at only a few positions, some of which are not conserved among the dopamine receptor subtypes and thus seem to account for this D4 subtype-specific structure-activity relationship. PMID:22588261

  16. eIF2α-mediated translational control regulates the persistence of cocaine-induced LTP in midbrain dopamine neurons.

    PubMed

    Placzek, Andon N; Prisco, Gonzalo Viana Di; Khatiwada, Sanjeev; Sgritta, Martina; Huang, Wei; Krnjević, Krešimir; Kaufman, Randal J; Dani, John A; Walter, Peter; Costa-Mattioli, Mauro

    2016-12-13

    Recreational drug use leads to compulsive substance abuse in some individuals. Studies on animal models of drug addiction indicate that persistent long-term potentiation (LTP) of excitatory synaptic transmission onto ventral tegmental area (VTA) dopamine (DA) neurons is a critical component of sustained drug seeking. However, little is known about the mechanism regulating such long-lasting changes in synaptic strength. Previously, we identified that translational control by eIF2α phosphorylation (p-eIF2α) regulates cocaine-induced LTP in the VTA (Huang et al., 2016). Here we report that in mice with reduced p-eIF2α-mediated translation, cocaine induces persistent LTP in VTA DA neurons. Moreover, selectively inhibiting eIF2α-mediated translational control with a small molecule ISRIB, or knocking down oligophrenin-1-an mRNA whose translation is controlled by p-eIF2α-in the VTA also prolongs cocaine-induced LTP. This persistent LTP is mediated by the insertion of GluR2-lacking AMPARs. Collectively, our findings suggest that eIF2α-mediated translational control regulates the progression from transient to persistent cocaine-induced LTP.

  17. eIF2α-mediated translational control regulates the persistence of cocaine-induced LTP in midbrain dopamine neurons

    PubMed Central

    Placzek, Andon N; Prisco, Gonzalo Viana Di; Khatiwada, Sanjeev; Sgritta, Martina; Huang, Wei; Krnjević, Krešimir; Kaufman, Randal J; Dani, John A; Walter, Peter; Costa-Mattioli, Mauro

    2016-01-01

    Recreational drug use leads to compulsive substance abuse in some individuals. Studies on animal models of drug addiction indicate that persistent long-term potentiation (LTP) of excitatory synaptic transmission onto ventral tegmental area (VTA) dopamine (DA) neurons is a critical component of sustained drug seeking. However, little is known about the mechanism regulating such long-lasting changes in synaptic strength. Previously, we identified that translational control by eIF2α phosphorylation (p-eIF2α) regulates cocaine-induced LTP in the VTA (Huang et al., 2016). Here we report that in mice with reduced p-eIF2α-mediated translation, cocaine induces persistent LTP in VTA DA neurons. Moreover, selectively inhibiting eIF2α-mediated translational control with a small molecule ISRIB, or knocking down oligophrenin-1—an mRNA whose translation is controlled by p-eIF2α—in the VTA also prolongs cocaine-induced LTP. This persistent LTP is mediated by the insertion of GluR2-lacking AMPARs. Collectively, our findings suggest that eIF2α-mediated translational control regulates the progression from transient to persistent cocaine-induced LTP. DOI: http://dx.doi.org/10.7554/eLife.17517.001 PMID:27960077

  18. Chronic restraint stress causes a delayed increase in responding for palatable food cues during forced abstinence via a dopamine D1-like receptor-mediated mechanism.

    PubMed

    Ball, Kevin T; Best, Olivia; Luo, Jonathan; Miller, Leah R

    2017-02-15

    Relapse to unhealthy eating habits in dieters is often triggered by stress. Animal models, moreover, have confirmed a causal role for acute stress in relapse. The role of chronic stress in relapse vulnerability, however, has received relatively little attention. Therefore, in the present study, we used an abstinence-based relapse model in rats to test the hypothesis that exposure to chronic stress increases subsequent relapse vulnerability. Rats were trained to press a lever for highly palatable food reinforcers in daily 3-h sessions and then tested for food seeking (i.e., responding for food associated cues) both before and after an acute or chronic restraint stress procedure (3h/day×1day or 10days, respectively) or control procedure (unstressed). The second food seeking test was conducted either 1day or 7days after the last restraint. Because chronic stress causes dopamine D1-like receptor-mediated alterations in prefrontal cortex (a relapse node), we also assessed dopaminergic involvement by administering either SCH-23390 (10.0μg/kg; i.p.), a dopamine D1-like receptor antagonist, or vehicle prior to daily treatments. Results showed that chronically, but not acutely, stressed rats displayed increased food seeking 7days, but not 1day, after the last restraint. Importantly, SCH-23390 combined with chronic stress reversed this effect. These results suggest that drugs targeting D1-like receptors during chronic stress may help to prevent future relapse in dieters.

  19. Corticosterone and dopamine D2/D3 receptors mediate the motivation for voluntary wheel running in C57BL/6J mice.

    PubMed

    Ebada, Mohamed Elsaed; Kendall, David A; Pardon, Marie-Christine

    2016-09-15

    Physical exercise can improve cognition but whether this is related to motivation levels is unknown. Voluntary wheel running is a rewarding activity proposed as a model of motivation to exercise. To question the potential effects of exercise motivation on subsequent behaviour, we used a pharmacological approach targeting some reward mechanisms. The stress hormone corticosterone has rewarding effects mediated by activation of low affinity glucocorticoid receptors (GR). To investigate whether corticosterone synthesis motivates exercise via activation of GRs and subsequently, impacts on behaviour, we treated C57BL/6J mice acutely with the inhibitor of corticosterone synthesis metyrapone (35mg/kg) or repeatedly with the GR antagonist mifepristone (30mg/kg) prior to 1-h running wheel sessions. To investigate whether reducing motivation to exercise impacts on behaviour, we antagonised running-induced dopamine D2/D3 receptors activation with sulpiride (25 or 50mg/kg) and assessed locomotor, anxiety-related and memory performance after 20 running sessions over 4 weeks. We found that corticosterone synthesis contributes to running levels, but the maintenance of running behaviour was not mediated by activation of GRs. Intermittent exercise was not associated with changes in behavioural or cognitive performance. The persistent reduction in exercise levels triggered by sulpiride also had limited impact on behavioural performance, although the level of performance for some behaviours was related to the level of exercise. Altogether, these findings indicate that corticosterone and dopamine D2/D3 receptor activation contribute to the motivation for wheel running, but suggest that motivation for exercise is not a sufficient factor to alter behaviour in healthy mice.

  20. Dopamine D2 receptor and β-arrestin 2 mediate Amyloid-β elevation induced by anti-parkinson’s disease drugs, levodopa and piribedil, in neuronal cells

    PubMed Central

    Wang, Qinying; Pei, Gang

    2017-01-01

    Although levodopa is the first-line medication for the treatment of Parkinson’s disease (PD) showing unsurpassable efficiency, its chronic use causes dyskinesia. Accordingly, dopamine agonists are increasingly employed as monotherapy or in combination with levodopa to reduce the risk of motor complications. It is well recognized that patients with PD often exhibit cognitive deficits. However, clinical and animal studies assessing the effects of dopaminergic medications on cognition are controversial. Amyloid-β (Aβ) is one of the major hallmarks of Alzheimer’s disease (AD), leading to progressive memory loss and cognitive deficit. Interestingly, the abnormal accumulation of Aβ is also detected in PD patients with cognitive deficits. Evidence indicated that levodopa induced a mild increase of Aβ plaque number and size in the brain of AD mouse. However, the underlying mechanism is unclear. Here we present that both levodopa and piribedil enhance the generation of Aβ and the activity of γ-secretase in human neuronal cells and primary neurons isolated from AD mouse. This effect was reduced by either the antagonism or the knockdown of dopamine D2 receptor (D2R). We further showed that in the cells expressing β-arrestin 2-biased D2R mutant, piribedil promoted cellular Aβ production to the extent comparable to the wild-type D2R whereas this activity was absent in those with G protein-biased D2R mutant. Moreover, the knockdown of β-arrestin 2 attenuated the increases of Aβ generation and γ-secretase activity mediated by levodopa or piribedil. Thus, our study suggests that targeting D2R-mediated β-arrestin function may have potential risk in the modulation of Aβ pathology. PMID:28253352

  1. Genetic evidence for adenylyl cyclase 1 as a target for preventing neuronal excitotoxicity mediated by N-methyl-D-aspartate receptors.

    PubMed

    Wang, Hansen; Gong, Bo; Vadakkan, Kunjumon I; Toyoda, Hiroki; Kaang, Bong-Kiun; Zhuo, Min

    2007-01-12

    The excessive activation of N-methyl-D-aspartate (NMDA) receptors by glutamate results in neuronal excitotoxicity. cAMP is a key second messenger and contributes to NMDA receptor-dependent synaptic plasticity. Adenylyl cyclases 1 (AC1) and 8 (AC8) are the two major calcium-stimulated ACs in the central nervous system. Previous studies demonstrate AC1 and AC8 play important roles in synaptic plasticity, memory, and persistent pain. However, little is known about the possible roles of these two ACs in glutamate-induced neuronal excitotoxicity. Here, we report that genetic deletion of AC1 significantly attenuated neuronal death induced by glutamate in primary cultures of cortical neurons, whereas AC8 deletion did not produce a significant effect. AC1, but not AC8, contributes to intracellular cAMP production following NMDA receptor activation by glutamate in cultured cortical neurons. AC1 is involved in the dynamic modulation of cAMP-response element-binding protein activity in neuronal excitotoxicity. To explore the possible roles of AC1 in cell death in vivo, we studied neuronal excitotoxicity induced by an intracortical injection of NMDA. Cortical lesions induced by NMDA were significantly reduced in AC1 but not in AC8 knock-out mice. Our findings provide direct evidence that AC1 plays an important role in neuronal excitotoxicity and may serve as a therapeutic target for preventing excitotoxicity in stroke and neurodegenerative diseases.

  2. Red blood cells of sickle cell disease patients exhibit abnormally high abundance of N-methyl D-aspartate receptors mediating excessive calcium uptake.

    PubMed

    Hänggi, Pascal; Makhro, Asya; Gassmann, Max; Schmugge, Markus; Goede, Jeroen S; Speer, Oliver; Bogdanova, Anna

    2014-10-01

    Recently we showed that N-methyl D-aspartate receptors (NMDARs) are expressed in erythroid precursors (EPCs) and present in the circulating red blood cells (RBCs) of healthy humans, regulating intracellular Ca(2+) in these cells. This study focuses on investigating the possible role of NMDARs in abnormally high Ca(2+) permeability in the RBCs of patients with sickle cell disease (SCD). Protein levels of the NMDAR subunits in the EPCs of SCD patients did not differ from those in EPCs of healthy humans. However, the number and activity of the NMDARs in circulating SCD-RBCs was substantially up-regulated, being particularly high during haemolytic crises. The number of active NMDARs correlated negatively with haematocrit and haemoglobin levels in the blood of SCD patients. Calcium uptake via these non-selective cation channels was induced by RBC treatment with glycine, glutamate and homocysteine and was facilitated by de-oxygenation of SCD-RBCs. Oxidative stress and RBC dehydration followed receptor stimulation and Ca(2+) uptake. Inhibition of the NMDARs with an antagonist memantine caused re-hydration and largely prevented hypoxia-induced sickling. The EPCs of SCD patients showed higher tolerance to memantine than those of healthy subjects. Consequently, NMDARs in the RBCs of SCD patients appear to be an attractive target for pharmacological intervention.

  3. DOPAMINE D2 AND ACETYLCHOLINE α7 NICOTINIC RECEPTORS HAVE SUBCELLULAR DISTRIBUTIONS FAVORING MEDIATION OF CONVERGENT SIGNALING IN THE MOUSE VENTRAL TEGMENTAL AREA

    PubMed Central

    GARZÓN, M.; DUFFY, A. M.; CHAN, J.; LYNCH, M.-K.; MACKIE, K.; PICKEL, V. M.

    2014-01-01

    Alpha7 nicotinic acetylcholine receptors (α7nAChRs) mediate nicotine-induced burst-firing of dopamine neurons in the ventral tegmental area (VTA), a limbic brain region critically involved in reward and in dopamine D2 receptor (D2R)-related cortical dysfunctions associated with psychosis. The known presence of α7nAChRs and Gi-coupled D2Rs in dopamine neurons of the VTA suggests that these receptors are targeted to at least some of the same neurons in this brain region. To test this hypothesis, we used electron microscopic immunolabeling of antisera against peptide sequences of α7nACh and D2 receptors in the mouse VTA. Dual D2R and α7nAChR labeling was seen in many of the same somata (co-localization over 97%) and dendrites (co-localization over 49%), where immunoreactivity for each of the receptors was localized to endomembranes as well as to non-synaptic or synaptic plasma membranes often near excitatory-type synapses. In comparison with somata and dendrites, many more small axons and axon terminals were separately labeled for each of the receptors. Thus, single-labeled axon terminals were predominant for both α7nAChR (57.9%) and D2R (89.0%). The majority of the immunolabeled axonal profiles contained D2R-immunoreactivity (81.6%) and formed either symmetric or asymmetric synapses consistent with involvement in the release of both inhibitory and excitatory transmitters. Of 160 D2R-labeled terminals, 81.2% were presynaptic to dendrites that expressed α7nAChR alone or together with the D2R. Numerous glial processes inclusive of those enveloping either excitatory- or inhibitory-type synapses also contained single labeling for D2R (n = 152) and α7nAChR (n =561). These results suggest that classic antipsychotic drugs, all of which block the D2R, may facilitate α7nAChR-mediated burst-firing by elimination of D2R-dependent inhibition in neurons expressing both receptors as well as by indirect pre-synaptic and glial mechanisms. PMID:23954803

  4. Increased impulsive behavior and risk proneness following lentivirus-mediated dopamine transporter over-expression in rats' nucleus accumbens.

    PubMed

    Adriani, W; Boyer, F; Gioiosa, L; Macrì, S; Dreyer, J-L; Laviola, G

    2009-03-03

    Multiple theories have been proposed for sensation seeking and vulnerability to impulse-control disorders [Zuckerman M, Kuhlman DM (2000) Personality and risk-taking: Common biosocial factors. J Pers 68:999-1029], and many of these rely on a dopamine system deficit. Available animal models reproduce only some behavioral symptoms and seem devoid of construct validity. We used lentivirus tools for over-expressing or silencing the dopamine transporter (DAT) and we evaluated the resulting behavioral profiles in terms of motivation and self-control. Wistar adult rats received stereotaxic inoculation of a lentivirus that allowed localized intra-accumbens delivery of a DAT gene enhancer/silencer, or the green fluorescent protein, GFP. These animals were studied for intolerance to delay, risk proneness and novelty seeking. As expected, controls shifted their demanding from a large reward toward a small one when the delivery of the former was increasingly delayed (or uncertain). Interestingly, in the absence of general locomotor effects, DAT over-expressing rats showed increased impulsivity (i.e. a more marked shift of demanding from the large/delayed toward the small/soon reward), and increased risk proneness (i.e. a less marked shift from the large/uncertain toward the small/sure reward), compared with controls. Rats with enhanced or silenced DAT expression did not show any significant preference for a novel environment. In summary, consistent with literature on comorbidity between attention-deficit/hyperactivity disorder and pathological gambling, we demonstrate that DAT over-expression in rats' nucleus accumbens leads to impulsive and risk prone phenotype. Thus, a reduced dopaminergic tone following altered accumbal DAT function may subserve a sensation-seeker phenotype and the vulnerability to impulse-control disorders.

  5. Mathematical analysis of depolarization block mediated by slow inactivation of fast sodium channels in midbrain dopamine neurons

    PubMed Central

    Qian, Kun; Yu, Na; Tucker, Kristal R.; Levitan, Edwin S.

    2014-01-01

    Dopamine neurons in freely moving rats often fire behaviorally relevant high-frequency bursts, but depolarization block limits the maximum steady firing rate of dopamine neurons in vitro to ∼10 Hz. Using a reduced model that faithfully reproduces the sodium current measured in these neurons, we show that adding an additional slow component of sodium channel inactivation, recently observed in these neurons, qualitatively changes in two different ways how the model enters into depolarization block. First, the slow time course of inactivation allows multiple spikes to be elicited during a strong depolarization prior to entry into depolarization block. Second, depolarization block occurs near or below the spike threshold, which ranges from −45 to −30 mV in vitro, because the additional slow component of inactivation negates the sodium window current. In the absence of the additional slow component of inactivation, this window current produces an N-shaped steady-state current-voltage (I-V) curve that prevents depolarization block in the experimentally observed voltage range near −40 mV. The time constant of recovery from slow inactivation during the interspike interval limits the maximum steady firing rate observed prior to entry into depolarization block. These qualitative features of the entry into depolarization block can be reversed experimentally by replacing the native sodium conductance with a virtual conductance lacking the slow component of inactivation. We show that the activation of NMDA and AMPA receptors can affect bursting and depolarization block in different ways, depending upon their relative contributions to depolarization versus to the total linear/nonlinear conductance. PMID:25185810

  6. Sensitivity of N-methyl-D-aspartate receptor-mediated excitatory postsynaptic potentials and synaptic plasticity to TCN 201 and TCN 213 in rat hippocampal slices.

    PubMed

    Izumi, Yukitoshi; Zorumski, Charles F

    2015-02-01

    Whereas ifenprodil has been used as a selective GluN1/GluN2B (NR1/NR2B, B-type) receptor antagonist to distinguish between GluN2B (NR2B) and GluN2A (NR2A)-containing N-methyl-d-aspartate receptors (NMDARs), TCN 201 (3-chloro-4-fluoro-N-[4-[[2-(phenylcarbonyl)hydrazino]carbonyl]benzyl]benzenesulphonamide) and TCN 213 [N-(cyclohexylmethyl)-2-[{5-[(phenylmethyl)amino]-1,3,4-thiadiazol-2-yl}thio]acetamide] have been found to be selective GluN1/GluN2A (NR1/NR2A, A-type) antagonists. Based on the premise that A- and B-types are major synaptic NMDARs, we examined whether inhibition of NMDAR excitatory postsynaptic potentials (EPSPs) by the TCN compounds and ifenprodil are complementary. Contrary to this prediction, inhibition of NMDAR EPSPs by the TCN compounds and ifenprodil were largely overlapping in the CA1 region of hippocampal slices from 30-day-old rats. After partial inhibition by ifenprodil, TCN compounds produced little further suppression of NMDAR EPSPs. Similarly, after partial inhibition by TCN compounds ifenprodil failed to further suppress NMDAR EPSPs. However, low micromolar d-2-amino-5-phosphonovalerate, a competitive NMDAR antagonist, which alone only partially inhibits NMDAR EPSPs, markedly suppresses residual NMDAR responses in the presence of ifenprodil or the TCNs, suggesting that low 2-amino-5-phosphonovalerate antagonizes both ifenprodil- and TCN-insensitive synaptic NMDARs. These observations can be most readily interpreted if ifenprodil and TCNs act on a similar population of synaptic NMDARs. Recent lines of evidence suggest that the majority of hippocampal synaptic NMDARs are triheteromers. If so, modulation of GluN2A, and not just GluN2B NMDARs, could dampen long-term depression (LTD). Indeed, both TCNs, like ifenprodil, blocked LTD, suggesting the involvement of ifenprodil- and TCN-sensitive NMDARs in LTD induction. However, the TCNs plus ifenprodil failed to inhibit long-term potentiation (LTP), suggesting that neither ifenprodil- nor TCN

  7. G Protein-coupled Receptor Kinase-mediated Phosphorylation Regulates Post-endocytic Trafficking of the D2 Dopamine Receptor*S⃞

    PubMed Central

    Namkung, Yoon; Dipace, Concetta; Javitch, Jonathan A.; Sibley, David R.

    2009-01-01

    We investigated the role of G protein-coupled receptor kinase (GRK)-mediated phosphorylation in agonist-induced desensitization, arrestin association, endocytosis, and intracellular trafficking of the D2 dopamine receptor (DAR). Agonist activation of D2 DARs results in rapid and sustained receptor phosphorylation that is solely mediated by GRKs. A survey of GRKs revealed that only GRK2 or GRK3 promotes D2 DAR phosphorylation. Mutational analyses resulted in the identification of eight serine/threonine residues within the third cytoplasmic loop of the receptor that are phosphorylated by GRK2/3. Simultaneous mutation of these eight residues results in a receptor construct, GRK(-), that is completely devoid of agonist-promoted GRK-mediated receptor phosphorylation. We found that both wild-type (WT) and GRK(-) receptors underwent a similar degree of agonist-induced desensitization as assessed using [35S]GTPγS binding assays. Similarly, both receptor constructs internalized to the same extent in response to agonist treatment. Furthermore, using bioluminescence resonance energy transfer assays to directly assess receptor association with arrestin3, we found no differences between the WT and GRK(-) receptors. Thus, phosphorylation is not required for arrestin-receptor association or agonist-induced desensitization or internalization. In contrast, when we examined recycling of the D2 DARs to the cell surface, subsequent to agonist-induced endocytosis, the GRK(-) construct exhibited less recycling in comparison with the WT receptor. This impairment appears to be due to a greater propensity of the GRK(-) receptors to down-regulate once internalized. In contrast, if the receptor is highly phosphorylated, then receptor recycling is promoted. These results reveal a novel role for GRK-mediated phosphorylation in regulating the post-endocytic trafficking of a G protein-coupled receptor. PMID:19332542

  8. The GPCR membrane receptor, DopEcR, mediates the actions of both dopamine and ecdysone to control sex pheromone perception in an insect

    PubMed Central

    Abrieux, Antoine; Duportets, Line; Debernard, Stéphane; Gadenne, Christophe; Anton, Sylvia

    2014-01-01

    Olfactory information mediating sexual behavior is crucial for reproduction in many animals, including insects. In male moths, the macroglomerular complex (MGC) of the primary olfactory center, the antennal lobe (AL) is specialized in the treatment of information on the female-emitted sex pheromone. Evidence is accumulating that modulation of behavioral pheromone responses occurs through neuronal plasticity via the action of hormones and/or catecholamines. We recently showed that a G-protein-coupled receptor (GPCR), AipsDopEcR, with its homologue known in Drosophila for its double affinity to the main insect steroid hormone 20-hydroxyecdysone (20E), and dopamine (DA), present in the ALs, is involved in the behavioral response to pheromone in the moth, Agrotis ipsilon. Here we tested the role of AipsDopEcR as compared to nuclear 20E receptors in central pheromone processing combining receptor inhibition with intracellular recordings of AL neurons. We show that the sensitivity of AL neurons for the pheromone in males decreases strongly after AipsDopEcR-dsRNA injection but also after inhibition of nuclear 20E receptors. Moreover we tested the involvement of 20E and DA in the receptor-mediated behavioral modulation in wind tunnel experiments, using ligand applications and receptor inhibition treatments. We show that both ligands are necessary and act on AipsDopEcR-mediated behavior. Altogether these results indicate that the GPCR membrane receptor, AipsDopEcR, controls sex pheromone perception through the action of both 20E and DA in the central nervous system, probably in concert with 20E action through nuclear receptors. PMID:25309365

  9. Dopamine D1 and D3 receptors mediate reconsolidation of cocaine memories in mouse models of drug self-administration.

    PubMed

    Yan, Y; Newman, A H; Xu, M

    2014-10-10

    Memories of drug experience and drug-associated environmental cues can elicit drug-seeking and taking behaviors in humans. Disruption of reconsolidation of drug memories dampens previous memories and therefore may provide a useful way to treat drug abuse. We and others previously demonstrated that dopamine D1 and D3 receptors play differential roles in acquiring cocaine-induced behaviors. Moreover, D3 receptors contribute to the reconsolidation of cocaine-induced conditioned place preference. In the present study, we examined effects of manipulating D1 or D3 receptors on reconsolidation of cocaine memories in mouse models of drug self-administration. We found that pharmacological blockade of D1 receptors or a genetic mutation of the D3 receptor gene attenuated reconsolidation that lasted for at least 1week after the memory retrieval. In contrast, with no memory retrieval, pharmacological antagonism of D1 receptors or the D3 receptor gene mutation did not significantly affect reconsolidation of cocaine memories. Pharmacological blockade of D3 receptors also attenuated reconsolidation in wild-type mice that lasted for at least 1week after the memory retrieval. These results suggest that D1 and D3 receptors and related signaling mechanisms play key roles in reconsolidation of cocaine memories in mice, and that these receptors may serve as novel targets for the treatment of cocaine abuse in humans.

  10. C57BL/6J MICE EXHIBIT REDUCED DOPAMINE D3 RECEPTOR-MEDIATED LOCOMOTOR-INHIBITORY FUNCTION RELATIVE TO DBA/2J MICE

    PubMed Central

    McNAMARA, R. K.; LEVANT, B.; TAYLOR, B.; AHLBRAND, R.; LIU, Y.; SULLIVAN, J. R.; STANFORD, K.; RICHTAND, N. M.

    2007-01-01

    Previous reports have identified greater sensitivity to the locomotor-stimulating, sensitizing, and reinforcing effects of amphetamine in inbred C57BL/6J mice relative to inbred DBA/2J mice. The dopamine D3 receptor (D3R) plays an inhibitory role in the regulation of rodent locomotor activity, and exerts inhibitory opposition to D1 receptor (D1R)-mediated signaling. Based on these observations, we investigated D3R expression and D3R-mediated locomotor-inhibitory function, as well as D1R binding and D1R-mediated locomotor-stimulating function, in C57BL/6J and DBA/2J mice. C57BL/6J mice exhibited lower D3R binding density (−32%) in the ventral striatum (nucleus accumbens/islands of Calleja), lower D3R mRNA expression (−26%) in the substantia nigra/ventral tegmentum, and greater D3R mRNA expression (+40%) in the hippocampus, relative to DBA/2J mice. There were no strain differences in DR3 mRNA expression in the ventral striatum or prefrontal cortex, nor were there differences in D1R binding in the ventral striatum. Behaviorally, C57BL/6J mice were less sensitive to the locomotor-inhibitory effect of the D3R agonist PD128907 (10 μg/kg), and more sensitive to the locomotor-stimulating effects of novelty, amphetamine (1 mg/kg), and the D1R-like agonist ±-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8,-diol hydrochloride (SKF38393) (5–20 mg/kg) than DBA/2J mice. While the selective D3R antagonist N-(4-[4-{2,3-dichlorphenyl}-1 piperazinyl]butyl)-2-fluorenylcarboxamide (NGB 2904) (0.01–1.0 mg/kg) augmented novelty-, amphetamine-, and SKF38393-induced locomotor activity in DBA/2J mice, it reduced novelty-induced locomotor activity in C57BL/6J mice. Collectively, these results demonstrate that C57BL/6J mice exhibit less D3R-mediated inhibitory function relative to DBA/2J mice, and suggest that reduced D3R-mediated inhibitory function may contribute to heightened sensitivity to the locomotor-stimulating effects of amphetamine in the C57BL/6J mouse strain

  11. The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in caenorhabditis elegans models of manganism and parkinson disease.

    PubMed

    Settivari, Raja; Levora, Jennifer; Nass, Richard

    2009-12-18

    Parkinson disease (PD) and manganism are characterized by motor deficits and a loss of dopamine (DA) neurons in the substantia nigra pars compacta. Epidemiological studies indicate significant correlations between manganese exposure and the propensity to develop PD. The vertebrate divalent metal transporter-1 (DMT-1) contributes to maintaining cellular Mn(2+) homeostasis and has recently been implicated in Fe(2+)-mediated neurodegeneration in PD. In this study we describe a novel model for manganism that incorporates the genetically tractable nematode Caenorhabditis elegans. We show that a brief exposure to Mn(2+) increases reactive oxygen species and glutathione production, decreases oxygen consumption and head mitochondria membrane potential, and confers DA neuronal death. DA neurodegeneration is partially dependent on a putative homologue to DMT-1, SMF-1, as genetic knockdown or deletion partially inhibits the neuronal death. Mn(2+) also amplifies the DA neurotoxicity of the PD-associated protein alpha-synuclein. Furthermore, both SMF-1 and SMF-2 are expressed in DA neurons and contribute to PD-associated neurotoxicant-induced DA neuron death. These studies describe a C. elegans model for manganism and show that DMT-1 homologues contribute to Mn(2+)- and PD-associated DA neuron vulnerability.

  12. Serotonergic properties of cocaine: effects on a 5-HT2 receptor-mediated behavior and on extracellular concentrations of serotonin and dopamine.

    PubMed

    Essman, W D; Singh, A; Lucki, I

    1994-09-01

    The present study examined the ability of cocaine to produce behavioral and neuropharmacological effects through serotonin (5-HT) systems. Pretreatment with fluoxetine or cocaine potentiated the head-shake response to the 5-HT precursor, 5-hydroxytryptophan (5-HTP; 75 mg/kg), a behavior mediated by the activation of 5-HT2 receptors. This effect was antagonized by the selective 5-HT2 receptor antagonist ketanserin (1 mg/kg). In contrast, pretreatment with the selective norepinephrine uptake inhibitor desipramine (10 mg/kg) or the selective dopamine (DA) uptake inhibitor GBR 12909 (32 mg/kg) failed to potentiate the head-shake response. The effects of cocaine on extracellular concentrations of DA and 5-HT in the nucleus accumbens were examined using in vivo microdialysis in a separate group of anesthetized rats. Cocaine (10 mg/kg) increased the extracellular concentrations of DA and 5-HT by 300-350% over baseline levels. Cocaine's ability to increase the head-shake response and to increase extracellular concentrations of 5-HT may be due to its ability to block 5-HT uptake.

  13. Dopamine receptors – IUPHAR Review 13

    PubMed Central

    Beaulieu, Jean-Martin; Espinoza, Stefano; Gainetdinov, Raul R

    2015-01-01

    The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors. PMID:25671228

  14. Substitution at aspartic acid 1128 in the SARS coronavirus spike glycoprotein mediates escape from a S2 domain-targeting neutralizing monoclonal antibody.

    PubMed

    Ng, Oi-Wing; Keng, Choong-Tat; Leung, Cynthia Sau-Wai; Peiris, J S Malik; Poon, Leo Lit Man; Tan, Yee-Joo

    2014-01-01

    The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is the etiological agent for the infectious disease, SARS, which first emerged 10 years ago. SARS-CoV is a zoonotic virus that has crossed the species barriers to infect humans. Bats, which harbour a diverse pool of SARS-like CoVs (SL-CoVs), are believed to be the natural reservoir. The SARS-CoV surface Spike (S) protein is a major antigenic determinant in eliciting neutralizing antibody production during SARS-CoV infection. In our previous work, we showed that a panel of murine monoclonal antibodies (mAbs) that target the S2 subunit of the S protein are capable of neutralizing SARS-CoV infection in vitro (Lip KM et al, J Virol. 2006 Jan; 80(2): 941-50). In this study, we report our findings on the characterization of one of these mAbs, known as 1A9, which binds to the S protein at a novel epitope within the S2 subunit at amino acids 1111-1130. MAb 1A9 is a broadly neutralizing mAb that prevents viral entry mediated by the S proteins of human and civet SARS-CoVs as well as bat SL-CoVs. By generating mutant SARS-CoV that escapes the neutralization by mAb 1A9, the residue D1128 in S was found to be crucial for its interaction with mAb 1A9. S protein containing the substitution of D1128 with alanine (D1128A) exhibited a significant decrease in binding capability to mAb 1A9 compared to wild-type S protein. By using a pseudotyped viral entry assay, it was shown that the D1128A substitution in the escape virus allows it to overcome the viral entry blockage by mAb 1A9. In addition, the D1128A mutation was found to exert no effects on the S protein cell surface expression and incorporation into virion particles, suggesting that the escape virus retains the same viral entry property as the wild-type virus.

  15. Substitution at Aspartic Acid 1128 in the SARS Coronavirus Spike Glycoprotein Mediates Escape from a S2 Domain-Targeting Neutralizing Monoclonal Antibody

    PubMed Central

    Ng, Oi-Wing; Keng, Choong-Tat; Leung, Cynthia Sau-Wai; Peiris, J. S. Malik; Poon, Leo Lit Man; Tan, Yee-Joo

    2014-01-01

    The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is the etiological agent for the infectious disease, SARS, which first emerged 10 years ago. SARS-CoV is a zoonotic virus that has crossed the species barriers to infect humans. Bats, which harbour a diverse pool of SARS-like CoVs (SL-CoVs), are believed to be the natural reservoir. The SARS-CoV surface Spike (S) protein is a major antigenic determinant in eliciting neutralizing antibody production during SARS-CoV infection. In our previous work, we showed that a panel of murine monoclonal antibodies (mAbs) that target the S2 subunit of the S protein are capable of neutralizing SARS-CoV infection in vitro (Lip KM et al, J Virol. 2006 Jan; 80(2): 941–50). In this study, we report our findings on the characterization of one of these mAbs, known as 1A9, which binds to the S protein at a novel epitope within the S2 subunit at amino acids 1111–1130. MAb 1A9 is a broadly neutralizing mAb that prevents viral entry mediated by the S proteins of human and civet SARS-CoVs as well as bat SL-CoVs. By generating mutant SARS-CoV that escapes the neutralization by mAb 1A9, the residue D1128 in S was found to be crucial for its interaction with mAb 1A9. S protein containing the substitution of D1128 with alanine (D1128A) exhibited a significant decrease in binding capability to mAb 1A9 compared to wild-type S protein. By using a pseudotyped viral entry assay, it was shown that the D1128A substitution in the escape virus allows it to overcome the viral entry blockage by mAb 1A9. In addition, the D1128A mutation was found to exert no effects on the S protein cell surface expression and incorporation into virion particles, suggesting that the escape virus retains the same viral entry property as the wild-type virus. PMID:25019613

  16. Interactions of MK-801 with glutamate-, glutamine- and methamphetamine-evoked release of ( sup 3 H)dopamine from striatal slices

    SciTech Connect

    Bowyer, J.F.; Scallet, A.C.; Holson, R.R.; Lipe, G.W.; Slikker, W. Jr.; Ali, S.F. )

    1991-04-01

    The interactions of MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d) cyclohepten-5,10-imine), glutamate and glutamine with methamphetamine (METH)-evoked release of ({sup 3}H)dopamine were assessed in vitro to determine whether MK-801 inhibition of METH neurotoxicity might be mediated presynaptically, and to evaluate the effects of glutamatergic stimulation on METH-evoked dopamine release. MK-801 inhibition of glutamate- or METH-evoked dopamine release might reduce synaptic dopamine levels during METH exposure and decrease the formation of 6-hydroxydopamine or other related neurotoxins. Without Mg{sup 2}{sup +} present, 40 microM and 1 mM glutamate evoked a N-methyl-D-aspartate receptor-mediated ({sup 3}H)dopamine and ({sup 3}H)metabolite (tritium) release of 3 to 6 and 12 to 16% of total tritium stores, respectively, from striatal slices. With 1.50 mM Mg{sup 2}{sup +} present, 10 mM glutamate alone or in combination with the dopamine uptake blocker nomifensine released only 2.1 or 4.2%, respectively, of total tritium stores, and release was only partially dependent on N-methyl-D-aspartate-type glutamate receptors. With or without 1.50 mM Mg{sup 2}{sup +} present, 0.5 or 5 microM METH evoked a substantial release of tritium (5-8 or 12-21% of total stores, respectively). METH-evoked dopamine release was not affected by 5 microM MK-801 but METH-evoked release was additive with glutamate-evoked release. Without Mg{sup 2}{sup +} present, 1 mM glutamine increased glutamate release and induced the release of ({sup 3}H)dopamine and metabolites. Both 0.5 and 5 microM METH also increased tritium release with 1 mM glutamine present. When striatal slices were exposed to 5 microM METH this glutamine-evoked release of glutamate was increased more than 50%.

  17. Is Aspartate an Excitatory Neurotransmitter?

    PubMed Central

    Herring, Bruce E.; Silm, Katlin

    2015-01-01

    Recent evidence has resurrected the idea that the amino acid aspartate, a selective NMDA receptor agonist, is a neurotransmitter. Using a mouse that lacks the glutamate-selective vesicular transporter VGLUT1, we find that glutamate alone fully accounts for the activation of NMDA receptors at excitatory synapses in the hippocampus. This excludes a role for aspartate and, by extension, a recently proposed role for the sialic acid transporter sialin in excitatory transmission. SIGNIFICANCE STATEMENT It has been proposed that the amino acid aspartate serves as a neurotransmitter. Although aspartate is a selective agonist for NMDA receptors, we find that glutamate alone fully accounts for neurotransmission at excitatory synapses in the hippocampus, excluding a role for aspartate. PMID:26180193

  18. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3.

    PubMed Central

    Méthot, N; Song, M S; Sonenberg, N

    1996-01-01

    The binding of mRNA to the ribosome is mediated by eukaryotic initiation factors eukaryotic initiation factor 4F (eIF4F), eIF4B, eIF4A, and eIF3, eIF4F binds to the mRNA cap structure and, in combination with eIF4B, is believed to unwind the secondary structure in the 5' untranslated region to facilitate ribosome binding. eIF3 associates with the 40S ribosomal subunit prior to mRNA binding. eIF4B copurifies with eIF3 and eIF4F through several purification steps, suggesting the involvement of a multisubunit complex during translation initiation. To understand the mechanism by which eIF4B promotes 40S ribosome binding to the mRNA, we studied its interactions with partner proteins by using a filter overlay (protein-protein [far Western]) assay and the two-hybrid system. In this report, we show that eIF4B self-associates and also interacts directly with the p170 subunit of eIF3. A region rich in aspartic acid, arginine, tyrosine, and glycine, termed the DRYG domain, is sufficient for self-association of eIF4B, both in vitro and in vivo, and for interaction with the p170 subunit of eIF3. These experiments suggest that eIF4B participates in mRNA-ribosome binding by acting as an intermediary between the mRNA and eIF3, via a direct interaction with the p170 subunit of eIF3. PMID:8816444

  19. Unifying mechanism for addiction and toxicity of abused drugs with application to dopamine and glutamate mediators: electron transfer and reactive oxygen species.

    PubMed

    Kovacic, Peter

    2005-01-01

    There are many unknown aspects concerning the mode of action of abused drugs. Recently, a unifying theme for toxicity and addiction was reported based on electron transfer (ET), reactive oxygen species (ROS), and oxidative stress (OS). The main drugs involved are nicotine, cocaine, alcohol, phencyclidine, ecstasy, amphetamines, morphine-heroin, tetrahydrocannabinol, and therapeutic drugs (benzodiazepines, phenytoin, phenobarbital, aspirin, and acetaminophen). A major source of ROS is ET functionalities, of which the main ones found in abused drug metabolites are quinones and imines (or iminiums). Minor types are the nitroxide metabolite from cocaine, and alpha-dicarbonyl from alcohol. The theoretical approach enjoys support from reports on formation of ET metabolites, generation of ROS, protection by antioxidants (AOs), electrochemical studies, and cell signaling. Dopamine (DA) mediation of drug abuse has been the focus of much attention during the past decades. Recently, a similar role for glutamate (Glu) has come under study. Superficially, from a mechanistic vantage point, these findings might be regarded as in conflict with the ET-ROS-OS scheme. Many investigators believe that each drug or mediator operates by its own distinct mechanism. The present report provides evidence that a commonality in mode of action exists for both abused drugs and the DA-Glu operators. In the case of DA, oxidative metabolism yields o-quinones and semiquinones which can redox cycle with oxygen to provide various ROS. Electrochemical studies support the possibility of ET transformations by these quinones in the biological domain. In relation to cell signaling, DA is involved in formation of cAMP followed by a cascade of other events. A similar scenario exists in the case of Glu, in which an iminocarboxylic acid metabolite is hypothesized to play an ET role. The various phenomena are rationalized within the context of ET-ROS-OS, as was done earlier for abused drugs. Thus, a common mode

  20. Food restriction alters N'-propyl-4,5,6,7-tetrahydrobenzothiazole-2,6-diamine dihydrochloride (pramipexole)-induced yawning, hypothermia, and locomotor activity in rats: evidence for sensitization of dopamine D2 receptor-mediated effects.

    PubMed

    Collins, Gregory T; Calinski, Diane M; Newman, Amy Hauck; Grundt, Peter; Woods, James H

    2008-05-01

    Food restriction enhances sensitivity to the reinforcing effects of a variety of drugs of abuse including opiates, nicotine, and psychostimulants. Food restriction has also been shown to alter a variety of behavioral and pharmacological responses to dopaminergic agonists, including an increased sensitivity to the locomotor stimulatory effects of direct- and indirect-dopamine agonists, elevated extracellular dopamine levels in responses to psychostimulants, as well as suppression of agonist-induced yawning. Behavioral and molecular studies suggest that augmented dopaminergic responses observed in food-restricted animals result from a sensitization of the dopamine D2 receptor; however, little is known about how food restriction affects dopamine D3 receptor function. The current studies were aimed at better defining the effects of food restriction on D2 and D3 receptor function by assessing the capacity of N'-propyl-4,5,6,7-tetrahydrobenzothiazole-2,6-diamine dihydrochloride (pramipexole) to induce yawning, penile erection (PE), hypothermia, and locomotor activity in free-fed and food-restricted rats. Food restriction resulted in a suppression of pramipexole-induced yawning, a sensitized hypothermic response, and an enhanced locomotor response to pramipexole, effects that are suggestive of an enhanced D2 receptor activity; no effect on pramipexole-induced PE was observed. Antagonist studies further supported a food restriction-induced enhancement of the D2 receptor activity because the D2 antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-l-yl]methyl-1H-indole (L741,626) recovered pramipexole-induced yawning to free-fed levels, whereas yawning and PE were suppressed following pretreatment with the D3 antagonist N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide hydrochloride (PG01037). The results of the current studies suggest that food restriction sensitized rats to the D2-mediated effects of pramipexole while having no effect

  1. Loss of dopamine D1 receptors and diminished D1/5 receptor-mediated ERK phosphorylation in the periaqueductal gray after spinal cord lesion

    PubMed Central

    Voulalas, Pamela J.; Ji, Yadong; Jiang, Li; Asgar, Jamila; Ro, Jin Y.; Masri, Radi

    2016-01-01

    Neuropathic pain resulting from spinal cord injury is often accompanied by maladaptive plasticity of the central nervous system, including the opioid receptor-rich periaqueductal gray (PAG). Evidence suggests that sensory signaling via the PAG is robustly modulated by dopamine D1- and D2-like receptors, but the effect of damage to the spinal cord on D1 and D2 receptor protein expression and function in the PAG has not been examined. Here we show that 21 days after a T10 or C6 spinothalamic tract lesion, both mice and rats display a remarkable decline in the expression of D1 receptors in the PAG, revealed by western blot analysis. These changes were associated with a significant reduction in hindpaw withdrawal thresholds in lesioned animals compared to sham-operated controls. We investigated the consequences of diminished D1 receptor levels by quantifying D1-like receptor-mediated phosphorylation of ERK1,2 and CREB, events that have been observed in numerous brain structures. In naïve animals, western blot analysis revealed that ERK1,2, but not CREB phosphorylation was significantly increased in the PAG by the D1-like agonist SKF 81297. Using immunohistochemistry, we found that SKF 81297 increased ERK1,2 phosphorylation in the PAG of sham animals. However, in lesioned animals, basal pERK1,2 levels were elevated and did not significantly increase after exposure to SKF 81297. Our findings provide support for the hypothesis that molecular adaptions resulting in a decrease in D1 receptor expression and signaling in the PAG are a consequence of SCL. PMID:27932310

  2. Dopamine D2 receptors mediate the increase in reinstatement of the conditioned rewarding effects of cocaine induced by acute social defeat.

    PubMed

    Reguilón, Marina Daiana; Montagud-Romero, Sandra; Ferrer-Pérez, Carmen; Roger-Sánchez, Concepción; Aguilar, María Asunción; Miñarro, José; Rodríguez-Arias, Marta

    2017-03-15

    Social stress modifies the activity of brain areas involved in the rewarding effects of psychostimulants, inducing neuroadaptations in the dopaminergic mesolimbic system and modifying the sensitivity of dopamine receptors. In the present study we evaluated the effect of the dopamine D1- and D2-like receptor antagonists (SCH23390 and raclopride, respectively) on the short-time effects of acute social defeat (ASD). Male OF1 mice were socially defeated before each conditioning session of the conditioned place preference (CPP) induced by 1mg/kg or 25mg/kg of cocaine plus the corresponding dopamine antagonist. A final experiment was designed to evaluate the effect of the dopamine antagonists on the CPP induced by 3mg/kg of cocaine with or without a stress experience. Mice exposed to ASD showed an increase in reinstatement of the conditioned reinforcing effects of cocaine that was blocked by all of the dopamine receptor antagonists. Blockade of dopamine D2-like receptors with raclopride specifically prevented the effects of stress without affecting the rewarding properties of cocaine. However, SCH23390 inhibited cocaine-induced preference in the control groups and even induced aversion in defeated mice conditioned with the lower dose of cocaine. Moreover, the lowest dose of SCH23390 blocked the rewarding effects of 3mg/kg of cocaine-induced CPP. Our results confirm that the dopamine D2 receptor is involved in the short-term effects of ASD on the rewarding effects of cocaine. The dopamine D1 receptor is clearly involved in the rewarding effects of cocaine, but its role in the effects of ASD remains to be demonstrated.

  3. Dopamine-independent locomotor actions of amphetamines in a novel acute mouse model of Parkinson disease.

    PubMed

    Sotnikova, Tatyana D; Beaulieu, Jean-Martin; Barak, Larry S; Wetsel, William C; Caron, Marc G; Gainetdinov, Raul R

    2005-08-01

    Brain dopamine is critically involved in movement control, and its deficiency is the primary cause of motor symptoms in Parkinson disease. Here we report development of an animal model of acute severe dopamine deficiency by using mice lacking the dopamine transporter. In the absence of transporter-mediated recycling mechanisms, dopamine levels become entirely dependent on de novo synthesis. Acute pharmacological inhibition of dopamine synthesis in these mice induces transient elimination of striatal dopamine accompanied by the development of a striking behavioral phenotype manifested as severe akinesia, rigidity, tremor, and ptosis. This phenotype can be reversed by administration of the dopamine precursor, L-DOPA, or by nonselective dopamine agonists. Surprisingly, several amphetamine derivatives were also effective in reversing these behavioral abnormalities in a dopamine-independent manner. Identification of dopamine transporter- and dopamine-independent locomotor actions of amphetamines suggests a novel paradigm in the search for prospective anti-Parkinsonian drugs.

  4. Inhibition of α-Synuclein Fibrillization by Dopamine Is Mediated by Interactions with Five C-Terminal Residues and with E83 in the NAC Region

    PubMed Central

    Paleologou, Katerina E.; Schmid, Adrian; Munoz, Adriana; Vendruscolo, Michele; Gustincich, Stefano; Lashuel, Hilal A.; Carloni, Paolo

    2008-01-01

    The interplay between dopamine and α-synuclein (AS) plays a central role in Parkinson's disease (PD). PD results primarily from a severe and selective devastation of dopaminergic neurons in substantia nigra pars compacta. The neuropathological hallmark of the disease is the presence of intraneuronal proteinaceous inclusions known as Lewy bodies within the surviving neurons, enriched in filamentous AS. In vitro, dopamine inhibits AS fibril formation, but the molecular determinants of this inhibition remain obscure. Here we use molecular dynamic (MD) simulations to investigate the binding of dopamine and several of its derivatives onto conformers representative of an NMR ensemble of AS structures in aqueous solution. Within the limitations inherent to MD simulations of unstructured proteins, our calculations suggest that the ligands bind to the 125YEMPS129 region, consistent with experimental findings. The ligands are further stabilized by long-range electrostatic interactions with glutamate 83 (E83) in the NAC region. These results suggest that by forming these interactions with AS, dopamine may affect AS aggregation and fibrillization properties. To test this hypothesis, we investigated in vitro the effects of dopamine on the aggregation of mutants designed to alter or abolish these interactions. We found that point mutations in the 125YEMPS129 region do not affect AS aggregation, which is consistent with the fact that dopamine interacts non-specifically with this region. In contrast, and consistent with our modeling studies, the replacement of glutamate by alanine at position 83 (E83A) abolishes the ability of dopamine to inhibit AS fibrillization. PMID:18852892

  5. Dopamine transporter mutant animals: a translational perspective

    PubMed Central

    Efimova, Evgenia V.; Gainetdinov, Raul R.; Budygin, Evgeny A.; Sotnikova, Tatiana D.

    2016-01-01

    The dopamine transporter (DAT) plays an important homeostatic role in the control of both the extracellular and intraneuronal concentrations of dopamine, thereby providing effective control over activity of dopaminergic transmission. Since brain dopamine is known to be involved in numerous neuropsychiatric disorders, investigations using mice with genetically altered DAT function and thus intensity of dopamine-mediated signaling have provided numerous insights into the pathology of these disorders and highlight novel pathological mechanisms that could be targeted to provide new therapeutic approaches for these disorders. In this brief overview we discuss recent investigations involving animals with genetically altered DAT function, particularly focusing on translational studies providing new insights into pathology and pharmacology of dopamine-related disorders. Perspective applications of these and newly developed models of DAT dysfunction are also discussed. PMID:27276191

  6. Effect of dopamine-related drugs on duodenal ulcer induced by cysteamine or propionitrile: prevention and aggravation may not be mediated by gastrointestinal secretory changes in the rat

    SciTech Connect

    Gallagher, G.; Brown, A.; Szabo, S.

    1987-03-01

    Dose- and time-response studies have been performed with dopamine agonists and antagonists using the cysteamine and propionitrile duodenal ulcer models in the rat. The experiments demonstrate that the chemically induced duodenal ulcer is prevented by bromocriptine, lergotrile and reduced by apomorphine or L-dopa. Aggravation of cysteamine-induced duodenal ulcer was seen especially after (-)-butaclamol, (-)-sulpiride, haloperidol and, less effectively, after other dopaminergic antagonists. The duodenal antiulcerogenic action of dopamine agonists was more prominent after chronic administration than after a single dose, whereas the opposite was found concerning the proulcerogenic effect of dopamine antagonists. In the chronic gastric fistula rat, both the antiulcerogens bromocriptine or lergotrile and the proulcerogens haloperidol, pimozide or (-)-N-(2-chlorethyl)-norapomorphine decreased the cysteamine- or propionitrile-induced gastric secretion. No correlation was apparent between the influence of these drugs on duodenal ulcer development and gastric and duodenal (pancreatic/biliary) secretions. In the chronic duodenal fistula rat, decreased acid content was measured in the proximal duodenum after haloperidol, and diminished duodenal pepsin exposure was recorded after bromocriptine. Furthermore, the aggravation by dopamine antagonists of experimental duodenal ulcer probably involves a peripheral component. The site of dopamine receptors and physiologic effects which modulate experimental duodenal ulcer remain to be identified, but their elucidation may prove to be an important element in the pathogenesis and treatment of duodenal ulcer.

  7. Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood

    PubMed Central

    Ng, Joanne; Zhen, Juan; Meyer, Esther; Erreger, Kevin; Li, Yan; Kakar, Naseebullah; Ahmad, Jamil; Thiele, Holger; Kubisch, Christian; Rider, Nicholas L.; Holmes Morton, D.; Strauss, Kevin A.; Puffenberger, Erik G.; D’Agnano, Daniela; Anikster, Yair; Carducci, Claudia; Hyland, Keith; Rotstein, Michael; Leuzzi, Vincenzo; Borck, Guntram; Reith, Maarten E. A.

    2014-01-01

    Dopamine transporter deficiency syndrome due to SLC6A3 mutations is the first inherited dopamine ‘transportopathy’ to be described, with a classical presentation of early infantile-onset progressive parkinsonism dystonia. In this study we have identified a new cohort of patients with dopamine transporter deficiency syndrome, including, most significantly, atypical presentation later in childhood with a milder disease course. We report the detailed clinical features, molecular genetic findings and in vitro functional investigations undertaken for adult and paediatric cases. Patients presenting with parkinsonism dystonia or a neurotransmitter profile characteristic of dopamine transporter deficiency syndrome were recruited for study. SLC6A3 mutational analysis was undertaken in all patients. The functional consequences of missense variants on the dopamine transporter were evaluated by determining the effect of mutant dopamine transporter on dopamine uptake, protein expression and amphetamine-mediated dopamine efflux using an in vitro cellular heterologous expression system. We identified eight new patients from five unrelated families with dopamine transporter deficiency syndrome. The median age at diagnosis was 13 years (range 1.5–34 years). Most significantly, the case series included three adolescent males with atypical dopamine transporter deficiency syndrome of juvenile onset (outside infancy) and progressive parkinsonism dystonia. The other five patients in the cohort presented with classical infantile-onset parkinsonism dystonia, with one surviving into adulthood (currently aged 34 years) and labelled as having ‘juvenile parkinsonism’. All eight patients harboured homozygous or compound heterozygous mutations in SLC6A3, of which the majority are previously unreported variants. In vitro studies of mutant dopamine transporter demonstrated multifaceted loss of dopamine transporter function. Impaired dopamine uptake was universally present, and more

  8. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants.

    PubMed

    de la Torre, Fernando; Cañas, Rafael A; Pascual, M Belén; Avila, Concepción; Cánovas, Francisco M

    2014-10-01

    In the chloroplasts and in non-green plastids of plants, aspartate is the precursor for the biosynthesis of different amino acids and derived metabolites that play distinct and important roles in plant growth, reproduction, development or defence. Aspartate biosynthesis is mediated by the enzyme aspartate aminotransferase (EC 2.6.1.1), which catalyses the reversible transamination between glutamate and oxaloacetate to generate aspartate and 2-oxoglutarate. Plastids contain two aspartate aminotransferases: a eukaryotic-type and a prokaryotic-type bifunctional enzyme displaying aspartate and prephenate aminotransferase activities. A general overview of the biochemistry, regulation, functional significance, and phylogenetic origin of both enzymes is presented. The roles of these plastidic aminotransferases in the biosynthesis of essential amino acids are discussed.

  9. Vasopressin induces dopamine release and cyclic AMP efflux from the brain of water-deprived rats: inhibitory effect of vasopressin V2 receptor-mediated phosphorylation.

    PubMed

    Tyagi, M G; Handa, R K; Stephen, P M; Bapna, J S

    1998-01-01

    The neurohypophyseal hormone vasopressin (AVP) is widely distributed throughout the central nervous system. It acts as an excitatory transmitter in the CNS and plays an important physiological role in water and electrolyte homeostasis. However, water deprivation has been shown to induce changes in the levels of monoamines, but there is little knowledge about the influence of AVP on monoamine levels after water deprivation. In this study, we investigated the effect of AVP and its receptor antagonists on alterations in dopamine (DA) release and cyclic adenosine 3',5' monophosphate (cAMP) efflux from rat brain slices following water deprivation. Striatal brain slices (500 microm thick) were incubated in a medium with or without AVP (0. 1-1.0 microM) for 30 min. After 2 h of washout in normal medium, high KCl (40 mM)-evoked DA release and cAMP efflux from the rat brain slices were examined. In the brain slices of euhydrated animals, treatment with AVP slightly altered DA release and cAMP efflux from the brain. This increase in DA release and cAMP efflux was not significantly affected by the addition of a calcium/calmodulin-dependent protein phosphatase, calcineurin (20 microM), to the incubation medium or either by a V1 or V2 AVP receptor antagonist. In contrast, AVP significantly increased the DA release and enhanced the cAMP efflux from the brain slices of water-deprived animals. The AVP-induced increase of brain response in the water-deprived animals was significantly attenuated by a V2 receptor antagonist, partially by calcineurin, but not by a V1 receptor antagonist. The present results suggest that AVP may play a role in water-deprivation-induced DA release and cAMP efflux, which is possibly mediated through the activation of the V2 receptor. The V2 receptor action is attenuated by calcium/calmodulin-dependent dephosphorlyation of some cellular proteins critical for signal transduction.

  10. The differential effects of 5-HT(1A) receptor stimulation on dopamine receptor-mediated abnormal involuntary movements and rotations in the primed hemiparkinsonian rat.

    PubMed

    Dupre, Kristin B; Eskow, Karen L; Negron, Giselle; Bishop, Christopher

    2007-07-16

    Serotonin 1A receptor (5-HT(1A)R) agonists have emerged as valuable supplements to l-DOPA therapy, demonstrating that they can decrease side effects and enhance motor function in animal models of Parkinson's disease (PD) and human PD patients. The precise mechanism by which these receptors act remains unknown and there is limited information on how 5-HT(1A)R stimulation impacts striatal dopamine (DA) D1 receptor (D1R) and D2 receptor (D2R) function. The current study examined the effects of 5-HT(1A)R stimulation on DA receptor-mediated behaviors. Male Sprague-Dawley rats were rendered hemiparkinsonian by unilateral 6-OHDA lesions and primed with the D1R agonist SKF81297 (0.8 mg/kg, i.p.) in order to sensitize DA receptors. Using a randomized within subjects design, rats received a first injection of: Vehicle (dH(2)O) or the 5-HT(1A)R agonist +/-8-OH-DPAT (0.1 or 1.0 mg/kg, i.p.), followed by a second injection of: Vehicle (dimethyl sulfoxide), the D1R agonist SKF81297 (0.8 mg/kg, i.p.), the D2R agonist quinpirole (0.2 mg/kg, i.p.), or l-DOPA (12 mg/kg+benserazide, 15 mg/kg, i.p.). On test days, rats were monitored over a 2-h period immediately following the second injection for abnormal involuntary movements (AIMs), analogous to dyskinesia observed in PD patients, and contralateral rotations. The present findings indicate that 5-HT(1A)R stimulation reduces AIMs induced by D1R, D2R and l-DOPA administration while its effects on DA agonist-induced rotations were receptor-dependent, suggesting that direct 5-HT(1A)R and DA receptor interactions may contribute to the unique profile of 5-HT(1A)R agonists for the improvement of PD treatment.

  11. Predominant role of the dopamine D3 receptor subtype for mediating the quinpirole-induced inhibition of the vasopressor sympathetic outflow in pithed rats.

    PubMed

    Ruiz-Salinas, Inna; González-Hernández, Abimael; Manrique-Maldonado, Guadalupe; Marichal-Cancino, Bruno A; Altamirano-Espinoza, Alain H; Villalón, Carlos M

    2013-05-01

    We have recently reported that quinpirole (a D2-like receptor agonist) inhibits the vasopressor sympathetic outflow in pithed rats via sympatho-inhibitory D2-like receptors. Since D2-like receptors consist of D2, D3 and D4 receptor subtypes, this study investigated whether these subtypes are involved in the above quinpirole-induced sympatho-inhibition by using antagonists of these receptor subtypes. One hundred fifty-six male Wistar rats were pithed and prepared for preganglionic spinal (T7-T9) stimulation of the vasopressor sympathetic outflow. This approach resulted in frequency-dependent vasopressor responses which were analysed before and during i.v. continuous infusions of either saline (0.02 ml/min) or quinpirole (1 μg/kg.min) in animals receiving i.v. bolus injections of vehicle [saline or dimethyl sulfoxide (DMSO)] or the antagonists L-741,626 (D2), nafadotride or SB-277011-A (both D3) as well as L-745,870 (D4). Quinpirole inhibited the sympathetically-induced vasopressor responses. This sympatho-inhibition was (a) unaltered after 1 ml/kg saline, DMSO or 100 and 300 μg/kg L-741,626; (b) markedly blocked and abolished by, respectively, 30 and 100 μg/kg nafadotride or 100 and 300 μg/kg SB-277011-A and (c) slightly blocked after 30 and 100 μg/kg L-745,870, but 300 μg/kg L-745,870 produced no blockade whatsoever. Except for 300 μg/kg L-741,626 or 300 μg/kg L-745,870, the doses of the above compounds failed to modify per se the sympathetic vasopressor responses. The inhibition of the vasopressor sympathetic outflow induced by 1 μg/kg.min quinpirole in pithed rats is predominantly mediated by dopamine D3 and, to a lesser extent, by D4 receptor subtypes, with no evidence for the involvement of the D2 subtype.

  12. L-aspartate-evoked inhibition of melatonin production in rat pineal glands.

    PubMed

    Yamada, H; Yamaguchi, A; Moriyama, Y

    1997-06-06

    Our previous studies in rat indicated that pinealocytes secrete L-glutamate through microvesicle-mediated exocytosis to regulate negatively melatonin production. Recently, we further found that pinealocytes secrete L-aspartate through microvesicle-mediated exocytosis. In the present study, we investigated the role of L-aspartate in the melatonin production in isolated rat pineal glands. It was found that L-aspartate inhibits norepinephrine-stimulated melatonin production as well as serotonin N-acetyltransferase activity reversibly and dose-dependently, the concentrations required for 50% inhibition being 150 and 175 microM, respectively. L-Asparagine and oxaloacetate, metabolites of L-aspartate, had no effect on the melatonin production. These results suggest that pinealocytes use L-aspartate, as well as L-glutamate, as a negative regulator for melatonin production.

  13. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    PubMed Central

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  14. Vascular dopamine receptors: Demonstration and characterization by in vitro studies.

    PubMed

    Brodde, O E

    1982-07-26

    Substantial evidence has accumulated that in certain vascular beds dopamine produces its relaxant effect through stimulation of specific dopamine receptors. The goal of this review is to describe several in vitro models (perfused mesenteric vessels of the dog; renal, mesenteric, splenic, coronary and cerebral arterial strips of rabbits, dogs and cats; perfused kidney of the rat) recently developed to demonstrate such specific relaxations induced by dopamine and dopaminomimetics. On these models studies on structure-activity relationship for activation of the dopamine receptor resulted in the following order of potency for agonists: SK&F 38393 (partial agonist) greater than epinine greater than A-6, 7-DTN greater than or equal to dopamine greater than N, N-di-n-propyl-dopamine (partial agonist) greater than apomorphine (partial agonist). The dopamine receptor antagonists (+)-butaclamol, cis-alpha-flupenthixol, metoclopramide, droperidol and bulbocapnine were found to competitively antagonize dopamine induced relaxation. In addition, in two isolated organ systems (rabbit mesenteric artery, rat perfused kidney) stereospecificity of the vascular dopamine receptor was demonstrated with the isomers of butaclamol. With the development of several in vitro models demonstrating a specific antagonism against dopamine induced relaxation an important requirement for definition of a specific dopamine receptor if fulfilled according to classical pharmacological criteria. Thus, there can be do doubt on the existence of post-synaptic dopamine receptors mediating vasodilation in certain vascular tissues.

  15. Alterations in brain extracellular dopamine and glycine levels following combined administration of the glycine transporter type-1 inhibitor Org-24461 and risperidone.

    PubMed

    Nagy, Katalin; Marko, Bernadett; Zsilla, Gabriella; Matyus, Peter; Pallagi, Katalin; Szabo, Geza; Juranyi, Zsolt; Barkoczy, Jozsef; Levay, Gyorgy; Harsing, Laszlo G

    2010-12-01

    The most dominant hypotheses for the pathogenesis of schizophrenia have focused primarily upon hyperfunctional dopaminergic and hypofunctional glutamatergic neurotransmission in the central nervous system. The therapeutic efficacy of all atypical antipsychotics is explained in part by antagonism of the dopaminergic neurotransmission, mainly by blockade of D(2) dopamine receptors. N-methyl-D-aspartate (NMDA) receptor hypofunction in schizophrenia can be reversed by glycine transporter type-1 (GlyT-1) inhibitors, which regulate glycine concentrations at the vicinity of NMDA receptors. Combined drug administration with D(2) dopamine receptor blockade and activation of hypofunctional NMDA receptors may be needed for a more effective treatment of positive and negative symptoms and the accompanied cognitive deficit in schizophrenia. To investigate this type of combined drug administration, rats were treated with the atypical antipsychotic risperidone together with the GlyT-1 inhibitor Org-24461. Brain microdialysis was applied in the striatum of conscious rats and determinations of extracellular dopamine, DOPAC, HVA, glycine, glutamate, and serine concentrations were carried out using HPLC/electrochemistry. Risperidone increased extracellular concentrations of dopamine but failed to influence those of glycine or glutamate measured in microdialysis samples. Org-24461 injection reduced extracellular dopamine concentrations and elevated extracellular glycine levels but the concentrations of serine and glutamate were not changed. When risperidone and Org-24461 were added in combination, a decrease in extracellular dopamine concentrations was accompanied with sustained elevation of extracellular glycine levels. Interestingly, the extracellular concentrations of glutamate were also enhanced. Our data indicate that coadministration of an antipsychotic with a GlyT-1 inhibitor may normalize hypofunctional NMDA receptor-mediated glutamatergic neurotransmission with reduced

  16. Dopamine receptor in anterior byssus retractor muscle of Mytilus edulis.

    PubMed

    Takayanagi, I; Murakami, H; Iwayama, Y; Yoshida, Y; Miki, S

    1981-04-01

    Effects of dopamine, N-methyl-, ethyl- and propyl-derivatives of dopamine, and alpha- and beta-adrenoceptor stimulants on catch contraction of anterior byssus retractor muscle of Mytilus edulis were tested. The test drugs except the beta-adrenoceptor stimulants relaxed catch contraction. Dopamine was most active and substitution of amino group in dopamine with ethyl and propyl decreased activity considerably. The concentration-curves of dopamine, its derivatives and norepinephrine shifted in parallel with application of haloperidol but were not influenced by the alpha- and beta-adrenoceptor antagonists. These results suggest that relaxation of catch contraction by catecholamines is mediated through a dopamine receptor. This muscle is considered to be suitable for a study of the dopamine receptor.

  17. The dopamine transporter: role in neurotoxicity and human disease

    SciTech Connect

    Bannon, Michael J. . E-mail: mbannon@med.wayne.edu

    2005-05-01

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  18. Dopamine Neurons Change the Type of Excitability in Response to Stimuli

    PubMed Central

    Gutkin, Boris S.; Lapish, Christopher C.; Kuznetsov, Alexey

    2016-01-01

    The dynamics of neuronal excitability determine the neuron’s response to stimuli, its synchronization and resonance properties and, ultimately, the computations it performs in the brain. We investigated the dynamical mechanisms underlying the excitability type of dopamine (DA) neurons, using a conductance-based biophysical model, and its regulation by intrinsic and synaptic currents. Calibrating the model to reproduce low frequency tonic firing results in N-methyl-D-aspartate (NMDA) excitation balanced by γ-Aminobutyric acid (GABA)-mediated inhibition and leads to type I excitable behavior characterized by a continuous decrease in firing frequency in response to hyperpolarizing currents. Furthermore, we analyzed how excitability type of the DA neuron model is influenced by changes in the intrinsic current composition. A subthreshold sodium current is necessary for a continuous frequency decrease during application of a negative current, and the low-frequency “balanced” state during simultaneous activation of NMDA and GABA receptors. Blocking this current switches the neuron to type II characterized by the abrupt onset of repetitive firing. Enhancing the anomalous rectifier Ih current also switches the excitability to type II. Key characteristics of synaptic conductances that may be observed in vivo also change the type of excitability: a depolarized γ-Aminobutyric acid receptor (GABAR) reversal potential or co-activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) leads to an abrupt frequency drop to zero, which is typical for type II excitability. Coactivation of N-methyl-D-aspartate receptors (NMDARs) together with AMPARs and GABARs shifts the type I/II boundary toward more hyperpolarized GABAR reversal potentials. To better understand how altering each of the aforementioned currents leads to changes in excitability profile of DA neuron, we provide a thorough dynamical analysis. Collectively, these results imply that type I

  19. Insulin Aspart (rDNA Origin) Injection

    MedlinePlus

    ... unless it is used in an external insulin pump. In patients with type 2 diabetes, insulin aspart ... also can be used with an external insulin pump. Before using insulin aspart in a pump system, ...

  20. Impairment of N-methyl-D-aspartate receptor-controlled motor activity in LYN-deficient mice.

    PubMed

    Umemori, H; Ogura, H; Tozawa, N; Mikoshiba, K; Nishizumi, H; Yamamoto, T

    2003-01-01

    The N-methyl-D-aspartate (NMDA) receptor, an ionotropic glutamate receptor, is implicated in motor activity that is regulated in the striatum and nucleus accumbens of the brain. A Src family kinase Lyn is highly expressed in striatum, cortex, thalamus, and cerebellum in the brain. Here we show that spontaneous motor activity is suppressed in lyn-/- mice. S.c. injection of methylphenidate, which causes accumulation of dopamine in synapses, reveals that dopaminergic pathway is normal in lyn-/- mice. After blocking the NMDA receptor, motor activity of lyn-/- mice increased to the same level as that of wild type mice. Therefore, the NMDA receptor-mediated signaling is enhanced in lyn-/- mice, indicating that Lyn regulates the NMDA receptor pathway negatively. Intriguingly, the activity of protein kinase C (PKC), an enzyme regulated downstream of NMDA receptors, is increased in lyn-/- mice. The present data suggest that the NMDA receptor signal that is enhanced in the absence of Lyn suppresses the motor activity, probably through inhibition of dopaminergic pathway at striatum. We conclude that Lyn contributes to coordination of motor activity through regulation of the NMDA pathway. It appears that this negative regulation involves suppression of downstream signaling of NMDA receptor such as those mediated by PKC.

  1. Dopaminergic enhancement of excitatory synaptic transmission in layer II entorhinal neurons is dependent on D₁-like receptor-mediated signaling.

    PubMed

    Glovaci, I; Caruana, D A; Chapman, C A

    2014-01-31

    The modulatory neurotransmitter dopamine induces concentration-dependent changes in synaptic transmission in the entorhinal cortex, in which high concentrations of dopamine suppress evoked excitatory postsynaptic potentials (EPSPs) and lower concentrations induce an acute synaptic facilitation. Whole-cell current-clamp recordings were used to investigate the dopaminergic facilitation of synaptic responses in layer II neurons of the rat lateral entorhinal cortex. A constant bath application of 1 μM dopamine resulted in a consistent facilitation of EPSPs evoked in layer II fan cells by layer I stimulation; the size of the facilitation was more variable in pyramidal neurons, and synaptic responses in a small group of multiform neurons were not modulated by dopamine. Isolated inhibitory synaptic responses were not affected by dopamine, and the facilitation of EPSPs was not associated with a change in paired-pulse facilitation ratio. Voltage-clamp recordings of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) glutamate receptor-mediated excitatory postsynaptic currents (EPSCs) were facilitated by dopamine, but N-methyl-D-aspartate receptor-mediated currents were not. Bath application of the dopamine D₁-like receptor blocker SCH23390 (50 μM), but not the D₂-like receptor blocker sulpiride (50 μM), prevented the facilitation, indicating that it is dependent upon D₁-like receptor activation. Dopamine D₁ receptors lead to activation of protein kinase A (PKA), and including the PKA inhibitor H-89 or KT 5720 in the recording pipette solution prevented the facilitation of EPSCs. PKA-dependent phosphorylation of inhibitor 1 or the dopamine- and cAMP-regulated protein phosphatase (DARPP-32) can lead to a facilitation of AMPA receptor responses by inhibiting the activity of protein phosphatase 1 (PP1) that reduces dephosphorylation of AMPA receptors, and we found here that inhibition of PP1 occluded the facilitatory effect of dopamine. The dopamine

  2. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  3. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  4. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  5. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  6. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  7. Specific features of sensorimotor cerebral cortex activity modulation by dopamine releaser amantadine.

    PubMed

    Storozhuk, Viktor M; Zinyuk, Larissa E

    2007-09-01

    The modulatory effects of amantadine (1-adamantanamine) on the activity of sensorimotor cerebral cortex neurones during microiontophoretic application of agonists of glutamatergic and GABA-ergic (gamma-aminobutyric acid) transmission were studied. In non-anaesthetised cats, dopamine (DA) released by amantadine application in a small area of the neocortex increased baseline and evoked neuronal activity, providing stabilization and optimum course of both the neuronal and the conditioned responses of the animal. Amantadine eliminates a decrease in the level of neuronal baseline and evoked activity and marked increase in the latency of neuronal activation and conditioned movement mediated by D2 receptor antagonist sulpiride ((S)-5-aminosulfonyl-N-[(1-ethyl-2-pyrrolidinyl) methyl]-2-methoamantadineybenzamide) or GABA. This is reflected by a proportionate decrease in the onset of neuronal impulse reaction and latency of conditioned movement. Combined NMDA (N-methyl-D: -aspartate) and amantadine application also caused a considerable increase in baseline and evoked activity, but produced a slightly weaker effect than that evoked by NMDA application alone. A decrease in the baseline and evoked neuronal activity after NMDA withdrawn lasted during next control session (up to 40 min). The ability of DA releaser amantadine to alleviate significant increase in the latency of neuronal responses and conditioned movement induced by sulpiride or GABA suggests that dopamine modulates the activity of GABA-ergic inhibitory fast spike interneurons in the cat sensorimotor cortex during conditioning.

  8. DOPAMINE RECEPTOR ACTIVATION REVEALS A NOVEL, KYNURENATE-SENSITIVE COMPONENT OF STRIATAL NMDA NEUROTOXICITY

    PubMed Central

    Poeggeler, Burkhard; Rassoulpour, Arash; Wu, Hui-Qiu; Guidetti, Paolo; Roberts, Rosalinda C.; Schwarcz, Robert

    2007-01-01

    The N-methyl-D-aspartate (NMDA) subtype of glutamate receptors plays an important role in brain physiology, but excessive receptor stimulation results in seizures and excitotoxic nerve cell death. NMDA receptor-mediated neuronal excitation and injury can be prevented by high, non-physiological concentrations of the neuroinhibitory tryptophan metabolite kynurenic acid (KYNA). Here we report that endogenous KYNA, which is formed in and released from astrocytes, controls NMDA receptors in vivo. This was revealed with the aid of the dopaminergic drugs d-amphetamine and apomorphine, which cause rapid, transient decreases in striatal KYNA levels in rats. Intrastriatal injections of the excitotoxins NMDA or quinolinate (but not the non-NMDA receptor agonist kainate) at the time of maximal KYNA reduction resulted in 2-3-fold increases in excitotoxic lesion size. Pre-treatment with kynurenine 3-hydroxylase inhibitors or dopamine receptor antagonists, two classes of pharmacological agents that prevented the reduction in brain KYNA caused by dopaminergic stimulation, abolished the potentiation of neurotoxicity. Thus, the present study identifies a previously unappreciated role of KYNA as a functional link between dopamine receptor stimulation and NMDA neurotoxicity in the striatum. PMID:17629627

  9. Photosynthetic metabolism of malate and aspartate in Flaveria trinervia a C/sub 4/ dicot

    SciTech Connect

    Moore, B.A.

    1986-01-01

    C/sub 4/ species are known to vary in their apparent relative use of malate and aspartate to mediate carbon flux through the C/sub 4/ cycle. These studies investigate some of the adjustments in photosynthetic carbon metabolism that occur during a dark to light transition and during expansion of leaves of Flaveria trinervia, a C/sub 4/ dicot. Enzyme localization studies with isolated leaf mesophyll and bundle sheath protoplasts, indicated that both C/sub 4/ acids are formed in the mesophyll chloroplast, and that aspartate is metabolized to malate in the bundle sheath chloroplast prior to decaroxylation there. During photosynthetic induction, the partitioning of /sup 14/CO/sub 2/ between malate and aspartate showed a single oscillation of increased aspartate labelling after 5 min of illumination. Turnover of (4-14C) (malate plus aspartate) was slow initially during illumination, prior to establishment of active pools of C/sub 4/ cycle metabolites.

  10. Dopamine release in rat striatum - Physiological coupling to tyrosine supply

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1989-01-01

    Intracerebral microdialysis was used to monitor dopamine release in rat striatal extracellular fluid following the intraperitoneal administration of dopamine's precursor amino acid, L-tyrosine. Dopamine concentrations in dialysates increased transiently after tyrosine (50-100 mg/kg) administration. Pretreatment with haloperidol or the partial lesioning of nigrostriatal neurons enhanced the effect of tyrosine on dopamine release, and haloperidol also prolonged this effect. These data suggest that nigrostriatal dopaminergic neurons are responsive to changes in precursor availability under basal conditions, but that receptor-mediated feedback mechanisms limit the magnitude and duration of this effect.

  11. Forelimb dyskinesia mediated by high-frequency stimulation of the subthalamic nucleus is linked to rapid activation of the NR2B subunit of N-methyl-D-aspartate receptors.

    PubMed

    Quintana, Adrien; Melon, Christophe; Kerkerian-Le Goff, Lydia; Salin, Pascal; Savasta, Marc; Sgambato-Faure, Véronique

    2010-08-01

    Dyskinesia is a major side-effect of chronic l-DOPA administration, the reference treatment for Parkinson's disease. High-frequency stimulation of the subthalamic nucleus (STN-HFS) alleviates parkinsonian motor symptoms and indirectly improves dyskinesia by decreasing the L-DOPA requirement. However, inappropriate stimulation can also trigger dyskinetic movements, in both human and rodents. We investigated whether STN-HFS-evoked forelimb dyskinesia involved changes in glutamatergic neurotransmission as previously reported for L-DOPA-induced dyskinesias, focusing on the role of NR2B-containing N-methyl-D-aspartate receptors (NR2B/NMDARs). We applied STN-HFS in normal rats at intensities above and below the threshold for triggering forelimb dyskinesia. Dyskinesiogenic STN-HFS induced the activation of NR2B (as assessed by immunodetection of the phosphorylated residue Tyr(1472)) in neurons of the subthalamic nucleus, entopeduncular nucleus, motor thalamus and forelimb motor cortex. The severity of STN-HFS-induced forelimb dyskinesia was decreased in a dose-dependent manner by systemic injections of CP-101,606, a selective blocker of NR2B/NMDARs, but was either unaffected or increased by the non-selective N-methyl-D-aspartate receptor antagonist, MK-801.

  12. Alcohol-induced alterations in dopamine modulation of prefrontal activity.

    PubMed

    Trantham-Davidson, Heather; Chandler, L Judson

    2015-12-01

    Long-term alcohol use leads to persistent cognitive deficits that may be associated with maladaptive changes in the neurocircuitry that mediates executive functions. Impairments caused by these changes can persist well into abstinence and have a negative impact on quality of life and job performance, and can increase the probability of relapse. Many of the changes that affect cognitive function appear to involve dysregulation of the mesocortical dopamine system. This includes changes in dopamine release and alterations in dopamine receptor expression and function in the medial prefrontal cortex (PFC). This review summarizes the cellular effects of acute and chronic ethanol exposure on dopamine release and dopamine receptor function in the PFC with the goal of providing greater understanding of the effects of alcohol-use disorders on the dopamine system and how this relates to deficits in the executive function of the PFC.

  13. Alcohol-induced alterations in dopamine modulation of prefrontal activity

    PubMed Central

    Trantham-Davidson, Heather; Chandler, L. Judson

    2015-01-01

    Long-term alcohol use leads to persistent cognitive deficits that may be associated with maladaptive changes in the neurocircuitry that mediates executive functions. Impairments caused by these changes can persist well into abstinence and have a negative impact on quality of life and job performance, and can increase the probability of relapse. Many of the changes that affect cognitive function appear to involve dysregulation of the mesocortical dopamine system. This includes changes in dopamine release and alterations in dopamine receptor expression and function in the medial prefrontal cortex (PFC). This review summarizes the cellular effects of acute and chronic ethanol exposure on dopamine release and dopamine receptor function in the PFC with the goal of providing greater understanding of the effects of alcohol-use disorders on the dopamine system and how this relates to deficits in the executive function of the PFC. PMID:26558348

  14. Dopamine 5 receptor mediates Ang II type 1 receptor degradation via a ubiquitin-proteasome pathway in mice and human cells.

    PubMed

    Li, Hewang; Armando, Ines; Yu, Peiying; Escano, Crisanto; Mueller, Susette C; Asico, Laureano; Pascua, Annabelle; Lu, Quansheng; Wang, Xiaoyan; Villar, Van Anthony M; Jones, John E; Wang, Zheng; Periasamy, Ammasi; Lau, Yuen-Sum; Soares-da-Silva, Patricio; Creswell, Karen; Guillemette, Gaétan; Sibley, David R; Eisner, Gilbert; Gildea, John J; Felder, Robin A; Jose, Pedro A

    2008-06-01

    Hypertension is a multigenic disorder in which abnormal counterregulation between dopamine and Ang II plays a role. Recent studies suggest that this counterregulation results, at least in part, from regulation of the expression of both the antihypertensive dopamine 5 receptor (D5R) and the prohypertensive Ang II type 1 receptor (AT1R). In this report, we investigated the in vivo and in vitro interaction between these GPCRs. Disruption of the gene encoding D5R in mice increased both blood pressure and AT1R protein expression, and the increase in blood pressure was reversed by AT1R blockade. Activation of D5R increased the degradation of glycosylated AT1R in proteasomes in HEK cells and human renal proximal tubule cells heterologously and endogenously expressing human AT1R and D5R. Confocal microscopy, Förster/fluorescence resonance energy transfer microscopy, and fluorescence lifetime imaging microscopy revealed that activation of D5R initiated ubiquitination of the glycosylated AT1R at the plasma membrane. The regulated degradation of AT1R via a ubiquitin/proteasome pathway by activation of D5R provides what we believe to be a novel mechanism whereby blood pressure can be regulated by the interaction of 2 counterregulatory GPCRs. Our results therefore suggest that treatments for hypertension might be optimized by designing compounds that can target the AT1R and the D5R.

  15. Gustatory plasticity in C. elegans involves integration of negative cues and NaCl taste mediated by serotonin, dopamine, and glutamate.

    PubMed

    Hukema, Renate K; Rademakers, Suzanne; Jansen, Gert

    2008-11-01

    While naïve Caenorhabditis elegans individuals are attracted to 0.1-200 mM NaCl, they become strongly repelled by these NaCl concentrations after prolonged exposure to 100 mM NaCl. We call this behavior gustatory plasticity. Here, we show that C. elegans displays avoidance of low NaCl concentrations only when pre-exposure to NaCl is combined with a negative stimulus, e.g., a repellent, or in the absence of food. By testing serotonin and/or dopamine signaling mutants and rescue by exogenously supplying these neurotransmitters, we found that serotonin and dopamine play a role during the plasticity response, while serotonin is also required during development. In addition, we also show that glutamate plays an important role in the response to NaCl, both in chemoattraction to NaCl and in gustatory plasticity. Thus, C. elegans can associate NaCl with negative stimuli using dopaminergic, serotonergic, and glutamatergic neurotransmission. Finally, we show that prolonged starvation enhances gustatory plasticity and can induce avoidance of NaCl in most gustatory plasticity mutants tested. Only mutation of the glutamate-gated Cl(-) channel gene avr-15 affected starvation-enhanced gustatory plasticity. These results suggest that starvation induces avoidance of NaCl largely independent of the normal gustatory plasticity mechanism.

  16. Levodopa therapy: consequences of the nonphysiologic replacement of dopamine.

    PubMed

    Chase, T N

    1998-05-01

    Normal motor function is dependent on the highly regulated synthesis and release of the transmitter dopamine by neurons projecting from the substantia nigra to the corpus striatum. Parkinson's disease involves the progressive degeneration of these neurons. Its core symptoms are a direct consequence of a striatal insufficiency of intrasynaptic dopamine. Levodopa, the standard of care for the treatment of PD, acts after its conversion to dopamine by restoring striatal dopaminergic transmission. However, there are significant differences between the normally functioning dopamine system and the restoration of function provided by standard levodopa treatment. Increasing clinical and preclinical evidence suggests that the intermittent stimulation of dopamine receptors resulting from current therapeutic regimens contributes to the response complications that ultimately affect most parkinsonian patients. It now appears that chronic nonphysiologic stimulation of dopaminergic receptors on striatal GABAergic neurons activates characteristic signaling pathways, leading to a potentiation of the synaptic efficacy of adjacent glutamatergic receptors of the N-methyl-D-aspartate (NMDA) subtype. As a result, function of these GABAergic efferent neurons changes in ways that favor the appearance of motor complications. Conceivably, use of dopaminomimetic replacement strategies that provide more continuous dopamine receptor stimulation will act to prevent or alleviate these disabling complications. A number of promising approaches to achieving this goal are now under development.

  17. Dopamine does double duty in motivating cognitive effort

    PubMed Central

    Westbrook, Andrew; Braver, Todd S.

    2015-01-01

    Cognitive control is subjectively costly, suggesting that engagement is modulated in relationship to incentive state. Dopamine appears to play key roles. In particular, dopamine may mediate cognitive effort by two broad classes of functions: 1) modulating the functional parameters of working memory circuits subserving effortful cognition, and 2) mediating value-learning and decision-making about effortful cognitive action. Here we tie together these two lines of research, proposing how dopamine serves “double duty”, translating incentive information into cognitive motivation. PMID:26889810

  18. Dopamine-oxytocin interactions in penile erection.

    PubMed

    Baskerville, T A; Allard, J; Wayman, C; Douglas, A J

    2009-12-03

    Dopamine and oxytocin have established roles in the central regulation of penile erection in rats; however, the neural circuitries involved in a specific erectile context and the interaction between dopamine and oxytocin mechanisms remain to be elucidated. The medial preoptic area (MPOA), supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus may serve as candidate sites because they contain oxytocin cells, receive dopaminergic inputs and have been implicated in mediating masculine sexual behavior. Double immunofluorescence revealed that substantial numbers of oxytocin cells in the MPOA, SON and PVN possess dopamine D(2), D(3) and D(4) receptors. In anaesthetized rats, using intracavernous pressure as a physiological indicator of erection, blockade of lumbosacral oxytocin receptors (UK, 427843) reduced erectile responses to a nonselective dopamine agonist (apomorphine), suggesting that dopamine recruits a paraventriculospinal oxytocin pathway. In conscious males in the absence of a female, penile erection elicited by a D(2)/D(3) (Quinelorane) but not D(4) (PD168077) agonist was associated with activation of medial parvocellular PVN oxytocin cells. In another experiment where males were given full access to a receptive female, a D(4) (L-745870) but not D(2) or D(3) antagonist (L-741626; nafadotride) inhibited penile erection (intromission), and this was correlated with SON magnocellular oxytocin neuron activation. Together, the data suggest dopamine's effects on hypothalamic oxytocin cells during penile erection are context-specific. Dopamine may act via different parvocellular and magnocellular oxytocin subpopulations to elicit erectile responses, depending upon whether intromission is performed. This study demonstrates the potential existence of interaction between central dopamine and oxytocin pathways during penile erection, with the SON and PVN serving as integrative sites.

  19. Inhibitory effects of dopamine on spinal synaptic transmission via dopamine D1-like receptors in neonatal rats

    PubMed Central

    Kawamoto, K; Otsuguro, K; Ishizuka, M; Ito, S

    2012-01-01

    BACKGROUND AND PURPOSE Dopamine released from the endings of descending dopaminergic nerve fibres in the spinal cord may be involved in modulating functions such as locomotion and nociception. Here, we examined the effects of dopamine on spinal synaptic transmissions in rats. EXPERIMENTAL APPROACH Spinal reflex potentials, monosynaptic reflex potential (MSR) and slow ventral root potential (sVRP), were measured in the isolated spinal cord of the neonatal rat. Dopamine release was measured by HPLC. KEY RESULTS Dopamine at lower concentrations (<1 µM) depressed sVRP, which is a C fibre-evoked polysynaptic response and believed to reflect nociceptive transmission. At higher concentrations (>1 µM), in addition to a potent sVRP depression, dopamine depolarized baseline potential and slightly depressed MSR. Depression of sVRP by dopamine was partially reversed by dopamine D1-like but not by D2-like receptor antagonists. SKF83959 and SKF81297, D1-like receptor agonists, and methamphetamine, an endogenous dopamine releaser, also caused the inhibition of sVRP. Methamphetamine also depressed MSR, which was inhibited by ketanserin, a 5-HT2A/2C receptor antagonist. Methamphetamine induced the release of dopamine and 5-HT from spinal cords, indicating that the release of endogenous dopamine and 5-HT depresses sVRP and MSR respectively. CONCLUSION AND IMPLICATIONS These results suggested that dopamine at lower concentrations preferentially inhibited sVRP, which is mediated via dopamine D1-like and other unidentified receptors. The dopamine-evoked depression is involved in modulating the spinal functions by the descending dopaminergic pathways. PMID:22168428

  20. Dopamine receptor genes: new tools for molecular psychiatry.

    PubMed Central

    Niznik, H B; Van Tol, H H

    1992-01-01

    For over a decade it has been generally assumed that all the pharmacological and biochemical actions of dopamine within the central nervous system and periphery were mediated by two distinct dopamine receptors. These receptors, termed D1 and D2, were defined as those coupled to the stimulation or inhibition of adenylate cyclase, respectively, and by their selectivity and avidity for various drugs and compounds. The concept that two dopamine receptors were sufficient to account for all the effects mediated by dopamine was an oversimplification. Recent molecular biological studies have identified five distinct genes which encode at least eight functional dopamine receptors. The members of the expanded dopamine receptor family, however, can still be codifed by way of the original D1 and D2 receptor dichotomy. These include two genes encoding dopamine D1-like receptors (D1 [D1A]/D5 [D1B]) and three genes encoding D2-like receptors (D2/D3/D4). We review here our recent work on the cloning and characterization of some of the members of the dopamine receptor gene family (D1, D2, D4, D5), their relationship to neuropsychiatric disorders and their potential role in antipsychotic drug action. Images Fig. 1 PMID:1450188

  1. Aspartate release from rat hippocampal synaptosomes.

    PubMed

    Bradford, S E; Nadler, J V

    2004-01-01

    Certain excitatory pathways in the rat hippocampus can release aspartate along with glutamate. This study utilized rat hippocampal synaptosomes to characterize the mechanism of aspartate release and to compare it with glutamate release. Releases of aspartate and glutamate from the same tissue samples were quantitated simultaneously. Both amino acids were released by 25 mM K(+), 300 microM 4-aminopyridine (4-AP) and 0.5 and 1 microM ionomycin in a predominantly Ca(2+)-dependent manner. For a roughly equivalent quantity of glutamate released, aspartate release was significantly greater during exposure to elevated [K(+)] than to 4-AP and during exposure to 0.5 than to 1 microM ionomycin. Aspartate release was inefficiently coupled to P/Q-type voltage-dependent Ca(2+) channels and was reduced by KB-R7943, an inhibitor of reversed Na(+)/Ca(2+) exchange. In contrast, glutamate release depended primarily on Ca(2+) influx through P/Q-type channels and was not significantly affected by KB-R7943. Pretreatment of the synaptosomes with tetanus toxin and botulinum neurotoxins C and F reduced glutamate release, but not aspartate release. Aspartate release was also resistant to bafilomycin A(1), an inhibitor of vacuolar H(+)-ATPase, whereas glutamate release was markedly reduced. (+/-) -Threo-3-methylglutamate, a non-transportable competitive inhibitor of excitatory amino acid transport, did not reduce aspartate release. Niflumic acid, a blocker of Ca(2+)-dependent anion channels, did not alter the release of either amino acid. Exogenous aspartate and aspartate recently synthesized from glutamate accessed the releasable pool of aspartate as readily as exogenous glutamate and glutamate recently synthesized from aspartate accessed the releasable glutamate pool. These results are compatible with release of aspartate from either a vesicular pool by a "non-classical" form of exocytosis or directly from the cytoplasm by an as-yet-undescribed Ca(2+)-dependent mechanism. In either case

  2. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors

    PubMed Central

    Fortin, Samantha M; Chartoff, Elena H; Roitman, Mitchell F

    2016-01-01

    Unconditioned rewarding stimuli evoke phasic increases in dopamine concentration in the nucleus accumbens (NAc) while discrete aversive stimuli elicit pauses in dopamine neuron firing and reductions in NAc dopamine concentration. The unconditioned effects of more prolonged aversive states on dopamine release dynamics are not well understood and are investigated here using the malaise-inducing agent lithium chloride (LiCl). We used fast-scan cyclic voltammetry to measure phasic increases in NAc dopamine resulting from electrical stimulation of dopamine cell bodies in the ventral tegmental area (VTA). Systemic LiCl injection reduced electrically evoked dopamine release in the NAc of both anesthetized and awake rats. As some behavioral effects of LiCl appear to be mediated through glucagon-like peptide-1 receptor (GLP-1R) activation, we hypothesized that the suppression of phasic dopamine by LiCl is GLP-1R dependent. Indeed, peripheral pretreatment with the GLP-1R antagonist exendin-9 (Ex-9) potently attenuated the LiCl-induced suppression of dopamine. Pretreatment with Ex-9 did not, however, affect the suppression of phasic dopamine release by the kappa-opioid receptor agonist, salvinorin A, supporting a selective effect of GLP-1R stimulation in LiCl-induced dopamine suppression. By delivering Ex-9 to either the lateral or fourth ventricle, we highlight a population of central GLP-1 receptors rostral to the hindbrain that are involved in the LiCl-mediated suppression of NAc dopamine release. PMID:26211731

  3. Exposure to the polybrominated diphenyl ether mixture DE-71 damages the nigrostriatal dopamine system: role of dopamine handling in neurotoxicity.

    PubMed

    Bradner, Joshua M; Suragh, Tiffany A; Wilson, W Wyatt; Lazo, Carlos R; Stout, Kristen A; Kim, Hye Mi; Wang, Min Z; Walker, Douglas I; Pennell, Kurt D; Richardson, Jason R; Miller, Gary W; Caudle, W Michael

    2013-03-01

    In the last several decades polybrominated diphenyl ethers (PBDEs) have replaced the previously banned polychlorinated biphenyls (PCBs) in multiple flame retardant utilities. As epidemiological and laboratory studies have suggested PCBs as a risk factor for Parkinson's disease (PD), the similarities between PBDEs and PCBs suggest that PBDEs have the potential to be neurotoxic to the dopamine system. The purpose of this study was to evaluate the neurotoxic effects of the PBDE mixture, DE-71, on the nigrostriatal dopamine system and address the role of altered dopamine handling in mediating this neurotoxicity. Using an in vitro model system we found DE-71 effectively caused cell death in a dopaminergic cell line as well as reducing the number of TH+ neurons isolated from VMAT2 WT and LO animals. Assessment of DE-71 neurotoxicity in vivo demonstrated significant deposition of PBDE congeners in the brains of mice, leading to reductions in striatal dopamine and dopamine handling, as well as reductions in the striatal dopamine transporter (DAT) and VMAT2. Additionally, DE-71 elicited a significant locomotor deficit in the VMAT2 WT and LO mice. However, no change was seen in TH expression in dopamine terminal or in the number of dopamine neurons in the substantia nigra pars compacta (SNpc). To date, these are the first data to demonstrate that exposure to PBDEs disrupts the nigrostriatal dopamine system. Given their similarities to PCBs, additional laboratory and epidemiological research should be considered to assess PBDEs as a potential risk factor for PD and other neurological disorders.

  4. Overview of pepsin-like aspartic peptidases.

    PubMed

    Dunn, B M

    2001-11-01

    The aspartic peptidase family of enzymes has been implicated in a variety of disease states, from stomach ulcers, to breast cancer, and even Alzheimer's Disease. This unit describes the major characteristics of the aspartic peptidases, including mechanism of action, subcellular and tissue localization, and biological substrate specificity.

  5. Hypocretin/Orexin Peptides Excite Rat Neuroendocrine Dopamine Neurons through Orexin 2 Receptor-Mediated Activation of a Mixed Cation Current

    PubMed Central

    Lyons, David J.; Hellysaz, Arash; Ammari, Rachida; Broberger, Christian

    2017-01-01

    Hypocretin/Orexin (H/O) neurons of the lateral hypothalamus are compelling modulator candidates for the chronobiology of neuroendocrine output and, as a consequence, hormone release from the anterior pituitary. Here we investigate the effects of H/O peptides upon tuberoinfundibular dopamine (TIDA) neurons – cells which control, via inhibition, the pituitary secretion of prolactin. In whole cell recordings performed in male rat hypothalamic slices, application of H/O-A, as well as H/O-B, excited oscillating TIDA neurons, inducing a reversible depolarising switch from phasic to tonic discharge. The H/O-induced inward current underpinning this effect was post-synaptic (as it endured in the presence of tetrodotoxin), appeared to be carried by a Na+-dependent transient receptor potential-like channel (as it was blocked by 2-APB and was diminished by removal of extracellular Na+), and was a consequence of OX2R receptor activation (as it was blocked by the OX2R receptor antagonist TCS OX2 29, but not the OX1R receptor antagonist SB 334867). Application of the hormone, melatonin, failed to alter TIDA membrane potential or oscillatory activity. This first description of the electrophysiological effects of H/Os upon the TIDA network identifies cellular mechanisms that may contribute to the circadian rhythmicity of prolactin secretion. PMID:28145492

  6. Involvement of estrogen receptors in the resveratrol-mediated increase in dopamine transporter in human dopaminergic neurons and in striatum of female mice.

    PubMed

    Di Liberto, Valentina; Mäkelä, Johanna; Korhonen, Laura; Olivieri, Melania; Tselykh, Timofey; Mälkiä, Annika; Do Thi, Hai; Belluardo, Natale; Lindholm, Dan; Mudò, Giuseppa

    2012-02-01

    Treatment with resveratrol (RSV) has been shown to protect vulnerable neurons after various brain injuries and in neurodegenerative diseases. The mechanisms for the effects of RSV in brain are not fully understood, but RSV may affect the expression of various gene products. RSV is structurally related to the synthetic estrogen, diethylstilbestrol so the effects of RSV may be gender-specific. Here we studied the role of RSV in the regulation of dopamine transporter (DAT) in the striatum using male and female mice. The basic levels of DAT in the striatum showed no sex difference, but the levels increased significantly by RSV (20 mg/kg i.p.) in female but not in male mice. Pretreatment of mice with the selective estrogen receptor (ER), ERα- and ERβ antagonist ICI 182,780, led to a complete block of RSV effect on DAT protein levels, suggesting that ERs are involved in the up-regulation of DAT by RSV. Similar data was also obtained in culture using human MESC2.10 and mouse SN4741 dopaminergic cells after treatment with RSV. Data further showed that RSV specifically induced gene transcription of DAT in the dopaminergic cells. These results show that estrogen receptors are involved in the up-regulation of DAT by RSV in the dopaminergic neurons, demonstrating a sex-dependent effect of RSV in the brain that may be of clinical importance. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.

  7. Characterization of pre- and postsynaptic dopamine receptors in Lymnaea.

    PubMed

    Audesirk, T E

    1989-01-01

    1. The effects of dopamine and several synthetic agonists and antagonists were studied using two identified neurons of the snail Lymnaea stagnalis. 2. In both the buccal-2 (B-2) neurons and the pedal giant (RPeD1) neuron dopamine elicited a hyperpolarizing response at least partly due to potassium efflux. RPeD1 is itself dopaminergic, implicating autoreceptors in its response to dopamine. 3. The following agents were tested: agonists--LY171555, pergolide, SKF38393, (-)-3-PPP, R(-)NPA and dopamine; antagonists--SCH23390, sulpiride, and metaclopramide. Dibutyryl cAMP was applied to determine whether the response is cAMP-mediated. 4. Results indicate that the pharmacological profiles of dopamine receptors on these neurons are inconsistent with those of either D-1, D-2 or autoreceptors in mammals.

  8. Dopamine encoding of Pavlovian incentive stimuli diminishes with extended training.

    PubMed

    Clark, Jeremy J; Collins, Anne L; Sanford, Christina Akers; Phillips, Paul E M

    2013-02-20

    Dopamine is highly implicated both as a teaching signal in reinforcement learning and in motivating actions to obtain rewards. However, theoretical disconnects remain between the temporal encoding properties of dopamine neurons and the behavioral consequences of its release. Here, we demonstrate in rats that dopamine evoked by Pavlovian cues increases during acquisition, but dissociates from stable conditioned appetitive behavior as this signal returns to preconditioning levels with extended training. Experimental manipulation of the statistical parameters of the behavioral paradigm revealed that this attenuation of cue-evoked dopamine release during the postasymptotic period was attributable to acquired knowledge of the temporal structure of the task. In parallel, conditioned behavior became less dopamine dependent after extended training. Thus, the current work demonstrates that as the presentation of reward-predictive stimuli becomes anticipated through the acquisition of task information, there is a shift in the neurobiological substrates that mediate the motivational properties of these incentive stimuli.

  9. Stimulants as Specific Inducers of Dopamine-Independent σ Agonist Self-Administration in Rats

    PubMed Central

    Hiranita, Takato; Soto, Paul L.; Tanda, Gianluigi; Kopajtic, Theresa A.

    2013-01-01

    A previous study showed that cocaine self-administration induced dopamine-independent reinforcing effects of σ agonists mediated by their selective actions at σ1 receptors (σ1Rs), which are intracellularly mobile chaperone proteins implicated in abuse-related effects of stimulants. The present study assessed whether the induction was specific to self-administration of cocaine. Rats were trained to self-administer the dopamine releaser, d-methamphetamine (0.01–0.32 mg/kg per injection), the μ-opioid receptor agonist, heroin (0.001–0.032 mg/kg per injection), and the noncompetitive N-methyl-d-aspartate receptor/channel antagonist ketamine (0.032–1.0 mg/kg per injection). As with cocaine, self-administration of d-methamphetamine induced reinforcing effects of the selective σ1R agonists PRE-084 [2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate hydrochloride] and (+)-pentazocine (0.032–1.0 mg/kg per injection, each). In contrast, neither self-administration of heroin nor ketamine induced PRE-084 or (+)-pentazocine (0.032–10 mg/kg per injection, each) self-administration. Although the σ1R agonists did not maintain responding in subjects with histories of heroin or ketamine self-administration, substitution for those drugs was obtained with appropriate agonists (e.g., remifentanil, 0.1–3.2 µg/kg per injection, for heroin and (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ((+)-MK 801; dizocilpine), 0.32–10.0 µg/kg per injection, for ketamine). The σR antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine dihydrobromide (BD 1008; 1.0–10 mg/kg) dose-dependently blocked PRE-084 self-administration but was inactive against d-methamphetamine, heroin, and ketamine. In contrast, PRE-084 self-administration was affected neither by the dopamine receptor antagonist (+)-butaclamol (10–100 μg/kg) nor by the opioid antagonist (−)-naltrexone (1.0–10 mg/kg), whereas these antagonists were active

  10. Dopamine function and the efficiency of human movement.

    PubMed

    Gepshtein, Sergei; Li, Xiaoyan; Snider, Joseph; Plank, Markus; Lee, Dongpyo; Poizner, Howard

    2014-03-01

    To sustain successful behavior in dynamic environments, active organisms must be able to learn from the consequences of their actions and predict action outcomes. One of the most important discoveries in systems neuroscience over the last 15 years has been about the key role of the neurotransmitter dopamine in mediating such active behavior. Dopamine cell firing was found to encode differences between the expected and obtained outcomes of actions. Although activity of dopamine cells does not specify movements themselves, a recent study in humans has suggested that tonic levels of dopamine in the dorsal striatum may in part enable normal movement by encoding sensitivity to the energy cost of a movement, providing an implicit "motor motivational" signal for movement. We investigated the motivational hypothesis of dopamine by studying motor performance of patients with Parkinson disease who have marked dopamine depletion in the dorsal striatum and compared their performance with that of elderly healthy adults. All participants performed rapid sequential movements to visual targets associated with different risk and different energy costs, countered or assisted by gravity. In conditions of low energy cost, patients performed surprisingly well, similar to prescriptions of an ideal planner and healthy participants. As energy costs increased, however, performance of patients with Parkinson disease dropped markedly below the prescriptions for action by an ideal planner and below performance of healthy elderly participants. The results indicate that the ability for efficient planning depends on the energy cost of action and that the effect of energy cost on action is mediated by dopamine.

  11. Dysregulated dopamine storage increases the vulnerability to α-synuclein in nigral neurons.

    PubMed

    Ulusoy, Ayse; Björklund, Tomas; Buck, Kerstin; Kirik, Deniz

    2012-09-01

    Impairments in the capacity of dopaminergic neurons to handle cytoplasmic dopamine may be a critical factor underlying the selective vulnerability of midbrain dopamine neurons in Parkinson's disease. Furthermore, toxicity of α-synuclein in dopaminergic neurons has been suggested to be mediated by direct interaction between dopamine and α-synuclein through formation of abnormal α-synuclein species, although direct in vivo evidence to support this hypothesis is lacking. Here, we investigated the role of dopamine availability on α-synuclein mediated neurodegeneration in vivo. We found that overexpression of α-synuclein in nigral dopamine neurons in mice with deficient vesicular storage of dopamine led to a significant increase in dopaminergic neurodegeneration. Importantly, silencing the tyrosine hydroxylase enzyme - thereby reducing dopamine content in the nigral neurons - reversed the increased vulnerability back to the baseline level observed in wild-type littermates, but failed to eliminate it completely. Importantly, TH knockdown was not effective in altering the toxicity in the wild-type animals. Taken together, our data suggest that under normal circumstances, in healthy dopamine neurons, cytoplasmic dopamine is tightly controlled such that it does not contribute significantly to α-synuclein mediated toxicity. Dysregulation of the dopamine machinery in the substantia nigra, on the other hand, could act as a trigger for induction of increased toxicity in these neurons and could explain how these neurons become more vulnerable and die in the disease process.

  12. A novel mechanism of cocaine to enhance dopamine d2-like receptor mediated neurochemical and behavioral effects. An in vivo and in vitro study.

    PubMed

    Ferraro, Luca; Frankowska, Malgorzata; Marcellino, Daniel; Zaniewska, Magdalena; Beggiato, Sarah; Filip, Malgorzata; Tomasini, Maria Cristina; Antonelli, Tiziana; Tanganelli, Sergio; Fuxe, Kjell

    2012-07-01

    Recent in vitro results suggest that cocaine may exert direct and/or indirect allosteric enhancing actions at dopamine (DA) D(2) receptors (D(2)Rs). In the present paper we tested the hypothesis that cocaine in vivo can enhance the effects of the D(2)-likeR agonist quinpirole in rats by using microdialysis and pharmacological behavioral studies. Furthermore, in vitro D(2)-likeR binding characteristics and Gα(i/o)-protein coupling, in the absence and in the presence of cocaine, have been investigated in rat striatal membranes. Intra-nucleus accumbens perfusion of the D(2)-likeR agonist quinpirole (10 μM) reduced local dialysate glutamate levels, whereas cocaine (10 and 100 nM) was ineffective. At a low concentration (100 nM), cocaine significantly enhanced quinpirole-induced reduction of accumbal extracellular glutamate levels. The behavioral experiments showed that cocaine (0.625 mg/kg), but not the DA uptake blocker GBR 12783 (1.25 mg/kg), enhanced quinpirole (1 mg/kg)-induced hyperlocomotion. Finally, cocaine (100 nM), but not GBR 12783 (200 nM), produced a small, but significant increase in the efficacy of DA to stimulate binding of GTPγS to striatal D(2)-likeRs, whereas the D(2)-likeR binding characteristics were unchanged in striatal membranes by cocaine in the nM range. The significant increase in the maximal response to DA-stimulated GTPγS binding to D(2)-likeRs by 100 nM cocaine remained in the presence of GBR 12783. The observed cocaine-induced enhancement of the Gα(i/o)-protein coupling of D(2)Rs may be in part because of allosteric direct and/or indirect enhancing effects of cocaine at these receptors. These novel actions of cocaine may have relevance for understanding the actions of cocaine upon accumbal DA, and/or glutamate transmission and thus its rewarding as well as relapsing effects.

  13. A Novel Mechanism of Cocaine to Enhance Dopamine D2-Like Receptor Mediated Neurochemical and Behavioral Effects. An In Vivo and In Vitro Study

    PubMed Central

    Ferraro, Luca; Frankowska, Malgorzata; Marcellino, Daniel; Zaniewska, Magdalena; Beggiato, Sarah; Filip, Malgorzata; Tomasini, Maria Cristina; Antonelli, Tiziana; Tanganelli, Sergio; Fuxe, Kjell

    2012-01-01

    Recent in vitro results suggest that cocaine may exert direct and/or indirect allosteric enhancing actions at dopamine (DA) D2 receptors (D2Rs). In the present paper we tested the hypothesis that cocaine in vivo can enhance the effects of the D2-likeR agonist quinpirole in rats by using microdialysis and pharmacological behavioral studies. Furthermore, in vitro D2-likeR binding characteristics and Gαi/o-protein coupling, in the absence and in the presence of cocaine, have been investigated in rat striatal membranes. Intra-nucleus accumbens perfusion of the D2-likeR agonist quinpirole (10 μM) reduced local dialysate glutamate levels, whereas cocaine (10 and 100 nM) was ineffective. At a low concentration (100 nM), cocaine significantly enhanced quinpirole-induced reduction of accumbal extracellular glutamate levels. The behavioral experiments showed that cocaine (0.625 mg/kg), but not the DA uptake blocker GBR 12783 (1.25 mg/kg), enhanced quinpirole (1 mg/kg)-induced hyperlocomotion. Finally, cocaine (100 nM), but not GBR 12783 (200 nM), produced a small, but significant increase in the efficacy of DA to stimulate binding of GTPγS to striatal D2-likeRs, whereas the D2-likeR binding characteristics were unchanged in striatal membranes by cocaine in the nM range. The significant increase in the maximal response to DA-stimulated GTPγS binding to D2-likeRs by 100 nM cocaine remained in the presence of GBR 12783. The observed cocaine-induced enhancement of the Gαi/o-protein coupling of D2Rs may be in part because of allosteric direct and/or indirect enhancing effects of cocaine at these receptors. These novel actions of cocaine may have relevance for understanding the actions of cocaine upon accumbal DA, and/or glutamate transmission and thus its rewarding as well as relapsing effects. PMID:22453136

  14. Hypersensitivity of dopamine transmission in the rat striatum after treatment with the NMDA receptor antagonist amantadine.

    PubMed

    Peeters, Magali; Page, Guylène; Maloteaux, Jean-Marie; Hermans, Emmanuel

    2002-09-13

    Amantadine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist known to increase dopamine synthesis and release in the striatum, is frequently associated with L-DOPA in the treatment of Parkinson's disease. However, the biochemical mechanisms involved in the effect of amantadine and the consequences of its repetitive administration on the modulation of striatal dopamine transmission still need to be clarified. We have investigated the effects of short-term amantadine treatments on the expression of dopamine receptors and the functional coupling to G proteins in rat striatal membranes. Dopamine-induced stimulation of guanosine 5'-[gamma-35S]triphosphate ([35S]GTPgammaS) binding was significantly enhanced (40%) in striatum homogenates from rats treated for 4 days with amantadine (40 mg/kg, i.p.) compared to vehicle-treated animals. This effect was specific for dopamine receptors and was transient as no significant modifications were observed when animals were treated for either 2 or 7 days. Administration of amantadine did not directly affect the animal behaviour. However, treated animals exhibited hypersensitive dopamine transmission since rats treated for 4 days showed exacerbated responses to a single apomorphine administration (enhanced locomotor activity and reduced stereotypy). Since the effects of amantadine administration differ from those usually observed with direct dopamine receptor agonists or other NMDA receptor antagonists, we suggest that multiple biochemical mechanisms contribute to the modulation of dopamine transmission by amantadine.

  15. Attractant Signaling by an Aspartate Chemoreceptor Dimer with a Single Cytoplasmic Domain

    NASA Astrophysics Data System (ADS)

    Gardina, Paul J.; Manson, Michael D.

    1996-10-01

    Signal transduction across cell membranes often involves interactions among identical receptor subunits, but the contribution of individual subunits is not well understood. The chemoreceptors of enteric bacteria mediate attractant responses by interrupting a phosphotransfer circuit initiated at receptor complexes with the protein kinase CheA. The aspartate receptor (Tar) is a homodimer, and oligomerized cytoplasmic domains stimulate CheA activity much more than monomers do in vitro. Intragenic complementation was used to show in Escherichia coli that heterodimers containing one full-length and one truncated Tar subunit mediated responses to aspartate in the presence of full-length Tar homodimers that could not bind aspartate. Thus, a Tar dimer containing only one cytoplasmic domain can initiate an attractant (inhibitory) signal, although it may not be able to stimulate kinase activity of CheA.

  16. Differential effects of dopamine-directed treatments on cognition.

    PubMed

    Ashby, F Gregory; Valentin, Vivian V; von Meer, Stella S

    2015-01-01

    Dopamine, a prominent neuromodulator, is implicated in many neuropsychiatric disorders. It has wide-ranging effects on both cortical and subcortical brain regions and on many types of cognitive tasks that rely on a variety of different learning and memory systems. As neuroscience and behavioral evidence for the existence of multiple memory systems and their corresponding neural networks accumulated, so did the notion that dopamine's role is markedly different depending on which memory system is engaged. As a result, dopamine-directed treatments will have different effects on different types of cognitive behaviors. To predict what these effects will be, it is critical to understand: which memory system is mediating the behavior; the neural basis of the mediating memory system; the nature of the dopamine projections into that system; and the time course of dopamine after its release into the relevant brain regions. Consideration of these questions leads to different predictions for how changes in brain dopamine levels will affect automatic behaviors and behaviors mediated by declarative, procedural, and perceptual representation memory systems.

  17. Identification of a vesicular aspartate transporter

    PubMed Central

    Miyaji, Takaaki; Echigo, Noriko; Hiasa, Miki; Senoh, Shigenori; Omote, Hiroshi; Moriyama, Yoshinori

    2008-01-01

    Aspartate is an excitatory amino acid that is costored with glutamate in synaptic vesicles of hippocampal neurons and synaptic-like microvesicles (SLMVs) of pinealocytes and is exocytosed and stimulates neighboring cells by binding to specific cell receptors. Although evidence increasingly supports the occurrence of aspartergic neurotransmission, this process is still debated because the mechanism for the vesicular storage of aspartate is unknown. Here, we show that sialin, a lysosomal H+/sialic acid cotransporter, is present in hippocampal synaptic vesicles and pineal SLMVs. RNA interference of sialin expression decreased exocytosis of aspartate and glutamate in pinealocytes. Proteoliposomes containing purified sialin actively accumulated aspartate and glutamate to a similar extent when inside positive membrane potential is imposed as the driving force. Sialin carrying a mutation found in people suffering from Salla disease (R39C) was completely devoid of aspartate and glutamate transport activity, although it retained appreciable H+/sialic acid cotransport activity. These results strongly suggest that sialin possesses dual physiological functions and acts as a vesicular aspartate/glutamate transporter. It is possible that people with Salla disease lose aspartergic (and also the associated glutamatergic) neurotransmission, and this could provide an explanation for why Salla disease causes severe neurological defects. PMID:18695252

  18. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.

  19. Reduction of Cocaine Self-Administration and D3 Receptor-Mediated Behavior by Two Novel Dopamine D3 Receptor-Selective Partial Agonists, OS-3-106 and WW-III-55

    PubMed Central

    Cheung, Timothy H. C.; Loriaux, Amy L.; Weber, Suzanne M.; Chandler, Kayla N.; Lenz, Jeffrey D.; Schaan, Romina F.; Mach, Robert H.; Luedtke, Robert R.

    2013-01-01

    Dopamine D3 receptor (D3R)-selective compounds may be useful medications for cocaine dependence. In this study, we identified two novel arylamide phenylpiperazines, OS-3-106 and WW-III-55, as partial agonists at the D3R in the adenylyl cyclase inhibition assay. OS-3-106 and WW-III-55 have 115- and 862-fold D3R:D2 receptor (D2R) binding selectivity, respectively. We investigated their effects (0, 3, 5.6, or 10 mg/kg) on operant responding by using a multiple variable-interval (VI) 60-second schedule that alternated components with sucrose reinforcement and components with intravenous cocaine reinforcement (0.375 mg/kg). Additionally, we evaluated the effect of OS-3-106 (10 mg/kg) on the dose-response function of cocaine self-administration and the effect of WW-III-55 (0–5.6 mg/kg) on a progressive ratio schedule with either cocaine or sucrose reinforcement. Both compounds were also examined for effects on locomotion and yawning induced by a D3R agonist. OS-3-106 decreased cocaine and sucrose reinforcement rates, increased latency to first response for cocaine but not sucrose, and downshifted the cocaine self-administration dose-response function. WW-III-55 did not affect cocaine self-administration on the multiple-variable interval schedule, but it reduced cocaine and sucrose intake on the progressive ratio schedule. Both compounds reduced locomotion at doses that reduced responding, and both compounds attenuated yawning induced by low doses of 7-OH-DPAT (a D3R-mediated behavior), but neither affected yawning on the descending limb of the 7-OH-DPAT dose-response function (a D2R-mediated behavior). Therefore, both compounds blocked a D3R-mediated behavior. However, OS-3-106 was more effective in reducing cocaine self-administration. These findings support D3Rs, and possibly D2Rs, as targets for medications aimed at reducing the motivation to seek cocaine. PMID:24018640

  20. The hydrothermal reaction kinetics of aspartic acid

    NASA Astrophysics Data System (ADS)

    Cox, Jenny S.; Seward, Terry M.

    2007-02-01

    Experimental data on the hydrothermal reaction kinetics of aspartic acid were acquired using a custom-built spectrophotometric reaction cell which permits in situ observation under hydrothermal conditions. The results of this study indicate that the reaction kinetics of dilute aspartic acid solutions are significantly different depending on the presence or absence of catalytic surfaces such as standard metal alloys. The spectroscopic data presented here represent the first direct observations, in situ and in real time, of an amino acid reacting in a hydrothermal solution. Quantitative kinetic information, including rate constants, concentration versus time profiles, and calculations of the individual component spectra, was obtained from the data using a chemometric approach based on factor analysis/principle component analysis which treats the rate expressions simultaneously as a system of differential algebraic equations (DAE) of index 1. Identification of the products was confirmed where possible by high pressure anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The reaction kinetics of aspartic acid under hydrothermal conditions was observed to be highly complex, in contrast to previous studies which indicated almost exclusively deamination. At lower temperatures (120-170 °C), several different reaction pathways were observed, including decarboxylation and polymerization, and the catalytic effects of reactor surfaces on the aspartic acid system were clearly demonstrated. At higher temperatures (above 170 °C), aspartic acid exhibited highly complex behaviour, with evidence indicating that it can simultaneously dimerize and cyclize, deaminate (by up to two pathways), and decarboxylate (by up to two pathways). These higher temperature kinetics were not fully resolvable in a quantitative manner due to the complexity of the system and the constraints of UV spectroscopy. The results of this study provide strong evidence that the reaction

  1. Acute fasting increases somatodendritic dopamine release in the ventral tegmental area.

    PubMed

    Roseberry, Aaron G

    2015-08-01

    Fasting and food restriction alter the activity of the mesolimbic dopamine system to affect multiple reward-related behaviors. Food restriction decreases baseline dopamine levels in efferent target sites and enhances dopamine release in response to rewards such as food and drugs. In addition to releasing dopamine from axon terminals, dopamine neurons in the ventral tegmental area (VTA) also release dopamine from their soma and dendrites, and this somatodendritic dopamine release acts as an autoinhibitory signal to inhibit neighboring VTA dopamine neurons. It is unknown whether acute fasting also affects dopamine release, including the local inhibitory somatodendritic dopamine release in the VTA. In these studies, I have tested whether fasting affects the inhibitory somatodendritic dopamine release within the VTA by examining whether an acute 24-h fast affects the inhibitory postsynaptic current mediated by evoked somatodendritic dopamine release (D2R IPSC). Fasting increased the contribution of the first action potential to the overall D2R IPSC and increased the ratio of repeated D2R IPSCs evoked at short intervals. Fasting also reduced the effect of forskolin on the D2R IPSC and led to a significantly bigger decrease in the D2R IPSC in low extracellular calcium. Finally, fasting resulted in an increase in the D2R IPSCs when a more physiologically relevant train of D2R IPSCs was used. Taken together, these results indicate that fasting caused a change in the properties of somatodendritic dopamine release, possibly by increasing dopamine release, and that this increased release can be sustained under conditions where dopamine neurons are highly active.

  2. Brain dopamine and amino acid concentrations in Lurcher mutant mice.

    PubMed

    Reader, T A; Strazielle, C; Botez, M I; Lalonde, R

    1998-03-15

    Lurcher mutant mice are characterized by massive degeneration of the cerebellum, including Purkinje cells and granule cells, as well as for the loss of neurons from the inferior olive. Concentrations of dopamine and two of its metabolites and of several amino acid neurotransmitters were determined in the cerebellum and in other brain regions of these mutants. By comparison to wild-type mice of the same background strain, glutamate and taurine concentrations were reduced in the Lurcher cerebellum. No decrease was found for aspartate, gamma-aminobutyric acid (GABA), glycine, as well as dopamine and its metabolites. Moreover, no neurochemical alterations occurred in the brain stem, thalamus, or neostriatum of Lurcher mutants. A selective reduction of glutamate concentration was found in the hippocampus, while all amino acids measured were decreased in the entorhinal-piriform areas. These results indicate region-selective reductions of neurotransmitter concentrations in a mouse mutant with a defined cerebellar cortical pathology.

  3. Dopamine D1 and D2 Receptor Immunoreactivities in the Arcuate-Median Eminence Complex and their Link to the Tubero-Infundibular Dopamine Neurons

    PubMed Central

    Romero-Fernandez, W.; Borroto-Escuela, D.O.; Vargas-Barroso, V.; Narváez, M.; Di Palma, M.; Agnati, L.F.; Sahd, J. Larriva

    2014-01-01

    modulate the activity and/or Dopamine synthesis of substantial numbers of tubero-infundibular dopamine neurons at the somatic and terminal level. The immunohistochemical work also gives support to the view that dopamine D1 receptors and/or dopamine D2 receptors in the lateral palisade zone by mediating dopamine volume transmission may contribute to the inhibition of luteinizing hormone releasing hormone release from nerve terminals in this region. PMID:25308843

  4. A Physical Interaction between the Dopamine Transporter and DJ-1 Facilitates Increased Dopamine Reuptake.

    PubMed

    Luk, Beryl; Mohammed, Mohinuddin; Liu, Fang; Lee, Frank J S

    2015-01-01

    The regulation of the dopamine transporter (DAT) impacts extracellular dopamine levels after release from dopaminergic neurons. Furthermore, a variety of protein partners have been identified that can interact with and modulate DAT function. In this study we show that DJ-1 can potentially modulate DAT function. Co-expression of DAT and DJ-1 in HEK-293T cells leads to an increase in [3H] dopamine uptake that does not appear to be mediated by increased total DAT expression but rather through an increase in DAT cell surface localization. In addition, through a series of GST affinity purifications and co-immunoprecipitations, we provide evidence that the DAT can be found in a complex with DJ-1, which involve distinct regions within both DAT and DJ-1. Using in vitro binding experiments we also show that this complex can be formed in part by a direct interaction between DAT and DJ-1. Co-expression of a mini-gene that can disrupt the DAT/DJ-1 complex appears to block the increase in [3H] dopamine uptake by DJ-1. Mutations in DJ-1 have been linked to familial forms of Parkinson's disease, yet the normal physiological function of DJ-1 remains unclear. Our study suggests that DJ-1 may also play a role in regulating dopamine levels by modifying DAT activity.

  5. A Physical Interaction between the Dopamine Transporter and DJ-1 Facilitates Increased Dopamine Reuptake

    PubMed Central

    Luk, Beryl; Mohammed, Mohinuddin; Liu, Fang; Lee, Frank J. S.

    2015-01-01

    The regulation of the dopamine transporter (DAT) impacts extracellular dopamine levels after release from dopaminergic neurons. Furthermore, a variety of protein partners have been identified that can interact with and modulate DAT function. In this study we show that DJ-1 can potentially modulate DAT function. Co-expression of DAT and DJ-1 in HEK-293T cells leads to an increase in [3H] dopamine uptake that does not appear to be mediated by increased total DAT expression but rather through an increase in DAT cell surface localization. In addition, through a series of GST affinity purifications and co-immunoprecipitations, we provide evidence that the DAT can be found in a complex with DJ-1, which involve distinct regions within both DAT and DJ-1. Using in vitro binding experiments we also show that this complex can be formed in part by a direct interaction between DAT and DJ-1. Co-expression of a mini-gene that can disrupt the DAT/DJ-1 complex appears to block the increase in [3H] dopamine uptake by DJ-1. Mutations in DJ-1 have been linked to familial forms of Parkinson’s disease, yet the normal physiological function of DJ-1 remains unclear. Our study suggests that DJ-1 may also play a role in regulating dopamine levels by modifying DAT activity. PMID:26305376

  6. Dopamine D1 Receptors Are Not Critical for Opiate Reward but Can Mediate Opiate Memory Retrieval in a State-Dependent Manner

    PubMed Central

    Vargas-Perez, Hector; George, Susan R.; van der Kooy, Derek

    2013-01-01

    Although D1 receptor knockout mice demonstrate normal morphine place preferences, antagonism of basolateral amygdala (BLA) D1 receptors only during drug-naive rat conditioning has been reported to inhibit the expression of a morphine place preference. One possible explanation for this result is state-dependent learning. That is, the omission of the intra-BLA infusion cue during testing — which acts as a potent discriminative stimulus — may have prevented the recall of a morphine-environment association and therefore, the consequent expression of a morphine place preference. To examine this possibility, we tested whether intra-BLA infusion of the D1-receptor antagonist SCH23390 during both training and testing might reveal a morphine place preference. Our results suggest that in previously drug-naive animals, D1 receptor antagonism during testing restores the opiate conditioned place preference that is normally absent when D1 receptors are blocked only during training, suggesting that BLA D1 receptors can mediate state-dependent memory retrieval. PMID:23538064

  7. Dopamine depresses cholinergic oscillatory network activity in rat hippocampus.

    PubMed

    Weiss, Torsten; Veh, Rüdiger W; Heinemann, Uwe

    2003-11-01

    The dopaminergic neuronal system is implicated in cognitive processes in a variety of brain regions including the mesolimbic system. We have investigated whether dopamine also affects synchronized network activity in the hippocampus, which has been ascribed to play a pivotal role in memory formation. Gamma frequency (20-80 Hz) oscillations were induced by the cholinergic agonist carbachol. Oscillatory activity was examined in area CA3 of Wistar rat hippocampal slices, employing field potential and intracellular recordings. Application of carbachol initiated synchronized population activity in the gamma band at 40 Hz. Induced gamma activity persisted over hours and required GABAA receptors. Dopamine reversibly decreased the integrated gamma band power of the carbachol rhythm by 62%, while its frequency was not changed. By contrast, individual pyramidal cells recorded during carbachol-induced field gamma activity exhibited theta frequency (5-15 Hz) membrane potential oscillations that were not altered by dopamine. The dopamine effect on the field gamma activity was mimicked by the D1 receptor agonist SKF-383393 and partially antagonized by the D1 antagonist SCH-23390. Conversely, the D2 receptor agonist quinpirole failed to depress the oscillations, and the D2 antagonist sulpiride did not prevent the suppressive dopamine effect. The data indicate that dopamine strongly depresses cholinergic gamma oscillations in area CA3 of rat hippocampus by activation of D1-like dopamine receptors and that this effect is most likely mediated via impairment of interneurons involved in generation and maintenance of the carbachol-induced network rhythm.

  8. Dopamine alleviates salt-induced stress in Malus hupehensis.

    PubMed

    Li, Chao; Sun, Xiangkai; Chang, Cong; Jia, Dongfeng; Wei, Zhiwei; Li, Cuiying; Ma, Fengwang

    2015-04-01

    Dopamine mediates many physiological processes in plants. We investigated its role in regulating growth, ion homeostasis and the response to salinity in Malus hupehensis Rehd. Both hydroponics and field-pot experiments were conducted under saline conditions. Salt-stressed plants had reduced growth and a marked decline in their net photosynthetic rates, values for Fv /Fm and chlorophyll contents. However, pretreatment with 100 or 200 μM dopamine significantly alleviated this inhibition and enabled plants to maintain their photosynthetic capacity. In addition to changing stomatal behavior, supplementation with dopamine positively influenced the uptake of K, N, P, S, Cu and Mn ions but had an inhibitory effect on Na and Cl uptake, the balance of which is responsible for managing the response to salinity by Malus plants. Dopamine pretreatment also controlled the burst of hydrogen peroxide, possibly through direct scavenging and by enhancing the activities of antioxidative enzymes and the capacity of the ascorbate-glutathione cycle. We also investigated whether dopamine might regulate salt overly sensitive pathway genes under salinity. Here, MdHKT1, MdNHX1 and MdSOS1 were greatly upregulated in roots and leaves, which possibly contributed to the maintenance of ion homeostasis and, thus, improved salinity resistance in plants exposed earlier to exogenous dopamine. These results support our conclusion that dopamine alleviates salt-induced stress not only at the level of antioxidant defense but also by regulating other mechanisms of ion homeostasis.

  9. The neurotransmitter dopamine modulates vascular permeability in the endothelium

    PubMed Central

    Bhattacharya, Resham; Sinha, Sutapa; Yang, Su-Ping; Patra, Chittaranjan; Dutta, Shamit; Wang, Enfeng; Mukhopadhyay, Debabrata

    2008-01-01

    Background Vascular permeability factor/Vascular endothelial growth factor (VPF/VEGF), a multifunctional cytokine, is a potent inducer of vascular permeability, an important early step in angiogenesis. It is known that the neurotransmitter dopamine can inhibit VPF/VEGF mediated angiogenesis, in particular microvascular permeability, but the effectors of this action remain unclear. Results Here, we define the signaling pathway modulated by dopamine that inhibits VPF/VEGF induced vascular permeability in endothelial cells. Signals from VPF/VEGF lead to changes in the phosphorylation of tight junction protein zonula occludens (ZO-1) and adherens junction proteins like VE-cadherin and associated catenins, thus weakening endothelial cell-cell adhesion and increasing vascular permeability. We found VEGF receptor-2 (VEGFR-2) to be part of a multi-protein complex involving ZO-1, VE-cadherin and β-catenin. VPF/VEGF induced phosphorylations of VE-cadherin, β-catenin and ZO-1 were inhibited by dopamine treatment. Association of occludin with ZO-1 and ZO-1 with VE-cadherin were significantly inhibited by dopamine in VEGF treated cells. Furthermore, we identified Src as an important target for dopamine-mediated inhibition of VPF/VEGF induced permeability. Conclusion Taken together, our results provide molecular insights of dopamine function in the vascular endothelium and suggest a central role of Src in regulating key molecules that control vascular permeability. PMID:18662404

  10. VPS35 in Dopamine Neurons Is Required for Endosome-to-Golgi Retrieval of Lamp2a, a Receptor of Chaperone-Mediated Autophagy That Is Critical for α-Synuclein Degradation and Prevention of Pathogenesis of Parkinson's Disease

    PubMed Central

    Tang, Fu-Lei; Erion, Joanna R.; Tian, Yun; Liu, Wei; Yin, Dong-Min; Ye, Jian; Tang, Baisha; Mei, Lin

    2015-01-01

    Vacuolar protein sorting-35 (VPS35) is essential for endosome-to-Golgi retrieval of membrane proteins. Mutations in the VPS35 gene have been identified in patients with autosomal dominant PD. However, it remains poorly understood if and how VPS35 deficiency or mutation contributes to PD pathogenesis. Here we provide evidence that links VPS35 deficiency to PD-like neuropathology. VPS35 was expressed in mouse dopamine (DA) neurons in substantia nigra pars compacta (SNpc) and STR (striatum)—regions that are PD vulnerable. VPS35-deficient mice exhibited PD-relevant deficits including accumulation of α-synuclein in SNpc-DA neurons, loss of DA transmitter and DA neurons in SNpc and STR, and impairment of locomotor behavior. Further mechanical studies showed that VPS35-deficient DA neurons or DA neurons expressing PD-linked VPS35 mutant (D620N) had impaired endosome-to-Golgi retrieval of lysosome-associated membrane glycoprotein 2a (Lamp2a) and accelerated Lamp2a degradation. Expression of Lamp2a in VPS35-deficient DA neurons reduced α-synuclein, supporting the view for Lamp2a as a receptor of chaperone-mediated autophagy to be critical for α-synuclein degradation. These results suggest that VPS35 deficiency or mutation promotes PD pathogenesis and reveals a crucial pathway, VPS35-Lamp2a-α-synuclein, to prevent PD pathogenesis. SIGNIFICANCE STATEMENT VPS35 is a key component of the retromer complex that is essential for endosome-to-Golgi retrieval of membrane proteins. Mutations in the VPS35 gene have been identified in patients with PD. However, if and how VPS35 deficiency or mutation contributes to PD pathogenesis remains unclear. We demonstrated that VPS35 deficiency or mutation (D620N) in mice leads to α-synuclein accumulation and aggregation in the substantia nigra, accompanied with DA neurodegeneration. VPS35-deficient DA neurons exhibit impaired endosome-to-Golgi retrieval of Lamp2a, which may contribute to the reduced α-synuclein degradation through

  11. Secreted fungal aspartic proteases: A review.

    PubMed

    Mandujano-González, Virginia; Villa-Tanaca, Lourdes; Anducho-Reyes, Miguel Angel; Mercado-Flores, Yuridia

    2016-01-01

    The aspartic proteases, also called aspartyl and aspartate proteases or acid proteases (E.C.3.4.23), belong to the endopeptidase family and are characterized by the conserved sequence Asp-Gly-Thr at the active site. These enzymes are found in a wide variety of microorganisms in which they perform important functions related to nutrition and pathogenesis. In addition, their high activity and stability at acid pH make them attractive for industrial application in the food industry; specifically, they are used as milk-coagulating agents in cheese production or serve to improve the taste of some foods. This review presents an analysis of the characteristics and properties of secreted microbial aspartic proteases and their potential for commercial application.

  12. Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward.

    PubMed

    Yokel, R A; Wise, R A

    1975-02-14

    Low and high doses of a dopamine blocking agent had effects on lever pressing for intravenous amphetamine reward which resembled the effects of reward reduction and reward termination, respectively. Noradrenaline blockade had no such effects. A role in central mediation of reward perception is suggested for dopamine but not for noradrenaline.

  13. MPTP Impairs Dopamine D1 Receptor-Mediated Survival of Newborn Neurons in Ventral Hippocampus to Cause Depressive-Like Behaviors in Adult Mice

    PubMed Central

    Zhang, Tingting; Hong, Juan; Di, Tingting; Chen, Ling

    2016-01-01

    Parkinson’s disease (PD) is characterized by motor symptoms with depression. We evaluated the influence of dopaminergic depletion on hippocampal neurogenesis process to explore mechanisms of depression production. Five consecutive days of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injection in mice (MPTP-mice) reduced dopaminergic fibers in hippocampal dentate gyrus (DG). MPTP-mice exhibited depressive-like behaviors later for 2–3 weeks. BrdU was injected 4 h after last-injection of MPTP. BrdU-positive (BrdU+) cells in dorsal (d-DG) and ventral (v-DG) DG were examined on day 1 (D1), 7 (D7), 14 (D14) and 21 (D21) after BrdU injection. Fewer D7-, D14- and D21-BrdU+ cells or BrdU+/NeuN+ cells, but not D1-BrdU+ cells, were found in v-DG of MPTP-mice than in controls. However, the number of BrdU+ cells in d-DG did not differ between the both. Loss of doublecortin-positive (DCX+) cells was observed in v-DG of MPTP-mice. Protein kinase A (PKA) and Ca2+/cAMP-response element binding protein (CREB) phosphorylation were reduced in v-DG of MPTP-mice, which were reversed by D1-like receptor (D1R) agonist SKF38393, but not D2R agonist quinpirole. The treatment of MPTP-mice with SKF38393 on days 2–7 after BrdU-injection reduced the loss of D7- and D21-BrdU+ cells in v-DG and improved the depressive-like behaviors; these changes were sensitive to PKA inhibitor H89. Moreover, the v-DG injection of SKF38393 in MPTP-mice could reduce the loss of D21-BrdU+ cells and relieve the depressive-like behaviors. In control mice, the blockade of D1R by SCH23390 caused the reduction of D21-BrdU+ cells in v-DG and the depressive-like behaviors. Our results indicate that MPTP-reduced dopaminergic depletion impairs the D1R-mediated early survival of newborn neurons in v-DG, producing depressive-like behaviors. PMID:27790091

  14. Caffeine alters glutamate-aspartate transporter function and expression in rat retina.

    PubMed

    de Freitas, Adriana Pinto; Ferreira, Danielle Dias Pinto; Fernandes, Arlete; Martins, Robertta Silva; Borges-Martins, Vladimir Pedro Peralva; Sathler, Matheus Figueiredo; Dos-Santos-Pereira, Maurício; Paes-de-Carvalho, Roberto; Giestal-de-Araujo, Elizabeth; de Melo Reis, Ricardo Augusto; Kubrusly, Regina Celia Cussa

    2016-11-19

    l-Glutamate and l-aspartate are the main excitatory amino acids (EAAs) in the Central Nervous System (CNS) and their uptake regulation is critical for the maintenance of the excitatory balance. Excitatory amino acid transporters (EAATs) are widely distributed among central neurons and glial cells. GLAST and GLT1 are expressed in glial cells, whereas excitatory amino acid transporter 3/excitatory amino acid carrier 1 (EAAT3/EAAC1) is neuronal. Different signaling pathways regulate glutamate uptake by modifying the activity and expression of EAATs. In the present work we show that immature postnatal day 3 (PN3) rat retinas challenged by l-glutamate release [(3)H]-d-Aspartate linked to the reverse transport, with participation of NMDA, but not of non-NMDA receptors. The amount of [(3)H]-d-Aspartate released by l-glutamate is reduced during retinal development. Moreover, immature retinae at PN3 and PN7, but not PN14, exposed to a single dose of 200 or 500μM caffeine or the selective A2A receptor (A2AR) antagonist 100nM ZM241385 decreased [(3)H]-d-Aspartate uptake. Caffeine also selectively increased total expression of EAAT3 at PN7 and its expression in membrane fractions. However, both EAAT1 and EAAT2 were reduced after caffeine treatment in P2 fraction. Addition of 100nM DPCPX, an A1 receptor (A1R) antagonist, had no effect on the [(3)H]-d-Aspartate uptake. [(3)H]-d-Aspartate release was dependent on both extracellular sodium and Dl-TBOA, but not calcium, implying a transporter-mediated mechanism. Our results suggest that in the developing rat retina caffeine modulates [(3)H]-d-Aspartate uptake by blocking adenosine A2AR.

  15. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    PubMed

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement.

  16. Regulation of bat echolocation pulse acoustics by striatal dopamine

    PubMed Central

    Tressler, Jedediah; Schwartz, Christine; Wellman, Paul; Hughes, Samuel; Smotherman, Michael

    2011-01-01

    SUMMARY The ability to control the bandwidth, amplitude and duration of echolocation pulses is a crucial aspect of echolocation performance but few details are known about the neural mechanisms underlying the control of these voice parameters in any mammal. The basal ganglia (BG) are a suite of forebrain nuclei centrally involved in sensory-motor control and are characterized by their dependence on dopamine. We hypothesized that pharmacological manipulation of brain dopamine levels could reveal how BG circuits might influence the acoustic structure of bat echolocation pulses. A single intraperitoneal injection of a low dose (5 mg kg–1) of the neurotoxin 1-methyl-4-phenylpyridine (MPTP), which selectively targets dopamine-producing cells of the substantia nigra, produced a rapid degradation in pulse acoustic structure and eliminated the bat's ability to make compensatory changes in pulse amplitude in response to background noise, i.e. the Lombard response. However, high-performance liquid chromatography (HPLC) measurements of striatal dopamine concentrations revealed that the main effect of MPTP was a fourfold increase rather than the predicted decrease in striatal dopamine levels. After first using autoradiographic methods to confirm the presence and location of D1- and D2-type dopamine receptors in the bat striatum, systemic injections of receptor subtype-specific agonists showed that MPTP's effects on pulse acoustics were mimicked by a D2-type dopamine receptor agonist (Quinpirole) but not by a D1-type dopamine receptor agonist (SKF82958). The results suggest that BG circuits have the capacity to influence echolocation pulse acoustics, particularly via D2-type dopamine receptor-mediated pathways, and may therefore represent an important mechanism for vocal control in bats. PMID:21900471

  17. Regulation of bat echolocation pulse acoustics by striatal dopamine.

    PubMed

    Tressler, Jedediah; Schwartz, Christine; Wellman, Paul; Hughes, Samuel; Smotherman, Michael

    2011-10-01

    The ability to control the bandwidth, amplitude and duration of echolocation pulses is a crucial aspect of echolocation performance but few details are known about the neural mechanisms underlying the control of these voice parameters in any mammal. The basal ganglia (BG) are a suite of forebrain nuclei centrally involved in sensory-motor control and are characterized by their dependence on dopamine. We hypothesized that pharmacological manipulation of brain dopamine levels could reveal how BG circuits might influence the acoustic structure of bat echolocation pulses. A single intraperitoneal injection of a low dose (5 mg kg(-1)) of the neurotoxin 1-methyl-4-phenylpyridine (MPTP), which selectively targets dopamine-producing cells of the substantia nigra, produced a rapid degradation in pulse acoustic structure and eliminated the bat's ability to make compensatory changes in pulse amplitude in response to background noise, i.e. the Lombard response. However, high-performance liquid chromatography (HPLC) measurements of striatal dopamine concentrations revealed that the main effect of MPTP was a fourfold increase rather than the predicted decrease in striatal dopamine levels. After first using autoradiographic methods to confirm the presence and location of D(1)- and D(2)-type dopamine receptors in the bat striatum, systemic injections of receptor subtype-specific agonists showed that MPTP's effects on pulse acoustics were mimicked by a D(2)-type dopamine receptor agonist (Quinpirole) but not by a D(1)-type dopamine receptor agonist (SKF82958). The results suggest that BG circuits have the capacity to influence echolocation pulse acoustics, particularly via D(2)-type dopamine receptor-mediated pathways, and may therefore represent an important mechanism for vocal control in bats.

  18. Methamphetamine Regulation of Firing Activity of Dopamine Neurons.

    PubMed

    Lin, Min; Sambo, Danielle; Khoshbouei, Habibeh

    2016-10-05

    Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca(2+) homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca(2+)-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane.

  19. Autoregulation of dopamine synthesis in subregions of the rat nucleus accumbens.

    PubMed

    Heidbreder, C A; Baumann, M H

    2001-01-05

    The discovery of a core-shell dichotomy within the nucleus accumbens has opened new lines of investigation into the neuronal basis of psychiatric disorders and drug dependence. In the present study, the autoregulation of dopamine synthesis in subdivisions of the rat nucleus accumbens was examined. We measured the accumulation of L-3,4-dihydroxyphenylalanine (DOPA) after the inhibition of aromatic L-amino acid decarboxylase with 3-hydroxylbenzylhydrazine (NSD-1015, 100 mg kg(-1)) as an in vivo index of dopamine synthesis. The effect of the dopamine D(1)/D(2) receptor agonist apomorphine (0, 20, 100, 500 microgram kg(-1)) and the dopamine D(2)/D(3) receptor agonist quinpirole (0, 20, 100, 500 microgram kg(-1)) on dopamine synthesis was determined in the dorsolateral core, ventromedial shell, and rostral pole of the nucleus accumbens. DOPA accumulation was also measured in the frontal cortex, olfactory tubercle, and caudate nucleus of the same rats for comparative purposes. The results show that the three sectors of the nucleus accumbens had similar basal levels of DOPA. Both apomorphine and quinpirole produced a decrease in the dopamine synthesis rate in all brain regions examined. In general, the dopamine D(2)/D(3) receptor agonist quinpirole produced a significantly greater decrease in DOPA accumulation than the dopamine D(1)/D(2) receptor agonist apomorphine. Within the nucleus accumbens, we found no core-shell differences in the agonist-induced suppression of dopamine synthesis, but the rostral pole was less sensitive to the highest dose of both dopamine agonists. These results suggest that differences in dopamine function between the core and shell might not involve region-specific differences in the receptor-mediated autoregulation of dopamine neurotransmission. Moreover, the blunted effect of dopamine agonists in the rostral pole illustrates that this region of the accumbens is functionally distinct, possibly due to a lower dopamine receptor reserve when

  20. Two Membrane-Anchored Aspartic Proteases Contribute to Pollen and Ovule Development1[OPEN

    PubMed Central

    Gao, Hui; Zhang, Yinghui; Wang, Wanlei; Zhao, Keke; Liu, Chunmei; Bai, Lin; Li, Rui

    2017-01-01

    Aspartic proteases are a class of proteolytic enzymes with conserved aspartate residues, which are implicated in protein processing, maturation, and degradation. Compared with yeast and animals, plants possess a larger aspartic protease family. However, little is known about most of these enzymes. Here, we characterized two Arabidopsis (Arabidopsis thaliana) putative glycosylphosphatidylinositol (GPI)-anchored aspartic protease genes, A36 and A39, which are highly expressed in pollen and pollen tubes. a36 and a36 a39 mutants display significantly reduced pollen activity. Transmission electron microscopy and terminal-deoxynucleotidyl transferase-mediated nick end labeling assays further revealed that the unviable pollen in a36 a39 may undergo unanticipated apoptosis-like programmed cell death. The degeneration of female gametes also occurred in a36 a39. Aniline Blue staining, scanning electron microscopy, and semi in vitro guidance assays indicated that the micropylar guidance of pollen tubes is significantly compromised in a36 a39. A36 and A39 that were fused with green fluorescent protein are localized to the plasma membrane and display punctate cytosolic localization and colocalize with the GPI-anchored protein COBRA-LIKE10. Furthermore, in a36 a39, the abundance of highly methylesterified homogalacturonans and xyloglucans was increased significantly in the apical pollen tube wall. These results indicate that A36 and A39, two putative GPI-anchored aspartic proteases, play important roles in plant reproduction in Arabidopsis. PMID:27872247

  1. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    PubMed

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds.

  2. Differential effects of dopamine-directed treatments on cognition

    PubMed Central

    Ashby, F Gregory; Valentin, Vivian V; von Meer, Stella S

    2015-01-01

    Dopamine, a prominent neuromodulator, is implicated in many neuropsychiatric disorders. It has wide-ranging effects on both cortical and subcortical brain regions and on many types of cognitive tasks that rely on a variety of different learning and memory systems. As neuroscience and behavioral evidence for the existence of multiple memory systems and their corresponding neural networks accumulated, so did the notion that dopamine’s role is markedly different depending on which memory system is engaged. As a result, dopamine-directed treatments will have different effects on different types of cognitive behaviors. To predict what these effects will be, it is critical to understand: which memory system is mediating the behavior; the neural basis of the mediating memory system; the nature of the dopamine projections into that system; and the time course of dopamine after its release into the relevant brain regions. Consideration of these questions leads to different predictions for how changes in brain dopamine levels will affect automatic behaviors and behaviors mediated by declarative, procedural, and perceptual representation memory systems. PMID:26251602

  3. The substituted aspartate analogue L-beta-threo-benzyl-aspartate preferentially inhibits the neuronal excitatory amino acid transporter EAAT3.

    PubMed

    Esslinger, C Sean; Agarwal, Shailesh; Gerdes, John; Wilson, Paul A; Davis, Erin S; Awes, Alicia N; O'Brien, Erin; Mavencamp, Teri; Koch, Hans P; Poulsen, David J; Rhoderick, Joseph F; Chamberlin, A Richard; Kavanaugh, Michael P; Bridges, Richard J

    2005-11-01

    The excitatory amino acid transporters (EAATs) play key roles in the regulation of CNS L-glutamate, especially related to synthesis, signal termination, synaptic spillover, and excitotoxic protection. Inhibitors available to delineate EAAT pharmacology and function are essentially limited to those that non-selectively block all EAATs or those that exhibit a substantial preference for EAAT2. Thus, it is difficult to selectively study the other subtypes, particularly EAAT1 and EAAT3. Structure activity studies on a series of beta-substituted aspartate analogues identify L-beta-benzyl-aspartate (L-beta-BA) as among the first blockers that potently and preferentially inhibits the neuronal EAAT3 subtype. Kinetic analysis of D-[(3)H]aspartate uptake into C17.2 cells expressing the hEAATs demonstrate that L-beta-threo-BA is the more potent diastereomer, acts competitively, and exhibits a 10-fold preference for EAAT3 compared to EAAT1 and EAAT2. Electrophysiological recordings of EAAT-mediated currents in Xenopus oocytes identify L-beta-BA as a non-substrate inhibitor. Analyzing L-beta-threo-BA within the context of a novel EAAT2 pharmacophore model suggests: (1) a highly conserved positioning of the electrostatic carboxyl and amino groups; (2) nearby regions that accommodate select structural modifications (cyclopropyl rings, methyl groups, oxygen atoms); and (3) a unique region L-beta-threo-BA occupied by the benzyl moieties of L-TBOA, L-beta-threo-BA and related analogues. It is plausible that the preference of L-beta-threo-BA and L-TBOA for EAAT3 and EAAT2, respectively, could reside in the latter two pharmacophore regions.

  4. Exposure to the Polybrominated Diphenyl Ether Mixture DE-71 Damages the Nigrostriatal Dopamine System: Role of Dopamine Handling in Neurotoxicity

    PubMed Central

    Bradner, Joshua M.; Suragh, Tiffany A.; Wilson, W. Wyatt; Lazo, Carlos R.; Stout, Kristen A.; Kim, Hye Mi; Wang, Min Z.; Walker, Douglas I.; Pennell, Kurt D.; Richardson, Jason R.; Miller, Gary W.; Caudle, W. Michael

    2013-01-01

    In the last several decades polybrominated diphenyl ethers (PBDEs) have replaced the previously banned polychlorinated biphenyls (PCBs) in multiple flame retardant utilities. As epidemiological and laboratory studies have suggested PCBs as a risk factor for Parkinson’s disease (PD), the similarities between PBDEs and PCBs suggest that PBDEs have the potential to be neurotoxic to the dopamine system. The purpose of this study was to evaluate the neurotoxic effects of the PBDE mixture, DE-71, on the nigrostriatal dopamine system and address the role of altered dopamine handling in mediating this neurotoxicity. Using an in vitro model system we found DE-71 effectively caused cell death in a dopaminergic cell line as well as reducing the number of TH+ neurons isolated from VMAT2 WT and LO animals. Assessment of DE-71 neurotoxicity in vivo demonstrated significant deposition of PBDE congeners in the brains of mice, leading to reductions in striatal dopamine and dopamine handling, as well as reductions in the striatal dopamine transporter (DAT) and VMAT2. Additionally, DE-71 elicited a significant locomotor deficit in the VMAT2 WT and LO mice. However, no change was seen in TH expression in dopamine terminal or in the number of dopamine neurons in the substantia nigra pars compacta (SNpc). To date, these are the first data to demonstrate that exposure to PBDEs disrupts the nigrostriatal dopamine system. Given their similarities to PCBs, additional laboratory and epidemiological research should be considered to assess PBDEs as a potential risk factor for PD and other neurological disorders. PMID:23287494

  5. Dopamine and anorexia nervosa.

    PubMed

    Södersten, P; Bergh, C; Leon, M; Zandian, M

    2016-01-01

    We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes.

  6. Postsynaptic response to stimulation of the Schaffer collaterals with properties similar to those of synaptosomal aspartate release.

    PubMed

    Zhang, Xuying; Nadler, J Victor

    2009-10-27

    Aspartate satisfies all the criteria normally required for identification of a CNS neurotransmitter. Nevertheless, little electrophysiological evidence supports the existence of aspartate transmission. In studies with rat hippocampal synaptosomes, chemically evoked aspartate release differed from glutamate release in its relative sensitivity to increased Ca(2+) concentration outside the presynaptic active zones, inefficient coupling to P/Q-type Ca(2+) channels, sensitivity to KB-R7943, and resistance to native Clostridial toxins. We took advantage of these differences to search for a potential aspartate-mediated response at Schaffer collateral synapses in organotypic hippocampal slice cultures. The slice cultures were pretreated with botulinum neurotoxin C (BoNT/C) to eliminate most of the glutamate release so that an expectedly smaller aspartate-like component of the compound EPSC could be detected by whole cell patch clamp recording. In control cultures, NMDA receptor activation accounted for only 18% of the evoked EPSC and an NR2B-selective antagonist reduced the NMDA receptor-mediated component by only 20%. Block of P/Q-type Ca(2+) channels essentially eliminated the response and 0.1 muM KB-R7943 had no significant effect. In BoNT/C-pretreated cultures, however, NMDA receptor activation accounted for 77% of the evoked EPSC and an NR2B-selective antagonist reduced the NMDA receptor-mediated component by 57%. Block of P/Q-type Ca(2+) channels reduced the response by only 28%, but 0.1 muM KB-R7943 reduced it by 45%. These results suggest that part of the Schaffer collateral synaptic response has pharmacological properties similar to those of synaptosomal aspartate release and may therefore be mediated at least partly by released aspartate.

  7. Activation, internalization, and recycling of the serotonin 2A receptor by dopamine

    PubMed Central

    Bhattacharyya, Samarjit; Raote, Ishier; Bhattacharya, Aditi; Miledi, Ricardo; Panicker, Mitradas M.

    2006-01-01

    Serotonergic and dopaminergic systems, and their functional interactions, have been implicated in the pathophysiology of various CNS disorders. Here, we use recombinant serotonin (5-HT) 2A (5-HT2A) receptors to further investigate direct interactions between dopamine and 5-HT receptors. Previous studies in Xenopus oocytes showed that dopamine, although not the cognate ligand for the 5-HT2A receptor, acts as a partial-efficacy agonist. At micromolar concentrations, dopamine also acts as a partial-efficacy agonist on 5-HT2A receptors in HEK293 cells. Like 5-HT, dopamine also induces receptor-internalization in these cells, although at significantly higher concentrations than 5-HT. Interestingly, if the receptors are first sensitized or “primed” by subthreshold concentrations of 5-HT, then dopamine-induced internalization occurs at concentrations ≈10-fold lower than when dopamine is used alone. Furthermore, unlike 5-HT-mediated internalization, dopamine-mediated receptor internalization, alone, or after sensitization by 5-HT, does not depend on PKC. Dopamine-internalized receptors recycle to the surface at rates similar to those of 5-HT-internalized receptors. Our results suggest a previously uncharacterized role for dopamine in the direct activation and internalization of 5-HT2A receptors that may have clinical relevance to the function of serotonergic systems in anxiety, depression, and schizophrenia and also to the treatment of these disorders. PMID:17005723

  8. Ventral tegmental area dopamine revisited: effects of acute and repeated stress

    PubMed Central

    Holly, Elizabeth N.; Miczek, Klaus A.

    2015-01-01

    Aversive events rapidly and potently excite certain dopamine neurons in the ventral tegmental area (VTA), promoting phasic increases in the medial prefrontal cortex and nucleus accumbens. This is in apparent contradiction to a wealth of literature demonstrating that most VTA dopamine neurons are strongly activated by reward and reward-predictive cues while inhibited by aversive stimuli. How can these divergent processes both be mediated by VTA dopamine neurons? The answer may lie within the functional and anatomical heterogeneity of the VTA. We focus on VTA heterogeneity in anatomy, neurochemistry, electrophysiology, and afferent/efferent connectivity. Second, recent evidence for a critical role of VTA dopamine neurons in response to both acute and repeated stress will be discussed. Understanding which dopamine neurons are activated by stress, the neural mechanisms driving the activation, and where these neurons project will provide valuable insight into how stress can promote psychiatric disorders associated with the dopamine system, such as addiction and depression. PMID:26676983

  9. Ventral tegmental area dopamine revisited: effects of acute and repeated stress.

    PubMed

    Holly, Elizabeth N; Miczek, Klaus A

    2016-01-01

    Aversive events rapidly and potently excite certain dopamine neurons in the ventral tegmental area (VTA), promoting phasic increases in the medial prefrontal cortex and nucleus accumbens. This is in apparent contradiction to a wealth of literature demonstrating that most VTA dopamine neurons are strongly activated by reward and reward-predictive cues while inhibited by aversive stimuli. How can these divergent processes both be mediated by VTA dopamine neurons? The answer may lie within the functional and anatomical heterogeneity of the VTA. We focus on VTA heterogeneity in anatomy, neurochemistry, electrophysiology, and afferent/efferent connectivity. Second, recent evidence for a critical role of VTA dopamine neurons in response to both acute and repeated stress will be discussed. Understanding which dopamine neurons are activated by stress, the neural mechanisms driving the activation, and where these neurons project will provide valuable insight into how stress can promote psychiatric disorders associated with the dopamine system, such as addiction and depression.

  10. Amphetamine modulates excitatory neurotransmission through endocytosis of the glutamate transporter EAAT3 in dopamine neurons.

    PubMed

    Underhill, Suzanne M; Wheeler, David S; Li, Minghua; Watts, Spencer D; Ingram, Susan L; Amara, Susan G

    2014-07-16

    Amphetamines modify the brain and alter behavior through mechanisms generally attributed to their ability to regulate extracellular dopamine concentrations. However, the actions of amphetamine are also linked to adaptations in glutamatergic signaling. We report here that when amphetamine enters dopamine neurons through the dopamine transporter, it stimulates endocytosis of an excitatory amino acid transporter, EAAT3, in dopamine neurons. Consistent with this decrease in surface EAAT3, amphetamine potentiates excitatory synaptic responses in dopamine neurons. We also show that the process of internalization is dynamin- and Rho-mediated and requires a unique sequence in the cytosolic C terminus of EAAT3. Introduction of a peptide based on this motif into dopamine neurons blocks the effects of amphetamine on EAAT3 internalization and its action on excitatory responses. These data indicate that the internalization of EAAT3 triggered by amphetamine increases glutamatergic signaling and thus contributes to the effects of amphetamine on neurotransmission.

  11. Antagonizing Effects of Aspartic Acid against Ultraviolet A-Induced Downregulation of the Stemness of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    PubMed

    Jung, Kwangseon; Cho, Jae Youl; Soh, Young-Jin; Lee, Jienny; Shin, Seoung Woo; Jang, Sunghee; Jung, Eunsun; Kim, Min Hee; Lee, Jongsung

    2015-01-01

    Ultraviolet A (UVA) irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate effects of aspartic acid on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). Furthermore, we elucidated the UVA-antagonizing mechanisms of aspartic acid. The results of this study showed that aspartic acid attenuated the UVA-induced reduction of the proliferative potential and stemness of hAMSCs, as evidenced by increased proliferative activity in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and upregulation of stemness-related genes OCT4, NANOG, and SOX2 in response to the aspartic acid treatment. UVA-induced reduction in the mRNA level of hypoxia-inducible factor (HIF)-1α was also significantly recovered by aspartic acid. In addition, the antagonizing effects of aspartic acid against the UVA effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show that aspartic acid improves reduced stemness of hAMSCs induced by UVA and its effects are mediated by upregulation of HIF-1α via the inhibition of PGE2-cAMP signaling. In addition, aspartic acid may be used as an antagonizing agent to mitigate the effects of UVA.

  12. Antagonizing Effects of Aspartic Acid against Ultraviolet A-Induced Downregulation of the Stemness of Human Adipose Tissue-Derived Mesenchymal Stem Cells

    PubMed Central

    Lee, Jienny; Shin, Seoung Woo; Jang, Sunghee; Jung, Eunsun; Kim, Min Hee; Lee, Jongsung

    2015-01-01

    Ultraviolet A (UVA) irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate effects of aspartic acid on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). Furthermore, we elucidated the UVA-antagonizing mechanisms of aspartic acid. The results of this study showed that aspartic acid attenuated the UVA-induced reduction of the proliferative potential and stemness of hAMSCs, as evidenced by increased proliferative activity in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and upregulation of stemness-related genes OCT4, NANOG, and SOX2 in response to the aspartic acid treatment. UVA-induced reduction in the mRNA level of hypoxia-inducible factor (HIF)-1α was also significantly recovered by aspartic acid. In addition, the antagonizing effects of aspartic acid against the UVA effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show that aspartic acid improves reduced stemness of hAMSCs induced by UVA and its effects are mediated by upregulation of HIF-1α via the inhibition of PGE2-cAMP signaling. In addition, aspartic acid may be used as an antagonizing agent to mitigate the effects of UVA. PMID:25909857

  13. Application of a thin film of poly(solochrome black T) as a redox mediator for the electro-catalytic simultaneous determination of dopamine and acetaminophen in the pharmaceutical and biological samples.

    PubMed

    Daneshinejad, Hassan; Chamjangali, Mansour Arab; Goudarzi, Nasser; Roudbari, Aliakbar

    2016-01-01

    Glassy carbon electrode was successfully modified with a thin film of poly(solochrome black T) and applied for the sensitive and selective voltammetric simultaneous determination of dopamine and acetaminophen. The preparation and basic electrochemical behavior of poly(solochrome black T) film on the glassy carbon electrode were investigated in details. The modified electrode with polymeric thin film exhibits excellent electro-catalytic activity toward the oxidation of dopamine and acetaminophen. The anodic peaks of the both species were well defined with lowered oxidation potential and enhanced oxidation peak currents. The modified electrode was used as a voltammetric sensor for sensitive simultaneous determination of dopamine and acetaminophen free from ascorbic acid and uric acid interferences. Under the optimum conditions, the detection limits were 0.092 and 0.142 μmol L(-1) for DA and AP, respectively. The proposed sensor has been successfully used in analysis of pharmaceutical and biological samples.

  14. A neurocomputational model of dopamine and prefrontal-striatal interactions during multicue category learning by Parkinson patients.

    PubMed

    Moustafa, Ahmed A; Gluck, Mark A

    2011-01-01

    Most existing models of dopamine and learning in Parkinson disease (PD) focus on simulating the role of basal ganglia dopamine in reinforcement learning. Much data argue, however, for a critical role for prefrontal cortex (PFC) dopamine in stimulus selection in attentional learning. Here, we present a new computational model that simulates performance in multicue category learning, such as the "weather prediction" task. The model addresses how PD and dopamine medications affect stimulus selection processes, which mediate reinforcement learning. In this model, PFC dopamine is key for attentional learning, whereas basal ganglia dopamine, consistent with other models, is key for reinforcement and motor learning. The model assumes that competitive dynamics among PFC neurons is the neural mechanism underlying stimulus selection with limited attentional resources, whereas competitive dynamics among striatal neurons is the neural mechanism underlying action selection. According to our model, PD is associated with decreased phasic and tonic dopamine levels in both PFC and basal ganglia. We assume that dopamine medications increase dopamine levels in both the basal ganglia and PFC, which, in turn, increase tonic dopamine levels but decrease the magnitude of phasic dopamine signaling in these brain structures. Increase of tonic dopamine levels in the simulated PFC enhances attentional shifting performance. The model provides a mechanistic account for several phenomena, including (a) medicated PD patients are more impaired at multicue probabilistic category learning than unmedicated patients and (b) medicated PD patients opt out of reversal when there are alternative and redundant cue dimensions.

  15. Differential effects of dopamine D2 and GABAA receptor antagonists on dopamine neurons between the anterior and posterior ventral tegmental area of female Wistar rats

    PubMed Central

    Ding, Zheng-Ming; Liu, Wen; Engleman, Eric A.; Rodd, Zachary A.; McBride, William J.

    2010-01-01

    Previous findings indicated differences in neuronal circuitries mediating drug reinforcement between the anterior and posterior ventral tegmental area (VTA). The objective of the present study was to examine the effects of the dopamine D2 antagonist sulpiride and the GABAA antagonist picrotoxin administered in the anterior and posterior VTA on the activity of mesoaccumbal dopamine neurons in female Wistar rats. Sulpiride and picrotoxin were administered in the anterior and posterior VTA. Extracellular dopamine levels were measured in sub-regions of the VTA and nucleus accumbens (ACB). Reverse-microdialysis of sulpiride (100 µM) into the posterior VTA increased extracellular dopamine levels locally (80% above baseline) and in the ACB shell and core (70% above baseline), whereas reverse-microdialysis into the anterior VTA produced a much smaller effect locally (30% above baseline) and in the ACB shell and core. In contrast, microinjection of picrotoxin (80 and 160 µM) into the anterior, but not posterior VTA, increased dopamine release in the ACB shell. The results suggest that dopamine neurons in the posterior VTA, compared to the anterior VTA, may be under greater D2 receptor-mediated tonic inhibition, whereas dopamine neurons in the anterior VTA, compared to the posterior VTA, may be under greater GABAA receptor-mediated tonic inhibition. PMID:19480073

  16. Somatostatin and dopamine receptor regulation of pituitary somatotroph adenomas.

    PubMed

    Ben-Shlomo, Anat; Liu, Ning-Ai; Melmed, Shlomo

    2017-02-01

    Somatostatin and dopamine receptors are expressed in normal and tumoral somatotroph cells. Upon receptor stimulation, somatostatin and the somatostatin receptor ligands octreotide, lanreotide, and pasireotide, and to a lesser extent, dopamine and the dopamine analogs bromocriptine and cabergoline, suppress growth hormone (GH) secretion from a GH-secreting pituitary somatotroph adenoma. Somatostatin and dopamine receptors are Gαi-protein coupled that inhibit adenylate cyclase activity and cAMP production and reduce intracellular calcium concentration and calcium flux oscillations. Although their main action on somatotroph cells is acute inhibition of GH secretion, they also may inhibit GH production and possibly somatotroph proliferation. These receptors have been reported to create complexes that exhibit functions distinct from that of receptor monomers. Somatostatin suppression of GH is mediated mainly by somatostatin receptor subtype 2 and to a lesser extent by SST5. Human somatostatin receptor subtype 5 has also been shown to harbor mutations associated with GH levels, somatotroph tumor behavior, and somatostatin receptor ligand (SRL) responsiveness. Reviewing current knowledge of somatostatin and dopamine receptor expression and signaling in normal and tumoral somatotroph cells offers insights into mechanisms underlying SRL and dopamine agonist effectiveness in patients with acromegaly.

  17. Dual role of medial A10 dopamine neurons in affective encoding.

    PubMed

    Liu, Zhong-Hua; Shin, Rick; Ikemoto, Satoshi

    2008-11-01

    Increasing evidence suggests that the activation of medial A10 neurons mediates positive affective encoding. However, little is known about the functions of the inhibition of midbrain dopamine neurons. Here we show evidence suggesting that the inhibition of medial A10 neurons mediates a negative affective state, leading to negative affective encoding, whereas blunting the activation of medial A10 neurons disrupts positive affective encoding involving food reward. We used a microinjection procedure, in which the D(2) dopamine receptor agonist quinpirole was administered into the cell body region of the dopamine neurons, a procedure that reduces dopamine cell firing. Microinjections of quinpirole into the posteromedial ventral tegmental area, but not its more lateral counterparts, led to conditioned place aversion. Quinpirole administration to this site also decreased food intake and basal dopamine concentration in the ventromedial striatum, a major projection area of medial A10 neurons. In addition, moderate quinpirole doses that did not lead to conditioned place aversion or disrupt food intake abolished food-conditioned place preference, suggesting that blunting dopamine impulse activity in response to food reward disrupts positive affective encoding in associated external stimuli. Our data support the hypothesis that activation of medial A10 dopamine neurons mediates a positive affective state, leading to positive affective encoding, while their inhibition mediates a negative affective state, leading to negative affective encoding. Together with previous findings, we propose that medial A10 neurons are an important component of the mechanism via which animals learn to avoid negative incentive stimuli.

  18. Dual Role of Medial A10 Dopamine Neurons in Affective Encoding

    PubMed Central

    Liu, Zhong-Hua; Shin, Rick; Ikemoto, Satoshi

    2008-01-01

    Increasing evidence suggests that the activation of medial A10 neurons mediates positive affective encoding. However, little is known about the functions of the inhibition of midbrain dopamine neurons. Here we show evidence suggesting that the inhibition of medial A10 neurons mediates a negative affective state, leading to negative affective encoding, whereas blunting the activation of medial A10 neurons disrupts positive affective encoding involving food reward. We used a microinjection procedure, in which the D2 dopamine receptor agonist quinpirole was administered into the cell body region of the dopamine neurons, a procedure that reduces dopamine cell firing. Microinjections of quinpirole into the posteromedial ventral tegmental area, but not its more lateral counterparts, led to conditioned place aversion. Quinpirole administration to this site also decreased food intake and basal dopamine concentration in the ventromedial striatum, a major projection area of medial A10 neurons. In addition, moderate quinpirole doses that did not lead to conditioned place aversion or disrupt food intake abolished food-conditioned place preference, suggesting that blunting dopamine impulse activity in response to food reward disrupts positive affective encoding in associated external stimuli. Our data support the hypothesis that activation of medial A10 dopamine neurons mediates a positive affective state, leading to positive affective encoding, while their inhibition mediates a negative affective state, leading to negative affective encoding. Together with previous findings, we propose that medial A10 neurons are an important component of the mechanism via which animals learn to avoid negative incentive stimuli. PMID:18256592

  19. Growth of dopamine crystals

    NASA Astrophysics Data System (ADS)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  20. Updating dopamine reward signals

    PubMed Central

    Schultz, Wolfram

    2013-01-01

    Recent work has advanced our knowledge of phasic dopamine reward prediction error signals. The error signal is bidirectional, reflects well the higher order prediction error described by temporal difference learning models, is compatible with model-free and model-based reinforcement learning, reports the subjective rather than physical reward value during temporal discounting and reflects subjective stimulus perception rather than physical stimulus aspects. Dopamine activations are primarily driven by reward, and to some extent risk, whereas punishment and salience have only limited activating effects when appropriate controls are respected. The signal is homogeneous in terms of time course but heterogeneous in many other aspects. It is essential for synaptic plasticity and a range of behavioural learning situations. PMID:23267662

  1. Similarities between cysteinesulphinate transaminase and aspartate aminotransferase.

    PubMed

    Recasens, M; Mandel, P

    1979-01-01

    A method for the purification of two cysteinesulphinate transaminases, A and B (EC 2.6.1), is described. These enzymes catalyse the conversion of cysteinesulphinic acid to beta-sulphinyl pyruvate. The final preparations are homogeneous by polyacrylamide gel electrophoresis, sodium dodecyl sulphate-polyacrylamide gel electrophoresis and isoelectrofocusing. The molecular weight of the subunits is 41 000 for cysteinesulphinate transaminase A and 43 400 for B. Both enzymes are unspecific, as L-asparate, L-glutamate and L-cysteic acid serve as substrates in addition to L-cysteinesulphinic acid. Cysteinesulphinate transaminase A has a Km of 9.8 mM for cysteinesulphinic acid and 0.25 mM for aspartic acid, whereas the B enzyme has a Km of 6.5 mM for cysteinesulphinic acid and 1.4 mM for aspartic acid. The Vmax values of the A and B enzymes are respectively 7.1 and 6.2 mmol h-1 mg-1 protein for aspartic acid and 45 and 9.3 mmol h-1 mg-1 protein for cysteinesulphinic acid. Both enzymes exhibit maximum activity at pH 8.6. A high specific activity is found in optimal conditions for these two transaminases, the pI values being 9.06 and 5.70 for cysteinesulphinate transaminase A and B respectively. These results have been compared with those already obtained for purified aspartate aminotransferase. Similarities in the pathways of taurine and gamma-aminobutyric acid (GABA) metabolism are discussed.

  2. Genetics Home Reference: dopamine transporter deficiency syndrome

    MedlinePlus

    ... Genetics Home Health Conditions dopamine transporter deficiency syndrome dopamine transporter deficiency syndrome Enable Javascript to view the ... boxes. Download PDF Open All Close All Description Dopamine transporter deficiency syndrome is a rare movement disorder. ...

  3. Dopamine Inhibition Differentially Controls Excitability of Substantia Nigra Dopamine Neuron Subpopulations through T-Type Calcium Channels.

    PubMed

    Evans, Rebekah C; Zhu, Manhua; Khaliq, Zayd M

    2017-03-29

    While there is growing appreciation for diversity among ventral tegmental area dopamine neurons, much less is known regarding functional heterogeneity among the substantia nigra pars compacta (SNc) neurons. Here, we show that calbindin-positive dorsal tier and calbindin-negative ventral tier SNc dopaminergic neurons in mice comprise functionally distinct subpopulations distinguished by their dendritic calcium signaling, rebound excitation, and physiological responses to dopamine D2-receptor (D2) autoinhibition. While dopamine is known to inhibit action potential backpropagation, our experiments revealed an unexpected enhancement of excitatory responses and dendritic calcium signals in the presence of D2-receptor inhibition. Specifically, dopamine inhibition and direct hyperpolarization enabled the generation of low-threshold depolarizations that occurred in an all-or-none or graded manner, due to recruitment of T-type calcium channels. Interestingly, these effects occurred selectively in calbindin-negative dopaminergic neurons within the SNc. Thus, calbindin-positive and calbindin-negative SNc neurons differ substantially in their calcium channel composition and efficacy of excitatory inputs in the presence of dopamine inhibition.SIGNIFICANCE STATEMENT Substantia nigra dopaminergic neurons can be divided into two populations: the calbindin-negative ventral tier, which is vulnerable to neurodegeneration in Parkinson's disease, and the calbindin-positive dorsal tier, which is relatively resilient. Although tonic firing is similar in these subpopulations, we find that their responses to dopamine-mediated inhibition are strikingly different. During inhibition, calbindin-negative neurons exhibit increased sensitivity to excitatory inputs, which can then trigger large dendritic calcium transients due to strong expression of T-type calcium channels. Therefore, SNc neurons differ substantially in their calcium channel composition, which may contribute to their differential

  4. Linking unfounded beliefs to genetic dopamine availability

    PubMed Central

    Schmack, Katharina; Rössler, Hannes; Sekutowicz, Maria; Brandl, Eva J.; Müller, Daniel J.; Petrovic, Predrag; Sterzer, Philipp

    2015-01-01

    Unfounded convictions involving beliefs in the paranormal, grandiosity ideas or suspicious thoughts are endorsed at varying degrees among the general population. Here, we investigated the neurobiopsychological basis of the observed inter-individual variability in the propensity toward unfounded beliefs. One hundred two healthy individuals were genotyped for four polymorphisms in the COMT gene (rs6269, rs4633, rs4818, and rs4680, also known as val158met) that define common functional haplotypes with substantial impact on synaptic dopamine degradation, completed a questionnaire measuring unfounded beliefs, and took part in a behavioral experiment assessing perceptual inference. We found that greater dopamine availability was associated with a stronger propensity toward unfounded beliefs, and that this effect was statistically mediated by an enhanced influence of expectations on perceptual inference. Our results indicate that genetic differences in dopaminergic neurotransmission account for inter-individual differences in perceptual inference linked to the formation and maintenance of unfounded beliefs. Thus, dopamine might be critically involved in the processes underlying one's interpretation of the relationship between the self and the world. PMID:26483654

  5. Linking unfounded beliefs to genetic dopamine availability.

    PubMed

    Schmack, Katharina; Rössler, Hannes; Sekutowicz, Maria; Brandl, Eva J; Müller, Daniel J; Petrovic, Predrag; Sterzer, Philipp

    2015-01-01

    Unfounded convictions involving beliefs in the paranormal, grandiosity ideas or suspicious thoughts are endorsed at varying degrees among the general population. Here, we investigated the neurobiopsychological basis of the observed inter-individual variability in the propensity toward unfounded beliefs. One hundred two healthy individuals were genotyped for four polymorphisms in the COMT gene (rs6269, rs4633, rs4818, and rs4680, also known as val (158) met) that define common functional haplotypes with substantial impact on synaptic dopamine degradation, completed a questionnaire measuring unfounded beliefs, and took part in a behavioral experiment assessing perceptual inference. We found that greater dopamine availability was associated with a stronger propensity toward unfounded beliefs, and that this effect was statistically mediated by an enhanced influence of expectations on perceptual inference. Our results indicate that genetic differences in dopaminergic neurotransmission account for inter-individual differences in perceptual inference linked to the formation and maintenance of unfounded beliefs. Thus, dopamine might be critically involved in the processes underlying one's interpretation of the relationship between the self and the world.

  6. DOPAMINE AND FOOD ADDICTION: LEXICON BADLY NEEDED

    PubMed Central

    Salamone, John D.; Correa, Mercè

    2012-01-01

    Over the last few years, the concept of food addiction has become a common feature in the scientific literature, as well as the popular press. Nevertheless, the use of the term “addiction” to describe pathological aspects of food intake in humans remains controversial, and even among those who affirm the validity of the concept, there is considerable disagreement about its utility for explaining the increasing prevalence of obesity throughout much of the world. An examination of the literature on food addiction indicates that mesolimbic and nigrostriatal dopamine systems often are cited as mechanisms that contribute to the establishment of food addiction. However, in reviewing this literature, it is important to have a detailed consideration of the complex nature of dopaminergic involvement in motivational processes. For example, although it is often stated that mesolimbic dopamine mediates “reward”, there is no standard or consistent technical meaning of this term. Moreover, there is a persistent tendency to link dopamine transmission with pleasure or hedonia, as opposed to other aspects of motivation or learning. The present paper provides a critical discussion of some aspects of the food addiction literature, viewed through the lens of recent findings and current theoretical views of dopaminergic involvement in food motivation. Furthermore, compulsive food intake and binge eating will be considered from an evolutionary perspective, in terms of the motivational subsystems that are involved in adaptive patterns of food consumption and seeking behaviors, and a consideration of how these could be altered in pathological conditions. PMID:23177385

  7. Specificity of a wheat gluten aspartic proteinase.

    PubMed

    Bleukx, W; Brijs, K; Torrekens, S; Van Leuven, F; Delcour, J A

    1998-09-08

    The substrate and peptide bond specificities of a purified wheat gluten aspartic proteinase (GlAP) are studied. GlAP shows maximum gluten hydrolysing activity at pH 3.0. At this pH, especially the wheat high molecular weight glutenin subunits (HMW-GS) and to a lesser extent the low molecular weight glutenin subunits and gliadins are hydrolysed. GlAP has no obvious effect on albumins and globulins. In its action on oxidised insulin B-chain, GlAP forms eight peptides and has high specificity for peptide bonds located between amino acid residues with large hydrophobic side chains (Leu, Phe, Tyr) but the peptide bond Glu13-Ala14 is also hydrolysed. Although structurally quite similar to a barley aspartic proteinase, the peptide bond specificity of GlAP towards oxidised insulin B-chain resembles slightly more that of a cardoon aspartic proteinase, cardosin B. HMW-GS 7, purified from cultivar Galahad-77, is rapidly hydrolysed by GlAP. N-Terminal amino acid sequence data show that GlAP cleaves at least one Met-Ile peptide bond at the end of the N-terminal domain and two Val-Leu peptide bonds in the repetitive domain of HMW-GS 7.

  8. Glutamate and GABA modulate dopamine in the pedunculopontine tegmental nucleus.

    PubMed

    Steiniger, Björn; Kretschmer, Beate D

    2003-04-01

    The pedunculopontine tegmental nucleus (PPTg) has an important anatomical position connecting basal ganglia and limbic systems with motor execution structures in the pons and spinal cord. It receives glutamatergic and GABAergic input and has additional reciprocal connections with mesencephalic dopaminergic neurons, suggesting that the PPTg plays a key role in frontostriatal information processing. In vivo microdialysis in freely moving rats, in combination with behavioral analysis, was used in this study to investigate whether the dopaminergic input can be modulated at the level of the PPTg via N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) or GABA(B) receptors. Stimulation of the GABA(B) receptor decreased dopamine release in the PPTg while that of the AMPA and NMDA receptors increased it. A time-related comparison of the effects of NMDA (0.75 and 1 mM) and AMPA (50 and 25 microM) revealed a more long-lasting effect after AMPA stimulation than after NMDA. However, only the infusion of the GABA(B) receptor agonist baclofen (100 and 200 microM) stimulated stereotyped behavior (e.g. sniffing, digging or head movements) and contralateral circling. This study clearly demonstrates that GABAergic as well as glutamatergic terminals in the PPTg are critically involved in the modulation of the dopamine system. Moreover, a decrease in PPTg dopamine via GABA(B) receptor stimulation seems to be behaviorally relevant.

  9. An Aspartic Protease of the Scabies Mite Sarcoptes scabiei Is Involved in the Digestion of Host Skin and Blood Macromolecules

    PubMed Central

    Mahmood, Wajahat; Viberg, Linda T.; Fischer, Katja; Walton, Shelley F.; Holt, Deborah C.

    2013-01-01

    Background Scabies is a disease of worldwide significance, causing considerable morbidity in both humans and other animals. The scabies mite Sarcoptes scabiei burrows into the skin of its host, obtaining nutrition from host skin and blood. Aspartic proteases mediate a range of diverse and essential physiological functions such as tissue invasion and migration, digestion, moulting and reproduction in a number of parasitic organisms. We investigated whether aspartic proteases may play role in scabies mite digestive processes. Methodology/Principle Findings We demonstrated the presence of aspartic protease activity in whole scabies mite extract. We then identified a scabies mite aspartic protease gene sequence and produced recombinant active enzyme. The recombinant scabies mite aspartic protease was capable of digesting human haemoglobin, serum albumin, fibrinogen and fibronectin, but not collagen III or laminin. This is consistent with the location of the scabies mites in the upper epidermis of human skin. Conclusions/Significance The development of novel therapeutics for scabies is of increasing importance given the evidence of emerging resistance to current treatments. We have shown that a scabies mite aspartic protease plays a role in the digestion of host skin and serum molecules, raising the possibility that interference with the function of the enzyme may impact on mite survival. PMID:24244770

  10. Effects of physiological and pharmacological stimuli on dopamine release in the rat globus pallidus.

    PubMed

    Fuchs, Holger; Nagel, Jens; Hauber, Wolfgang

    2005-12-01

    A major aspect of understanding functions of the globus pallidus (GP) within the basal ganglia is the significance of its dopamine innervation. Here, we used in vivo-microdialysis in rats to characterize pallidal dopamine release in response to a number of physiological and pharmacological stimuli known to activate dopamine neurons. Results reveal that an aversive stimulus, i.e. handling for 20 min, significantly increased dialysate dopamine in the globus pallidus to about 130% of baseline levels. Likewise, a novel and appetitive stimulus, i.e. presentation of unfamiliar, palatable food, significantly elevated pallidal dopamine to about 150% of baseline levels both in rats which did and did not consume the food reward. These findings provide evidence that increases of dopamine (DA) efflux may largely reflect stimulus saliency implicating an involvement of pallidal dopamine signalling in control of behaviour governed by salient stimuli. Results further showed that reverse microdialysis of D-amphetamine and cocaine in augmenting concentrations of 0.1-100 microM elevated dialysate dopamine in a concentration-dependent manner suggesting a role of pallidal dopamine in mediating behavioural effects of psychostimulant drugs.

  11. Acamprosate blocks the increase in dopamine extracellular levels in nucleus accumbens evoked by chemical stimulation of the ventral hippocampus.

    PubMed

    Cano-Cebrián, M J; Zornoza-Sabina, T; Guerri, C; Polache, A; Granero, L

    2003-10-01

    Recently, we have shown that acamprosate is able to modulate extracellular dopamine (DA) levels in the nucleus accumbens (NAc) and may act as an antagonist of N-methyl-D-aspartate (NMDA) receptors. Neurochemical studies show that chemical stimulation (using NMDA) of the ventral subiculum (vSub) of the hippocampus produces robust and sustained increases in extracellular DA levels in the NAc, an effect mediated through ionotropic glutamate (iGlu) receptors. The present study examines whether acamprosate locally infused in the NAc of rats could block or attenuate the increase in NAc extracellular DA elicited by chemical stimulation (with 5 mM NMDA) of the ventral subiculum of the hippocampus. The stimulation of the vSub during perfusion of artificial cerebrospinal fluid in NAc induced a significant and persistent increase in NAc DA levels. Reverse dialysis of 0.05 mM acamprosate in NAc blocked the increase in DA evoked by the chemical stimulation of the vSub. These data support the possibility that the antagonism at the NMDA receptors in NAc can explain, at least in part, the mechanism of action of this drug.

  12. Conformational changes in dopamine transporter intracellular regions upon cocaine binding and dopamine translocation.

    PubMed

    Dehnes, Yvette; Shan, Jufang; Beuming, Thijs; Shi, Lei; Weinstein, Harel; Javitch, Jonathan A

    2014-07-01

    The dopamine transporter (DAT), a member of the neurotransmitter:sodium symporter family, mediates the reuptake of dopamine at the synaptic cleft. DAT is the primary target for psychostimulants such as cocaine and amphetamine. We previously demonstrated that cocaine binding and dopamine transport alter the accessibility of Cys342 in the third intracellular loop (IL3). To study the conformational changes associated with the functional mechanism of the transporter, we made cysteine substitution mutants, one at a time, from Phe332 to Ser351 in IL3 of the background DAT construct, X7C, in which 7 endogenous cysteines were mutated. The accessibility of the 20 engineered cysteines to polar charged sulfhydryl reagents was studied in the absence and presence of cocaine or dopamine. Of the 11 positions that reacted with methanethiosulfonate ethyl ammonium, as evidenced by inhibition of ligand binding, 5 were protected against this inhibition by cocaine and dopamine (S333C, S334C, N336C, M342C and T349C), indicating that reagent accessibility is affected by conformational changes associated with inhibitor and substrate binding. In some of the cysteine mutants, transport activity is disrupted, but can be rescued by the presence of zinc, most likely because the distribution between inward- and outward-facing conformations is restored by zinc binding. The experimental data were interpreted in the context of molecular models of DAT in both the inward- and outward-facing conformations. Differences in the solvent accessible surface area for individual IL3 residues calculated for these states correlate well with the experimental accessibility data, and suggest that protection by ligand binding results from the stabilization of the outward-facing configuration. Changes in the residue interaction networks observed from the molecular dynamics simulations also revealed the critical roles of several positions during the conformational transitions. We conclude that the IL3 region of DAT

  13. Temperature dependence of N-methyl-D-aspartate receptor channels and N-methyl-D-aspartate receptor excitatory postsynaptic currents.

    PubMed

    Korinek, M; Sedlacek, M; Cais, O; Dittert, I; Vyklicky, L

    2010-02-03

    N-methyl-d-aspartate (NMDA) receptors (NMDARs) are highly expressed in the CNS and mediate the slow component of excitatory transmission. The present study was aimed at characterizing the temperature dependence of the kinetic properties of native NMDARs, with special emphasis on the deactivation of synaptic NMDARs. We used patch-clamp recordings to study synaptic NMDARs at layer II/III pyramidal neurons of the rat cortex, recombinant GluN1/GluN2B receptors expressed in human embryonic kidney (HEK293) cells, and NMDARs in cultured hippocampal neurons. We found that time constants characterizing the deactivation of NMDAR-mediated excitatory postsynaptic currents (EPSCs) were similar to those of the deactivation of responses to a brief application of glutamate recorded under conditions of low NMDAR desensitization (whole-cell recording from cultured hippocampal neurons). In contrast, the deactivation of NMDAR-mediated responses exhibiting a high degree of desensitization (outside-out recording) was substantially faster than that of synaptic NMDA receptors. The time constants characterizing the deactivation of synaptic NMDARs and native NMDARs activated by exogenous glutamate application were only weakly temperature sensitive (Q(10)=1.7-2.2), in contrast to those of recombinant GluN1/GluN2B receptors, which are highly temperature sensitive (Q(10)=2.7-3.7). Ifenprodil reduced the amplitude of NMDAR-mediated EPSCs by approximately 50% but had no effect on the time course of deactivation. Analysis of GluN1/GluN2B responses indicated that the double exponential time course of deactivation reflects mainly agonist dissociation and receptor desensitization. We conclude that the temperature dependences of native and recombinant NMDAR are different; in addition, we contribute to a better understanding of the molecular mechanism that controls the time course of NMDAR-mediated EPSCs.

  14. Classification of Dopamine Receptor Genes in Vertebrates: Nine Subtypes in Osteichthyes.

    PubMed

    Yamamoto, Kei; Fontaine, Romain; Pasqualini, Catherine; Vernier, Philippe

    2015-01-01

    Dopamine neurotransmission regulates various brain functions, and its regulatory roles are mediated by two families of G protein-coupled receptors: the D1 and D2 receptor families. In mammals, the D1 family comprises two receptor subtypes (D1 and D5), while the D2 family comprises three receptor subtypes (D2, D3 and D4). Phylogenetic analyses of dopamine receptor genes strongly suggest that the common ancestor of Osteichthyes (bony jawed vertebrates) possessed four subtypes in the D1 family and five subtypes in the D2 family. Mammals have secondarily lost almost half of the ancestral dopamine receptor genes, whereas nonmammalian species kept many of them. Although the mammalian situation is an exception among Osteichthyes, the current classification and characterization of dopamine receptors are based on mammalian features, which have led to confusion in the identification of dopamine receptor subtypes in nonmammalian species. Here we begin by reviewing the history of the discovery of dopamine receptors in vertebrates. The recent genome sequencing of coelacanth, gar and elephant shark led to the proposal of a refined scenario of evolution of dopamine receptor genes. We also discuss a current problem of nomenclature of dopamine receptors. Following the official nomenclature of mammalian dopamine receptors from D1 to D5, we propose to name newly identified receptor subtypes from D6 to D9 in order to facilitate the use of an identical name for orthologous genes among different species. To promote a nomenclature change which allows distinguishing the two dopamine receptor families, a nomenclature consortium is needed. This comparative perspective is crucial to correctly interpret data obtained in animal studies on dopamine-related brain disorders, and more fundamentally, to understand the characteristics of dopamine neurotransmission in vertebrates.

  15. Repeated cocaine enhances ventral hippocampal-stimulated dopamine efflux in the nucleus accumbens and alters ventral hippocampal NMDA receptor subunit expression.

    PubMed

    Barr, Jeffrey L; Forster, Gina L; Unterwald, Ellen M

    2014-08-01

    Dopaminergic neurotransmission in the nucleus accumbens is important for various reward-related cognitive processes including reinforcement learning. Repeated cocaine enhances hippocampal synaptic plasticity, and phasic elevations of accumbal dopamine evoked by unconditioned stimuli are dependent on impulse flow from the ventral hippocampus. Therefore, sensitized hippocampal activity may be one mechanism by which drugs of abuse enhance limbic dopaminergic activity. In this study, in vivo microdialysis in freely moving adult male Sprague-Dawley rats was used to investigate the effect of repeated cocaine on ventral hippocampus-mediated dopaminergic transmission within the medial shell of the nucleus accumbens. Following seven daily injections of saline or cocaine (20 mg/kg, ip), unilateral infusion of N-methyl-d-aspartate (NMDA, 0.5 μg) into the ventral hippocampus transiently increased both motoric activity and ipsilateral dopamine efflux in the medial shell of the nucleus accumbens, and this effect was greater in rats that received repeated cocaine compared to controls that received repeated saline. In addition, repeated cocaine altered NMDA receptor subunit expression in the ventral hippocampus, reducing the NR2A : NR2B subunit ratio. Together, these results suggest that repeated exposure to cocaine produces maladaptive ventral hippocampal-nucleus accumbens communication, in part through changes in glutamate receptor composition. A behaviorally sensitizing regimen of cocaine (20 mg/kg, ip 7 days) also sensitized ventral hippocampus (hipp)-mediated dopaminergic transmission within the nucleus accumbens (Nac) to NMDA stimulation (bolts). This was associated with reduced ventral hippocampal NR2A:NR2B subunit ratio, suggesting that repeated exposure to cocaine produces changes in hippocampal NMDA receptor composition that lead to enhanced ventral hippocampus-nucleus accumbens communication.

  16. Dopamine, behavioral economics, and effort.

    PubMed

    Salamone, John D; Correa, Merce; Farrar, Andrew M; Nunes, Eric J; Pardo, Marta

    2009-01-01

    There are numerous problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements). Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders.

  17. Dopamine, Behavioral Economics, and Effort

    PubMed Central

    Salamone, John D.; Correa, Merce; Farrar, Andrew M.; Nunes, Eric J.; Pardo, Marta

    2009-01-01

    There are numerous problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements). Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders. PMID:19826615

  18. AGC1/2, the mitochondrial aspartate-glutamate carriers.

    PubMed

    Amoedo, N D; Punzi, G; Obre, E; Lacombe, D; De Grassi, A; Pierri, C L; Rossignol, R

    2016-10-01

    In this review we discuss the structure and functions of the aspartate/glutamate carriers (AGC1-aralar and AGC2-citrin). Those proteins supply the aspartate synthesized within mitochondrial matrix to the cytosol in exchange for glutamate and a proton. A structure of an AGC carrier is not available yet but comparative 3D models were proposed. Moreover, transport assays performed by using the recombinant AGC1 and AGC2, reconstituted into liposome vesicles, allowed to explore the kinetics of those carriers and to reveal their specific transport properties. AGCs participate to a wide range of cellular functions, as the control of mitochondrial respiration, calcium signaling and antioxydant defenses. AGC1 might also play peculiar tissue-specific functions, as it was found to participate to cell-to-cell metabolic symbiosis in the retina. On the other hand, AGC1 is involved in the glutamate-mediated excitotoxicity in neurons and AGC gene or protein alterations were discovered in rare human diseases. Accordingly, a mice model of AGC1 gene knock-out presented with growth delay and generalized tremor, with myelinisation defects. More recently, AGC was proposed to play a crucial role in tumor metabolism as observed from metabolomic studies showing that the asparate exported from the mitochondrion by AGC1 is employed in the regeneration of cytosolic glutathione. Therefore, given the central role of AGCs in cell metabolism and human pathology, drug screening are now being developed to identify pharmacological modulators of those carriers. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.

  19. Requirement of Dopamine Signaling in the Amygdala and Striatum for Learning and Maintenance of a Conditioned Avoidance Response

    ERIC Educational Resources Information Center

    Darvas, Martin; Fadok, Jonathan P.; Palmiter, Richard D.

    2011-01-01

    Two-way active avoidance (2WAA) involves learning Pavlovian (association of a sound cue with a foot shock) and instrumental (shock avoidance) contingencies. To identify regions where dopamine (DA) is involved in mediating 2WAA, we restored DA signaling in specific brain areas of dopamine-deficient (DD) mice by local reactivation of conditionally…

  20. Developmental origins of brain disorders: roles for dopamine

    PubMed Central

    Money, Kelli M.; Stanwood, Gregg D.

    2013-01-01

    Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders. PMID:24391541

  1. Chlorpromazine, haloperidol, metoclopramide and domperidone release prolactin through dopamine antagonism at low concentrations but paradoxically inhibit prolactin release at high concentrations.

    PubMed Central

    Besser, G. M.; Delitala, G.; Grossman, A.; Stubbs, W. A.; Yeo, T.

    1980-01-01

    1. The effects of chlorpromazine, haloperidol, metoclopramide and domperidone on the release of prolactin from perfused columns of dispersed rat anterior pituitary cells were studied. 2. Chlorpromazine, haloperidol, metoclopramide and domperidone antagonized the dopamine-mediated inhibition of prolactin release at low concentrations. 3. Each dopamine antagonist displaced the dose-response curve for dopamine-induced suppression of prolactin release to the right in a parallel manner. 4. At higher concentrations, the four drugs became less effective as dopamine antagonists. 5. At high concentrations in the absence of dopamine, chlorpromazine, haloperidol, metoclopramide and domperidone paradoxically suppressed prolactin secretion by an unknown mechanism. PMID:6110459

  2. Pyrethroid pesticide-induced alterations in dopamine transporter function

    SciTech Connect

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W. . E-mail: gary.miller@emory.edu

    2006-03-15

    Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM-100 {mu}M) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 {mu}M) or 24 h (1, 5, and 10 {mu}M) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD.

  3. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats.

    PubMed

    Pahuja, Richa; Seth, Kavita; Shukla, Anshi; Shukla, Rajendra Kumar; Bhatnagar, Priyanka; Chauhan, Lalit Kumar Singh; Saxena, Prem Narain; Arun, Jharna; Chaudhari, Bhushan Pradosh; Patel, Devendra Kumar; Singh, Sheelendra Pratap; Shukla, Rakesh; Khanna, Vinay Kumar; Kumar, Pradeep; Chaturvedi, Rajnish Kumar; Gupta, Kailash Chand

    2015-05-26

    Sustained and safe delivery of dopamine across the blood brain barrier (BBB) is a major hurdle for successful therapy in Parkinson's disease (PD), a neurodegenerative disorder. Therefore, in the present study we designed neurotransmitter dopamine-loaded PLGA nanoparticles (DA NPs) to deliver dopamine to the brain. These nanoparticles slowly and constantly released dopamine, showed reduced clearance of dopamine in plasma, reduced quinone adduct formation, and decreased dopamine autoxidation. DA NPs were internalized in dopaminergic SH-SY5Y cells and dopaminergic neurons in the substantia nigra and striatum, regions affected in PD. Treatment with DA NPs did not cause reduction in cell viability and morphological deterioration in SH-SY5Y, as compared to bulk dopamine-treated cells, which showed reduced viability. Herein, we report that these NPs were able to cross the BBB and capillary endothelium in the striatum and substantia nigra in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Systemic intravenous administration of DA NPs caused significantly increased levels of dopamine and its metabolites and reduced dopamine-D2 receptor supersensitivity in the striatum of parkinsonian rats. Further, DA NPs significantly recovered neurobehavioral abnormalities in 6-OHDA-induced parkinsonian rats. Dopamine delivered through NPs did not cause additional generation of ROS, dopaminergic neuron degeneration, and ultrastructural changes in the striatum and substantia nigra as compared to 6-OHDA-lesioned rats. Interestingly, dopamine delivery through nanoformulation neither caused alterations in the heart rate and blood pressure nor showed any abrupt pathological change in the brain and other peripheral organs. These results suggest that NPs delivered dopamine into the brain, reduced dopamine autoxidation-mediated toxicity, and ultimately reversed neurochemical and neurobehavioral deficits in parkinsonian rats.

  4. Complexity of dopamine metabolism

    PubMed Central

    2013-01-01

    Parkinson’s disease (PD) coincides with a dramatic loss of dopaminergic neurons within the substantia nigra. A key player in the loss of dopaminergic neurons is oxidative stress. Dopamine (DA) metabolism itself is strongly linked to oxidative stress as its degradation generates reactive oxygen species (ROS) and DA oxidation can lead to endogenous neurotoxins whereas some DA derivatives show antioxidative effects. Therefore, DA metabolism is of special importance for neuronal redox-homeostasis and viability. In this review we highlight different aspects of dopamine metabolism in the context of PD and neurodegeneration. Since most reviews focus only on single aspects of the DA system, we will give a broader overview by looking at DA biosynthesis, sequestration, degradation and oxidation chemistry at the metabolic level, as well as at the transcriptional, translational and posttranslational regulation of all enzymes involved. This is followed by a short overview of cellular models currently used in PD research. Finally, we will address the topic from a medical point of view which directly aims to encounter PD. PMID:23683503

  5. Olfactory modulation by dopamine in the context of aversive learning

    PubMed Central

    Riffell, Jeffrey A.; Martin, Joshua P.; Gage, Stephanie L.; Nighorn, Alan J.

    2012-01-01

    The need to detect and process sensory cues varies in different behavioral contexts. Plasticity in sensory coding can be achieved by the context-specific release of neuromodulators in restricted brain areas. The context of aversion triggers the release of dopamine in the insect brain, yet the effects of dopamine on sensory coding are unknown. In this study, we characterize the morphology of dopaminergic neurons that innervate each of the antennal lobes (ALs; the first synaptic neuropils of the olfactory system) of the moth Manduca sexta and demonstrate with electrophysiology that dopamine enhances odor-evoked responses of the majority of AL neurons while reducing the responses of a small minority. Because dopamine release in higher brain areas mediates aversive learning we developed a naturalistic, ecologically inspired aversive learning paradigm in which an innately appetitive host plant floral odor is paired with a mimic of the aversive nectar of herbivorized host plants. This pairing resulted in a decrease in feeding behavior that was blocked when dopamine receptor antagonists were injected directly into the ALs. These results suggest that a transient dopaminergic enhancement of sensory output from the AL contributes to the formation of aversive memories. We propose a model of olfactory modulation in which specific contexts trigger the release of different neuromodulators in the AL to increase olfactory output to downstream areas of processing. PMID:22552185

  6. Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans

    PubMed Central

    Sanyal, Suparna; Wintle, Richard F; Kindt, Katie S; Nuttley, William M; Arvan, Rokhand; Fitzmaurice, Paul; Bigras, Eve; Merz, David C; Hébert, Terence E; van der Kooy, Derek; Schafer, William R; Culotti, Joseph G; Van Tol, Hubert H M

    2004-01-01

    Dopamine-modulated behaviors, including information processing and reward, are subject to behavioral plasticity. Disruption of these behaviors is thought to support drug addictions and psychoses. The plasticity of dopamine-mediated behaviors, for example, habituation and sensitization, are not well understood at the molecular level. We show that in the nematode Caenorhabditis elegans, a D1-like dopamine receptor gene (dop-1) modulates the plasticity of mechanosensory behaviors in which dopamine had not been implicated previously. A mutant of dop-1 displayed faster habituation to nonlocalized mechanical stimulation. This phenotype was rescued by the introduction of a wild-type copy of the gene. The dop-1 gene is expressed in mechanosensory neurons, particularly the ALM and PLM neurons. Selective expression of the dop-1 gene in mechanosensory neurons using the mec-7 promoter rescues the mechanosensory deficit in dop-1 mutant animals. The tyrosine hydroxylase-deficient C. elegans mutant (cat-2) also displays these specific behavioral deficits. These observations provide genetic evidence that dopamine signaling modulates behavioral plasticity in C. elegans. PMID:14739932

  7. Crystallization and preliminary X-ray diffraction analysis of the periplasmic domain of the Escherichia coli aspartate receptor Tar and its complex with aspartate

    SciTech Connect

    Mise, Takeshi; Matsunami, Hideyuki; Samatey, Fadel A.; Maruyama, Ichiro N.

    2014-08-27

    The periplasmic domain of the E. coli aspartate receptor Tar was cloned, expressed, purified and crystallized with and without bound ligand. The crystals obtained diffracted to resolutions of 1.58 and 1.95 Å, respectively. The cell-surface receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni{sup 2+}. To understand the molecular mechanisms underlying the induction of Tar activity by its ligands, the Escherichia coli Tar periplasmic domain with and without bound aspartate (Asp-Tar and apo-Tar, respectively) were each crystallized in two different forms. Using ammonium sulfate as a precipitant, crystals of apo-Tar1 and Asp-Tar1 were grown and diffracted to resolutions of 2.10 and 2.40 Å, respectively. Alternatively, using sodium chloride as a precipitant, crystals of apo-Tar2 and Asp-Tar2 were grown and diffracted to resolutions of 1.95 and 1.58 Å, respectively. Crystals of apo-Tar1 and Asp-Tar1 adopted space group P4{sub 1}2{sub 1}2, while those of apo-Tar2 and Asp-Tar2 adopted space groups P2{sub 1}2{sub 1}2{sub 1} and C2, respectively.

  8. Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori

    PubMed Central

    Dai, Fangyin; Qiao, Liang; Cao, Cun; Liu, Xiaofan; Tong, Xiaoling; He, Songzhen; Hu, Hai; Zhang, Li; Wu, Songyuan; Tan, Duan; Xiang, Zhonghuai; Lu, Cheng

    2015-01-01

    The pigmentation pattern of Lepidoptera varies greatly in different development stages. To date, the effects of key genes in the melanin metabolism pathway on larval and adult body color are distinct, yet the effects on pupal pigmentation remains unclear. In the silkworm, Bombyx mori, the black pupa (bp) mutant is only specifically melanized at the pupal stage. Using positional cloning, we found that a mutation in the Aspartate decarboxylase gene (BmADC) is causative in the bp mutant. In the bp mutant, a SINE-like transposon with a length of 493 bp was detected ~2.2 kb upstream of the transcriptional start site of BmADC. This insertion causes a sharp reduction in BmADC transcript levels in bp mutants, leading to deficiency of β-alanine and N-β-alanyl dopamine (NBAD), but accumulation of dopamine. Following injection of β-alanine into bp mutants, the color pattern was reverted that of the wild-type silkworms. Additionally, melanic pupae resulting from knock-down of BmADC in the wild-type strain were obtained. These findings show that BmADC plays a crucial role in melanin metabolism and in the pigmentation pattern of the silkworm pupal stage. Finally, this study contributes to a better understanding of pupa pigmentation patterns in Lepidoptera. PMID:26077025

  9. Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori.

    PubMed

    Dai, Fangyin; Qiao, Liang; Cao, Cun; Liu, Xiaofan; Tong, Xiaoling; He, Songzhen; Hu, Hai; Zhang, Li; Wu, Songyuan; Tan, Duan; Xiang, Zhonghuai; Lu, Cheng

    2015-06-16

    The pigmentation pattern of Lepidoptera varies greatly in different development stages. To date, the effects of key genes in the melanin metabolism pathway on larval and adult body color are distinct, yet the effects on pupal pigmentation remains unclear. In the silkworm, Bombyx mori, the black pupa (bp) mutant is only specifically melanized at the pupal stage. Using positional cloning, we found that a mutation in the Aspartate decarboxylase gene (BmADC) is causative in the bp mutant. In the bp mutant, a SINE-like transposon with a length of 493 bp was detected ~2.2 kb upstream of the transcriptional start site of BmADC. This insertion causes a sharp reduction in BmADC transcript levels in bp mutants, leading to deficiency of β-alanine and N-β-alanyl dopamine (NBAD), but accumulation of dopamine. Following injection of β-alanine into bp mutants, the color pattern was reverted that of the wild-type silkworms. Additionally, melanic pupae resulting from knock-down of BmADC in the wild-type strain were obtained. These findings show that BmADC plays a crucial role in melanin metabolism and in the pigmentation pattern of the silkworm pupal stage. Finally, this study contributes to a better understanding of pupa pigmentation patterns in Lepidoptera.

  10. Atypical effect of dopamine in modulating the functional inhibition of NMDA receptors of cultured retina cells.

    PubMed

    Do Nascimento, J L; Kubrusly, R C; Reis, R A; De Mello, M C; De Mello, F G

    1998-02-05

    Cultured retina cells released accumulated [3H]GABA (gamma-aminobutyric acid) when stimulated by L-glutamate, N-methyl-D-aspartate (NMDA) and kainate. In the absence of Mg2+, dopamine at 200 microM (IC50 60 microM), inhibited in more than 50% the release of [3H]GABA induced by L-glutamate and NMDA, but not by kainate. This effect was not blocked by the D1-like dopamine receptor antagonist, R-(+)-7-chloro-8-hydroxy-3-methyl- -phenyl-2,3,4,5-tetrahydro- H-3-benzazepine hydrochloride (SCH 23390), neither by haloperidol nor spiroperidol (dopamine D2-like receptor antagonists). The dopamine D1-like receptor agonist R(+)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,diol hydrochloride (SKF 38393) at 50 microM, but not its enantiomer, also inhibited the release of [3H]GABA induced by NMDA, but not by kainate; an effect that was not prevented by the antagonists mentioned above. (+/-)-6-Chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepin e hydrobromide (SKF 812497) had no effect. Neither 8BrcAMP (5 mM) nor forskolin (10 microM) inhibited the release of [3H]GABA. Our results suggest that dopamine and (+)-SKF 38393 inhibit the glutamate and NMDA-evoked [3H]GABA release through mechanisms that seem not to involve known dopaminergic receptor systems.

  11. Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders.

    PubMed

    Baskerville, Tracey A; Douglas, Alison J

    2010-06-01

    Dopamine is an important neuromodulator that exerts widespread effects on the central nervous system (CNS) function. Disruption in dopaminergic neurotransmission can have profound effects on mood and behavior and as such is known to be implicated in various neuropsychiatric behavioral disorders including autism and depression. The subsequent effects on other neurocircuitries due to dysregulated dopamine function have yet to be fully explored. Due to the marked social deficits observed in psychiatric patients, the neuropeptide, oxytocin is emerging as one particular neural substrate that may be influenced by the altered dopamine levels subserving neuropathologic-related behavioral diseases. Oxytocin has a substantial role in social attachment, affiliation and sexual behavior. More recently, it has emerged that disturbances in peripheral and central oxytocin levels have been detected in some patients with dopamine-dependent disorders. Thus, oxytocin is proposed to be a key neural substrate that interacts with central dopamine systems. In addition to psychosocial improvement, oxytocin has recently been implicated in mediating mesolimbic dopamine pathways during drug addiction and withdrawal. This bi-directional role of dopamine has also been implicated during some components of sexual behavior. This review will discuss evidence for the existence dopamine/oxytocin positive interaction in social behavioral paradigms and associated disorders such as sexual dysfunction, autism, addiction, anorexia/bulimia, and depression. Preliminary findings suggest that whilst further rigorous testing has to be conducted to establish a dopamine/oxytocin link in human disorders, animal models seem to indicate the existence of broad and integrated brain circuits where dopamine and oxytocin interactions at least in part mediate socio-affiliative behaviors. A profound disruption to these pathways is likely to underpin associated behavioral disorders. Central oxytocin pathways may serve as a

  12. Voltammetric study of the control of striatal dopamine release by glutamate.

    PubMed

    Borland, Laura M; Michael, Adrian C

    2004-10-01

    The central dopamine systems are involved in several aspects of normal brain function and are implicated in a number of human disorders. Hence, it is important to understand the mechanisms that control dopamine release in the brain. The striatum of the rat receives both dopaminergic and glutamatergic projections that synaptically target striatal neurons but not each other. Nevertheless, these afferents do form frequent appositional contacts, which has engendered interest in the question of whether they communicate with each other despite the absence of a direct synaptic connection. In this study, we used voltammetry in conjunction with carbon fiber microelectrodes in anesthetized rats to further examine the effect of the ionotropic glutamate antagonist, kynurenate, on extracellular dopamine levels in the striatum. Intrastriatal infusions of kynurenate decreased extracellular dopamine levels, suggesting that glutamate acts locally within the striatum via ionotropic receptors to regulate the basal extracellular dopamine concentration. Infusion of tetrodotoxin into the medial forebrain bundle or the striatum did not alter the voltammetric response to the intrastriatal kynurenate infusions, suggesting that glutamate receptors control a non-vesicular release process that contributes to the basal extracellular dopamine level. However, systemic administration of the dopamine uptake inhibitor, nomifensine (20 mg/kg i.p.), markedly decreased the amplitude of the response to kynurenate infusions, suggesting that the dopamine transporter mediates non-vesicular dopamine release. Collectively, these findings are consistent with the idea that endogenous glutamate acts locally within the striatum via ionotropic receptors to control a tonic, impulse-independent, transporter-mediated mode of dopamine release. Although numerous prior in vitro studies had suggested that such a process might exist, it has not previously been clearly demonstrated in an in vivo experiment.

  13. Dopamine D(3) receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: role of hyperthermia.

    PubMed

    Baladi, Michelle G; Newman, Amy H; Nielsen, Shannon M; Hanson, Glen R; Fleckenstein, Annette E

    2014-06-05

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia.

  14. Pharmacological characterization of dopamine receptors in the rice striped stem borer, Chilo suppressalis.

    PubMed

    Xu, Gang; Wu, Shun-Fan; Gu, Gui-Xiang; Teng, Zi-Wen; Ye, Gong-Yin; Huang, Jia

    2017-04-01

    Dopamine is an important neurotransmitter and neuromodulator in both vertebrates and invertebrates and is the most abundant monoamine present in the central nervous system of insects. A complement of functionally distinct dopamine receptors mediate the signal transduction of dopamine by modifying intracellular Ca(2+) and cAMP levels. In the present study, we pharmacologically characterized three types of dopamine receptors, CsDOP1, CsDOP2 and CsDOP3, from the rice striped stem borer, Chilo suppressalis. All three receptors show considerable sequence identity with orthologous dopamine receptors. The phylogenetic analysis also clusters the receptors within their respective groups. Transcript levels of CsDOP1, CsDOP2 and CsDOP3 were all expressed at high levels in the central nervous system, indicating their important roles in neural processes. After heterologous expression in HEK 293 cells, CsDOP1, CsDOP2 and CsDOP3 were dose-dependently activated by dopamine and synthetic dopamine receptor agonists. They can also be blocked by different series of antagonists. This study offers important information on three dopamine receptors from C. suppressalis that will provide the basis for forthcoming studies investigating their roles in behaviors and physiology, and facilitate the development of new insecticides for pest control.

  15. Differential Dopamine Regulation of Ca2+ Signaling and Its Timing Dependence in the Nucleus Accumbens

    PubMed Central

    Swapna, Immani; Bondy, Brian; Morikawa, Hitoshi

    2016-01-01

    SUMMARY Dopamine action in the nucleus accumbens (NAc) is thought to drive appetitive behavior and Pavlovian reward learning. However, it remains controversial how dopamine achieves these behavioral effects by regulating medium spiny projection neurons (MSNs) of the NAc, especially on a behaviorally relevant timescale. Metabotropic glutamate receptor (mGluR)-induced Ca2+ signaling dependent on the Ca2+- releasing messenger inositol 1,4,5-triphosphate (IP3) plays a critical role in controlling neuronal excitability and synaptic plasticity. Here, we show that transient dopamine application facilitates mGluR/IP3-induced Ca2+ signals within a time window of ~2–10 s in a subpopulation of MSNs in the NAc core. Dopamine facilitation of IP3-induced Ca2+ signaling is mediated by D1 dopamine receptors. In dopamine-insensitive MSNs, activation of A2A adenosine receptors causes enhancement of IP3-evoked Ca2+ signals, which is reversed by D2 dopamine receptor activation. These results show that dopamine differentially regulates Ca2+ signaling on the order of seconds in two distinct MSN subpopulations. PMID:27068462

  16. Effects of dopamine on adenylyl cyclase activity and amylase secretion in rat parotid tissue.

    PubMed

    Hatta, S; Amemiya, N; Takemura, H; Ohshika, H

    1995-06-01

    Several previous studies have shown that dopamine causes amylase secretion from rat parotid tissue. However, the mechanism of this dopamine action is still unclear. The present study was designed to characterize dopamine action in rat parotid gland tissue by examining the effects of dopamine on cyclic AMP accumulation, adenylyl cyclase activity, and amylase release. Dopamine significantly enhanced accumulation of cyclic AMP in parotid slices and stimulated adenylyl cyclase activity in parotid membrane preparations. It also significantly stimulated amylase release from parotid slices. The stimulatory effects of dopamine on cyclic AMP accumulation, adenylyl cyclase activity, and amylase release were effectively blocked with propranolol, a beta-adrenergic antagonist, but not by either SCH 23390, a preferential D1 antagonist, or butaclamol, a preferential D2 antagonist. No substantial specific binding sites for D1 receptors were detectable by [3H]SCH 23390 binding in parotid membranes. These results suggest that the stimulatory effect of dopamine on amylase secretion in rat parotid tissue is not mediated through specific D1 dopamine receptors but rather through beta-adrenergic receptors.

  17. Characterization of D/sub 1/ dopamine receptors in the central nervous system

    SciTech Connect

    Hess, E.J.

    1987-01-01

    Several lines of evidence suggest an association of central nervous system dopaminergic systems in the etiology of the schizophrenia. Interest in the role of D/sub 1/ dopamine receptors has revived with the advent of selective drugs for this dopamine receptor, particularly the D/sub 1/ dopamine receptor antagonists, SCH23390. (/sup 3/H)SCH23390 represents a superior radioligand for labeling the two-state striatal D/sub 1/ dopamine receptor in that its high percent specific binding makes it especially suitable for detailed mechanistic studies of this receptor. Striatal D/sub 1/ dopamine receptors have been shown to mediate the stimulation of adenylate cyclase activity via a guanine nucleotide regulatory subunit. Forskolin acts in a synergistic manner with dopamine agonists, guanine nucleotides or sodium fluoride to potentiate the stimulation of rat striatal adenylate cyclase activity mediated by these reagents. By using the aforementioned reagents and the irreversible receptor modifying reagent N-ethoxycarbonyl-2-ethoxy-1,2,-dihydroquinoline, we demonstrated that the D/sub 1/ dopamine receptor population in rat striatum is not a stoichiometrically-limiting factor in agonist stimulation of adenylate cyclase activity.

  18. Dopamine suppresses persistent network activity via D1-like dopamine receptors in rat medial entorhinal cortex

    PubMed Central

    Mayne, Elizabeth W; Craig, Michael T; McBain, Chris J; Paulsen, Ole

    2013-01-01

    Cortical networks display persistent activity in the form of periods of sustained synchronous depolarizations (‘UP states’) punctuated by periods of relative hyperpolarization (‘DOWN states’), which together form the slow oscillation. UP states are known to be synaptically generated and are sustained by a dynamic balance of excitation and inhibition, with fast ionotropic glutamatergic excitatory and GABAergic inhibitory conductances increasing during the UP state. Previously, work from our group demonstrated that slow metabotropic GABA receptors also play an important role in terminating the UP state, but the effects of other neuromodulators on this network phenomenon have received little attention. Given that persistent activity is a neural correlate of working memory and that signalling through dopamine receptors has been shown to be critical for working memory tasks, we examined whether dopaminergic neurotransmission affected the slow oscillation. Here, using an in vitro model of the slow oscillation in rat medial entorhinal cortex, we showed that dopamine strongly and reversibly suppressed cortical UP states. We showed that this effect was mediated through D1-like and not D2-like dopamine receptors, and we found no evidence that tonic dopaminergic transmission affected UP states in our model. PMID:23336973

  19. Signaling by the Escherichia coli Aspartate Chemoreceptor Tar with a Single Cytoplasmic Domain per Dimer

    NASA Astrophysics Data System (ADS)

    Tatsuno, Ichiro; Homma, Michio; Oosawa, Kenji; Kawagishi, Ikuro

    1996-10-01

    Many transmembrane receptors are oligomeric proteins. Binding of a ligand may alter the oligomeric state of the receptor, induce structural changes within the oligomer, or both. The bacterial aspartate chemoreceptor Tar forms a homodimer in the presence or absence of ligands. Tar mediates attractant and repellent responses by modulating the activity of the cytoplasmic kinase CheA. In vivo intersubunit suppression was used to show that certain combinations of full-length and truncated mutant Tar proteins complemented each other to restore attractant responses to aspartate. These results suggest that heterodimers with only one intact cytoplasmic domain are functional. The signaling mechanism may require interactions between dimers or conformational changes within a single cytoplasmic domain.

  20. Pharmacological evidence for common mechanisms underlying the effects of neurotensin and neuroleptics on in vivo dopamine efflux in the rat nucleus accumbens.

    PubMed

    Blaha, C D; Phillips, A G

    1992-08-01

    The effects of the neuropeptide neurotensin and the typical neuroleptic haloperidol on dopamine efflux were compared in the posteromedial nucleus accumbens of the chloral hydrate-anesthetized rat using in vivo chronoamperometry. Both neurotensin and haloperidol administration elicited an immediate increase in dopamine efflux in the nucleus accumbens. Gamma-hydroxybutyric acid lactone, an agent known to block impulse flow in dopamine neurons, either prevented when given before neurotensin or reversed neurotensin-induced increases in accumbens dopamine efflux. Haloperidol-induced increases in accumbens dopamine efflux were similarly affected by gamma-hydroxybutyric acid lactone. The dopamine receptor agonist apomorphine reversed neurotensin- and haloperidol-induced increases in dopamine efflux. Amphetamine, administered during the peak dopamine stimulatory effects induced by neurotensin or haloperidol, resulted in increases above baseline which were significantly greater than the effects of amphetamine alone. These combined drug treatment effects on baseline dopamine efflux were additive, indicating that the effects of amphetamine were not potentiated by neurotensin or haloperidol pretreatments. These in vivo results suggest that neurotensin and haloperidol may augment dopamine efflux in the nucleus accumbens via common mechanisms of action which may involve activation of mesotelencephalic dopamine neuronal firing. The inability of neurotensin to block amphetamine-induced efflux in the nucleus accumbens further suggests that neurotensin blockade of amphetamine-elicited locomotor activity is mediated by an action of neurotensin postsynaptic to dopamine nerve terminals in the nucleus accumbens.

  1. Homoserine as an Aspartic Acid Precursor for Synthesis of Proteoglycan Glycopeptide Containing Aspartic Acid and a Sulfated Glycan Chain.

    PubMed

    Yang, Weizhun; Ramadan, Sherif; Yang, Bo; Yoshida, Keisuke; Huang, Xuefei

    2016-12-02

    Among many hurdles in synthesizing proteoglycan glycopeptides, one challenge is the incorporation of aspartic acid in the peptide backbone and acid sensitive O-sulfated glycan chains. To overcome this, a new strategy was developed utilizing homoserine as an aspartic acid precursor. The conversion of homoserine to aspartic acid in the glycopeptide was successfully accomplished by late stage oxidation using (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) and bis(acetoxy)iodobenzene (BAIB). This is the first time that a glycopeptide containing aspartic acid and an O-sulfated glycan was synthesized.

  2. Signaling Mechanisms in the Nitric Oxide Donor- and Amphetamine-Induced Dopamine Release in Mesencephalic Primary Cultured Neurons.

    PubMed

    Salum, Cristiane; Schmidt, Fanny; Michel, Patrick P; Del-Bel, Elaine; Raisman-Vozari, Rita

    2016-01-01

    Previous research has shown that nitric oxide (NO) synthase inhibitors prevent rodents' sensorimotor gating impairments induced by dopamine releasing drugs, such as amphetamine (Amph) and methylphenidate. The mechanisms of this effect have not been entirely understood. In the present work, we investigated some possible mechanisms by which the NO donor, NOC-12 (3-ethyl-3-(ethylaminoethyl)-1-hydroxy-2-oxo-1-triazene), influence spontaneous and Amph-induced dopamine release, using rat mesencephalic primary cultured neurons preparations. Our results showed that NOC-12 increased dopamine release in a concentration-dependent manner and potentiated the Amph-induced one. Dopamine release induced by NOC-12 was disrupted by N-acetyl-L-cystein (NAC-a free radical scavenger) and MK-801, a NMDA (N-methyl-D-aspartate) non-competitive antagonist, and was concentration dependently affected by oxadiazolo[4,3]quinoxalin-1-one, an inhibitor of the soluble guanylate cyclase (sGC). In contrast, dopamine released by Amph was facilitated by NAC and by MK-801 and not affected by nifedipine (a L-type-Ca(+2) channel blocker), which enhanced NOC-12-induced dopamine release. The present work demonstrates that DA release induced by NOC-12 is partially dependent on sGC and on NMDA activation, and is modulated by L-type Ca(+2) channel and the antioxidant NAC. This mechanism differs from the Amph-induced one, which appears not to depend on L-type Ca(+2) channel and seems to be facilitated by NMDA channel blocking and by NAC. These results suggest that Amph and NOC-12 induce dopamine release through complementary pathways, which may explain the potentiation of Amph-induced dopamine release by NOC-12. These findings contribute to understand the involvement of NO in dopamine-related neuropsychiatric and neurodegenerative diseases.

  3. Dopamine reward prediction error coding.

    PubMed

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  4. Dopamine reward prediction error coding

    PubMed Central

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware. PMID:27069377

  5. [Conformation of aspartate aminotransferase in crystals].

    PubMed

    Borisov, V V; Borisova, S N; Sosfenov, N I; Dikson, Kh BF

    1983-01-01

    X-ray study of chicken cytosolic aspartate aminotransferase revealed conformational changes in the protein of two kinds: (1) a shift of the small domain adjacent to substrate-binding area due to interaction of the protein with two carboxyl groups of substrate and (2) a change in inclination of the coenzyme plane due to replacement of C = N bond of the coenzyme with Lys-258 by C = N bond with a substrate. An asymmetry in subunit behaviour is observed in both cases: the domain is shifted in one subunit and the coenzyme is rotated in other. Substrate-binding properties of each subunit are strictly dependent on the protein conformation in substrate-binding area.

  6. The sodium effect of Bacillus subtilis growth on aspartate.

    PubMed

    Whiteman, P; Marks, C; Freese, E

    1980-08-01

    aspH mutants of Bacillus subtilis have a constitutive aspartase activity and grow well on aspartate as sole carbon source. aspH aspT mutants, which are deficient in high affinity aspartate transport as a result of the aspT mutation, grow as well as aspH mutants in medium containing high concentrations of aspartate and Na+. This Na+ effect is not due to an enhancement of aspartate transport but is the result of increased cellular metabolism. The ability to grow rapidly in sodium aspartate is induced by prior growth in the presence of Na+. In potassium aspartate, the addition of arginine, citrulline, ornithine, delta 1-pyrroline-5-carboxylase or proline instead of Na+ also allows rapid growth; but in a mutant deficient in ornithine--oxo-acid aminotransferase, only pyrroline-carboxylate or proline can replace Na+. The amino acid pool of cells growing slowly in potassium aspartate contains proline at a low concentration which increases upon addition of proline (but not Na+) to the medium. Thus, Na+ addition does not increase the synthesis of proline, but proline or pyrroline-carboxylate acts similarly to Na+ either in preventing some inhibitory effect (by aspartate or the accumulating NH4+) or in overcoming some deficiency (e.g. in further proline metabolism.

  7. Some aspects of structural studies on aspartic proteinases.

    PubMed

    Andreeva, N S

    1992-01-01

    This paper gives a brief overview over the differences and similarities in the structure of aspartic proteinases presently available. Comparison of the three-dimentional structure of different aspartic proteinases by a common intramolecular coordinate system have been performed. The intramolecular movable subdomains have been localized and the role of motion in substrate binding and zymogen activation is discussed.

  8. Dopamine, Affordance and Active Inference

    PubMed Central

    Friston, Karl J.; Shiner, Tamara; FitzGerald, Thomas; Galea, Joseph M.; Adams, Rick; Brown, Harriet; Dolan, Raymond J.; Moran, Rosalyn; Stephan, Klaas Enno; Bestmann, Sven

    2012-01-01

    The role of dopamine in behaviour and decision-making is often cast in terms of reinforcement learning and optimal decision theory. Here, we present an alternative view that frames the physiology of dopamine in terms of Bayes-optimal behaviour. In this account, dopamine controls the precision or salience of (external or internal) cues that engender action. In other words, dopamine balances bottom-up sensory information and top-down prior beliefs when making hierarchical inferences (predictions) about cues that have affordance. In this paper, we focus on the consequences of changing tonic levels of dopamine firing using simulations of cued sequential movements. Crucially, the predictions driving movements are based upon a hierarchical generative model that infers the context in which movements are made. This means that we can confuse agents by changing the context (order) in which cues are presented. These simulations provide a (Bayes-optimal) model of contextual uncertainty and set switching that can be quantified in terms of behavioural and electrophysiological responses. Furthermore, one can simulate dopaminergic lesions (by changing the precision of prediction errors) to produce pathological behaviours that are reminiscent of those seen in neurological disorders such as Parkinson's disease. We use these simulations to demonstrate how a single functional role for dopamine at the synaptic level can manifest in different ways at the behavioural level. PMID:22241972

  9. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation

    PubMed Central

    Matthews, Gillian A.; Nieh, Edward H.; Vander Weele, Caitlin M.; Halbert, Sarah A.; Pradhan, Roma V.; Yosafat, Ariella S.; Glober, Gordon F.; Izadmehr, Ehsan M.; Thomas, Rain E.; Lacy, Gabrielle D.; Wildes, Craig P.; Ungless, Mark A.; Tye, Kay M.

    2016-01-01

    Summary The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PaperClip PMID:26871628

  10. Functional role of aspartic proteinase cathepsin D in insect metamorphosis

    PubMed Central

    Gui, Zhong Zheng; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Wei, Ya Dong; Choo, Young Moo; Kang, Pil Don; Yoon, Hyung Joo; Kim, Iksoo; Je, Yeon Ho; Seo, Sook Jae; Lee, Sang Mong; Guo, Xijie; Sohn, Hung Dae; Jin, Byung Rae

    2006-01-01

    Background Metamorphosis is a complex, highly conserved and strictly regulated development process that involves the programmed cell death of obsolete larval organs. Here we show a novel functional role for the aspartic proteinase cathepsin D during insect metamorphosis. Results Cathepsin D of the silkworm Bombyx mori (BmCatD) was ecdysone-induced, differentially and spatially expressed in the larval fat body of the final instar and in the larval gut of pupal stage, and its expression led to programmed cell death. Furthermore, BmCatD was highly induced in the fat body of baculovirus-infected B. mori larvae, suggesting that this gene is involved in the induction of metamorphosis of host insects infected with baculovirus. RNA interference (RNAi)-mediated BmCatD knock-down inhibited programmed cell death of the larval fat body, resulting in the arrest of larval-pupal transformation. BmCatD RNAi also inhibited the programmed cell death of larval gut during pupal stage. Conclusion Based on these results, we concluded that BmCatD is critically involved in the programmed cell death of the larval fat body and larval gut in silkworm metamorphosis. PMID:17062167

  11. Striatal dopamine and glutamate receptors modulate methamphetamine-induced cortical Fos expression

    PubMed Central

    Gross, Noah B.; Marshall, John F.

    2009-01-01

    Methamphetamine (mAMPH) is a psychostimulant drug that increases extracellular levels of monoamines throughout the brain. It has previously been observed that a single injection of mAMPH increases immediate early gene (IEG) expression in both the striatum and cerebral cortex. Moreover, this effect is modulated by dopamine and glutamate receptors since systemic administration of dopamine or glutamate antagonists has been found to alter mAMPH-induced striatal and cortical IEG expression. However, because dopamine and glutamate receptors are found in extra-striatal as well as striatal brain regions, studies employing systemic injection of dopamine or glutamate antagonists fail to localize the effects of mAMPH-induced activation. In the present experiments, the roles of striatal dopamine and glutamate receptors in mAMPH-induced gene expression in the striatum and cerebral cortex were examined. The nuclear expression of Fos, the protein product of the IEG c-fos, was quantified in both the striatum and the cortex of animals receiving intrastriatal dopamine or glutamate antagonist administration. Intrastriatal infusion of dopamine (D1 or D2) or glutamate [N-methyl-D-aspartic acid (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)] antagonists affected not only mAMPH-induced striatal, but also cortical, Fos expression. Overall, the effects of the antagonists occurred dose-dependently, in both the infused and non-infused hemispheres, with greater influences occurring in the infused hemisphere. Finally, unilateral intrastriatal infusion of dopamine or glutamate antagonists changed the behavior of the rats from characteristic mAMPH-induced stereotypy to rotation ipsilateral to the infusion. These results demonstrate that mAMPH’s actions on striatal dopamine and glutamate receptors modulate the widespread cortical activation induced by mAMPH. It is hypothesized that dopamine release from nigrostriatal terminals modulates activity within striatal

  12. Sensitization to psychostimulants and stress after injection of pertussis toxin into the A10 dopamine region.

    PubMed

    Steketee, J D; Kalivas, P W

    1991-11-01

    An augmentation of psychostimulant-induced motor activity, termed sensitization, occurs with daily treatment and can last for months or years. At least in part, sensitization results from a long-term change in mesocorticolimbic dopamine transmission and may involve a disinhibition of dopamine neurons. Dopamine D2 autoreceptors and gamma-aminobutyric acidB (GABAB) receptors provide tonic inhibition to dopamine neurons via a G protein-mediated increase in K+ efflux. To evaluate the role of these inhibitory mechanisms in sensitization, pertussis toxin (PTX) was injected into the A10 dopamine region to uncouple the receptors via ADP-ribosylation of G proteins. In this study we demonstrated a significant augmentation in cocaine-stimulated motor activity, at doses greater than 3.0 mg/kg, 14 days after intra-A10 injection of PTX. Also, amphetamine-, but not morphine- or caffeine-stimulated motor activity was significantly augmented 2 weeks after PTX pretreatment. In vivo microdialysis revealed an augmentation of cocaine-induced increases in extracellular dopamine in the nucleus accumbens 14 days after PTX pretreatment. Pretreatment in the A10 region with the GABAB agonist baclofen, blocked cocaine-stimulated motor activity in control animals, but not in PTX-pretreated animals, indicating that the PTX treatment had uncoupled the GABAB receptor. Footshock stress activates mesocortical dopamine transmission, and postmortem tissue levels of dihydroxyphenylacetic acid and homovanillic acid in the prefrontal cortex were increased in PTX-pretreated animals. We hypothesize that the sensitized responses to cocaine, amphetamine and stress produced by PTX results from a decrease in dopamine D2 and GABAB-mediated inhibitory control of A10 dopamine neurons.

  13. Dopamine Receptors and Neurodegeneration

    PubMed Central

    Rangel-Barajas, Claudia; Coronel, Israel; Florán, Benjamín

    2015-01-01

    Dopamine (DA) is one of the major neurotransmitters and participates in a number of functions such as motor coordination, emotions, memory, reward mechanism, neuroendocrine regulation etc. DA exerts its effects through five DA receptors that are subdivided in 2 families: D1-like DA receptors (D1 and D5) and the D2-like (D2, D3 and D4). All DA receptors are widely expressed in the central nervous system (CNS) and play an important role in not only in physiological conditions but also pathological scenarios. Abnormalities in the DAergic system and its receptors in the basal ganglia structures are the basis Parkinson’s disease (PD), however DA also participates in other neurodegenerative disorders such as Huntington disease (HD) and multiple sclerosis (MS). Under pathological conditions reorganization of DAergic system has been observed and most of the times, those changes occur as a mechanism of compensation, but in some cases contributes to worsening the alterations. Here we review the changes that occur on DA transmission and DA receptors (DARs) at both levels expression and signals transduction pathways as a result of neurotoxicity, inflammation and in neurodegenerative processes. The better understanding of the role of DA receptors in neuropathological conditions is crucial for development of novel therapeutic approaches to treat alterations related to neurodegenerative diseases. PMID:26425390

  14. Activation of the dopamine receptor type-2 (DRD2) promoter by 9-cis retinoic acid in a cellular model of Cushing's disease mediates the inhibition of cell proliferation and ACTH secretion without a complete corticotroph-to-melanotroph transdifferentiation.

    PubMed

    Occhi, Gianluca; Regazzo, Daniela; Albiger, Nora Maria; Ceccato, Filippo; Ferasin, Sergio; Scanarini, Massimo; Denaro, Luca; Cosma, Chiara; Plebani, Mario; Cassarino, Maria Francesca; Mantovani, Giovanna; Stalla, Günter K; Pecori Giraldi, Francesca; Paez-Pareda, Marcelo; Scaroni, Carla

    2014-09-01

    Cushing's disease (CD) is a rare condition in which hypercortisolemia is secondary to excessive ACTH release from a pituitary corticotroph adenoma. CD is associated with significant morbidity and mortality, and a safe therapy that effectively targets the pituitary tumor is still lacking. Retinoic acid (RA) and dopamine agonists (DAs) have recently been considered as monotherapy in CD patients, and satisfactory results have been reported, albeit in a limited number of patients. Given the permissive role of RA on the dopamine receptor type-2 (DRD2), the aim of the present study was to see whether a combination of 9-cis RA and the DA bromocriptine (Br) might represent a possible treatment for CD. Here we show that 9-cis RA induces a functional DRD2 in the pituitary corticotroph cell line AtT20, and increases cell sensitivity to Br via a mechanism only partially related to corticotroph-to-melanotroph transdifferentiation. In addition, 9-cis RA and Br act synergistically to modulate cell viability, with favorable implications for clinical use. In nearly 45% of corticotropinoma-derived primary cultures, the combined administration of 9-cis RA and Br lowered the steady-state level of the ACTH precursor proopiomelanocortin (POMC) more efficiently than either of the drugs alone. In conclusion, the effects of a combination of 9-cis RA and Br on ACTH synthesis/secretion and cell viability in AtT20, and on POMC transcriptional activity in human corticotropinomas might represent a suitable starting point for assessing the potential of this treatment regimen for ACTH-secreting pituitary adenomas. This study thus has potentially important implications for novel therapeutic approaches to CD.

  15. Occurrence of the malate-aspartate shuttle in various tumor types.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1976-04-01

    The activity of the malate-aspartate shuttle for the reoxidation of cytoplasmic reduced nicotinamide adenine dinucleotide (NADH) by mitochondria was assessed in six lines of rodent ascites tumor cells (two strains of Ehrlich ascites carcinoma, Krebs II carcinoma, Novikoff hepatoma, AS-30D hepatoma, and L1210 mouse leukemia). All the tumor cells examined showed mitochondrial reoxidation of cytoplasmic NADH, as evidenced by the accumulation of pyruvate when the cells were incubated aerobically with L-lactate. Reoxidation of cytoplasmic NADH thus generated was completely inhibited by the transaminase inhibitor aminooxyacetate. The involvement of the respiratory chain in the reoxidation of cytoplasmic NADH was demonstrated by the action of cyanide, rotenone, and antimycin A, which strongly inhibited the formation of pyruvate from added L-lactate. Compounds that inhibit the carrier-mediated entry of malate into mitochondria, such as butylmalonate, benzenetricarboxylate, and iodobenzylmalonate, also inhibited the accumulation of pyruvate from added L-lactate by the tumor cells. The maximal rate of the malate-aspartate shuttle was established by addtion of arsenite to inhibit the mitochondrial oxidation of the pyruvate formed from added lactate. The capacity of the various tumor lines for the reoxidation of cytoplasmic NADH via the malate-aspartate shuttle approaches 20% of the total respiratory rate of the cells and thus appears to be sufficient to account for the mitochondrial reoxidation of that fraction of glycolytic NADH not reoxidized by pyruvate and lactate dehydrognenase in the cytoplasm.

  16. Intracellular methamphetamine prevents the dopamine-induced enhancement of neuronal firing.

    PubMed

    Saha, Kaustuv; Sambo, Danielle; Richardson, Ben D; Lin, Landon M; Butler, Brittany; Villarroel, Laura; Khoshbouei, Habibeh

    2014-08-08

    The dysregulation of the dopaminergic system is implicated in multiple neurological and neuropsychiatric disorders such as Parkinson disease and drug addiction. The primary target of psychostimulants such as amphetamine and methamphetamine is the dopamine transporter (DAT), the major regulator of extracellular dopamine levels in the brain. However, the behavioral and neurophysiological correlates of methamphetamine and amphetamine administration are unique from one another, thereby suggesting these two compounds impact dopaminergic neurotransmission differentially. We further examined the unique mechanisms by which amphetamine and methamphetamine regulate DAT function and dopamine neurotransmission; in the present study we examined the impact of extracellular and intracellular amphetamine and methamphetamine on the spontaneous firing of cultured midbrain dopaminergic neurons and isolated DAT-mediated current. In dopaminergic neurons the spontaneous firing rate was enhanced by extracellular application of amphetamine > dopamine > methamphetamine and was DAT-dependent. Amphetamine > methamphetamine similarly enhanced DAT-mediated inward current, which was sensitive to isosmotic substitution of Na(+) or Cl(-) ion. Although isosmotic substitution of extracellular Na(+) ions blocked amphetamine and methamphetamine-induced DAT-mediated inward current similarly, the removal of extracellular Cl(-) ions preferentially blocked amphetamine-induced inward current. The intracellular application of methamphetamine, but not amphetamine, prevented the dopamine-induced increase in the spontaneous firing of dopaminergic neurons and the corresponding DAT-mediated inward current. The results reveal a new mechanism for methamphetamine-induced dysregulation of dopaminergic neurons.

  17. Protein kinase Mζ is essential for the induction and maintenance of dopamine-induced long-term potentiation in apical CA1 dendrites

    PubMed Central

    Navakkode, Sheeja; Sajikumar, Sreedharan; Sacktor, Todd Charlton; Frey, Julietta U.

    2010-01-01

    Dopaminergic D1/D5-receptor-mediated processes are important for certain forms of memory as well as for a cellular model of memory, hippocampal long-term potentiation (LTP) in the CA1 region of the hippocampus. D1/D5-receptor function is required for the induction of the protein synthesis-dependent maintenance of CA1-LTP (L-LTP) through activation of the cAMP/PKA-pathway. In earlier studies we had reported a synergistic interaction of D1/D5-receptor function and N-methyl-D-aspartate (NMDA)-receptors for L-LTP. Furthermore, we have found the requirement of the atypical protein kinase C isoform, protein kinase Mζ (PKMζ) for conventional electrically induced L-LTP, in which PKMζ has been identified as a LTP-specific plasticity-related protein (PRP) in apical CA1-dendrites. Here, we investigated whether the dopaminergic pathway activates PKMζ. We found that application of dopamine (DA) evokes a protein synthesis-dependent LTP that requires synergistic NMDA-receptor activation and protein synthesis in apical CA1-dendrites. We identified PKMζ as a DA-induced PRP, which exerted its action at activated synaptic inputs by processes of synaptic tagging. PMID:21084457

  18. Dopamine gates action potential backpropagation in midbrain dopaminergic neurons.

    PubMed

    Gentet, Luc J; Williams, Stephen R

    2007-02-21

    Dopamine is released from both axonal and somatodendritic sites of midbrain dopaminergic neurons in an action potential-dependent manner. In contrast to the majority of central neurons, the axon of dopaminergic neurons typically originates from a dendritic site, suggesting a specialized computational function. Here, we examine the initiation and spread of action potentials in dopaminergic neurons of the substantia nigra pars reticulata and reveal that the displacement of the axon to a dendritic site allows highly compartmentalized electrical signaling. In response to a train of synaptic input, action potentials initiated at axon-bearing dendritic sites formed a variable trigger for invasion to the soma and contralateral dendritic tree, with action potentials often confined to the axon-bearing dendrite. The application of dopamine increased this form of electrical compartmentalization, an effect mediated by a tonic membrane potential hyperpolarization leading to an increased availability of a class of voltage-dependent potassium channel. These data suggest that the release of dopamine from axonal and somatodendritic sites are dissociable, and that dopamine levels within the midbrain are dynamically controlled by the somatodendritic spread of action potentials.

  19. Glutamate-evoked release of endogenous brain dopamine: inhibition by an excitatory amino acid antagonist and an enkephalin analogue.

    PubMed Central

    Jhamandas, K.; Marien, M.

    1987-01-01

    The present study examined the effect of a selective delta-opioid receptor agonist [D-Ala2-D-Leu5] enkephalin (DADL) on the spontaneous and the L-glutamic acid (L-Glu)-evoked release of endogenous dopamine from superfused slices of rat caudate-putamen. The amount of dopamine in slice superfusates was measured by a sensitive method employing high-performance liquid chromatography with electrochemical detection (h.p.l.c.-e.d.) after a two-step separation procedure. The spontaneous release of endogenous dopamine was partially dependent on Ca2+, enhanced in Mg2+-free superfusion medium, partially reduced by tetrodotoxin (TTX, 0.3 microM), partially reduced by the putative excitatory amino acid receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (DL-APH, 1 mM), and increased 10 fold by the dopamine uptake blocker, nomifensine (10 microM). DADL (5 and 50 nM) did not significantly affect spontaneous dopamine release. L-Glu (0.1-10 mM) produced a concentration-dependent release of endogenous dopamine from slices of caudate-putamen. This effect was Ca2+-dependent, strongly inhibited by 1.2 mM Mg2+, attenuated by DL-APH (1 mM), attenuated by TTX (0.3 microM), and enhanced by nomifensine (10 microM). In the presence of nomifensine DADL (50 nM) reduced significantly the L-Glu-evoked release of endogenous dopamine by 20%. The inhibitory effect of DADL was blocked by 10 microM naloxone. These results indicate that L-Glu stimulates the Ca2+-dependent release of endogenous dopamine in the caudate-putamen by activation of N-methy-D-aspartate-type of excitatory amino acid receptors. This release can be selectively modified by the delta-opioid agonist DADL in a naloxone-sensitive manner. PMID:2884003

  20. Beyond the Dopamine Receptor: Regulation and Roles of Serine/Threonine Protein Phosphatases

    PubMed Central

    Walaas, Sven Ivar; Hemmings, Hugh Caroll; Greengard, Paul; Nairn, Angus Clark

    2011-01-01

    Dopamine plays an important modulatory role in the central nervous system, helping to control critical aspects of motor function and reward learning. Alteration in normal dopaminergic neurotransmission underlies multiple neurological diseases including schizophrenia, Huntington’s disease, and Parkinson’s disease. Modulation of dopamine-regulated signaling pathways is also important in the addictive actions of most drugs of abuse. Our studies over the last 30 years have focused on the molecular actions of dopamine acting on medium spiny neurons, the predominant neurons of the neostriatum. Striatum-enriched phosphoproteins, particularly dopamine and adenosine 3′:5′-monophosphate-regulated phosphoprotein of 32 kDa (DARPP-32), regulator of calmodulin signaling (RCS), and ARPP-16, mediate pleiotropic actions of dopamine. Notably, each of these proteins, either directly or indirectly, regulates the activity of one of the three major subclasses of serine/threonine protein phosphatases, PP1, PP2B, and PP2A, respectively. For example, phosphorylation of DARPP-32 at Thr34 by protein kinase A results in potent inhibition of PP1, leading to potentiation of dopaminergic signaling at multiple steps from the dopamine receptor to the nucleus. The discovery of DARPP-32 and its emergence as a critical molecular integrator of striatal signaling will be discussed, as will more recent studies that highlight novel roles for RCS and ARPP-16 in dopamine-regulated striatal signaling pathways. PMID:21904525

  1. Release of taurine, GABA and dopamine from rat striatal slices: mutual interactions and developmental aspects.

    PubMed

    Kontro, P; Oja, S S

    1988-01-01

    The spontaneous and potassium-stimulated release of preloaded taurine and GABA from striatal slices of adult and 7-day-old rats were studied using a superfusion system. Particular attention was paid to mutual interactions of taurine and GABA with dopamine in the release processes. Potassium stimulation (50 mM) enhanced taurine release more in the immature than in the adult striatum, whereas the response was the opposite with GABA release. Spontaneous taurine efflux was increased by dopamine and apomorphine, whereas stimulated release was suppressed by these agents in both age groups. This dopamine effect was partially antagonized by haloperidol, suggesting that dopaminergic systems were able to modify taurine release, possibly via dopaminergic receptors. Dopamine and apomorphine had similar but more inconsistent effects on striatal GABA release, which were not, however, mediated through conventional dopamine receptors. Stimulation with 25 mM K+ caused an 11-fold increase in striatal dopamine release: this effect was potentiated by taurine, while the actions of GABA on dopamine release were variable.

  2. Interaction of dopamine and haloperidol with O2 and CO2 chemoreception in carotid body.

    PubMed

    Lahiri, S; Nishino, T; Mokashi, A; Mulligan, E

    1980-07-01

    Effects of dopamine and of a dopaminergic blocker, haloperidol, on the responses of carotid body chemoreceptors to hypoxia and hypercapnia were investigated in 16 anesthetized cats. Intravenous infusion of dopamine (10-20 micrograms.min-1) decreased carotid body chemoreceptor responses to hypoxia and hypercapnia. The effect was greater at higher levels of arterial oxygen and carbon dioxide tension (PaO2 and PaCO2) stimulus. Thus, the magnitude of the dopamine effect depended on the degree of both PO2- and PCO2-mediated excitation of the receptors. Haloperidol potentiated responses to both hypoxia and hypercapnia but apparently did not stimulate the receptors in the absence of these stimuli. Potentiation by haloperidol and inhibition by dopamine of excitatory effects due to PaO2 decrease and PaCO2 increase are complementary. The data suggest that chemoreception of dopamine, O2, and CO2 converge at some site in the carotid body. Persistence of hypoxic and hypercapnic responses, following dopamine-blocking doses of haloperidol, does not support the theory that regulation of dopamine release is responsible for O2 and CO2 chemoreception in carotid body of the cat.

  3. Adversity in childhood linked to elevated striatal dopamine function in adulthood.

    PubMed

    Egerton, Alice; Valmaggia, Lucia R; Howes, Oliver D; Day, Fern; Chaddock, Christopher A; Allen, Paul; Winton-Brown, Toby T; Bloomfield, Michael A P; Bhattacharyya, Sagnik; Chilcott, Jack; Lappin, Julia M; Murray, Robin M; McGuire, Philip

    2016-10-01

    Childhood adversity increases the risk of psychosis in adulthood. Theoretical and animal models suggest that this effect may be mediated by increased striatal dopamine neurotransmission. The primary objective of this study was to examine the relationship between adversity in childhood and striatal dopamine function in early adulthood. Secondary objectives were to compare exposure to childhood adversity and striatal dopamine function in young people at ultra high risk (UHR) of psychosis and healthy volunteers. Sixty-seven young adults, comprising 47 individuals at UHR for psychosis and 20 healthy volunteers were recruited from the same geographic area and were matched for age, gender and substance use. Presynaptic dopamine function in the associative striatum was assessed using 18F-DOPA positron emission tomography. Childhood adversity was assessed using the Childhood Experience of Care and Abuse questionnaire. Within the sample as a whole, both severe physical or sexual abuse (T63=2.92; P=0.005), and unstable family arrangements (T57=2.80; P=0.007) in childhood were associated with elevated dopamine function in the associative striatum in adulthood. Comparison of the UHR and volunteer subgroups revealed similar incidence of childhood adverse experiences, and there was no significant group difference in dopamine function. This study provides evidence that childhood adversity is linked to elevated striatal dopamine function in adulthood.

  4. Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo.

    PubMed

    Lohr, Kelly M; Bernstein, Alison I; Stout, Kristen A; Dunn, Amy R; Lazo, Carlos R; Alter, Shawn P; Wang, Minzheng; Li, Yingjie; Fan, Xueliang; Hess, Ellen J; Yi, Hong; Vecchio, Laura M; Goldstein, David S; Guillot, Thomas S; Salahpour, Ali; Miller, Gary W

    2014-07-08

    Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease.

  5. Regulation of striatal dopamine responsiveness by Notch/RBP-J signaling.

    PubMed

    Toritsuka, M; Kimoto, S; Muraki, K; Kitagawa, M; Kishimoto, T; Sawa, A; Tanigaki, K

    2017-03-07

    Dopamine signaling is essential for reward learning and fear-related learning, and thought to be involved in neuropsychiatric diseases. However, the molecular mechanisms underlying the regulation of dopamine responsiveness is unclear. Here we show the critical roles of Notch/RBP-J signaling in the regulation of dopamine responsiveness in the striatum. Notch/RBP-J signaling regulates various neural cell fate specification, and neuronal functions in the adult central nervous system. Conditional deletion of RBP-J specifically in neuronal cells causes enhanced response to apomorphine, a non-selective dopamine agonist, and SKF38393, a D1 agonist, and impaired dopamine-dependent instrumental avoidance learning, which is corrected by SCH23390, a D1 antagonist. RBP-J deficiency drastically reduced dopamine release in the striatum and caused a subtle decrease in the number of dopaminergic neurons. Lentivirus-mediated gene transfer experiments showed that RBP-J deficiency in the striatum was sufficient for these deficits. These findings demonstrated that Notch/RBP-J signaling regulates dopamine responsiveness in the striatum, which may explain the mechanism whereby Notch/RBP-J signaling affects an individual's susceptibility to neuropsychiatric disease.

  6. Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo

    PubMed Central

    Lohr, Kelly M.; Bernstein, Alison I.; Stout, Kristen A.; Dunn, Amy R.; Lazo, Carlos R.; Alter, Shawn P.; Wang, Minzheng; Li, Yingjie; Fan, Xueliang; Hess, Ellen J.; Yi, Hong; Vecchio, Laura M.; Goldstein, David S.; Guillot, Thomas S.; Salahpour, Ali; Miller, Gary W.

    2014-01-01

    Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease. PMID:24979780

  7. Dopamine regulates body size in Caenorhabditis elegans.

    PubMed

    Nagashima, Takashi; Oami, Eitaro; Kutsuna, Natsumaro; Ishiura, Shoichi; Suo, Satoshi

    2016-04-01

    The nervous system plays a critical role in the regulation of animal body sizes. In Caenorhabditis elegans, an amine neurotransmitter, dopamine, is required for the tactile perception of food and food-dependent behavioral changes, while its role in development is unknown. In this study, we show that dopamine negatively regulates body size through a D2-like dopamine receptor, DOP-3, in C. elegans. Dopamine alters body size without affecting food intake or developmental rate. We also found that dopamine promotes egg-laying, although the regulation of body size by dopamine was not solely caused by this effect. Furthermore, dopamine negatively regulates body size through the suppression of signaling by octopamine and Gq-coupled octopamine receptors, SER-3 and SER-6. Our results demonstrate that dopamine and octopamine regulate the body size of C. elegans and suggest a potential role for perception in addition to ingestion of food for growth.

  8. Dopamine, reward learning, and active inference

    PubMed Central

    FitzGerald, Thomas H. B.; Dolan, Raymond J.; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings. PMID:26581305

  9. Adolescent social defeat alters N-methyl-D-aspartic acid receptor expression and impairs fear learning in adulthood.

    PubMed

    Novick, Andrew M; Mears, Mackenzie; Forster, Gina L; Lei, Yanlin; Tejani-Butt, Shanaz M; Watt, Michael J

    2016-05-01

    Repeated social defeat of adolescent male rats results in adult mesocortical dopamine hypofunction, impaired working memory, and increased contextual anxiety-like behavior. Given the role of glutamate in dopamine regulation, cognition, and fear and anxiety, we investigated potential changes to N-methyl-D-aspartic acid (NMDA) receptors following adolescent social defeat. As both NMDA receptors and mesocortical dopamine are implicated in the expression and extinction of conditioned fear, a separate cohort of rats was challenged with a classical fear conditioning paradigm to investigate whether fear learning is altered by adolescent defeat. Quantitative autoradiography was used to measure 3H-MK-801 binding to NMDA receptors in regions of the medial prefrontal cortex, caudate putamen, nucleus accumbens, amygdala and hippocampus. Assessment of fear learning was achieved using an auditory fear conditioning paradigm, with freezing toward the auditory tone used as a measure of conditioned fear. Compared to controls, adolescent social defeat decreased adult NMDA receptor expression in the infralimbic region of the prefrontal cortex and central amygdala, while increasing expression in the CA3 region of the hippocampus. Previously defeated rats also displayed decreased conditioned freezing during the recall and first extinction periods, which may be related to the observed decreases and increases in NMDA receptors within the central amygdala and CA3, respectively. The alteration in NMDA receptors seen following adolescent social defeat suggests that dysfunction of glutamatergic systems, combined with mesocortical dopamine deficits, likely plays a role in the some of the long-term behavioral consequences of social stressors in adolescence seen in both preclinical and clinical studies.

  10. Cue-Evoked Dopamine Release Rapidly Modulates D2 Neurons in the Nucleus Accumbens During Motivated Behavior

    PubMed Central

    Owesson-White, Catarina; Belle, Anna M.; Herr, Natalie R.; Peele, Jessica L.; Gowrishankar, Preethi; Carelli, Regina M.

    2016-01-01

    Dopaminergic neurons that project from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) fire in response to unpredicted rewards or to cues that predict reward delivery. Although it is well established that reward-related events elicit dopamine release in the NAc, the role of rapid dopamine signaling in modulating NAc neurons that respond to these events remains unclear. Here, we examined dopamine's actions in the NAc in the rat brain during an intracranial self-stimulation task in which a cue predicted lever availability for electrical stimulation of the VTA. To distinguish actions of dopamine at select receptors on NAc neurons during the task, we used a multimodal sensor that probes three aspects of neuronal communication simultaneously: neurotransmitter release, cell firing, and identification of dopamine receptor type. Consistent with prior studies, we first show dopamine release events in the NAc both at cue presentation and after lever press (LP). Distinct populations of NAc neurons encode these behavioral events at these same locations selectively. Using our multimodal sensor, we found that dopamine-mediated responses after the cue involve exclusively a subset of D2-like receptors (D2Rs), whereas dopamine-mediated responses proximal to the LP are mediated by both D1-like receptors (D1R) and D2Rs. These results demonstrate for the first time that dopamine-mediated responses after cues that predict reward availability are specifically linked to its actions at a subset of neurons in the NAc containing D2Rs. SIGNIFICANCE STATEMENT Successful reward procurement typically involves the completion of a goal-directed behavior in response to appropriate environmental cues. Although numerous studies link the mesolimbic dopamine system with these processes, how dopamine's effects are mediated on the receptor level within a key neural substrate, the nucleus accumbens, remains elusive. Here, we used a unique multimodal sensor that reveals three aspects of

  11. Interactions between dopamine and oxytocin in the control of sexual behaviour.

    PubMed

    Baskerville, Tracey A; Douglas, Alison J

    2008-01-01

    Dopamine and oxytocin are two key neuromodulators involved in reproductive behaviours, such as mating and maternal care. Much evidence underlies their separate roles in such behaviours, but particularly in sexual behaviour. It is generally believed that central dopaminergic and oxytocinergic systems work together to regulate the expression of penile erection, but relatively little is known regarding how they interact. Thus, this review aims to discuss neuroanatomical proof, neuromodulator secretory profiles in the hypothalamus and behavioural pharmacological evidence which support a dopamine-oxytocin link in three hypothalamic nuclei that have been implicated in sexual behaviour, namely the medial preoptic nucleus, supraoptic nucleus and paraventricular nucleus (PVN). We also aim to provide an overview of potential dopamine-mediated transduction pathways that occur within these nuclei and are correlated with the exhibition of penile erection. The PVN provides the most convincing evidence for a dopamine-oxytocin link and it is becoming increasingly apparent that parvocellular oxytocinergic neurons in the PVN, in part, mediate the effects of dopamine to elicit penile erection. However, while we show that oxytocin neurons express dopamine receptors, other evidence on whether dopaminergic activation of PVN oxytocin cells involves a direct and/or indirect mechanism is inconclusive and further evidence is required to establish whether the two systems interact synergistically or sequentially in the regulation of penile erection.

  12. Improvement of Learning and Increase in Dopamine Level in the Frontal Cortex by Methylphenidate in Mice Lacking Dopamine Transporter

    PubMed Central

    Takamatsu, Y.; Hagino, Y.; Sato, A.; Takahashi, T.; Nagasawa, S.Y.; Kubo, Y.; Mizuguchi, M.; Uhl, G.R.; Sora, I.; Ikeda, K.

    2015-01-01

    The symptoms of attention-deficit/hyperactivity disorder (ADHD) are characterized by inattention and hyperactivity-impulsivity. It is a common childhood neurodevelopmental disorder that often persists into adulthood. Improvements in ADHD symptoms using psychostimulants have been recognized as a paradoxical calming effect. The psychostimulant methylphenidate (MPH) is currently used as the first-line medication for the management of ADHD. Recent studies have drawn attention to altered dopamine-mediated neurotransmission in ADHD, particularly reuptake by the dopamine transporter (DAT). This hypothesis is supported by the observation that DAT knockout mice exhibit marked hyperactivity that is responsive to acute MPH treatment. However, other behaviors relevant to ADHD have not been fully clarified. In the present study, we observed learning impairment in shuttle-box avoidance behavior together with hyperactivity in a novel environment in DAT knockout mice. Methylphenidate normalized these behaviors and enhanced escape activity in the tail suspension test. Interestingly, the effective dose of MPH increased extracellular dopamine in the prefrontal cortex but not striatum, suggesting an important role for changes in prefrontal dopamine in ADHD. Research that uses rodent models such as DAT knockout mice may be useful for elucidating the pathophysiology of ADHD. PMID:25817856

  13. Inhibition of K+-stimulated [3H]dopamine and [14C]acetylcholine release by the putative dopamine autoreceptor agonist, B-HT 920.

    PubMed

    Schmidt, C J; Lobur, A; Lovenberg, W

    1986-12-01

    The inhibition of K+-stimulated [3H]dopamine and [14C]acetylcholine release from preloaded rat striatal slices was used to examine the presynaptic selectivity of the putative dopamine autoreceptor agonist, B-HT 920. In the micromolar range, B-HT 920 caused a concentration-dependent inhibition of the release of both labeled neurotransmitters as evoked by 20 mM K+. The effect of B-HT 920 on both [3H]dopamine and [14C]acetylcholine release was completely blocked by (+) butaclamol but not by (-) butaclamol. Sulpiride, a selective D2 antagonist, similarly blocked the inhibitory effect of B-HT 920 on the release of both labeled neurotransmitters indicating both responses were mediated by D2 receptors. (+) Butaclamol alone elevated stimulated [3H]dopamine release suggesting a significant amount of autoreceptor occupancy by endogenously released dopamine. Experiments with tolazoline and the alpha 2 agonist, B-HT 933, did not suggest any involvement of alpha-adrenoceptor activity in the inhibitory effects of B-HT 920 on the release of either transmitter. Inhibition of release was a selective effect of B-HT 920 as the drug was without effect on the K+-stimulated release of [3H]serotonin. The results indicate that in vitro B-HT 920 is active of both pre- and postsynaptic dopamine receptors in contrast to the pattern of effects observed after its in vivo administration.

  14. Chaotic behavior in dopamine neurodynamics.

    PubMed Central

    King, R; Barchas, J D; Huberman, B A

    1984-01-01

    We report the results of the dynamics of a model of the central dopaminergic neuronal system. In particular, for certain values of a parameter k, which monitors the efficacy of dopamine at the postsynaptic receptor, chaotic solutions of the dynamical equations appear--a prediction that correlates with the observed increased variability in behavior among schizophrenics, the rapid fluctuations in motor activity among Parkinsonian patients treated chronically with L-dopa, and the lability of mood in some patients with an affective disorder. Moreover our hypothesis offers specific results concerning the appearance or disappearance of erratic solutions as a function of k and the external input to the dopamine neuronal system. PMID:6583705

  15. Chaotic behavior in dopamine neurodynamics.

    PubMed

    King, R; Barchas, J D; Huberman, B A

    1984-02-01

    We report the results of the dynamics of a model of the central dopaminergic neuronal system. In particular, for certain values of a parameter k, which monitors the efficacy of dopamine at the postsynaptic receptor, chaotic solutions of the dynamical equations appear--a prediction that correlates with the observed increased variability in behavior among schizophrenics, the rapid fluctuations in motor activity among Parkinsonian patients treated chronically with L-dopa, and the lability of mood in some patients with an affective disorder. Moreover our hypothesis offers specific results concerning the appearance or disappearance of erratic solutions as a function of k and the external input to the dopamine neuronal system.

  16. The alleged dopamine D1 receptor agonist SKF 83959 is a dopamine D1 receptor antagonist in primate cells and interacts with other receptors.

    PubMed

    Andringa, G; Drukarch, B; Leysen, J E; Cools, A R; Stoof, J C

    1999-01-01

    So far, no clear correlation has been found between the effects of dopamine D1 receptor agonists on motor behavior in primate models of Parkinson's disease and their ability to stimulate adenylate cyclase in rats, the benzazepine SKF 83959 (3-methyl-6-chloro-7,8-hydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-]H- 3-benzazepine) being the most striking example. Since this discrepancy might be attributed to: (A) the different species used to study these effects or (B) the interaction of SKF 83959 with other catecholamine receptors, the aims of this study were: (1) to study the ability of SKF 83959 to stimulate adenylate cyclase in cultured human and monkey glial cells equipped with dopamine D1 receptors and (2) to evaluate the affinity for and the functional interaction of SKF 83959 with other catecholamine receptors. Binding studies revealed that SKF 83959 displayed the highest affinity for the dopamine D1 receptor (pKi=6.72) and the alpha2-adrenoceptor (pKi=6.41) and moderate affinity for the dopamine D2 receptor and the noradrenaline transporter. In monkey and human cells, SKF 83959 did not stimulate cyclic adenosine monophosphate (cAMP) formation to a significant extent, but antagonized very potently the dopamine-induced stimulation of cAMP formation in both cell types. The compound stimulated basal dopamine outflow and inhibited depolarization-induced acetylcholine release only at concentrations > 10 microM. Finally, SKF 83959 concentration dependently increased electrically evoked noradrenaline release, indicating that it had alpha2-adrenoceptor blocking activity and interfered with the noradrenaline transporter. In conclusion, SKF 83959 is a potent dopamine D1 receptor and alpha2-adrenoceptor antagonist. Thus, the anti-parkinsonian effects of SKF 83959 in primates are not mediated by striatal dopamine D1 receptors coupled to adenylate cyclase in a stimulatory way.

  17. Dopamine Release Dynamics Change during Adolescence and after Voluntary Alcohol Intake

    PubMed Central

    Palm, Sara; Nylander, Ingrid

    2014-01-01

    Adolescence is associated with high impulsivity and risk taking, making adolescent individuals more inclined to use drugs. Early drug use is correlated to increased risk for substance use disorders later in life but the neurobiological basis is unclear. The brain undergoes extensive development during adolescence and disturbances at this time are hypothesized to contribute to increased vulnerability. The transition from controlled to compulsive drug use and addiction involve long-lasting changes in neural networks including a shift from the nucleus accumbens, mediating acute reinforcing effects, to recruitment of the dorsal striatum and habit formation. This study aimed to test the hypothesis of increased dopamine release after a pharmacological challenge in adolescent rats. Potassium-evoked dopamine release and uptake was investigated using chronoamperometric dopamine recordings in combination with a challenge by amphetamine in early and late adolescent rats and in adult rats. In addition, the consequences of voluntary alcohol intake during adolescence on these effects were investigated. The data show a gradual increase of evoked dopamine release with age, supporting previous studies suggesting that the pool of releasable dopamine increases with age. In contrast, a gradual decrease in evoked release with age was seen in response to amphetamine, supporting a proportionally larger storage pool of dopamine in younger animals. Dopamine measures after voluntary alcohol intake resulted in lower release amplitudes in response to potassium-chloride, indicating that alcohol affects the releasable pool of dopamine and this may have implications for vulnerability to addiction and other psychiatric diagnoses involving dopamine in the dorsal striatum. PMID:24788731

  18. The dopamine D(1) receptor agonist SKF-82958 serves as a discriminative stimulus in the rat.

    PubMed

    Haile, C N; Carey, G; Varty, G B; Coffin, V L

    2000-01-28

    We examined the discriminative stimulus effects of the high-efficacy dopamine D(1) receptor agonist (+/-)6-chloro-7, 8-dihydroxy-3-ally1-phenyl-2,3,4,5-tetrahydro-1H-3benzazepine++ + hydrobromide (SKF-82958) in rats trained to discriminate SKF-82958 (0.03 mg/kg) from vehicle in a two-lever food-reinforced drug discrimination task. SKF-82958 produced dose-related increases in responding to the SKF-82958 appropriate lever with full substitution occurring at the training dose. Pretreatment with the dopamine D(1)/D(5) receptor antagonist (-)-trans-6,7,7a,8,9, 13b-hexahydro-3-chloro-2hydroxy-N-methyl-5H-benzo-[d]naphtho -¿2, 1-b¿azepine (SCH-39166) (0.01 mg/kg) attenuated the discriminative stimulus effects of SKF-82958. Pretreatment with the dopamine D(2) receptor antagonist raclopride (0.03 mg/kg) had no effect. The high-efficacy dopamine D(1) receptor agonist R(+)6chloro-7, 8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF-81297) fully substituted for SKF-82958, whereas the low-efficacy dopamine D(1) receptor agonist (+/-)1-phenyl-2,3,4, 5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride (SKF-38393) produced only partial substitution. The dopamine D(2) receptor agonist trans-(+/-)-4,4a,5,6,7,8,8a, 9-octahydro-5-propyl-1H-propyl-1H-pyrazolo[3,4-g]quinoline dihydrochloride (quinpirole) and the indirect dopamine agonist cocaine did not substitute fully for the SKF-82958 discriminative stimulus cue. These results demonstrate that the high-efficacy dopamine D(1) receptor agonist SKF-82958 can serve as an effective discriminative stimulus in the rat, and that these effects are mediated by a dopamine D(1)-like receptor mechanism.

  19. Inhibition of Adult Rat Retinal Ganglion Cells by D1-type Dopamine Receptor Activation

    PubMed Central

    Hayashida, Yuki; Rodríguez, Carolina Varela; Ogata, Genki; Partida, Gloria J.; Oi, Hanako; Stradleigh, Tyler W.; Lee, Sherwin C.; Colado, Anselmo Felipe; Ishida, Andrew T.

    2011-01-01

    The spike output of neural pathways can be regulated by modulating output neuron excitability and/or their synaptic inputs. Dopaminergic interneurons synapse onto cells that route signals to mammalian retinal ganglion cells, but it is unknown whether dopamine can activate receptors in these ganglion cells and, if it does, how this affects their excitability. Here, we show D1a-receptor-like immunoreactivity in ganglion cells identified in adult rats by retrogradely transported dextran, and that dopamine, D1-type receptor agonists, and cAMP analogs inhibit spiking in ganglion cells dissociated from adult rats. These ligands curtailed repetitive spiking during constant current injections, and reduced the number and rate of rise of spikes elicited by fluctuating current injections without significantly altering the timing of the remaining spikes. Consistent with mediation by D1-type receptors, SCH-23390 reversed the effects of dopamine on spikes. Contrary to a recent report, spike inhibition by dopamine was not precluded by blocking Ih. Consistent with the reduced rate of spike rise, dopamine reduced voltage-gated Na+ current (INa) amplitude and tetrodotoxin, at doses that reduced INa as moderately as dopamine, also inhibited spiking. These results provide the first direct evidence that D1-type dopamine receptor activation can alter mammalian retinal ganglion cell excitability, and demonstrate that dopamine can modulate spikes in these cells by a mechanism different from the pre- and postsynaptic means proposed by previous studies. To our knowledge, our results also provide the first evidence that dopamine receptor activation can reduce excitability without altering the temporal precision of spike firing. PMID:19940196

  20. Non-enzymic beta-decarboxylation of aspartic acid.

    NASA Technical Reports Server (NTRS)

    Doctor, V. M.; Oro, J.

    1972-01-01

    Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.

  1. Dopamine Transporter Activity Is Modulated by α-Synuclein.

    PubMed

    Butler, Brittany; Saha, Kaustuv; Rana, Tanu; Becker, Jonas P; Sambo, Danielle; Davari, Paran; Goodwin, J Shawn; Khoshbouei, Habibeh

    2015-12-04

    The duration and strength of the dopaminergic signal are regulated by the dopamine transporter (DAT). Drug addiction and neurodegenerative and neuropsychiatric diseases have all been associated with altered DAT activity. The membrane localization and the activity of DAT are regulated by a number of intracellular proteins. α-Synuclein, a protein partner of DAT, is implicated in neurodegenerative disease and drug addiction. Little is known about the regulatory mechanisms of the interaction between DAT and α-synuclein, the cellular location of this interaction, and the functional consequences of this interaction on the basal, amphetamine-induced DAT-mediated dopamine efflux, and membrane microdomain distribution of the transporter. Here, we found that the majority of DAT·α-synuclein protein complexes are found at the plasma membrane of dopaminergic neurons or mammalian cells and that the amphetamine-mediated increase in DAT activity enhances the association of these proteins at the plasma membrane. Further examination of the interaction of DAT and α-synuclein revealed a transient interaction between these two proteins at the plasma membrane. Additionally, we found DAT-induced membrane depolarization enhances plasma membrane localization of α-synuclein, which in turn increases dopamine efflux and enhances DAT localization in cholesterol-rich membrane microdomains.

  2. Aspartate oxidase plays an important role in Arabidopsis stomatal immunity.

    PubMed

    Macho, Alberto P; Boutrot, Freddy; Rathjen, John P; Zipfel, Cyril

    2012-08-01

    Perception of pathogen-associated molecular patterns (PAMPs), such as bacterial flagellin (or the peptide flg22), by surface-localized receptors activates defense responses and subsequent immunity. In a previous forward-genetic screen aimed at the identification of Arabidopsis (Arabidopsis thaliana) flagellin-insensitive (fin) mutants, we isolated fin4, which is severely affected in flg22-triggered reactive oxygen species (ROS) bursts. Here, we report that FIN4 encodes the chloroplastic enzyme ASPARTATE OXIDASE (AO), which catalyzes the first irreversible step in the de novo biosynthesis of NAD. Genetic studies on the role of NAD have been hindered so far by the lethality of null mutants in NAD biosynthetic enzymes. Using newly identified knockdown fin alleles, we found that AO is required for the ROS burst mediated by the NADPH oxidase RBOHD triggered by the perception of several unrelated PAMPs. AO is also required for RBOHD-dependent stomatal closure. However, full AO activity is not required for flg22-induced responses that are RBOHD independent. Interestingly, although the fin4 mutation dramatically affects RBOHD function, it does not affect functions carried out by other members of the RBOH family, such as RBOHC and RBOHF. Finally, we determined that AO is required for stomatal immunity against the bacterium Pseudomonas syringae. Altogether, our work reveals a novel specific requirement for AO activity in PAMP-triggered RBOHD-dependent ROS burst and stomatal immunity. In addition, the availability of viable mutants for the chloroplastic enzyme AO will enable future detailed studies on the role of NAD metabolism in different cellular processes, including immunity, in Arabidopsis.

  3. Fragmentation reactions of deprotonated peptides containing aspartic acid

    NASA Astrophysics Data System (ADS)

    Harrison, Alex G.; Young, Alex B.

    2006-09-01

    The fragmentation reactions of deprotonated peptides containing aspartic acid have been elucidated using MS2 and MS3 experiments and accurate mass measurements where necessary. The disposition of labile (N and O bonded) hydrogens in the fragmentation products has been studied by exchanging the labile hydrogens for deuterium whereby the [MD]- ion is formed on electrospray ionization. [alpha]-Aspartyl and [beta]-aspartyl dipeptides give very similar fragment ion spectra on collisional activation, involving for both species primarily formation of the y1 ion and loss of H2O from [MH]- followed by further fragmentation, thus precluding the distinction of the isomeric species by negative ion tandem mass spectrometry. Dipeptides of sequence HXxxAspOH give characteristic spectra different from the [alpha]- and [beta]-isomers. For larger peptides containing aspartic acid a common fragmentation reaction involves nominal cleavage of the NC bond N-terminal to the aspartic acid residue to form a c ion (deprotonated amino acid amide (c1) or peptide amide (cn)) and the complimentary product involving elimination of a neutral amino acid amide or peptide amide. When aspartic acid is in the C-terminal position this fragmentation reaction occurs from the [MH]- ion while when the aspartic acid is not in the C-terminal position the fragmentation reaction occurs mainly from the [MHH2O]- ion. The products of this NC bond cleavage reaction serve to identify the position of the aspartic acid residue in the peptide.

  4. Urinary Dopamine as a Potential Index of the Transport Activity of Multidrug and Toxin Extrusion in the Kidney.

    PubMed

    Kajiwara, Moto; Ban, Tsuyoshi; Matsubara, Kazuo; Nakanishi, Yoichi; Masuda, Satohiro

    2016-07-30

    Dopamine is a cationic natriuretic catecholamine synthesized in proximal tubular cells (PTCs) of the kidney before secretion into the lumen, a key site of its action. However, the molecular mechanisms underlying dopamine secretion into the lumen remain unclear. Multidrug and toxin extrusion (MATE) is a H⁺/organic cation antiporter that is highly expressed in the brush border membrane of PTCs and mediates the efflux of organic cations, including metformin and cisplatin, from the epithelial cells into the urine. Therefore, we hypothesized that MATE mediates dopamine secretion, a cationic catecholamine, into the tubule lumen, thereby regulating natriuresis. Here, we show that [³H]dopamine uptake in human (h) MATE1-, hMATE-2K- and mouse (m) MATE-expressing cells exhibited saturable kinetics. Fluid retention and decreased urinary excretion of dopamine and Na⁺ were observed in Mate1-knockout mice compared to that in wild-type mice. Imatinib, a MATE inhibitor, inhibited [³H]dopamine uptake by hMATE1-, hMATE2-K- and mMATE1-expressing cells in a concentration-dependent manner. At clinically-relevant concentrations, imatinib inhibited [³H]dopamine uptake by hMATE1- and hMATE2-K-expressing cells. The urinary excretion of dopamine and Na⁺ decreased and fluid retention occurred in imatinib-treated mice. In conclusion, MATE transporters secrete renally-synthesized dopamine, and therefore, urinary dopamine has the potential to be an index of the MATE transporter activity.

  5. Similar localization of immunoreactive glutamate and aspartate in the pineal organ and retina of various nonmammalian vertebrates.

    PubMed

    Vigh, B; Debreceni, K; Manzano e Silva, M J

    1995-01-01

    The localization of immunoreactive glutamate and aspartate was compared in the pineal organ and retina of various vertebrates (Raja clavata, Carassius auratus, Salvelinus alpinus, Triturus vulgaris, Triturus cristatus, Lacerta muralis, Lacerta agilis, Lacerta viridis, Columbia livia and white leghorn chicken) by postembedding immunoelectron microscopy. Immunoreaction of both excitatory amino acids was detected in the pinealocytes in a localization similar to that of retinal photoreceptors. The reaction was intense in the axonal processes of pinealocytes as well as retinal rods and cones, further in their terminals on secondary pineal and retinal neurons. Subsequent immunoreaction on the same section showed a colocalization of glutamate and aspartate. The accumulation of these amino acids in the presynaptic part of pinealocytes suggests that they act as synaptic mediators in the neural efferentation of the pineal organ. In reptiles and birds where the hormonal efferentation of the pineal is well developed, glutamate and aspartate was also found to be accumulated in neuroendocrine terminals of pinealocytes. Therefore, glutamate and aspartate may have a role in both the hormonal and neural efferentation of the pineal organ.

  6. Multiple functions of Na/K-ATPase in dopamine-induced salivation of the Blacklegged tick, Ixodes scapularis

    PubMed Central

    Kim, Donghun; Urban, Joshua; Boyle, Daniel L.; Park, Yoonseong

    2016-01-01

    Control of salivary secretion in ticks involves autocrine dopamine activating two dopamine receptors: D1 and Invertebrate-specific D1-like dopamine receptors. In this study, we investigated Na/K-ATPase as an important component of the secretory process. Immunoreactivity for Na/K-ATPase revealed basal infolding of lamellate cells in type-I, abluminal interstitial (epithelial) cells in type-II, and labyrinth-like infolding structures opening towards the lumen in type-III acini. Ouabain (10 μmol l−1), a specific inhibitor of Na/K-ATPase, abolished dopamine-induced salivary secretion by suppressing fluid transport in type III acini. At 1 μmol l−1, ouabain, the secreted saliva was hyperosmotic. This suggests that ouabain also inhibits an ion resorptive function of Na/K-ATPase in the type I acini. Dopamine/ouabain were not involved in activation of protein secretion, while dopamine-induced saliva contained constitutively basal level of protein. We hypothesize that the dopamine-dependent primary saliva formation, mediated by Na/K-ATPase in type III and type II acini, is followed by a dopamine-independent resorptive function of Na/K-ATPase in type I acini located in the proximal end of the salivary duct. PMID:26861075

  7. Multiple functions of Na/K-ATPase in dopamine-induced salivation of the Blacklegged tick, Ixodes scapularis.

    PubMed

    Kim, Donghun; Urban, Joshua; Boyle, Daniel L; Park, Yoonseong

    2016-02-10

    Control of salivary secretion in ticks involves autocrine dopamine activating two dopamine receptors: D1 and Invertebrate-specific D1-like dopamine receptors. In this study, we investigated Na/K-ATPase as an important component of the secretory process. Immunoreactivity for Na/K-ATPase revealed basal infolding of lamellate cells in type-I, abluminal interstitial (epithelial) cells in type-II, and labyrinth-like infolding structures opening towards the lumen in type-III acini. Ouabain (10 μmol l(-1)), a specific inhibitor of Na/K-ATPase, abolished dopamine-induced salivary secretion by suppressing fluid transport in type III acini. At 1 μmol l(-1), ouabain, the secreted saliva was hyperosmotic. This suggests that ouabain also inhibits an ion resorptive function of Na/K-ATPase in the type I acini. Dopamine/ouabain were not involved in activation of protein secretion, while dopamine-induced saliva contained constitutively basal level of protein. We hypothesize that the dopamine-dependent primary saliva formation, mediated by Na/K-ATPase in type III and type II acini, is followed by a dopamine-independent resorptive function of Na/K-ATPase in type I acini located in the proximal end of the salivary duct.

  8. [Dopamine content in blood and activity of alcohol-transforming enzymes in alcoholism].

    PubMed

    Kharchenko, N K

    1997-01-01

    An increase of alcohol dehydrogenase activity is observed in patients with chronic alcoholism at the first stage of the disease under normal indices of activity of aldehyde dehydrogenase, aspartate- and alanine aminotransferase and thymol sample that evidences for the induction of alcohol dehydrogenase synthesis in the liver. At the second stage of alcoholism the activity of alcohol dehydrogenase, aspartate- and alanine aminotransferase, the index of thymol sample increase while activity of aldehyde dehydrogenase decreases that indicates to organic destructive changes in the liver. At the third stage of alcoholism one can observe the decrease in activity of alcohol dehydrogenase, aldehyde dehydrogenase and alanine aminotransferase relative to activity of these enzymes at the second stage, that can evidence for the increase of the possibility of the processes of synthesis of the liver. The correlation of alcohol dehydrogenase activity to that of aldehyde dehydrogenase in the process of formation and development of alcoholism is shifted towards the progressive accumulation of acetaldehyde. Parallel increase of dopamine concentration in blood creates conditions for formation of morphine-like alcaloides--products of condensation of acetaldehide with dopamine.

  9. Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters

    PubMed Central

    Can, Adem; Zanos, Panos; Moaddel, Ruin; Kang, Hye Jin; Dossou, Katinia S. S.; Wainer, Irving W.; Cheer, Joseph F.; Frost, Douglas O.; Huang, Xi-Ping

    2016-01-01

    Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine’s antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine’s side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1–D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine’s enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 μM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect. PMID

  10. Antiferroptotic activity of non-oxidative dopamine.

    PubMed

    Wang, Ding; Peng, Yingpeng; Xie, Yangchun; Zhou, Borong; Sun, Xiaofang; Kang, Rui; Tang, Daolin

    2016-11-25

    Dopamine is a neurotransmitter that has many functions in the nervous and immune systems. Ferroptosis is a non-apoptotic form of regulated cell death that is involved in cancer and neurodegenerative diseases. However, the role of dopamine in ferroptosis remains unidentified. Here, we show that the non-oxidative form of dopamine is a strong inhibitor of ferroptotic cell death. Dopamine dose-dependently blocked ferroptosis in cancer (PANC1 and HEY) and non-cancer (MEF and HEK293) cells following treatment with erastin, a small molecule ferroptosis inducer. Notably, dopamine reduced erastin-induced ferrous iron accumulation, glutathione depletion, and malondialdehyde production. Mechanically, dopamine increased the protein stability of glutathione peroxidase 4, a phospholipid hydroperoxidase that protects cells against membrane lipid peroxidation. Moreover, dopamine suppressed dopamine receptor D4 protein degradation and promoted dopamine receptor D5 gene expression. Thus, our findings uncover a novel function of dopamine in cell death and provide new insight into the regulation of iron metabolism and lipid peroxidation by neurotransmitters.

  11. Establishing the dopamine dependency of human striatal signals during reward and punishment reversal learning.

    PubMed

    van der Schaaf, Marieke E; van Schouwenburg, Martine R; Geurts, Dirk E M; Schellekens, Arnt F A; Buitelaar, Jan K; Verkes, Robbert Jan; Cools, Roshan

    2014-03-01

    Drugs that alter dopamine transmission have opposite effects on reward and punishment learning. These opposite effects have been suggested to depend on dopamine in the striatum. Here, we establish for the first time the neurochemical specificity of such drug effects, during reward and punishment learning in humans, by adopting a coadministration design. Participants (N = 22) were scanned on 4 occasions using functional magnetic resonance imaging, following intake of placebo, bromocriptine (dopamine-receptor agonist), sulpiride (dopamine-receptor antagonist), or a combination of both drugs. A reversal-learning task was employed, in which both unexpected rewards and punishments signaled reversals. Drug effects were stratified with baseline working memory to take into account individual variations in drug response. Sulpiride induced parallel span-dependent changes on striatal blood oxygen level-dependent (BOLD) signal during unexpected rewards and punishments. These drug effects were found to be partially dopamine-dependent, as they were blocked by coadministration with bromocriptine. In contrast, sulpiride elicited opposite effects on behavioral measures of reward and punishment learning. Moreover, sulpiride-induced increases in striatal BOLD signal during both outcomes were associated with behavioral improvement in reward versus punishment learning. These results provide a strong support for current theories, suggesting that drug effects on reward and punishment learning are mediated via striatal dopamine.

  12. Formation of dopamine adducts derived from brain polyunsaturated fatty acids: mechanism for Parkinson disease.

    PubMed

    Liu, Xuebo; Yamada, Naruomi; Maruyama, Wakako; Osawa, Toshihiko

    2008-12-12

    Oxidative stress appears to be directly involved in the pathogenesis of the neurodegeneration of dopaminergic systems in Parkinson disease. In this study, we formed four dopamine modification adducts derived from docosahexaenoic acid (C22:6/omega-3) and arachidonic acid (C18:4/omega-6), which are known as the major polyunsaturated fatty acids in the brain. Upon incubation of dopamine with fatty acid hydroperoxides and an in vivo experiment using rat brain tissue, all four dopamine adducts were detected. Furthermore, hexanoyl dopamine (HED), an arachidonic acid-derived adduct, caused severe cytotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells, whereas the other adducts were only slightly affected. The HED-induced cell death was found to include apoptosis, which also seems to be mediated by reactive oxygen species generation and mitochondrial abnormality. Additionally, the experiments using monoamine transporter inhibitor and mouse embryonic fibroblast NIH-3T3 cells that lack the monoamine transporter indicate that the HED-induced cytotoxicity might specially occur in the neuronal cells. These data suggest that the formation of the docosahexaenoic acid- and arachidonic acid-derived dopamine adducts in vitro and in vivo, and HED, the arachidonic acid-derived dopamine modification adduct, which caused selective cytotoxicity of neuronal cells, may indicate a novel mechanism responsible for the pathogenesis in Parkinson disease.

  13. Ghrelin and nicotine stimulate equally the dopamine release in the rat amygdala.

    PubMed

    Palotai, Miklós; Bagosi, Zsolt; Jászberényi, Miklós; Csabafi, Krisztina; Dochnal, Roberta; Manczinger, Máté; Telegdy, Gyula; Szabó, Gyula

    2013-10-01

    The orexigenic peptide ghrelin plays a prominent role in the regulation of energy balance and in the mediation of reward processes and reinforcement for addictive drugs, such as nicotine. Nicotine is the principal psychoactive component in tobacco, which is responsible for addiction and relapse of smokers. Ghrelin and nicotine activates the mesolimbicocortical dopaminergic pathways via growth hormone secretagogue receptors (GHS-R1A) and nicotinic acetylcholine receptors (nAchR), respectively, resulting in the release of dopamine in the nucleus accumbens, the amygdala and the prefrontal cortex. In the present study an in vitro superfusion of rat amygdalar slices was performed in order to investigate the direct action of ghrelin and nicotine on the amygdalar dopamine release. Ghrelin increased significantly the dopamine release from the rat amygdala following electrical stimulation. This effect was inhibited by both the selective GHS-R1A antagonist GHRP-6 and the selective nAchR antagonist mecamylamine. Under the same conditions, nicotine also increased significantly the dopamine release from the rat amygdala. This effect was antagonized by mecamylamine, but not by GHRP-6. Co-administration of ghrelin and nicotine induced a similar increase of amygdalar dopamine release. This stimulatory effect was partially reversed by both GHRP-6 and mecamylamine. The present results demonstrate that both ghrelin and nicotine stimulates directly the dopamine release in the amygdala, an important dopaminergic target area of the mesolimbicocortical pathway.

  14. Associations between a locus downstream DRD1 gene and cerebrospinal fluid dopamine metabolite concentrations in psychosis.

    PubMed

    Andreou, Dimitrios; Söderman, Erik; Axelsson, Tomas; Sedvall, Göran C; Terenius, Lars; Agartz, Ingrid; Jönsson, Erik G

    2016-04-21

    Dopamine activity, mediated by the catecholaminergic neurotransmitter dopamine, is prominent in the human brain and has been implicated in schizophrenia. Dopamine targets five different receptors and is then degraded to its major metabolite homovanillic acid (HVA). We hypothesized that genes encoding dopamine receptors may be associated with cerebrospinal fluid (CSF) HVA concentrations in patients with psychotic disorder. We searched for association between 67 single nucleotide polymorphisms (SNPs) in the five dopamine receptor genes i.e., DRD1, DRD2, DRD3, DRD4 and DRD5, and the CSF HVA concentrations in 74 patients with psychotic disorder. Nominally associated SNPs were also tested in 111 healthy controls. We identified a locus, located downstream DRD1 gene, where four SNPs, rs11747728, rs11742274, rs265974 and rs11747886, showed association with CSF HVA concentrations in psychotic patients. The associations between rs11747728, which is a regulatory region variant, and rs11742274 with HVA remained significant after correction for multiple testing. These associations were restricted to psychotic patients and were absent in healthy controls. The results suggest that the DRD1 gene is implicated in the pathophysiology of psychosis and support the dopamine hypothesis of schizophrenia.

  15. Dopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice

    PubMed Central

    Gallardo, Christian M; Darvas, Martin; Oviatt, Mia; Chang, Chris H; Michalik, Mateusz; Huddy, Timothy F; Meyer, Emily E; Shuster, Scott A; Aguayo, Antonio; Hill, Elizabeth M; Kiani, Karun; Ikpeazu, Jonathan; Martinez, Johan S; Purpura, Mari; Smit, Andrea N; Patton, Danica F; Mistlberger, Ralph E; Palmiter, Richard D; Steele, Andrew D

    2014-01-01

    Daily rhythms of food anticipatory activity (FAA) are regulated independently of the suprachiasmatic nucleus, which mediates entrainment of rhythms to light, but the neural circuits that establish FAA remain elusive. In this study, we show that mice lacking the dopamine D1 receptor (D1R KO mice) manifest greatly reduced FAA, whereas mice lacking the dopamine D2 receptor have normal FAA. To determine where dopamine exerts its effect, we limited expression of dopamine signaling to the dorsal striatum of dopamine-deficient mice; these mice developed FAA. Within the dorsal striatum, the daily rhythm of clock gene period2 expression was markedly suppressed in D1R KO mice. Pharmacological activation of D1R at the same time daily was sufficient to establish anticipatory activity in wild-type mice. These results demonstrate that dopamine signaling to D1R-expressing neurons in the dorsal striatum plays an important role in manifestation of FAA, possibly by synchronizing circadian oscillators that modulate motivational processes and behavioral output. DOI: http://dx.doi.org/10.7554/eLife.03781.001 PMID:25217530

  16. D1 dopamine receptor regulation of the levels of the cell-cycle-controlling proteins, cyclin D, P27 and Raf-1, in cerebral cortical precursor cells is mediated through cAMP-independent pathways.

    PubMed

    Zhang, Ling; Bai, Jie; Undie, Ashiwel S; Bergson, Clare; Lidow, Michael S

    2005-01-01

    Previously, we demonstrated that dopamine D1 receptor (D1R) agonists inhibit epidermal growth factor (EGF)-induced passage of mouse fetal cerebral cortical precursor cells from the G1 phase to the S phase of the cell cycle. Here, we report that this action of D1R agonists may involve regulation of cyclin D, and P27, which respectively promote and suppress the G1 to S transition. Furthermore, regulation of Raf-1, a component of the receptor tyrosine kinase mitogen-activated protein kinase pathway engaged in the mitogenic activity of EGF, may also be involved. Specifically, levels of cyclin D and Raf-1 decrease, whereas those of P27 first increase and then decrease in a dose-dependent fashion in response to the D1R agonist, SKF38393. This agonist also promotes Raf-1 phosphorylation on serine 338 residue, suggesting increased activation of this protein. Only the latter effect can be blocked by adenylyl cyclase (AC) and cAMP-dependent protein kinase A (PKA) inhibitors, and mimicked by agonists of the cAMP signaling pathway. Another D1R agonist, SKF83959, which stimulates phospholipase Cbeta (PLCbeta) but not AC, reduces levels of Raf-1 and cyclin D similar to SKF38393. However, we detected only down-regulation of P27 by this agonist. Additionally, the concentration-dependent patterns of both SKF38393- and SKF83959-induced alterations in the levels of P27 closely resemble the effects of these ligands on the levels of the D1R-PLCbeta-associated second-messenger cascades linker, calcyon. These findings suggest that D1R-induced suppression of the cell cycle progression in EGF-supported fetal cortical precursor cells represents a net effect of competing cell cycle promoting and inhibiting molecular changes, which involve cyclin D, P27 and Raf-1. The data also show that cAMP second messenger cascade is not engaged in the D1R-induced regulation of the levels of these three proteins. Such regulation probably involves PLCbeta-associated pathways.

  17. Opposite Actions of Dopamine on Aversive and Appetitive Memories in the Crab

    ERIC Educational Resources Information Center

    Klappenbach, Martin; Maldonado, Hector; Locatelli, Fernando; Kaczer, Laura

    2012-01-01

    The understanding of how the reinforcement is represented in the central nervous system during memory formation is a current issue in neurobiology. Several studies in insects provide evidence of the instructive role of biogenic amines during the learning and memory process. In insects it was widely accepted that dopamine (DA) mediates aversive…

  18. Cocaine exposure modulates dopamine and adenosine signaling in the fetal brain

    PubMed Central

    Kubrusly, Regina C. C.; Bhide, Pradeep G.

    2009-01-01

    Exposure to cocaine during the fetal period can produce significant lasting changes in the structure and function of the brain. Cocaine exerts its effects on the developing brain by blocking monoamine transporters and impairing monoamine receptor signaling. Dopamine is a major central target of cocaine. In a mouse model, we show that cocaine exposure from embryonic day 8 (E8) to E14 produces significant reduction in dopamine transporter activity, attenuation of dopamine D1-receptor function and upregulation of dopamine D2-receptor function. Cocaine’s effects on the D1-receptor are at the level of protein expression as well as activity. The cocaine exposure also produces significant increases in basal cAMP levels in the striatum and cerebral cortex. The increase in the basal cAMP levels was independent of dopamine receptor activity. In contrast, blocking the adenosine A2a receptor downregulated of the basal cAMP levels in the cocaine-exposed brain to physiological levels, suggesting the involvement of adenosine receptors in mediating cocaine’s effects on the embryonic brain. In support of this suggestion, we found that the cocaine exposure downregulated adenosine transporter function. We also found that dopamine D2- and adenosine A2a-receptors antagonize each other’s function in the embryonic brain in a manner consistent with their interactions in the mature brain. Thus, our data show that prenatal cocaine exposure produces direct effects on both the dopamine and adenosine systems. Furthermore, the dopamine D2 and adenosine A2a receptor interactions in the embryonic brain discovered in this study unveil a novel substrate for cocaine’s effects on the developing brain. PMID:19765599

  19. Antipsychotic treatment leading to dopamine supersensitivity persistently alters nucleus accumbens function.

    PubMed

    El Hage, Cynthia; Bédard, Anne-Marie; Samaha, Anne-Noël

    2015-12-01

    Chronic exposure to some antipsychotic medications can induce supersensitivity to dopamine receptor stimulation. This is linked to a worsening of clinical outcome and to antipsychotic treatment failure. Here we investigated the role of striatal subregions [nucleus accumbens (NAc) and caudate-putamen (CPu)] in the expression of antipsychotic-induced dopamine supersensitivity. We treated rats with haloperidol (HAL) or olanzapine (OLZ), using regimens that achieve clinically relevant kinetics of striatal D2 receptor occupancy. Under these conditions, HAL produces dopamine supersensitivity whereas OLZ does not. We then assessed behaviors evoked by the dopamine agonist amphetamine (AMPH). We either injected AMPH into the striatum or inhibited striatal function with microinjections of GABA receptor agonists prior to injecting AMPH systemically. HAL-treated rats were dopamine supersensitive, as indicated by sensitization to systemic AMPH-induced potentiation of both locomotor activity and operant responding for a conditioned reward (CR). Intra-CPu injections of AMPH had no effect on these behaviors, in any group. Intra-NAc injections of AMPH enhanced operant responding for CR in OLZ-treated and control rats, but not in HAL-treated rats. In HAL-treated rats, inhibition of the NAc also failed to disrupt systemic AMPH-induced potentiation of operant responding for CR. Furthermore, while intra-NAc AMPH enhanced locomotion in both HAL-treated and control animals, inhibition of the NAc disrupted systemic AMPH-induced locomotion only in control rats. Thus, antipsychotic-induced dopamine supersensitivity persistently disrupts NAc function, such that some behaviors that normally depend upon NAc dopamine no longer do so. This has implications for understanding dysfunctions in dopamine-mediated behaviors in patients undergoing chronic antipsychotic treatment.

  20. Role of 6-monoacetylmorphine in the acute release of striatal dopamine induced by intravenous heroin.

    PubMed

    Gottås, A; Boix, F; Øiestad, E L; Vindenes, V; Mørland, J

    2014-09-01

    After injection, heroin is rapidly metabolized to 6-monoacetylmorphine (6-MAM) and further to morphine. As morphine has been shown to increase striatal dopamine, whereas 6-MAM has not been studied in this respect, we gave i.v. injections of 3 μmol 6-MAM, morphine or heroin to rats. Opioids were measured in blood, and dopamine and opioids in microdialysate from brain striatal extracellular fluid (ECF), by UPLC-MS/MS. After 6-MAM injection, 6-MAM ECF concentrations increased rapidly, and reached Cmax of 4.4 μM after 8 min. After heroin injection, 6-MAM increased rapidly in blood and reached Cmax of 6.4 μM in ECF after 8 min, while ECF Cmax for heroin was 1.2 μM after 2 min. T max for morphine in ECF was 29 and 24 min following 6-MAM and heroin administration, respectively, with corresponding Cmax levels of 1 and 2 μM. Dopamine levels peaked after 8 and 14 min following 6-MAM and heroin administration, respectively. The dopamine responses were equal, indicating no dopamine release by heroin per se. Furthermore, 6-MAM, and not morphine, appeared to mediate the early dopamine response, whereas morphine administration, giving rise to morphine ECF concentrations similar to those observed shortly after 6-MAM injection, did not increase ECF dopamine. 6-MAM appeared accordingly to be the substance responsible for the early increase in dopamine observed after heroin injection. As 6-MAM was formed rapidly from heroin in blood, and was the major substance reaching the brain after heroin administration, this also indicates that factors influencing blood 6-MAM concentrations might change the behavioural effects of heroin.

  1. Evidence that antipsychotic drugs are inverse agonists at D2 dopamine receptors.

    PubMed

    Hall, D A; Strange, P G

    1997-06-01

    1. The effects of a number of D2-like dopamine receptor antagonists have been determined on forskolin-stimulated cyclic AMP accumulation in Chinese hamster ovary (CHO) cells expressing the human D2short dopamine receptor (CHO-D2S cells). 2. Dopamine inhibited the effect of forskolin (as expected for a D2 receptor). However, all of the antagonists tested, apart from UH232 and (-)-butaclamol, were able to increase cyclic AMP accumulation above the forskolin control level. (+)-Butaclamol elicited a similar stimulation of forskolin-stimulated cyclic AMP accumulation in a CHO cell line expressing human D2long dopamine receptors whereas it exhibited no stimulating effect on forskolin-stimulated cyclic AMP accumulation in untransfected CHO-K1 cells. 3. There was a strong correlation between the EC50 values of these compounds for potentiation of cyclic AMP accumulation and their Ki values from radioligand binding experiments in CHO-D2S cells. 4. The effects of both (+)-butaclamol and dopamine in CHO-D2S cells were inhibited by pre-treatment with pertussis toxin indicating a role for Gi/Go proteins. 5. UH232 did not significantly affect forskolin-stimulated cyclic AMP accumulation but this substance was able to inhibit the effects of both dopamine and (+)-butaclamol in a concentration-dependent manner. Thus the effects of (+)-butaclamol on forskolin-stimulated cyclic AMP accumulation are mediated directly via the D2 receptor rather than by reversal of the effects of an endogenous agonist. 6. These data suggest that the D2 dopamine receptor antagonists tested here, many of which are used clinically as antipsychotic drugs, are in fact inverse agonists at human D2 dopamine receptors.

  2. Interactions between glutamate, dopamine, and the neuronal signature of response inhibition in the human striatum.

    PubMed

    Lorenz, Robert C; Gleich, Tobias; Buchert, Ralph; Schlagenhauf, Florian; Kühn, Simone; Gallinat, Jürgen

    2015-10-01

    Response inhibition is a basic mechanism in cognitive control and dysfunctional in major psychiatric disorders. The neuronal mechanisms are in part driven by dopamine in the striatum. Animal data suggest a regulatory role of glutamate on the level of the striatum. We used a trimodal imaging procedure of the human striatum including F18-DOPA positron emission tomography, proton magnetic resonance spectroscopy, and functional magnetic resonance imaging of a stop signal task. We investigated dopamine synthesis capacity and glutamate concentration in vivo and their relation to functional properties of response inhibition. A mediation analysis revealed a significant positive association between dopamine synthesis capacity and inhibition-related neural activity in the caudate nucleus. This relationship was significantly mediated by striatal glutamate concentration. Furthermore, stop signal reaction time was inversely related to striatal activity during inhibition. The data show, for the first time in humans, an interaction between dopamine, glutamate, and the neural signature of response inhibition in the striatum. This finding stresses the importance of the dopamine-glutamate interaction for behavior and may facilitate the understanding of psychiatric disorders characterized by impaired response inhibition.

  3. Dopamine D2/D3 but not dopamine D1 receptors are involved in the rapid antidepressant-like effects of ketamine in the forced swim test.

    PubMed

    Li, Yan; Zhu, Zhuo R; Ou, Bao C; Wang, Ya Q; Tan, Zhou B; Deng, Chang M; Gao, Yi Y; Tang, Ming; So, Ji H; Mu, Yang L; Zhang, Lan Q

    2015-02-15

    Major depressive disorder is one of the most prevalent and life-threatening forms of mental illnesses. The traditional antidepressants often take several weeks, even months, to obtain clinical effects. However, recent clinical studies have shown that ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects within 2h and are long-lasting. The aim of the present study was to investigate whether dopaminergic system was involved in the rapid antidepressant effects of ketamine. The acute administration of ketamine (20 mg/kg) significantly reduced the immobility time in the forced swim test. MK-801 (0.1 mg/kg), the more selective NMDA antagonist, also exerted rapid antidepressant-like effects. In contrast, fluoxetine (10 mg/kg) did not significantly reduced the immobility time in the forced swim test after 30 min administration. Notably, pretreatment with haloperidol (0.15 mg/kg, a nonselective dopamine D2/D3 antagonist), but not SCH23390 (0.04 and 0.1 mg/kg, a selective dopamine D1 receptor antagonist), significantly prevented the effects of ketamine or MK-801. Moreover, the administration of sub-effective dose of ketamine (10 mg/kg) in combination with pramipexole (0.3 mg/kg, a dopamine D2/D3 receptor agonist) exerted antidepressant-like effects compared with each drug alone. In conclusion, our results indicated that the dopamine D2/D3 receptors, but not D1 receptors, are involved in the rapid antidepressant-like effects of ketamine.

  4. Aspartic proteinases from Mucor spp. in cheese manufacturing.

    PubMed

    Yegin, Sirma; Fernandez-Lahore, Marcelo; Jose Gama Salgado, Antonio; Guvenc, Ulgar; Goksungur, Yekta; Tari, Canan

    2011-02-01

    Filamentous fungi belonging to the order of Mucorales are well known as producers of aspartic proteinases depicting milk-clotting activity. The biosynthesis level, the biochemical characteristics, and the technological properties of the resulting proteinases are affected by the producer strain and the mode of cultivation. While the milk-clotting enzymes produced by the Rhizomucor spp. have been extensively studied in the past, much less is known on the properties and potential applications of the aspartic proteinases obtained for Mucor spp. Indeed, several Mucor spp. strains have been reported as a potential source of milk-clotting enzymes having unique technological properties. Both submerged fermentation and solid substrate cultivation are proven alternatives for the production of Mucor spp. aspartic proteinases. This review provides an overview on the bioprocessing routes to obtain large amounts of these enzymes, on their structural characteristics as related to their functional properties, and on their industrial applications with focus on cheese manufacturing.

  5. Heteromerization of dopamine D2 receptors with dopamine D1 or D5 receptors generates intracellular calcium signaling by different mechanisms

    PubMed Central

    Hasbi, Ahmed; O’Dowd, Brian F.; George, Susan R.

    2009-01-01

    The repertoire of signal transduction pathways activated by dopamine in brain includes the increase of intracellular calcium. However the mechanism(s) by which dopamine activated this important second messenger system was unknown. Although we showed that activation of the D5 dopamine receptor increased calcium concentrations, the restricted anatomic distribution of this receptor made this unlikely to be the major mechanism in brain. We have identified novel heteromeric dopamine receptor complexes that are linked to calcium signaling. The calcium pathway activated through the D1–D2 receptor heteromer involved coupling to Gq, through phospholipase C and IP3 receptors to result in a rise in intracellular calcium. The calcium rise activated through the D2–D5 receptor heteromer involved a small rise in intracellular calcium through the Gq pathway that triggered a store operated channel mediated influx of extracellular calcium. These novel receptor heteromeric complexes, for the first time, establish the link between dopamine action and rapid calcium signaling. PMID:19897420

  6. Genetics Home Reference: dopamine beta-hydroxylase deficiency

    MedlinePlus

    ... Genetics Home Health Conditions dopamine beta-hydroxylase deficiency dopamine beta-hydroxylase deficiency Enable Javascript to view the ... boxes. Download PDF Open All Close All Description Dopamine beta (β)-hydroxylase deficiency is a condition that ...

  7. Dopamine supports coupling of attention-related networks.

    PubMed

    Dang, Linh C; O'Neil, James P; Jagust, William J

    2012-07-11

    Attentional processing has been associated with the dorsal attention, default mode, and frontoparietal control networks. The dorsal attention network is involved in externally focused attention whereas the default mode network is involved in internally directed attention. The frontoparietal control network has been proposed to mediate the transition between external and internal attention by coupling its activity to either the dorsal attention network or the default mode network, depending on the attentional demand. Dopamine is hypothesized to modulate attention and has been linked to the integrity of these three attention-related networks. We used PET with 6-[(18)F]fluoro-L-m-tyrosine to quantify dopamine synthesis capacity in vivo and fMRI to acquire stimulus-independent brain activity in cognitively healthy human subjects. We found that in the resting state where internal cognition dominates, dopamine enhances the coupling between the frontoparietal control network and the default mode network while reducing the coupling between the frontoparietal control network and the dorsal attention network. These results add a neurochemical perspective to the role of network interaction in modulating attention.

  8. Reciprocal Phosphorylation and Palmitoylation Control Dopamine Transporter Kinetics*

    PubMed Central

    Moritz, Amy E.; Rastedt, Danielle E.; Stanislowski, Daniel J.; Shetty, Madhur; Smith, Margaret A.; Vaughan, Roxanne A.; Foster, James D.

    2015-01-01

    The dopamine transporter is a neuronal protein that drives the presynaptic reuptake of dopamine (DA) and is the major determinant of transmitter availability in the brain. Dopamine transporter function is regulated by protein kinase C (PKC) and other signaling pathways through mechanisms that are complex and poorly understood. Here we investigate the role of Ser-7 phosphorylation and Cys-580 palmitoylation in mediating steady-state transport kinetics and PKC-stimulated transport down-regulation. Using both mutational and pharmacological approaches, we demonstrate that these post-translational modifications are reciprocally regulated, leading to transporter populations that display high phosphorylation-low palmitoylation or low phosphorylation-high palmitoylation. The balance between the modifications dictates transport capacity, as conditions that promote high phosphorylation or low palmitoylation reduce transport Vmax and enhance PKC-stimulated down-regulation, whereas conditions that promote low phosphorylation or high palmitoylation increase transport Vmax and suppress PKC-stimulated down-regulation. Transitions between these functional states occur when endocytosis is blocked or undetectable, indicating that the modifications kinetically regulate the velocity of surface transporters. These findings reveal a novel mechanism for control of DA reuptake that may represent a point of dysregulation in DA imbalance disorders. PMID:26424792

  9. Methylphenidate elevates resting dopamine which lowers the impulse-triggered release of dopamine: a hypothesis.

    PubMed

    Seeman, Philip; Madras, Bertha

    2002-03-10

    How do 'stimulants' reduce hyperactivity in children and adults? How can drugs which raise extracellular dopamine result in psychomotor slowing of hyperactive children when dopamine is known to enhance motor activity, such as in Parkinson's disease? In summary, the hypothesis for the anti-hyperactivity effects of the stimulants is as follows: during normal nerve activity, extracellular dopamine levels transiently rise 60-fold. At low therapeutic doses (0.2-0.5 mg/kg) to treat attention-deficit hyperactivity disorder, stimulant drugs such as methylphenidate and dextroamphetamine reduce locomotion in both humans and animals. The drugs raise resting extracellular levels of dopamine several-fold, but reduce the extent to which dopamine is released with nerve impulses, compared to the impulse-associated release in the absence of the drug. This relatively reduced amplitude of impulse-associated dopamine would result in less activation of post-synaptic dopamine receptors which drive psychomotor activity. At higher doses, stimulants produce generalized stimulation of the nervous system, as a result of the very high concentrations of extracellular dopamine at rest, and the markedly increased release of dopamine with nerve impulses. These high levels of resting and pulsatile dopamine cause widespread stimulation of post-synaptic dopamine receptors, overcoming any concomitant presynaptic inhibition of dopamine release.

  10. Behavioural effects of selective tachykinin agonists in midbrain dopamine regions.

    PubMed

    Stoessl, A J; Szczutkowski, E; Glenn, B; Watson, I

    1991-11-29

    The effects of selective NK-1, NK-2 and NK-3 tachykinin agonists in midbrain dopamine cell containing regions were investigated in the rat. The NK-3 agonist senktide induced locomotion, rearing and sniffing following infusion into the substantia nigra pars compacta, and to a lesser extent in the ventral tegmental area. These behavioural responses were not seen following infusion of the selective NK-1 agonist [Sar9,Met (O2)11]SP or the NK-2 agonist [N1e10]NKA4-10. In contrast, grooming was induced only by the NK-1 agonist administered into the substantia nigra. Yawning, chewing mouth movements and wet dog shakes were all seen following infusion of senktide into the ventral tegmental area. These findings suggest that (i) dopamine-mediated behavioural responses seen following tachykinin administration into the midbrain are dependent upon stimulation of NK-3 tachykinin receptors, (ii) tachykinin-induced grooming is mediated by stimulation of NK-1 receptors and (iii) some of the previously described 5-HT mediated behaviours seen following administration of NK-3 tachykinin agonists are probably generated by stimulation of 5-HT cell bodies in the ventral tegmental area.

  11. Grafted dopamine neurons: Morphology, neurochemistry, and electrophysiology.

    PubMed

    Strömberg, Ingrid; Bickford, Paula; Gerhardt, Greg A

    2010-02-09

    Grafting of dopamine-rich tissue to counteract the symptoms in Parkinson's disease became a promising tool for future treatment. This article discusses how to improve the functional outcome with respect to graft outgrowth and functions of dopamine release and electrophysiological responses to graft implantation in the host brain striatal target. It has been documented that a subpopulation of the dopamine neurons innervates the host brain in a target-specific manner, while some of the grafted dopamine neurons never project to the host striatum. Neurochemical studies have demonstrated that the graft-induced outgrowth synthesize, store, metabolize and release dopamine and possibly other neurotransmitters such as 5-HT. Furthermore, the released dopamine affects the dopamine-depleted brain in areas that are larger than the graft-derived nerve fibers reach. While stem cells will most likely be the future source of cells to be used in grafting, it is important to find the guiding cues for how to reinnervate the dopamine-depleted striatum in a proper way with respect to the dopamine subpopulations of A9 and A10 to efficiently treat the motor abnormalities seen in Parkinson's disease.

  12. Mesolimbic Dopamine Signals the Value of Work

    PubMed Central

    Hamid, Arif A.; Pettibone, Jeffrey R.; Mabrouk, Omar S.; Hetrick, Vaughn L.; Schmidt, Robert; Vander Weele, Caitlin M.; Kennedy, Robert T.; Aragona, Brandon J.; Berke, Joshua D.

    2015-01-01

    Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (“phasic”) dopamine fluctuations support learning, while much slower (“tonic”) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We first show that minute-by-minute dopamine levels covary with reward rate and motivational vigor. We then show that second-by-second dopamine release encodes an estimate of temporally-discounted future reward (a value function). We demonstrate that changing dopamine immediately alters willingness to work, and reinforces preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly-evolving decision variable, the available reward for investment of effort, that is employed for both learning and motivational functions. PMID:26595651

  13. Inhibition of N-methyl-D-aspartate receptors increases paraoxon-induced apoptosis in cultured neurons

    SciTech Connect

    Wu Xuan; Tian Feng; Okagaki, Peter; Marini, Ann M. . E-mail: amarini@usuhs.mil

    2005-10-01

    Organophosphorus (OP) compounds, used as insecticides and chemical warfare agents, are potent neurotoxins. We examined the neurotoxic effect of paraoxon (O,O-diethyl O-p-nitrophenyl phosphate), an organophosphate compound, and the role of NMDA receptors as a mechanism of action in cultured cerebellar granule cells. Paraoxon is neurotoxic to cultured rat cerebellar granule cells in a time- and concentration-dependent manner. Cerebellar granule cells are less sensitive to the neurotoxic effects of paraoxon on day in vitro (DIV) 4 than neurons treated on DIV 8. Surprisingly, the N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801, enhances paraoxon-mediated neurotoxicity suggesting that NMDA receptors may play a protective role. Pretreatment with a subtoxic concentration of N-methyl-D-aspartate (NMDA) [100 {mu}M] protects about 40% of the vulnerable neurons that would otherwise die from paraoxon-induced neurotoxicity. Moreover, addition of a neuroprotective concentration of NMDA 3 h after treatment with paraoxon provides the same level of protection. Because paraoxon-mediated neuronal cell death is time-dependent, we hypothesized that apoptosis may be involved. Paraoxon increases apoptosis about 10-fold compared to basal levels. The broad-spectrum caspase inhibitor (Boc-D-FMK) and the caspase-9-specific inhibitor (Z-LEHD-FMK) protect against paraoxon-mediated apoptosis, paraoxon-stimulated caspase-3 activity and neuronal cell death. MK-801 increases, whereas NMDA blocks paraoxon-induced apoptosis and paraoxon-stimulated caspase-3 activity. These results suggest that activation of NMDA receptors protect neurons against paraoxon-induced neurotoxicity by blocking apoptosis initiated by paraoxon.

  14. Greater Ethanol-Induced Locomotor Activation in DBA/2J versus C57BL/6J Mice Is Not Predicted by Presynaptic Striatal Dopamine Dynamics

    PubMed Central

    Rose, Jamie H.; Calipari, Erin S.; Mathews, Tiffany A.; Jones, Sara R.

    2013-01-01

    A large body of research has aimed to determine the neurochemical factors driving differential sensitivity to ethanol between individuals in an attempt to find predictors of ethanol abuse vulnerability. Here we find that the locomotor activating effects of ethanol are markedly greater in DBA/2J compared to C57BL/6J mice, although it is unclear as to what neurochemical differences between strains mediate this behavior. Dopamine elevations in the nucleus accumbens and caudate-putamen regulate locomotor behavior for most drugs, including ethanol; thus, we aimed to determine if differences in these regions predict strain differences in ethanol-induced locomotor activity. Previous studies suggest that ethanol interacts with the dopamine transporter, potentially mediating its locomotor activating effects; however, we found that ethanol had no effects on dopamine uptake in either strain. Ex vivo voltammetry allows for the determination of ethanol effects on presynaptic dopamine terminals, independent of drug-induced changes in firing rates of afferent inputs from either dopamine neurons or other neurotransmitter systems. However, differences in striatal dopamine dynamics did not predict the locomotor-activating effects of ethanol, since the inhibitory effects of ethanol on dopamine release were similar between strains. There were differences in presynaptic dopamine function between strains, with faster dopamine clearance in the caudate-putamen of DBA/2J mice; however, it is unclear how this difference relates to locomotor behavior. Because of the role of the dopamine system in reinforcement and reward learning, differences in dopamine signaling between the strains could have implications for addiction-related behaviors that extend beyond ethanol effects in the striatum. PMID:24349553

  15. A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila

    PubMed Central

    Kong, Eric C.; Woo, Katherine; Li, Haiyan; Lebestky, Tim; Mayer, Nasima; Sniffen, Melissa R.; Heberlein, Ulrike; Bainton, Roland J.; Hirsh, Jay; Wolf, Fred W.

    2010-01-01

    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol. PMID:20376353

  16. The role of the nucleus accumbens shell in the mediation of the reinforcing properties of a safety signal in free-operant avoidance: dopamine-dependent inhibitory effects of d-amphetamine.

    PubMed

    Fernando, Anushka B P; Urcelay, Gonzalo P; Mar, Adam C; Dickinson, Tony A; Robbins, Trevor W

    2014-05-01

    Safety signals (SSs) have been shown to reinforce instrumental avoidance behavior due to their ability to signal the absence of an aversive event; however, little is known of their neural mediation. This study investigated whether infusions of d-amphetamine in the nucleus accumbens (Nac), previously shown to potentiate responding for appetitive conditioned reinforcers (CRfs), also regulate avoidance responding for a SS. Rats were trained on a free-operant task in which lever-press responses avoided shock and were reinforced with an auditory SS. Rats were then cannulated in the Nac core (NacC) or shell (NacS) and infused with d-amphetamine and, in separate NacS groups, other drugs, before extinction sessions with the SS present or absent following responding. Selective effects of d-amphetamine were found in the NacS, but not in the NacC, when the SS was present in the session. A significant increase in response rate during the presentation of the SS reflected a disruption of its fear-inhibiting properties. In parallel, a decrease in avoidance response rate reflected the reduced influence of the SS as a CRf. Inactivation of the NacS reduced avoidance responding only when the SS was present in the session, whereas the D1-D2 DA receptor antagonist α-flupenthixol reduced responding both before and during the SS regardless of the presence of the SS. Atomoxetine (ATO), a selective noradrenaline reuptake inhibitor, had no effect on responding. These results indicate a role for the NacS in the mediation of the conditioned reinforcing properties of a SS. These effects appear to be modulated by dopaminergic mechanisms but seem distinct from those previously reported with food-related CRfs.

  17. Mutational analysis of human immunodeficiency virus type 1 protease suggests functional homology with aspartic proteinases.

    PubMed Central

    Loeb, D D; Hutchison, C A; Edgell, M H; Farmerie, W G; Swanstrom, R

    1989-01-01

    Processing of the retroviral gag and pol gene products is mediated by a viral protease. Bacterial expression systems have been developed which permit genetic analysis of the human immunodeficiency virus type 1 protease as measured by cleavage of the pol protein precursor. Deletion analysis of the pol reading frame locates the sequences required to encode a protein with appropriate proteolytic activity near the left end of the pol reading frame but largely outside the gag-pol overlap region, which is at the extreme left end of pol. Most missense mutations within an 11-amino-acid domain highly conserved among retroviral proteases and with sequence similarity to the active site of aspartic proteinases abolish appropriate processing, suggesting that the retrovirus proteases share a catalytic mechanism with aspartic proteinases. Substitution of the amino acids flanking the scissile bond at three of the processing sites encoded by pol demonstrates distinct sequence requirements for cleavage at these different sites. The inclusion of a charged amino acid at the processing site blocks cleavage. A subset of these substitutions also inhibits processing at the nonmutated sites. Images PMID:2642305

  18. Alteration of dopamine receptor sensitivity by opiates and the subsequent effect of this alteration on opiate tolerance and dependence

    SciTech Connect

    Martin, J.R.

    1985-01-01

    The present study was undertaken to determine whether there is an alteration of dopamine receptor sensitivity following opiate administration, and whether this alteration has any influence on the development of opiate tolerance and dependence. Behavioral hypersensitivity to direct-acting dopamine agonists was observed in mice following acute or chronic morphine administration. Acute levorphanol administration also resulted in potentiation of dopamine agonist-induced behaviors. An increase in density of dopamine receptors, as measured by (/sup 3/H)butyrophenone binding accompanied the development of behavioral hypersensitivity. This increase was localized to the striatum, an area important in the mediation of dopamine-agonist induced behaviors. Naloxone or LiCl coadministered with the opiates prevented the development of hypersensitivity and the increase in density of dopamine receptors. Coadministration of lithium enhanced the development of acute and chronic tolerance. Lithium enhanced the development of dependence as determined by naloxone-induced hypothermia in chronically morphine-treated mice. Apomorphine enhanced naloxone-induced withdrawal in acutely dependent mice. This enhancement was blocked by coadministration of lithium with the opiates. These results suggest that dopamine receptor supersensitivity influences the degree of tolerance and dependence.

  19. Combination of behaviorally sub-effective doses of glutamate NMDA and dopamine D1 receptor antagonists impairs executive function.

    PubMed

    Desai, Sagar J; Allman, Brian L; Rajakumar, Nagalingam

    2017-04-14

    Impairment of executive function is a core feature of schizophrenia. Preclinical studies indicate that injections of either N-methyl d-aspartate (NMDA) or dopamine D1 receptor blockers impair executive function. Despite the prevailing notion based on postmortem findings in schizophrenia that cortical areas have marked suppression of glutamate and dopamine, recent in vivo imaging studies suggest that abnormalities of these neurotransmitters in living patients may be quite subtle. Thus, we hypothesized that modest impairments in both glutamate and dopamine function can act synergistically to cause executive dysfunction. In the present study, we investigated the effect of combined administration of "behaviorally sub-effective" doses of NMDA and dopamine D1 receptor antagonists on executive function. An operant conditioning-based set-shifting task was used to assess behavioral flexibility in rats that were systemically injected with NMDA and dopamine D1 receptor antagonists individually or in combination prior to task performance. Separate injections of the NMDA receptor antagonist, MK-801, and the dopamine D1 receptor antagonist, SCH 23390, at low doses did not impair set-shifting; however, the combined administration of these same behaviorally sub-effective doses of the antagonists significantly impaired the performance during set-shifting without affecting learning, retrieval of the memory of the initial rule, latency of responses or the number of omissions. The combined treatment also produced an increased number of perseverative errors. Our results indicate that NMDA and D1 receptor blockade act synergistically to cause behavioral inflexibility, and as such, subtle abnormalities in glutamatergic and dopaminergic systems may act cooperatively to cause deficits in executive function.

  20. Local acamprosate modulates dopamine release in the rat nucleus accumbens through NMDA receptors: an in vivo microdialysis study.

    PubMed

    Cano-Cebrián, M J; Zornoza-Sabina, T; Guerri, C; Polache, A; Granero, L

    2003-02-01

    The effects of acamprosate on the in vivo dopamine extracellular levels in the nucleus accumbens and the involvement of N-methyl-D-aspartate (NMDA) receptors in these effects were investigated. Microdialysis in freely moving rats was used to assess dopamine levels before and during simultaneous perfusion of acamprosate and/or different agonists or antagonists of NMDA receptors. Perfusion with acamprosate at concentrations of 0.5 and 5 mM provoked a concentration-dependent increase in extracellular dopamine in nucleus accumbens. The lowest concentration of acamprosate assayed (0.05 mM) had no effect on dopamine levels. Infusion of NMDA (25 and 500 microM) and the glutamate uptake blocker, L-trans-pyrrolidine-2,4-dicarboxilic acid (PDC) (0.5 mM) into the NAc caused a significant increase in DA, whereas acamprosate (0.05 mM) co-infusion with these compounds blocked or attenuated the NMDA and PDC-induced increases in DA levels. Co-infusion of the selective antagonist of NMDA receptors, DL-2-amino-5-phosphonopentanoic acid (AP5) (400 microM) with acamprosate (0.5 mM), did not reduce the increase of DA levels induced by acamprosate. These results demonstrate that acamprosate is able to modulate DA extracellular levels in NAc via NMDA receptors and suggest that acamprosate acts as an antagonist of NMDA receptors.

  1. Alterations in nigral NMDA and GABAA receptor control of the striatal dopamine level after repetitive exposures to nitrogen narcosis.

    PubMed

    Lavoute, Cécile; Weiss, Michel; Rostain, Jean-Claude

    2008-07-01

    Nitrogen pressure exposure in rats results in decreased dopamine (DA) release at the striatal terminals of the substantia nigra pars compacta (SNc) dopaminergic neurons, demonstrating the narcotic potency of nitrogen. This effect is attributed to decreased excitatory and increased inhibitory inputs to dopaminergic neurons, involving a change in NMDA and GABA(A) receptor function. We investigated whether repetitive exposures to nitrogen modify the excitatory and inhibitory control of the dopaminergic nigro-striatal pathway. We used voltammetry to measure dopamine levels in freely-moving rats, implanted with dopamine-sensitive electrodes in the striatum. NMDA/GABA(A) receptor agonists (NMDA/muscimol) and antagonists (AP7/gabazine) were administered through a guide-cannula into the SNc, and their effects on striatal dopamine levels were measured under normobaric conditions, before and after five repetitive exposures to 1 MPa nitrogen. NMDA-mediated dopamine release was greater following repetitive exposures, AP7-mediated inhibition of glutamatergic input was blocked, suggesting that NMDA receptor sensitivity was increased and glutamate release reduced. Muscimol did not modify dopamine levels following repetitive exposures, whereas the effect of gabazine was greater after exposures than before. This suggested that interneuronal GABA(A) receptors were desensitized, leading to an increased GABAergic input at dopaminergic cells. Thus, repetitive nitrogen exposure induced persistent changes in glutamatergic and GABAergic control of dopaminergic neurons, resulting in decreased activity of the nigrostriatal pathway.

  2. Dopamine modulation of transient receptor potential vanilloid type 1 (TRPV1) receptor in dorsal root ganglia neurons

    PubMed Central

    Chakraborty, Saikat; Rebecchi, Mario; Kaczocha, Martin

    2016-01-01

    Key points Transient receptor potential vanilloid type 1 (TRPV1) receptors transduce noxious thermal stimuli and are responsible for the thermal hyperalgesia associated with inflammatory pain.A large population of dorsal root ganglia (DRG) neurons, including the C low threshold mechanoreceptors (C‐LTMRs), express tyrosine hydroxylase, and probably release dopamine.We found that dopamine and SKF 81297 (an agonist at D1/D5 receptors), but not quinpirole (an agonist at D2 receptors), downregulate the activity of TRPV1 channels in DRG neurons.The inhibitory effect of SKF 81297 on TRPV1 channels was strongly dependent on external calcium and preferentially linked to calcium–calmodulin‐dependent protein kinase II (CaMKII).We suggest that modulation of TRPV1 channels by dopamine in nociceptive neurons may represent a way for dopamine to modulate incoming noxious stimuli. Abstract The transient receptor potential vanilloid type 1 (TRPV1) receptor plays a key role in the modulation of nociceptor excitability. To address whether dopamine can modulate the activity of TRPV1 channels in nociceptive neurons, the effects of dopamine and dopamine receptor agonists were tested on the capsaicin‐activated current recorded from acutely dissociated small diameter (<27 μm) dorsal root ganglia (DRG) neurons. Dopamine or SKF 81297 (an agonist at D1/D5 receptors), caused inhibition of both inward and outward currents by ∼60% and ∼48%, respectively. The effect of SKF 81297 was reversed by SCH 23390 (an antagonist at D1/D5 receptors), confirming that it was mediated by activation of D1/D5 dopamine receptors. In contrast, quinpirole (an agonist at D2 receptors) had no significant effect on the capsaicin‐activated current. Inhibition of the capsaicin‐activated current by SKF 81297 was mediated by G protein coupled receptors (GPCRs), and highly dependent on external calcium. The inhibitory effect of SKF 81297 on the capsaicin‐activated current was not affected when

  3. Metabolism of dopamine by the nasal mucosa.

    PubMed

    Chemuturi, Nagendra V; Donovan, Maureen D

    2006-11-01

    The nasal route of administration offers several advantages over oral and intravenous administration, including the ability to avoid hepatic first pass metabolism. Dopamine deficiency has been associated with several neurological disorders; it has been shown to have good systemic bioavailability and significant uptake into the CNS following intranasal administration. The purpose of these studies was to investigate the limiting role of mucosal metabolism of dopamine during nasal absorption. In vitro transport and initial rate studies were carried out using nasal mucosal explants to study dopamine permeability and metabolism. Dihydroxyphenylacetic acid (DOPAC) was the only metabolite detected. Monoamine oxidase (MAO), the enzyme responsible for DOPAC formation, was localized to the submucosal region of the nasal explants. The amount of DOPAC formed during the transport studies was less than 0.5% of the initial amount of dopamine placed into the system. Iproniazid, an MAO inhibitor, blocked DOPAC formation but had no effect on dopamine transport. The limited extent of dopamine metabolism compared to its mucosal transport demonstrates that nasal dopamine transport is not significantly reduced by mucosal metabolism and suggests that the nasal route may be promising for the efficient delivery of dopamine to the CNS.

  4. Synapsins Differentially Control Dopamine and Serotonin Release

    PubMed Central

    Kile, Brian M.; Guillot, Thomas S.; Venton, B. Jill; Wetsel, William C.; Augustine, George J.; Wightman, R. Mark

    2010-01-01

    Synapsins are a family of synaptic vesicle proteins that are important for neurotransmitter release. Here we have used triple knockout (TKO) mice lacking all three synapsin genes to determine the roles of synapsins in the release of two monoamine neurotransmitters, dopamine and serotonin. Serotonin release evoked by electrical stimulation was identical in substantia nigra pars reticulata slices prepared from TKO and wild-type mice. In contrast, release of dopamine in response to electrical stimulation was approximately doubled in striatum of TKO mice, both in vivo and in striatal slices, in comparison to wild-type controls. This was due to loss of synapsin III, because deletion of synapsin III alone was sufficient to increase dopamine release. Deletion of synapsins also increased the sensitivity of dopamine release to extracellular calcium ions. Although cocaine did not affect the release of serotonin from nigral tissue, this drug did enhance dopamine release. Cocaine-induced facilitation of dopamine release was a function of external calcium, an effect that was reduced in TKO mice. We conclude that synapsins play different roles in the control of release of dopamine and serotonin, with release of dopamine being negatively regulated by synapsins, specifically synapsin III, while serotonin release appears to be relatively independent of synapsins. These results provide further support for the concept that synapsin function in presynaptic terminals varies according to the neurotransmitter being released. PMID:20660258

  5. Going for broke: dopamine influences risky choice.

    PubMed

    Moschak, Travis M; Carelli, Regina M

    2014-10-01

    Dopamine neurons track reward by increasing or decreasing their firing rate when a reward is present or absent. In this issue of Neuron, Stopper et al. (2014) demonstrate that artificially eliminating these dopamine bursts or dips can alter risky decision-making.

  6. Antipsychotic drugs inhibit prolactin release from rat anterior pituitary cells in culture by a mechanism not involving the dopamine receptor.

    PubMed

    West, B; Dannies, P S

    1979-04-01

    Bromocriptine, a dopamine agonist, inhibited secretion of PRL and did not affect GH release from rat anterior pituitary cells in culture. The reversal of this inhibition of PRL release by butaclamol, a dopamine antagonist, was stereospecific; 10 nM d-butaclamol completely reversed the inhibition caused by 10 nM bromocriptine, while l-butaclamol had no effect at concentrations up to 10 microM. However, both enantiomers at 10 microM inhibited PRL release to 30% and GH release to 91% of control values. Two other dopamine antagonists also inhibited hormone release. Haloperidol (10 microM) inhibited PRL release to 23% of control values and did not affect GH release; 3.3 microM pimozide inhibited PRL and GH release to 18% and 38% of control values, respectively. These data indicate that, the inhibition of PRL by antipsychotic drugs is not mediated through the dopamine receptor.

  7. Synthesis of 6-phosphofructose aspartic acid and some related Amadori compounds.

    PubMed

    Hansen, Alexandar L; Behrman, Edward J

    2016-08-05

    We describe the synthesis and characterization of 6-phosphofructose-aspartic acid, an intermediate in the metabolism of fructose-asparagine by Salmonella. We also report improved syntheses of fructose-asparagine itself and of fructose-aspartic acid.

  8. Metabolic hormones, dopamine circuits, and feeding

    PubMed Central

    Narayanan, Nandakumar S.; Guarnieri, Douglas J.; DiLeone, Ralph J.

    2009-01-01

    Recent evidence has emerged demonstrating that metabolic hormones such as ghrelin and leptin can act on ventral tegmental area (VTA) midbrain dopamine neurons to influence feeding. The VTA is the origin of mesolimbic dopamine neurons that project to the nucleus accumbens (NAc) to influence behavior. While blockade of dopamine via systemic antagonists or targeted gene delete can impair food intake, local NAc dopamine manipulations have little effect on food intake. Notably, non-dopaminergic manipulations in the VTA and NAc produce more consistent effects on feeding and food choice. More recent genetic evidence supports a role for the substantia nigra-striatal dopamine pathways in food intake, while the VTA-NAc circuit is more likely involved in higher-order aspects of food acquisition, such as motivation and cue associations. This rich and complex literature should be considered in models of how peripheral hormones influence feeding behavior via action on the midbrain circuits. PMID:19836414

  9. TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson’s disease via CNTF

    PubMed Central

    Nam, Jin H.; Park, Eun S.; Won, So-Yoon; Lee, Yu A.; Kim, Kyoung I.; Jeong, Jae Y.; Baek, Jeong Y.; Cho, Eun J.; Jin, Minyoung; Chung, Young C.; Lee, Byoung D.; Kim, Sung Hyun; Kim, Eung-Gook; Byun, Kyunghee; Lee, Bonghee; Woo, Dong Ho; Lee, C. Justin; Kim, Sang R.; Bok, Eugene; Kim, Yoon-Seong; Ahn, Tae-Beom; Ko, Hyuk Wan; Brahmachari, Saurav; Pletinkova, Olga; Troconso, Juan C.; Dawson, Valina L.; Dawson, Ted M.

    2015-01-01

    Currently there is no neuroprotective or neurorestorative therapy for Parkinson’s disease. Here we report that transient receptor potential vanilloid 1 (TRPV1) on astrocytes mediates endogenous production of ciliary neurotrophic factor (CNTF), which prevents the active degeneration of dopamine neurons and leads to behavioural recovery through CNTF receptor alpha (CNTFRα) on nigral dopamine neurons in both the MPP+-lesioned or adeno-associated virus α-synuclein rat models of Parkinson’s disease. Western blot and immunohistochemical analysis of human post-mortem substantia nigra from Parkinson’s disease suggests that this endogenous neuroprotective system (TRPV1 and CNTF on astrocytes, and CNTFRα on dopamine neurons) might have relevance to human Parkinson’s disease. Our results suggest that activation of astrocytic TRPV1 activates endogenous neuroprotective machinery in vivo and that it is a novel therapeutic target for the treatment of Parkinson’s disease. PMID:26490328

  10. Dopamine Activation Preserves Visual Motion Perception Despite Noise Interference of Human V5/MT

    PubMed Central

    Yousif, Nada; Fu, Richard Z.; Abou-El-Ela Bourquin, Bilal; Bhrugubanda, Vamsee; Schultz, Simon R.

    2016-01-01

    When processing sensory signals, the brain must account for noise, both noise in the stimulus and that arising from within its own neuronal circuitry. Dopamine receptor activation is known to enhance both visual cortical signal-to-noise-ratio (SNR) and visual perceptual performance; however, it is unknown whether these two dopamine-mediated phenomena are linked. To assess this, we used single-pulse transcranial magnetic stimulation (TMS) applied to visual cortical area V5/MT to reduce the SNR focally and thus disrupt visual motion discrimination performance to visual targets located in the same retinotopic space. The hypothesis that dopamine receptor activation enhances perceptual performance by improving cortical SNR predicts that dopamine activation should antagonize TMS disruption of visual perception. We assessed this hypothesis via a double-blinded, placebo-controlled study with the dopamine receptor agonists cabergoline (a D2 agonist) and pergolide (a D1/D2 agonist) administered in separate sessions (separated by 2 weeks) in 12 healthy volunteers in a William's balance-order design. TMS degraded visual motion perception when the evoked phosphene and the visual stimulus overlapped in time and space in the placebo and cabergoline conditions, but not in the pergolide condition. This suggests that dopamine D1 or combined D1 and D2 receptor activation enhances cortical SNR to boost perceptual performance. That local visual cortical excitability was unchanged across drug conditions suggests the involvement of long-range intracortical interactions in this D1 effect. Because increased internal noise (and thus lower SNR) can impair visual perceptual learning, improving visual cortical SNR via D1/D2 agonist therapy may be useful in boosting rehabilitation programs involving visual perceptual training. SIGNIFICANCE STATEMENT In this study, we address the issue of whether dopamine activation improves visual perception despite increasing sensory noise in the visual cortex

  11. The tumor suppressor PTEN regulates motor responses to striatal dopamine in normal and Parkinsonian animals.

    PubMed

    Stavarache, Mihaela A; Musatov, Sergei; McGill, Marlon; Vernov, Mary; Kaplitt, Michael G

    2015-10-01

    Phosphatase and Tensin homolog deleted on chromosome 10 (PTEN) is a dual lipid-protein phosphatase known primarily as a growth preventing tumor suppressor. PTEN is also expressed in neurons, and pathways modulated by PTEN can influence neuronal function. Here we report a novel function of PTEN as a regulator of striatal dopamine signaling in a model of Parkinson's disease (PD). Blocking PTEN expression with an adeno-associated virus (AAV) vector expressing a small hairpin RNA (shRNA) resulted in reduced responses of cultured striatal neurons to dopamine, which appeared to be largely due to reduction in D2 receptor activation. Co-expression of shRNA-resistant wild-type and mutant forms of PTEN indicated that the lipid-phosphatase activity was essential for this effect. In both normal and Parkinsonian rats, inhibition of striatal PTEN in vivo resulted in motor dysfunction and impaired responses to dopamine, particularly D2 receptor agonists. Expression of PTEN mutants confirmed the lipid-phosphatase activity as critical, while co-expression of a dominant-negative form of Akt overcame the PTEN shRNA effect. These results identify PTEN as a key mediator of striatal responses to dopamine, and suggest that drugs designed to potentiate PTEN expression or activity, such as cancer chemotherapeutics, may also be useful for improving striatal responses to dopamine in conditions of dopamine depletion such as PD. This also suggests that strategies which increase Akt or decrease PTEN expression or function, such as growth factors to prevent neuronal death, may have a paradoxical effect on neurological functioning by inhibiting striatal responses to dopamine.

  12. MicroRNA-132 dysregulation in Toxoplasma gondii infection has implications for dopamine signaling pathway

    PubMed Central

    Xiao, Jianchun; Li, Ye; Prandovszky, Emese; Karuppagounder, Senthilkumar S.; Talbot, C. Conover; Dawson, Valina L.; Dawson, Ted M.; Yolken, Robert H.

    2014-01-01

    Congenital toxoplasmosis and toxoplasmic encephalitis can be associated with severe neuropsychiatric symptoms. However, which host cell processes are regulated and how Toxoplasma gondii affects these changes remain unclear. MicroRNAs (miRNAs) are small noncoding RNA sequences critical to neurodevelopment and adult neuronal processes by coordinating the activity of multiple genes within biological networks. We examined the expression of over 1000 miRNAs in human neuroepithelioma cells in response to infection with Toxoplasma. MiR-132, a cyclic AMP-responsive element binding (CREB)-regulated miRNA, was the only miRNA that was substantially upregulated by all three prototype Toxoplasma strains. The increased expression of miR-132 was also documented in mice following infection with Toxoplasma. To identify cellular pathways regulated by miR-132, we performed target prediction followed by pathway enrichment analysis in the transcriptome of Toxoplasma-infected mice. This led us to identify 20 genes and dopamine receptor signaling was their strongest associated pathway. We then examined myriad aspects of the dopamine pathway in the striatum of Toxoplasma infected mice 5 days after infection. Here we report decreased expression of D1-like dopamine receptors (DRD1, DRD5), metabolizing enzyme (MAOA) and intracellular proteins associated with the transduction of dopamine-mediated signaling (DARPP-32 phosphorylation at Thr34 and Ser97). Increased concentrations of dopamine and its metabolites, serotonin and 5-hydroxyindoleacetic acid were documented by HPLC analysis; however, the metabolism of dopamine was decreased and serotonin metabolism was unchanged. Our data show that miR-132 is upregulated following infection with Toxoplasma and is associated with changes in dopamine receptor signaling. Our findings provide a possible mechanism for how the parasite contributes to the neuropathology of infection. PMID:24657774

  13. Inhibitory effect of taurine on veratridine-evoked D-[3H]aspartate release from murine corticostriatal slices: involvement of chloride channels and mitochondria.

    PubMed

    Molchanova, Svetlana M; Oja, Simo S; Saransaari, Pirjo

    2007-01-26

    We have previously shown that the inhibitory neuromodulator taurine attenuates the release of preloaded D-[3H]aspartate from murine corticostriatal slices evoked by ischemic conditions or by application of the sodium channel agonist veratridine. The release of D-[3H]aspartate (a non-metabolized analog of glutamate) was used as an index of glutamate release. The aim of the present study was to reveal the molecular mechanisms responsible for this inhibitory effect of taurine. It was shown that 10 mM taurine suppresses D-[3H]aspartate release evoked by 0.1 mM veratridine, but does not affect the high-K+ -(50 mM) or ouabain- (0.1 mM) evoked release. Taurine had no effect in Ca2+ -free medium when the synaptic exocytosis of D-[3H]aspartate was inhibited. Nor did it suppress the release from slices preloaded with the competitive glutamate uptake blocker DL-threo-beta-hydroxyaspartate (THBA), which inhibits D-[3H]aspartate release mediated by the reverse action of glutamate transporters. Omission of Cl- from the incubation medium reduced the effect of taurine, signifying the involvement of a Cl- channel. The glycine receptor antagonist strychnine and the GABA(A) receptor antagonist bicuculline did not block the taurine effect, although picrotoxin, a less specific blocker of agonist-gated chloride channels, completely prevented the effect of taurine on veratridine-induced D-[3H]aspartate release. The respiratory chain blocker rotenone or mitochondrial protonophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP) in combination with the mitochondrial ATPase inhibitor oligomycin, which inhibits the mitochondrial Ca2+ uniporter, also reduced the effect of taurine. The results obtained in the present study show that taurine acts specifically on the release of preloaded D-[3H]aspartate evoked by veratridine, but not on that evoked by other depolarizing agents, and affects the release mediated both by synaptic exocytosis and the reverse action of glutamate transporter. Taurine

  14. Elevated dopamine in the medial prefrontal cortex suppresses cocaine seeking via D1 receptor overstimulation.

    PubMed

    Devoto, Paola; Fattore, Liana; Antinori, Silvia; Saba, Pierluigi; Frau, Roberto; Fratta, Walter; Gessa, Gian Luigi

    2016-01-01

    Previous investigations indicate that the dopamine-β-hydroxylase (DBH) inhibitors disulfiram and nepicastat suppress cocaine-primed reinstatement of cocaine self-administration behaviour. Moreover, both inhibitors increase dopamine release in the rat medial prefrontal cortex (mPFC) and markedly potentiate cocaine-induced dopamine release in this region. This study was aimed to clarify if the suppressant effect of DBH inhibitors on cocaine reinstatement was mediated by the high extracellular dopamine in the rat mPFC leading to a supra-maximal stimulation of D1 receptors in the dorsal division of mPFC, an area critical for reinstatement of cocaine-seeking behaviour. In line with previous microdialysis studies in drug-naïve animals, both DBH inhibitors potentiated cocaine-induced dopamine release in the mPFC, in the same animals in which they also suppressed reinstatement of cocaine seeking. Similar to the DBH inhibitors, L-DOPA potentiated cocaine-induced dopamine release in the mPFC and suppressed cocaine-induced reinstatement of cocaine-seeking behaviour. The bilateral microinfusion of the D1 receptor antagonist SCH 23390 into the dorsal mPFC not only prevented cocaine-induced reinstatement of cocaine seeking but also reverted both disulfiram- and L-DOPA-induced suppression of reinstatement. Moreover, the bilateral microinfusion of the D1 receptor agonist chloro-APB (SKF 82958) into the dorsal mPFC markedly attenuated cocaine-induced reinstatement of cocaine seeking. These results suggest that stimulation of D1 receptors in the dorsal mPFC plays a crucial role in cocaine-induced reinstatement of cocaine seeking, whereas the suppressant effect of DBH inhibitors and L-DOPA on drug-induced reinstatement is mediated by a supra-maximal stimulation of D1 receptors leading to their inactivation.

  15. Amphetamine in adolescence disrupts the development of medial prefrontal cortex dopamine connectivity in a DCC-dependent manner.

    PubMed

    Reynolds, Lauren M; Makowski, Carolina S; Yogendran, Sandra V; Kiessling, Silke; Cermakian, Nicolas; Flores, Cecilia

    2015-03-13

    Initiation of drug use during adolescence is a strong predictor of both the incidence and severity of addiction throughout the lifetime. Intriguingly, adolescence is a period of dynamic refinement in the organization of neuronal connectivity, in particular medial prefrontal cortex (mPFC) dopamine circuitry. The guidance cue receptor, DCC (deleted in colorectal cancer), is highly expressed by dopamine neurons and orchestrates their innervation to the mPFC during adolescence. Furthermore, we have shown that amphetamine in adolescence regulates DCC expression in dopamine neurons. Drugs in adolescence may therefore induce their enduring behavioral effects via DCC-mediated disruption in mPFC dopamine development. In this study, we investigated the impact of repeated exposure to amphetamine during adolescence on both the development of mPFC dopamine connectivity and on salience attribution to drug context in adulthood. We compare these effects to those induced by adult exposure to an identical amphetamine regimen. Finally, we determine whether DCC signaling within dopamine neurons is necessary for these events. Exposure to amphetamine in adolescence, but not in adulthood, leads to an increase in the span of dopamine innervation to the mPFC, but a reduction of presynaptic sites present on these axons. Amphetamine treatment in adolescence, but not in adulthood, also produces an increase in salience attribution to a previously drug-paired context in adulthood. Remarkably, DCC signaling within dopamine neurons is required for both of these effects. Drugs of abuse in adolescence may therefore induce their detrimental behavioral consequences by disrupting mesocortical dopamine development through alterations in the DCC signaling cascade.

  16. Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals

    PubMed Central

    Errico, F; Nisticò, R; Di Giorgio, A; Squillace, M; Vitucci, D; Galbusera, A; Piccinin, S; Mango, D; Fazio, L; Middei, S; Trizio, S; Mercuri, N B; Teule, M A; Centonze, D; Gozzi, A; Blasi, G; Bertolino, A; Usiello, A

    2014-01-01

    D-aspartate (D-Asp) is an atypical amino acid, which is especially abundant in the developing mammalian brain, and can bind to and activate N-methyl-D-Aspartate receptors (NMDARs). In line with its pharmacological features, we find that mice chronically treated with D-Asp show enhanced NMDAR-mediated miniature excitatory postsynaptic currents and basal cerebral blood volume in fronto-hippocampal areas. In addition, we show that both chronic administration of D-Asp and deletion of the gene coding for the catabolic enzyme D-aspartate oxidase (DDO) trigger plastic modifications of neuronal cytoarchitecture in the prefrontal cortex and CA1 subfield of the hippocampus and promote a cytochalasin D-sensitive form of synaptic plasticity in adult mouse brains. To translate these findings in humans and consistent with the experiments using Ddo gene targeting in animals, we performed a hierarchical stepwise translational genetic approach. Specifically, we investigated the association of variation in the gene coding for DDO with complex human prefrontal phenotypes. We demonstrate that genetic variation predicting reduced expression of DDO in postmortem human prefrontal cortex is mapped on greater prefrontal gray matter and activity during working memory as measured with MRI. In conclusion our results identify novel NMDAR-dependent effects of D-Asp on plasticity and physiology in rodents, which also map to prefrontal phenotypes in humans. PMID:25072322

  17. Dopamine agonist therapy in hyperprolactinemia.

    PubMed

    Webster, J

    1999-12-01

    Introduction of the dopamine agonist bromocriptine heralded a major advance in the management of hyperprolactinemic disorders. Although its side effects of nausea, dizziness and headache and its short elimination half-life are limiting factors, its efficacy established it as a reference compound against the activity of which several dopamine agonists, like pergolide, lysuride, metergoline, terguride and dihydroergocristine, fell by the wayside. More recently, two new agents, cabergoline and quinagolide, have been introduced and appear to offer considerable advantages over bromocriptine. Cabergoline, an ergoline D2 agonist, has a long plasma half-life that enables once- or twice-weekly administration. Quinagolide, in contrast, is a nonergot D2 agonist with an elimination half-life intermediate between those of bromocriptine and cabergoline, allowing the drug to be administered once daily. Comparative studies indicate that cabergoline is clearly superior to bromocriptine in efficacy (prolactin suppression, restoration of gonadal function) and in tolerability. In similar studies, quinagolide appeared to have similar efficacy and superior tolerability to that of bromocriptine. Results of a small crossover study indicate that cabergoline is better tolerated, with a trend toward activity superior to that of quinagolide. In hyperprolactinemic men and in women not seeking to become pregnant, cabergoline may be regarded as the treatment of choice.

  18. Inhibitory effect of taurine on 4-aminopyridine-stimulated release of labelled dopamine from striatal synaptosomes.

    PubMed

    Arzate, M E; Morán, J; Pasantes-Morales, H

    1986-07-01

    4-Aminopyridine (4-AP) stimulated the release of [3H]dopamine from striatal synaptosomes in the rat. At a concentration of 200 microM, 4-aminopyridine increased the spontaneous efflux of dopamine by 170%. The effect of 4-aminopyridine was calcium-dependent, being abolished when calcium was omitted from the incubation medium. Taurine, at a concentration of 25 mM, decreased the stimulatory effect of 4-aminopyridine from 170 to 49%, in the presence of 2.5 mM calcium. When the concentration of calcium in the superfusion medium was reduced to 0.1 mM, taurine had a complete inhibitory effect on the release of [3H]dopamine stimulated by 4-aminopyridine. The effect of taurine was dose-dependent. Glycine had no effect on the release of [3H]dopamine stimulated by 4-aminopyridine, either in the presence of absence of calcium, whereas gamma-aminobutyric acid (GABA) showed a slight inhibitory effect in both conditions. The results suggest that taurine antagonizes the release of [3H]dopamine induced by 4-aminopyridine through an effect mediated by calcium.

  19. Identification of D/sub 1/-like dopamine receptors on human blood platelets

    SciTech Connect

    De Keyser, J.; De Waele, M.; Convents, A.; Ebinger, G.; Vauquelin, G.

    1988-01-01

    Dopamine is able to inhibit the epinephrine-induced aggregation of human blood platelets, but the mechanism of action has not been elucidated. In this study the authors report that membranes from human blood platelets possess high affinity, saturable and stereoselective binding sites for the D/sub 1/ dopamine receptor antagonist (/sup 3/H)SCH 23390. (/sup 3/H)SCH 23390 appeared to label a single class of binding sites with a B/sub max/ of 18.6 +- 1.6 fmolmg protein and a K/sub D/ of 0.8 nM. The potencies of different dopaminergic antagonists and agonists in displacing (/sup 3/H)SCH 23390 from blood platelet membranes were similar to those obtained for striatal membranes. Unlike the classically defined D/sub 1/ receptors, e.g. those in striatum, the D/sub 1/ receptor sites on platelets appeared no to be coupled to the adenylate cyclase system, hence the term D/sub 1/-like. The D/sub 1/ agonist SKF 38393 was more potent than dopamine in inhibiting platelet aggregation induced by epinephrine, and the effects of dopamine and SKF 38393 were prevented by SCH 23390. These results suggest that the inhibitory action of dopamine on the epinephrine-induced platelet aggregation is mediated through these D/sub 1/-like receptors

  20. Horizontal cell gap junctions: single-channel conductance and modulation by dopamine.

    PubMed Central

    McHahon, D G; Knapp, A G; Dowling, J E

    1989-01-01

    Horizontal cells form an electrically coupled network for the transmission of inhibitory signals in the outer retina. In teleosts, horizontal cell coupling is modulated by the neurotransmitter dopamine. Using voltage-clamped pairs of teleost horizontal cells, we have examined the effects of dopamine on the conductance and gating properties of the cell-to-cell channels that mediate electrical synaptic transmission. Variance analysis of the junctional current noise showed that dopamine substantially reduced the open probability of gap junction channels, from 0.75 to 0.14. Direct observation of unitary junctional gating events in poorly coupled cell pairs indicated that these channels have a unitary conductance of 50-60 pS. The elementary conductance of channels in cell pairs treated with dopamine (48.7 +/- 6.6 pS) was statistically indistinguishable from channels in untreated cells (53.2 +/- 7.2 pS). Uncoupling with octanol also yielded a similar unitary conductance (61.1 +/- 11.1 pS). Our results suggest that dopamine reduces the open probability of gap junctional channels by decreasing their open duration. Images PMID:2477845

  1. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND.

    PubMed

    Gaskill, Peter J; Calderon, Tina M; Coley, Jacqueline S; Berman, Joan W

    2013-06-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70 % of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers.

  2. Imaging analysis of clock neurons: light buffers the wake-promoting effect of dopamine

    PubMed Central

    Shang, Yuhua; Haynes, Paula; Pírez, Nicolás; Harrington, Kyle I.; Guo, Fang; Pollack, Jordan; Hong, Pengyu; Griffith, Leslie C.; Rosbash, Michael

    2012-01-01

    How animals maintain proper amounts of sleep yet still be flexible to changes in the environmental conditions remains unknown. Here we showed that environmental light suppresses the wake-promoting effects of dopamine in fly brains. A subset of clock neurons, the 10 large lateral-ventral neurons (l-LNvs), are wake-promoting and respond to dopamine, octopamine as well as light. Behavioral and imaging analyses suggested that dopamine is a stronger arousal signal than octopamine. Surprisingly, light exposure not only suppressed the l-LNv responses but also synchronized responses of neighboring l-LNvs. This regulation occured by distinct mechanisms: light-mediated suppression of octopamine responses is regulated by the circadian clock, whereas light regulation of dopamine responses occurs by upregulation of inhibitory dopamine receptors. Plasticity therefore alters the relative importance of diverse cues based on the environmental mix of stimuli. The regulatory mechanisms described here may contribute to the control of sleep stability while still allowing behavioral flexibility. PMID:21685918

  3. Enhanced peripheral dopamine impairs post-ischemic healing by suppressing angiotensin receptor type 1 expression in endothelial cells and inhibiting angiogenesis.

    PubMed

    Sarkar, Chandrani; Ganju, Ramesh K; Pompili, Vincent J; Chakroborty, Debanjan

    2017-02-01

    Increased circulating catecholamines have been linked with cardiovascular anomalies as well as with peripheral vascular diseases. Although the roles of epinephrine and norepinephrine have received considerable attention, the role of the other catecholamine, dopamine, has been less studied. Since dopamine is a potent endogenous inhibitor of angiogenesis and as angiogenesis is essential for ischemic healing, we therefore studied the role played by dopamine during ischemic healing using dopamine D2 receptor knockout (KOD2) mice. Although concentration of dopamine and its rate-limiting enzyme, tyrosine hydroxylase, was considerably high in the muscle tissues of wild-type and KOD2 mice with unilateral hind limb ischemia (HLI), recovery was significantly faster in the KOD2 mice compared to the wild-type controls, thereby indicating that peripheral dopamine might have a role in this healing process. In addition, we observed significant differences in post-ischemic angiogenesis between these two groups. Our study further revealed that elevated dopamine independently suppressed activation of local tissue-based renin-angiotensin system (RAS), a critical growth factor system stimulating angiogenesis in ischemia. Angiotensin II (ATII) and its receptor, angiotensin receptor type 1 (AT1R), are the key players in RAS-mediated angiogenesis. Dopamine acting through its D2 receptors in endothelial cells inhibited ATII-mediated angiogenesis by suppressing the expression of AT1R in these cells. This study thus for the first time demonstrates the role played by dopamine in prolonging post-ischemic recovery. Therefore, pharmacological intervention inhibiting the action of dopamine holds promise as future therapeutic strategy for the treatment of HLI and other peripheral arterial diseases.

  4. Crystal structure of Clostridium acetobutylicum Aspartate kinase (CaAK): An important allosteric enzyme for amino acids production.

    PubMed

    Manjasetty, Babu A; Chance, Mark R; Burley, Stephen K; Panjikar, Santosh; Almo, Steven C

    2014-09-01

    Aspartate kinase (AK) is an enzyme which is tightly regulated through feedback control and responsible for the synthesis of 4-phospho-L-aspartate from L-aspartate. This intermediate step is at an important branch point where one path leads to the synthesis of lysine and the other to threonine, methionine and isoleucine. Concerted feedback inhibition of AK is mediated by threonine and lysine and varies between the species. The crystal structure of biotechnologically important Clostridium acetobutylicum aspartate kinase (CaAK; E.C. 2.7.2.4; Mw=48,030Da; 437aa; SwissProt: Q97MC0) has been determined to 3Å resolution. CaAK acquires a protein fold similar to the other known structures of AKs despite the low sequence identity (<30%). It is composed of two domains: an N-terminal catalytic domain (kinase) domain and a C-terminal regulatory domain further comprised of two small domains belonging to the ACT domain family. Pairwise comparison of 12 molecules in the asymmetric unit helped to identify the bending regions which are in the vicinity of ATP binding site involved in domain movements between the catalytic and regulatory domains. All 12 CaAK molecules adopt fully open T-state conformation leading to the formation of three tetramers unique among other similar AK structures. On the basis of comparative structural analysis, we discuss tetramer formation based on the large conformational changes in the catalytic domain associated with the lysine binding at the regulatory domains. The structure described herein is homologous to a target in wide-spread pathogenic (toxin producing) bacteria such as Clostridium tetani (64% sequence identity) suggesting the potential of the structure solved here to be applied for modeling drug interactions. CaAK structure may serve as a guide to better understand and engineer lysine biosynthesis for the biotechnology industry.

  5. Functional plasticity of the N-methyl-d-aspartate receptor in differentiating human erythroid precursor cells

    PubMed Central

    Hänggi, Pascal; Telezhkin, Vsevolod; Kemp, Paul J.; Schmugge, Markus; Gassmann, Max; Goede, Jeroen S.; Speer, Oliver

    2015-01-01

    Calcium signaling is essential to support erythroid proliferation and differentiation. Precise control of the intracellular Ca2+ levels in erythroid precursor cells (EPCs) is afforded by coordinated expression and function of several cation channels, including the recently identified N-methyl-d-aspartate receptor (NMDAR). Here, we characterized the changes in Ca2+ uptake and electric currents mediated by the NMDARs occurring during EPC differentiation using flow cytometry and patch clamp. During erythropoietic maturation, subunit composition and properties of the receptor changed; in proerythroblasts and basophilic erythroblasts, fast deactivating currents with high amplitudes were mediated by the GluN2A subunit-dominated receptors, while at the polychromatic and orthochromatic erythroblast stages, the GluN2C subunit was getting more abundant, overriding the expression of GluN2A. At these stages, the currents mediated by the NMDARs carried the features characteristic of the GluN2C-containing receptors, such as prolonged decay time and lower conductance. Kinetics of this switch in NMDAR properties and abundance varied markedly from donor to donor. Despite this variability, NMDARs were essential for survival of EPCs in any subject tested. Our findings indicate that NMDARs have a dual role during erythropoiesis, supporting survival of polychromatic erythroblasts and contributing to the Ca2+ homeostasis from the orthochromatic erythroblast stage to circulating red blood cells. PMID:25788577

  6. Dopamine-Secreting Paraganglioma in the Retroperitoneum.

    PubMed

    Matsuda, Yusuke; Kimura, Noriko; Yoshimoto, Takanobu; Sekiguchi, Yoshihiro; Tomoishi, Junzo; Kasahara, Ichiro; Hara, Yoshihito; Ogawa, Yoshihiro

    2017-03-01

    Pheochromocytomas and paragangliomas, which exclusively produce dopamine, are very rare. Herein, we report for the first time a Japanese case of an exclusively dopamine-producing paraganglioma accompanied by detailed immunohistochemical analyses. A 70-year-old Japanese woman was referred to our hospital for functional examination of her left retroperitoneal mass. Her adrenal functions were normal, except for excessive dopamine secretion. After the tumorectomy, her dopamine level normalized. The histopathological diagnosis of the tumor was paraganglioma; this was confirmed by positive immunostaining of chromogranin A (CgA), tyrosine hydroxylase (TH), dopamine β-hydroxylase (DBH), and succinate dehydrogenase gene subunit B (SDHB). However, the immunostaining of CgA in the tumor cells showed peculiar dot-like staining located corresponding to Golgi complex in the perinuclear area, rather than the diffuse cytoplasmic staining usually observed in epinephrine- or norepinephrine-producing functional pheochromocytomas and paragangliomas. The immunohistochemical results suggested that the tumor cells had sparse neuroendocrine granules in the cytoplasm, resulting in inhibition of catecholamine synthesis from dopamine to norepinephrine in neurosecretory granules. This may be the mechanism responsible for exclusive dopamine secretion in the present case.

  7. Dopamine receptors in human gastrointestinal mucosa

    SciTech Connect

    Hernandez, D.E.; Mason, G.A.; Walker, C.H.; Valenzuela, J.E.

    1987-12-21

    Dopamine is a putative enteric neurotransmitter that has been implicated in exocrine secretory and motility functions of the gastrointestinal tract of several mammalian species including man. This study was designed to determine the presence of dopamine binding sites in human gastric and duodenal mucosa and to describe certain biochemical characteristics of these enteric receptor sites. The binding assay was performed in triplicate with tissue homogenates obtained from healthy volunteers of both sexes using /sup 3/H-dopamine as a ligand. The extent of nonspecific binding was determined in the presence of a 100-fold excess of unlabeled dopamine. Scatchard analysis performed with increasing concentrations of /sup 3/H-dopamine (20-500 nM) revealed a single class of saturable dopamine binding sites in gastric and duodenal mucosa. The results of this report demonstrate the presence of specific dopamine receptors in human gastric and duodenal mucosa. These biochemical data suggest that molecular abnormalities of these receptor sites may be operative in the pathogenesis of important gastrointestinal disorders. 33 references, 2 figures.

  8. Dopamine transporter: expression in Xenopus oocytes.

    PubMed

    Uhl, G R; O'Hara, B; Shimada, S; Zaczek, R; DiGiorgianni, J; Nishimori, T

    1991-01-01

    Xenopus oocytes can express biologically relevant transport activity after injection of mRNAs encoding several carrier molecules. mRNA from PC12 cells, as well as transcripts from a rat ventral midbrain library, can be expressed in these oocytes and allow them to display pharmacologically specific dopamine uptake. mRNA-injected oocytes incubated with tritiated dopamine contain tritiated dopamine and metabolites; lower amounts of radiolabeled dopamine and more radiolabeled metabolites are found in oocytes co-incubated with cocaine or in water-injected oocytes. Tritiated dopamine uptake into mRNA-injected oocytes is time, sodium, and temperature dependent. It is blocked by cocaine and mazindol, but not by haloperidol. It is not found after injection of mRNA from other brain regions. A size-selected rat midbrain library constructed in the plasma vector pCDM8 yields mRNA transcripts whose injection into oocytes causes cocaine-blockable [3H]dopamine uptake. These findings provide an assay for purification of the dopamine transporter cDNA by sib selection techniques.

  9. Stereoselectivity of presynaptic autoreceptors modulating dopamine release.

    PubMed

    Arbilla, S; Langer, S Z

    1981-12-17

    The effects of the (R)- and (S)-enantiomers of sulpiride and butaclamol were studied on the spontaneous and field stimulation-evoked release of total radioactivity from slices of rabbit caudate nucleus prelabelled with [3H]dopamine. (S)-Sulpiride in concentrations ranging from 0.01--1 microM enhanced the electrically evoked release of [3H]dopamine while (R)-sulpiride was 10 times less potent than (S)-sulpiride. Exposure to (S)-butaclamol (0.01--1 microM) but not to (R)-butaclamol (0.1--10 microM) enhanced the field-stimulated release of [3H]dopamine. The facilitatory effects of (S)- and (R)-sulpiride and (S)-butaclamol on the stimulated release of the labelled neurotransmitter were observed under conditions in which these drugs did not modify the spontaneous outflow of radioactivity. Only the active enantiomers of sulpiride and butaclamol antagonized the inhibition by apomorphine (1 microM) of the stimulated release of [3H]dopamine. Our results indicate that the presynaptic inhibitory dopamine autoreceptors modulating the stimulation-evoked release of [3H]dopamine in the caudate nucleus are, like the classical postsynaptic dopamine receptors, chemically stereoselective.

  10. Bioproduction of L-Aspartic Acid and Cinnamic Acid by L-Aspartate Ammonia Lyase from Pseudomonas aeruginosa PAO1.

    PubMed

    Patel, Arti T; Akhani, Rekha C; Patel, Manisha J; Dedania, Samir R; Patel, Darshan H

    2016-12-17

    Aspartase (L-aspartate ammonia lyase, EC 4.3.1.1) catalyses the reversible amination and deamination of L-aspartic acid to fumaric acid which can be used to produce important biochemical. In this study, we have explored the characteristics of aspartase from Pseudomonas aeruginosa PAO1 (PA-AspA). To overproduce PA-AspA, the 1425-bp gene was introduced in Escherichia coli BL21 and purified. A 51.0-kDa protein was observed as a homogenous purified protein on SDS-PAGE. The enzyme was optimally active at pH 8.0 and 35 °C. PA-AspA has retained 56% activity after 7 days of incubation at 35 °C, which displays the hyperthermostablility characteristics of the enzyme. PA-AspA is activated in the presence of metal ions and Mg2+ is found to be most effective. Among the substrates tested for specificity of PA-AspA, L-phenylalanine (38.35 ± 2.68) showed the highest specific activity followed by L-aspartic acid (31.21 ± 3.31) and fumarate (5.42 ± 2.94). K m values for L-phenylalanine, L-aspartic acid and fumarate were 1.71 mM, 0.346 μM and 2 M, respectively. The catalytic efficiency (k cat/K m) for L-aspartic acid (14.18 s(-1) mM(-1)) was higher than that for L-phenylalanine (4.65 s(-1) mM(-1)). For bioconversion, from an initial concentration of 1000 mM of fumarate and 30 mM of L-phenylalanine, PA-AspA was found to convert 395.31 μM L-aspartic acid and 3.47 mM cinnamic acid, respectively.

  11. Dopamine receptor-interacting proteins: the Ca(2+) connection in dopamine signaling.

    PubMed

    Bergson, Clare; Levenson, Robert; Goldman-Rakic, Patricia S; Lidow, Michael S

    2003-09-01

    Abnormal activity of the dopamine system has been implicated in several psychiatric and neurological illnesses; however, lack of knowledge about the precise sites of dopamine dysfunction has compromised our ability to improve the efficacy and safety of dopamine-related drugs used in treatment modalities. Recent work suggests that dopamine transmission is regulated via the concerted efforts of a cohort of cytoskeletal, adaptor and signaling proteins called dopamine receptor-interacting proteins (DRIPs). The discovery that two DRIPs, calcyon and neuronal Ca(2+) sensor 1 (NCS-1), are upregulated in schizophrenia highlights the possibility that altered protein interactions and defects in Ca(2+) homeostasis might contribute to abnormalities in the brain dopamine system in neuropsychiatric diseases.

  12. Microwave-assisted reaction of glycosylamine with aspartic acid.

    PubMed

    Real-Fernández, Feliciana; Nuti, Francesca; Bonache, M Angeles; Boccalini, Marco; Chimichi, Stefano; Chelli, Mario; Papini, Anna Maria

    2010-07-01

    The synthesis of N-protected glycosyl amino acids from amines has been investigated and it was found that, under microwave conditions, glycosylamines could be hydrolyzed leading to new products containing a glycosyl ester linkage. The efficiency of the microwave-induced glycosylation of aspartic acid was studied comparing the microwave activity between amide and ester bond formation. Different sugar moieties have been employed to demonstrate the simple and reproducible coupling methodology. New glycosyl ester compounds were further characterized by NMR spectroscopy.

  13. Explosive enantiospecific decomposition of aspartic acid on Cu surfaces.

    PubMed

    Mhatre, B S; Dutta, S; Reinicker, A; Karagoz, B; Gellman, A J

    2016-12-01

    Aspartic acid adsorbed on Cu surfaces is doubly deprotonated. On chiral Cu(643)(R&S) its enantiomers undergo enantiospecific decomposition via an autocatalytic explosion. Once initiated, the decomposition mechanism proceeds via sequential cleavage of the C3-C4 and C1-C2 bonds each yielding CO2, followed by conversion of the remaining species into N[triple bond, length as m-dash]CCH3.

  14. On the solvation of L-aspartic acid

    NASA Astrophysics Data System (ADS)

    Paxton, A. T.; Harper, J. B.

    2004-01-01

    We use molecular statics and dynamics to study the stability of L-aspartic acid both in vacuo and solvated by polar and non-polar molecules using density functional theory in the generalized gradient approximation. We find that structures stable in vacuo are unstable in aqueous solution and vice versa. From our simulations we are able to come to some conclusions about the mechanism of stabilisation of zwitterions by polar protic solvents, water and methanol.

  15. Human dopamine receptor and its uses

    DOEpatents

    Civelli, Olivier; Van Tol, Hubert Henri-Marie

    1999-01-01

    The present invention is directed toward the isolation, characterization and pharmacological use of the human D4 dopamine receptor. The nucleotide sequence of the gene corresponding to this receptor and alleleic variant thereof are provided by the invention. The invention also includes recombinant eukaryotic expression constructs capable of expressing the human D4 dopamine receptor in cultures of transformed eukaryotic cells. The invention provides cultures of transformed eukaryotic cells which synthesize the human D4 dopamine receptor, and methods for characterizing novel psychotropic compounds using such cultures.

  16. Microbial aspartic proteases: current and potential applications in industry.

    PubMed

    Theron, Louwrens W; Divol, Benoit

    2014-11-01

    Aspartic proteases are a relatively small group of proteolytic enzymes that are active in acidic environments and are found across all forms of life. Certain microorganisms secrete such proteases as virulence agents and/or in order to break down proteins thereby liberating assimilable sources of nitrogen. Some of the earlier applications of these proteolytic enzymes are found in the manufacturing of cheese where they are used as milk-clotting agents. Over the last decade, they have received tremendous research interest because of their involvement in human diseases. Furthermore, there has also been a growing interest on these enzymes for their applications in several other industries. Recent research suggests in particular that they could be used in the wine industry to prevent the formation of protein haze while preserving the wines' organoleptic properties. In this mini-review, the properties and mechanisms of action of aspartic proteases are summarized. Thereafter, a brief overview of the industrial applications of this specific class of proteases is provided. The use of aspartic proteases as alternatives to clarifying agents in various beverage industries is mentioned, and the potential applications in the wine industry are thoroughly discussed.

  17. Age estimation based on aspartic acid racemization in human sclera.

    PubMed

    Klumb, Karolin; Matzenauer, Christian; Reckert, Alexandra; Lehmann, Klaus; Ritz-Timme, Stefanie

    2016-01-01

    Age estimation based on racemization of aspartic acid residues (AAR) in permanent proteins has been established in forensic medicine for years. While dentine is the tissue of choice for this molecular method of age estimation, teeth are not always available which leads to the need to identify other suitable tissues. We examined the suitability of total tissue samples of human sclera for the estimation of age at death. Sixty-five samples of scleral tissue were analyzed. The samples were hydrolyzed and after derivatization, the extent of aspartic acid racemization was determined by gas chromatography. The degree of AAR increased with age. In samples from younger individuals, the correlation of age and D-aspartic acid content was closer than in samples from older individuals. The age-dependent racemization in total tissue samples proves that permanent or at least long-living proteins are present in scleral tissue. The correlation of AAR in human sclera and age at death is close enough to serve as basis for age estimation. However, the precision of age estimation by this method is lower than that of age estimation based on the analysis of dentine which is due to molecular inhomogeneities of total tissue samples of sclera. Nevertheless, the approach may serve as a valuable alternative or addition in exceptional cases.

  18. D-2 dopamine receptor activation reduces free ( sup 3 H)arachidonate release induced by hypophysiotropic peptides in anterior pituitary cells

    SciTech Connect

    Canonico, P.L. )

    1989-09-01

    Dopamine reduces the stimulation of intracellular ({sup 3}H)arachidonate release produced by the two PRL-stimulating peptides angiotensin-II and TRH. This effect is concentration dependent and is mediated by stimulation of D-2 dopamine receptors. D-2 receptor agonists (bromocriptine, dihydroergocryptine, and dihydroergocristine) inhibit the release of fatty acid induced by angiotensin-II with a potency that parallels their ability to inhibit PRL release in vitro. Conversely, the selective D-2 receptor antagonist L-sulpiride completely prevents dopamine's effect, whereas SCH 23390 (a D-1 receptor antagonist) is ineffective. The inhibitory action of dopamine does not seem to be consequent to an action on the adenylate cyclase-cAMP system, as 8-bromo-cAMP (1 mM) does not affect either basal or dopamine-inhibited ({sup 3}H)arachidonate release. However, a 24-h pertussis toxin pretreatment significantly reduces the action of dopamine on fatty acid release. Collectively, these results suggest that D-2 dopamine receptor-mediated inhibition of intracellular ({sup 3}H)arachidonate release requires the action of a GTP-binding protein, but is not a consequence of an inhibitory action on cAMP levels.

  19. Phasic dopamine release in appetitive behaviors and drug abuse

    PubMed Central

    Wanat, Matthew J.; Willuhn, Ingo; Clark, Jeremy J.; Phillips, Paul E. M.

    2010-01-01

    Short phasic bursts of neuronal activity in dopamine neurons produce rapid and transient increases in extracellular dopamine concentrations throughout the mesocorticolimbic system, which are associated with the initiation of goal-directed behaviors. It is well established that acute exposure to many addictive drugs produce increases in tonic dopamine levels that occur on the order of minutes. However, recent studies suggest that abused drugs similarly enhance phasic dopamine release events that occur on a subsecond time scale. Furthermore, drug experience modulates the synaptic and intrinsic properties of dopamine neurons, which could affect dopamine burst firing and phasic dopamine release. This review will provide a general introduction to the mesolimbic dopamine system, as well as the primary methods used to detect dopamine neurons and dopamine release. We present the role of phasic dopamine release in appetitive behaviors in the context of contemporary theories regarding the function of dopamine. Next we discuss the known drug-induced changes to dopamine neurons and phasic release in both in vitro and in vivo preparations. Finally, we offer a simple model that chronic drug experience attenuates tonic/basal dopamine levels but promotes phasic dopamine release, which may result in aberrant goal-directed behaviors contributing to the development of addiction. PMID:19630749

  20. NR2B-N-Methyl-D-Aspartate Receptors Contribute to Network Asynchrony and Loss of Long-Term Potentiation Following Mild Mechanical Injury In Vitro

    DTIC Science & Technology

    2012-08-30

    REPORT NR2B -N-METHYL-D-ASPARTATE RECEPTORS CONTRIBUTE TO NETWORK ASYNCHRONY AND LOSS OF LONG-TERM POTENTIATION FOLLOWING MILD MECHANICAL INJURY IN...integrate-and-fire model of network activity, 2) simulated an injured network, 3) predicted an important role for the NR2B -NMDA receptor in mediating...ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS synchrony, NR2B -NMDA receptor, network

  1. Regulation of dopamine D2 receptors in a novel cell line (SUP1)

    SciTech Connect

    Ivins, K.J.; Luedtke, R.R.; Artymyshyn, R.P.; Molinoff, P.B. )

    1991-04-01

    A prolactin-secreting cell line, SUP1, has been established from rat pituitary tumor 7315a. In radioligand binding experiments, the D2 receptor antagonist (S)-(-)-3-{sup 125}I iodo-2-hydroxy-6-methoxy-N-((1-ethyl-2- pyrrolidinyl)methyl)benzamide ({sup 125}I IBZM) labeled a single class of sites in homogenates of SUP1 cells (Kd = 0.6 nM; Bmax = 45 fmol/mg of protein). The sites displayed a pharmacological profile consistent with that of D2 receptors. Inhibition of the binding of {sup 125}I IBZM by dopamine was sensitive to GTP, suggesting that D2 receptors in SUP1 cells are coupled to guanine nucleotide-binding protein(s). In the presence of isobutylmethylxanthine, dopamine decreased the level of cAMP accumulation in SUP1 cells. Dopamine also inhibited prolactin secretion from SUP1 cells. Both the inhibition of cAMP accumulation and the inhibition of prolactin secretion were blocked by D2 receptor antagonists, suggesting that these effects of dopamine were mediated by an interaction with D2 receptors. The regulation of D2 receptors in SUP1 cells by D2 receptor agonists was investigated. Exposure of SUP1 cells to dopamine or to the D2 receptor agonist N-propylnorapomorphine led to increased expression of D2 receptors, with no change in the affinity of the receptors for {sup 125}I IBZM. An increase in the density of D2 receptors in SUP1 cells was evident within 7 hr of exposure to dopamine. Spiroperidol, a D2 receptor antagonist, blocked the effect of dopamine on receptor density. These results suggest that exposure of D2 receptors in SUP1 cells to agonists leads to an up-regulation of D2 receptors. Dopamine retained the ability to inhibit cAMP accumulation in SUP1 cells exposed to dopamine for 24 hr, suggesting that D2 receptors in SUP1 cells are not desensitized by prolonged exposure to agonist.

  2. Differential role of ventral tegmental area acetylcholine and N-methyl-D-aspartate receptors in cocaine-seeking.

    PubMed

    Solecki, Wojciech; Wickham, Robert J; Behrens, Shay; Wang, Jie; Zwerling, Blake; Mason, Graeme F; Addy, Nii A

    2013-12-01

    Exposure to drug-associated cues evokes drug-seeking behavior and is regarded as a major cause of relapse. Cues evoke burst firing of ventral tegmental area (VTA) dopamine (DA) neurons and phasic DA release in the nucleus accumbens (NAc). Cholinergic and glutamatergic input to the VTA is suggested to gate phasic DA activity. However, the role of VTA cholinergic and glutamatergic receptors in regulating phasic dopamine release and cue-induced drug-seeking in cocaine experienced subjects is not known. In male Sprague-Dawley rats, we found that VTA inactivation strongly inhibited, while VTA stimulation promoted, cocaine-seeking behavior during early withdrawal. Blockade of phasic activated D1 receptors in the NAc core also strongly inhibited cue-induced cocaine-seeking--suggesting an important role of phasic DA activity in the VTA to NAc core circuit. Next, we examined the role of VTA acetylcholine receptors (AChRs) and N-methyl-D-aspartate receptors (NMDARs) in regulating both NAc core phasic DA release and cue-induced cocaine-seeking. In cocaine naïve subjects, VTA infusion of the nicotinic acetylcholine receptor (AChR) antagonist mecamylamine, the muscarinic AChR antagonist scopolamine, or the NMDAR antagonist AP-5, led to robust attenuation of phasic DA release in the NAc core. During early cocaine withdrawal, VTA infusion of AP-5 had limited effects on NAc phasic DA release and cue-induced cocaine-seeking while VTA infusion of mecamylamine or scopolamine robustly inhibited both phasic DA release and cocaine-seeking. The results demonstrate that VTA AChRs, but not NMDARs, strongly regulate cue-induced cocaine-seeking and phasic DA release during early cocaine withdrawal.

  3. Dopamine modulates Ih in a motor axon

    PubMed Central

    Ballo, Aleksander W.; Keene, Jennifer C.; Troy, Patricia J.; Goeritz, Marie L.; Nadim, Farzan; Bucher, Dirk

    2010-01-01

    We studied the axons of the pyloric dilator (PD) neurons in the stomatogastric nervous system of the lobster. The several centimeters long portions of these axons in the motor nerves depolarize in response to low concentrations of dopamine (DA) and exhibit peripheral spike initiation in the absence of centrally generated activity. This effect is inhibited by blockers of hyperpolarization-activated inward current (Ih). We show here that peripheral spike initiation was also elicited by D1-type receptor agonists and drugs that increase cAMP. This suggests that DA acts through a D1-type receptor mechanism to modulate hyperpolarization-activated cyclic nucleotide-gated channels. We used two- electrode voltage clamp of the axon to directly study the effect of DA on Ih. Surprisingly, DA decreased the maximal conductance. However, due to a shift of the activation curve to more depolarized potentials, and a change in the slope, conductance was increased at biologically relevant membrane potentials. These changes were solely due to modulation of Ih, as DA had no discernible effect when Ih was blocked. In addition, they were not induced by repeated activation and could be mimicked by application of drugs that increase cAMP concentration. DA modulation of Ih persisted in the presence of a protein kinase A inhibitor and is therefore potentially mediated by a phosphorylation-independent direct effect of cAMP on the ion channel. A computer model of the axon showed that the changes in maximal conductance and voltage-dependence were not qualitatively affected by space clamp problems. PMID:20573890

  4. Delusions, superstitious conditioning and chaotic dopamine neurodynamics.

    PubMed

    Shaner, A

    1999-02-01

    Excessive mesolimbic dopaminergic neurotransmission is closely related to the psychotic symptoms of schizophrenia. A mathematical model of dopamine neuron firing rates, developed by King and others, suggests a mechanism by which excessive dopaminergic transmission could produce psychotic symptoms, especially delusions. In this model, firing rates varied chaotically when the efficacy of dopaminergic transmission was enhanced. Such non-contingent changes in firing rates in mesolimbic reward pathways could produce delusions by distorting thinking in the same way that non-contingent reinforcement produces superstitious conditioning. Though difficult to test in humans, the hypothesis is testable as an explanation for a common animal model of psychosis--amphetamine stereotypy in rats. The hypothesis predicts that: (1) amphetamine will cause chaotic firing rates in mesolimbic dopamine neurons; (2) non-contingent brain stimulation reward will produce stereotypy; (3) non-contingent microdialysis of dopamine into reward areas will produce stereotypy; and (4) dopamine antagonists will block all three effects.

  5. Detection of Dopamine Dynamics in the Brain.

    ERIC Educational Resources Information Center

    Wightman, R. Mark; And Others

    1988-01-01

    Explores neurochemical events in the extra cellular space of the brain by use of in vivo voltammetric microelectrodes. Reports dopamine concentrations and pathways, and discusses techniques used for analysis. Recognizes current problems and future directions for research. (ML)

  6. LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory.

    PubMed

    Beccano-Kelly, Dayne A; Volta, Mattia; Munsie, Lise N; Paschall, Sarah A; Tatarnikov, Igor; Co, Kimberley; Chou, Patrick; Cao, Li-Ping; Bergeron, Sabrina; Mitchell, Emma; Han, Heather; Melrose, Heather L; Tapia, Lucia; Raymond, Lynn A; Farrer, Matthew J; Milnerwood, Austen J

    2015-03-01

    Mutations in leucine-rich repeat kinase 2 (Lrrk2) are the most common genetic cause of Parkinson's disease (PD), a neurodegenerative disorder affecting 1-2% of those >65 years old. The neurophysiology of LRRK2 remains largely elusive, although protein loss suggests a role in glutamatergic synapse transmission and overexpression studies show altered dopamine release in aged mice. We show that glutamate transmission is unaltered onto striatal projection neurons (SPNs) of adult LRRK2 knockout mice and that adult animals exhibit no detectable cognitive or motor deficits. Basal synaptic transmission is also unaltered in SPNs of LRRK2 overexpressing mice, but they do exhibit clear alterations to D2-receptor-mediated short-term synaptic plasticity, behavioral hypoactivity and impaired recognition memory. These phenomena are associated with decreased striatal dopamine tone and abnormal dopamine- and cAMP-regulated phosphoprotein 32 kDa signal integration. The data suggest that LRRK2 acts at the nexus of dopamine and glutamate signaling in the adult striatum, where it regulates dopamine levels, presynaptic glutamate release via D2-dependent synaptic plasticity and dopamine-receptor signal transduction.

  7. The C. elegans D2-Like Dopamine Receptor DOP-3 Decreases Behavioral Sensitivity to the Olfactory Stimulus 1-Octanol

    PubMed Central

    Ezak, Meredith J.; Ferkey, Denise M.

    2010-01-01

    We previously found that dopamine signaling modulates the sensitivity of wild-type C. elegans to the aversive odorant 1-octanol. C. elegans lacking the CAT-2 tyrosine hydroxylase enzyme, which is required for dopamine biosynthesis, are hypersensitive in their behavioral avoidance of dilute concentrations of octanol. Dopamine can also modulate the context-dependent response of C. elegans lacking RGS-3 function, a negative regulator of Gα signaling. rgs-3 mutant animals are defective in their avoidance of 100% octanol when they are assayed in the absence of food (E. coli bacterial lawn), but their response is restored when they are assayed in the presence of food or exogenous dopamine. However, it is not known which receptor might be mediating dopamine's effects on octanol avoidance. Herein we describe a role for the C. elegans D2-like receptor DOP-3 in the regulation of olfactory sensitivity. We show that DOP-3 is required for the ability of food and exogenous dopamine to rescue the octanol avoidance defect of rgs-3 mutant animals. In addition, otherwise wild-type animals lacking DOP-3 function are hypersensitive to dilute octanol, reminiscent of cat-2 mutants. Furthermore, we demonstrate that DOP-3 function in the ASH sensory neurons is sufficient to rescue the hypersensitivity of dop-3 mutant animals, while dop-3 RNAi knockdown in ASH results in octanol hypersensitivity. Taken together, our data suggest that dopaminergic signaling through DOP-3 normally acts to dampen ASH signaling and behavioral sensitivity to octanol. PMID:20209143

  8. A Subpopulation of Neuronal M4 Muscarinic Acetylcholine Receptors Plays a Critical Role in Modulating Dopamine-Dependent Behaviors

    PubMed Central

    Jeon, Jongrye; Dencker, Ditte; Wortwein, Gitta; Woldbye, David P. D.; Cui, Yinghong; Davis, Albert A.; Levey, Allan I.; Schütz, Günther; Sager, Thomas; Mørk, Arne; Li, Cuiling; Deng, Chu-Xia; Fink-Jensen, Anders; Wess, Jürgen

    2010-01-01

    Acetylcholine (ACh) regulates many key functions of the CNS by activating cell surface receptors referred to as muscarinic ACh receptors (M1–M5 mAChRs). Like other mAChR subtypes, the M4 mAChR is widely expressed in different regions of the forebrain. Interestingly, M4 mAChRs are coexpressed with D1 dopamine receptors in a specific subset of striatal projection neurons. To investigate the physiological relevance of this M4 mAChR subpopulation in modulating dopamine-dependent behaviors, we used Cre/loxP technology to generate mutant mice that lack M4 mAChRs only in D1 dopamine receptor-expressing cells. The newly generated mutant mice displayed several striking behavioral phenotypes including enhanced hyperlocomotor activity and increased behavioral sensitization following treatment with psychostimulants. These behavioral changes wereaccompanied by a lack of muscarinic inhibition of D1 dopamine receptor-mediated camp stimulation in the striatum and an increase in dopamine efflux in the nucleus accumbens. These novel findings demonstrate that a distinct subpopulation of neuronal M4 mAChRs plays a critical role in modulating several important dopamine-dependent behaviors. Since enhanced central dopaminergic neurotransmission is a hallmark of several severe disorders of the CNS, including schizophrenia and drug addiction, our findings have substantial clinical relevance. PMID:20147565

  9. Endocannabinoid signaling in midbrain dopamine neurons: more than physiology?

    PubMed

    Melis, M; Pistis, M

    2007-12-01

    Different classes of neurons in the CNS utilize endogenous cannabinoids as retrograde messengers to shape afferent activity in a short- and long-lasting fashion. Transient suppression of excitation and inhibition as well as long-term depression or potentiation in many brain regions require endocannabinoids to be released by the postsynaptic neurons and activate presynaptic CB1 receptors. Memory consolidation and/or extinction and habit forming have been suggested as the potential behavioral consequences of endocannabinoid-mediated synaptic modulation. HOWEVER, ENDOCANNABINOIDS HAVE A DUAL ROLE: beyond a physiological modulation of synaptic functions, they have been demonstrated to participate in the mechanisms of neuronal protection under circumstances involving excessive excitatory drive, glutamate excitotoxicity, hypoxia-ischemia, which are key features of several neurodegenerative disorders. In this framework, the recent discovery that the endocannabinoid 2-arachidonoyl-glycerol is released by midbrain dopaminergic neurons, under both physiological synaptic activity to modulate afferent inputs and pathological conditions such as ischemia, is particularly interesting for the possible implication of these molecules in brain functions and dysfunctions. Since dopamine dysfunctions underlie diverse neuropsychiatric disorders including schizophrenia, psychoses, and drug addiction, the importance of better understanding the correlation between an unbalanced endocannabinoid signal and the dopamine system is even greater. Additionally, we will review the evidence of the involvement of the endocannabinoid system in the pathogenesis of Parkinson's disease, where neuroprotective actions of cannabinoid-acting compounds may prove beneficial.The modulation of the endocannabinoid system by pharmacological agents is a valuable target in protection of dopamine neurons against functional abnormalities as well as against their neurodegeneration.

  10. A model of dopamine modulated glutamatergic synapse.

    PubMed

    Di Maio, Vito; Ventriglia, Francesco; Santillo, Silvia

    2015-10-01

    The dopamine neurotransmitter regulates important neural pathways and its action in the brain is very complex. When dopaminergic neurons make synapses on spiny neurons of the striatum nucleus, they tune the responsiveness of glutamatergic synapses by means of the dopamine D1 and D2 receptors. We studied the effect of dopamine D1 receptors on glutamatergic synapse of GABAergic spiny neurons in striatum nucleus where they are located on the neck of the same spine. The action of dopamine consists essentially in promoting the phosphorylation of AMPA and NMDA receptors thus increasing the Excitatory Post Synaptic Current peak amplitude. The consequence is a cooperative effect of glutamatergic and dopaminergic synapses for the regulation of the GABAergic neuronal code. The mechanisms by which the phosphorylation induces the increase of the EPSC amplitude still remain unclear although the lack of this regulation can be involved in several pathologies as, for example, the Parkinson's disease. We tested, by computational experiments based on our model of glutamatergic synapse, three parameters of the synaptic function that could be involved in dopamine action: (a) time binding of glutamate to receptors; (b) open probability of the receptors; and (c) single receptor conductance. For different reasons, any of the three parameters could be responsible of the increased EPSC-dopamine-dependent. Our computational results were compared and discussed with experimental results found in literature. Although for our model both the open probability and the single receptor conductance can reproduce the phosphorylation effect of dopamine, we argue that the dopamine effect consists essentially in an increase of the single receptor conductance due to a 3D rearrangement of the phosphorylated receptors.

  11. Adjunctive alpha2-adrenoceptor blockade enhances the antipsychotic-like effect of risperidone and facilitates cortical dopaminergic and glutamatergic, NMDA receptor-mediated transmission.

    PubMed

    Marcus, Monica M; Wiker, Charlotte; Frånberg, Olivia; Konradsson-Geuken, Asa; Langlois, Xavier; Jardemark, Kent; Svensson, Torgny H

    2010-08-01

    Compared to both first- and second-generation antipsychotic drugs (APDs), clozapine shows superior efficacy in treatment-resistant schizophrenia. In contrast to most APDs clozapine possesses high affinity for alpha2-adrenoceptors, and clinical and preclinical studies provide evidence that the alpha2-adrenoceptor antagonist idazoxan enhances the antipsychotic efficacy of typical D2 receptor antagonists as well as olanzapine. Risperidone has lower affinity for alpha2-adrenoceptors than clozapine but higher than most other APDs. Here we examined, in rats, the effects of adding idazoxan to risperidone on antipsychotic effect using the conditioned avoidance response (CAR) test, extrapyramidal side-effect (EPS) liability using the catalepsy test, brain dopamine efflux using in-vivo microdialysis in freely moving animals, cortical N-methyl-D-aspartate (NMDA) receptor-mediated transmission using intracellular electrophysiological recording in vitro, and ex-vivo autoradiography to assess the in-vivo alpha2A- and alpha2C-adrenoceptor occupancies by risperidone. The dose of risperidone needed for antipsychotic effect in the CAR test was approximately 0.4 mg/kg, which produced 11% and 17% in-vivo receptor occupancy at alpha2A- and alpha2C-adrenoceptors, respectively. Addition of idazoxan (1.5 mg/kg) to a low dose of risperidone (0.25 mg/kg) enhanced the suppression of CAR, but did not enhance catalepsy. Both cortical dopamine release and NMDA receptor-mediated responses were enhanced. These data propose that the therapeutic effect of risperidone in schizophrenia can be enhanced and its EPS liability reduced by adjunctive treatment with an alpha2-adrenoceptor antagonist, and generally support the notion that the potent alpha2-adrenoceptor antagonistic action of clozapine may be highly important for its unique efficacy in schizophrenia.

  12. Reinforcement in an in Vitro Analog of Appetitive Classical Conditioning of Feeding Behavior in "Aplysia": Blockade by a Dopamine Antagonist

    ERIC Educational Resources Information Center

    Reyes, Fredy D.; Mozzachiodi, Riccardo; Baxter, Douglas A.; Byrne, John H.

    2005-01-01

    In a recently developed in vitro analog of appetitive classical conditioning of feeding in "Aplysia," the unconditioned stimulus (US) was electrical stimulation of the esophageal nerve (En). This nerve is rich in dopamine (DA)-containing processes, which suggests that DA mediates reinforcement during appetitive conditioning. To test this…

  13. Long-term studies of dopamine agonists.

    PubMed

    Hubble, Jean P

    2002-02-26

    Dopamine agonists have long been used as adjunctive therapy for the treatment of Parkinson's disease (PD). In more recent years these drugs have also been proved safe and effective as initial therapy in lieu of levodopa in the treatment of PD. Long-term levodopa therapy is associated with motor complications, including fluctuating response patterns and dyskinesia. By initially introducing a dopamine agonist as symptomatic drug therapy, it may be possible to postpone the use of levodopa and delay or prevent the development of motor complications. Recently, four clinical trials have explored this hypothesis by comparing the long-term response and side effects of levodopa with dopamine agonist therapy. The drugs studied have included ropinirole, pramipexole, cabergoline, and pergolide. In each of these projects, the occurrence of motor complications, such as wearing off and dyskinesia, was significantly less in the subjects assigned to initiation of therapy with a dopamine agonist. The addition of levodopa could be postponed by many months or even several years. Therefore, these long-term studies of dopamine agonists support the initiation of a dopamine agonist instead of levodopa in an effort to postpone levodopa-related motor complications. This therapeutic approach may be particularly appropriate in PD patients with a long treatment horizon on the basis of age and general good health. The extension phase of the long-term study comparing pramipexole with levodopa is ongoing, and follow-up information may help to establish the value of this treatment strategy.

  14. Pharmacological characterization of renal vascular dopamine receptors.

    PubMed

    Schmidt, M; Imbs, J L

    1980-01-01

    We present an in vitro method for studying the renal effects of dopamine in the isolated rat kidney. The organ is perfused in an open circuit and can be maintained satisfactorily for up to 180 min. The responses to dopamine were studied in the presence of phenoxybenzamine (10(-5) M) and sotalol (10(-5) M) while stable renal vasoconstriction was maintained by perfusion with prostaglandine F2 alpha. Dopamine induced dose-dependent renal vasodilation with an ED50 of 2.53 X 10(-6) moles/liter, which was not modified by reserpine pretreatment. (+) Butaclamol but not (-) butaclamol shifted the dopamine dose-response curve to the right in a parallel fashion, indicating competitive antagonism. Haloperidol and sulpiride at concentrations without intrinsic effect on vascular resistance also acted as competitive inhibitors for dopamine. Calculation of empirical pA2 values yielded the following relative potencies for these antagonists: (+) butaclamol greater than haloperidol greater than sulpiride. The renal vascular dopamine receptors are tentatively classified as being of the D1 type.

  15. Regulation of postsynaptic plasticity genes' expression and topography by sustained dopamine perturbation and modulation by acute memantine: relevance to schizophrenia.

    PubMed

    Iasevoli, Felice; Buonaguro, Elisabetta F; Sarappa, Chiara; Marmo, Federica; Latte, Gianmarco; Rossi, Rodolfo; Eramo, Anna; Tomasetti, Carmine; de Bartolomeis, Andrea

    2014-10-03

    A relevant role for dopamine-glutamate interaction has been reported in the pathophysiology and treatment of psychoses. Dopamine and glutamate may interact at multiple levels, including the glutamatergic postsynaptic density (PSD), an electron-dense thickening that has gained recent attention as a switchboard of dopamine-glutamate interactions and for its role in synaptic plasticity. Recently, glutamate-based strategies, such as memantine add-on to antipsychotics, have been proposed for refractory symptoms of schizophrenia, e.g. cognitive impairment. Both antipsychotics and memantine regulate PSD transcripts but sparse information is available on memantine's effects under dopamine perturbation. We tested gene expression changes of the Homer1 and PSD-95 PSD proteins in models of sustained dopamine perturbation, i.e. subchronic treatment by: a) GBR-12909, a dopamine receptor indirect agonist; b) haloperidol, a D2R antagonist; c) SCH-23390, a dopamine D1 receptor (D1R) antagonist; and d) SCH-23390+haloperidol. On the last day of treatment, rats were acutely treated with vehicle or memantine. The Homer1a immediate-early gene was significantly induced by haloperidol and by haloperidol+SCH-23390. The gene was not induced by SCH-23390 per se or by GBR-12909. Expression of the constitutive genes Homer1b/c and PSD-95 was less affected by these dopaminergic paradigms. Acute memantine administration significantly increased Homer1a expression by the dopaminergic compounds used herein. Both haloperidol and haloperidol+SCH-23390 shifted Homer1a/Homer1b/c ratio of expression toward Homer1a. This pattern was sharpened by acute memantine. Dopaminergic compounds and acute memantine also differentially affected topographic distribution of gene expression and coordinated expression of Homer1a among cortical-subcortical regions. These results indicate that dopaminergic perturbations may affect glutamatergic signaling in different directions. Memantine may help partially revert dopamine-mediated

  16. Reductions in carotid chemoreceptor activity with low-dose dopamine improves baroreflex control of heart rate during hypoxia in humans.

    PubMed

    Mozer, Michael T; Holbein, Walter W; Joyner, Michael J; Curry, Timothy B; Limberg, Jacqueline K

    2016-07-01

    The purpose of the present investigation was to examine the contribution of the carotid body chemoreceptors to changes in baroreflex control of heart rate with exposure to hypoxia. We hypothesized spontaneous cardiac baroreflex sensitivity (scBRS) would be reduced with hypoxia and this effect would be blunted when carotid chemoreceptor activity was reduced with low-dose dopamine. Fifteen healthy adults (11 M/4 F) completed two visits randomized to intravenous dopamine or placebo (saline). On each visit, subjects were exposed to 5-min normoxia (~99% SpO2), followed by 5-min hypoxia (~84% SpO2). Blood pressure (intra-arterial catheter) and heart rate (ECG) were measured continuously and scBRS was assessed by spectrum and sequence methodologies. scBRS was reduced with hypoxia (P < 0.01). Using the spectrum analysis approach, the fall in scBRS with hypoxia was attenuated with infusion of low-dose dopamine (P < 0.01). The decrease in baroreflex sensitivity to rising pressures (scBRS "up-up") was also attenuated with low-dose dopamine (P < 0.05). However, dopamine did not attenuate the decrease in baroreflex sensitivity to falling pressures (scBRS "down-down"; P > 0.05). Present findings are consistent with a reduction in scBRS with systemic hypoxia. Furthermore, we show this effect is partially mediated by the carotid body chemoreceptors, given the fall in scBRS is attenuated when activity of the chemoreceptors is reduced with low-dose dopamine. However, the improvement in scBRS with dopamine appears to be specific to rising blood pressures. These results may have important implications for impairments in baroreflex function common in disease states of acute and/or chronic hypoxemia, as well as the experimental use of dopamine to assess such changes.

  17. Effect of dopamine receptor agonists on sensory nerve activity: possible therapeutic targets for the treatment of asthma and COPD

    PubMed Central

    Birrell, Mark A; Crispino, Natascia; Hele, David J; Patel, Hema J; Yacoub, Magdi H; Barnes, Peter J; Belvisi, Maria G

    2002-01-01

    Sensory nerves regulate central and local reflexes such as airway plasma leakage, and cough and their function may be enhanced during inflammation. Evidence suggests that dopamine receptor agonists may inhibit sensory nerve-mediated responses.In this study dopamine inhibited vagal sensory nerve induced microvascular leakage in the rat. In order to characterize the receptor involved rat vagus preparations were utilized. Quinagolide (D2/3 agonist), ropinirole (D2/3/4 agonist), SKF 38393 (D1/5 agonist), AR-C68397AA (Viozan™) (dual D2/B2 agonist) and dopamine inhibited hypertonic saline induced depolarization by approximately 50%. Data suggests that AR-C68397AA and quinagolide also inhibited depolarization of the human vagus.The quinagolide response was blocked by sulpiride (D2/3 antagonist) but not SCH 23390 (D1/5 antagonist); ropinirole was partially blocked by sulpiride, totally blocked by spiperone (at a concentration that blocks all dopamine receptors) but not by SCH 23390. The response to SKF 38393 was not blocked by sulpiride but was by SCH 23390. The inhibition evoked by AR-C68397AA was only partially blocked by SCH 23390 but not by sulpiride or spiperone whereas dopamine was blocked by spiperone. The effect of dopamine was not stimulus-specific as it inhibited capsaicin-induced depolarization of the rat vagus in a spiperone sensitive manner.In conclusion, dopamine receptor ligands inhibit depolarization of the rat and human vagus. These data suggest that dopamine receptor agonists may be of therapeutic benefit in the treatment of symptoms such as cough and mucus secretion which are evident in respiratory diseases such as asthma and chronic obstructive pulmonary disease. PMID:12055141

  18. Effect of dopamine receptor agonists on sensory nerve activity: possible therapeutic targets for the treatment of asthma and COPD.

    PubMed

    Birrell, Mark A; Crispino, Natascia; Hele, David J; Patel, Hema J; Yacoub, Magdi H; Barnes, Peter J; Belvisi, Maria G

    2002-06-01

    Sensory nerves regulate central and local reflexes such as airway plasma leakage, and cough and their function may be enhanced during inflammation. Evidence suggests that dopamine receptor agonists may inhibit sensory nerve-mediated responses. In this study dopamine inhibited vagal sensory nerve induced microvascular leakage in the rat. In order to characterize the receptor involved rat vagus preparations were utilized. Quinagolide (D(2/3) agonist), ropinirole (D(2/3/4) agonist), SKF 38393 (D(1/5) agonist), AR-C68397AA (Viozan) (dual D(2)/B(2) agonist) and dopamine inhibited hypertonic saline induced depolarization by approximately 50%. Data suggests that AR-C68397AA and quinagolide also inhibited depolarization of the human vagus. The quinagolide response was blocked by sulpiride (D(2/3) antagonist) but not SCH 23390 (D(1/5) antagonist); ropinirole was partially blocked by sulpiride, totally blocked by spiperone (at a concentration that blocks all dopamine receptors) but not by SCH 23390. The response to SKF 38393 was not blocked by sulpiride but was by SCH 23390. The inhibition evoked by AR-C68397AA was only partially blocked by SCH 23390 but not by sulpiride or spiperone whereas dopamine was blocked by spiperone. The effect of dopamine was not stimulus-specific as it inhibited capsaicin-induced depolarization of the rat vagus in a spiperone sensitive manner. In conclusion, dopamine receptor ligands inhibit depolarization of the rat and human vagus. These data suggest that dopamine receptor agonists may be of therapeutic benefit in the treatment of symptoms such as cough and mucus secretion which are evident in respiratory diseases such as asthma and chronic obstructive pulmonary disease.

  19. Exposure to D2-like dopamine receptor agonists inhibits swimming in Daphnia magna.

    PubMed

    Barrozo, Enrico R; Fowler, David A; Beckman, Matthew L

    2015-10-01

    Daphnia are freshwater crustaceans that have been used for decades in ecotoxicology research. Despite the important role that Daphnia have played in environmental toxicology studies, very little is known about the neurobiology of Daphnia. Although many studies have investigated the swimming movements of these "water fleas", few studies have examined the underlying neurochemical basis for these movements. To characterize the locomotor effect of drugs in Daphnia, a two-dimensional video imaging tool was developed and animal tracking was performed with freely available software, CTRAX. Due to the central role that dopamine plays in the movement of animals, we sought to determine the role of dopamine receptor signaling in Daphnia movement by characterizing the effect of ten drugs that are agonists or antagonists of dopamine receptors. At 1, 2, and 6h of treatment with a 10μM drug, several dopamine receptor agonists with documented effects on the D2-like class of receptors decreased the movement. Further, we determined behavioral inhibition values (IC50) at 1h of treatment for (1R,3S)-1-(aminomethyl)-3-phenyl-3,4-dihydro-1H-isochromene-5,6-diol (A68930) to be 1.4μM and for bromocriptine to be 6.6μM. This study describes a new method to study Daphnia swimming and establishes this organism as a useful model for studies of dopaminergic signaling. Specifically, this study shows that a dopamine receptor signaling pathway, mediated by putative D2-like receptors, is involved in the control of Daphnia swimming behavior. Due to its ease of use and its rich motor program we propose that Daphnia should be considered for future studies of dopamine neuron toxicity and protection.

  20. Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates.

    PubMed

    Laruelle, M; Iyer, R N; al-Tikriti, M S; Zea-Ponce, Y; Malison, R; Zoghbi, S S; Baldwin, R M; Kung, H F; Charney, D S; Hoffer, P B; Innis, R B; Bradberry, C W

    1997-01-01

    The competition between endogenous transmitters and radiolabeled ligands for in vivo binding to neuroreceptors might provide a method to measure endogenous transmitter release in the living human brain with noninvasive techniques such as positron emission tomography (PET) or single photon emission computerized tomography (SPECT). In this study, we validated the measure of amphetamine-induced dopamine release with SPECT in nonhuman primates. Microdialysis experiments were conducted to establish the dose-response curve of amphetamine-induced dopamine release and to document how pretreatment with the dopamine depleter alpha-methyl-para-tyrosine (alpha MPT) affects this response. SPECT experiments were performed with two iodinated benzamides, [123I]IBZM and [123I]IBF, under sustained equilibrium condition. Both radio-tracers are specific D2 antagonists, but the affinity of [123I]IBZM (KD-0.4 nM) is lower than that of [123I]IBF (KD 0.1 nM). With both tracers, we observed a prolonged reduction in binding to D2 receptors following amphetamine injection. [123I]IBZM binding to D2 receptors was more affected than [123I]IBF by high doses of amphetamine, indicating that a lower affinity increases the vulnerability of a tracer to endogenous competition. With [123I]IBZM, we observed an excellent correlation between reduction of D2 receptor binding measured with SPECT and peak dopamine release measured with microdialysis after various doses of amphetamine. Pretreatment with alpha MPT significantly reduced the effect of amphetamine on [123I]IBZM binding to D2 receptors, confirming that this effect was mediated by intrasynaptic dopamine release. Together, these results validate the use of this SPECT paradigm as a noninvasive measurement of intrasynaptic dopamine release in the living brain.

  1. Identification and characterization of Toxoplasma gondii aspartic protease 1 as a novel vaccine candidate against toxoplasmosis

    PubMed Central

    2013-01-01

    Background Toxoplasma gondii is an obligate intracellular parasite that can pose a serious threat to human health by causing toxoplasmosis. There are no drugs that target the chronic cyst stage of this infection; therefore, development of an effective vaccine would be an important advance. Aspartic proteases play essential roles in the T. gondii lifecycle. The parasite has four aspartic protease encoding genes, which are called toxomepsin 1, 2, 3 and 5 (TgASP1, 2, 3 and 5, respectively). Methods Bioinformatics approaches have enabled us to identify several promising linear-B cell epitopes and potential Th-cell epitopes on TgASP1, thus supporting its potential as a DNA vaccine against toxoplasmosis. We expressed TgASP1 in Escherichia coli and used the purified protein to immunize BALB/c mice. The antibodies obtained were used to determine where TgASP1 was localized in the parasite. We also made a TgASP1 DNA vaccine construct and evaluated it for the level of protection conferred to mice against infection with the virulent RH strain of T. gondii. Results TgASP1 appears to be a membrane protein located primarily at the tip of the T. gondii tachyzoite. Investigation of its potential as a DNA vaccine showed that it elicited strong humoral and cellular immune responses in mice, and that these responses were mediated by Th-1 cells. Mice immunized with the vaccine had greater levels of protection against mortality following challenge with T. gondii RH tachyzoites than did those immunized with PBS or the empty vector control. Conclusions TgASP1 is a novel candidate DNA vaccine that merits further investigation. PMID:23768047

  2. delta9-Tetrahydrocannabinol excites rat VTA dopamine neurons through activation of cannabinoid CB1 but not opioid receptors.

    PubMed

    French, E D

    1997-05-02

    Behavioral, biochemical and recent electrophysiological data have increasingly implicated the involvement of dopamine in the central actions of cannabinoid compounds. However, the site and mechanism by which cannabinoids stimulate dopamine systems has been somewhat controversial. Central opioid systems have also been suggested to play a role in some cannabinoid-induced behaviors as evidenced by their attenuation in the presence of the opioid antagonist naloxone. However, recent studies using the cannabinoid receptor-selective antagonist SR141716A suggest that the central actions of psychoactive cannabinoids are mediated principally through activation of CB1 receptors. Using single cell electrophysiological recordings in the rat we assessed the effects of both SR141716A and naloxone on delta9-tetrahydrocannabinol (THC)-induced activation of ventral tegmental dopamine neurons. While dopamine cell firing was dose-dependently increased following cumulative dosing with delta9-THC it was partially or completely inhibited following pretreatment with 0.5 and 2 mg/kg SR141716A, respectively. However, 1 and 10 mg/kg naloxone failed to alter the response to delta9-THC. These data provide the first evidence that delta9-THC-induced changes in mesolimbic dopamine neuronal activity are mediated by the CB1 cannabinoid receptor, but a causal link for the involvement of opioid systems could not be established.

  3. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    PubMed

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn

  4. N-METHYL-d-ASPARTATE RECEPTORS AND LARGE CONDUCTANCE CALCIUM-SENSITIVE POTASSIUM CHANNELS INHIBIT THE RELEASE OF OPIOID PEPTIDES THAT INDUCE μ-OPIOID RECEPTOR INTERNALIZATION IN THE RAT SPINAL CORD

    PubMed Central

    SONG, B.; MARVIZÓN, J. C. G.

    2006-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the μ-opioid receptor, we measured μ-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced μ-opioid receptor internalization in half of the μ-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-d-aspartate (IC50=2 μM), and N-methyl-d-aspartate antagonists prevented this effect. μ-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-d-aspartate receptor activation. N-methyl-d-aspartate did not affect μ-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-d-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-d-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase μ-opioid receptor internalization in the absence of N-methyl-d-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked μ-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-d-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since μ-opioid receptors in the dorsal horn

  5. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice

    PubMed Central

    Zhang, Hai-Ying; Gao, Ming; Liu, Qing-Rong; Bi, Guo-Hua; Li, Xia; Yang, Hong-Ju; Gardner, Eliot L.; Wu, Jie

    2014-01-01

    Cannabinoid CB2 receptors (CB2Rs) have been recently reported to modulate brain dopamine (DA)-related behaviors; however, the cellular mechanisms underlying these actions are unclear. Here we report that CB2Rs are expressed in ventral tegmental area (VTA) DA neurons and functionally modulate DA neuronal excitability and DA-related behavior. In situ hybridization and immunohistochemical assays detected CB2 mRNA and CB2R immunostaining in VTA DA neurons. Electrophysiological studies demonstrated that activation of CB2Rs by JWH133 or other CB2R agonists inhibited VTA DA neuronal firing in vivo and ex vivo, whereas microinjections of JWH133 into the VTA inhibited cocaine self-administration. Importantly, all of the above findings observed in WT or CB1−/− mice are blocked by CB2R antagonist and absent in CB2−/− mice. These data suggest that CB2R-mediated reduction of VTA DA neuronal activity may underlie JWH133's modulation of DA-regulated behaviors. PMID:25368177

  6. Inflammatory nociception diminishes dopamine release and increases dopamine D2 receptor mRNA in the rat's insular cortex

    PubMed Central

    2010-01-01

    Background The insular cortex (IC) receives somatosensory afferent input and has been related to nociceptive input. It has dopaminergic terminals and D1 (D1R) -excitatory- and D2 (D2R) -inhibitory- receptors. D2R activation with a selective agonist, as well as D1R blockade with antagonists in the IC, diminish neuropathic nociception in a nerve transection model. An intraplantar injection of carrageenan and acute thermonociception (plantar test) were performed to measure the response to inflammation (paw withdrawal latency, PWL). Simultaneously, a freely moving microdyalisis technique and HPLC were used to measure the release of dopamine and its metabolites in the IC. Plantar test was applied prior, one and three hours after inflammation. Also, mRNA levels of D1 and D2R's were measured in the IC after three hours of inflammation. Results The results showed a gradual decrease in the release of dopamine, Dopac and HVA after inflammation. The decrease correlates with a decrease in PWL. D2R's increased their mRNA expression compared to the controls. In regard of D1R's, there was a decrease in their mRNA levels compared to the controls. Conclusions Our results showed that the decreased extracellular levels of dopamine induced by inflammation correlated with the level of pain-related behaviour. These results also showed the increase in dopaminergic mediated inhibition by an increase in D2R's and a decrease in D1R's mRNA. There is a possible differential mechanism regarding the regulation of excitatory and inhibitory dopaminergic receptors triggered by inflammation. PMID:21050459

  7. Origins of hydration differences in homochiral and racemic crystals of aspartic acid.

    PubMed

    Juliano, Thomas R; Korter, Timothy M

    2015-02-26

    The propensity for crystalline hydrates of organic molecules to form is related to the strength of the interactions between molecules, including the chiral composition of the molecular solids. Specifically, homochiral versus racemic crystalline samples can exhibit distinct differences in their ability to form energetically stable hydrates. The focus of the current study is a comparison of the crystal structures and intermolecular forces found in solid-state L-aspartic acid, DL-aspartic acid, and L-aspartic acid monohydrate. The absence of experimental evidence for the DL-aspartic acid monohydrate is considered here in terms of the enhanced thermodynamic stability of the DL-aspartic acid anhydrate crystal as compared to the L-aspartic acid anhydrate as revealed through solid-state density functional theory calculations and terahertz spectroscopic measurements. The results indicate that anhydrous DL-aspartic acid is the more stable solid, not due to intermolecular forces alone but also due to the improved conformations of the molecules within the racemic solid. Hemihydrated and monohydrated forms of DL-aspartic acid have been computationally evaluated, and in each case, the hydrates produce destabilized aspartic acid conformations that prevent DL-aspartic acid hydrate formation from occurring.

  8. Nicotine withdrawal produces a decrease in extracellular levels of dopamine in the nucleus accumbens that is lower in adolescent versus adult male rats.

    PubMed

    Natividad, Luis A; Tejeda, Hugo A; Torres, Oscar V; O'Dell, Laura E

    2010-02-01

    The behavioral effects of nicotine withdrawal are lower in adolescent versus adult rats. However, the neurochemical mechanisms that mediate these developmental differences are unknown. Previous studies have shown that extracellular levels of dopamine in the nucleus accumbens (NAcc) are reduced in adult rats experiencing withdrawal. This study compared dopamine levels in the NAcc of male adolescent and adult rats experiencing nicotine withdrawal. Animals were prepared with subcutaneous pumps that delivered an equivalent nicotine dose in these age groups. Following 13 days of nicotine exposure, rats were implanted unilaterally with microdialysis probes into the NAcc and ipsilateral ventral tegmental area (VTA). The next day, dialysate levels were collected following systemic administration of the nicotinic-receptor antagonist mecamylamine to precipitate withdrawal. Mecamylamine produced an average % decrease in NAcc dopamine that was lower in adolescents (20%) versus adults (44%). Similar developmental differences were observed with the dopaminergic (DOPAC and HVA) but not serotonergic (5-HIAA) metabolites. A follow-up study compared NAcc dopamine in adolescent and adult rats receiving intra-VTA administration of bicuculline, which reduces gamma-aminobutyric acid (GABA) inhibition of dopamine transmission. The results revealed that blockade of GABA(A) receptors in the VTA produced a two-fold increase in NAcc dopamine of adults but not adolescents. These results provide a potential mechanism involving dopamine that mediates developmental differences in nicotine withdrawal. Specifically, they suggest that GABA systems are underdeveloped during adolescence and this reduced inhibition of dopamine neurons in the VTA may lead to reduced decreases in NAcc dopamine of young animals experiencing withdrawal.

  9. Nicotine withdrawal produces a decrease in extracellular levels of dopamine in the nucleus accumbens that is lower in adolescent versus adult male rats

    PubMed Central

    Natividad, Luis A.; Tejeda, Hugo A.; Torres, Oscar V.; O’Dell, Laura E.

    2010-01-01

    The behavioral effects of nicotine withdrawal are lower in adolescent versus adult rats. However, the neurochemical mechanisms that mediate these developmental differences are unknown. Previous studies have shown that extracellular levels of dopamine in the nucleus accumbens (NAcc) are reduced in adult rats experiencing withdrawal. This study compared dopamine levels in the NAcc of male adolescent and adult rats experiencing nicotine withdrawal. Animals were prepared with subcutaneous pumps that delivered an equivalent nicotine dose in these age groups. Following 13 days of nicotine exposure, rats were implanted unilaterally with microdialysis probes into the NAcc and ipsilateral ventral tegmental area (VTA). The next day, dialysate levels were collected following systemic administration of the nicotinic-receptor antagonist mecamylamine to precipitate withdrawal. Mecamylamine produced an average % decrease in NAcc dopamine that was lower in adolescents (20%) versus adults (44%). Similar developmental differences were observed with the dopaminergic (DOPAC and HVA) but not serotonergic (5-HIAA) metabolites. A follow up study compared NAcc dopamine in adolescent and adult rats receiving intra-VTA administration of bicuculline, which reduces gamma-aminobutyric acid (GABA) inhibition of dopamine transmission. The results revealed that blockade of GABAA receptors in the VTA produced a 2-fold increase in NAcc dopamine of adults but not adolescents. These results provide a potential mechanism involving dopamine that mediates developmental differences in nicotine withdrawal. Specifically, they suggest that GABA systems are underdeveloped during adolescence and this reduced inhibition of dopamine neurons in the VTA may lead to reduced decreases in NAcc dopamine of young animals experiencing withdrawal. PMID:19771590

  10. The Renal Effects of Low-Dose Dopamine in Thermally Injured Patients,

    DTIC Science & Technology

    1993-07-01

    Ragsdale NV, Felder RA, et al: Diuresis and natriuresis Is de•picted for each patient (n - 9). Although the difference was signifi- during continuous...mediated natriuresis and diuresis . Because see if there is a suggestion for decreased ADH release. Inciden- the hormonal response to a blood volume...and 6). In the patients, there small Increase in sodium excretion with dopamine. 100 The Journal of Trauma July 1993 Table 5 natriuresis did not

  11. Pharmacology of Signaling Induced by Dopamine D1-Like Receptor Activation

    PubMed Central

    Undieh, Ashiwel S.

    2010-01-01

    Dopamine D1-like receptors consisting of D1 and D5 subtypes are intimately implicated in dopaminergic regulation of fundamental neurophysiologic processes such as mood, motivation, cognitive function, and motor activity. Upon stimulation, D1-like receptors initiate signal transduction cascades that are mediated through adenylyl cyclase or phosphoinositide metabolism, with subsequent enhancement of multiple downstream kinase cascades. The latter actions propagate and further amplify the receptor signals, thus predisposing D1-like receptors to multifaceted interactions with various other mediators and receptor systems. The adenylyl cyclase response to dopamine or selective D1-like receptor agonists is reliably associated with the D1 subtype, while emerging evidence indicates that the phosphoinositide responses in native brain tissues may be preferentially mediated through stimulation of the D5 receptor. Besides classic coupling of each receptor subtype to specific G proteins, additional biophysical models are advanced in attempts to account for differential subcellular distribution, heteromolecular oligomerization, and activity-dependent selectivity of the receptors. It is expected that significant advances in understanding of dopamine neurobiology will emerge from current and anticipated studies directed at uncovering the molecular mechanisms of D5 coupling to phosphoinositide signaling, the structural features that might enhance pharmacological selectivity for D5 versus D1 subtypes, the mechanism by which dopamine may modulate phosphoinositide synthesis, the contributions of the various responsive signal mediators to D1 or D5 interactions with D2-like receptors, and the spectrum of dopaminergic functions that may be attributed to each receptor subtype and signaling pathway. PMID:20547182

  12. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitoxicity and Environmental, Metabolic and Oxidative Stress

    DTIC Science & Technology

    2002-07-01

    Parkinson’s disease . Similarly, the psychostimulant drug, methamphetamine also produces relatively selective damage to nigrostriatal dopamine neurons and is a widespread problem and drug of abuse throughout the U.S. However, the neurochemical underpinnings that mediate methamphetamine toxicity and Parkinson’s disease are unknown. Several variables common to methamphetamine toxicity and Parkinson’s disease , each of which may be important but alone are insufficient, may account for the neurodegeneration of the

  13. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitotoxicity and Environment, Metabolic and Oxidative Stress

    DTIC Science & Technology

    2000-07-01

    Degeneration of the nigrostriatal dopamine system is linked to the pathophysiology of Parkinson’s disease . Similarly, the psycho stimulant drug...throughout the U.S. However, the neurochemical underpinnings that mediate methamphetamine toxicity and Parkinson’s disease have escaped definition...We propose that several variables common to methamphetamine toxicity and Parkinson’s disease , each of which may be important but alone are insufficient

  14. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitotoxicity and Environment, Metabolic and Oxidative Stress

    DTIC Science & Technology

    2001-07-01

    Degeneration of the nigrostriatal dopamine system is linked to the pathophysiology of Parkinson’s disease . Similarly, the psychostimulant drug...throughout the U.S. However, the neurochemical underpinnings that mediate methamphetamine toxicity and Parkinson’s disease have escaped definition. We...propose that several variables common to methamphetamine toxicity and Parkinson’s disease , each of which may be important but alone are insufficient

  15. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitotoxicity and Environmental, Metabolic and Oxidative Stress

    DTIC Science & Technology

    2005-07-01

    mediated wet-dog shake behav- Covington HE, Miczek KA (2001) Repeated social -defeat stress, iors Psychopharmacology 108:27-32 cocaine or morphine ...synergistic with oxidative and metabolic insults as well as glutamate to culminate in dopamine cell death. The major objective is to examine the interaction ...The major objective is to examine in rats the interaction between environmental stress and methamphetamine and the convergent action of excitotoxicity

  16. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics

    NASA Astrophysics Data System (ADS)

    Sokoloff, Pierre; Giros, Bruno; Martres, Marie-Pascale; Bouthenet, Marie-Louise; Schwartz, Jean-Charles

    1990-09-01

    A dopamine receptor has been characterized which differs in its pharmacology and signalling system from the D1 or D2 receptor and represents both an autoreceptor and a postsynaptic receptor. The D3 receptor is localized to limbic areas of the brain, which are associated with cognitive, emotional and endocrine functions. It seems to mediate some of the effects of antipsychotic drugs and drugs used against Parkinson's disease, that were previously thought to interact only with D2 receptors.

  17. Caffeine promotes wakefulness via dopamine signaling in Drosophila

    PubMed Central

    Nall, Aleksandra H.; Shakhmantsir, Iryna; Cichewicz, Karol; Birman, Serge; Hirsh, Jay; Sehgal, Amita

    2016-01-01

    Caffeine is the most widely-consumed psychoactive drug in the world, but our understanding of how caffeine affects our brains is relatively incomplete. Most studies focus on effects of caffeine on adenosine receptors, but there is evidence for other, more complex mechanisms. In the fruit fly Drosophila melanogaster, which shows a robust diurnal pattern of sleep/wake activity, caffeine reduces nighttime sleep behavior independently of the one known adenosine receptor. Here, we show that dopamine is required for the wake-promoting effect of caffeine in the fly, and that caffeine likely acts presynaptically to increase dopamine signaling. We identify a cluster of neurons, the paired anterior medial (PAM) cluster of dopaminergic neurons, as the ones relevant for the caffeine response. PAM neurons show increased activity following caffeine administration, and promote wake when activated. Also, inhibition of these neurons abrogates sleep suppression by caffeine. While previous studies have focused on adenosine-receptor mediated mechanisms for caffeine action, we have identified a role for dopaminergic neurons in the arousal-promoting effect of caffeine. PMID:26868675

  18. Caffeine promotes wakefulness via dopamine signaling in Drosophila.

    PubMed

    Nall, Aleksandra H; Shakhmantsir, Iryna; Cichewicz, Karol; Birman, Serge; Hirsh, Jay; Sehgal, Amita

    2016-02-12

    Caffeine is the most widely-consumed psychoactive drug in the world, but our understanding of how caffeine affects our brains is relatively incomplete. Most studies focus on effects of caffeine on adenosine receptors, but there is evidence for other, more complex mechanisms. In the fruit fly Drosophila melanogaster, which shows a robust diurnal pattern of sleep/wake activity, caffeine reduces nighttime sleep behavior independently of the one known adenosine receptor. Here, we show that dopamine is required for the wake-promoting effect of caffeine in the fly, and that caffeine likely acts presynaptically to increase dopamine signaling. We identify a cluster of neurons, the paired anterior medial (PAM) cluster of dopaminergic neurons, as the ones relevant for the caffeine response. PAM neurons show increased activity following caffeine administration, and promote wake when activated. Also, inhibition of these neurons abrogates sleep suppression by caffeine. While previous studies have focused on adenosine-receptor mediated mechanisms for caffeine action, we have identified a role for dopaminergic neurons in the arousal-promoting effect of caffeine.

  19. Diversity and homogeneity in responses of midbrain dopamine neurons.

    PubMed

    Fiorillo, Christopher D; Yun, Sora R; Song, Minryung R

    2013-03-13

    Dopamine neurons of the ventral midbrain have been found to signal a reward prediction error that can mediate positive reinforcement. Despite the demonstration of modest diversity at the cellular and molecular levels, there has been little analysis of response diversity in behaving animals. Here we examine response diversity in rhesus macaques to appetitive, aversive, and neutral stimuli having relative motivational values that were measured and controlled through a choice task. First, consistent with previous studies, we observed a continuum of response variability and an apparent absence of distinct clusters in scatter plots, suggesting a lack of statistically discrete subpopulations of neurons. Second, we found that a group of "sensitive" neurons tend to be more strongly suppressed by a variety of stimuli and to be more strongly activated by juice. Third, neurons in the "ventral tier" of substantia nigra were found to have greater suppression, and a subset of these had higher baseline firing rates and late "rebound" activation after suppression. These neurons could belong to a previously identified subgroup of dopamine neurons that express high levels of H-type cation channels but lack calbindin. Fourth, neurons further rostral exhibited greater suppression. Fifth, although we observed weak activation of some neurons by aversive stimuli, this was not associated with their aversiveness. In conclusion, we find a diversity of response properties, distributed along a continuum, within what may be a single functional population of neurons signaling reward prediction error.

  20. Group II metabotropic glutamate receptors modify N-methyl-D-aspartate receptors via Src kinase

    PubMed Central

    Trepanier, Catherine; Lei, Gang; Xie, Yu-Feng; MacDonald, John F.

    2013-01-01

    Group II metabotropic glutamate receptors (mGluR2/3) have emerged as important targets for the treatment of schizophrenia. Since hypofunction of N-methyl-D-aspartate receptors (NMDARs) has also been implicated in the etiology of schizophrenia, we examined whether postsynaptic mGluR2/3 regulate NMDAR function. Activation of mGluR2/3 significantly decreased the ratio of AMPA-to-NMDA excitatory postsynaptic currents at Schaffer Collateral-CA1 synapses and enhanced the peak of NMDA-evoked currents in acutely isolated CA1 neurons. The mGluR2/3-mediated potentiation of NMDAR currents was selective for GluN2A-containing NMDARs and was mediated by the Src family kinase Src. Activation of mGluR2/3 inhibited the adenylyl cyclase-cAMP-PKA pathway and thereby activated Src by inhibiting its regulatory C-terminal Src kinase (Csk). We suggest a novel model of regulation of NMDARs by Gi/o-coupled receptors whereby inhibition of the cAMP-PKA pathway via mGluR2/3 activates Src kinase and potentiates GluN2A-containing NMDAR currents. This represents a potentially novel mechanism to correct the hypoglutamatergic state found in schizophrenia. PMID:23378895

  1. The unfolding pathway for Apo Escherichia coli aspartate aminotransferase is dependent on the choice of denaturant.

    PubMed

    Deu, Edgar; Kirsch, Jack F

    2007-05-15

    The guanidine hydrochloride (GdnHCl) mediated denaturation pathway for the apo form of homodimeric Escherichia coli aspartate aminotransferase (eAATase) (molecular mass = 43.5 kDa/monomer) includes a partially folded monomeric intermediate, M* [Herold, M., and Kirschner, K. (1990) Biochemistry 29, 1907-1913; Birolo, L., Dal Piaz, F., Pucci, P., and Marino, G. (2002) J. Biol. Chem. 277, 17428-17437]. The present investigation of the urea-mediated denaturation of eAATase finds no evidence for an M* species but uncovers a partially denatured dimeric form, D*, that is unpopulated in GdnHCl. Thus, the unfolding process is a function of the employed denaturant. D* retains less than 50% of the native secondary structure (circular dichroism), conserves significant quaternary and tertiary interactions, and unfolds cooperatively (mD*<==>U = 3.4 +/- 0.3 kcal mol-1 M-1). Therefore, the following equilibria obtain in the denaturation of apo-eAATase: D <==> 2M 2M* <==> 2U in GdnHCl and D <==> D* <==> 2U in urea (D = native dimer, M = folded monomer, and U = unfolded state). The free energy of unfolding of apo-eAATase (D <==> 2U) is 36 +/- 3 kcal mol-1, while that for the D* 2U transition is 24 +/- 2 kcal mol-1, both at 1 M standard state and pH 7.5.

  2. Selective Impairment of Spatial Cognition Caused by Autoantibodies to the N-Methyl-d-Aspartate Receptor

    PubMed Central

    Chang, Eric H.; Volpe, Bruce T.; Mackay, Meggan; Aranow, Cynthia; Watson, Philip; Kowal, Czeslawa; Storbeck, Justin; Mattis, Paul; Berlin, RoseAnn; Chen, Huiyi; Mader, Simone; Huerta, Tomás S.; Huerta, Patricio T.; Diamond, Betty

    2015-01-01

    Patients with systemic lupus erythematosus (SLE) experience cognitive abnormalities in multiple domains including processing speed, executive function, and memory. Here we show that SLE patients carrying antibodies that bind DNA and the GluN2A and GluN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), termed DNRAbs, displayed a selective impairment in spatial recall. Neural recordings in a mouse model of SLE, in which circulating DNRAbs penetrate the hippocampus, revealed that CA1 place cells exhibited a significant expansion in place field size. Structural analysis showed that hippocampal pyramidal cells had substantial reductions in their dendritic processes and spines. Strikingly, these abnormalities became evident at a time when DNRAbs were no longer detectable in the hippocampus. These results suggest that antibody-mediated neurocognitive impairments may be highly specific, and that spatial cognition may be particularly vulnerable to DNRAb-mediated structural and functional injury to hippocampal cells that evolves after the triggering insult is no longer present. PMID:26286205

  3. N-methyl-D-aspartate receptor antibodies in post-herpes simplex virus encephalitis neurological relapse.

    PubMed

    Hacohen, Yael; Deiva, Kumaran; Pettingill, Phillipa; Waters, Patrick; Siddiqui, Ata; Chretien, Pascale; Menson, Esse; Lin, Jean-Pierre; Tardieu, Marc; Vincent, Angela; Lim, Ming J

    2014-01-01

    Herpes simplex virus encephalitis (HSVE) is a devastating condition that relapses, often with a chorea in children, despite adequate antiviral treatment. At relapse, evidence of viral replication is frequently absent, suggesting that the relapse may be immune-mediated. Seven children who had a neurological relapse following their initial encephalitis, identified from 20 cases of pediatric HSVE, were studied. Serum and/or cerebrospinal fluid (CSF) were tested for N-methyl-D-aspartate receptor (NMDAR) and other antibodies previously reported in central nervous system autoimmunity. Five of the 7 relapsing children had choreoathetosis; 2 of these were NMDAR antibody-positive, 2 were negative (1 with HSV-positive CSF), and 1 was not available for testing. An additional patient, who relapsed with cognitive regression but with no movement disorder, was also NMDAR antibody-positive. In 2 of the NMDAR antibody-positive patients who were treated at relapse and in 1 who was treated only after 10 years of having a relapsing encephalopathy, a beneficial response was observed. Neurological relapses after HSVE may frequently be immune-mediated, particularly in children with chorea. NMDAR antibodies are common, and immunotherapy may be beneficial.

  4. PCBs Alter Dopamine Mediated Function in Aging Workers

    DTIC Science & Technology

    2011-01-01

    the number of pregnancies, breastfeeding history, and menopausal status) was collected. Serum PCB Analysis All samples, including current and archived...9.35)++ 29 Female 1.14 (2.62) 112 1.05 (1.37) 12 Number of births (females only) 2.71 (1.63) 112 3.75 (2.14)* 12 Total weeks lifetime breastfeeding

  5. PCBs Alter Dopamine Mediated Function in Aging Workers

    DTIC Science & Technology

    2010-01-01

    as (if applicable) female reproductive histories (the number of pregnancies, breastfeeding history, and menopausal status) was collected. Serum PCB...3.75 (2.14)* 12 Total weeks lifetime breastfeeding (females only) 7.18 (22.73) 112 6.92 (20.59) 12 aNumber of observations varies across

  6. PCBs Alter Dopamine Mediated Function in Aging Workers

    DTIC Science & Technology

    2005-01-01

    Neurological Association 2002 Distinguished Leader Award, Central Ohio Chapter, Huntington Disease Society of America SERVICE 1997- Member, Editorial Board...persons near onset of Huntington disease , Neurol 57, 658-662, 2001 16. Higgins, DS, Chorea and it’s Disorders, Neurologic Clinics of North America, 19(3... Huntington Disease , Neurol 59 1325-1330, 2002 19. Wheelock, V.L., Tempkin, T., Marder, K., Nance, M, Myers, R., Zhao, H., Kayson, E., Orme, C., Shoulson, I

  7. PCBs Alter Dopamine Mediated Function in Aging Workers

    DTIC Science & Technology

    2006-01-01

    subjects are elderly and must travel considerable distances to undergo testing at these two sites. We are nearing the end of the data collection...neurotoxicants in the etiology of parkinsonism (e.g., dioxins and furans) on human DA function, including Parkinson =s disease. Supported by grants from the

  8. PCBs Alter Dopamine Mediated Function in Aging Workers

    DTIC Science & Technology

    2007-01-01

    in Albany, NY and in New Haven, CT. We are proud of this progress since many of our subjects are elderly and must travel considerable distances to...Thyroid meds Age Gender Education IQ Body Mass Index Marital status Smoking Drinking Physical activity level Hours of sleep per night

  9. PCBs Alter Dopamine Mediated Function in Aging Workers

    DTIC Science & Technology

    2004-01-01

    fluorine, chlorine, asbestos, chalkdust bromine, iodine) Refrigerants, freons, coolantsOther Metals (including aluminum, tin, copper, nickel , zinc...bromine, iodine) Refrigerants, fi’eons, coolantsOther Metals (including aluminum, tin, copper, nickel , zinc, cadmium, iron) Welding fumes, molten...and Molho, Lyndsey , Brandon, Gwen, Susan, and I would once again like to The Connecticut study begins thank you for taking the time to participate One

  10. Vasodilator responses to dopamine in rat perfused mesentery are age-dependent.

    PubMed Central

    Wanstall, J. C.; O'Donnell, S. R.

    1989-01-01

    1. Dose-dependent vasodilator responses to dopamine, isoprenaline, noradrenaline, 3-isobutyl-1-methylxanthine (IBMX) and sodium nitroprusside were obtained in isolated perfused mesentery preparations, taken from reserpine-treated rats of different ages. The preparations were pretreated with phenoxybenzamine (1 microM) and perfused with physiological salt solution containing cocaine (10 microM), additional KCl (20 mM) and vasopressin (0.1 microM). 2. Vasodilator responses to dopamine were abolished by the dopamine1 (DA1)-selective antagonist SCH 23390 (10 nM) and those to isoprenaline by propranolol (1 microM), but the vasodilator responses to noradrenaline were abolished only when SCH 23390 and propranolol were used together. This indicated that dopamine was acting via DA1-receptors, isoprenaline via beta-adrenoceptors and that noradrenaline could act via DA1-receptors and beta-adrenoceptors in this preparation. 3. Responses to all the vasodilator drugs decreased in magnitude between the ages of 1 and 2 months. Responses to dopamine declined further in 4 month-old rats and were negligible at 6 or 22-24 months of age. Responses to isoprenaline were well maintained up to 6 months of age, but were negligible at 22-24 months. 4. It is concluded that, in the rat mesenteric vasculature, there is a non-specific decline in responses to vasodilator drugs during development (1 to 2 months). Subsequently there is a specific decline in DA1-receptor-mediated and beta-adrenoceptor-mediated responses; the former are lost at an earlier age than the latter. This different time course suggests that age influences receptor numbers, or their coupling to adenylate cyclase, rather